Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Per core/cpu state
   3 *
   4 * Used to coordinate shared registers between HT threads or
   5 * among events on a single PMU.
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/types.h>
  10#include <linux/init.h>
  11#include <linux/slab.h>
  12#include <linux/export.h>
  13
  14#include <asm/hardirq.h>
  15#include <asm/apic.h>
  16
  17#include "perf_event.h"
  18
  19/*
  20 * Intel PerfMon, used on Core and later.
  21 */
  22static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  23{
  24  [PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
  25  [PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
  26  [PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
  27  [PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
  28  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
  29  [PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
  30  [PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
  31  [PERF_COUNT_HW_REF_CPU_CYCLES]	= 0x0300, /* pseudo-encoding */
  32};
  33
  34static struct event_constraint intel_core_event_constraints[] __read_mostly =
  35{
  36	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  37	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  38	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  39	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  40	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  41	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  42	EVENT_CONSTRAINT_END
  43};
  44
  45static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  46{
  47	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  48	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  49	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  50	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  51	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  52	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  53	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  54	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  55	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  56	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  57	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  58	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  59	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  60	EVENT_CONSTRAINT_END
  61};
  62
  63static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  64{
  65	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  66	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  67	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  68	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  69	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  70	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  71	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  72	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  73	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  74	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  75	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  76	EVENT_CONSTRAINT_END
  77};
  78
  79static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  80{
  81	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  82	EVENT_EXTRA_END
  83};
  84
  85static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  86{
  87	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  88	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  89	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  90	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  91	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  92	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  93	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  94	EVENT_CONSTRAINT_END
  95};
  96
  97static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  98{
  99	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 100	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 101	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 102	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
 103	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
 104	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
 105	EVENT_CONSTRAINT_END
 106};
 107
 108static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
 109{
 110	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 111	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
 112	EVENT_EXTRA_END
 113};
 114
 115static struct event_constraint intel_v1_event_constraints[] __read_mostly =
 116{
 117	EVENT_CONSTRAINT_END
 118};
 119
 120static struct event_constraint intel_gen_event_constraints[] __read_mostly =
 121{
 122	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 123	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 124	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 125	EVENT_CONSTRAINT_END
 126};
 127
 128static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
 129	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
 130	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
 131	EVENT_EXTRA_END
 132};
 133
 134static u64 intel_pmu_event_map(int hw_event)
 135{
 136	return intel_perfmon_event_map[hw_event];
 137}
 138
 139static __initconst const u64 snb_hw_cache_event_ids
 140				[PERF_COUNT_HW_CACHE_MAX]
 141				[PERF_COUNT_HW_CACHE_OP_MAX]
 142				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 143{
 144 [ C(L1D) ] = {
 145	[ C(OP_READ) ] = {
 146		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
 147		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
 148	},
 149	[ C(OP_WRITE) ] = {
 150		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
 151		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
 152	},
 153	[ C(OP_PREFETCH) ] = {
 154		[ C(RESULT_ACCESS) ] = 0x0,
 155		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
 156	},
 157 },
 158 [ C(L1I ) ] = {
 159	[ C(OP_READ) ] = {
 160		[ C(RESULT_ACCESS) ] = 0x0,
 161		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
 162	},
 163	[ C(OP_WRITE) ] = {
 164		[ C(RESULT_ACCESS) ] = -1,
 165		[ C(RESULT_MISS)   ] = -1,
 166	},
 167	[ C(OP_PREFETCH) ] = {
 168		[ C(RESULT_ACCESS) ] = 0x0,
 169		[ C(RESULT_MISS)   ] = 0x0,
 170	},
 171 },
 172 [ C(LL  ) ] = {
 173	[ C(OP_READ) ] = {
 174		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 175		[ C(RESULT_ACCESS) ] = 0x01b7,
 176		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 177		[ C(RESULT_MISS)   ] = 0x01b7,
 178	},
 179	[ C(OP_WRITE) ] = {
 180		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 181		[ C(RESULT_ACCESS) ] = 0x01b7,
 182		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 183		[ C(RESULT_MISS)   ] = 0x01b7,
 184	},
 185	[ C(OP_PREFETCH) ] = {
 186		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 187		[ C(RESULT_ACCESS) ] = 0x01b7,
 188		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 189		[ C(RESULT_MISS)   ] = 0x01b7,
 190	},
 191 },
 192 [ C(DTLB) ] = {
 193	[ C(OP_READ) ] = {
 194		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
 195		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
 196	},
 197	[ C(OP_WRITE) ] = {
 198		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
 199		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
 200	},
 201	[ C(OP_PREFETCH) ] = {
 202		[ C(RESULT_ACCESS) ] = 0x0,
 203		[ C(RESULT_MISS)   ] = 0x0,
 204	},
 205 },
 206 [ C(ITLB) ] = {
 207	[ C(OP_READ) ] = {
 208		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
 209		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
 210	},
 211	[ C(OP_WRITE) ] = {
 212		[ C(RESULT_ACCESS) ] = -1,
 213		[ C(RESULT_MISS)   ] = -1,
 214	},
 215	[ C(OP_PREFETCH) ] = {
 216		[ C(RESULT_ACCESS) ] = -1,
 217		[ C(RESULT_MISS)   ] = -1,
 218	},
 219 },
 220 [ C(BPU ) ] = {
 221	[ C(OP_READ) ] = {
 222		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 223		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
 224	},
 225	[ C(OP_WRITE) ] = {
 226		[ C(RESULT_ACCESS) ] = -1,
 227		[ C(RESULT_MISS)   ] = -1,
 228	},
 229	[ C(OP_PREFETCH) ] = {
 230		[ C(RESULT_ACCESS) ] = -1,
 231		[ C(RESULT_MISS)   ] = -1,
 232	},
 233 },
 234 [ C(NODE) ] = {
 235	[ C(OP_READ) ] = {
 236		[ C(RESULT_ACCESS) ] = -1,
 237		[ C(RESULT_MISS)   ] = -1,
 238	},
 239	[ C(OP_WRITE) ] = {
 240		[ C(RESULT_ACCESS) ] = -1,
 241		[ C(RESULT_MISS)   ] = -1,
 242	},
 243	[ C(OP_PREFETCH) ] = {
 244		[ C(RESULT_ACCESS) ] = -1,
 245		[ C(RESULT_MISS)   ] = -1,
 246	},
 247 },
 248
 249};
 250
 251static __initconst const u64 westmere_hw_cache_event_ids
 252				[PERF_COUNT_HW_CACHE_MAX]
 253				[PERF_COUNT_HW_CACHE_OP_MAX]
 254				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 255{
 256 [ C(L1D) ] = {
 257	[ C(OP_READ) ] = {
 258		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 259		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 260	},
 261	[ C(OP_WRITE) ] = {
 262		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 263		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 264	},
 265	[ C(OP_PREFETCH) ] = {
 266		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 267		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 268	},
 269 },
 270 [ C(L1I ) ] = {
 271	[ C(OP_READ) ] = {
 272		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 273		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 274	},
 275	[ C(OP_WRITE) ] = {
 276		[ C(RESULT_ACCESS) ] = -1,
 277		[ C(RESULT_MISS)   ] = -1,
 278	},
 279	[ C(OP_PREFETCH) ] = {
 280		[ C(RESULT_ACCESS) ] = 0x0,
 281		[ C(RESULT_MISS)   ] = 0x0,
 282	},
 283 },
 284 [ C(LL  ) ] = {
 285	[ C(OP_READ) ] = {
 286		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 287		[ C(RESULT_ACCESS) ] = 0x01b7,
 288		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 289		[ C(RESULT_MISS)   ] = 0x01b7,
 290	},
 291	/*
 292	 * Use RFO, not WRITEBACK, because a write miss would typically occur
 293	 * on RFO.
 294	 */
 295	[ C(OP_WRITE) ] = {
 296		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 297		[ C(RESULT_ACCESS) ] = 0x01b7,
 298		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 299		[ C(RESULT_MISS)   ] = 0x01b7,
 300	},
 301	[ C(OP_PREFETCH) ] = {
 302		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 303		[ C(RESULT_ACCESS) ] = 0x01b7,
 304		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 305		[ C(RESULT_MISS)   ] = 0x01b7,
 306	},
 307 },
 308 [ C(DTLB) ] = {
 309	[ C(OP_READ) ] = {
 310		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 311		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 312	},
 313	[ C(OP_WRITE) ] = {
 314		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 315		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 316	},
 317	[ C(OP_PREFETCH) ] = {
 318		[ C(RESULT_ACCESS) ] = 0x0,
 319		[ C(RESULT_MISS)   ] = 0x0,
 320	},
 321 },
 322 [ C(ITLB) ] = {
 323	[ C(OP_READ) ] = {
 324		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 325		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
 326	},
 327	[ C(OP_WRITE) ] = {
 328		[ C(RESULT_ACCESS) ] = -1,
 329		[ C(RESULT_MISS)   ] = -1,
 330	},
 331	[ C(OP_PREFETCH) ] = {
 332		[ C(RESULT_ACCESS) ] = -1,
 333		[ C(RESULT_MISS)   ] = -1,
 334	},
 335 },
 336 [ C(BPU ) ] = {
 337	[ C(OP_READ) ] = {
 338		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 339		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
 340	},
 341	[ C(OP_WRITE) ] = {
 342		[ C(RESULT_ACCESS) ] = -1,
 343		[ C(RESULT_MISS)   ] = -1,
 344	},
 345	[ C(OP_PREFETCH) ] = {
 346		[ C(RESULT_ACCESS) ] = -1,
 347		[ C(RESULT_MISS)   ] = -1,
 348	},
 349 },
 350 [ C(NODE) ] = {
 351	[ C(OP_READ) ] = {
 352		[ C(RESULT_ACCESS) ] = 0x01b7,
 353		[ C(RESULT_MISS)   ] = 0x01b7,
 354	},
 355	[ C(OP_WRITE) ] = {
 356		[ C(RESULT_ACCESS) ] = 0x01b7,
 357		[ C(RESULT_MISS)   ] = 0x01b7,
 358	},
 359	[ C(OP_PREFETCH) ] = {
 360		[ C(RESULT_ACCESS) ] = 0x01b7,
 361		[ C(RESULT_MISS)   ] = 0x01b7,
 362	},
 363 },
 364};
 365
 366/*
 367 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 368 * See IA32 SDM Vol 3B 30.6.1.3
 369 */
 370
 371#define NHM_DMND_DATA_RD	(1 << 0)
 372#define NHM_DMND_RFO		(1 << 1)
 373#define NHM_DMND_IFETCH		(1 << 2)
 374#define NHM_DMND_WB		(1 << 3)
 375#define NHM_PF_DATA_RD		(1 << 4)
 376#define NHM_PF_DATA_RFO		(1 << 5)
 377#define NHM_PF_IFETCH		(1 << 6)
 378#define NHM_OFFCORE_OTHER	(1 << 7)
 379#define NHM_UNCORE_HIT		(1 << 8)
 380#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
 381#define NHM_OTHER_CORE_HITM	(1 << 10)
 382        			/* reserved */
 383#define NHM_REMOTE_CACHE_FWD	(1 << 12)
 384#define NHM_REMOTE_DRAM		(1 << 13)
 385#define NHM_LOCAL_DRAM		(1 << 14)
 386#define NHM_NON_DRAM		(1 << 15)
 387
 388#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
 389#define NHM_REMOTE		(NHM_REMOTE_DRAM)
 390
 391#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
 392#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
 393#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
 394
 395#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
 396#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
 397#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
 398
 399static __initconst const u64 nehalem_hw_cache_extra_regs
 400				[PERF_COUNT_HW_CACHE_MAX]
 401				[PERF_COUNT_HW_CACHE_OP_MAX]
 402				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 403{
 404 [ C(LL  ) ] = {
 405	[ C(OP_READ) ] = {
 406		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
 407		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
 408	},
 409	[ C(OP_WRITE) ] = {
 410		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
 411		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
 412	},
 413	[ C(OP_PREFETCH) ] = {
 414		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
 415		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
 416	},
 417 },
 418 [ C(NODE) ] = {
 419	[ C(OP_READ) ] = {
 420		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
 421		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
 422	},
 423	[ C(OP_WRITE) ] = {
 424		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
 425		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
 426	},
 427	[ C(OP_PREFETCH) ] = {
 428		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
 429		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
 430	},
 431 },
 432};
 433
 434static __initconst const u64 nehalem_hw_cache_event_ids
 435				[PERF_COUNT_HW_CACHE_MAX]
 436				[PERF_COUNT_HW_CACHE_OP_MAX]
 437				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 438{
 439 [ C(L1D) ] = {
 440	[ C(OP_READ) ] = {
 441		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
 442		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
 443	},
 444	[ C(OP_WRITE) ] = {
 445		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
 446		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
 447	},
 448	[ C(OP_PREFETCH) ] = {
 449		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
 450		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
 451	},
 452 },
 453 [ C(L1I ) ] = {
 454	[ C(OP_READ) ] = {
 455		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
 456		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
 457	},
 458	[ C(OP_WRITE) ] = {
 459		[ C(RESULT_ACCESS) ] = -1,
 460		[ C(RESULT_MISS)   ] = -1,
 461	},
 462	[ C(OP_PREFETCH) ] = {
 463		[ C(RESULT_ACCESS) ] = 0x0,
 464		[ C(RESULT_MISS)   ] = 0x0,
 465	},
 466 },
 467 [ C(LL  ) ] = {
 468	[ C(OP_READ) ] = {
 469		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
 470		[ C(RESULT_ACCESS) ] = 0x01b7,
 471		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
 472		[ C(RESULT_MISS)   ] = 0x01b7,
 473	},
 474	/*
 475	 * Use RFO, not WRITEBACK, because a write miss would typically occur
 476	 * on RFO.
 477	 */
 478	[ C(OP_WRITE) ] = {
 479		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
 480		[ C(RESULT_ACCESS) ] = 0x01b7,
 481		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
 482		[ C(RESULT_MISS)   ] = 0x01b7,
 483	},
 484	[ C(OP_PREFETCH) ] = {
 485		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
 486		[ C(RESULT_ACCESS) ] = 0x01b7,
 487		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
 488		[ C(RESULT_MISS)   ] = 0x01b7,
 489	},
 490 },
 491 [ C(DTLB) ] = {
 492	[ C(OP_READ) ] = {
 493		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
 494		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
 495	},
 496	[ C(OP_WRITE) ] = {
 497		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
 498		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
 499	},
 500	[ C(OP_PREFETCH) ] = {
 501		[ C(RESULT_ACCESS) ] = 0x0,
 502		[ C(RESULT_MISS)   ] = 0x0,
 503	},
 504 },
 505 [ C(ITLB) ] = {
 506	[ C(OP_READ) ] = {
 507		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
 508		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
 509	},
 510	[ C(OP_WRITE) ] = {
 511		[ C(RESULT_ACCESS) ] = -1,
 512		[ C(RESULT_MISS)   ] = -1,
 513	},
 514	[ C(OP_PREFETCH) ] = {
 515		[ C(RESULT_ACCESS) ] = -1,
 516		[ C(RESULT_MISS)   ] = -1,
 517	},
 518 },
 519 [ C(BPU ) ] = {
 520	[ C(OP_READ) ] = {
 521		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
 522		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
 523	},
 524	[ C(OP_WRITE) ] = {
 525		[ C(RESULT_ACCESS) ] = -1,
 526		[ C(RESULT_MISS)   ] = -1,
 527	},
 528	[ C(OP_PREFETCH) ] = {
 529		[ C(RESULT_ACCESS) ] = -1,
 530		[ C(RESULT_MISS)   ] = -1,
 531	},
 532 },
 533 [ C(NODE) ] = {
 534	[ C(OP_READ) ] = {
 535		[ C(RESULT_ACCESS) ] = 0x01b7,
 536		[ C(RESULT_MISS)   ] = 0x01b7,
 537	},
 538	[ C(OP_WRITE) ] = {
 539		[ C(RESULT_ACCESS) ] = 0x01b7,
 540		[ C(RESULT_MISS)   ] = 0x01b7,
 541	},
 542	[ C(OP_PREFETCH) ] = {
 543		[ C(RESULT_ACCESS) ] = 0x01b7,
 544		[ C(RESULT_MISS)   ] = 0x01b7,
 545	},
 546 },
 547};
 548
 549static __initconst const u64 core2_hw_cache_event_ids
 550				[PERF_COUNT_HW_CACHE_MAX]
 551				[PERF_COUNT_HW_CACHE_OP_MAX]
 552				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 553{
 554 [ C(L1D) ] = {
 555	[ C(OP_READ) ] = {
 556		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
 557		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
 558	},
 559	[ C(OP_WRITE) ] = {
 560		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
 561		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
 562	},
 563	[ C(OP_PREFETCH) ] = {
 564		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
 565		[ C(RESULT_MISS)   ] = 0,
 566	},
 567 },
 568 [ C(L1I ) ] = {
 569	[ C(OP_READ) ] = {
 570		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
 571		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
 572	},
 573	[ C(OP_WRITE) ] = {
 574		[ C(RESULT_ACCESS) ] = -1,
 575		[ C(RESULT_MISS)   ] = -1,
 576	},
 577	[ C(OP_PREFETCH) ] = {
 578		[ C(RESULT_ACCESS) ] = 0,
 579		[ C(RESULT_MISS)   ] = 0,
 580	},
 581 },
 582 [ C(LL  ) ] = {
 583	[ C(OP_READ) ] = {
 584		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
 585		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
 586	},
 587	[ C(OP_WRITE) ] = {
 588		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
 589		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
 590	},
 591	[ C(OP_PREFETCH) ] = {
 592		[ C(RESULT_ACCESS) ] = 0,
 593		[ C(RESULT_MISS)   ] = 0,
 594	},
 595 },
 596 [ C(DTLB) ] = {
 597	[ C(OP_READ) ] = {
 598		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
 599		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
 600	},
 601	[ C(OP_WRITE) ] = {
 602		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
 603		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
 604	},
 605	[ C(OP_PREFETCH) ] = {
 606		[ C(RESULT_ACCESS) ] = 0,
 607		[ C(RESULT_MISS)   ] = 0,
 608	},
 609 },
 610 [ C(ITLB) ] = {
 611	[ C(OP_READ) ] = {
 612		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
 613		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
 614	},
 615	[ C(OP_WRITE) ] = {
 616		[ C(RESULT_ACCESS) ] = -1,
 617		[ C(RESULT_MISS)   ] = -1,
 618	},
 619	[ C(OP_PREFETCH) ] = {
 620		[ C(RESULT_ACCESS) ] = -1,
 621		[ C(RESULT_MISS)   ] = -1,
 622	},
 623 },
 624 [ C(BPU ) ] = {
 625	[ C(OP_READ) ] = {
 626		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
 627		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
 628	},
 629	[ C(OP_WRITE) ] = {
 630		[ C(RESULT_ACCESS) ] = -1,
 631		[ C(RESULT_MISS)   ] = -1,
 632	},
 633	[ C(OP_PREFETCH) ] = {
 634		[ C(RESULT_ACCESS) ] = -1,
 635		[ C(RESULT_MISS)   ] = -1,
 636	},
 637 },
 638};
 639
 640static __initconst const u64 atom_hw_cache_event_ids
 641				[PERF_COUNT_HW_CACHE_MAX]
 642				[PERF_COUNT_HW_CACHE_OP_MAX]
 643				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
 644{
 645 [ C(L1D) ] = {
 646	[ C(OP_READ) ] = {
 647		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
 648		[ C(RESULT_MISS)   ] = 0,
 649	},
 650	[ C(OP_WRITE) ] = {
 651		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
 652		[ C(RESULT_MISS)   ] = 0,
 653	},
 654	[ C(OP_PREFETCH) ] = {
 655		[ C(RESULT_ACCESS) ] = 0x0,
 656		[ C(RESULT_MISS)   ] = 0,
 657	},
 658 },
 659 [ C(L1I ) ] = {
 660	[ C(OP_READ) ] = {
 661		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
 662		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
 663	},
 664	[ C(OP_WRITE) ] = {
 665		[ C(RESULT_ACCESS) ] = -1,
 666		[ C(RESULT_MISS)   ] = -1,
 667	},
 668	[ C(OP_PREFETCH) ] = {
 669		[ C(RESULT_ACCESS) ] = 0,
 670		[ C(RESULT_MISS)   ] = 0,
 671	},
 672 },
 673 [ C(LL  ) ] = {
 674	[ C(OP_READ) ] = {
 675		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
 676		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
 677	},
 678	[ C(OP_WRITE) ] = {
 679		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
 680		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
 681	},
 682	[ C(OP_PREFETCH) ] = {
 683		[ C(RESULT_ACCESS) ] = 0,
 684		[ C(RESULT_MISS)   ] = 0,
 685	},
 686 },
 687 [ C(DTLB) ] = {
 688	[ C(OP_READ) ] = {
 689		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
 690		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
 691	},
 692	[ C(OP_WRITE) ] = {
 693		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
 694		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
 695	},
 696	[ C(OP_PREFETCH) ] = {
 697		[ C(RESULT_ACCESS) ] = 0,
 698		[ C(RESULT_MISS)   ] = 0,
 699	},
 700 },
 701 [ C(ITLB) ] = {
 702	[ C(OP_READ) ] = {
 703		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
 704		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
 705	},
 706	[ C(OP_WRITE) ] = {
 707		[ C(RESULT_ACCESS) ] = -1,
 708		[ C(RESULT_MISS)   ] = -1,
 709	},
 710	[ C(OP_PREFETCH) ] = {
 711		[ C(RESULT_ACCESS) ] = -1,
 712		[ C(RESULT_MISS)   ] = -1,
 713	},
 714 },
 715 [ C(BPU ) ] = {
 716	[ C(OP_READ) ] = {
 717		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
 718		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
 719	},
 720	[ C(OP_WRITE) ] = {
 721		[ C(RESULT_ACCESS) ] = -1,
 722		[ C(RESULT_MISS)   ] = -1,
 723	},
 724	[ C(OP_PREFETCH) ] = {
 725		[ C(RESULT_ACCESS) ] = -1,
 726		[ C(RESULT_MISS)   ] = -1,
 727	},
 728 },
 729};
 730
 731static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
 732{
 733	/* user explicitly requested branch sampling */
 734	if (has_branch_stack(event))
 735		return true;
 736
 737	/* implicit branch sampling to correct PEBS skid */
 738	if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
 739		return true;
 740
 741	return false;
 742}
 743
 744static void intel_pmu_disable_all(void)
 745{
 746	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 747
 748	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
 749
 750	if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
 751		intel_pmu_disable_bts();
 752
 753	intel_pmu_pebs_disable_all();
 754	intel_pmu_lbr_disable_all();
 755}
 756
 757static void intel_pmu_enable_all(int added)
 758{
 759	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 760
 761	intel_pmu_pebs_enable_all();
 762	intel_pmu_lbr_enable_all();
 763	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
 764			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
 765
 766	if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
 767		struct perf_event *event =
 768			cpuc->events[X86_PMC_IDX_FIXED_BTS];
 769
 770		if (WARN_ON_ONCE(!event))
 771			return;
 772
 773		intel_pmu_enable_bts(event->hw.config);
 774	}
 775}
 776
 777/*
 778 * Workaround for:
 779 *   Intel Errata AAK100 (model 26)
 780 *   Intel Errata AAP53  (model 30)
 781 *   Intel Errata BD53   (model 44)
 782 *
 783 * The official story:
 784 *   These chips need to be 'reset' when adding counters by programming the
 785 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 786 *   in sequence on the same PMC or on different PMCs.
 787 *
 788 * In practise it appears some of these events do in fact count, and
 789 * we need to programm all 4 events.
 790 */
 791static void intel_pmu_nhm_workaround(void)
 792{
 793	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 794	static const unsigned long nhm_magic[4] = {
 795		0x4300B5,
 796		0x4300D2,
 797		0x4300B1,
 798		0x4300B1
 799	};
 800	struct perf_event *event;
 801	int i;
 802
 803	/*
 804	 * The Errata requires below steps:
 805	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
 806	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
 807	 *    the corresponding PMCx;
 808	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
 809	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
 810	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
 811	 */
 812
 813	/*
 814	 * The real steps we choose are a little different from above.
 815	 * A) To reduce MSR operations, we don't run step 1) as they
 816	 *    are already cleared before this function is called;
 817	 * B) Call x86_perf_event_update to save PMCx before configuring
 818	 *    PERFEVTSELx with magic number;
 819	 * C) With step 5), we do clear only when the PERFEVTSELx is
 820	 *    not used currently.
 821	 * D) Call x86_perf_event_set_period to restore PMCx;
 822	 */
 823
 824	/* We always operate 4 pairs of PERF Counters */
 825	for (i = 0; i < 4; i++) {
 826		event = cpuc->events[i];
 827		if (event)
 828			x86_perf_event_update(event);
 829	}
 830
 831	for (i = 0; i < 4; i++) {
 832		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
 833		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
 834	}
 835
 836	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
 837	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
 838
 839	for (i = 0; i < 4; i++) {
 840		event = cpuc->events[i];
 841
 842		if (event) {
 843			x86_perf_event_set_period(event);
 844			__x86_pmu_enable_event(&event->hw,
 845					ARCH_PERFMON_EVENTSEL_ENABLE);
 846		} else
 847			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
 848	}
 849}
 850
 851static void intel_pmu_nhm_enable_all(int added)
 852{
 853	if (added)
 854		intel_pmu_nhm_workaround();
 855	intel_pmu_enable_all(added);
 856}
 857
 858static inline u64 intel_pmu_get_status(void)
 859{
 860	u64 status;
 861
 862	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
 863
 864	return status;
 865}
 866
 867static inline void intel_pmu_ack_status(u64 ack)
 868{
 869	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
 870}
 871
 872static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
 873{
 874	int idx = hwc->idx - X86_PMC_IDX_FIXED;
 875	u64 ctrl_val, mask;
 876
 877	mask = 0xfULL << (idx * 4);
 878
 879	rdmsrl(hwc->config_base, ctrl_val);
 880	ctrl_val &= ~mask;
 881	wrmsrl(hwc->config_base, ctrl_val);
 882}
 883
 884static void intel_pmu_disable_event(struct perf_event *event)
 885{
 886	struct hw_perf_event *hwc = &event->hw;
 887	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 888
 889	if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
 890		intel_pmu_disable_bts();
 891		intel_pmu_drain_bts_buffer();
 892		return;
 893	}
 894
 895	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
 896	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
 897
 898	/*
 899	 * must disable before any actual event
 900	 * because any event may be combined with LBR
 901	 */
 902	if (intel_pmu_needs_lbr_smpl(event))
 903		intel_pmu_lbr_disable(event);
 904
 905	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
 906		intel_pmu_disable_fixed(hwc);
 907		return;
 908	}
 909
 910	x86_pmu_disable_event(event);
 911
 912	if (unlikely(event->attr.precise_ip))
 913		intel_pmu_pebs_disable(event);
 914}
 915
 916static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
 917{
 918	int idx = hwc->idx - X86_PMC_IDX_FIXED;
 919	u64 ctrl_val, bits, mask;
 920
 921	/*
 922	 * Enable IRQ generation (0x8),
 923	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
 924	 * if requested:
 925	 */
 926	bits = 0x8ULL;
 927	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
 928		bits |= 0x2;
 929	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
 930		bits |= 0x1;
 931
 932	/*
 933	 * ANY bit is supported in v3 and up
 934	 */
 935	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
 936		bits |= 0x4;
 937
 938	bits <<= (idx * 4);
 939	mask = 0xfULL << (idx * 4);
 940
 941	rdmsrl(hwc->config_base, ctrl_val);
 942	ctrl_val &= ~mask;
 943	ctrl_val |= bits;
 944	wrmsrl(hwc->config_base, ctrl_val);
 945}
 946
 947static void intel_pmu_enable_event(struct perf_event *event)
 948{
 949	struct hw_perf_event *hwc = &event->hw;
 950	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
 951
 952	if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
 953		if (!__this_cpu_read(cpu_hw_events.enabled))
 954			return;
 955
 956		intel_pmu_enable_bts(hwc->config);
 957		return;
 958	}
 959	/*
 960	 * must enabled before any actual event
 961	 * because any event may be combined with LBR
 962	 */
 963	if (intel_pmu_needs_lbr_smpl(event))
 964		intel_pmu_lbr_enable(event);
 965
 966	if (event->attr.exclude_host)
 967		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
 968	if (event->attr.exclude_guest)
 969		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
 970
 971	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
 972		intel_pmu_enable_fixed(hwc);
 973		return;
 974	}
 975
 976	if (unlikely(event->attr.precise_ip))
 977		intel_pmu_pebs_enable(event);
 978
 979	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 980}
 981
 982/*
 983 * Save and restart an expired event. Called by NMI contexts,
 984 * so it has to be careful about preempting normal event ops:
 985 */
 986int intel_pmu_save_and_restart(struct perf_event *event)
 987{
 988	x86_perf_event_update(event);
 989	return x86_perf_event_set_period(event);
 990}
 991
 992static void intel_pmu_reset(void)
 993{
 994	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
 995	unsigned long flags;
 996	int idx;
 997
 998	if (!x86_pmu.num_counters)
 999		return;
1000
1001	local_irq_save(flags);
1002
1003	printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1004
1005	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1006		checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
1007		checking_wrmsrl(x86_pmu_event_addr(idx),  0ull);
1008	}
1009	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1010		checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1011
1012	if (ds)
1013		ds->bts_index = ds->bts_buffer_base;
1014
1015	local_irq_restore(flags);
1016}
1017
1018/*
1019 * This handler is triggered by the local APIC, so the APIC IRQ handling
1020 * rules apply:
1021 */
1022static int intel_pmu_handle_irq(struct pt_regs *regs)
1023{
1024	struct perf_sample_data data;
1025	struct cpu_hw_events *cpuc;
1026	int bit, loops;
1027	u64 status;
1028	int handled;
1029
1030	cpuc = &__get_cpu_var(cpu_hw_events);
1031
1032	/*
1033	 * Some chipsets need to unmask the LVTPC in a particular spot
1034	 * inside the nmi handler.  As a result, the unmasking was pushed
1035	 * into all the nmi handlers.
1036	 *
1037	 * This handler doesn't seem to have any issues with the unmasking
1038	 * so it was left at the top.
1039	 */
1040	apic_write(APIC_LVTPC, APIC_DM_NMI);
1041
1042	intel_pmu_disable_all();
1043	handled = intel_pmu_drain_bts_buffer();
1044	status = intel_pmu_get_status();
1045	if (!status) {
1046		intel_pmu_enable_all(0);
1047		return handled;
1048	}
1049
1050	loops = 0;
1051again:
1052	intel_pmu_ack_status(status);
1053	if (++loops > 100) {
1054		WARN_ONCE(1, "perfevents: irq loop stuck!\n");
1055		perf_event_print_debug();
1056		intel_pmu_reset();
1057		goto done;
1058	}
1059
1060	inc_irq_stat(apic_perf_irqs);
1061
1062	intel_pmu_lbr_read();
1063
1064	/*
1065	 * PEBS overflow sets bit 62 in the global status register
1066	 */
1067	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
1068		handled++;
1069		x86_pmu.drain_pebs(regs);
1070	}
1071
1072	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1073		struct perf_event *event = cpuc->events[bit];
1074
1075		handled++;
1076
1077		if (!test_bit(bit, cpuc->active_mask))
1078			continue;
1079
1080		if (!intel_pmu_save_and_restart(event))
1081			continue;
1082
1083		perf_sample_data_init(&data, 0, event->hw.last_period);
1084
1085		if (has_branch_stack(event))
1086			data.br_stack = &cpuc->lbr_stack;
1087
1088		if (perf_event_overflow(event, &data, regs))
1089			x86_pmu_stop(event, 0);
1090	}
1091
1092	/*
1093	 * Repeat if there is more work to be done:
1094	 */
1095	status = intel_pmu_get_status();
1096	if (status)
1097		goto again;
1098
1099done:
1100	intel_pmu_enable_all(0);
1101	return handled;
1102}
1103
1104static struct event_constraint *
1105intel_bts_constraints(struct perf_event *event)
1106{
1107	struct hw_perf_event *hwc = &event->hw;
1108	unsigned int hw_event, bts_event;
1109
1110	if (event->attr.freq)
1111		return NULL;
1112
1113	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
1114	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1115
1116	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1117		return &bts_constraint;
1118
1119	return NULL;
1120}
1121
1122static int intel_alt_er(int idx)
1123{
1124	if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1125		return idx;
1126
1127	if (idx == EXTRA_REG_RSP_0)
1128		return EXTRA_REG_RSP_1;
1129
1130	if (idx == EXTRA_REG_RSP_1)
1131		return EXTRA_REG_RSP_0;
1132
1133	return idx;
1134}
1135
1136static void intel_fixup_er(struct perf_event *event, int idx)
1137{
1138	event->hw.extra_reg.idx = idx;
1139
1140	if (idx == EXTRA_REG_RSP_0) {
1141		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1142		event->hw.config |= 0x01b7;
1143		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1144	} else if (idx == EXTRA_REG_RSP_1) {
1145		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
1146		event->hw.config |= 0x01bb;
1147		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1148	}
1149}
1150
1151/*
1152 * manage allocation of shared extra msr for certain events
1153 *
1154 * sharing can be:
1155 * per-cpu: to be shared between the various events on a single PMU
1156 * per-core: per-cpu + shared by HT threads
1157 */
1158static struct event_constraint *
1159__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1160				   struct perf_event *event,
1161				   struct hw_perf_event_extra *reg)
1162{
1163	struct event_constraint *c = &emptyconstraint;
1164	struct er_account *era;
1165	unsigned long flags;
1166	int idx = reg->idx;
1167
1168	/*
1169	 * reg->alloc can be set due to existing state, so for fake cpuc we
1170	 * need to ignore this, otherwise we might fail to allocate proper fake
1171	 * state for this extra reg constraint. Also see the comment below.
1172	 */
1173	if (reg->alloc && !cpuc->is_fake)
1174		return NULL; /* call x86_get_event_constraint() */
1175
1176again:
1177	era = &cpuc->shared_regs->regs[idx];
1178	/*
1179	 * we use spin_lock_irqsave() to avoid lockdep issues when
1180	 * passing a fake cpuc
1181	 */
1182	raw_spin_lock_irqsave(&era->lock, flags);
1183
1184	if (!atomic_read(&era->ref) || era->config == reg->config) {
1185
1186		/*
1187		 * If its a fake cpuc -- as per validate_{group,event}() we
1188		 * shouldn't touch event state and we can avoid doing so
1189		 * since both will only call get_event_constraints() once
1190		 * on each event, this avoids the need for reg->alloc.
1191		 *
1192		 * Not doing the ER fixup will only result in era->reg being
1193		 * wrong, but since we won't actually try and program hardware
1194		 * this isn't a problem either.
1195		 */
1196		if (!cpuc->is_fake) {
1197			if (idx != reg->idx)
1198				intel_fixup_er(event, idx);
1199
1200			/*
1201			 * x86_schedule_events() can call get_event_constraints()
1202			 * multiple times on events in the case of incremental
1203			 * scheduling(). reg->alloc ensures we only do the ER
1204			 * allocation once.
1205			 */
1206			reg->alloc = 1;
1207		}
1208
1209		/* lock in msr value */
1210		era->config = reg->config;
1211		era->reg = reg->reg;
1212
1213		/* one more user */
1214		atomic_inc(&era->ref);
1215
1216		/*
1217		 * need to call x86_get_event_constraint()
1218		 * to check if associated event has constraints
1219		 */
1220		c = NULL;
1221	} else {
1222		idx = intel_alt_er(idx);
1223		if (idx != reg->idx) {
1224			raw_spin_unlock_irqrestore(&era->lock, flags);
1225			goto again;
1226		}
1227	}
1228	raw_spin_unlock_irqrestore(&era->lock, flags);
1229
1230	return c;
1231}
1232
1233static void
1234__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
1235				   struct hw_perf_event_extra *reg)
1236{
1237	struct er_account *era;
1238
1239	/*
1240	 * Only put constraint if extra reg was actually allocated. Also takes
1241	 * care of event which do not use an extra shared reg.
1242	 *
1243	 * Also, if this is a fake cpuc we shouldn't touch any event state
1244	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
1245	 * either since it'll be thrown out.
1246	 */
1247	if (!reg->alloc || cpuc->is_fake)
1248		return;
1249
1250	era = &cpuc->shared_regs->regs[reg->idx];
1251
1252	/* one fewer user */
1253	atomic_dec(&era->ref);
1254
1255	/* allocate again next time */
1256	reg->alloc = 0;
1257}
1258
1259static struct event_constraint *
1260intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
1261			      struct perf_event *event)
1262{
1263	struct event_constraint *c = NULL, *d;
1264	struct hw_perf_event_extra *xreg, *breg;
1265
1266	xreg = &event->hw.extra_reg;
1267	if (xreg->idx != EXTRA_REG_NONE) {
1268		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
1269		if (c == &emptyconstraint)
1270			return c;
1271	}
1272	breg = &event->hw.branch_reg;
1273	if (breg->idx != EXTRA_REG_NONE) {
1274		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
1275		if (d == &emptyconstraint) {
1276			__intel_shared_reg_put_constraints(cpuc, xreg);
1277			c = d;
1278		}
1279	}
1280	return c;
1281}
1282
1283struct event_constraint *
1284x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1285{
1286	struct event_constraint *c;
1287
1288	if (x86_pmu.event_constraints) {
1289		for_each_event_constraint(c, x86_pmu.event_constraints) {
1290			if ((event->hw.config & c->cmask) == c->code)
1291				return c;
1292		}
1293	}
1294
1295	return &unconstrained;
1296}
1297
1298static struct event_constraint *
1299intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1300{
1301	struct event_constraint *c;
1302
1303	c = intel_bts_constraints(event);
1304	if (c)
1305		return c;
1306
1307	c = intel_pebs_constraints(event);
1308	if (c)
1309		return c;
1310
1311	c = intel_shared_regs_constraints(cpuc, event);
1312	if (c)
1313		return c;
1314
1315	return x86_get_event_constraints(cpuc, event);
1316}
1317
1318static void
1319intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1320					struct perf_event *event)
1321{
1322	struct hw_perf_event_extra *reg;
1323
1324	reg = &event->hw.extra_reg;
1325	if (reg->idx != EXTRA_REG_NONE)
1326		__intel_shared_reg_put_constraints(cpuc, reg);
1327
1328	reg = &event->hw.branch_reg;
1329	if (reg->idx != EXTRA_REG_NONE)
1330		__intel_shared_reg_put_constraints(cpuc, reg);
1331}
1332
1333static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
1334					struct perf_event *event)
1335{
1336	intel_put_shared_regs_event_constraints(cpuc, event);
1337}
1338
1339static void intel_pebs_aliases_core2(struct perf_event *event)
1340{
1341	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1342		/*
1343		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1344		 * (0x003c) so that we can use it with PEBS.
1345		 *
1346		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1347		 * PEBS capable. However we can use INST_RETIRED.ANY_P
1348		 * (0x00c0), which is a PEBS capable event, to get the same
1349		 * count.
1350		 *
1351		 * INST_RETIRED.ANY_P counts the number of cycles that retires
1352		 * CNTMASK instructions. By setting CNTMASK to a value (16)
1353		 * larger than the maximum number of instructions that can be
1354		 * retired per cycle (4) and then inverting the condition, we
1355		 * count all cycles that retire 16 or less instructions, which
1356		 * is every cycle.
1357		 *
1358		 * Thereby we gain a PEBS capable cycle counter.
1359		 */
1360		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
1361
1362		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1363		event->hw.config = alt_config;
1364	}
1365}
1366
1367static void intel_pebs_aliases_snb(struct perf_event *event)
1368{
1369	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1370		/*
1371		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
1372		 * (0x003c) so that we can use it with PEBS.
1373		 *
1374		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
1375		 * PEBS capable. However we can use UOPS_RETIRED.ALL
1376		 * (0x01c2), which is a PEBS capable event, to get the same
1377		 * count.
1378		 *
1379		 * UOPS_RETIRED.ALL counts the number of cycles that retires
1380		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
1381		 * larger than the maximum number of micro-ops that can be
1382		 * retired per cycle (4) and then inverting the condition, we
1383		 * count all cycles that retire 16 or less micro-ops, which
1384		 * is every cycle.
1385		 *
1386		 * Thereby we gain a PEBS capable cycle counter.
1387		 */
1388		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1389
1390		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
1391		event->hw.config = alt_config;
1392	}
1393}
1394
1395static int intel_pmu_hw_config(struct perf_event *event)
1396{
1397	int ret = x86_pmu_hw_config(event);
1398
1399	if (ret)
1400		return ret;
1401
1402	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
1403		x86_pmu.pebs_aliases(event);
1404
1405	if (intel_pmu_needs_lbr_smpl(event)) {
1406		ret = intel_pmu_setup_lbr_filter(event);
1407		if (ret)
1408			return ret;
1409	}
1410
1411	if (event->attr.type != PERF_TYPE_RAW)
1412		return 0;
1413
1414	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
1415		return 0;
1416
1417	if (x86_pmu.version < 3)
1418		return -EINVAL;
1419
1420	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1421		return -EACCES;
1422
1423	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
1424
1425	return 0;
1426}
1427
1428struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
1429{
1430	if (x86_pmu.guest_get_msrs)
1431		return x86_pmu.guest_get_msrs(nr);
1432	*nr = 0;
1433	return NULL;
1434}
1435EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
1436
1437static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
1438{
1439	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1440	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1441
1442	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
1443	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
1444	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1445
1446	*nr = 1;
1447	return arr;
1448}
1449
1450static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
1451{
1452	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1453	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
1454	int idx;
1455
1456	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
1457		struct perf_event *event = cpuc->events[idx];
1458
1459		arr[idx].msr = x86_pmu_config_addr(idx);
1460		arr[idx].host = arr[idx].guest = 0;
1461
1462		if (!test_bit(idx, cpuc->active_mask))
1463			continue;
1464
1465		arr[idx].host = arr[idx].guest =
1466			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
1467
1468		if (event->attr.exclude_host)
1469			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1470		else if (event->attr.exclude_guest)
1471			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
1472	}
1473
1474	*nr = x86_pmu.num_counters;
1475	return arr;
1476}
1477
1478static void core_pmu_enable_event(struct perf_event *event)
1479{
1480	if (!event->attr.exclude_host)
1481		x86_pmu_enable_event(event);
1482}
1483
1484static void core_pmu_enable_all(int added)
1485{
1486	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1487	int idx;
1488
1489	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1490		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
1491
1492		if (!test_bit(idx, cpuc->active_mask) ||
1493				cpuc->events[idx]->attr.exclude_host)
1494			continue;
1495
1496		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1497	}
1498}
1499
1500PMU_FORMAT_ATTR(event,	"config:0-7"	);
1501PMU_FORMAT_ATTR(umask,	"config:8-15"	);
1502PMU_FORMAT_ATTR(edge,	"config:18"	);
1503PMU_FORMAT_ATTR(pc,	"config:19"	);
1504PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
1505PMU_FORMAT_ATTR(inv,	"config:23"	);
1506PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
1507
1508static struct attribute *intel_arch_formats_attr[] = {
1509	&format_attr_event.attr,
1510	&format_attr_umask.attr,
1511	&format_attr_edge.attr,
1512	&format_attr_pc.attr,
1513	&format_attr_inv.attr,
1514	&format_attr_cmask.attr,
1515	NULL,
1516};
1517
1518static __initconst const struct x86_pmu core_pmu = {
1519	.name			= "core",
1520	.handle_irq		= x86_pmu_handle_irq,
1521	.disable_all		= x86_pmu_disable_all,
1522	.enable_all		= core_pmu_enable_all,
1523	.enable			= core_pmu_enable_event,
1524	.disable		= x86_pmu_disable_event,
1525	.hw_config		= x86_pmu_hw_config,
1526	.schedule_events	= x86_schedule_events,
1527	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
1528	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
1529	.event_map		= intel_pmu_event_map,
1530	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
1531	.apic			= 1,
1532	/*
1533	 * Intel PMCs cannot be accessed sanely above 32 bit width,
1534	 * so we install an artificial 1<<31 period regardless of
1535	 * the generic event period:
1536	 */
1537	.max_period		= (1ULL << 31) - 1,
1538	.get_event_constraints	= intel_get_event_constraints,
1539	.put_event_constraints	= intel_put_event_constraints,
1540	.event_constraints	= intel_core_event_constraints,
1541	.guest_get_msrs		= core_guest_get_msrs,
1542	.format_attrs		= intel_arch_formats_attr,
1543};
1544
1545struct intel_shared_regs *allocate_shared_regs(int cpu)
1546{
1547	struct intel_shared_regs *regs;
1548	int i;
1549
1550	regs = kzalloc_node(sizeof(struct intel_shared_regs),
1551			    GFP_KERNEL, cpu_to_node(cpu));
1552	if (regs) {
1553		/*
1554		 * initialize the locks to keep lockdep happy
1555		 */
1556		for (i = 0; i < EXTRA_REG_MAX; i++)
1557			raw_spin_lock_init(&regs->regs[i].lock);
1558
1559		regs->core_id = -1;
1560	}
1561	return regs;
1562}
1563
1564static int intel_pmu_cpu_prepare(int cpu)
1565{
1566	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1567
1568	if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1569		return NOTIFY_OK;
1570
1571	cpuc->shared_regs = allocate_shared_regs(cpu);
1572	if (!cpuc->shared_regs)
1573		return NOTIFY_BAD;
1574
1575	return NOTIFY_OK;
1576}
1577
1578static void intel_pmu_cpu_starting(int cpu)
1579{
1580	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1581	int core_id = topology_core_id(cpu);
1582	int i;
1583
1584	init_debug_store_on_cpu(cpu);
1585	/*
1586	 * Deal with CPUs that don't clear their LBRs on power-up.
1587	 */
1588	intel_pmu_lbr_reset();
1589
1590	cpuc->lbr_sel = NULL;
1591
1592	if (!cpuc->shared_regs)
1593		return;
1594
1595	if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
1596		for_each_cpu(i, topology_thread_cpumask(cpu)) {
1597			struct intel_shared_regs *pc;
1598
1599			pc = per_cpu(cpu_hw_events, i).shared_regs;
1600			if (pc && pc->core_id == core_id) {
1601				cpuc->kfree_on_online = cpuc->shared_regs;
1602				cpuc->shared_regs = pc;
1603				break;
1604			}
1605		}
1606		cpuc->shared_regs->core_id = core_id;
1607		cpuc->shared_regs->refcnt++;
1608	}
1609
1610	if (x86_pmu.lbr_sel_map)
1611		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1612}
1613
1614static void intel_pmu_cpu_dying(int cpu)
1615{
1616	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1617	struct intel_shared_regs *pc;
1618
1619	pc = cpuc->shared_regs;
1620	if (pc) {
1621		if (pc->core_id == -1 || --pc->refcnt == 0)
1622			kfree(pc);
1623		cpuc->shared_regs = NULL;
1624	}
1625
1626	fini_debug_store_on_cpu(cpu);
1627}
1628
1629static void intel_pmu_flush_branch_stack(void)
1630{
1631	/*
1632	 * Intel LBR does not tag entries with the
1633	 * PID of the current task, then we need to
1634	 * flush it on ctxsw
1635	 * For now, we simply reset it
1636	 */
1637	if (x86_pmu.lbr_nr)
1638		intel_pmu_lbr_reset();
1639}
1640
1641PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
1642
1643static struct attribute *intel_arch3_formats_attr[] = {
1644	&format_attr_event.attr,
1645	&format_attr_umask.attr,
1646	&format_attr_edge.attr,
1647	&format_attr_pc.attr,
1648	&format_attr_any.attr,
1649	&format_attr_inv.attr,
1650	&format_attr_cmask.attr,
1651
1652	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1653	NULL,
1654};
1655
1656static __initconst const struct x86_pmu intel_pmu = {
1657	.name			= "Intel",
1658	.handle_irq		= intel_pmu_handle_irq,
1659	.disable_all		= intel_pmu_disable_all,
1660	.enable_all		= intel_pmu_enable_all,
1661	.enable			= intel_pmu_enable_event,
1662	.disable		= intel_pmu_disable_event,
1663	.hw_config		= intel_pmu_hw_config,
1664	.schedule_events	= x86_schedule_events,
1665	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
1666	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
1667	.event_map		= intel_pmu_event_map,
1668	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
1669	.apic			= 1,
1670	/*
1671	 * Intel PMCs cannot be accessed sanely above 32 bit width,
1672	 * so we install an artificial 1<<31 period regardless of
1673	 * the generic event period:
1674	 */
1675	.max_period		= (1ULL << 31) - 1,
1676	.get_event_constraints	= intel_get_event_constraints,
1677	.put_event_constraints	= intel_put_event_constraints,
1678	.pebs_aliases		= intel_pebs_aliases_core2,
1679
1680	.format_attrs		= intel_arch3_formats_attr,
1681
1682	.cpu_prepare		= intel_pmu_cpu_prepare,
1683	.cpu_starting		= intel_pmu_cpu_starting,
1684	.cpu_dying		= intel_pmu_cpu_dying,
1685	.guest_get_msrs		= intel_guest_get_msrs,
1686	.flush_branch_stack	= intel_pmu_flush_branch_stack,
1687};
1688
1689static __init void intel_clovertown_quirk(void)
1690{
1691	/*
1692	 * PEBS is unreliable due to:
1693	 *
1694	 *   AJ67  - PEBS may experience CPL leaks
1695	 *   AJ68  - PEBS PMI may be delayed by one event
1696	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
1697	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
1698	 *
1699	 * AJ67 could be worked around by restricting the OS/USR flags.
1700	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
1701	 *
1702	 * AJ106 could possibly be worked around by not allowing LBR
1703	 *       usage from PEBS, including the fixup.
1704	 * AJ68  could possibly be worked around by always programming
1705	 *	 a pebs_event_reset[0] value and coping with the lost events.
1706	 *
1707	 * But taken together it might just make sense to not enable PEBS on
1708	 * these chips.
1709	 */
1710	printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
1711	x86_pmu.pebs = 0;
1712	x86_pmu.pebs_constraints = NULL;
1713}
1714
1715static __init void intel_sandybridge_quirk(void)
1716{
1717	printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
1718	x86_pmu.pebs = 0;
1719	x86_pmu.pebs_constraints = NULL;
1720}
1721
1722static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
1723	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
1724	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
1725	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
1726	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
1727	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
1728	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
1729	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1730};
1731
1732static __init void intel_arch_events_quirk(void)
1733{
1734	int bit;
1735
1736	/* disable event that reported as not presend by cpuid */
1737	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
1738		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1739		printk(KERN_WARNING "CPUID marked event: \'%s\' unavailable\n",
1740				intel_arch_events_map[bit].name);
1741	}
1742}
1743
1744static __init void intel_nehalem_quirk(void)
1745{
1746	union cpuid10_ebx ebx;
1747
1748	ebx.full = x86_pmu.events_maskl;
1749	if (ebx.split.no_branch_misses_retired) {
1750		/*
1751		 * Erratum AAJ80 detected, we work it around by using
1752		 * the BR_MISP_EXEC.ANY event. This will over-count
1753		 * branch-misses, but it's still much better than the
1754		 * architectural event which is often completely bogus:
1755		 */
1756		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
1757		ebx.split.no_branch_misses_retired = 0;
1758		x86_pmu.events_maskl = ebx.full;
1759		printk(KERN_INFO "CPU erratum AAJ80 worked around\n");
1760	}
1761}
1762
1763__init int intel_pmu_init(void)
1764{
1765	union cpuid10_edx edx;
1766	union cpuid10_eax eax;
1767	union cpuid10_ebx ebx;
1768	unsigned int unused;
1769	int version;
1770
1771	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1772		switch (boot_cpu_data.x86) {
1773		case 0x6:
1774			return p6_pmu_init();
1775		case 0xf:
1776			return p4_pmu_init();
1777		}
1778		return -ENODEV;
1779	}
1780
1781	/*
1782	 * Check whether the Architectural PerfMon supports
1783	 * Branch Misses Retired hw_event or not.
1784	 */
1785	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
1786	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1787		return -ENODEV;
1788
1789	version = eax.split.version_id;
1790	if (version < 2)
1791		x86_pmu = core_pmu;
1792	else
1793		x86_pmu = intel_pmu;
1794
1795	x86_pmu.version			= version;
1796	x86_pmu.num_counters		= eax.split.num_counters;
1797	x86_pmu.cntval_bits		= eax.split.bit_width;
1798	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
1799
1800	x86_pmu.events_maskl		= ebx.full;
1801	x86_pmu.events_mask_len		= eax.split.mask_length;
1802
1803	/*
1804	 * Quirk: v2 perfmon does not report fixed-purpose events, so
1805	 * assume at least 3 events:
1806	 */
1807	if (version > 1)
1808		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1809
1810	/*
1811	 * v2 and above have a perf capabilities MSR
1812	 */
1813	if (version > 1) {
1814		u64 capabilities;
1815
1816		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
1817		x86_pmu.intel_cap.capabilities = capabilities;
1818	}
1819
1820	intel_ds_init();
1821
1822	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
1823
1824	/*
1825	 * Install the hw-cache-events table:
1826	 */
1827	switch (boot_cpu_data.x86_model) {
1828	case 14: /* 65 nm core solo/duo, "Yonah" */
1829		pr_cont("Core events, ");
1830		break;
1831
1832	case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1833		x86_add_quirk(intel_clovertown_quirk);
1834	case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1835	case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1836	case 29: /* six-core 45 nm xeon "Dunnington" */
1837		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1838		       sizeof(hw_cache_event_ids));
1839
1840		intel_pmu_lbr_init_core();
1841
1842		x86_pmu.event_constraints = intel_core2_event_constraints;
1843		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1844		pr_cont("Core2 events, ");
1845		break;
1846
1847	case 26: /* 45 nm nehalem, "Bloomfield" */
1848	case 30: /* 45 nm nehalem, "Lynnfield" */
1849	case 46: /* 45 nm nehalem-ex, "Beckton" */
1850		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1851		       sizeof(hw_cache_event_ids));
1852		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1853		       sizeof(hw_cache_extra_regs));
1854
1855		intel_pmu_lbr_init_nhm();
1856
1857		x86_pmu.event_constraints = intel_nehalem_event_constraints;
1858		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1859		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1860		x86_pmu.extra_regs = intel_nehalem_extra_regs;
1861
1862		/* UOPS_ISSUED.STALLED_CYCLES */
1863		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1864			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1865		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1866		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1867			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1868
1869		x86_add_quirk(intel_nehalem_quirk);
1870
1871		pr_cont("Nehalem events, ");
1872		break;
1873
1874	case 28: /* Atom */
1875		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1876		       sizeof(hw_cache_event_ids));
1877
1878		intel_pmu_lbr_init_atom();
1879
1880		x86_pmu.event_constraints = intel_gen_event_constraints;
1881		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1882		pr_cont("Atom events, ");
1883		break;
1884
1885	case 37: /* 32 nm nehalem, "Clarkdale" */
1886	case 44: /* 32 nm nehalem, "Gulftown" */
1887	case 47: /* 32 nm Xeon E7 */
1888		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
1889		       sizeof(hw_cache_event_ids));
1890		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
1891		       sizeof(hw_cache_extra_regs));
1892
1893		intel_pmu_lbr_init_nhm();
1894
1895		x86_pmu.event_constraints = intel_westmere_event_constraints;
1896		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1897		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1898		x86_pmu.extra_regs = intel_westmere_extra_regs;
1899		x86_pmu.er_flags |= ERF_HAS_RSP_1;
1900
1901		/* UOPS_ISSUED.STALLED_CYCLES */
1902		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1903			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1904		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1905		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1906			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1907
1908		pr_cont("Westmere events, ");
1909		break;
1910
1911	case 42: /* SandyBridge */
1912	case 45: /* SandyBridge, "Romely-EP" */
1913		x86_add_quirk(intel_sandybridge_quirk);
1914	case 58: /* IvyBridge */
1915		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
1916		       sizeof(hw_cache_event_ids));
1917
1918		intel_pmu_lbr_init_snb();
1919
1920		x86_pmu.event_constraints = intel_snb_event_constraints;
1921		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1922		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
1923		x86_pmu.extra_regs = intel_snb_extra_regs;
1924		/* all extra regs are per-cpu when HT is on */
1925		x86_pmu.er_flags |= ERF_HAS_RSP_1;
1926		x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1927
1928		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1929		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
1930			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1931		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1932		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
1933			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
1934
1935		pr_cont("SandyBridge events, ");
1936		break;
1937
1938	default:
1939		switch (x86_pmu.version) {
1940		case 1:
1941			x86_pmu.event_constraints = intel_v1_event_constraints;
1942			pr_cont("generic architected perfmon v1, ");
1943			break;
1944		default:
1945			/*
1946			 * default constraints for v2 and up
1947			 */
1948			x86_pmu.event_constraints = intel_gen_event_constraints;
1949			pr_cont("generic architected perfmon, ");
1950			break;
1951		}
1952	}
1953
1954	return 0;
1955}