Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  3
  4#include "e1000.h"
  5
  6/**
  7 *  e1000_raise_eec_clk - Raise EEPROM clock
  8 *  @hw: pointer to the HW structure
  9 *  @eecd: pointer to the EEPROM
 10 *
 11 *  Enable/Raise the EEPROM clock bit.
 12 **/
 13static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 14{
 15	*eecd = *eecd | E1000_EECD_SK;
 16	ew32(EECD, *eecd);
 17	e1e_flush();
 18	udelay(hw->nvm.delay_usec);
 19}
 20
 21/**
 22 *  e1000_lower_eec_clk - Lower EEPROM clock
 23 *  @hw: pointer to the HW structure
 24 *  @eecd: pointer to the EEPROM
 25 *
 26 *  Clear/Lower the EEPROM clock bit.
 27 **/
 28static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 29{
 30	*eecd = *eecd & ~E1000_EECD_SK;
 31	ew32(EECD, *eecd);
 32	e1e_flush();
 33	udelay(hw->nvm.delay_usec);
 34}
 35
 36/**
 37 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
 38 *  @hw: pointer to the HW structure
 39 *  @data: data to send to the EEPROM
 40 *  @count: number of bits to shift out
 41 *
 42 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 43 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 44 *  In order to do this, "data" must be broken down into bits.
 45 **/
 46static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 47{
 48	struct e1000_nvm_info *nvm = &hw->nvm;
 49	u32 eecd = er32(EECD);
 50	u32 mask;
 51
 52	mask = BIT(count - 1);
 53	if (nvm->type == e1000_nvm_eeprom_spi)
 54		eecd |= E1000_EECD_DO;
 55
 56	do {
 57		eecd &= ~E1000_EECD_DI;
 58
 59		if (data & mask)
 60			eecd |= E1000_EECD_DI;
 61
 62		ew32(EECD, eecd);
 63		e1e_flush();
 64
 65		udelay(nvm->delay_usec);
 66
 67		e1000_raise_eec_clk(hw, &eecd);
 68		e1000_lower_eec_clk(hw, &eecd);
 69
 70		mask >>= 1;
 71	} while (mask);
 72
 73	eecd &= ~E1000_EECD_DI;
 74	ew32(EECD, eecd);
 75}
 76
 77/**
 78 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
 79 *  @hw: pointer to the HW structure
 80 *  @count: number of bits to shift in
 81 *
 82 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 83 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 84 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 85 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 86 *  always be clear.
 87 **/
 88static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
 89{
 90	u32 eecd;
 91	u32 i;
 92	u16 data;
 93
 94	eecd = er32(EECD);
 
 95	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 96	data = 0;
 97
 98	for (i = 0; i < count; i++) {
 99		data <<= 1;
100		e1000_raise_eec_clk(hw, &eecd);
101
102		eecd = er32(EECD);
103
104		eecd &= ~E1000_EECD_DI;
105		if (eecd & E1000_EECD_DO)
106			data |= 1;
107
108		e1000_lower_eec_clk(hw, &eecd);
109	}
110
111	return data;
112}
113
114/**
115 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
116 *  @hw: pointer to the HW structure
117 *  @ee_reg: EEPROM flag for polling
118 *
119 *  Polls the EEPROM status bit for either read or write completion based
120 *  upon the value of 'ee_reg'.
121 **/
122s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
123{
124	u32 attempts = 100000;
125	u32 i, reg = 0;
126
127	for (i = 0; i < attempts; i++) {
128		if (ee_reg == E1000_NVM_POLL_READ)
129			reg = er32(EERD);
130		else
131			reg = er32(EEWR);
132
133		if (reg & E1000_NVM_RW_REG_DONE)
134			return 0;
135
136		udelay(5);
137	}
138
139	return -E1000_ERR_NVM;
140}
141
142/**
143 *  e1000e_acquire_nvm - Generic request for access to EEPROM
144 *  @hw: pointer to the HW structure
145 *
146 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
147 *  Return successful if access grant bit set, else clear the request for
148 *  EEPROM access and return -E1000_ERR_NVM (-1).
149 **/
150s32 e1000e_acquire_nvm(struct e1000_hw *hw)
151{
152	u32 eecd = er32(EECD);
153	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
154
155	ew32(EECD, eecd | E1000_EECD_REQ);
156	eecd = er32(EECD);
157
158	while (timeout) {
159		if (eecd & E1000_EECD_GNT)
160			break;
161		udelay(5);
162		eecd = er32(EECD);
163		timeout--;
164	}
165
166	if (!timeout) {
167		eecd &= ~E1000_EECD_REQ;
168		ew32(EECD, eecd);
169		e_dbg("Could not acquire NVM grant\n");
170		return -E1000_ERR_NVM;
171	}
172
173	return 0;
174}
175
176/**
177 *  e1000_standby_nvm - Return EEPROM to standby state
178 *  @hw: pointer to the HW structure
179 *
180 *  Return the EEPROM to a standby state.
181 **/
182static void e1000_standby_nvm(struct e1000_hw *hw)
183{
184	struct e1000_nvm_info *nvm = &hw->nvm;
185	u32 eecd = er32(EECD);
186
187	if (nvm->type == e1000_nvm_eeprom_spi) {
188		/* Toggle CS to flush commands */
189		eecd |= E1000_EECD_CS;
190		ew32(EECD, eecd);
191		e1e_flush();
192		udelay(nvm->delay_usec);
193		eecd &= ~E1000_EECD_CS;
194		ew32(EECD, eecd);
195		e1e_flush();
196		udelay(nvm->delay_usec);
197	}
198}
199
200/**
201 *  e1000_stop_nvm - Terminate EEPROM command
202 *  @hw: pointer to the HW structure
203 *
204 *  Terminates the current command by inverting the EEPROM's chip select pin.
205 **/
206static void e1000_stop_nvm(struct e1000_hw *hw)
207{
208	u32 eecd;
209
210	eecd = er32(EECD);
211	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
212		/* Pull CS high */
213		eecd |= E1000_EECD_CS;
214		e1000_lower_eec_clk(hw, &eecd);
215	}
216}
217
218/**
219 *  e1000e_release_nvm - Release exclusive access to EEPROM
220 *  @hw: pointer to the HW structure
221 *
222 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
223 **/
224void e1000e_release_nvm(struct e1000_hw *hw)
225{
226	u32 eecd;
227
228	e1000_stop_nvm(hw);
229
230	eecd = er32(EECD);
231	eecd &= ~E1000_EECD_REQ;
232	ew32(EECD, eecd);
233}
234
235/**
236 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
237 *  @hw: pointer to the HW structure
238 *
239 *  Setups the EEPROM for reading and writing.
240 **/
241static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
242{
243	struct e1000_nvm_info *nvm = &hw->nvm;
244	u32 eecd = er32(EECD);
245	u8 spi_stat_reg;
246
247	if (nvm->type == e1000_nvm_eeprom_spi) {
248		u16 timeout = NVM_MAX_RETRY_SPI;
249
250		/* Clear SK and CS */
251		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
252		ew32(EECD, eecd);
253		e1e_flush();
254		udelay(1);
255
256		/* Read "Status Register" repeatedly until the LSB is cleared.
 
257		 * The EEPROM will signal that the command has been completed
258		 * by clearing bit 0 of the internal status register.  If it's
259		 * not cleared within 'timeout', then error out.
260		 */
261		while (timeout) {
262			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
263						 hw->nvm.opcode_bits);
264			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
265			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
266				break;
267
268			udelay(5);
269			e1000_standby_nvm(hw);
270			timeout--;
271		}
272
273		if (!timeout) {
274			e_dbg("SPI NVM Status error\n");
275			return -E1000_ERR_NVM;
276		}
277	}
278
279	return 0;
280}
281
282/**
283 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
284 *  @hw: pointer to the HW structure
285 *  @offset: offset of word in the EEPROM to read
286 *  @words: number of words to read
287 *  @data: word read from the EEPROM
288 *
289 *  Reads a 16 bit word from the EEPROM using the EERD register.
290 **/
291s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
292{
293	struct e1000_nvm_info *nvm = &hw->nvm;
294	u32 i, eerd = 0;
295	s32 ret_val = 0;
296
297	/* A check for invalid values:  offset too large, too many words,
 
298	 * too many words for the offset, and not enough words.
299	 */
300	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
301	    (words == 0)) {
302		e_dbg("nvm parameter(s) out of bounds\n");
303		return -E1000_ERR_NVM;
304	}
305
306	for (i = 0; i < words; i++) {
307		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
308		    E1000_NVM_RW_REG_START;
309
310		ew32(EERD, eerd);
311		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
312		if (ret_val) {
313			e_dbg("NVM read error: %d\n", ret_val);
314			break;
315		}
316
317		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
318	}
319
320	return ret_val;
321}
322
323/**
324 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
325 *  @hw: pointer to the HW structure
326 *  @offset: offset within the EEPROM to be written to
327 *  @words: number of words to write
328 *  @data: 16 bit word(s) to be written to the EEPROM
329 *
330 *  Writes data to EEPROM at offset using SPI interface.
331 *
332 *  If e1000e_update_nvm_checksum is not called after this function , the
333 *  EEPROM will most likely contain an invalid checksum.
334 **/
335s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
336{
337	struct e1000_nvm_info *nvm = &hw->nvm;
338	s32 ret_val = -E1000_ERR_NVM;
339	u16 widx = 0;
340
341	/* A check for invalid values:  offset too large, too many words,
 
342	 * and not enough words.
343	 */
344	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
345	    (words == 0)) {
346		e_dbg("nvm parameter(s) out of bounds\n");
347		return -E1000_ERR_NVM;
348	}
349
 
 
 
 
350	while (widx < words) {
351		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
352
353		ret_val = nvm->ops.acquire(hw);
354		if (ret_val)
355			return ret_val;
356
357		ret_val = e1000_ready_nvm_eeprom(hw);
358		if (ret_val) {
359			nvm->ops.release(hw);
360			return ret_val;
361		}
362
363		e1000_standby_nvm(hw);
364
365		/* Send the WRITE ENABLE command (8 bit opcode) */
366		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
367					 nvm->opcode_bits);
368
369		e1000_standby_nvm(hw);
370
371		/* Some SPI eeproms use the 8th address bit embedded in the
 
372		 * opcode
373		 */
374		if ((nvm->address_bits == 8) && (offset >= 128))
375			write_opcode |= NVM_A8_OPCODE_SPI;
376
377		/* Send the Write command (8-bit opcode + addr) */
378		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
379		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
380					 nvm->address_bits);
381
382		/* Loop to allow for up to whole page write of eeprom */
383		while (widx < words) {
384			u16 word_out = data[widx];
385
386			word_out = (word_out >> 8) | (word_out << 8);
387			e1000_shift_out_eec_bits(hw, word_out, 16);
388			widx++;
389
390			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
391				e1000_standby_nvm(hw);
392				break;
393			}
394		}
395		usleep_range(10000, 11000);
396		nvm->ops.release(hw);
397	}
398
 
 
 
 
399	return ret_val;
400}
401
402/**
403 *  e1000_read_pba_string_generic - Read device part number
404 *  @hw: pointer to the HW structure
405 *  @pba_num: pointer to device part number
406 *  @pba_num_size: size of part number buffer
407 *
408 *  Reads the product board assembly (PBA) number from the EEPROM and stores
409 *  the value in pba_num.
410 **/
411s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
412				  u32 pba_num_size)
413{
414	s32 ret_val;
415	u16 nvm_data;
416	u16 pba_ptr;
417	u16 offset;
418	u16 length;
419
420	if (pba_num == NULL) {
421		e_dbg("PBA string buffer was null\n");
422		return -E1000_ERR_INVALID_ARGUMENT;
423	}
424
425	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
426	if (ret_val) {
427		e_dbg("NVM Read Error\n");
428		return ret_val;
429	}
430
431	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
432	if (ret_val) {
433		e_dbg("NVM Read Error\n");
434		return ret_val;
435	}
436
437	/* if nvm_data is not ptr guard the PBA must be in legacy format which
 
438	 * means pba_ptr is actually our second data word for the PBA number
439	 * and we can decode it into an ascii string
440	 */
441	if (nvm_data != NVM_PBA_PTR_GUARD) {
442		e_dbg("NVM PBA number is not stored as string\n");
443
444		/* make sure callers buffer is big enough to store the PBA */
445		if (pba_num_size < E1000_PBANUM_LENGTH) {
446			e_dbg("PBA string buffer too small\n");
447			return E1000_ERR_NO_SPACE;
448		}
449
450		/* extract hex string from data and pba_ptr */
451		pba_num[0] = (nvm_data >> 12) & 0xF;
452		pba_num[1] = (nvm_data >> 8) & 0xF;
453		pba_num[2] = (nvm_data >> 4) & 0xF;
454		pba_num[3] = nvm_data & 0xF;
455		pba_num[4] = (pba_ptr >> 12) & 0xF;
456		pba_num[5] = (pba_ptr >> 8) & 0xF;
457		pba_num[6] = '-';
458		pba_num[7] = 0;
459		pba_num[8] = (pba_ptr >> 4) & 0xF;
460		pba_num[9] = pba_ptr & 0xF;
461
462		/* put a null character on the end of our string */
463		pba_num[10] = '\0';
464
465		/* switch all the data but the '-' to hex char */
466		for (offset = 0; offset < 10; offset++) {
467			if (pba_num[offset] < 0xA)
468				pba_num[offset] += '0';
469			else if (pba_num[offset] < 0x10)
470				pba_num[offset] += 'A' - 0xA;
471		}
472
473		return 0;
474	}
475
476	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
477	if (ret_val) {
478		e_dbg("NVM Read Error\n");
479		return ret_val;
480	}
481
482	if (length == 0xFFFF || length == 0) {
483		e_dbg("NVM PBA number section invalid length\n");
484		return -E1000_ERR_NVM_PBA_SECTION;
485	}
486	/* check if pba_num buffer is big enough */
487	if (pba_num_size < (((u32)length * 2) - 1)) {
488		e_dbg("PBA string buffer too small\n");
489		return -E1000_ERR_NO_SPACE;
490	}
491
492	/* trim pba length from start of string */
493	pba_ptr++;
494	length--;
495
496	for (offset = 0; offset < length; offset++) {
497		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
498		if (ret_val) {
499			e_dbg("NVM Read Error\n");
500			return ret_val;
501		}
502		pba_num[offset * 2] = (u8)(nvm_data >> 8);
503		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
504	}
505	pba_num[offset * 2] = '\0';
506
507	return 0;
508}
509
510/**
511 *  e1000_read_mac_addr_generic - Read device MAC address
512 *  @hw: pointer to the HW structure
513 *
514 *  Reads the device MAC address from the EEPROM and stores the value.
515 *  Since devices with two ports use the same EEPROM, we increment the
516 *  last bit in the MAC address for the second port.
517 **/
518s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
519{
520	u32 rar_high;
521	u32 rar_low;
522	u16 i;
523
524	rar_high = er32(RAH(0));
525	rar_low = er32(RAL(0));
526
527	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
528		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
529
530	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
531		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
532
533	for (i = 0; i < ETH_ALEN; i++)
534		hw->mac.addr[i] = hw->mac.perm_addr[i];
535
536	return 0;
537}
538
539/**
540 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
541 *  @hw: pointer to the HW structure
542 *
543 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
544 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
545 **/
546s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
547{
548	s32 ret_val;
549	u16 checksum = 0;
550	u16 i, nvm_data;
551
552	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
553		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
554		if (ret_val) {
555			e_dbg("NVM Read Error\n");
556			return ret_val;
557		}
558		checksum += nvm_data;
559	}
560
561	if (checksum != (u16)NVM_SUM) {
562		e_dbg("NVM Checksum Invalid\n");
563		return -E1000_ERR_NVM;
564	}
565
566	return 0;
567}
568
569/**
570 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
571 *  @hw: pointer to the HW structure
572 *
573 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
574 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
575 *  value to the EEPROM.
576 **/
577s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
578{
579	s32 ret_val;
580	u16 checksum = 0;
581	u16 i, nvm_data;
582
583	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
584		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
585		if (ret_val) {
586			e_dbg("NVM Read Error while updating checksum.\n");
587			return ret_val;
588		}
589		checksum += nvm_data;
590	}
591	checksum = (u16)NVM_SUM - checksum;
592	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
593	if (ret_val)
594		e_dbg("NVM Write Error while updating checksum.\n");
595
596	return ret_val;
597}
598
599/**
600 *  e1000e_reload_nvm_generic - Reloads EEPROM
601 *  @hw: pointer to the HW structure
602 *
603 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
604 *  extended control register.
605 **/
606void e1000e_reload_nvm_generic(struct e1000_hw *hw)
607{
608	u32 ctrl_ext;
609
610	usleep_range(10, 20);
611	ctrl_ext = er32(CTRL_EXT);
612	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
613	ew32(CTRL_EXT, ctrl_ext);
614	e1e_flush();
615}
v3.5.6
  1/*******************************************************************************
  2
  3  Intel PRO/1000 Linux driver
  4  Copyright(c) 1999 - 2012 Intel Corporation.
  5
  6  This program is free software; you can redistribute it and/or modify it
  7  under the terms and conditions of the GNU General Public License,
  8  version 2, as published by the Free Software Foundation.
  9
 10  This program is distributed in the hope it will be useful, but WITHOUT
 11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13  more details.
 14
 15  You should have received a copy of the GNU General Public License along with
 16  this program; if not, write to the Free Software Foundation, Inc.,
 17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18
 19  The full GNU General Public License is included in this distribution in
 20  the file called "COPYING".
 21
 22  Contact Information:
 23  Linux NICS <linux.nics@intel.com>
 24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 26
 27*******************************************************************************/
 28
 29#include "e1000.h"
 30
 31/**
 32 *  e1000_raise_eec_clk - Raise EEPROM clock
 33 *  @hw: pointer to the HW structure
 34 *  @eecd: pointer to the EEPROM
 35 *
 36 *  Enable/Raise the EEPROM clock bit.
 37 **/
 38static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
 39{
 40	*eecd = *eecd | E1000_EECD_SK;
 41	ew32(EECD, *eecd);
 42	e1e_flush();
 43	udelay(hw->nvm.delay_usec);
 44}
 45
 46/**
 47 *  e1000_lower_eec_clk - Lower EEPROM clock
 48 *  @hw: pointer to the HW structure
 49 *  @eecd: pointer to the EEPROM
 50 *
 51 *  Clear/Lower the EEPROM clock bit.
 52 **/
 53static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
 54{
 55	*eecd = *eecd & ~E1000_EECD_SK;
 56	ew32(EECD, *eecd);
 57	e1e_flush();
 58	udelay(hw->nvm.delay_usec);
 59}
 60
 61/**
 62 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
 63 *  @hw: pointer to the HW structure
 64 *  @data: data to send to the EEPROM
 65 *  @count: number of bits to shift out
 66 *
 67 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
 68 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
 69 *  In order to do this, "data" must be broken down into bits.
 70 **/
 71static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
 72{
 73	struct e1000_nvm_info *nvm = &hw->nvm;
 74	u32 eecd = er32(EECD);
 75	u32 mask;
 76
 77	mask = 0x01 << (count - 1);
 78	if (nvm->type == e1000_nvm_eeprom_spi)
 79		eecd |= E1000_EECD_DO;
 80
 81	do {
 82		eecd &= ~E1000_EECD_DI;
 83
 84		if (data & mask)
 85			eecd |= E1000_EECD_DI;
 86
 87		ew32(EECD, eecd);
 88		e1e_flush();
 89
 90		udelay(nvm->delay_usec);
 91
 92		e1000_raise_eec_clk(hw, &eecd);
 93		e1000_lower_eec_clk(hw, &eecd);
 94
 95		mask >>= 1;
 96	} while (mask);
 97
 98	eecd &= ~E1000_EECD_DI;
 99	ew32(EECD, eecd);
100}
101
102/**
103 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
104 *  @hw: pointer to the HW structure
105 *  @count: number of bits to shift in
106 *
107 *  In order to read a register from the EEPROM, we need to shift 'count' bits
108 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
109 *  the EEPROM (setting the SK bit), and then reading the value of the data out
110 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
111 *  always be clear.
112 **/
113static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
114{
115	u32 eecd;
116	u32 i;
117	u16 data;
118
119	eecd = er32(EECD);
120
121	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
122	data = 0;
123
124	for (i = 0; i < count; i++) {
125		data <<= 1;
126		e1000_raise_eec_clk(hw, &eecd);
127
128		eecd = er32(EECD);
129
130		eecd &= ~E1000_EECD_DI;
131		if (eecd & E1000_EECD_DO)
132			data |= 1;
133
134		e1000_lower_eec_clk(hw, &eecd);
135	}
136
137	return data;
138}
139
140/**
141 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
142 *  @hw: pointer to the HW structure
143 *  @ee_reg: EEPROM flag for polling
144 *
145 *  Polls the EEPROM status bit for either read or write completion based
146 *  upon the value of 'ee_reg'.
147 **/
148s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
149{
150	u32 attempts = 100000;
151	u32 i, reg = 0;
152
153	for (i = 0; i < attempts; i++) {
154		if (ee_reg == E1000_NVM_POLL_READ)
155			reg = er32(EERD);
156		else
157			reg = er32(EEWR);
158
159		if (reg & E1000_NVM_RW_REG_DONE)
160			return 0;
161
162		udelay(5);
163	}
164
165	return -E1000_ERR_NVM;
166}
167
168/**
169 *  e1000e_acquire_nvm - Generic request for access to EEPROM
170 *  @hw: pointer to the HW structure
171 *
172 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
173 *  Return successful if access grant bit set, else clear the request for
174 *  EEPROM access and return -E1000_ERR_NVM (-1).
175 **/
176s32 e1000e_acquire_nvm(struct e1000_hw *hw)
177{
178	u32 eecd = er32(EECD);
179	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
180
181	ew32(EECD, eecd | E1000_EECD_REQ);
182	eecd = er32(EECD);
183
184	while (timeout) {
185		if (eecd & E1000_EECD_GNT)
186			break;
187		udelay(5);
188		eecd = er32(EECD);
189		timeout--;
190	}
191
192	if (!timeout) {
193		eecd &= ~E1000_EECD_REQ;
194		ew32(EECD, eecd);
195		e_dbg("Could not acquire NVM grant\n");
196		return -E1000_ERR_NVM;
197	}
198
199	return 0;
200}
201
202/**
203 *  e1000_standby_nvm - Return EEPROM to standby state
204 *  @hw: pointer to the HW structure
205 *
206 *  Return the EEPROM to a standby state.
207 **/
208static void e1000_standby_nvm(struct e1000_hw *hw)
209{
210	struct e1000_nvm_info *nvm = &hw->nvm;
211	u32 eecd = er32(EECD);
212
213	if (nvm->type == e1000_nvm_eeprom_spi) {
214		/* Toggle CS to flush commands */
215		eecd |= E1000_EECD_CS;
216		ew32(EECD, eecd);
217		e1e_flush();
218		udelay(nvm->delay_usec);
219		eecd &= ~E1000_EECD_CS;
220		ew32(EECD, eecd);
221		e1e_flush();
222		udelay(nvm->delay_usec);
223	}
224}
225
226/**
227 *  e1000_stop_nvm - Terminate EEPROM command
228 *  @hw: pointer to the HW structure
229 *
230 *  Terminates the current command by inverting the EEPROM's chip select pin.
231 **/
232static void e1000_stop_nvm(struct e1000_hw *hw)
233{
234	u32 eecd;
235
236	eecd = er32(EECD);
237	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
238		/* Pull CS high */
239		eecd |= E1000_EECD_CS;
240		e1000_lower_eec_clk(hw, &eecd);
241	}
242}
243
244/**
245 *  e1000e_release_nvm - Release exclusive access to EEPROM
246 *  @hw: pointer to the HW structure
247 *
248 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
249 **/
250void e1000e_release_nvm(struct e1000_hw *hw)
251{
252	u32 eecd;
253
254	e1000_stop_nvm(hw);
255
256	eecd = er32(EECD);
257	eecd &= ~E1000_EECD_REQ;
258	ew32(EECD, eecd);
259}
260
261/**
262 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
263 *  @hw: pointer to the HW structure
264 *
265 *  Setups the EEPROM for reading and writing.
266 **/
267static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
268{
269	struct e1000_nvm_info *nvm = &hw->nvm;
270	u32 eecd = er32(EECD);
271	u8 spi_stat_reg;
272
273	if (nvm->type == e1000_nvm_eeprom_spi) {
274		u16 timeout = NVM_MAX_RETRY_SPI;
275
276		/* Clear SK and CS */
277		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278		ew32(EECD, eecd);
279		e1e_flush();
280		udelay(1);
281
282		/*
283		 * Read "Status Register" repeatedly until the LSB is cleared.
284		 * The EEPROM will signal that the command has been completed
285		 * by clearing bit 0 of the internal status register.  If it's
286		 * not cleared within 'timeout', then error out.
287		 */
288		while (timeout) {
289			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
290						 hw->nvm.opcode_bits);
291			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
292			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
293				break;
294
295			udelay(5);
296			e1000_standby_nvm(hw);
297			timeout--;
298		}
299
300		if (!timeout) {
301			e_dbg("SPI NVM Status error\n");
302			return -E1000_ERR_NVM;
303		}
304	}
305
306	return 0;
307}
308
309/**
310 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
311 *  @hw: pointer to the HW structure
312 *  @offset: offset of word in the EEPROM to read
313 *  @words: number of words to read
314 *  @data: word read from the EEPROM
315 *
316 *  Reads a 16 bit word from the EEPROM using the EERD register.
317 **/
318s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
319{
320	struct e1000_nvm_info *nvm = &hw->nvm;
321	u32 i, eerd = 0;
322	s32 ret_val = 0;
323
324	/*
325	 * A check for invalid values:  offset too large, too many words,
326	 * too many words for the offset, and not enough words.
327	 */
328	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
329	    (words == 0)) {
330		e_dbg("nvm parameter(s) out of bounds\n");
331		return -E1000_ERR_NVM;
332	}
333
334	for (i = 0; i < words; i++) {
335		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
336		    E1000_NVM_RW_REG_START;
337
338		ew32(EERD, eerd);
339		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
340		if (ret_val)
 
341			break;
 
342
343		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
344	}
345
346	return ret_val;
347}
348
349/**
350 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
351 *  @hw: pointer to the HW structure
352 *  @offset: offset within the EEPROM to be written to
353 *  @words: number of words to write
354 *  @data: 16 bit word(s) to be written to the EEPROM
355 *
356 *  Writes data to EEPROM at offset using SPI interface.
357 *
358 *  If e1000e_update_nvm_checksum is not called after this function , the
359 *  EEPROM will most likely contain an invalid checksum.
360 **/
361s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
362{
363	struct e1000_nvm_info *nvm = &hw->nvm;
364	s32 ret_val;
365	u16 widx = 0;
366
367	/*
368	 * A check for invalid values:  offset too large, too many words,
369	 * and not enough words.
370	 */
371	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
372	    (words == 0)) {
373		e_dbg("nvm parameter(s) out of bounds\n");
374		return -E1000_ERR_NVM;
375	}
376
377	ret_val = nvm->ops.acquire(hw);
378	if (ret_val)
379		return ret_val;
380
381	while (widx < words) {
382		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
383
 
 
 
 
384		ret_val = e1000_ready_nvm_eeprom(hw);
385		if (ret_val)
386			goto release;
 
 
387
388		e1000_standby_nvm(hw);
389
390		/* Send the WRITE ENABLE command (8 bit opcode) */
391		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
392					 nvm->opcode_bits);
393
394		e1000_standby_nvm(hw);
395
396		/*
397		 * Some SPI eeproms use the 8th address bit embedded in the
398		 * opcode
399		 */
400		if ((nvm->address_bits == 8) && (offset >= 128))
401			write_opcode |= NVM_A8_OPCODE_SPI;
402
403		/* Send the Write command (8-bit opcode + addr) */
404		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
405		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
406					 nvm->address_bits);
407
408		/* Loop to allow for up to whole page write of eeprom */
409		while (widx < words) {
410			u16 word_out = data[widx];
 
411			word_out = (word_out >> 8) | (word_out << 8);
412			e1000_shift_out_eec_bits(hw, word_out, 16);
413			widx++;
414
415			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
416				e1000_standby_nvm(hw);
417				break;
418			}
419		}
 
 
420	}
421
422	usleep_range(10000, 20000);
423release:
424	nvm->ops.release(hw);
425
426	return ret_val;
427}
428
429/**
430 *  e1000_read_pba_string_generic - Read device part number
431 *  @hw: pointer to the HW structure
432 *  @pba_num: pointer to device part number
433 *  @pba_num_size: size of part number buffer
434 *
435 *  Reads the product board assembly (PBA) number from the EEPROM and stores
436 *  the value in pba_num.
437 **/
438s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
439				  u32 pba_num_size)
440{
441	s32 ret_val;
442	u16 nvm_data;
443	u16 pba_ptr;
444	u16 offset;
445	u16 length;
446
447	if (pba_num == NULL) {
448		e_dbg("PBA string buffer was null\n");
449		return -E1000_ERR_INVALID_ARGUMENT;
450	}
451
452	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
453	if (ret_val) {
454		e_dbg("NVM Read Error\n");
455		return ret_val;
456	}
457
458	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
459	if (ret_val) {
460		e_dbg("NVM Read Error\n");
461		return ret_val;
462	}
463
464	/*
465	 * if nvm_data is not ptr guard the PBA must be in legacy format which
466	 * means pba_ptr is actually our second data word for the PBA number
467	 * and we can decode it into an ascii string
468	 */
469	if (nvm_data != NVM_PBA_PTR_GUARD) {
470		e_dbg("NVM PBA number is not stored as string\n");
471
472		/* we will need 11 characters to store the PBA */
473		if (pba_num_size < 11) {
474			e_dbg("PBA string buffer too small\n");
475			return E1000_ERR_NO_SPACE;
476		}
477
478		/* extract hex string from data and pba_ptr */
479		pba_num[0] = (nvm_data >> 12) & 0xF;
480		pba_num[1] = (nvm_data >> 8) & 0xF;
481		pba_num[2] = (nvm_data >> 4) & 0xF;
482		pba_num[3] = nvm_data & 0xF;
483		pba_num[4] = (pba_ptr >> 12) & 0xF;
484		pba_num[5] = (pba_ptr >> 8) & 0xF;
485		pba_num[6] = '-';
486		pba_num[7] = 0;
487		pba_num[8] = (pba_ptr >> 4) & 0xF;
488		pba_num[9] = pba_ptr & 0xF;
489
490		/* put a null character on the end of our string */
491		pba_num[10] = '\0';
492
493		/* switch all the data but the '-' to hex char */
494		for (offset = 0; offset < 10; offset++) {
495			if (pba_num[offset] < 0xA)
496				pba_num[offset] += '0';
497			else if (pba_num[offset] < 0x10)
498				pba_num[offset] += 'A' - 0xA;
499		}
500
501		return 0;
502	}
503
504	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
505	if (ret_val) {
506		e_dbg("NVM Read Error\n");
507		return ret_val;
508	}
509
510	if (length == 0xFFFF || length == 0) {
511		e_dbg("NVM PBA number section invalid length\n");
512		return -E1000_ERR_NVM_PBA_SECTION;
513	}
514	/* check if pba_num buffer is big enough */
515	if (pba_num_size < (((u32)length * 2) - 1)) {
516		e_dbg("PBA string buffer too small\n");
517		return -E1000_ERR_NO_SPACE;
518	}
519
520	/* trim pba length from start of string */
521	pba_ptr++;
522	length--;
523
524	for (offset = 0; offset < length; offset++) {
525		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
526		if (ret_val) {
527			e_dbg("NVM Read Error\n");
528			return ret_val;
529		}
530		pba_num[offset * 2] = (u8)(nvm_data >> 8);
531		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
532	}
533	pba_num[offset * 2] = '\0';
534
535	return 0;
536}
537
538/**
539 *  e1000_read_mac_addr_generic - Read device MAC address
540 *  @hw: pointer to the HW structure
541 *
542 *  Reads the device MAC address from the EEPROM and stores the value.
543 *  Since devices with two ports use the same EEPROM, we increment the
544 *  last bit in the MAC address for the second port.
545 **/
546s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
547{
548	u32 rar_high;
549	u32 rar_low;
550	u16 i;
551
552	rar_high = er32(RAH(0));
553	rar_low = er32(RAL(0));
554
555	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
556		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
557
558	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
559		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
560
561	for (i = 0; i < ETH_ALEN; i++)
562		hw->mac.addr[i] = hw->mac.perm_addr[i];
563
564	return 0;
565}
566
567/**
568 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
569 *  @hw: pointer to the HW structure
570 *
571 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
572 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
573 **/
574s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
575{
576	s32 ret_val;
577	u16 checksum = 0;
578	u16 i, nvm_data;
579
580	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
581		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
582		if (ret_val) {
583			e_dbg("NVM Read Error\n");
584			return ret_val;
585		}
586		checksum += nvm_data;
587	}
588
589	if (checksum != (u16)NVM_SUM) {
590		e_dbg("NVM Checksum Invalid\n");
591		return -E1000_ERR_NVM;
592	}
593
594	return 0;
595}
596
597/**
598 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
599 *  @hw: pointer to the HW structure
600 *
601 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
602 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
603 *  value to the EEPROM.
604 **/
605s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
606{
607	s32 ret_val;
608	u16 checksum = 0;
609	u16 i, nvm_data;
610
611	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
612		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
613		if (ret_val) {
614			e_dbg("NVM Read Error while updating checksum.\n");
615			return ret_val;
616		}
617		checksum += nvm_data;
618	}
619	checksum = (u16)NVM_SUM - checksum;
620	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
621	if (ret_val)
622		e_dbg("NVM Write Error while updating checksum.\n");
623
624	return ret_val;
625}
626
627/**
628 *  e1000e_reload_nvm_generic - Reloads EEPROM
629 *  @hw: pointer to the HW structure
630 *
631 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
632 *  extended control register.
633 **/
634void e1000e_reload_nvm_generic(struct e1000_hw *hw)
635{
636	u32 ctrl_ext;
637
638	udelay(10);
639	ctrl_ext = er32(CTRL_EXT);
640	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
641	ew32(CTRL_EXT, ctrl_ext);
642	e1e_flush();
643}