Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/kernel.h>
  3#include <linux/pgtable.h>
  4
  5#include <linux/string.h>
  6#include <linux/bitops.h>
  7#include <linux/smp.h>
  8#include <linux/sched.h>
  9#include <linux/sched/clock.h>
 10#include <linux/thread_info.h>
 11#include <linux/init.h>
 12#include <linux/uaccess.h>
 13
 14#include <asm/cpufeature.h>
 
 15#include <asm/msr.h>
 16#include <asm/bugs.h>
 17#include <asm/cpu.h>
 18#include <asm/intel-family.h>
 19#include <asm/microcode.h>
 20#include <asm/hwcap2.h>
 21#include <asm/elf.h>
 22#include <asm/cpu_device_id.h>
 23#include <asm/resctrl.h>
 24#include <asm/numa.h>
 25#include <asm/thermal.h>
 26
 27#ifdef CONFIG_X86_64
 28#include <linux/topology.h>
 
 29#endif
 30
 31#include "cpu.h"
 32
 33#ifdef CONFIG_X86_LOCAL_APIC
 34#include <asm/mpspec.h>
 35#include <asm/apic.h>
 36#endif
 37
 38/*
 39 * Processors which have self-snooping capability can handle conflicting
 40 * memory type across CPUs by snooping its own cache. However, there exists
 41 * CPU models in which having conflicting memory types still leads to
 42 * unpredictable behavior, machine check errors, or hangs. Clear this
 43 * feature to prevent its use on machines with known erratas.
 44 */
 45static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c)
 46{
 47	switch (c->x86_vfm) {
 48	case INTEL_CORE_YONAH:
 49	case INTEL_CORE2_MEROM:
 50	case INTEL_CORE2_MEROM_L:
 51	case INTEL_CORE2_PENRYN:
 52	case INTEL_CORE2_DUNNINGTON:
 53	case INTEL_NEHALEM:
 54	case INTEL_NEHALEM_G:
 55	case INTEL_NEHALEM_EP:
 56	case INTEL_NEHALEM_EX:
 57	case INTEL_WESTMERE:
 58	case INTEL_WESTMERE_EP:
 59	case INTEL_SANDYBRIDGE:
 60		setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP);
 61	}
 62}
 63
 64static bool ring3mwait_disabled __read_mostly;
 65
 66static int __init ring3mwait_disable(char *__unused)
 67{
 68	ring3mwait_disabled = true;
 69	return 1;
 70}
 71__setup("ring3mwait=disable", ring3mwait_disable);
 72
 73static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
 74{
 75	/*
 76	 * Ring 3 MONITOR/MWAIT feature cannot be detected without
 77	 * cpu model and family comparison.
 78	 */
 79	if (c->x86 != 6)
 80		return;
 81	switch (c->x86_vfm) {
 82	case INTEL_XEON_PHI_KNL:
 83	case INTEL_XEON_PHI_KNM:
 84		break;
 85	default:
 86		return;
 87	}
 88
 89	if (ring3mwait_disabled)
 90		return;
 91
 92	set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
 93	this_cpu_or(msr_misc_features_shadow,
 94		    1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT);
 95
 96	if (c == &boot_cpu_data)
 97		ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 98}
 99
100/*
101 * Early microcode releases for the Spectre v2 mitigation were broken.
102 * Information taken from;
103 * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf
104 * - https://kb.vmware.com/s/article/52345
105 * - Microcode revisions observed in the wild
106 * - Release note from 20180108 microcode release
107 */
108struct sku_microcode {
109	u32 vfm;
110	u8 stepping;
111	u32 microcode;
112};
113static const struct sku_microcode spectre_bad_microcodes[] = {
114	{ INTEL_KABYLAKE,	0x0B,	0x80 },
115	{ INTEL_KABYLAKE,	0x0A,	0x80 },
116	{ INTEL_KABYLAKE,	0x09,	0x80 },
117	{ INTEL_KABYLAKE_L,	0x0A,	0x80 },
118	{ INTEL_KABYLAKE_L,	0x09,	0x80 },
119	{ INTEL_SKYLAKE_X,	0x03,	0x0100013e },
120	{ INTEL_SKYLAKE_X,	0x04,	0x0200003c },
121	{ INTEL_BROADWELL,	0x04,	0x28 },
122	{ INTEL_BROADWELL_G,	0x01,	0x1b },
123	{ INTEL_BROADWELL_D,	0x02,	0x14 },
124	{ INTEL_BROADWELL_D,	0x03,	0x07000011 },
125	{ INTEL_BROADWELL_X,	0x01,	0x0b000025 },
126	{ INTEL_HASWELL_L,	0x01,	0x21 },
127	{ INTEL_HASWELL_G,	0x01,	0x18 },
128	{ INTEL_HASWELL,	0x03,	0x23 },
129	{ INTEL_HASWELL_X,	0x02,	0x3b },
130	{ INTEL_HASWELL_X,	0x04,	0x10 },
131	{ INTEL_IVYBRIDGE_X,	0x04,	0x42a },
132	/* Observed in the wild */
133	{ INTEL_SANDYBRIDGE_X,	0x06,	0x61b },
134	{ INTEL_SANDYBRIDGE_X,	0x07,	0x712 },
135};
136
137static bool bad_spectre_microcode(struct cpuinfo_x86 *c)
138{
139	int i;
140
141	/*
142	 * We know that the hypervisor lie to us on the microcode version so
143	 * we may as well hope that it is running the correct version.
144	 */
145	if (cpu_has(c, X86_FEATURE_HYPERVISOR))
146		return false;
147
148	for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) {
149		if (c->x86_vfm == spectre_bad_microcodes[i].vfm &&
150		    c->x86_stepping == spectre_bad_microcodes[i].stepping)
151			return (c->microcode <= spectre_bad_microcodes[i].microcode);
152	}
153	return false;
154}
155
156#define MSR_IA32_TME_ACTIVATE		0x982
157
158/* Helpers to access TME_ACTIVATE MSR */
159#define TME_ACTIVATE_LOCKED(x)		(x & 0x1)
160#define TME_ACTIVATE_ENABLED(x)		(x & 0x2)
161
162#define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */
163
164static void detect_tme_early(struct cpuinfo_x86 *c)
165{
166	u64 tme_activate;
167	int keyid_bits;
168
169	rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate);
 
 
170
171	if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) {
172		pr_info_once("x86/tme: not enabled by BIOS\n");
173		clear_cpu_cap(c, X86_FEATURE_TME);
174		return;
 
 
175	}
176	pr_info_once("x86/tme: enabled by BIOS\n");
177	keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate);
178	if (!keyid_bits)
179		return;
180
181	/*
182	 * KeyID bits are set by BIOS and can be present regardless
183	 * of whether the kernel is using them. They effectively lower
184	 * the number of physical address bits.
185	 *
186	 * Update cpuinfo_x86::x86_phys_bits accordingly.
187	 */
188	c->x86_phys_bits -= keyid_bits;
189	pr_info_once("x86/mktme: BIOS enabled: x86_phys_bits reduced by %d\n",
190		     keyid_bits);
191}
192
193void intel_unlock_cpuid_leafs(struct cpuinfo_x86 *c)
194{
195	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
196		return;
197
198	if (c->x86 < 6 || (c->x86 == 6 && c->x86_model < 0xd))
199		return;
200
201	/*
202	 * The BIOS can have limited CPUID to leaf 2, which breaks feature
203	 * enumeration. Unlock it and update the maximum leaf info.
204	 */
205	if (msr_clear_bit(MSR_IA32_MISC_ENABLE, MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0)
206		c->cpuid_level = cpuid_eax(0);
207}
208
209static void early_init_intel(struct cpuinfo_x86 *c)
210{
211	u64 misc_enable;
212
213	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
214		(c->x86 == 0x6 && c->x86_model >= 0x0e))
215		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
216
217	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
218		c->microcode = intel_get_microcode_revision();
219
220	/* Now if any of them are set, check the blacklist and clear the lot */
221	if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) ||
222	     cpu_has(c, X86_FEATURE_INTEL_STIBP) ||
223	     cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) ||
224	     cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) {
225		pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n");
226		setup_clear_cpu_cap(X86_FEATURE_IBRS);
227		setup_clear_cpu_cap(X86_FEATURE_IBPB);
228		setup_clear_cpu_cap(X86_FEATURE_STIBP);
229		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL);
230		setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL);
231		setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP);
232		setup_clear_cpu_cap(X86_FEATURE_SSBD);
233		setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD);
234	}
235
236	/*
237	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
238	 *
239	 * A race condition between speculative fetches and invalidating
240	 * a large page.  This is worked around in microcode, but we
241	 * need the microcode to have already been loaded... so if it is
242	 * not, recommend a BIOS update and disable large pages.
243	 */
244	if (c->x86_vfm == INTEL_ATOM_BONNELL && c->x86_stepping <= 2 &&
245	    c->microcode < 0x20e) {
246		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
247		clear_cpu_cap(c, X86_FEATURE_PSE);
248	}
249
250#ifdef CONFIG_X86_64
251	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
252#else
253	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
254	if (c->x86 == 15 && c->x86_cache_alignment == 64)
255		c->x86_cache_alignment = 128;
256#endif
257
258	/* CPUID workaround for 0F33/0F34 CPU */
259	if (c->x86 == 0xF && c->x86_model == 0x3
260	    && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4))
261		c->x86_phys_bits = 36;
262
263	/*
264	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
265	 * with P/T states and does not stop in deep C-states.
266	 *
267	 * It is also reliable across cores and sockets. (but not across
268	 * cabinets - we turn it off in that case explicitly.)
269	 */
270	if (c->x86_power & (1 << 8)) {
271		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
272		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
273	}
274
275	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
276	switch (c->x86_vfm) {
277	case INTEL_ATOM_SALTWELL_MID:
278	case INTEL_ATOM_SALTWELL_TABLET:
279	case INTEL_ATOM_SILVERMONT_MID:
280	case INTEL_ATOM_AIRMONT_NP:
281		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
282		break;
283	}
284
285	/*
286	 * PAT is broken on early family 6 CPUs, the last of which
287	 * is "Yonah" where the erratum is named "AN7":
288	 *
289	 * 	Page with PAT (Page Attribute Table) Set to USWC
290	 * 	(Uncacheable Speculative Write Combine) While
291	 * 	Associated MTRR (Memory Type Range Register) Is UC
292	 * 	(Uncacheable) May Consolidate to UC
293	 *
294	 * Disable PAT and fall back to MTRR on these CPUs.
295	 */
296	if (c->x86_vfm >= INTEL_PENTIUM_PRO &&
297	    c->x86_vfm <= INTEL_CORE_YONAH)
298		clear_cpu_cap(c, X86_FEATURE_PAT);
299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300	/*
301	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
302	 * clear the fast string and enhanced fast string CPU capabilities.
303	 */
304	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
305		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
306		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
307			pr_info("Disabled fast string operations\n");
308			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
309			setup_clear_cpu_cap(X86_FEATURE_ERMS);
310		}
311	}
312
313	/*
314	 * Intel Quark Core DevMan_001.pdf section 6.4.11
315	 * "The operating system also is required to invalidate (i.e., flush)
316	 *  the TLB when any changes are made to any of the page table entries.
317	 *  The operating system must reload CR3 to cause the TLB to be flushed"
318	 *
319	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
320	 * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE
321	 * to be modified.
322	 */
323	if (c->x86_vfm == INTEL_QUARK_X1000) {
324		pr_info("Disabling PGE capability bit\n");
325		setup_clear_cpu_cap(X86_FEATURE_PGE);
326	}
327
328	check_memory_type_self_snoop_errata(c);
329
330	/*
331	 * Adjust the number of physical bits early because it affects the
332	 * valid bits of the MTRR mask registers.
333	 */
334	if (cpu_has(c, X86_FEATURE_TME))
335		detect_tme_early(c);
336}
337
338static void bsp_init_intel(struct cpuinfo_x86 *c)
339{
340	resctrl_cpu_detect(c);
341}
342
343#ifdef CONFIG_X86_32
344/*
345 *	Early probe support logic for ppro memory erratum #50
346 *
347 *	This is called before we do cpu ident work
348 */
349
350int ppro_with_ram_bug(void)
351{
352	/* Uses data from early_cpu_detect now */
353	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
354	    boot_cpu_data.x86 == 6 &&
355	    boot_cpu_data.x86_model == 1 &&
356	    boot_cpu_data.x86_stepping < 8) {
357		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
358		return 1;
359	}
360	return 0;
361}
362
363static void intel_smp_check(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364{
365	/* calling is from identify_secondary_cpu() ? */
366	if (!c->cpu_index)
367		return;
368
369	/*
370	 * Mask B, Pentium, but not Pentium MMX
371	 */
372	if (c->x86 == 5 &&
373	    c->x86_stepping >= 1 && c->x86_stepping <= 4 &&
374	    c->x86_model <= 3) {
375		/*
376		 * Remember we have B step Pentia with bugs
377		 */
378		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
379				    "with B stepping processors.\n");
380	}
381}
382
383static int forcepae;
384static int __init forcepae_setup(char *__unused)
385{
386	forcepae = 1;
387	return 1;
388}
389__setup("forcepae", forcepae_setup);
390
391static void intel_workarounds(struct cpuinfo_x86 *c)
392{
393#ifdef CONFIG_X86_F00F_BUG
394	/*
395	 * All models of Pentium and Pentium with MMX technology CPUs
396	 * have the F0 0F bug, which lets nonprivileged users lock up the
397	 * system. Announce that the fault handler will be checking for it.
398	 * The Quark is also family 5, but does not have the same bug.
399	 */
400	clear_cpu_bug(c, X86_BUG_F00F);
401	if (c->x86 == 5 && c->x86_model < 9) {
402		static int f00f_workaround_enabled;
403
404		set_cpu_bug(c, X86_BUG_F00F);
405		if (!f00f_workaround_enabled) {
406			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
 
407			f00f_workaround_enabled = 1;
408		}
409	}
410#endif
411
412	/*
413	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
414	 * model 3 mask 3
415	 */
416	if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633)
417		clear_cpu_cap(c, X86_FEATURE_SEP);
418
419	/*
420	 * PAE CPUID issue: many Pentium M report no PAE but may have a
421	 * functionally usable PAE implementation.
422	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
423	 */
424	if (forcepae) {
425		pr_warn("PAE forced!\n");
426		set_cpu_cap(c, X86_FEATURE_PAE);
427		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
428	}
429
430	/*
431	 * P4 Xeon erratum 037 workaround.
432	 * Hardware prefetcher may cause stale data to be loaded into the cache.
433	 */
434	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) {
435		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
436				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
437			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
438			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
 
 
439		}
440	}
441
442	/*
443	 * See if we have a good local APIC by checking for buggy Pentia,
444	 * i.e. all B steppings and the C2 stepping of P54C when using their
445	 * integrated APIC (see 11AP erratum in "Pentium Processor
446	 * Specification Update").
447	 */
448	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
449	    (c->x86_stepping < 0x6 || c->x86_stepping == 0xb))
450		set_cpu_bug(c, X86_BUG_11AP);
451
452
453#ifdef CONFIG_X86_INTEL_USERCOPY
454	/*
455	 * Set up the preferred alignment for movsl bulk memory moves
456	 */
457	switch (c->x86) {
458	case 4:		/* 486: untested */
459		break;
460	case 5:		/* Old Pentia: untested */
461		break;
462	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
463		movsl_mask.mask = 7;
464		break;
465	case 15:	/* P4 is OK down to 8-byte alignment */
466		movsl_mask.mask = 7;
467		break;
468	}
469#endif
470
 
 
 
 
471	intel_smp_check(c);
472}
473#else
474static void intel_workarounds(struct cpuinfo_x86 *c)
475{
476}
477#endif
478
479static void srat_detect_node(struct cpuinfo_x86 *c)
480{
481#ifdef CONFIG_NUMA
482	unsigned node;
483	int cpu = smp_processor_id();
484
485	/* Don't do the funky fallback heuristics the AMD version employs
486	   for now. */
487	node = numa_cpu_node(cpu);
488	if (node == NUMA_NO_NODE || !node_online(node)) {
489		/* reuse the value from init_cpu_to_node() */
490		node = cpu_to_node(cpu);
491	}
492	numa_set_node(cpu, node);
493#endif
494}
495
496static void init_cpuid_fault(struct cpuinfo_x86 *c)
 
 
 
497{
498	u64 msr;
499
500	if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) {
501		if (msr & MSR_PLATFORM_INFO_CPUID_FAULT)
502			set_cpu_cap(c, X86_FEATURE_CPUID_FAULT);
503	}
 
 
 
 
 
504}
505
506static void init_intel_misc_features(struct cpuinfo_x86 *c)
507{
508	u64 msr;
509
510	if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr))
511		return;
512
513	/* Clear all MISC features */
514	this_cpu_write(msr_misc_features_shadow, 0);
515
516	/* Check features and update capabilities and shadow control bits */
517	init_cpuid_fault(c);
518	probe_xeon_phi_r3mwait(c);
519
520	msr = this_cpu_read(msr_misc_features_shadow);
521	wrmsrl(MSR_MISC_FEATURES_ENABLES, msr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522}
523
524static void init_intel(struct cpuinfo_x86 *c)
525{
 
 
526	early_init_intel(c);
527
528	intel_workarounds(c);
529
530	init_intel_cacheinfo(c);
 
 
 
 
 
531
 
532	if (c->cpuid_level > 9) {
533		unsigned eax = cpuid_eax(10);
534		/* Check for version and the number of counters */
535		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
536			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
537	}
538
539	if (cpu_has(c, X86_FEATURE_XMM2))
540		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
541
542	if (boot_cpu_has(X86_FEATURE_DS)) {
543		unsigned int l1, l2;
544
545		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
546		if (!(l1 & MSR_IA32_MISC_ENABLE_BTS_UNAVAIL))
547			set_cpu_cap(c, X86_FEATURE_BTS);
548		if (!(l1 & MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL))
549			set_cpu_cap(c, X86_FEATURE_PEBS);
550	}
551
552	if (boot_cpu_has(X86_FEATURE_CLFLUSH) &&
553	    (c->x86_vfm == INTEL_CORE2_DUNNINGTON ||
554	     c->x86_vfm == INTEL_NEHALEM_EX ||
555	     c->x86_vfm == INTEL_WESTMERE_EX))
556		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
557
558	if (boot_cpu_has(X86_FEATURE_MWAIT) &&
559	    (c->x86_vfm == INTEL_ATOM_GOLDMONT ||
560	     c->x86_vfm == INTEL_LUNARLAKE_M))
561		set_cpu_bug(c, X86_BUG_MONITOR);
562
563#ifdef CONFIG_X86_64
564	if (c->x86 == 15)
565		c->x86_cache_alignment = c->x86_clflush_size * 2;
566	if (c->x86 == 6)
567		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
568#else
569	/*
570	 * Names for the Pentium II/Celeron processors
571	 * detectable only by also checking the cache size.
572	 * Dixon is NOT a Celeron.
573	 */
574	if (c->x86 == 6) {
575		unsigned int l2 = c->x86_cache_size;
576		char *p = NULL;
577
578		switch (c->x86_model) {
579		case 5:
580			if (l2 == 0)
581				p = "Celeron (Covington)";
582			else if (l2 == 256)
583				p = "Mobile Pentium II (Dixon)";
584			break;
585
586		case 6:
587			if (l2 == 128)
588				p = "Celeron (Mendocino)";
589			else if (c->x86_stepping == 0 || c->x86_stepping == 5)
590				p = "Celeron-A";
591			break;
592
593		case 8:
594			if (l2 == 128)
595				p = "Celeron (Coppermine)";
596			break;
597		}
598
599		if (p)
600			strcpy(c->x86_model_id, p);
601	}
602
603	if (c->x86 == 15)
604		set_cpu_cap(c, X86_FEATURE_P4);
605	if (c->x86 == 6)
606		set_cpu_cap(c, X86_FEATURE_P3);
607#endif
608
 
 
 
 
 
 
 
 
 
 
 
609	/* Work around errata */
610	srat_detect_node(c);
611
612	init_ia32_feat_ctl(c);
613
614	init_intel_misc_features(c);
615
616	split_lock_init();
617
618	intel_init_thermal(c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619}
620
621#ifdef CONFIG_X86_32
622static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
623{
624	/*
625	 * Intel PIII Tualatin. This comes in two flavours.
626	 * One has 256kb of cache, the other 512. We have no way
627	 * to determine which, so we use a boottime override
628	 * for the 512kb model, and assume 256 otherwise.
629	 */
630	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
631		size = 256;
632
633	/*
634	 * Intel Quark SoC X1000 contains a 4-way set associative
635	 * 16K cache with a 16 byte cache line and 256 lines per tag
636	 */
637	if ((c->x86 == 5) && (c->x86_model == 9))
638		size = 16;
639	return size;
640}
641#endif
642
643#define TLB_INST_4K		0x01
644#define TLB_INST_4M		0x02
645#define TLB_INST_2M_4M		0x03
646
647#define TLB_INST_ALL		0x05
648#define TLB_INST_1G		0x06
649
650#define TLB_DATA_4K		0x11
651#define TLB_DATA_4M		0x12
652#define TLB_DATA_2M_4M		0x13
653#define TLB_DATA_4K_4M		0x14
654
655#define TLB_DATA_1G		0x16
656#define TLB_DATA_1G_2M_4M	0x17
657
658#define TLB_DATA0_4K		0x21
659#define TLB_DATA0_4M		0x22
660#define TLB_DATA0_2M_4M		0x23
661
662#define STLB_4K			0x41
663#define STLB_4K_2M		0x42
664
665/*
666 * All of leaf 0x2's one-byte TLB descriptors implies the same number of
667 * entries for their respective TLB types.  The 0x63 descriptor is an
668 * exception: it implies 4 dTLB entries for 1GB pages 32 dTLB entries
669 * for 2MB or 4MB pages.  Encode descriptor 0x63 dTLB entry count for
670 * 2MB/4MB pages here, as its count for dTLB 1GB pages is already at the
671 * intel_tlb_table[] mapping.
672 */
673#define TLB_0x63_2M_4M_ENTRIES	32
674
675static const struct _tlb_table intel_tlb_table[] = {
676	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
677	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
678	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
679	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
680	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
681	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
682	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" },
683	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
684	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
685	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
686	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
687	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
688	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
689	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
690	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
691	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
692	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
693	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
694	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
695	{ 0x63, TLB_DATA_1G_2M_4M,	4,	" TLB_DATA 1 GByte pages, 4-way set associative"
696						" (plus 32 entries TLB_DATA 2 MByte or 4 MByte pages, not encoded here)" },
697	{ 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" },
698	{ 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" },
699	{ 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" },
700	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
701	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
702	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
703	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
704	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
705	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
706	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
707	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
708	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
709	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
710	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
711	{ 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" },
712	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
713	{ 0x00, 0, 0 }
714};
715
716static void intel_tlb_lookup(const unsigned char desc)
717{
718	unsigned char k;
719	if (desc == 0)
720		return;
721
722	/* look up this descriptor in the table */
723	for (k = 0; intel_tlb_table[k].descriptor != desc &&
724	     intel_tlb_table[k].descriptor != 0; k++)
725		;
726
727	if (intel_tlb_table[k].tlb_type == 0)
728		return;
729
730	switch (intel_tlb_table[k].tlb_type) {
731	case STLB_4K:
732		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
733			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
734		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
735			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
736		break;
737	case STLB_4K_2M:
738		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
739			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
740		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
741			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
742		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
743			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
744		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
745			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
746		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
747			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
748		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
749			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
750		break;
751	case TLB_INST_ALL:
752		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
753			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
754		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
755			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
756		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
757			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
758		break;
759	case TLB_INST_4K:
760		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
761			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
762		break;
763	case TLB_INST_4M:
764		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
765			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
766		break;
767	case TLB_INST_2M_4M:
768		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
769			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
770		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
771			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
772		break;
773	case TLB_DATA_4K:
774	case TLB_DATA0_4K:
775		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
776			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
777		break;
778	case TLB_DATA_4M:
779	case TLB_DATA0_4M:
780		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
781			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
782		break;
783	case TLB_DATA_2M_4M:
784	case TLB_DATA0_2M_4M:
785		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
786			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
787		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
788			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
789		break;
790	case TLB_DATA_4K_4M:
791		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
792			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
793		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
794			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
795		break;
796	case TLB_DATA_1G_2M_4M:
797		if (tlb_lld_2m[ENTRIES] < TLB_0x63_2M_4M_ENTRIES)
798			tlb_lld_2m[ENTRIES] = TLB_0x63_2M_4M_ENTRIES;
799		if (tlb_lld_4m[ENTRIES] < TLB_0x63_2M_4M_ENTRIES)
800			tlb_lld_4m[ENTRIES] = TLB_0x63_2M_4M_ENTRIES;
801		fallthrough;
802	case TLB_DATA_1G:
803		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
804			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
805		break;
806	}
807}
808
809static void intel_detect_tlb(struct cpuinfo_x86 *c)
810{
811	int i, j, n;
812	unsigned int regs[4];
813	unsigned char *desc = (unsigned char *)regs;
814
815	if (c->cpuid_level < 2)
816		return;
817
818	/* Number of times to iterate */
819	n = cpuid_eax(2) & 0xFF;
820
821	for (i = 0 ; i < n ; i++) {
822		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
823
824		/* If bit 31 is set, this is an unknown format */
825		for (j = 0 ; j < 4 ; j++)
826			if (regs[j] & (1 << 31))
827				regs[j] = 0;
828
829		/* Byte 0 is level count, not a descriptor */
830		for (j = 1 ; j < 16 ; j++)
831			intel_tlb_lookup(desc[j]);
832	}
833}
834
835static const struct cpu_dev intel_cpu_dev = {
836	.c_vendor	= "Intel",
837	.c_ident	= { "GenuineIntel" },
838#ifdef CONFIG_X86_32
839	.legacy_models = {
840		{ .family = 4, .model_names =
841		  {
842			  [0] = "486 DX-25/33",
843			  [1] = "486 DX-50",
844			  [2] = "486 SX",
845			  [3] = "486 DX/2",
846			  [4] = "486 SL",
847			  [5] = "486 SX/2",
848			  [7] = "486 DX/2-WB",
849			  [8] = "486 DX/4",
850			  [9] = "486 DX/4-WB"
851		  }
852		},
853		{ .family = 5, .model_names =
854		  {
855			  [0] = "Pentium 60/66 A-step",
856			  [1] = "Pentium 60/66",
857			  [2] = "Pentium 75 - 200",
858			  [3] = "OverDrive PODP5V83",
859			  [4] = "Pentium MMX",
860			  [7] = "Mobile Pentium 75 - 200",
861			  [8] = "Mobile Pentium MMX",
862			  [9] = "Quark SoC X1000",
863		  }
864		},
865		{ .family = 6, .model_names =
866		  {
867			  [0] = "Pentium Pro A-step",
868			  [1] = "Pentium Pro",
869			  [3] = "Pentium II (Klamath)",
870			  [4] = "Pentium II (Deschutes)",
871			  [5] = "Pentium II (Deschutes)",
872			  [6] = "Mobile Pentium II",
873			  [7] = "Pentium III (Katmai)",
874			  [8] = "Pentium III (Coppermine)",
875			  [10] = "Pentium III (Cascades)",
876			  [11] = "Pentium III (Tualatin)",
877		  }
878		},
879		{ .family = 15, .model_names =
880		  {
881			  [0] = "Pentium 4 (Unknown)",
882			  [1] = "Pentium 4 (Willamette)",
883			  [2] = "Pentium 4 (Northwood)",
884			  [4] = "Pentium 4 (Foster)",
885			  [5] = "Pentium 4 (Foster)",
886		  }
887		},
888	},
889	.legacy_cache_size = intel_size_cache,
890#endif
891	.c_detect_tlb	= intel_detect_tlb,
892	.c_early_init   = early_init_intel,
893	.c_bsp_init	= bsp_init_intel,
894	.c_init		= init_intel,
895	.c_x86_vendor	= X86_VENDOR_INTEL,
896};
897
898cpu_dev_register(intel_cpu_dev);
899
900#define X86_HYBRID_CPU_TYPE_ID_SHIFT	24
901
902/**
903 * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU
904 *
905 * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in
906 * a hybrid processor. If the processor is not hybrid, returns 0.
907 */
908u8 get_this_hybrid_cpu_type(void)
909{
910	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
911		return 0;
912
913	return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT;
914}
915
916/**
917 * get_this_hybrid_cpu_native_id() - Get the native id of this hybrid CPU
918 *
919 * Returns the uarch native ID [23:0] of a CPU in a hybrid processor.
920 * If the processor is not hybrid, returns 0.
921 */
922u32 get_this_hybrid_cpu_native_id(void)
923{
924	if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
925		return 0;
926
927	return cpuid_eax(0x0000001a) &
928	       (BIT_ULL(X86_HYBRID_CPU_TYPE_ID_SHIFT) - 1);
929}
v3.5.6
  1#include <linux/init.h>
  2#include <linux/kernel.h>
 
  3
  4#include <linux/string.h>
  5#include <linux/bitops.h>
  6#include <linux/smp.h>
  7#include <linux/sched.h>
 
  8#include <linux/thread_info.h>
  9#include <linux/module.h>
 10#include <linux/uaccess.h>
 11
 12#include <asm/processor.h>
 13#include <asm/pgtable.h>
 14#include <asm/msr.h>
 15#include <asm/bugs.h>
 16#include <asm/cpu.h>
 
 
 
 
 
 
 
 
 17
 18#ifdef CONFIG_X86_64
 19#include <linux/topology.h>
 20#include <asm/numa_64.h>
 21#endif
 22
 23#include "cpu.h"
 24
 25#ifdef CONFIG_X86_LOCAL_APIC
 26#include <asm/mpspec.h>
 27#include <asm/apic.h>
 28#endif
 29
 30static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31{
 32	u64 misc_enable;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33
 34	/* Unmask CPUID levels if masked: */
 35	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 36		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 37
 38		if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
 39			misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
 40			wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 41			c->cpuid_level = cpuid_eax(0);
 42			get_cpu_cap(c);
 43		}
 44	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45
 46	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 47		(c->x86 == 0x6 && c->x86_model >= 0x0e))
 48		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 49
 50	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
 51		unsigned lower_word;
 52
 53		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
 54		/* Required by the SDM */
 55		sync_core();
 56		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
 
 
 
 
 
 
 
 
 
 
 57	}
 58
 59	/*
 60	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
 61	 *
 62	 * A race condition between speculative fetches and invalidating
 63	 * a large page.  This is worked around in microcode, but we
 64	 * need the microcode to have already been loaded... so if it is
 65	 * not, recommend a BIOS update and disable large pages.
 66	 */
 67	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
 68	    c->microcode < 0x20e) {
 69		printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
 70		clear_cpu_cap(c, X86_FEATURE_PSE);
 71	}
 72
 73#ifdef CONFIG_X86_64
 74	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 75#else
 76	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 77	if (c->x86 == 15 && c->x86_cache_alignment == 64)
 78		c->x86_cache_alignment = 128;
 79#endif
 80
 81	/* CPUID workaround for 0F33/0F34 CPU */
 82	if (c->x86 == 0xF && c->x86_model == 0x3
 83	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
 84		c->x86_phys_bits = 36;
 85
 86	/*
 87	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 88	 * with P/T states and does not stop in deep C-states.
 89	 *
 90	 * It is also reliable across cores and sockets. (but not across
 91	 * cabinets - we turn it off in that case explicitly.)
 92	 */
 93	if (c->x86_power & (1 << 8)) {
 94		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 95		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 96		if (!check_tsc_unstable())
 97			sched_clock_stable = 1;
 
 
 
 
 
 
 
 
 98	}
 99
100	/*
101	 * There is a known erratum on Pentium III and Core Solo
102	 * and Core Duo CPUs.
103	 * " Page with PAT set to WC while associated MTRR is UC
104	 *   may consolidate to UC "
105	 * Because of this erratum, it is better to stick with
106	 * setting WC in MTRR rather than using PAT on these CPUs.
 
107	 *
108	 * Enable PAT WC only on P4, Core 2 or later CPUs.
109	 */
110	if (c->x86 == 6 && c->x86_model < 15)
 
111		clear_cpu_cap(c, X86_FEATURE_PAT);
112
113#ifdef CONFIG_KMEMCHECK
114	/*
115	 * P4s have a "fast strings" feature which causes single-
116	 * stepping REP instructions to only generate a #DB on
117	 * cache-line boundaries.
118	 *
119	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
120	 * (model 2) with the same problem.
121	 */
122	if (c->x86 == 15) {
123		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
124
125		if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
126			printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
127
128			misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
129			wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
130		}
131	}
132#endif
133
134	/*
135	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
136	 * clear the fast string and enhanced fast string CPU capabilities.
137	 */
138	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
139		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
140		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
141			printk(KERN_INFO "Disabled fast string operations\n");
142			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
143			setup_clear_cpu_cap(X86_FEATURE_ERMS);
144		}
145	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146}
147
148#ifdef CONFIG_X86_32
149/*
150 *	Early probe support logic for ppro memory erratum #50
151 *
152 *	This is called before we do cpu ident work
153 */
154
155int __cpuinit ppro_with_ram_bug(void)
156{
157	/* Uses data from early_cpu_detect now */
158	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
159	    boot_cpu_data.x86 == 6 &&
160	    boot_cpu_data.x86_model == 1 &&
161	    boot_cpu_data.x86_mask < 8) {
162		printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
163		return 1;
164	}
165	return 0;
166}
167
168#ifdef CONFIG_X86_F00F_BUG
169static void __cpuinit trap_init_f00f_bug(void)
170{
171	__set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
172
173	/*
174	 * Update the IDT descriptor and reload the IDT so that
175	 * it uses the read-only mapped virtual address.
176	 */
177	idt_descr.address = fix_to_virt(FIX_F00F_IDT);
178	load_idt(&idt_descr);
179}
180#endif
181
182static void __cpuinit intel_smp_check(struct cpuinfo_x86 *c)
183{
184	/* calling is from identify_secondary_cpu() ? */
185	if (!c->cpu_index)
186		return;
187
188	/*
189	 * Mask B, Pentium, but not Pentium MMX
190	 */
191	if (c->x86 == 5 &&
192	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
193	    c->x86_model <= 3) {
194		/*
195		 * Remember we have B step Pentia with bugs
196		 */
197		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
198				    "with B stepping processors.\n");
199	}
200}
201
202static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
 
203{
204	unsigned long lo, hi;
 
 
 
205
 
 
206#ifdef CONFIG_X86_F00F_BUG
207	/*
208	 * All current models of Pentium and Pentium with MMX technology CPUs
209	 * have the F0 0F bug, which lets nonprivileged users lock up the
210	 * system.
211	 * Note that the workaround only should be initialized once...
212	 */
213	c->f00f_bug = 0;
214	if (!paravirt_enabled() && c->x86 == 5) {
215		static int f00f_workaround_enabled;
216
217		c->f00f_bug = 1;
218		if (!f00f_workaround_enabled) {
219			trap_init_f00f_bug();
220			printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
221			f00f_workaround_enabled = 1;
222		}
223	}
224#endif
225
226	/*
227	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
228	 * model 3 mask 3
229	 */
230	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
231		clear_cpu_cap(c, X86_FEATURE_SEP);
232
233	/*
234	 * P4 Xeon errata 037 workaround.
 
 
 
 
 
 
 
 
 
 
 
235	 * Hardware prefetcher may cause stale data to be loaded into the cache.
236	 */
237	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
238		rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
239		if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
240			printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
241			printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
242			lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
243			wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
244		}
245	}
246
247	/*
248	 * See if we have a good local APIC by checking for buggy Pentia,
249	 * i.e. all B steppings and the C2 stepping of P54C when using their
250	 * integrated APIC (see 11AP erratum in "Pentium Processor
251	 * Specification Update").
252	 */
253	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
254	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
255		set_cpu_cap(c, X86_FEATURE_11AP);
256
257
258#ifdef CONFIG_X86_INTEL_USERCOPY
259	/*
260	 * Set up the preferred alignment for movsl bulk memory moves
261	 */
262	switch (c->x86) {
263	case 4:		/* 486: untested */
264		break;
265	case 5:		/* Old Pentia: untested */
266		break;
267	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
268		movsl_mask.mask = 7;
269		break;
270	case 15:	/* P4 is OK down to 8-byte alignment */
271		movsl_mask.mask = 7;
272		break;
273	}
274#endif
275
276#ifdef CONFIG_X86_NUMAQ
277	numaq_tsc_disable();
278#endif
279
280	intel_smp_check(c);
281}
282#else
283static void __cpuinit intel_workarounds(struct cpuinfo_x86 *c)
284{
285}
286#endif
287
288static void __cpuinit srat_detect_node(struct cpuinfo_x86 *c)
289{
290#ifdef CONFIG_NUMA
291	unsigned node;
292	int cpu = smp_processor_id();
293
294	/* Don't do the funky fallback heuristics the AMD version employs
295	   for now. */
296	node = numa_cpu_node(cpu);
297	if (node == NUMA_NO_NODE || !node_online(node)) {
298		/* reuse the value from init_cpu_to_node() */
299		node = cpu_to_node(cpu);
300	}
301	numa_set_node(cpu, node);
302#endif
303}
304
305/*
306 * find out the number of processor cores on the die
307 */
308static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
309{
310	unsigned int eax, ebx, ecx, edx;
311
312	if (c->cpuid_level < 4)
313		return 1;
314
315	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
316	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
317	if (eax & 0x1f)
318		return (eax >> 26) + 1;
319	else
320		return 1;
321}
322
323static void __cpuinit detect_vmx_virtcap(struct cpuinfo_x86 *c)
324{
325	/* Intel VMX MSR indicated features */
326#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
327#define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
328#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
329#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
330#define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
331#define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
332
333	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
334
335	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
336	clear_cpu_cap(c, X86_FEATURE_VNMI);
337	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
338	clear_cpu_cap(c, X86_FEATURE_EPT);
339	clear_cpu_cap(c, X86_FEATURE_VPID);
340
341	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
342	msr_ctl = vmx_msr_high | vmx_msr_low;
343	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
344		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
345	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
346		set_cpu_cap(c, X86_FEATURE_VNMI);
347	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
348		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
349		      vmx_msr_low, vmx_msr_high);
350		msr_ctl2 = vmx_msr_high | vmx_msr_low;
351		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
352		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
353			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
354		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
355			set_cpu_cap(c, X86_FEATURE_EPT);
356		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
357			set_cpu_cap(c, X86_FEATURE_VPID);
358	}
359}
360
361static void __cpuinit init_intel(struct cpuinfo_x86 *c)
362{
363	unsigned int l2 = 0;
364
365	early_init_intel(c);
366
367	intel_workarounds(c);
368
369	/*
370	 * Detect the extended topology information if available. This
371	 * will reinitialise the initial_apicid which will be used
372	 * in init_intel_cacheinfo()
373	 */
374	detect_extended_topology(c);
375
376	l2 = init_intel_cacheinfo(c);
377	if (c->cpuid_level > 9) {
378		unsigned eax = cpuid_eax(10);
379		/* Check for version and the number of counters */
380		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
381			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
382	}
383
384	if (cpu_has_xmm2)
385		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
386	if (cpu_has_ds) {
387		unsigned int l1;
 
 
388		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
389		if (!(l1 & (1<<11)))
390			set_cpu_cap(c, X86_FEATURE_BTS);
391		if (!(l1 & (1<<12)))
392			set_cpu_cap(c, X86_FEATURE_PEBS);
393	}
394
395	if (c->x86 == 6 && c->x86_model == 29 && cpu_has_clflush)
396		set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
 
 
 
 
 
 
 
 
397
398#ifdef CONFIG_X86_64
399	if (c->x86 == 15)
400		c->x86_cache_alignment = c->x86_clflush_size * 2;
401	if (c->x86 == 6)
402		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
403#else
404	/*
405	 * Names for the Pentium II/Celeron processors
406	 * detectable only by also checking the cache size.
407	 * Dixon is NOT a Celeron.
408	 */
409	if (c->x86 == 6) {
 
410		char *p = NULL;
411
412		switch (c->x86_model) {
413		case 5:
414			if (l2 == 0)
415				p = "Celeron (Covington)";
416			else if (l2 == 256)
417				p = "Mobile Pentium II (Dixon)";
418			break;
419
420		case 6:
421			if (l2 == 128)
422				p = "Celeron (Mendocino)";
423			else if (c->x86_mask == 0 || c->x86_mask == 5)
424				p = "Celeron-A";
425			break;
426
427		case 8:
428			if (l2 == 128)
429				p = "Celeron (Coppermine)";
430			break;
431		}
432
433		if (p)
434			strcpy(c->x86_model_id, p);
435	}
436
437	if (c->x86 == 15)
438		set_cpu_cap(c, X86_FEATURE_P4);
439	if (c->x86 == 6)
440		set_cpu_cap(c, X86_FEATURE_P3);
441#endif
442
443	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
444		/*
445		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
446		 * detection.
447		 */
448		c->x86_max_cores = intel_num_cpu_cores(c);
449#ifdef CONFIG_X86_32
450		detect_ht(c);
451#endif
452	}
453
454	/* Work around errata */
455	srat_detect_node(c);
456
457	if (cpu_has(c, X86_FEATURE_VMX))
458		detect_vmx_virtcap(c);
 
459
460	/*
461	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
462	 * x86_energy_perf_policy(8) is available to change it at run-time
463	 */
464	if (cpu_has(c, X86_FEATURE_EPB)) {
465		u64 epb;
466
467		rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
468		if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
469			printk_once(KERN_WARNING "ENERGY_PERF_BIAS:"
470				" Set to 'normal', was 'performance'\n"
471				"ENERGY_PERF_BIAS: View and update with"
472				" x86_energy_perf_policy(8)\n");
473			epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
474			wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
475		}
476	}
477}
478
479#ifdef CONFIG_X86_32
480static unsigned int __cpuinit intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
481{
482	/*
483	 * Intel PIII Tualatin. This comes in two flavours.
484	 * One has 256kb of cache, the other 512. We have no way
485	 * to determine which, so we use a boottime override
486	 * for the 512kb model, and assume 256 otherwise.
487	 */
488	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
489		size = 256;
 
 
 
 
 
 
 
490	return size;
491}
492#endif
493
494static const struct cpu_dev __cpuinitconst intel_cpu_dev = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495	.c_vendor	= "Intel",
496	.c_ident	= { "GenuineIntel" },
497#ifdef CONFIG_X86_32
498	.c_models = {
499		{ .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
500		  {
501			  [0] = "486 DX-25/33",
502			  [1] = "486 DX-50",
503			  [2] = "486 SX",
504			  [3] = "486 DX/2",
505			  [4] = "486 SL",
506			  [5] = "486 SX/2",
507			  [7] = "486 DX/2-WB",
508			  [8] = "486 DX/4",
509			  [9] = "486 DX/4-WB"
510		  }
511		},
512		{ .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
513		  {
514			  [0] = "Pentium 60/66 A-step",
515			  [1] = "Pentium 60/66",
516			  [2] = "Pentium 75 - 200",
517			  [3] = "OverDrive PODP5V83",
518			  [4] = "Pentium MMX",
519			  [7] = "Mobile Pentium 75 - 200",
520			  [8] = "Mobile Pentium MMX"
 
521		  }
522		},
523		{ .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
524		  {
525			  [0] = "Pentium Pro A-step",
526			  [1] = "Pentium Pro",
527			  [3] = "Pentium II (Klamath)",
528			  [4] = "Pentium II (Deschutes)",
529			  [5] = "Pentium II (Deschutes)",
530			  [6] = "Mobile Pentium II",
531			  [7] = "Pentium III (Katmai)",
532			  [8] = "Pentium III (Coppermine)",
533			  [10] = "Pentium III (Cascades)",
534			  [11] = "Pentium III (Tualatin)",
535		  }
536		},
537		{ .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
538		  {
539			  [0] = "Pentium 4 (Unknown)",
540			  [1] = "Pentium 4 (Willamette)",
541			  [2] = "Pentium 4 (Northwood)",
542			  [4] = "Pentium 4 (Foster)",
543			  [5] = "Pentium 4 (Foster)",
544		  }
545		},
546	},
547	.c_size_cache	= intel_size_cache,
548#endif
 
549	.c_early_init   = early_init_intel,
 
550	.c_init		= init_intel,
551	.c_x86_vendor	= X86_VENDOR_INTEL,
552};
553
554cpu_dev_register(intel_cpu_dev);
555