Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#include "e1000.h"
5
6/**
7 * e1000_raise_eec_clk - Raise EEPROM clock
8 * @hw: pointer to the HW structure
9 * @eecd: pointer to the EEPROM
10 *
11 * Enable/Raise the EEPROM clock bit.
12 **/
13static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
14{
15 *eecd = *eecd | E1000_EECD_SK;
16 ew32(EECD, *eecd);
17 e1e_flush();
18 udelay(hw->nvm.delay_usec);
19}
20
21/**
22 * e1000_lower_eec_clk - Lower EEPROM clock
23 * @hw: pointer to the HW structure
24 * @eecd: pointer to the EEPROM
25 *
26 * Clear/Lower the EEPROM clock bit.
27 **/
28static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
29{
30 *eecd = *eecd & ~E1000_EECD_SK;
31 ew32(EECD, *eecd);
32 e1e_flush();
33 udelay(hw->nvm.delay_usec);
34}
35
36/**
37 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
38 * @hw: pointer to the HW structure
39 * @data: data to send to the EEPROM
40 * @count: number of bits to shift out
41 *
42 * We need to shift 'count' bits out to the EEPROM. So, the value in the
43 * "data" parameter will be shifted out to the EEPROM one bit at a time.
44 * In order to do this, "data" must be broken down into bits.
45 **/
46static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
47{
48 struct e1000_nvm_info *nvm = &hw->nvm;
49 u32 eecd = er32(EECD);
50 u32 mask;
51
52 mask = BIT(count - 1);
53 if (nvm->type == e1000_nvm_eeprom_spi)
54 eecd |= E1000_EECD_DO;
55
56 do {
57 eecd &= ~E1000_EECD_DI;
58
59 if (data & mask)
60 eecd |= E1000_EECD_DI;
61
62 ew32(EECD, eecd);
63 e1e_flush();
64
65 udelay(nvm->delay_usec);
66
67 e1000_raise_eec_clk(hw, &eecd);
68 e1000_lower_eec_clk(hw, &eecd);
69
70 mask >>= 1;
71 } while (mask);
72
73 eecd &= ~E1000_EECD_DI;
74 ew32(EECD, eecd);
75}
76
77/**
78 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
79 * @hw: pointer to the HW structure
80 * @count: number of bits to shift in
81 *
82 * In order to read a register from the EEPROM, we need to shift 'count' bits
83 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
84 * the EEPROM (setting the SK bit), and then reading the value of the data out
85 * "DO" bit. During this "shifting in" process the data in "DI" bit should
86 * always be clear.
87 **/
88static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
89{
90 u32 eecd;
91 u32 i;
92 u16 data;
93
94 eecd = er32(EECD);
95 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
96 data = 0;
97
98 for (i = 0; i < count; i++) {
99 data <<= 1;
100 e1000_raise_eec_clk(hw, &eecd);
101
102 eecd = er32(EECD);
103
104 eecd &= ~E1000_EECD_DI;
105 if (eecd & E1000_EECD_DO)
106 data |= 1;
107
108 e1000_lower_eec_clk(hw, &eecd);
109 }
110
111 return data;
112}
113
114/**
115 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
116 * @hw: pointer to the HW structure
117 * @ee_reg: EEPROM flag for polling
118 *
119 * Polls the EEPROM status bit for either read or write completion based
120 * upon the value of 'ee_reg'.
121 **/
122s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
123{
124 u32 attempts = 100000;
125 u32 i, reg = 0;
126
127 for (i = 0; i < attempts; i++) {
128 if (ee_reg == E1000_NVM_POLL_READ)
129 reg = er32(EERD);
130 else
131 reg = er32(EEWR);
132
133 if (reg & E1000_NVM_RW_REG_DONE)
134 return 0;
135
136 udelay(5);
137 }
138
139 return -E1000_ERR_NVM;
140}
141
142/**
143 * e1000e_acquire_nvm - Generic request for access to EEPROM
144 * @hw: pointer to the HW structure
145 *
146 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
147 * Return successful if access grant bit set, else clear the request for
148 * EEPROM access and return -E1000_ERR_NVM (-1).
149 **/
150s32 e1000e_acquire_nvm(struct e1000_hw *hw)
151{
152 u32 eecd = er32(EECD);
153 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
154
155 ew32(EECD, eecd | E1000_EECD_REQ);
156 eecd = er32(EECD);
157
158 while (timeout) {
159 if (eecd & E1000_EECD_GNT)
160 break;
161 udelay(5);
162 eecd = er32(EECD);
163 timeout--;
164 }
165
166 if (!timeout) {
167 eecd &= ~E1000_EECD_REQ;
168 ew32(EECD, eecd);
169 e_dbg("Could not acquire NVM grant\n");
170 return -E1000_ERR_NVM;
171 }
172
173 return 0;
174}
175
176/**
177 * e1000_standby_nvm - Return EEPROM to standby state
178 * @hw: pointer to the HW structure
179 *
180 * Return the EEPROM to a standby state.
181 **/
182static void e1000_standby_nvm(struct e1000_hw *hw)
183{
184 struct e1000_nvm_info *nvm = &hw->nvm;
185 u32 eecd = er32(EECD);
186
187 if (nvm->type == e1000_nvm_eeprom_spi) {
188 /* Toggle CS to flush commands */
189 eecd |= E1000_EECD_CS;
190 ew32(EECD, eecd);
191 e1e_flush();
192 udelay(nvm->delay_usec);
193 eecd &= ~E1000_EECD_CS;
194 ew32(EECD, eecd);
195 e1e_flush();
196 udelay(nvm->delay_usec);
197 }
198}
199
200/**
201 * e1000_stop_nvm - Terminate EEPROM command
202 * @hw: pointer to the HW structure
203 *
204 * Terminates the current command by inverting the EEPROM's chip select pin.
205 **/
206static void e1000_stop_nvm(struct e1000_hw *hw)
207{
208 u32 eecd;
209
210 eecd = er32(EECD);
211 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
212 /* Pull CS high */
213 eecd |= E1000_EECD_CS;
214 e1000_lower_eec_clk(hw, &eecd);
215 }
216}
217
218/**
219 * e1000e_release_nvm - Release exclusive access to EEPROM
220 * @hw: pointer to the HW structure
221 *
222 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
223 **/
224void e1000e_release_nvm(struct e1000_hw *hw)
225{
226 u32 eecd;
227
228 e1000_stop_nvm(hw);
229
230 eecd = er32(EECD);
231 eecd &= ~E1000_EECD_REQ;
232 ew32(EECD, eecd);
233}
234
235/**
236 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
237 * @hw: pointer to the HW structure
238 *
239 * Setups the EEPROM for reading and writing.
240 **/
241static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
242{
243 struct e1000_nvm_info *nvm = &hw->nvm;
244 u32 eecd = er32(EECD);
245 u8 spi_stat_reg;
246
247 if (nvm->type == e1000_nvm_eeprom_spi) {
248 u16 timeout = NVM_MAX_RETRY_SPI;
249
250 /* Clear SK and CS */
251 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
252 ew32(EECD, eecd);
253 e1e_flush();
254 udelay(1);
255
256 /* Read "Status Register" repeatedly until the LSB is cleared.
257 * The EEPROM will signal that the command has been completed
258 * by clearing bit 0 of the internal status register. If it's
259 * not cleared within 'timeout', then error out.
260 */
261 while (timeout) {
262 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
263 hw->nvm.opcode_bits);
264 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
265 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
266 break;
267
268 udelay(5);
269 e1000_standby_nvm(hw);
270 timeout--;
271 }
272
273 if (!timeout) {
274 e_dbg("SPI NVM Status error\n");
275 return -E1000_ERR_NVM;
276 }
277 }
278
279 return 0;
280}
281
282/**
283 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
284 * @hw: pointer to the HW structure
285 * @offset: offset of word in the EEPROM to read
286 * @words: number of words to read
287 * @data: word read from the EEPROM
288 *
289 * Reads a 16 bit word from the EEPROM using the EERD register.
290 **/
291s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
292{
293 struct e1000_nvm_info *nvm = &hw->nvm;
294 u32 i, eerd = 0;
295 s32 ret_val = 0;
296
297 /* A check for invalid values: offset too large, too many words,
298 * too many words for the offset, and not enough words.
299 */
300 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
301 (words == 0)) {
302 e_dbg("nvm parameter(s) out of bounds\n");
303 return -E1000_ERR_NVM;
304 }
305
306 for (i = 0; i < words; i++) {
307 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
308 E1000_NVM_RW_REG_START;
309
310 ew32(EERD, eerd);
311 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
312 if (ret_val) {
313 e_dbg("NVM read error: %d\n", ret_val);
314 break;
315 }
316
317 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
318 }
319
320 return ret_val;
321}
322
323/**
324 * e1000e_write_nvm_spi - Write to EEPROM using SPI
325 * @hw: pointer to the HW structure
326 * @offset: offset within the EEPROM to be written to
327 * @words: number of words to write
328 * @data: 16 bit word(s) to be written to the EEPROM
329 *
330 * Writes data to EEPROM at offset using SPI interface.
331 *
332 * If e1000e_update_nvm_checksum is not called after this function , the
333 * EEPROM will most likely contain an invalid checksum.
334 **/
335s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
336{
337 struct e1000_nvm_info *nvm = &hw->nvm;
338 s32 ret_val = -E1000_ERR_NVM;
339 u16 widx = 0;
340
341 /* A check for invalid values: offset too large, too many words,
342 * and not enough words.
343 */
344 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
345 (words == 0)) {
346 e_dbg("nvm parameter(s) out of bounds\n");
347 return -E1000_ERR_NVM;
348 }
349
350 while (widx < words) {
351 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
352
353 ret_val = nvm->ops.acquire(hw);
354 if (ret_val)
355 return ret_val;
356
357 ret_val = e1000_ready_nvm_eeprom(hw);
358 if (ret_val) {
359 nvm->ops.release(hw);
360 return ret_val;
361 }
362
363 e1000_standby_nvm(hw);
364
365 /* Send the WRITE ENABLE command (8 bit opcode) */
366 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
367 nvm->opcode_bits);
368
369 e1000_standby_nvm(hw);
370
371 /* Some SPI eeproms use the 8th address bit embedded in the
372 * opcode
373 */
374 if ((nvm->address_bits == 8) && (offset >= 128))
375 write_opcode |= NVM_A8_OPCODE_SPI;
376
377 /* Send the Write command (8-bit opcode + addr) */
378 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
379 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
380 nvm->address_bits);
381
382 /* Loop to allow for up to whole page write of eeprom */
383 while (widx < words) {
384 u16 word_out = data[widx];
385
386 word_out = (word_out >> 8) | (word_out << 8);
387 e1000_shift_out_eec_bits(hw, word_out, 16);
388 widx++;
389
390 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
391 e1000_standby_nvm(hw);
392 break;
393 }
394 }
395 usleep_range(10000, 11000);
396 nvm->ops.release(hw);
397 }
398
399 return ret_val;
400}
401
402/**
403 * e1000_read_pba_string_generic - Read device part number
404 * @hw: pointer to the HW structure
405 * @pba_num: pointer to device part number
406 * @pba_num_size: size of part number buffer
407 *
408 * Reads the product board assembly (PBA) number from the EEPROM and stores
409 * the value in pba_num.
410 **/
411s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
412 u32 pba_num_size)
413{
414 s32 ret_val;
415 u16 nvm_data;
416 u16 pba_ptr;
417 u16 offset;
418 u16 length;
419
420 if (pba_num == NULL) {
421 e_dbg("PBA string buffer was null\n");
422 return -E1000_ERR_INVALID_ARGUMENT;
423 }
424
425 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
426 if (ret_val) {
427 e_dbg("NVM Read Error\n");
428 return ret_val;
429 }
430
431 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
432 if (ret_val) {
433 e_dbg("NVM Read Error\n");
434 return ret_val;
435 }
436
437 /* if nvm_data is not ptr guard the PBA must be in legacy format which
438 * means pba_ptr is actually our second data word for the PBA number
439 * and we can decode it into an ascii string
440 */
441 if (nvm_data != NVM_PBA_PTR_GUARD) {
442 e_dbg("NVM PBA number is not stored as string\n");
443
444 /* make sure callers buffer is big enough to store the PBA */
445 if (pba_num_size < E1000_PBANUM_LENGTH) {
446 e_dbg("PBA string buffer too small\n");
447 return E1000_ERR_NO_SPACE;
448 }
449
450 /* extract hex string from data and pba_ptr */
451 pba_num[0] = (nvm_data >> 12) & 0xF;
452 pba_num[1] = (nvm_data >> 8) & 0xF;
453 pba_num[2] = (nvm_data >> 4) & 0xF;
454 pba_num[3] = nvm_data & 0xF;
455 pba_num[4] = (pba_ptr >> 12) & 0xF;
456 pba_num[5] = (pba_ptr >> 8) & 0xF;
457 pba_num[6] = '-';
458 pba_num[7] = 0;
459 pba_num[8] = (pba_ptr >> 4) & 0xF;
460 pba_num[9] = pba_ptr & 0xF;
461
462 /* put a null character on the end of our string */
463 pba_num[10] = '\0';
464
465 /* switch all the data but the '-' to hex char */
466 for (offset = 0; offset < 10; offset++) {
467 if (pba_num[offset] < 0xA)
468 pba_num[offset] += '0';
469 else if (pba_num[offset] < 0x10)
470 pba_num[offset] += 'A' - 0xA;
471 }
472
473 return 0;
474 }
475
476 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
477 if (ret_val) {
478 e_dbg("NVM Read Error\n");
479 return ret_val;
480 }
481
482 if (length == 0xFFFF || length == 0) {
483 e_dbg("NVM PBA number section invalid length\n");
484 return -E1000_ERR_NVM_PBA_SECTION;
485 }
486 /* check if pba_num buffer is big enough */
487 if (pba_num_size < (((u32)length * 2) - 1)) {
488 e_dbg("PBA string buffer too small\n");
489 return -E1000_ERR_NO_SPACE;
490 }
491
492 /* trim pba length from start of string */
493 pba_ptr++;
494 length--;
495
496 for (offset = 0; offset < length; offset++) {
497 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
498 if (ret_val) {
499 e_dbg("NVM Read Error\n");
500 return ret_val;
501 }
502 pba_num[offset * 2] = (u8)(nvm_data >> 8);
503 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
504 }
505 pba_num[offset * 2] = '\0';
506
507 return 0;
508}
509
510/**
511 * e1000_read_mac_addr_generic - Read device MAC address
512 * @hw: pointer to the HW structure
513 *
514 * Reads the device MAC address from the EEPROM and stores the value.
515 * Since devices with two ports use the same EEPROM, we increment the
516 * last bit in the MAC address for the second port.
517 **/
518s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
519{
520 u32 rar_high;
521 u32 rar_low;
522 u16 i;
523
524 rar_high = er32(RAH(0));
525 rar_low = er32(RAL(0));
526
527 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
528 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
529
530 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
531 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
532
533 for (i = 0; i < ETH_ALEN; i++)
534 hw->mac.addr[i] = hw->mac.perm_addr[i];
535
536 return 0;
537}
538
539/**
540 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
541 * @hw: pointer to the HW structure
542 *
543 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
544 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
545 **/
546s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
547{
548 s32 ret_val;
549 u16 checksum = 0;
550 u16 i, nvm_data;
551
552 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
553 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
554 if (ret_val) {
555 e_dbg("NVM Read Error\n");
556 return ret_val;
557 }
558 checksum += nvm_data;
559 }
560
561 if (checksum != (u16)NVM_SUM) {
562 e_dbg("NVM Checksum Invalid\n");
563 return -E1000_ERR_NVM;
564 }
565
566 return 0;
567}
568
569/**
570 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
571 * @hw: pointer to the HW structure
572 *
573 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
574 * up to the checksum. Then calculates the EEPROM checksum and writes the
575 * value to the EEPROM.
576 **/
577s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
578{
579 s32 ret_val;
580 u16 checksum = 0;
581 u16 i, nvm_data;
582
583 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
584 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
585 if (ret_val) {
586 e_dbg("NVM Read Error while updating checksum.\n");
587 return ret_val;
588 }
589 checksum += nvm_data;
590 }
591 checksum = (u16)NVM_SUM - checksum;
592 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
593 if (ret_val)
594 e_dbg("NVM Write Error while updating checksum.\n");
595
596 return ret_val;
597}
598
599/**
600 * e1000e_reload_nvm_generic - Reloads EEPROM
601 * @hw: pointer to the HW structure
602 *
603 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
604 * extended control register.
605 **/
606void e1000e_reload_nvm_generic(struct e1000_hw *hw)
607{
608 u32 ctrl_ext;
609
610 usleep_range(10, 20);
611 ctrl_ext = er32(CTRL_EXT);
612 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
613 ew32(CTRL_EXT, ctrl_ext);
614 e1e_flush();
615}
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30
31/**
32 * e1000_raise_eec_clk - Raise EEPROM clock
33 * @hw: pointer to the HW structure
34 * @eecd: pointer to the EEPROM
35 *
36 * Enable/Raise the EEPROM clock bit.
37 **/
38static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
39{
40 *eecd = *eecd | E1000_EECD_SK;
41 ew32(EECD, *eecd);
42 e1e_flush();
43 udelay(hw->nvm.delay_usec);
44}
45
46/**
47 * e1000_lower_eec_clk - Lower EEPROM clock
48 * @hw: pointer to the HW structure
49 * @eecd: pointer to the EEPROM
50 *
51 * Clear/Lower the EEPROM clock bit.
52 **/
53static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
54{
55 *eecd = *eecd & ~E1000_EECD_SK;
56 ew32(EECD, *eecd);
57 e1e_flush();
58 udelay(hw->nvm.delay_usec);
59}
60
61/**
62 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
63 * @hw: pointer to the HW structure
64 * @data: data to send to the EEPROM
65 * @count: number of bits to shift out
66 *
67 * We need to shift 'count' bits out to the EEPROM. So, the value in the
68 * "data" parameter will be shifted out to the EEPROM one bit at a time.
69 * In order to do this, "data" must be broken down into bits.
70 **/
71static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
72{
73 struct e1000_nvm_info *nvm = &hw->nvm;
74 u32 eecd = er32(EECD);
75 u32 mask;
76
77 mask = 0x01 << (count - 1);
78 if (nvm->type == e1000_nvm_eeprom_spi)
79 eecd |= E1000_EECD_DO;
80
81 do {
82 eecd &= ~E1000_EECD_DI;
83
84 if (data & mask)
85 eecd |= E1000_EECD_DI;
86
87 ew32(EECD, eecd);
88 e1e_flush();
89
90 udelay(nvm->delay_usec);
91
92 e1000_raise_eec_clk(hw, &eecd);
93 e1000_lower_eec_clk(hw, &eecd);
94
95 mask >>= 1;
96 } while (mask);
97
98 eecd &= ~E1000_EECD_DI;
99 ew32(EECD, eecd);
100}
101
102/**
103 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
104 * @hw: pointer to the HW structure
105 * @count: number of bits to shift in
106 *
107 * In order to read a register from the EEPROM, we need to shift 'count' bits
108 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
109 * the EEPROM (setting the SK bit), and then reading the value of the data out
110 * "DO" bit. During this "shifting in" process the data in "DI" bit should
111 * always be clear.
112 **/
113static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
114{
115 u32 eecd;
116 u32 i;
117 u16 data;
118
119 eecd = er32(EECD);
120
121 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
122 data = 0;
123
124 for (i = 0; i < count; i++) {
125 data <<= 1;
126 e1000_raise_eec_clk(hw, &eecd);
127
128 eecd = er32(EECD);
129
130 eecd &= ~E1000_EECD_DI;
131 if (eecd & E1000_EECD_DO)
132 data |= 1;
133
134 e1000_lower_eec_clk(hw, &eecd);
135 }
136
137 return data;
138}
139
140/**
141 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
142 * @hw: pointer to the HW structure
143 * @ee_reg: EEPROM flag for polling
144 *
145 * Polls the EEPROM status bit for either read or write completion based
146 * upon the value of 'ee_reg'.
147 **/
148s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
149{
150 u32 attempts = 100000;
151 u32 i, reg = 0;
152
153 for (i = 0; i < attempts; i++) {
154 if (ee_reg == E1000_NVM_POLL_READ)
155 reg = er32(EERD);
156 else
157 reg = er32(EEWR);
158
159 if (reg & E1000_NVM_RW_REG_DONE)
160 return 0;
161
162 udelay(5);
163 }
164
165 return -E1000_ERR_NVM;
166}
167
168/**
169 * e1000e_acquire_nvm - Generic request for access to EEPROM
170 * @hw: pointer to the HW structure
171 *
172 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
173 * Return successful if access grant bit set, else clear the request for
174 * EEPROM access and return -E1000_ERR_NVM (-1).
175 **/
176s32 e1000e_acquire_nvm(struct e1000_hw *hw)
177{
178 u32 eecd = er32(EECD);
179 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
180
181 ew32(EECD, eecd | E1000_EECD_REQ);
182 eecd = er32(EECD);
183
184 while (timeout) {
185 if (eecd & E1000_EECD_GNT)
186 break;
187 udelay(5);
188 eecd = er32(EECD);
189 timeout--;
190 }
191
192 if (!timeout) {
193 eecd &= ~E1000_EECD_REQ;
194 ew32(EECD, eecd);
195 e_dbg("Could not acquire NVM grant\n");
196 return -E1000_ERR_NVM;
197 }
198
199 return 0;
200}
201
202/**
203 * e1000_standby_nvm - Return EEPROM to standby state
204 * @hw: pointer to the HW structure
205 *
206 * Return the EEPROM to a standby state.
207 **/
208static void e1000_standby_nvm(struct e1000_hw *hw)
209{
210 struct e1000_nvm_info *nvm = &hw->nvm;
211 u32 eecd = er32(EECD);
212
213 if (nvm->type == e1000_nvm_eeprom_spi) {
214 /* Toggle CS to flush commands */
215 eecd |= E1000_EECD_CS;
216 ew32(EECD, eecd);
217 e1e_flush();
218 udelay(nvm->delay_usec);
219 eecd &= ~E1000_EECD_CS;
220 ew32(EECD, eecd);
221 e1e_flush();
222 udelay(nvm->delay_usec);
223 }
224}
225
226/**
227 * e1000_stop_nvm - Terminate EEPROM command
228 * @hw: pointer to the HW structure
229 *
230 * Terminates the current command by inverting the EEPROM's chip select pin.
231 **/
232static void e1000_stop_nvm(struct e1000_hw *hw)
233{
234 u32 eecd;
235
236 eecd = er32(EECD);
237 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
238 /* Pull CS high */
239 eecd |= E1000_EECD_CS;
240 e1000_lower_eec_clk(hw, &eecd);
241 }
242}
243
244/**
245 * e1000e_release_nvm - Release exclusive access to EEPROM
246 * @hw: pointer to the HW structure
247 *
248 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
249 **/
250void e1000e_release_nvm(struct e1000_hw *hw)
251{
252 u32 eecd;
253
254 e1000_stop_nvm(hw);
255
256 eecd = er32(EECD);
257 eecd &= ~E1000_EECD_REQ;
258 ew32(EECD, eecd);
259}
260
261/**
262 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
263 * @hw: pointer to the HW structure
264 *
265 * Setups the EEPROM for reading and writing.
266 **/
267static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
268{
269 struct e1000_nvm_info *nvm = &hw->nvm;
270 u32 eecd = er32(EECD);
271 u8 spi_stat_reg;
272
273 if (nvm->type == e1000_nvm_eeprom_spi) {
274 u16 timeout = NVM_MAX_RETRY_SPI;
275
276 /* Clear SK and CS */
277 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278 ew32(EECD, eecd);
279 e1e_flush();
280 udelay(1);
281
282 /*
283 * Read "Status Register" repeatedly until the LSB is cleared.
284 * The EEPROM will signal that the command has been completed
285 * by clearing bit 0 of the internal status register. If it's
286 * not cleared within 'timeout', then error out.
287 */
288 while (timeout) {
289 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
290 hw->nvm.opcode_bits);
291 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
292 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
293 break;
294
295 udelay(5);
296 e1000_standby_nvm(hw);
297 timeout--;
298 }
299
300 if (!timeout) {
301 e_dbg("SPI NVM Status error\n");
302 return -E1000_ERR_NVM;
303 }
304 }
305
306 return 0;
307}
308
309/**
310 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
311 * @hw: pointer to the HW structure
312 * @offset: offset of word in the EEPROM to read
313 * @words: number of words to read
314 * @data: word read from the EEPROM
315 *
316 * Reads a 16 bit word from the EEPROM using the EERD register.
317 **/
318s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
319{
320 struct e1000_nvm_info *nvm = &hw->nvm;
321 u32 i, eerd = 0;
322 s32 ret_val = 0;
323
324 /*
325 * A check for invalid values: offset too large, too many words,
326 * too many words for the offset, and not enough words.
327 */
328 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
329 (words == 0)) {
330 e_dbg("nvm parameter(s) out of bounds\n");
331 return -E1000_ERR_NVM;
332 }
333
334 for (i = 0; i < words; i++) {
335 eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
336 E1000_NVM_RW_REG_START;
337
338 ew32(EERD, eerd);
339 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
340 if (ret_val)
341 break;
342
343 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
344 }
345
346 return ret_val;
347}
348
349/**
350 * e1000e_write_nvm_spi - Write to EEPROM using SPI
351 * @hw: pointer to the HW structure
352 * @offset: offset within the EEPROM to be written to
353 * @words: number of words to write
354 * @data: 16 bit word(s) to be written to the EEPROM
355 *
356 * Writes data to EEPROM at offset using SPI interface.
357 *
358 * If e1000e_update_nvm_checksum is not called after this function , the
359 * EEPROM will most likely contain an invalid checksum.
360 **/
361s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
362{
363 struct e1000_nvm_info *nvm = &hw->nvm;
364 s32 ret_val;
365 u16 widx = 0;
366
367 /*
368 * A check for invalid values: offset too large, too many words,
369 * and not enough words.
370 */
371 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
372 (words == 0)) {
373 e_dbg("nvm parameter(s) out of bounds\n");
374 return -E1000_ERR_NVM;
375 }
376
377 ret_val = nvm->ops.acquire(hw);
378 if (ret_val)
379 return ret_val;
380
381 while (widx < words) {
382 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
383
384 ret_val = e1000_ready_nvm_eeprom(hw);
385 if (ret_val)
386 goto release;
387
388 e1000_standby_nvm(hw);
389
390 /* Send the WRITE ENABLE command (8 bit opcode) */
391 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
392 nvm->opcode_bits);
393
394 e1000_standby_nvm(hw);
395
396 /*
397 * Some SPI eeproms use the 8th address bit embedded in the
398 * opcode
399 */
400 if ((nvm->address_bits == 8) && (offset >= 128))
401 write_opcode |= NVM_A8_OPCODE_SPI;
402
403 /* Send the Write command (8-bit opcode + addr) */
404 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
405 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
406 nvm->address_bits);
407
408 /* Loop to allow for up to whole page write of eeprom */
409 while (widx < words) {
410 u16 word_out = data[widx];
411 word_out = (word_out >> 8) | (word_out << 8);
412 e1000_shift_out_eec_bits(hw, word_out, 16);
413 widx++;
414
415 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
416 e1000_standby_nvm(hw);
417 break;
418 }
419 }
420 }
421
422 usleep_range(10000, 20000);
423release:
424 nvm->ops.release(hw);
425
426 return ret_val;
427}
428
429/**
430 * e1000_read_pba_string_generic - Read device part number
431 * @hw: pointer to the HW structure
432 * @pba_num: pointer to device part number
433 * @pba_num_size: size of part number buffer
434 *
435 * Reads the product board assembly (PBA) number from the EEPROM and stores
436 * the value in pba_num.
437 **/
438s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
439 u32 pba_num_size)
440{
441 s32 ret_val;
442 u16 nvm_data;
443 u16 pba_ptr;
444 u16 offset;
445 u16 length;
446
447 if (pba_num == NULL) {
448 e_dbg("PBA string buffer was null\n");
449 return -E1000_ERR_INVALID_ARGUMENT;
450 }
451
452 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
453 if (ret_val) {
454 e_dbg("NVM Read Error\n");
455 return ret_val;
456 }
457
458 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
459 if (ret_val) {
460 e_dbg("NVM Read Error\n");
461 return ret_val;
462 }
463
464 /*
465 * if nvm_data is not ptr guard the PBA must be in legacy format which
466 * means pba_ptr is actually our second data word for the PBA number
467 * and we can decode it into an ascii string
468 */
469 if (nvm_data != NVM_PBA_PTR_GUARD) {
470 e_dbg("NVM PBA number is not stored as string\n");
471
472 /* we will need 11 characters to store the PBA */
473 if (pba_num_size < 11) {
474 e_dbg("PBA string buffer too small\n");
475 return E1000_ERR_NO_SPACE;
476 }
477
478 /* extract hex string from data and pba_ptr */
479 pba_num[0] = (nvm_data >> 12) & 0xF;
480 pba_num[1] = (nvm_data >> 8) & 0xF;
481 pba_num[2] = (nvm_data >> 4) & 0xF;
482 pba_num[3] = nvm_data & 0xF;
483 pba_num[4] = (pba_ptr >> 12) & 0xF;
484 pba_num[5] = (pba_ptr >> 8) & 0xF;
485 pba_num[6] = '-';
486 pba_num[7] = 0;
487 pba_num[8] = (pba_ptr >> 4) & 0xF;
488 pba_num[9] = pba_ptr & 0xF;
489
490 /* put a null character on the end of our string */
491 pba_num[10] = '\0';
492
493 /* switch all the data but the '-' to hex char */
494 for (offset = 0; offset < 10; offset++) {
495 if (pba_num[offset] < 0xA)
496 pba_num[offset] += '0';
497 else if (pba_num[offset] < 0x10)
498 pba_num[offset] += 'A' - 0xA;
499 }
500
501 return 0;
502 }
503
504 ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
505 if (ret_val) {
506 e_dbg("NVM Read Error\n");
507 return ret_val;
508 }
509
510 if (length == 0xFFFF || length == 0) {
511 e_dbg("NVM PBA number section invalid length\n");
512 return -E1000_ERR_NVM_PBA_SECTION;
513 }
514 /* check if pba_num buffer is big enough */
515 if (pba_num_size < (((u32)length * 2) - 1)) {
516 e_dbg("PBA string buffer too small\n");
517 return -E1000_ERR_NO_SPACE;
518 }
519
520 /* trim pba length from start of string */
521 pba_ptr++;
522 length--;
523
524 for (offset = 0; offset < length; offset++) {
525 ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
526 if (ret_val) {
527 e_dbg("NVM Read Error\n");
528 return ret_val;
529 }
530 pba_num[offset * 2] = (u8)(nvm_data >> 8);
531 pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
532 }
533 pba_num[offset * 2] = '\0';
534
535 return 0;
536}
537
538/**
539 * e1000_read_mac_addr_generic - Read device MAC address
540 * @hw: pointer to the HW structure
541 *
542 * Reads the device MAC address from the EEPROM and stores the value.
543 * Since devices with two ports use the same EEPROM, we increment the
544 * last bit in the MAC address for the second port.
545 **/
546s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
547{
548 u32 rar_high;
549 u32 rar_low;
550 u16 i;
551
552 rar_high = er32(RAH(0));
553 rar_low = er32(RAL(0));
554
555 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
556 hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
557
558 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
559 hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
560
561 for (i = 0; i < ETH_ALEN; i++)
562 hw->mac.addr[i] = hw->mac.perm_addr[i];
563
564 return 0;
565}
566
567/**
568 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
569 * @hw: pointer to the HW structure
570 *
571 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
572 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
573 **/
574s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
575{
576 s32 ret_val;
577 u16 checksum = 0;
578 u16 i, nvm_data;
579
580 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
581 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
582 if (ret_val) {
583 e_dbg("NVM Read Error\n");
584 return ret_val;
585 }
586 checksum += nvm_data;
587 }
588
589 if (checksum != (u16)NVM_SUM) {
590 e_dbg("NVM Checksum Invalid\n");
591 return -E1000_ERR_NVM;
592 }
593
594 return 0;
595}
596
597/**
598 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
599 * @hw: pointer to the HW structure
600 *
601 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
602 * up to the checksum. Then calculates the EEPROM checksum and writes the
603 * value to the EEPROM.
604 **/
605s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
606{
607 s32 ret_val;
608 u16 checksum = 0;
609 u16 i, nvm_data;
610
611 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
612 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
613 if (ret_val) {
614 e_dbg("NVM Read Error while updating checksum.\n");
615 return ret_val;
616 }
617 checksum += nvm_data;
618 }
619 checksum = (u16)NVM_SUM - checksum;
620 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
621 if (ret_val)
622 e_dbg("NVM Write Error while updating checksum.\n");
623
624 return ret_val;
625}
626
627/**
628 * e1000e_reload_nvm_generic - Reloads EEPROM
629 * @hw: pointer to the HW structure
630 *
631 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
632 * extended control register.
633 **/
634void e1000e_reload_nvm_generic(struct e1000_hw *hw)
635{
636 u32 ctrl_ext;
637
638 udelay(10);
639 ctrl_ext = er32(CTRL_EXT);
640 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
641 ew32(CTRL_EXT, ctrl_ext);
642 e1e_flush();
643}