Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* smp.c: Sparc64 SMP support.
   3 *
   4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/kernel.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/hotplug.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/threads.h>
  14#include <linux/smp.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/delay.h>
  18#include <linux/init.h>
  19#include <linux/spinlock.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/cache.h>
  23#include <linux/jiffies.h>
  24#include <linux/profile.h>
  25#include <linux/memblock.h>
  26#include <linux/vmalloc.h>
  27#include <linux/ftrace.h>
  28#include <linux/cpu.h>
  29#include <linux/slab.h>
  30#include <linux/kgdb.h>
  31
  32#include <asm/head.h>
  33#include <asm/ptrace.h>
  34#include <linux/atomic.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mmu_context.h>
  37#include <asm/cpudata.h>
  38#include <asm/hvtramp.h>
  39#include <asm/io.h>
  40#include <asm/timer.h>
  41#include <asm/setup.h>
  42
  43#include <asm/irq.h>
  44#include <asm/irq_regs.h>
  45#include <asm/page.h>
 
  46#include <asm/oplib.h>
  47#include <linux/uaccess.h>
  48#include <asm/starfire.h>
  49#include <asm/tlb.h>
  50#include <asm/pgalloc.h>
  51#include <asm/sections.h>
  52#include <asm/prom.h>
  53#include <asm/mdesc.h>
  54#include <asm/ldc.h>
  55#include <asm/hypervisor.h>
  56#include <asm/pcr.h>
  57
  58#include "cpumap.h"
  59#include "kernel.h"
 
  60
  61DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  62cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  63	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  64
  65cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  66	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
  67
  68cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
  69	[0 ... NR_CPUS - 1] = CPU_MASK_NONE };
  70
  71EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  72EXPORT_SYMBOL(cpu_core_map);
  73EXPORT_SYMBOL(cpu_core_sib_map);
  74EXPORT_SYMBOL(cpu_core_sib_cache_map);
  75
  76static cpumask_t smp_commenced_mask;
  77
  78static DEFINE_PER_CPU(bool, poke);
  79static bool cpu_poke;
  80
  81void smp_info(struct seq_file *m)
  82{
  83	int i;
  84	
  85	seq_printf(m, "State:\n");
  86	for_each_online_cpu(i)
  87		seq_printf(m, "CPU%d:\t\tonline\n", i);
  88}
  89
  90void smp_bogo(struct seq_file *m)
  91{
  92	int i;
  93	
  94	for_each_online_cpu(i)
  95		seq_printf(m,
  96			   "Cpu%dClkTck\t: %016lx\n",
  97			   i, cpu_data(i).clock_tick);
  98}
  99
 100extern void setup_sparc64_timer(void);
 101
 102static volatile unsigned long callin_flag = 0;
 103
 104void smp_callin(void)
 105{
 106	int cpuid = hard_smp_processor_id();
 107
 108	__local_per_cpu_offset = __per_cpu_offset(cpuid);
 109
 110	if (tlb_type == hypervisor)
 111		sun4v_ktsb_register();
 112
 113	__flush_tlb_all();
 114
 115	setup_sparc64_timer();
 116
 117	if (cheetah_pcache_forced_on)
 118		cheetah_enable_pcache();
 119
 
 
 120	callin_flag = 1;
 121	__asm__ __volatile__("membar #Sync\n\t"
 122			     "flush  %%g6" : : : "memory");
 123
 124	/* Clear this or we will die instantly when we
 125	 * schedule back to this idler...
 126	 */
 127	current_thread_info()->new_child = 0;
 128
 129	/* Attach to the address space of init_task. */
 130	mmgrab(&init_mm);
 131	current->active_mm = &init_mm;
 132
 133	/* inform the notifiers about the new cpu */
 134	notify_cpu_starting(cpuid);
 135
 136	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 137		rmb();
 138
 
 139	set_cpu_online(cpuid, true);
 
 140
 141	local_irq_enable();
 142
 143	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 144}
 145
 146void cpu_panic(void)
 147{
 148	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 149	panic("SMP bolixed\n");
 150}
 151
 152/* This tick register synchronization scheme is taken entirely from
 153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 154 *
 155 * The only change I've made is to rework it so that the master
 156 * initiates the synchonization instead of the slave. -DaveM
 157 */
 158
 159#define MASTER	0
 160#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 161
 162#define NUM_ROUNDS	64	/* magic value */
 163#define NUM_ITERS	5	/* likewise */
 164
 165static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 166static unsigned long go[SLAVE + 1];
 167
 168#define DEBUG_TICK_SYNC	0
 169
 170static inline long get_delta (long *rt, long *master)
 171{
 172	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 173	unsigned long tcenter, t0, t1, tm;
 174	unsigned long i;
 175
 176	for (i = 0; i < NUM_ITERS; i++) {
 177		t0 = tick_ops->get_tick();
 178		go[MASTER] = 1;
 179		membar_safe("#StoreLoad");
 180		while (!(tm = go[SLAVE]))
 181			rmb();
 182		go[SLAVE] = 0;
 183		wmb();
 184		t1 = tick_ops->get_tick();
 185
 186		if (t1 - t0 < best_t1 - best_t0)
 187			best_t0 = t0, best_t1 = t1, best_tm = tm;
 188	}
 189
 190	*rt = best_t1 - best_t0;
 191	*master = best_tm - best_t0;
 192
 193	/* average best_t0 and best_t1 without overflow: */
 194	tcenter = (best_t0/2 + best_t1/2);
 195	if (best_t0 % 2 + best_t1 % 2 == 2)
 196		tcenter++;
 197	return tcenter - best_tm;
 198}
 199
 200void smp_synchronize_tick_client(void)
 201{
 202	long i, delta, adj, adjust_latency = 0, done = 0;
 203	unsigned long flags, rt, master_time_stamp;
 204#if DEBUG_TICK_SYNC
 205	struct {
 206		long rt;	/* roundtrip time */
 207		long master;	/* master's timestamp */
 208		long diff;	/* difference between midpoint and master's timestamp */
 209		long lat;	/* estimate of itc adjustment latency */
 210	} t[NUM_ROUNDS];
 211#endif
 212
 213	go[MASTER] = 1;
 214
 215	while (go[MASTER])
 216		rmb();
 217
 218	local_irq_save(flags);
 219	{
 220		for (i = 0; i < NUM_ROUNDS; i++) {
 221			delta = get_delta(&rt, &master_time_stamp);
 222			if (delta == 0)
 223				done = 1;	/* let's lock on to this... */
 224
 225			if (!done) {
 226				if (i > 0) {
 227					adjust_latency += -delta;
 228					adj = -delta + adjust_latency/4;
 229				} else
 230					adj = -delta;
 231
 232				tick_ops->add_tick(adj);
 233			}
 234#if DEBUG_TICK_SYNC
 235			t[i].rt = rt;
 236			t[i].master = master_time_stamp;
 237			t[i].diff = delta;
 238			t[i].lat = adjust_latency/4;
 239#endif
 240		}
 241	}
 242	local_irq_restore(flags);
 243
 244#if DEBUG_TICK_SYNC
 245	for (i = 0; i < NUM_ROUNDS; i++)
 246		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 247		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 248#endif
 249
 250	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 251	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 252	       smp_processor_id(), delta, rt);
 253}
 254
 255static void smp_start_sync_tick_client(int cpu);
 256
 257static void smp_synchronize_one_tick(int cpu)
 258{
 259	unsigned long flags, i;
 260
 261	go[MASTER] = 0;
 262
 263	smp_start_sync_tick_client(cpu);
 264
 265	/* wait for client to be ready */
 266	while (!go[MASTER])
 267		rmb();
 268
 269	/* now let the client proceed into his loop */
 270	go[MASTER] = 0;
 271	membar_safe("#StoreLoad");
 272
 273	raw_spin_lock_irqsave(&itc_sync_lock, flags);
 274	{
 275		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 276			while (!go[MASTER])
 277				rmb();
 278			go[MASTER] = 0;
 279			wmb();
 280			go[SLAVE] = tick_ops->get_tick();
 281			membar_safe("#StoreLoad");
 282		}
 283	}
 284	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 285}
 286
 287#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 288static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 289				void **descrp)
 
 
 
 
 
 
 
 290{
 291	extern unsigned long sparc64_ttable_tl0;
 292	extern unsigned long kern_locked_tte_data;
 293	struct hvtramp_descr *hdesc;
 294	unsigned long trampoline_ra;
 295	struct trap_per_cpu *tb;
 296	u64 tte_vaddr, tte_data;
 297	unsigned long hv_err;
 298	int i;
 299
 300	hdesc = kzalloc(struct_size(hdesc, maps, num_kernel_image_mappings),
 
 
 301			GFP_KERNEL);
 302	if (!hdesc) {
 303		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 304		       "hvtramp_descr.\n");
 305		return;
 306	}
 307	*descrp = hdesc;
 308
 309	hdesc->cpu = cpu;
 310	hdesc->num_mappings = num_kernel_image_mappings;
 311
 312	tb = &trap_block[cpu];
 313
 314	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 315	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 316
 317	hdesc->thread_reg = thread_reg;
 318
 319	tte_vaddr = (unsigned long) KERNBASE;
 320	tte_data = kern_locked_tte_data;
 321
 322	for (i = 0; i < hdesc->num_mappings; i++) {
 323		hdesc->maps[i].vaddr = tte_vaddr;
 324		hdesc->maps[i].tte   = tte_data;
 325		tte_vaddr += 0x400000;
 326		tte_data  += 0x400000;
 327	}
 328
 329	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 330
 331	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 332				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 333				 __pa(hdesc));
 334	if (hv_err)
 335		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 336		       "gives error %lu\n", hv_err);
 337}
 338#endif
 339
 340extern unsigned long sparc64_cpu_startup;
 341
 342/* The OBP cpu startup callback truncates the 3rd arg cookie to
 343 * 32-bits (I think) so to be safe we have it read the pointer
 344 * contained here so we work on >4GB machines. -DaveM
 345 */
 346static struct thread_info *cpu_new_thread = NULL;
 347
 348static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 349{
 350	unsigned long entry =
 351		(unsigned long)(&sparc64_cpu_startup);
 352	unsigned long cookie =
 353		(unsigned long)(&cpu_new_thread);
 354	void *descr = NULL;
 355	int timeout, ret;
 356
 357	callin_flag = 0;
 358	cpu_new_thread = task_thread_info(idle);
 359
 360	if (tlb_type == hypervisor) {
 361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 362		if (ldom_domaining_enabled)
 363			ldom_startcpu_cpuid(cpu,
 364					    (unsigned long) cpu_new_thread,
 365					    &descr);
 366		else
 367#endif
 368			prom_startcpu_cpuid(cpu, entry, cookie);
 369	} else {
 370		struct device_node *dp = of_find_node_by_cpuid(cpu);
 371
 372		prom_startcpu(dp->phandle, entry, cookie);
 373	}
 374
 375	for (timeout = 0; timeout < 50000; timeout++) {
 376		if (callin_flag)
 377			break;
 378		udelay(100);
 379	}
 380
 381	if (callin_flag) {
 382		ret = 0;
 383	} else {
 384		printk("Processor %d is stuck.\n", cpu);
 385		ret = -ENODEV;
 386	}
 387	cpu_new_thread = NULL;
 388
 389	kfree(descr);
 390
 391	return ret;
 392}
 393
 394static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 395{
 396	u64 result, target;
 397	int stuck, tmp;
 398
 399	if (this_is_starfire) {
 400		/* map to real upaid */
 401		cpu = (((cpu & 0x3c) << 1) |
 402			((cpu & 0x40) >> 4) |
 403			(cpu & 0x3));
 404	}
 405
 406	target = (cpu << 14) | 0x70;
 407again:
 408	/* Ok, this is the real Spitfire Errata #54.
 409	 * One must read back from a UDB internal register
 410	 * after writes to the UDB interrupt dispatch, but
 411	 * before the membar Sync for that write.
 412	 * So we use the high UDB control register (ASI 0x7f,
 413	 * ADDR 0x20) for the dummy read. -DaveM
 414	 */
 415	tmp = 0x40;
 416	__asm__ __volatile__(
 417	"wrpr	%1, %2, %%pstate\n\t"
 418	"stxa	%4, [%0] %3\n\t"
 419	"stxa	%5, [%0+%8] %3\n\t"
 420	"add	%0, %8, %0\n\t"
 421	"stxa	%6, [%0+%8] %3\n\t"
 422	"membar	#Sync\n\t"
 423	"stxa	%%g0, [%7] %3\n\t"
 424	"membar	#Sync\n\t"
 425	"mov	0x20, %%g1\n\t"
 426	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 427	"membar	#Sync"
 428	: "=r" (tmp)
 429	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 430	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 431	  "r" (0x10), "0" (tmp)
 432        : "g1");
 433
 434	/* NOTE: PSTATE_IE is still clear. */
 435	stuck = 100000;
 436	do {
 437		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 438			: "=r" (result)
 439			: "i" (ASI_INTR_DISPATCH_STAT));
 440		if (result == 0) {
 441			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 442					     : : "r" (pstate));
 443			return;
 444		}
 445		stuck -= 1;
 446		if (stuck == 0)
 447			break;
 448	} while (result & 0x1);
 449	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 450			     : : "r" (pstate));
 451	if (stuck == 0) {
 452		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 453		       smp_processor_id(), result);
 454	} else {
 455		udelay(2);
 456		goto again;
 457	}
 458}
 459
 460static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 461{
 462	u64 *mondo, data0, data1, data2;
 463	u16 *cpu_list;
 464	u64 pstate;
 465	int i;
 466
 467	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 468	cpu_list = __va(tb->cpu_list_pa);
 469	mondo = __va(tb->cpu_mondo_block_pa);
 470	data0 = mondo[0];
 471	data1 = mondo[1];
 472	data2 = mondo[2];
 473	for (i = 0; i < cnt; i++)
 474		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 475}
 476
 477/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 478 * packet, but we have no use for that.  However we do take advantage of
 479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 480 */
 481static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 482{
 483	int nack_busy_id, is_jbus, need_more;
 484	u64 *mondo, pstate, ver, busy_mask;
 485	u16 *cpu_list;
 486
 487	cpu_list = __va(tb->cpu_list_pa);
 488	mondo = __va(tb->cpu_mondo_block_pa);
 489
 490	/* Unfortunately, someone at Sun had the brilliant idea to make the
 491	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 492	 * derivative processor.
 493	 */
 494	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 495	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 496		   (ver >> 32) == __SERRANO_ID);
 497
 498	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 499
 500retry:
 501	need_more = 0;
 502	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 503			     : : "r" (pstate), "i" (PSTATE_IE));
 504
 505	/* Setup the dispatch data registers. */
 506	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 507			     "stxa	%1, [%4] %6\n\t"
 508			     "stxa	%2, [%5] %6\n\t"
 509			     "membar	#Sync\n\t"
 510			     : /* no outputs */
 511			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 512			       "r" (0x40), "r" (0x50), "r" (0x60),
 513			       "i" (ASI_INTR_W));
 514
 515	nack_busy_id = 0;
 516	busy_mask = 0;
 517	{
 518		int i;
 519
 520		for (i = 0; i < cnt; i++) {
 521			u64 target, nr;
 522
 523			nr = cpu_list[i];
 524			if (nr == 0xffff)
 525				continue;
 526
 527			target = (nr << 14) | 0x70;
 528			if (is_jbus) {
 529				busy_mask |= (0x1UL << (nr * 2));
 530			} else {
 531				target |= (nack_busy_id << 24);
 532				busy_mask |= (0x1UL <<
 533					      (nack_busy_id * 2));
 534			}
 535			__asm__ __volatile__(
 536				"stxa	%%g0, [%0] %1\n\t"
 537				"membar	#Sync\n\t"
 538				: /* no outputs */
 539				: "r" (target), "i" (ASI_INTR_W));
 540			nack_busy_id++;
 541			if (nack_busy_id == 32) {
 542				need_more = 1;
 543				break;
 544			}
 545		}
 546	}
 547
 548	/* Now, poll for completion. */
 549	{
 550		u64 dispatch_stat, nack_mask;
 551		long stuck;
 552
 553		stuck = 100000 * nack_busy_id;
 554		nack_mask = busy_mask << 1;
 555		do {
 556			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 557					     : "=r" (dispatch_stat)
 558					     : "i" (ASI_INTR_DISPATCH_STAT));
 559			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 560				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 561						     : : "r" (pstate));
 562				if (unlikely(need_more)) {
 563					int i, this_cnt = 0;
 564					for (i = 0; i < cnt; i++) {
 565						if (cpu_list[i] == 0xffff)
 566							continue;
 567						cpu_list[i] = 0xffff;
 568						this_cnt++;
 569						if (this_cnt == 32)
 570							break;
 571					}
 572					goto retry;
 573				}
 574				return;
 575			}
 576			if (!--stuck)
 577				break;
 578		} while (dispatch_stat & busy_mask);
 579
 580		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 581				     : : "r" (pstate));
 582
 583		if (dispatch_stat & busy_mask) {
 584			/* Busy bits will not clear, continue instead
 585			 * of freezing up on this cpu.
 586			 */
 587			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 588			       smp_processor_id(), dispatch_stat);
 589		} else {
 590			int i, this_busy_nack = 0;
 591
 592			/* Delay some random time with interrupts enabled
 593			 * to prevent deadlock.
 594			 */
 595			udelay(2 * nack_busy_id);
 596
 597			/* Clear out the mask bits for cpus which did not
 598			 * NACK us.
 599			 */
 600			for (i = 0; i < cnt; i++) {
 601				u64 check_mask, nr;
 602
 603				nr = cpu_list[i];
 604				if (nr == 0xffff)
 605					continue;
 606
 607				if (is_jbus)
 608					check_mask = (0x2UL << (2*nr));
 609				else
 610					check_mask = (0x2UL <<
 611						      this_busy_nack);
 612				if ((dispatch_stat & check_mask) == 0)
 613					cpu_list[i] = 0xffff;
 614				this_busy_nack += 2;
 615				if (this_busy_nack == 64)
 616					break;
 617			}
 618
 619			goto retry;
 620		}
 621	}
 622}
 623
 624#define	CPU_MONDO_COUNTER(cpuid)	(cpu_mondo_counter[cpuid])
 625#define	MONDO_USEC_WAIT_MIN		2
 626#define	MONDO_USEC_WAIT_MAX		100
 627#define	MONDO_RETRY_LIMIT		500000
 628
 629/* Multi-cpu list version.
 630 *
 631 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
 632 * Sometimes not all cpus receive the mondo, requiring us to re-send
 633 * the mondo until all cpus have received, or cpus are truly stuck
 634 * unable to receive mondo, and we timeout.
 635 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
 636 * perform guest service, such as PCIe error handling. Consider the
 637 * service time, 1 second overall wait is reasonable for 1 cpu.
 638 * Here two in-between mondo check wait time are defined: 2 usec for
 639 * single cpu quick turn around and up to 100usec for large cpu count.
 640 * Deliver mondo to large number of cpus could take longer, we adjusts
 641 * the retry count as long as target cpus are making forward progress.
 642 */
 643static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 644{
 645	int this_cpu, tot_cpus, prev_sent, i, rem;
 646	int usec_wait, retries, tot_retries;
 647	u16 first_cpu = 0xffff;
 648	unsigned long xc_rcvd = 0;
 649	unsigned long status;
 650	int ecpuerror_id = 0;
 651	int enocpu_id = 0;
 652	u16 *cpu_list;
 653	u16 cpu;
 654
 655	this_cpu = smp_processor_id();
 
 656	cpu_list = __va(tb->cpu_list_pa);
 657	usec_wait = cnt * MONDO_USEC_WAIT_MIN;
 658	if (usec_wait > MONDO_USEC_WAIT_MAX)
 659		usec_wait = MONDO_USEC_WAIT_MAX;
 660	retries = tot_retries = 0;
 661	tot_cpus = cnt;
 662	prev_sent = 0;
 663
 
 
 
 664	do {
 665		int n_sent, mondo_delivered, target_cpu_busy;
 666
 667		status = sun4v_cpu_mondo_send(cnt,
 668					      tb->cpu_list_pa,
 669					      tb->cpu_mondo_block_pa);
 670
 671		/* HV_EOK means all cpus received the xcall, we're done.  */
 672		if (likely(status == HV_EOK))
 673			goto xcall_done;
 674
 675		/* If not these non-fatal errors, panic */
 676		if (unlikely((status != HV_EWOULDBLOCK) &&
 677			(status != HV_ECPUERROR) &&
 678			(status != HV_ENOCPU)))
 679			goto fatal_errors;
 680
 681		/* First, see if we made any forward progress.
 682		 *
 683		 * Go through the cpu_list, count the target cpus that have
 684		 * received our mondo (n_sent), and those that did not (rem).
 685		 * Re-pack cpu_list with the cpus remain to be retried in the
 686		 * front - this simplifies tracking the truly stalled cpus.
 687		 *
 688		 * The hypervisor indicates successful sends by setting
 689		 * cpu list entries to the value 0xffff.
 690		 *
 691		 * EWOULDBLOCK means some target cpus did not receive the
 692		 * mondo and retry usually helps.
 693		 *
 694		 * ECPUERROR means at least one target cpu is in error state,
 695		 * it's usually safe to skip the faulty cpu and retry.
 696		 *
 697		 * ENOCPU means one of the target cpu doesn't belong to the
 698		 * domain, perhaps offlined which is unexpected, but not
 699		 * fatal and it's okay to skip the offlined cpu.
 700		 */
 701		rem = 0;
 702		n_sent = 0;
 703		for (i = 0; i < cnt; i++) {
 704			cpu = cpu_list[i];
 705			if (likely(cpu == 0xffff)) {
 706				n_sent++;
 707			} else if ((status == HV_ECPUERROR) &&
 708				(sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
 709				ecpuerror_id = cpu + 1;
 710			} else if (status == HV_ENOCPU && !cpu_online(cpu)) {
 711				enocpu_id = cpu + 1;
 712			} else {
 713				cpu_list[rem++] = cpu;
 714			}
 715		}
 716
 717		/* No cpu remained, we're done. */
 718		if (rem == 0)
 719			break;
 720
 721		/* Otherwise, update the cpu count for retry. */
 722		cnt = rem;
 723
 724		/* Record the overall number of mondos received by the
 725		 * first of the remaining cpus.
 
 726		 */
 727		if (first_cpu != cpu_list[0]) {
 728			first_cpu = cpu_list[0];
 729			xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 730		}
 731
 732		/* Was any mondo delivered successfully? */
 733		mondo_delivered = (n_sent > prev_sent);
 734		prev_sent = n_sent;
 735
 736		/* or, was any target cpu busy processing other mondos? */
 737		target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
 738		xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 739
 740		/* Retry count is for no progress. If we're making progress,
 741		 * reset the retry count.
 742		 */
 743		if (likely(mondo_delivered || target_cpu_busy)) {
 744			tot_retries += retries;
 745			retries = 0;
 746		} else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
 747			goto fatal_mondo_timeout;
 748		}
 749
 750		/* Delay a little bit to let other cpus catch up on
 751		 * their cpu mondo queue work.
 
 
 
 
 752		 */
 753		if (!mondo_delivered)
 754			udelay(usec_wait);
 
 755
 756		retries++;
 
 
 
 
 757	} while (1);
 758
 759xcall_done:
 760	if (unlikely(ecpuerror_id > 0)) {
 761		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
 762		       this_cpu, ecpuerror_id - 1);
 763	} else if (unlikely(enocpu_id > 0)) {
 764		pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
 765		       this_cpu, enocpu_id - 1);
 766	}
 767	return;
 768
 769fatal_errors:
 770	/* fatal errors include bad alignment, etc */
 771	pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
 772	       this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 773	panic("Unexpected SUN4V mondo error %lu\n", status);
 774
 775fatal_mondo_timeout:
 776	/* some cpus being non-responsive to the cpu mondo */
 777	pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
 778	       this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
 779	panic("SUN4V mondo timeout panic\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 780}
 781
 782static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 783
 784static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 785{
 786	struct trap_per_cpu *tb;
 787	int this_cpu, i, cnt;
 788	unsigned long flags;
 789	u16 *cpu_list;
 790	u64 *mondo;
 791
 792	/* We have to do this whole thing with interrupts fully disabled.
 793	 * Otherwise if we send an xcall from interrupt context it will
 794	 * corrupt both our mondo block and cpu list state.
 795	 *
 796	 * One consequence of this is that we cannot use timeout mechanisms
 797	 * that depend upon interrupts being delivered locally.  So, for
 798	 * example, we cannot sample jiffies and expect it to advance.
 799	 *
 800	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 801	 */
 802	local_irq_save(flags);
 803
 804	this_cpu = smp_processor_id();
 805	tb = &trap_block[this_cpu];
 806
 807	mondo = __va(tb->cpu_mondo_block_pa);
 808	mondo[0] = data0;
 809	mondo[1] = data1;
 810	mondo[2] = data2;
 811	wmb();
 812
 813	cpu_list = __va(tb->cpu_list_pa);
 814
 815	/* Setup the initial cpu list.  */
 816	cnt = 0;
 817	for_each_cpu(i, mask) {
 818		if (i == this_cpu || !cpu_online(i))
 819			continue;
 820		cpu_list[cnt++] = i;
 821	}
 822
 823	if (cnt)
 824		xcall_deliver_impl(tb, cnt);
 825
 826	local_irq_restore(flags);
 827}
 828
 829/* Send cross call to all processors mentioned in MASK_P
 830 * except self.  Really, there are only two cases currently,
 831 * "cpu_online_mask" and "mm_cpumask(mm)".
 832 */
 833static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 834{
 835	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 836
 837	xcall_deliver(data0, data1, data2, mask);
 838}
 839
 840/* Send cross call to all processors except self. */
 841static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 842{
 843	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 844}
 845
 846extern unsigned long xcall_sync_tick;
 847
 848static void smp_start_sync_tick_client(int cpu)
 849{
 850	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 851		      cpumask_of(cpu));
 852}
 853
 854extern unsigned long xcall_call_function;
 855
 856void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 857{
 858	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 859}
 860
 861extern unsigned long xcall_call_function_single;
 862
 863void arch_send_call_function_single_ipi(int cpu)
 864{
 865	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 866		      cpumask_of(cpu));
 867}
 868
 869void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 870{
 871	clear_softint(1 << irq);
 872	irq_enter();
 873	generic_smp_call_function_interrupt();
 874	irq_exit();
 875}
 876
 877void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 878{
 879	clear_softint(1 << irq);
 880	irq_enter();
 881	generic_smp_call_function_single_interrupt();
 882	irq_exit();
 883}
 884
 885static void tsb_sync(void *info)
 886{
 887	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 888	struct mm_struct *mm = info;
 889
 890	/* It is not valid to test "current->active_mm == mm" here.
 891	 *
 892	 * The value of "current" is not changed atomically with
 893	 * switch_mm().  But that's OK, we just need to check the
 894	 * current cpu's trap block PGD physical address.
 895	 */
 896	if (tp->pgd_paddr == __pa(mm->pgd))
 897		tsb_context_switch(mm);
 898}
 899
 900void smp_tsb_sync(struct mm_struct *mm)
 901{
 902	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 903}
 904
 905extern unsigned long xcall_flush_tlb_mm;
 906extern unsigned long xcall_flush_tlb_page;
 907extern unsigned long xcall_flush_tlb_kernel_range;
 908extern unsigned long xcall_fetch_glob_regs;
 909extern unsigned long xcall_fetch_glob_pmu;
 910extern unsigned long xcall_fetch_glob_pmu_n4;
 911extern unsigned long xcall_receive_signal;
 912extern unsigned long xcall_new_mmu_context_version;
 913#ifdef CONFIG_KGDB
 914extern unsigned long xcall_kgdb_capture;
 915#endif
 916
 917#ifdef DCACHE_ALIASING_POSSIBLE
 918extern unsigned long xcall_flush_dcache_page_cheetah;
 919#endif
 920extern unsigned long xcall_flush_dcache_page_spitfire;
 921
 922static inline void __local_flush_dcache_folio(struct folio *folio)
 923{
 924	unsigned int i, nr = folio_nr_pages(folio);
 
 925
 
 
 926#ifdef DCACHE_ALIASING_POSSIBLE
 927	for (i = 0; i < nr; i++)
 928		__flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
 929			    ((tlb_type == spitfire) &&
 930			     folio_flush_mapping(folio) != NULL));
 931#else
 932	if (folio_flush_mapping(folio) != NULL &&
 933	    tlb_type == spitfire) {
 934		unsigned long pfn = folio_pfn(folio)
 935		for (i = 0; i < nr; i++)
 936			__flush_icache_page((pfn + i) * PAGE_SIZE);
 937	}
 938#endif
 939}
 940
 941void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
 942{
 943	int this_cpu;
 944
 945	if (tlb_type == hypervisor)
 946		return;
 947
 948#ifdef CONFIG_DEBUG_DCFLUSH
 949	atomic_inc(&dcpage_flushes);
 950#endif
 951
 952	this_cpu = get_cpu();
 953
 954	if (cpu == this_cpu) {
 955		__local_flush_dcache_folio(folio);
 956	} else if (cpu_online(cpu)) {
 957		void *pg_addr = folio_address(folio);
 958		u64 data0 = 0;
 959
 960		if (tlb_type == spitfire) {
 961			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 962			if (folio_flush_mapping(folio) != NULL)
 963				data0 |= ((u64)1 << 32);
 964		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 965#ifdef DCACHE_ALIASING_POSSIBLE
 966			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 967#endif
 968		}
 969		if (data0) {
 970			unsigned int i, nr = folio_nr_pages(folio);
 971
 972			for (i = 0; i < nr; i++) {
 973				xcall_deliver(data0, __pa(pg_addr),
 974					      (u64) pg_addr, cpumask_of(cpu));
 975#ifdef CONFIG_DEBUG_DCFLUSH
 976				atomic_inc(&dcpage_flushes_xcall);
 977#endif
 978				pg_addr += PAGE_SIZE;
 979			}
 980		}
 981	}
 982
 983	put_cpu();
 984}
 985
 986void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
 987{
 988	void *pg_addr;
 989	u64 data0;
 990
 991	if (tlb_type == hypervisor)
 992		return;
 993
 994	preempt_disable();
 995
 996#ifdef CONFIG_DEBUG_DCFLUSH
 997	atomic_inc(&dcpage_flushes);
 998#endif
 999	data0 = 0;
1000	pg_addr = folio_address(folio);
1001	if (tlb_type == spitfire) {
1002		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1003		if (folio_flush_mapping(folio) != NULL)
1004			data0 |= ((u64)1 << 32);
1005	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1006#ifdef DCACHE_ALIASING_POSSIBLE
1007		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1008#endif
1009	}
1010	if (data0) {
1011		unsigned int i, nr = folio_nr_pages(folio);
1012
1013		for (i = 0; i < nr; i++) {
1014			xcall_deliver(data0, __pa(pg_addr),
1015				      (u64) pg_addr, cpu_online_mask);
1016#ifdef CONFIG_DEBUG_DCFLUSH
1017			atomic_inc(&dcpage_flushes_xcall);
1018#endif
1019			pg_addr += PAGE_SIZE;
1020		}
1021	}
1022	__local_flush_dcache_folio(folio);
1023
1024	preempt_enable();
1025}
1026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027#ifdef CONFIG_KGDB
1028void kgdb_roundup_cpus(void)
1029{
1030	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1031}
1032#endif
1033
1034void smp_fetch_global_regs(void)
1035{
1036	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1037}
1038
1039void smp_fetch_global_pmu(void)
1040{
1041	if (tlb_type == hypervisor &&
1042	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1043		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1044	else
1045		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1046}
1047
1048/* We know that the window frames of the user have been flushed
1049 * to the stack before we get here because all callers of us
1050 * are flush_tlb_*() routines, and these run after flush_cache_*()
1051 * which performs the flushw.
1052 *
1053 * mm->cpu_vm_mask is a bit mask of which cpus an address
1054 * space has (potentially) executed on, this is the heuristic
1055 * we use to limit cross calls.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056 */
1057
1058/* This currently is only used by the hugetlb arch pre-fault
1059 * hook on UltraSPARC-III+ and later when changing the pagesize
1060 * bits of the context register for an address space.
1061 */
1062void smp_flush_tlb_mm(struct mm_struct *mm)
1063{
1064	u32 ctx = CTX_HWBITS(mm->context);
 
1065
1066	get_cpu();
 
 
 
1067
1068	smp_cross_call_masked(&xcall_flush_tlb_mm,
1069			      ctx, 0, 0,
1070			      mm_cpumask(mm));
1071
 
1072	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074	put_cpu();
1075}
1076
1077struct tlb_pending_info {
1078	unsigned long ctx;
1079	unsigned long nr;
1080	unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085	struct tlb_pending_info *t = info;
1086
1087	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092	u32 ctx = CTX_HWBITS(mm->context);
1093	struct tlb_pending_info info;
1094
1095	get_cpu();
1096
1097	info.ctx = ctx;
1098	info.nr = nr;
1099	info.vaddrs = vaddrs;
1100
1101	smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1102			       &info, 1);
 
 
 
 
1103
1104	__flush_tlb_pending(ctx, nr, vaddrs);
1105
1106	put_cpu();
1107}
1108
1109void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1110{
1111	unsigned long context = CTX_HWBITS(mm->context);
1112
1113	get_cpu();
1114
1115	smp_cross_call_masked(&xcall_flush_tlb_page,
1116			      context, vaddr, 0,
1117			      mm_cpumask(mm));
1118
1119	__flush_tlb_page(context, vaddr);
1120
1121	put_cpu();
1122}
1123
1124void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1125{
1126	start &= PAGE_MASK;
1127	end    = PAGE_ALIGN(end);
1128	if (start != end) {
1129		smp_cross_call(&xcall_flush_tlb_kernel_range,
1130			       0, start, end);
1131
1132		__flush_tlb_kernel_range(start, end);
1133	}
1134}
1135
1136/* CPU capture. */
1137/* #define CAPTURE_DEBUG */
1138extern unsigned long xcall_capture;
1139
1140static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1141static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1142static unsigned long penguins_are_doing_time;
1143
1144void smp_capture(void)
1145{
1146	int result = atomic_add_return(1, &smp_capture_depth);
1147
1148	if (result == 1) {
1149		int ncpus = num_online_cpus();
1150
1151#ifdef CAPTURE_DEBUG
1152		printk("CPU[%d]: Sending penguins to jail...",
1153		       smp_processor_id());
1154#endif
1155		penguins_are_doing_time = 1;
1156		atomic_inc(&smp_capture_registry);
1157		smp_cross_call(&xcall_capture, 0, 0, 0);
1158		while (atomic_read(&smp_capture_registry) != ncpus)
1159			rmb();
1160#ifdef CAPTURE_DEBUG
1161		printk("done\n");
1162#endif
1163	}
1164}
1165
1166void smp_release(void)
1167{
1168	if (atomic_dec_and_test(&smp_capture_depth)) {
1169#ifdef CAPTURE_DEBUG
1170		printk("CPU[%d]: Giving pardon to "
1171		       "imprisoned penguins\n",
1172		       smp_processor_id());
1173#endif
1174		penguins_are_doing_time = 0;
1175		membar_safe("#StoreLoad");
1176		atomic_dec(&smp_capture_registry);
1177	}
1178}
1179
1180/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1181 * set, so they can service tlb flush xcalls...
1182 */
1183extern void prom_world(int);
1184
1185void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1186{
1187	clear_softint(1 << irq);
1188
1189	preempt_disable();
1190
1191	__asm__ __volatile__("flushw");
1192	prom_world(1);
1193	atomic_inc(&smp_capture_registry);
1194	membar_safe("#StoreLoad");
1195	while (penguins_are_doing_time)
1196		rmb();
1197	atomic_dec(&smp_capture_registry);
1198	prom_world(0);
1199
1200	preempt_enable();
1201}
1202
 
 
 
 
 
 
1203void __init smp_prepare_cpus(unsigned int max_cpus)
1204{
1205}
1206
 
 
 
 
1207void __init smp_setup_processor_id(void)
1208{
1209	if (tlb_type == spitfire)
1210		xcall_deliver_impl = spitfire_xcall_deliver;
1211	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1212		xcall_deliver_impl = cheetah_xcall_deliver;
1213	else
1214		xcall_deliver_impl = hypervisor_xcall_deliver;
1215}
1216
1217void smp_fill_in_sib_core_maps(void)
1218{
1219	unsigned int i;
1220
1221	for_each_present_cpu(i) {
1222		unsigned int j;
1223
1224		cpumask_clear(&cpu_core_map[i]);
1225		if (cpu_data(i).core_id == 0) {
1226			cpumask_set_cpu(i, &cpu_core_map[i]);
1227			continue;
1228		}
1229
1230		for_each_present_cpu(j) {
1231			if (cpu_data(i).core_id ==
1232			    cpu_data(j).core_id)
1233				cpumask_set_cpu(j, &cpu_core_map[i]);
1234		}
1235	}
1236
1237	for_each_present_cpu(i)  {
1238		unsigned int j;
1239
1240		for_each_present_cpu(j)  {
1241			if (cpu_data(i).max_cache_id ==
1242			    cpu_data(j).max_cache_id)
1243				cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1244
1245			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1246				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1247		}
1248	}
1249
1250	for_each_present_cpu(i) {
1251		unsigned int j;
1252
1253		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1254		if (cpu_data(i).proc_id == -1) {
1255			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1256			continue;
1257		}
1258
1259		for_each_present_cpu(j) {
1260			if (cpu_data(i).proc_id ==
1261			    cpu_data(j).proc_id)
1262				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1263		}
1264	}
1265}
1266
1267int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1268{
1269	int ret = smp_boot_one_cpu(cpu, tidle);
1270
1271	if (!ret) {
1272		cpumask_set_cpu(cpu, &smp_commenced_mask);
1273		while (!cpu_online(cpu))
1274			mb();
1275		if (!cpu_online(cpu)) {
1276			ret = -ENODEV;
1277		} else {
1278			/* On SUN4V, writes to %tick and %stick are
1279			 * not allowed.
1280			 */
1281			if (tlb_type != hypervisor)
1282				smp_synchronize_one_tick(cpu);
1283		}
1284	}
1285	return ret;
1286}
1287
1288#ifdef CONFIG_HOTPLUG_CPU
1289void cpu_play_dead(void)
1290{
1291	int cpu = smp_processor_id();
1292	unsigned long pstate;
1293
1294	idle_task_exit();
1295
1296	if (tlb_type == hypervisor) {
1297		struct trap_per_cpu *tb = &trap_block[cpu];
1298
1299		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1300				tb->cpu_mondo_pa, 0);
1301		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1302				tb->dev_mondo_pa, 0);
1303		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1304				tb->resum_mondo_pa, 0);
1305		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1306				tb->nonresum_mondo_pa, 0);
1307	}
1308
1309	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1310	membar_safe("#Sync");
1311
1312	local_irq_disable();
1313
1314	__asm__ __volatile__(
1315		"rdpr	%%pstate, %0\n\t"
1316		"wrpr	%0, %1, %%pstate"
1317		: "=r" (pstate)
1318		: "i" (PSTATE_IE));
1319
1320	while (1)
1321		barrier();
1322}
1323
1324int __cpu_disable(void)
1325{
1326	int cpu = smp_processor_id();
1327	cpuinfo_sparc *c;
1328	int i;
1329
1330	for_each_cpu(i, &cpu_core_map[cpu])
1331		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1332	cpumask_clear(&cpu_core_map[cpu]);
1333
1334	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1335		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1336	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1337
1338	c = &cpu_data(cpu);
1339
1340	c->core_id = 0;
1341	c->proc_id = -1;
1342
1343	smp_wmb();
1344
1345	/* Make sure no interrupts point to this cpu.  */
1346	fixup_irqs();
1347
1348	local_irq_enable();
1349	mdelay(1);
1350	local_irq_disable();
1351
 
1352	set_cpu_online(cpu, false);
 
1353
1354	cpu_map_rebuild();
1355
1356	return 0;
1357}
1358
1359void __cpu_die(unsigned int cpu)
1360{
1361	int i;
1362
1363	for (i = 0; i < 100; i++) {
1364		smp_rmb();
1365		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1366			break;
1367		msleep(100);
1368	}
1369	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1370		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1371	} else {
1372#if defined(CONFIG_SUN_LDOMS)
1373		unsigned long hv_err;
1374		int limit = 100;
1375
1376		do {
1377			hv_err = sun4v_cpu_stop(cpu);
1378			if (hv_err == HV_EOK) {
1379				set_cpu_present(cpu, false);
1380				break;
1381			}
1382		} while (--limit > 0);
1383		if (limit <= 0) {
1384			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1385			       hv_err);
1386		}
1387#endif
1388	}
1389}
1390#endif
1391
1392void __init smp_cpus_done(unsigned int max_cpus)
1393{
 
1394}
1395
1396static void send_cpu_ipi(int cpu)
1397{
1398	xcall_deliver((u64) &xcall_receive_signal,
1399			0, 0, cpumask_of(cpu));
1400}
1401
1402void scheduler_poke(void)
1403{
1404	if (!cpu_poke)
1405		return;
1406
1407	if (!__this_cpu_read(poke))
1408		return;
1409
1410	__this_cpu_write(poke, false);
1411	set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1412}
1413
1414static unsigned long send_cpu_poke(int cpu)
1415{
1416	unsigned long hv_err;
1417
1418	per_cpu(poke, cpu) = true;
1419	hv_err = sun4v_cpu_poke(cpu);
1420	if (hv_err != HV_EOK) {
1421		per_cpu(poke, cpu) = false;
1422		pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1423				    __func__, hv_err);
1424	}
1425
1426	return hv_err;
1427}
1428
1429void arch_smp_send_reschedule(int cpu)
1430{
1431	if (cpu == smp_processor_id()) {
1432		WARN_ON_ONCE(preemptible());
1433		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1434		return;
1435	}
1436
1437	/* Use cpu poke to resume idle cpu if supported. */
1438	if (cpu_poke && idle_cpu(cpu)) {
1439		unsigned long ret;
1440
1441		ret = send_cpu_poke(cpu);
1442		if (ret == HV_EOK)
1443			return;
1444	}
1445
1446	/* Use IPI in following cases:
1447	 * - cpu poke not supported
1448	 * - cpu not idle
1449	 * - send_cpu_poke() returns with error
1450	 */
1451	send_cpu_ipi(cpu);
1452}
1453
1454void smp_init_cpu_poke(void)
1455{
1456	unsigned long major;
1457	unsigned long minor;
1458	int ret;
1459
1460	if (tlb_type != hypervisor)
1461		return;
1462
1463	ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1464	if (ret) {
1465		pr_debug("HV_GRP_CORE is not registered\n");
1466		return;
1467	}
1468
1469	if (major == 1 && minor >= 6) {
1470		/* CPU POKE is registered. */
1471		cpu_poke = true;
1472		return;
1473	}
1474
1475	pr_debug("CPU_POKE not supported\n");
1476}
1477
1478void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1479{
1480	clear_softint(1 << irq);
1481	scheduler_ipi();
1482}
1483
1484static void stop_this_cpu(void *dummy)
 
 
 
1485{
1486	set_cpu_online(smp_processor_id(), false);
1487	prom_stopself();
1488}
1489
1490void smp_send_stop(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491{
1492	int cpu;
1493
1494	if (tlb_type == hypervisor) {
1495		int this_cpu = smp_processor_id();
1496#ifdef CONFIG_SERIAL_SUNHV
1497		sunhv_migrate_hvcons_irq(this_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498#endif
1499		for_each_online_cpu(cpu) {
1500			if (cpu == this_cpu)
1501				continue;
1502
1503			set_cpu_online(cpu, false);
1504#ifdef CONFIG_SUN_LDOMS
1505			if (ldom_domaining_enabled) {
1506				unsigned long hv_err;
1507				hv_err = sun4v_cpu_stop(cpu);
1508				if (hv_err)
1509					printk(KERN_ERR "sun4v_cpu_stop() "
1510					       "failed err=%lu\n", hv_err);
1511			} else
1512#endif
1513				prom_stopcpu_cpuid(cpu);
1514		}
1515	} else
1516		smp_call_function(stop_this_cpu, NULL, 0);
1517}
1518
1519static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1520{
1521	if (cpu_to_node(from) == cpu_to_node(to))
1522		return LOCAL_DISTANCE;
1523	else
1524		return REMOTE_DISTANCE;
1525}
1526
1527static int __init pcpu_cpu_to_node(int cpu)
1528{
1529	return cpu_to_node(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1530}
1531
1532void __init setup_per_cpu_areas(void)
1533{
1534	unsigned long delta;
1535	unsigned int cpu;
1536	int rc = -EINVAL;
1537
1538	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541					    pcpu_cpu_distance,
1542					    pcpu_cpu_to_node);
 
1543		if (rc)
1544			pr_warn("PERCPU: %s allocator failed (%d), "
1545				"falling back to page size\n",
1546				pcpu_fc_names[pcpu_chosen_fc], rc);
1547	}
1548	if (rc < 0)
1549		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1550					   pcpu_cpu_to_node);
 
 
1551	if (rc < 0)
1552		panic("cannot initialize percpu area (err=%d)", rc);
1553
1554	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1555	for_each_possible_cpu(cpu)
1556		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1557
1558	/* Setup %g5 for the boot cpu.  */
1559	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1560
1561	of_fill_in_cpu_data();
1562	if (tlb_type == hypervisor)
1563		mdesc_fill_in_cpu_data(cpu_all_mask);
1564}
v3.5.6
 
   1/* smp.c: Sparc64 SMP support.
   2 *
   3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   4 */
   5
   6#include <linux/export.h>
   7#include <linux/kernel.h>
   8#include <linux/sched.h>
 
   9#include <linux/mm.h>
  10#include <linux/pagemap.h>
  11#include <linux/threads.h>
  12#include <linux/smp.h>
  13#include <linux/interrupt.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/delay.h>
  16#include <linux/init.h>
  17#include <linux/spinlock.h>
  18#include <linux/fs.h>
  19#include <linux/seq_file.h>
  20#include <linux/cache.h>
  21#include <linux/jiffies.h>
  22#include <linux/profile.h>
  23#include <linux/bootmem.h>
  24#include <linux/vmalloc.h>
  25#include <linux/ftrace.h>
  26#include <linux/cpu.h>
  27#include <linux/slab.h>
 
  28
  29#include <asm/head.h>
  30#include <asm/ptrace.h>
  31#include <linux/atomic.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mmu_context.h>
  34#include <asm/cpudata.h>
  35#include <asm/hvtramp.h>
  36#include <asm/io.h>
  37#include <asm/timer.h>
 
  38
  39#include <asm/irq.h>
  40#include <asm/irq_regs.h>
  41#include <asm/page.h>
  42#include <asm/pgtable.h>
  43#include <asm/oplib.h>
  44#include <asm/uaccess.h>
  45#include <asm/starfire.h>
  46#include <asm/tlb.h>
 
  47#include <asm/sections.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/ldc.h>
  51#include <asm/hypervisor.h>
  52#include <asm/pcr.h>
  53
  54#include "cpumap.h"
  55
  56int sparc64_multi_core __read_mostly;
  57
  58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  60	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  61
 
 
 
 
 
 
  62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  63EXPORT_SYMBOL(cpu_core_map);
 
 
  64
  65static cpumask_t smp_commenced_mask;
  66
 
 
 
  67void smp_info(struct seq_file *m)
  68{
  69	int i;
  70	
  71	seq_printf(m, "State:\n");
  72	for_each_online_cpu(i)
  73		seq_printf(m, "CPU%d:\t\tonline\n", i);
  74}
  75
  76void smp_bogo(struct seq_file *m)
  77{
  78	int i;
  79	
  80	for_each_online_cpu(i)
  81		seq_printf(m,
  82			   "Cpu%dClkTck\t: %016lx\n",
  83			   i, cpu_data(i).clock_tick);
  84}
  85
  86extern void setup_sparc64_timer(void);
  87
  88static volatile unsigned long callin_flag = 0;
  89
  90void __cpuinit smp_callin(void)
  91{
  92	int cpuid = hard_smp_processor_id();
  93
  94	__local_per_cpu_offset = __per_cpu_offset(cpuid);
  95
  96	if (tlb_type == hypervisor)
  97		sun4v_ktsb_register();
  98
  99	__flush_tlb_all();
 100
 101	setup_sparc64_timer();
 102
 103	if (cheetah_pcache_forced_on)
 104		cheetah_enable_pcache();
 105
 106	local_irq_enable();
 107
 108	callin_flag = 1;
 109	__asm__ __volatile__("membar #Sync\n\t"
 110			     "flush  %%g6" : : : "memory");
 111
 112	/* Clear this or we will die instantly when we
 113	 * schedule back to this idler...
 114	 */
 115	current_thread_info()->new_child = 0;
 116
 117	/* Attach to the address space of init_task. */
 118	atomic_inc(&init_mm.mm_count);
 119	current->active_mm = &init_mm;
 120
 121	/* inform the notifiers about the new cpu */
 122	notify_cpu_starting(cpuid);
 123
 124	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 125		rmb();
 126
 127	ipi_call_lock_irq();
 128	set_cpu_online(cpuid, true);
 129	ipi_call_unlock_irq();
 130
 131	/* idle thread is expected to have preempt disabled */
 132	preempt_disable();
 
 133}
 134
 135void cpu_panic(void)
 136{
 137	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 138	panic("SMP bolixed\n");
 139}
 140
 141/* This tick register synchronization scheme is taken entirely from
 142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 143 *
 144 * The only change I've made is to rework it so that the master
 145 * initiates the synchonization instead of the slave. -DaveM
 146 */
 147
 148#define MASTER	0
 149#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
 150
 151#define NUM_ROUNDS	64	/* magic value */
 152#define NUM_ITERS	5	/* likewise */
 153
 154static DEFINE_SPINLOCK(itc_sync_lock);
 155static unsigned long go[SLAVE + 1];
 156
 157#define DEBUG_TICK_SYNC	0
 158
 159static inline long get_delta (long *rt, long *master)
 160{
 161	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 162	unsigned long tcenter, t0, t1, tm;
 163	unsigned long i;
 164
 165	for (i = 0; i < NUM_ITERS; i++) {
 166		t0 = tick_ops->get_tick();
 167		go[MASTER] = 1;
 168		membar_safe("#StoreLoad");
 169		while (!(tm = go[SLAVE]))
 170			rmb();
 171		go[SLAVE] = 0;
 172		wmb();
 173		t1 = tick_ops->get_tick();
 174
 175		if (t1 - t0 < best_t1 - best_t0)
 176			best_t0 = t0, best_t1 = t1, best_tm = tm;
 177	}
 178
 179	*rt = best_t1 - best_t0;
 180	*master = best_tm - best_t0;
 181
 182	/* average best_t0 and best_t1 without overflow: */
 183	tcenter = (best_t0/2 + best_t1/2);
 184	if (best_t0 % 2 + best_t1 % 2 == 2)
 185		tcenter++;
 186	return tcenter - best_tm;
 187}
 188
 189void smp_synchronize_tick_client(void)
 190{
 191	long i, delta, adj, adjust_latency = 0, done = 0;
 192	unsigned long flags, rt, master_time_stamp;
 193#if DEBUG_TICK_SYNC
 194	struct {
 195		long rt;	/* roundtrip time */
 196		long master;	/* master's timestamp */
 197		long diff;	/* difference between midpoint and master's timestamp */
 198		long lat;	/* estimate of itc adjustment latency */
 199	} t[NUM_ROUNDS];
 200#endif
 201
 202	go[MASTER] = 1;
 203
 204	while (go[MASTER])
 205		rmb();
 206
 207	local_irq_save(flags);
 208	{
 209		for (i = 0; i < NUM_ROUNDS; i++) {
 210			delta = get_delta(&rt, &master_time_stamp);
 211			if (delta == 0)
 212				done = 1;	/* let's lock on to this... */
 213
 214			if (!done) {
 215				if (i > 0) {
 216					adjust_latency += -delta;
 217					adj = -delta + adjust_latency/4;
 218				} else
 219					adj = -delta;
 220
 221				tick_ops->add_tick(adj);
 222			}
 223#if DEBUG_TICK_SYNC
 224			t[i].rt = rt;
 225			t[i].master = master_time_stamp;
 226			t[i].diff = delta;
 227			t[i].lat = adjust_latency/4;
 228#endif
 229		}
 230	}
 231	local_irq_restore(flags);
 232
 233#if DEBUG_TICK_SYNC
 234	for (i = 0; i < NUM_ROUNDS; i++)
 235		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 236		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 237#endif
 238
 239	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 240	       "(last diff %ld cycles, maxerr %lu cycles)\n",
 241	       smp_processor_id(), delta, rt);
 242}
 243
 244static void smp_start_sync_tick_client(int cpu);
 245
 246static void smp_synchronize_one_tick(int cpu)
 247{
 248	unsigned long flags, i;
 249
 250	go[MASTER] = 0;
 251
 252	smp_start_sync_tick_client(cpu);
 253
 254	/* wait for client to be ready */
 255	while (!go[MASTER])
 256		rmb();
 257
 258	/* now let the client proceed into his loop */
 259	go[MASTER] = 0;
 260	membar_safe("#StoreLoad");
 261
 262	spin_lock_irqsave(&itc_sync_lock, flags);
 263	{
 264		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 265			while (!go[MASTER])
 266				rmb();
 267			go[MASTER] = 0;
 268			wmb();
 269			go[SLAVE] = tick_ops->get_tick();
 270			membar_safe("#StoreLoad");
 271		}
 272	}
 273	spin_unlock_irqrestore(&itc_sync_lock, flags);
 274}
 275
 276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 277/* XXX Put this in some common place. XXX */
 278static unsigned long kimage_addr_to_ra(void *p)
 279{
 280	unsigned long val = (unsigned long) p;
 281
 282	return kern_base + (val - KERNBASE);
 283}
 284
 285static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
 286{
 287	extern unsigned long sparc64_ttable_tl0;
 288	extern unsigned long kern_locked_tte_data;
 289	struct hvtramp_descr *hdesc;
 290	unsigned long trampoline_ra;
 291	struct trap_per_cpu *tb;
 292	u64 tte_vaddr, tte_data;
 293	unsigned long hv_err;
 294	int i;
 295
 296	hdesc = kzalloc(sizeof(*hdesc) +
 297			(sizeof(struct hvtramp_mapping) *
 298			 num_kernel_image_mappings - 1),
 299			GFP_KERNEL);
 300	if (!hdesc) {
 301		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 302		       "hvtramp_descr.\n");
 303		return;
 304	}
 305	*descrp = hdesc;
 306
 307	hdesc->cpu = cpu;
 308	hdesc->num_mappings = num_kernel_image_mappings;
 309
 310	tb = &trap_block[cpu];
 311
 312	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 313	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 314
 315	hdesc->thread_reg = thread_reg;
 316
 317	tte_vaddr = (unsigned long) KERNBASE;
 318	tte_data = kern_locked_tte_data;
 319
 320	for (i = 0; i < hdesc->num_mappings; i++) {
 321		hdesc->maps[i].vaddr = tte_vaddr;
 322		hdesc->maps[i].tte   = tte_data;
 323		tte_vaddr += 0x400000;
 324		tte_data  += 0x400000;
 325	}
 326
 327	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 328
 329	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 330				 kimage_addr_to_ra(&sparc64_ttable_tl0),
 331				 __pa(hdesc));
 332	if (hv_err)
 333		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 334		       "gives error %lu\n", hv_err);
 335}
 336#endif
 337
 338extern unsigned long sparc64_cpu_startup;
 339
 340/* The OBP cpu startup callback truncates the 3rd arg cookie to
 341 * 32-bits (I think) so to be safe we have it read the pointer
 342 * contained here so we work on >4GB machines. -DaveM
 343 */
 344static struct thread_info *cpu_new_thread = NULL;
 345
 346static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 347{
 348	unsigned long entry =
 349		(unsigned long)(&sparc64_cpu_startup);
 350	unsigned long cookie =
 351		(unsigned long)(&cpu_new_thread);
 352	void *descr = NULL;
 353	int timeout, ret;
 354
 355	callin_flag = 0;
 356	cpu_new_thread = task_thread_info(idle);
 357
 358	if (tlb_type == hypervisor) {
 359#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 360		if (ldom_domaining_enabled)
 361			ldom_startcpu_cpuid(cpu,
 362					    (unsigned long) cpu_new_thread,
 363					    &descr);
 364		else
 365#endif
 366			prom_startcpu_cpuid(cpu, entry, cookie);
 367	} else {
 368		struct device_node *dp = of_find_node_by_cpuid(cpu);
 369
 370		prom_startcpu(dp->phandle, entry, cookie);
 371	}
 372
 373	for (timeout = 0; timeout < 50000; timeout++) {
 374		if (callin_flag)
 375			break;
 376		udelay(100);
 377	}
 378
 379	if (callin_flag) {
 380		ret = 0;
 381	} else {
 382		printk("Processor %d is stuck.\n", cpu);
 383		ret = -ENODEV;
 384	}
 385	cpu_new_thread = NULL;
 386
 387	kfree(descr);
 388
 389	return ret;
 390}
 391
 392static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 393{
 394	u64 result, target;
 395	int stuck, tmp;
 396
 397	if (this_is_starfire) {
 398		/* map to real upaid */
 399		cpu = (((cpu & 0x3c) << 1) |
 400			((cpu & 0x40) >> 4) |
 401			(cpu & 0x3));
 402	}
 403
 404	target = (cpu << 14) | 0x70;
 405again:
 406	/* Ok, this is the real Spitfire Errata #54.
 407	 * One must read back from a UDB internal register
 408	 * after writes to the UDB interrupt dispatch, but
 409	 * before the membar Sync for that write.
 410	 * So we use the high UDB control register (ASI 0x7f,
 411	 * ADDR 0x20) for the dummy read. -DaveM
 412	 */
 413	tmp = 0x40;
 414	__asm__ __volatile__(
 415	"wrpr	%1, %2, %%pstate\n\t"
 416	"stxa	%4, [%0] %3\n\t"
 417	"stxa	%5, [%0+%8] %3\n\t"
 418	"add	%0, %8, %0\n\t"
 419	"stxa	%6, [%0+%8] %3\n\t"
 420	"membar	#Sync\n\t"
 421	"stxa	%%g0, [%7] %3\n\t"
 422	"membar	#Sync\n\t"
 423	"mov	0x20, %%g1\n\t"
 424	"ldxa	[%%g1] 0x7f, %%g0\n\t"
 425	"membar	#Sync"
 426	: "=r" (tmp)
 427	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 428	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
 429	  "r" (0x10), "0" (tmp)
 430        : "g1");
 431
 432	/* NOTE: PSTATE_IE is still clear. */
 433	stuck = 100000;
 434	do {
 435		__asm__ __volatile__("ldxa [%%g0] %1, %0"
 436			: "=r" (result)
 437			: "i" (ASI_INTR_DISPATCH_STAT));
 438		if (result == 0) {
 439			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 440					     : : "r" (pstate));
 441			return;
 442		}
 443		stuck -= 1;
 444		if (stuck == 0)
 445			break;
 446	} while (result & 0x1);
 447	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 448			     : : "r" (pstate));
 449	if (stuck == 0) {
 450		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 451		       smp_processor_id(), result);
 452	} else {
 453		udelay(2);
 454		goto again;
 455	}
 456}
 457
 458static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 459{
 460	u64 *mondo, data0, data1, data2;
 461	u16 *cpu_list;
 462	u64 pstate;
 463	int i;
 464
 465	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 466	cpu_list = __va(tb->cpu_list_pa);
 467	mondo = __va(tb->cpu_mondo_block_pa);
 468	data0 = mondo[0];
 469	data1 = mondo[1];
 470	data2 = mondo[2];
 471	for (i = 0; i < cnt; i++)
 472		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 473}
 474
 475/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 476 * packet, but we have no use for that.  However we do take advantage of
 477 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 478 */
 479static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 480{
 481	int nack_busy_id, is_jbus, need_more;
 482	u64 *mondo, pstate, ver, busy_mask;
 483	u16 *cpu_list;
 484
 485	cpu_list = __va(tb->cpu_list_pa);
 486	mondo = __va(tb->cpu_mondo_block_pa);
 487
 488	/* Unfortunately, someone at Sun had the brilliant idea to make the
 489	 * busy/nack fields hard-coded by ITID number for this Ultra-III
 490	 * derivative processor.
 491	 */
 492	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
 493	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 494		   (ver >> 32) == __SERRANO_ID);
 495
 496	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 497
 498retry:
 499	need_more = 0;
 500	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 501			     : : "r" (pstate), "i" (PSTATE_IE));
 502
 503	/* Setup the dispatch data registers. */
 504	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
 505			     "stxa	%1, [%4] %6\n\t"
 506			     "stxa	%2, [%5] %6\n\t"
 507			     "membar	#Sync\n\t"
 508			     : /* no outputs */
 509			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 510			       "r" (0x40), "r" (0x50), "r" (0x60),
 511			       "i" (ASI_INTR_W));
 512
 513	nack_busy_id = 0;
 514	busy_mask = 0;
 515	{
 516		int i;
 517
 518		for (i = 0; i < cnt; i++) {
 519			u64 target, nr;
 520
 521			nr = cpu_list[i];
 522			if (nr == 0xffff)
 523				continue;
 524
 525			target = (nr << 14) | 0x70;
 526			if (is_jbus) {
 527				busy_mask |= (0x1UL << (nr * 2));
 528			} else {
 529				target |= (nack_busy_id << 24);
 530				busy_mask |= (0x1UL <<
 531					      (nack_busy_id * 2));
 532			}
 533			__asm__ __volatile__(
 534				"stxa	%%g0, [%0] %1\n\t"
 535				"membar	#Sync\n\t"
 536				: /* no outputs */
 537				: "r" (target), "i" (ASI_INTR_W));
 538			nack_busy_id++;
 539			if (nack_busy_id == 32) {
 540				need_more = 1;
 541				break;
 542			}
 543		}
 544	}
 545
 546	/* Now, poll for completion. */
 547	{
 548		u64 dispatch_stat, nack_mask;
 549		long stuck;
 550
 551		stuck = 100000 * nack_busy_id;
 552		nack_mask = busy_mask << 1;
 553		do {
 554			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
 555					     : "=r" (dispatch_stat)
 556					     : "i" (ASI_INTR_DISPATCH_STAT));
 557			if (!(dispatch_stat & (busy_mask | nack_mask))) {
 558				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 559						     : : "r" (pstate));
 560				if (unlikely(need_more)) {
 561					int i, this_cnt = 0;
 562					for (i = 0; i < cnt; i++) {
 563						if (cpu_list[i] == 0xffff)
 564							continue;
 565						cpu_list[i] = 0xffff;
 566						this_cnt++;
 567						if (this_cnt == 32)
 568							break;
 569					}
 570					goto retry;
 571				}
 572				return;
 573			}
 574			if (!--stuck)
 575				break;
 576		} while (dispatch_stat & busy_mask);
 577
 578		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 579				     : : "r" (pstate));
 580
 581		if (dispatch_stat & busy_mask) {
 582			/* Busy bits will not clear, continue instead
 583			 * of freezing up on this cpu.
 584			 */
 585			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 586			       smp_processor_id(), dispatch_stat);
 587		} else {
 588			int i, this_busy_nack = 0;
 589
 590			/* Delay some random time with interrupts enabled
 591			 * to prevent deadlock.
 592			 */
 593			udelay(2 * nack_busy_id);
 594
 595			/* Clear out the mask bits for cpus which did not
 596			 * NACK us.
 597			 */
 598			for (i = 0; i < cnt; i++) {
 599				u64 check_mask, nr;
 600
 601				nr = cpu_list[i];
 602				if (nr == 0xffff)
 603					continue;
 604
 605				if (is_jbus)
 606					check_mask = (0x2UL << (2*nr));
 607				else
 608					check_mask = (0x2UL <<
 609						      this_busy_nack);
 610				if ((dispatch_stat & check_mask) == 0)
 611					cpu_list[i] = 0xffff;
 612				this_busy_nack += 2;
 613				if (this_busy_nack == 64)
 614					break;
 615			}
 616
 617			goto retry;
 618		}
 619	}
 620}
 621
 622/* Multi-cpu list version.  */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 624{
 625	int retries, this_cpu, prev_sent, i, saw_cpu_error;
 
 
 
 626	unsigned long status;
 
 
 627	u16 *cpu_list;
 
 628
 629	this_cpu = smp_processor_id();
 630
 631	cpu_list = __va(tb->cpu_list_pa);
 
 
 
 
 
 
 632
 633	saw_cpu_error = 0;
 634	retries = 0;
 635	prev_sent = 0;
 636	do {
 637		int forward_progress, n_sent;
 638
 639		status = sun4v_cpu_mondo_send(cnt,
 640					      tb->cpu_list_pa,
 641					      tb->cpu_mondo_block_pa);
 642
 643		/* HV_EOK means all cpus received the xcall, we're done.  */
 644		if (likely(status == HV_EOK))
 645			break;
 
 
 
 
 
 
 646
 647		/* First, see if we made any forward progress.
 648		 *
 
 
 
 
 
 649		 * The hypervisor indicates successful sends by setting
 650		 * cpu list entries to the value 0xffff.
 
 
 
 
 
 
 
 
 
 
 651		 */
 
 652		n_sent = 0;
 653		for (i = 0; i < cnt; i++) {
 654			if (likely(cpu_list[i] == 0xffff))
 
 655				n_sent++;
 
 
 
 
 
 
 
 
 656		}
 657
 658		forward_progress = 0;
 659		if (n_sent > prev_sent)
 660			forward_progress = 1;
 661
 662		prev_sent = n_sent;
 
 663
 664		/* If we get a HV_ECPUERROR, then one or more of the cpus
 665		 * in the list are in error state.  Use the cpu_state()
 666		 * hypervisor call to find out which cpus are in error state.
 667		 */
 668		if (unlikely(status == HV_ECPUERROR)) {
 669			for (i = 0; i < cnt; i++) {
 670				long err;
 671				u16 cpu;
 
 
 
 
 672
 673				cpu = cpu_list[i];
 674				if (cpu == 0xffff)
 675					continue;
 676
 677				err = sun4v_cpu_state(cpu);
 678				if (err == HV_CPU_STATE_ERROR) {
 679					saw_cpu_error = (cpu + 1);
 680					cpu_list[i] = 0xffff;
 681				}
 682			}
 683		} else if (unlikely(status != HV_EWOULDBLOCK))
 684			goto fatal_mondo_error;
 
 685
 686		/* Don't bother rewriting the CPU list, just leave the
 687		 * 0xffff and non-0xffff entries in there and the
 688		 * hypervisor will do the right thing.
 689		 *
 690		 * Only advance timeout state if we didn't make any
 691		 * forward progress.
 692		 */
 693		if (unlikely(!forward_progress)) {
 694			if (unlikely(++retries > 10000))
 695				goto fatal_mondo_timeout;
 696
 697			/* Delay a little bit to let other cpus catch up
 698			 * on their cpu mondo queue work.
 699			 */
 700			udelay(2 * cnt);
 701		}
 702	} while (1);
 703
 704	if (unlikely(saw_cpu_error))
 705		goto fatal_mondo_cpu_error;
 706
 
 
 
 
 
 707	return;
 708
 709fatal_mondo_cpu_error:
 710	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
 711	       "(including %d) were in error state\n",
 712	       this_cpu, saw_cpu_error - 1);
 713	return;
 714
 715fatal_mondo_timeout:
 716	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
 717	       " progress after %d retries.\n",
 718	       this_cpu, retries);
 719	goto dump_cpu_list_and_out;
 720
 721fatal_mondo_error:
 722	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
 723	       this_cpu, status);
 724	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
 725	       "mondo_block_pa(%lx)\n",
 726	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 727
 728dump_cpu_list_and_out:
 729	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
 730	for (i = 0; i < cnt; i++)
 731		printk("%u ", cpu_list[i]);
 732	printk("]\n");
 733}
 734
 735static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 736
 737static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 738{
 739	struct trap_per_cpu *tb;
 740	int this_cpu, i, cnt;
 741	unsigned long flags;
 742	u16 *cpu_list;
 743	u64 *mondo;
 744
 745	/* We have to do this whole thing with interrupts fully disabled.
 746	 * Otherwise if we send an xcall from interrupt context it will
 747	 * corrupt both our mondo block and cpu list state.
 748	 *
 749	 * One consequence of this is that we cannot use timeout mechanisms
 750	 * that depend upon interrupts being delivered locally.  So, for
 751	 * example, we cannot sample jiffies and expect it to advance.
 752	 *
 753	 * Fortunately, udelay() uses %stick/%tick so we can use that.
 754	 */
 755	local_irq_save(flags);
 756
 757	this_cpu = smp_processor_id();
 758	tb = &trap_block[this_cpu];
 759
 760	mondo = __va(tb->cpu_mondo_block_pa);
 761	mondo[0] = data0;
 762	mondo[1] = data1;
 763	mondo[2] = data2;
 764	wmb();
 765
 766	cpu_list = __va(tb->cpu_list_pa);
 767
 768	/* Setup the initial cpu list.  */
 769	cnt = 0;
 770	for_each_cpu(i, mask) {
 771		if (i == this_cpu || !cpu_online(i))
 772			continue;
 773		cpu_list[cnt++] = i;
 774	}
 775
 776	if (cnt)
 777		xcall_deliver_impl(tb, cnt);
 778
 779	local_irq_restore(flags);
 780}
 781
 782/* Send cross call to all processors mentioned in MASK_P
 783 * except self.  Really, there are only two cases currently,
 784 * "cpu_online_mask" and "mm_cpumask(mm)".
 785 */
 786static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 787{
 788	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 789
 790	xcall_deliver(data0, data1, data2, mask);
 791}
 792
 793/* Send cross call to all processors except self. */
 794static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 795{
 796	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 797}
 798
 799extern unsigned long xcall_sync_tick;
 800
 801static void smp_start_sync_tick_client(int cpu)
 802{
 803	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 804		      cpumask_of(cpu));
 805}
 806
 807extern unsigned long xcall_call_function;
 808
 809void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 810{
 811	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 812}
 813
 814extern unsigned long xcall_call_function_single;
 815
 816void arch_send_call_function_single_ipi(int cpu)
 817{
 818	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 819		      cpumask_of(cpu));
 820}
 821
 822void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 823{
 824	clear_softint(1 << irq);
 
 825	generic_smp_call_function_interrupt();
 
 826}
 827
 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 829{
 830	clear_softint(1 << irq);
 
 831	generic_smp_call_function_single_interrupt();
 
 832}
 833
 834static void tsb_sync(void *info)
 835{
 836	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 837	struct mm_struct *mm = info;
 838
 839	/* It is not valid to test "current->active_mm == mm" here.
 840	 *
 841	 * The value of "current" is not changed atomically with
 842	 * switch_mm().  But that's OK, we just need to check the
 843	 * current cpu's trap block PGD physical address.
 844	 */
 845	if (tp->pgd_paddr == __pa(mm->pgd))
 846		tsb_context_switch(mm);
 847}
 848
 849void smp_tsb_sync(struct mm_struct *mm)
 850{
 851	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 852}
 853
 854extern unsigned long xcall_flush_tlb_mm;
 855extern unsigned long xcall_flush_tlb_pending;
 856extern unsigned long xcall_flush_tlb_kernel_range;
 857extern unsigned long xcall_fetch_glob_regs;
 
 
 858extern unsigned long xcall_receive_signal;
 859extern unsigned long xcall_new_mmu_context_version;
 860#ifdef CONFIG_KGDB
 861extern unsigned long xcall_kgdb_capture;
 862#endif
 863
 864#ifdef DCACHE_ALIASING_POSSIBLE
 865extern unsigned long xcall_flush_dcache_page_cheetah;
 866#endif
 867extern unsigned long xcall_flush_dcache_page_spitfire;
 868
 869#ifdef CONFIG_DEBUG_DCFLUSH
 870extern atomic_t dcpage_flushes;
 871extern atomic_t dcpage_flushes_xcall;
 872#endif
 873
 874static inline void __local_flush_dcache_page(struct page *page)
 875{
 876#ifdef DCACHE_ALIASING_POSSIBLE
 877	__flush_dcache_page(page_address(page),
 
 878			    ((tlb_type == spitfire) &&
 879			     page_mapping(page) != NULL));
 880#else
 881	if (page_mapping(page) != NULL &&
 882	    tlb_type == spitfire)
 883		__flush_icache_page(__pa(page_address(page)));
 
 
 
 884#endif
 885}
 886
 887void smp_flush_dcache_page_impl(struct page *page, int cpu)
 888{
 889	int this_cpu;
 890
 891	if (tlb_type == hypervisor)
 892		return;
 893
 894#ifdef CONFIG_DEBUG_DCFLUSH
 895	atomic_inc(&dcpage_flushes);
 896#endif
 897
 898	this_cpu = get_cpu();
 899
 900	if (cpu == this_cpu) {
 901		__local_flush_dcache_page(page);
 902	} else if (cpu_online(cpu)) {
 903		void *pg_addr = page_address(page);
 904		u64 data0 = 0;
 905
 906		if (tlb_type == spitfire) {
 907			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 908			if (page_mapping(page) != NULL)
 909				data0 |= ((u64)1 << 32);
 910		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 911#ifdef DCACHE_ALIASING_POSSIBLE
 912			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
 913#endif
 914		}
 915		if (data0) {
 916			xcall_deliver(data0, __pa(pg_addr),
 917				      (u64) pg_addr, cpumask_of(cpu));
 
 
 
 918#ifdef CONFIG_DEBUG_DCFLUSH
 919			atomic_inc(&dcpage_flushes_xcall);
 920#endif
 
 
 921		}
 922	}
 923
 924	put_cpu();
 925}
 926
 927void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 928{
 929	void *pg_addr;
 930	u64 data0;
 931
 932	if (tlb_type == hypervisor)
 933		return;
 934
 935	preempt_disable();
 936
 937#ifdef CONFIG_DEBUG_DCFLUSH
 938	atomic_inc(&dcpage_flushes);
 939#endif
 940	data0 = 0;
 941	pg_addr = page_address(page);
 942	if (tlb_type == spitfire) {
 943		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 944		if (page_mapping(page) != NULL)
 945			data0 |= ((u64)1 << 32);
 946	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 947#ifdef DCACHE_ALIASING_POSSIBLE
 948		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 949#endif
 950	}
 951	if (data0) {
 952		xcall_deliver(data0, __pa(pg_addr),
 953			      (u64) pg_addr, cpu_online_mask);
 
 
 
 954#ifdef CONFIG_DEBUG_DCFLUSH
 955		atomic_inc(&dcpage_flushes_xcall);
 956#endif
 
 
 957	}
 958	__local_flush_dcache_page(page);
 959
 960	preempt_enable();
 961}
 962
 963void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
 964{
 965	struct mm_struct *mm;
 966	unsigned long flags;
 967
 968	clear_softint(1 << irq);
 969
 970	/* See if we need to allocate a new TLB context because
 971	 * the version of the one we are using is now out of date.
 972	 */
 973	mm = current->active_mm;
 974	if (unlikely(!mm || (mm == &init_mm)))
 975		return;
 976
 977	spin_lock_irqsave(&mm->context.lock, flags);
 978
 979	if (unlikely(!CTX_VALID(mm->context)))
 980		get_new_mmu_context(mm);
 981
 982	spin_unlock_irqrestore(&mm->context.lock, flags);
 983
 984	load_secondary_context(mm);
 985	__flush_tlb_mm(CTX_HWBITS(mm->context),
 986		       SECONDARY_CONTEXT);
 987}
 988
 989void smp_new_mmu_context_version(void)
 990{
 991	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
 992}
 993
 994#ifdef CONFIG_KGDB
 995void kgdb_roundup_cpus(unsigned long flags)
 996{
 997	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
 998}
 999#endif
1000
1001void smp_fetch_global_regs(void)
1002{
1003	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1004}
1005
 
 
 
 
 
 
 
 
 
1006/* We know that the window frames of the user have been flushed
1007 * to the stack before we get here because all callers of us
1008 * are flush_tlb_*() routines, and these run after flush_cache_*()
1009 * which performs the flushw.
1010 *
1011 * The SMP TLB coherency scheme we use works as follows:
1012 *
1013 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1014 *    space has (potentially) executed on, this is the heuristic
1015 *    we use to avoid doing cross calls.
1016 *
1017 *    Also, for flushing from kswapd and also for clones, we
1018 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1019 *
1020 * 2) TLB context numbers are shared globally across all processors
1021 *    in the system, this allows us to play several games to avoid
1022 *    cross calls.
1023 *
1024 *    One invariant is that when a cpu switches to a process, and
1025 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1026 *    current cpu's bit set, that tlb context is flushed locally.
1027 *
1028 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1029 *    cross calls when we want to flush the currently running process's
1030 *    tlb state.  This is done by clearing all cpu bits except the current
1031 *    processor's in current->mm->cpu_vm_mask and performing the
1032 *    flush locally only.  This will force any subsequent cpus which run
1033 *    this task to flush the context from the local tlb if the process
1034 *    migrates to another cpu (again).
1035 *
1036 * 3) For shared address spaces (threads) and swapping we bite the
1037 *    bullet for most cases and perform the cross call (but only to
1038 *    the cpus listed in cpu_vm_mask).
1039 *
1040 *    The performance gain from "optimizing" away the cross call for threads is
1041 *    questionable (in theory the big win for threads is the massive sharing of
1042 *    address space state across processors).
1043 */
1044
1045/* This currently is only used by the hugetlb arch pre-fault
1046 * hook on UltraSPARC-III+ and later when changing the pagesize
1047 * bits of the context register for an address space.
1048 */
1049void smp_flush_tlb_mm(struct mm_struct *mm)
1050{
1051	u32 ctx = CTX_HWBITS(mm->context);
1052	int cpu = get_cpu();
1053
1054	if (atomic_read(&mm->mm_users) == 1) {
1055		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1056		goto local_flush_and_out;
1057	}
1058
1059	smp_cross_call_masked(&xcall_flush_tlb_mm,
1060			      ctx, 0, 0,
1061			      mm_cpumask(mm));
1062
1063local_flush_and_out:
1064	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1065
1066	put_cpu();
1067}
1068
 
 
 
 
 
 
 
 
 
 
 
 
 
1069void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1070{
1071	u32 ctx = CTX_HWBITS(mm->context);
1072	int cpu = get_cpu();
 
 
 
 
 
 
1073
1074	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1075		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1076	else
1077		smp_cross_call_masked(&xcall_flush_tlb_pending,
1078				      ctx, nr, (unsigned long) vaddrs,
1079				      mm_cpumask(mm));
1080
1081	__flush_tlb_pending(ctx, nr, vaddrs);
1082
1083	put_cpu();
1084}
1085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1087{
1088	start &= PAGE_MASK;
1089	end    = PAGE_ALIGN(end);
1090	if (start != end) {
1091		smp_cross_call(&xcall_flush_tlb_kernel_range,
1092			       0, start, end);
1093
1094		__flush_tlb_kernel_range(start, end);
1095	}
1096}
1097
1098/* CPU capture. */
1099/* #define CAPTURE_DEBUG */
1100extern unsigned long xcall_capture;
1101
1102static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1103static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1104static unsigned long penguins_are_doing_time;
1105
1106void smp_capture(void)
1107{
1108	int result = atomic_add_ret(1, &smp_capture_depth);
1109
1110	if (result == 1) {
1111		int ncpus = num_online_cpus();
1112
1113#ifdef CAPTURE_DEBUG
1114		printk("CPU[%d]: Sending penguins to jail...",
1115		       smp_processor_id());
1116#endif
1117		penguins_are_doing_time = 1;
1118		atomic_inc(&smp_capture_registry);
1119		smp_cross_call(&xcall_capture, 0, 0, 0);
1120		while (atomic_read(&smp_capture_registry) != ncpus)
1121			rmb();
1122#ifdef CAPTURE_DEBUG
1123		printk("done\n");
1124#endif
1125	}
1126}
1127
1128void smp_release(void)
1129{
1130	if (atomic_dec_and_test(&smp_capture_depth)) {
1131#ifdef CAPTURE_DEBUG
1132		printk("CPU[%d]: Giving pardon to "
1133		       "imprisoned penguins\n",
1134		       smp_processor_id());
1135#endif
1136		penguins_are_doing_time = 0;
1137		membar_safe("#StoreLoad");
1138		atomic_dec(&smp_capture_registry);
1139	}
1140}
1141
1142/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1143 * set, so they can service tlb flush xcalls...
1144 */
1145extern void prom_world(int);
1146
1147void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1148{
1149	clear_softint(1 << irq);
1150
1151	preempt_disable();
1152
1153	__asm__ __volatile__("flushw");
1154	prom_world(1);
1155	atomic_inc(&smp_capture_registry);
1156	membar_safe("#StoreLoad");
1157	while (penguins_are_doing_time)
1158		rmb();
1159	atomic_dec(&smp_capture_registry);
1160	prom_world(0);
1161
1162	preempt_enable();
1163}
1164
1165/* /proc/profile writes can call this, don't __init it please. */
1166int setup_profiling_timer(unsigned int multiplier)
1167{
1168	return -EINVAL;
1169}
1170
1171void __init smp_prepare_cpus(unsigned int max_cpus)
1172{
1173}
1174
1175void __devinit smp_prepare_boot_cpu(void)
1176{
1177}
1178
1179void __init smp_setup_processor_id(void)
1180{
1181	if (tlb_type == spitfire)
1182		xcall_deliver_impl = spitfire_xcall_deliver;
1183	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1184		xcall_deliver_impl = cheetah_xcall_deliver;
1185	else
1186		xcall_deliver_impl = hypervisor_xcall_deliver;
1187}
1188
1189void __devinit smp_fill_in_sib_core_maps(void)
1190{
1191	unsigned int i;
1192
1193	for_each_present_cpu(i) {
1194		unsigned int j;
1195
1196		cpumask_clear(&cpu_core_map[i]);
1197		if (cpu_data(i).core_id == 0) {
1198			cpumask_set_cpu(i, &cpu_core_map[i]);
1199			continue;
1200		}
1201
1202		for_each_present_cpu(j) {
1203			if (cpu_data(i).core_id ==
1204			    cpu_data(j).core_id)
1205				cpumask_set_cpu(j, &cpu_core_map[i]);
1206		}
1207	}
1208
 
 
 
 
 
 
 
 
 
 
 
 
 
1209	for_each_present_cpu(i) {
1210		unsigned int j;
1211
1212		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1213		if (cpu_data(i).proc_id == -1) {
1214			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1215			continue;
1216		}
1217
1218		for_each_present_cpu(j) {
1219			if (cpu_data(i).proc_id ==
1220			    cpu_data(j).proc_id)
1221				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1222		}
1223	}
1224}
1225
1226int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1227{
1228	int ret = smp_boot_one_cpu(cpu, tidle);
1229
1230	if (!ret) {
1231		cpumask_set_cpu(cpu, &smp_commenced_mask);
1232		while (!cpu_online(cpu))
1233			mb();
1234		if (!cpu_online(cpu)) {
1235			ret = -ENODEV;
1236		} else {
1237			/* On SUN4V, writes to %tick and %stick are
1238			 * not allowed.
1239			 */
1240			if (tlb_type != hypervisor)
1241				smp_synchronize_one_tick(cpu);
1242		}
1243	}
1244	return ret;
1245}
1246
1247#ifdef CONFIG_HOTPLUG_CPU
1248void cpu_play_dead(void)
1249{
1250	int cpu = smp_processor_id();
1251	unsigned long pstate;
1252
1253	idle_task_exit();
1254
1255	if (tlb_type == hypervisor) {
1256		struct trap_per_cpu *tb = &trap_block[cpu];
1257
1258		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1259				tb->cpu_mondo_pa, 0);
1260		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1261				tb->dev_mondo_pa, 0);
1262		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1263				tb->resum_mondo_pa, 0);
1264		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1265				tb->nonresum_mondo_pa, 0);
1266	}
1267
1268	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1269	membar_safe("#Sync");
1270
1271	local_irq_disable();
1272
1273	__asm__ __volatile__(
1274		"rdpr	%%pstate, %0\n\t"
1275		"wrpr	%0, %1, %%pstate"
1276		: "=r" (pstate)
1277		: "i" (PSTATE_IE));
1278
1279	while (1)
1280		barrier();
1281}
1282
1283int __cpu_disable(void)
1284{
1285	int cpu = smp_processor_id();
1286	cpuinfo_sparc *c;
1287	int i;
1288
1289	for_each_cpu(i, &cpu_core_map[cpu])
1290		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1291	cpumask_clear(&cpu_core_map[cpu]);
1292
1293	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1294		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1295	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1296
1297	c = &cpu_data(cpu);
1298
1299	c->core_id = 0;
1300	c->proc_id = -1;
1301
1302	smp_wmb();
1303
1304	/* Make sure no interrupts point to this cpu.  */
1305	fixup_irqs();
1306
1307	local_irq_enable();
1308	mdelay(1);
1309	local_irq_disable();
1310
1311	ipi_call_lock();
1312	set_cpu_online(cpu, false);
1313	ipi_call_unlock();
1314
1315	cpu_map_rebuild();
1316
1317	return 0;
1318}
1319
1320void __cpu_die(unsigned int cpu)
1321{
1322	int i;
1323
1324	for (i = 0; i < 100; i++) {
1325		smp_rmb();
1326		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1327			break;
1328		msleep(100);
1329	}
1330	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1331		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1332	} else {
1333#if defined(CONFIG_SUN_LDOMS)
1334		unsigned long hv_err;
1335		int limit = 100;
1336
1337		do {
1338			hv_err = sun4v_cpu_stop(cpu);
1339			if (hv_err == HV_EOK) {
1340				set_cpu_present(cpu, false);
1341				break;
1342			}
1343		} while (--limit > 0);
1344		if (limit <= 0) {
1345			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1346			       hv_err);
1347		}
1348#endif
1349	}
1350}
1351#endif
1352
1353void __init smp_cpus_done(unsigned int max_cpus)
1354{
1355	pcr_arch_init();
1356}
1357
1358void smp_send_reschedule(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1359{
1360	xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1361		      cpumask_of(cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1362}
1363
1364void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1365{
1366	clear_softint(1 << irq);
1367	scheduler_ipi();
1368}
1369
1370/* This is a nop because we capture all other cpus
1371 * anyways when making the PROM active.
1372 */
1373void smp_send_stop(void)
1374{
 
 
1375}
1376
1377/**
1378 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1379 * @cpu: cpu to allocate for
1380 * @size: size allocation in bytes
1381 * @align: alignment
1382 *
1383 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1384 * does the right thing for NUMA regardless of the current
1385 * configuration.
1386 *
1387 * RETURNS:
1388 * Pointer to the allocated area on success, NULL on failure.
1389 */
1390static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1391					size_t align)
1392{
1393	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1394#ifdef CONFIG_NEED_MULTIPLE_NODES
1395	int node = cpu_to_node(cpu);
1396	void *ptr;
1397
1398	if (!node_online(node) || !NODE_DATA(node)) {
1399		ptr = __alloc_bootmem(size, align, goal);
1400		pr_info("cpu %d has no node %d or node-local memory\n",
1401			cpu, node);
1402		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1403			 cpu, size, __pa(ptr));
1404	} else {
1405		ptr = __alloc_bootmem_node(NODE_DATA(node),
1406					   size, align, goal);
1407		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1408			 "%016lx\n", cpu, size, node, __pa(ptr));
1409	}
1410	return ptr;
1411#else
1412	return __alloc_bootmem(size, align, goal);
1413#endif
1414}
 
 
1415
1416static void __init pcpu_free_bootmem(void *ptr, size_t size)
1417{
1418	free_bootmem(__pa(ptr), size);
 
 
 
 
 
 
 
 
 
 
 
1419}
1420
1421static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1422{
1423	if (cpu_to_node(from) == cpu_to_node(to))
1424		return LOCAL_DISTANCE;
1425	else
1426		return REMOTE_DISTANCE;
1427}
1428
1429static void __init pcpu_populate_pte(unsigned long addr)
1430{
1431	pgd_t *pgd = pgd_offset_k(addr);
1432	pud_t *pud;
1433	pmd_t *pmd;
1434
1435	pud = pud_offset(pgd, addr);
1436	if (pud_none(*pud)) {
1437		pmd_t *new;
1438
1439		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1440		pud_populate(&init_mm, pud, new);
1441	}
1442
1443	pmd = pmd_offset(pud, addr);
1444	if (!pmd_present(*pmd)) {
1445		pte_t *new;
1446
1447		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1448		pmd_populate_kernel(&init_mm, pmd, new);
1449	}
1450}
1451
1452void __init setup_per_cpu_areas(void)
1453{
1454	unsigned long delta;
1455	unsigned int cpu;
1456	int rc = -EINVAL;
1457
1458	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1459		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1460					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1461					    pcpu_cpu_distance,
1462					    pcpu_alloc_bootmem,
1463					    pcpu_free_bootmem);
1464		if (rc)
1465			pr_warning("PERCPU: %s allocator failed (%d), "
1466				   "falling back to page size\n",
1467				   pcpu_fc_names[pcpu_chosen_fc], rc);
1468	}
1469	if (rc < 0)
1470		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1471					   pcpu_alloc_bootmem,
1472					   pcpu_free_bootmem,
1473					   pcpu_populate_pte);
1474	if (rc < 0)
1475		panic("cannot initialize percpu area (err=%d)", rc);
1476
1477	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1478	for_each_possible_cpu(cpu)
1479		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1480
1481	/* Setup %g5 for the boot cpu.  */
1482	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1483
1484	of_fill_in_cpu_data();
1485	if (tlb_type == hypervisor)
1486		mdesc_fill_in_cpu_data(cpu_all_mask);
1487}