Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * EDAC driver for Intel(R) Xeon(R) Skylake processors
  4 * Copyright (c) 2016, Intel Corporation.
  5 */
  6
  7#include <linux/kernel.h>
  8#include <linux/processor.h>
  9#include <asm/cpu_device_id.h>
 10#include <asm/intel-family.h>
 11#include <asm/mce.h>
 12
 13#include "edac_module.h"
 14#include "skx_common.h"
 15
 16#define EDAC_MOD_STR    "skx_edac"
 17
 18/*
 19 * Debug macros
 20 */
 21#define skx_printk(level, fmt, arg...)			\
 22	edac_printk(level, "skx", fmt, ##arg)
 23
 24#define skx_mc_printk(mci, level, fmt, arg...)		\
 25	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
 26
 27static struct list_head *skx_edac_list;
 28
 29static u64 skx_tolm, skx_tohm;
 30static int skx_num_sockets;
 31static unsigned int nvdimm_count;
 32
 33#define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
 34#define MASK29	0x1FFFFFFF		/* Mask for 2^29 */
 35
 36static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
 37{
 38	struct skx_dev *d;
 39
 40	list_for_each_entry(d, skx_edac_list, list) {
 41		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
 42			return d;
 43	}
 44
 45	return NULL;
 46}
 47
 48enum munittype {
 49	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD,
 50	ERRCHAN0, ERRCHAN1, ERRCHAN2,
 51};
 52
 53struct munit {
 54	u16	did;
 55	u16	devfn[SKX_NUM_IMC];
 56	u8	busidx;
 57	u8	per_socket;
 58	enum munittype mtype;
 59};
 60
 61/*
 62 * List of PCI device ids that we need together with some device
 63 * number and function numbers to tell which memory controller the
 64 * device belongs to.
 65 */
 66static const struct munit skx_all_munits[] = {
 67	{ 0x2054, { }, 1, 1, SAD_ALL },
 68	{ 0x2055, { }, 1, 1, UTIL_ALL },
 69	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
 70	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
 71	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
 72	{ 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 },
 73	{ 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 },
 74	{ 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 },
 75	{ 0x208e, { }, 1, 0, SAD },
 76	{ }
 77};
 78
 79static int get_all_munits(const struct munit *m)
 80{
 81	struct pci_dev *pdev, *prev;
 82	struct skx_dev *d;
 83	u32 reg;
 84	int i = 0, ndev = 0;
 85
 86	prev = NULL;
 87	for (;;) {
 88		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
 89		if (!pdev)
 90			break;
 91		ndev++;
 92		if (m->per_socket == SKX_NUM_IMC) {
 93			for (i = 0; i < SKX_NUM_IMC; i++)
 94				if (m->devfn[i] == pdev->devfn)
 95					break;
 96			if (i == SKX_NUM_IMC)
 97				goto fail;
 98		}
 99		d = get_skx_dev(pdev->bus, m->busidx);
100		if (!d)
101			goto fail;
102
103		/* Be sure that the device is enabled */
104		if (unlikely(pci_enable_device(pdev) < 0)) {
105			skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
106				   PCI_VENDOR_ID_INTEL, m->did);
107			goto fail;
108		}
109
110		switch (m->mtype) {
111		case CHAN0:
112		case CHAN1:
113		case CHAN2:
114			pci_dev_get(pdev);
115			d->imc[i].chan[m->mtype].cdev = pdev;
116			break;
117		case ERRCHAN0:
118		case ERRCHAN1:
119		case ERRCHAN2:
120			pci_dev_get(pdev);
121			d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev;
122			break;
123		case SAD_ALL:
124			pci_dev_get(pdev);
125			d->sad_all = pdev;
126			break;
127		case UTIL_ALL:
128			pci_dev_get(pdev);
129			d->util_all = pdev;
130			break;
131		case SAD:
132			/*
133			 * one of these devices per core, including cores
134			 * that don't exist on this SKU. Ignore any that
135			 * read a route table of zero, make sure all the
136			 * non-zero values match.
137			 */
138			pci_read_config_dword(pdev, 0xB4, &reg);
139			if (reg != 0) {
140				if (d->mcroute == 0) {
141					d->mcroute = reg;
142				} else if (d->mcroute != reg) {
143					skx_printk(KERN_ERR, "mcroute mismatch\n");
144					goto fail;
145				}
146			}
147			ndev--;
148			break;
149		}
150
151		prev = pdev;
152	}
153
154	return ndev;
155fail:
156	pci_dev_put(pdev);
157	return -ENODEV;
158}
159
160static struct res_config skx_cfg = {
161	.type			= SKX,
162	.decs_did		= 0x2016,
163	.busno_cfg_offset	= 0xcc,
164};
165
166static const struct x86_cpu_id skx_cpuids[] = {
167	X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x0, 0xf), &skx_cfg),
168	{ }
169};
170MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
171
172static bool skx_check_ecc(u32 mcmtr)
173{
174	return !!GET_BITFIELD(mcmtr, 2, 2);
175}
176
177static int skx_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg)
178{
179	struct skx_pvt *pvt = mci->pvt_info;
180	u32 mtr, mcmtr, amap, mcddrtcfg;
181	struct skx_imc *imc = pvt->imc;
182	struct dimm_info *dimm;
183	int i, j;
184	int ndimms;
185
186	/* Only the mcmtr on the first channel is effective */
187	pci_read_config_dword(imc->chan[0].cdev, 0x87c, &mcmtr);
188
189	for (i = 0; i < SKX_NUM_CHANNELS; i++) {
190		ndimms = 0;
191		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
192		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
193		for (j = 0; j < SKX_NUM_DIMMS; j++) {
194			dimm = edac_get_dimm(mci, i, j, 0);
195			pci_read_config_dword(imc->chan[i].cdev,
196					      0x80 + 4 * j, &mtr);
197			if (IS_DIMM_PRESENT(mtr)) {
198				ndimms += skx_get_dimm_info(mtr, mcmtr, amap, dimm, imc, i, j, cfg);
199			} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
200				ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
201							      EDAC_MOD_STR);
202				nvdimm_count++;
203			}
204		}
205		if (ndimms && !skx_check_ecc(mcmtr)) {
206			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
207			return -ENODEV;
208		}
209	}
210
211	return 0;
212}
213
214#define	SKX_MAX_SAD 24
215
216#define SKX_GET_SAD(d, i, reg)	\
217	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
218#define SKX_GET_ILV(d, i, reg)	\
219	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
220
221#define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
222#define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
223#define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
224#define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
225#define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
226#define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
227#define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)
228
229#define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
230#define SKX_ILV_TARGET(tgt)	((tgt) & 7)
231
232static void skx_show_retry_rd_err_log(struct decoded_addr *res,
233				      char *msg, int len,
234				      bool scrub_err)
235{
236	u32 log0, log1, log2, log3, log4;
237	u32 corr0, corr1, corr2, corr3;
238	struct pci_dev *edev;
239	int n;
240
241	edev = res->dev->imc[res->imc].chan[res->channel].edev;
242
243	pci_read_config_dword(edev, 0x154, &log0);
244	pci_read_config_dword(edev, 0x148, &log1);
245	pci_read_config_dword(edev, 0x150, &log2);
246	pci_read_config_dword(edev, 0x15c, &log3);
247	pci_read_config_dword(edev, 0x114, &log4);
248
249	n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
250		     log0, log1, log2, log3, log4);
251
252	pci_read_config_dword(edev, 0x104, &corr0);
253	pci_read_config_dword(edev, 0x108, &corr1);
254	pci_read_config_dword(edev, 0x10c, &corr2);
255	pci_read_config_dword(edev, 0x110, &corr3);
256
257	if (len - n > 0)
258		snprintf(msg + n, len - n,
259			 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
260			 corr0 & 0xffff, corr0 >> 16,
261			 corr1 & 0xffff, corr1 >> 16,
262			 corr2 & 0xffff, corr2 >> 16,
263			 corr3 & 0xffff, corr3 >> 16);
264}
265
266static bool skx_sad_decode(struct decoded_addr *res)
267{
268	struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
269	u64 addr = res->addr;
270	int i, idx, tgt, lchan, shift;
271	u32 sad, ilv;
272	u64 limit, prev_limit;
273	int remote = 0;
274
275	/* Simple sanity check for I/O space or out of range */
276	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
277		edac_dbg(0, "Address 0x%llx out of range\n", addr);
278		return false;
279	}
280
281restart:
282	prev_limit = 0;
283	for (i = 0; i < SKX_MAX_SAD; i++) {
284		SKX_GET_SAD(d, i, sad);
285		limit = SKX_SAD_LIMIT(sad);
286		if (SKX_SAD_ENABLE(sad)) {
287			if (addr >= prev_limit && addr <= limit)
288				goto sad_found;
289		}
290		prev_limit = limit + 1;
291	}
292	edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
293	return false;
294
295sad_found:
296	SKX_GET_ILV(d, i, ilv);
297
298	switch (SKX_SAD_INTERLEAVE(sad)) {
299	case 0:
300		idx = GET_BITFIELD(addr, 6, 8);
301		break;
302	case 1:
303		idx = GET_BITFIELD(addr, 8, 10);
304		break;
305	case 2:
306		idx = GET_BITFIELD(addr, 12, 14);
307		break;
308	case 3:
309		idx = GET_BITFIELD(addr, 30, 32);
310		break;
311	}
312
313	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
314
315	/* If point to another node, find it and start over */
316	if (SKX_ILV_REMOTE(tgt)) {
317		if (remote) {
318			edac_dbg(0, "Double remote!\n");
319			return false;
320		}
321		remote = 1;
322		list_for_each_entry(d, skx_edac_list, list) {
323			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
324				goto restart;
325		}
326		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
327		return false;
328	}
329
330	if (SKX_SAD_MOD3(sad) == 0) {
331		lchan = SKX_ILV_TARGET(tgt);
332	} else {
333		switch (SKX_SAD_MOD3MODE(sad)) {
334		case 0:
335			shift = 6;
336			break;
337		case 1:
338			shift = 8;
339			break;
340		case 2:
341			shift = 12;
342			break;
343		default:
344			edac_dbg(0, "illegal mod3mode\n");
345			return false;
346		}
347		switch (SKX_SAD_MOD3ASMOD2(sad)) {
348		case 0:
349			lchan = (addr >> shift) % 3;
350			break;
351		case 1:
352			lchan = (addr >> shift) % 2;
353			break;
354		case 2:
355			lchan = (addr >> shift) % 2;
356			lchan = (lchan << 1) | !lchan;
357			break;
358		case 3:
359			lchan = ((addr >> shift) % 2) << 1;
360			break;
361		}
362		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
363	}
364
365	res->dev = d;
366	res->socket = d->imc[0].src_id;
367	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
368	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
369
370	edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
371		 res->addr, res->socket, res->imc, res->channel);
372	return true;
373}
374
375#define	SKX_MAX_TAD 8
376
377#define SKX_GET_TADBASE(d, mc, i, reg)			\
378	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
379#define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
380	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
381#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
382	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
383
384#define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
385#define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
386#define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
387#define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
388#define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
389#define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
390#define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)
391
392/* which bit used for both socket and channel interleave */
393static int skx_granularity[] = { 6, 8, 12, 30 };
394
395static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
396{
397	addr >>= shift;
398	addr /= ways;
399	addr <<= shift;
400
401	return addr | (lowbits & ((1ull << shift) - 1));
402}
403
404static bool skx_tad_decode(struct decoded_addr *res)
405{
406	int i;
407	u32 base, wayness, chnilvoffset;
408	int skt_interleave_bit, chn_interleave_bit;
409	u64 channel_addr;
410
411	for (i = 0; i < SKX_MAX_TAD; i++) {
412		SKX_GET_TADBASE(res->dev, res->imc, i, base);
413		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
414		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
415			goto tad_found;
416	}
417	edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
418	return false;
419
420tad_found:
421	res->sktways = SKX_TAD_SKTWAYS(wayness);
422	res->chanways = SKX_TAD_CHNWAYS(wayness);
423	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
424	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
425
426	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
427	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
428
429	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
430		/* Must handle channel first, then socket */
431		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
432						 res->chanways, channel_addr);
433		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
434						 res->sktways, channel_addr);
435	} else {
436		/* Handle socket then channel. Preserve low bits from original address */
437		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
438						 res->sktways, res->addr);
439		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
440						 res->chanways, res->addr);
441	}
442
443	res->chan_addr = channel_addr;
444
445	edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
446		 res->addr, res->chan_addr, res->sktways, res->chanways);
447	return true;
448}
449
450#define SKX_MAX_RIR 4
451
452#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
453	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
454			      0x108 + 4 * (i), &(reg))
455#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
456	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
457			      0x120 + 16 * (idx) + 4 * (i), &(reg))
458
459#define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
460#define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
461#define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
462#define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
463#define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
464
465static bool skx_rir_decode(struct decoded_addr *res)
466{
467	int i, idx, chan_rank;
468	int shift;
469	u32 rirway, rirlv;
470	u64 rank_addr, prev_limit = 0, limit;
471
472	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
473		shift = 6;
474	else
475		shift = 13;
476
477	for (i = 0; i < SKX_MAX_RIR; i++) {
478		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
479		limit = SKX_RIR_LIMIT(rirway);
480		if (SKX_RIR_VALID(rirway)) {
481			if (prev_limit <= res->chan_addr &&
482			    res->chan_addr <= limit)
483				goto rir_found;
484		}
485		prev_limit = limit;
486	}
487	edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
488	return false;
489
490rir_found:
491	rank_addr = res->chan_addr >> shift;
492	rank_addr /= SKX_RIR_WAYS(rirway);
493	rank_addr <<= shift;
494	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
495
496	res->rank_address = rank_addr;
497	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
498
499	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
500	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
501	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
502	res->channel_rank = chan_rank;
503	res->dimm = chan_rank / 4;
504	res->rank = chan_rank % 4;
505
506	edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
507		 res->addr, res->dimm, res->rank,
508		 res->channel_rank, res->rank_address);
509	return true;
510}
511
512static u8 skx_close_row[] = {
513	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33, 34
514};
515
516static u8 skx_close_column[] = {
517	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
518};
519
520static u8 skx_open_row[] = {
521	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34
522};
523
524static u8 skx_open_column[] = {
525	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
526};
527
528static u8 skx_open_fine_column[] = {
529	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
530};
531
532static int skx_bits(u64 addr, int nbits, u8 *bits)
533{
534	int i, res = 0;
535
536	for (i = 0; i < nbits; i++)
537		res |= ((addr >> bits[i]) & 1) << i;
538	return res;
539}
540
541static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
542{
543	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
544
545	if (do_xor)
546		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
547
548	return ret;
549}
550
551static bool skx_mad_decode(struct decoded_addr *r)
552{
553	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
554	int bg0 = dimm->fine_grain_bank ? 6 : 13;
555
556	if (dimm->close_pg) {
557		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
558		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
559		r->column |= 0x400; /* C10 is autoprecharge, always set */
560		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
561		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
562	} else {
563		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
564		if (dimm->fine_grain_bank)
565			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
566		else
567			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
568		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
569		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
570	}
571	r->row &= (1u << dimm->rowbits) - 1;
572
573	edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
574		 r->addr, r->row, r->column, r->bank_address,
575		 r->bank_group);
576	return true;
577}
578
579static bool skx_decode(struct decoded_addr *res)
580{
581	return skx_sad_decode(res) && skx_tad_decode(res) &&
582		skx_rir_decode(res) && skx_mad_decode(res);
583}
584
585static struct notifier_block skx_mce_dec = {
586	.notifier_call	= skx_mce_check_error,
587	.priority	= MCE_PRIO_EDAC,
588};
589
590/*
591 * skx_init:
592 *	make sure we are running on the correct cpu model
593 *	search for all the devices we need
594 *	check which DIMMs are present.
595 */
596static int __init skx_init(void)
597{
598	const struct x86_cpu_id *id;
599	struct res_config *cfg;
600	const struct munit *m;
601	const char *owner;
602	int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
603	u8 mc = 0, src_id, node_id;
604	struct skx_dev *d;
605
606	edac_dbg(2, "\n");
607
608	if (ghes_get_devices())
609		return -EBUSY;
610
611	owner = edac_get_owner();
612	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
613		return -EBUSY;
614
615	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
616		return -ENODEV;
617
618	id = x86_match_cpu(skx_cpuids);
619	if (!id)
620		return -ENODEV;
621
622	cfg = (struct res_config *)id->driver_data;
623
624	rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
625	if (rc)
626		return rc;
627
628	rc = skx_get_all_bus_mappings(cfg, &skx_edac_list);
629	if (rc < 0)
630		goto fail;
631	if (rc == 0) {
632		edac_dbg(2, "No memory controllers found\n");
633		return -ENODEV;
634	}
635	skx_num_sockets = rc;
636
637	for (m = skx_all_munits; m->did; m++) {
638		rc = get_all_munits(m);
639		if (rc < 0)
640			goto fail;
641		if (rc != m->per_socket * skx_num_sockets) {
642			edac_dbg(2, "Expected %d, got %d of 0x%x\n",
643				 m->per_socket * skx_num_sockets, rc, m->did);
644			rc = -ENODEV;
645			goto fail;
646		}
647	}
648
649	list_for_each_entry(d, skx_edac_list, list) {
650		rc = skx_get_src_id(d, 0xf0, &src_id);
651		if (rc < 0)
652			goto fail;
653		rc = skx_get_node_id(d, &node_id);
654		if (rc < 0)
655			goto fail;
656		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
657		for (i = 0; i < SKX_NUM_IMC; i++) {
658			d->imc[i].mc = mc++;
659			d->imc[i].lmc = i;
660			d->imc[i].src_id = src_id;
661			d->imc[i].node_id = node_id;
662			rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
663					      "Skylake Socket", EDAC_MOD_STR,
664					      skx_get_dimm_config, cfg);
665			if (rc < 0)
666				goto fail;
667		}
668	}
669
670	skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
671
672	if (nvdimm_count && skx_adxl_get() != -ENODEV) {
673		skx_set_decode(NULL, skx_show_retry_rd_err_log);
674	} else {
675		if (nvdimm_count)
676			skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
677		skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
678	}
679
680	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
681	opstate_init();
682
683	skx_setup_debug("skx_test");
684
685	mce_register_decode_chain(&skx_mce_dec);
686
687	return 0;
688fail:
689	skx_remove();
690	return rc;
691}
692
693static void __exit skx_exit(void)
694{
695	edac_dbg(2, "\n");
696	mce_unregister_decode_chain(&skx_mce_dec);
697	skx_teardown_debug();
698	if (nvdimm_count)
699		skx_adxl_put();
700	skx_remove();
701}
702
703module_init(skx_init);
704module_exit(skx_exit);
705
706module_param(edac_op_state, int, 0444);
707MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
708
709MODULE_LICENSE("GPL v2");
710MODULE_AUTHOR("Tony Luck");
711MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");