Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This file handles the architecture dependent parts of process handling.
  4 *
  5 *    Copyright IBM Corp. 1999, 2009
  6 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  7 *		 Hartmut Penner <hp@de.ibm.com>,
  8 *		 Denis Joseph Barrow,
  9 */
 10
 11#include <linux/elf-randomize.h>
 12#include <linux/compiler.h>
 13#include <linux/cpu.h>
 14#include <linux/sched.h>
 15#include <linux/sched/debug.h>
 16#include <linux/sched/task.h>
 17#include <linux/sched/task_stack.h>
 18#include <linux/kernel.h>
 19#include <linux/mm.h>
 20#include <linux/elfcore.h>
 21#include <linux/smp.h>
 22#include <linux/slab.h>
 23#include <linux/interrupt.h>
 24#include <linux/tick.h>
 25#include <linux/personality.h>
 26#include <linux/syscalls.h>
 27#include <linux/compat.h>
 28#include <linux/kprobes.h>
 29#include <linux/random.h>
 30#include <linux/export.h>
 31#include <linux/init_task.h>
 32#include <linux/entry-common.h>
 33#include <linux/io.h>
 34#include <asm/guarded_storage.h>
 35#include <asm/access-regs.h>
 36#include <asm/switch_to.h>
 37#include <asm/cpu_mf.h>
 38#include <asm/processor.h>
 39#include <asm/ptrace.h>
 40#include <asm/vtimer.h>
 41#include <asm/exec.h>
 42#include <asm/fpu.h>
 43#include <asm/irq.h>
 
 44#include <asm/nmi.h>
 45#include <asm/smp.h>
 46#include <asm/stacktrace.h>
 47#include <asm/runtime_instr.h>
 48#include <asm/unwind.h>
 49#include "entry.h"
 50
 51void ret_from_fork(void) asm("ret_from_fork");
 52
 53void __ret_from_fork(struct task_struct *prev, struct pt_regs *regs)
 
 
 
 
 
 
 
 
 54{
 55	void (*func)(void *arg);
 56
 57	schedule_tail(prev);
 58
 59	if (!user_mode(regs)) {
 60		/* Kernel thread */
 61		func = (void *)regs->gprs[9];
 62		func((void *)regs->gprs[10]);
 63	}
 64	clear_pt_regs_flag(regs, PIF_SYSCALL);
 65	syscall_exit_to_user_mode(regs);
 
 
 
 
 66}
 67
 68void flush_thread(void)
 
 
 
 69{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70}
 71
 72void arch_setup_new_exec(void)
 73{
 74	if (get_lowcore()->current_pid != current->pid) {
 75		get_lowcore()->current_pid = current->pid;
 76		if (test_facility(40))
 77			lpp(&get_lowcore()->lpp);
 
 
 
 
 
 
 78	}
 79}
 80
 81void arch_release_task_struct(struct task_struct *tsk)
 82{
 83	runtime_instr_release(tsk);
 84	guarded_storage_release(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 85}
 
 86
 87int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 
 
 
 88{
 89	save_user_fpu_regs();
 90
 91	*dst = *src;
 92	dst->thread.kfpu_flags = 0;
 93
 94	/*
 95	 * Don't transfer over the runtime instrumentation or the guarded
 96	 * storage control block pointers. These fields are cleared here instead
 97	 * of in copy_thread() to avoid premature freeing of associated memory
 98	 * on fork() failure. Wait to clear the RI flag because ->stack still
 99	 * refers to the source thread.
100	 */
101	dst->thread.ri_cb = NULL;
102	dst->thread.gs_cb = NULL;
103	dst->thread.gs_bc_cb = NULL;
104
105	return 0;
 
106}
107
108int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
 
109{
110	unsigned long clone_flags = args->flags;
111	unsigned long new_stackp = args->stack;
112	unsigned long tls = args->tls;
113	struct fake_frame
114	{
115		struct stack_frame sf;
116		struct pt_regs childregs;
117	} *frame;
118
119	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
120	p->thread.ksp = (unsigned long) frame;
121	/* Save access registers to new thread structure. */
122	save_access_regs(&p->thread.acrs[0]);
123	/* start new process with ar4 pointing to the correct address space */
124	/* Don't copy debug registers */
125	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
126	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
127	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
128	p->thread.per_flags = 0;
129	/* Initialize per thread user and system timer values */
130	p->thread.user_timer = 0;
131	p->thread.guest_timer = 0;
132	p->thread.system_timer = 0;
133	p->thread.hardirq_timer = 0;
134	p->thread.softirq_timer = 0;
135	p->thread.last_break = 1;
136
137	frame->sf.back_chain = 0;
138	frame->sf.gprs[11 - 6] = (unsigned long)&frame->childregs;
139	frame->sf.gprs[12 - 6] = (unsigned long)p;
140	/* new return point is ret_from_fork */
141	frame->sf.gprs[14 - 6] = (unsigned long)ret_from_fork;
 
142	/* fake return stack for resume(), don't go back to schedule */
143	frame->sf.gprs[15 - 6] = (unsigned long)frame;
144
145	/* Store access registers to kernel stack of new process. */
146	if (unlikely(args->fn)) {
147		/* kernel thread */
148		memset(&frame->childregs, 0, sizeof(struct pt_regs));
149		frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO |
150					    PSW_MASK_EXT | PSW_MASK_MCHECK;
151		frame->childregs.gprs[9] = (unsigned long)args->fn;
152		frame->childregs.gprs[10] = (unsigned long)args->fn_arg;
153		frame->childregs.orig_gpr2 = -1;
154		frame->childregs.last_break = 1;
155		return 0;
156	}
157	frame->childregs = *current_pt_regs();
158	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
159	frame->childregs.flags = 0;
160	if (new_stackp)
161		frame->childregs.gprs[15] = new_stackp;
162	/*
163	 * Clear the runtime instrumentation flag after the above childregs
164	 * copy. The CB pointer was already cleared in arch_dup_task_struct().
165	 */
166	frame->childregs.psw.mask &= ~PSW_MASK_RI;
167
 
 
 
 
 
 
 
168	/* Set a new TLS ?  */
169	if (clone_flags & CLONE_SETTLS) {
170		if (is_compat_task()) {
171			p->thread.acrs[0] = (unsigned int)tls;
172		} else {
173			p->thread.acrs[0] = (unsigned int)(tls >> 32);
174			p->thread.acrs[1] = (unsigned int)tls;
175		}
176	}
177	/*
178	 * s390 stores the svc return address in arch_data when calling
179	 * sigreturn()/restart_syscall() via vdso. 1 means no valid address
180	 * stored.
181	 */
182	p->restart_block.arch_data = 1;
 
 
 
 
 
 
183	return 0;
184}
185
186void execve_tail(void)
187{
188	current->thread.ufpu.fpc = 0;
189	fpu_sfpc(0);
190}
191
192struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next)
 
193{
194	save_user_fpu_regs();
195	save_kernel_fpu_regs(&prev->thread);
196	save_access_regs(&prev->thread.acrs[0]);
197	save_ri_cb(prev->thread.ri_cb);
198	save_gs_cb(prev->thread.gs_cb);
199	update_cr_regs(next);
200	restore_kernel_fpu_regs(&next->thread);
201	restore_access_regs(&next->thread.acrs[0]);
202	restore_ri_cb(next->thread.ri_cb, prev->thread.ri_cb);
203	restore_gs_cb(next->thread.gs_cb);
204	return __switch_to_asm(prev, next);
205}
206
207unsigned long __get_wchan(struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
208{
209	struct unwind_state state;
210	unsigned long ip = 0;
211
212	if (!task_stack_page(p))
213		return 0;
214
215	if (!try_get_task_stack(p))
216		return 0;
 
 
 
 
217
218	unwind_for_each_frame(&state, p, NULL, 0) {
219		if (state.stack_info.type != STACK_TYPE_TASK) {
220			ip = 0;
221			break;
222		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
224		ip = unwind_get_return_address(&state);
225		if (!ip)
226			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
228		if (!in_sched_functions(ip))
229			break;
 
 
 
 
 
 
 
 
 
 
 
 
230	}
231
232	put_task_stack(p);
233	return ip;
234}
235
236unsigned long arch_align_stack(unsigned long sp)
237{
238	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
239		sp -= get_random_u32_below(PAGE_SIZE);
240	return sp & ~0xf;
241}
242
243static inline unsigned long brk_rnd(void)
244{
245	return (get_random_u16() & BRK_RND_MASK) << PAGE_SHIFT;
 
 
 
 
246}
247
248unsigned long arch_randomize_brk(struct mm_struct *mm)
249{
250	unsigned long ret;
 
 
 
 
 
 
 
 
 
251
252	ret = PAGE_ALIGN(mm->brk + brk_rnd());
253	return (ret > mm->brk) ? ret : mm->brk;
 
 
 
254}
v3.5.6
 
  1/*
  2 * This file handles the architecture dependent parts of process handling.
  3 *
  4 *    Copyright IBM Corp. 1999,2009
  5 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6 *		 Hartmut Penner <hp@de.ibm.com>,
  7 *		 Denis Joseph Barrow,
  8 */
  9
 
 10#include <linux/compiler.h>
 11#include <linux/cpu.h>
 12#include <linux/sched.h>
 
 
 
 13#include <linux/kernel.h>
 14#include <linux/mm.h>
 15#include <linux/elfcore.h>
 16#include <linux/smp.h>
 17#include <linux/slab.h>
 18#include <linux/interrupt.h>
 19#include <linux/tick.h>
 20#include <linux/personality.h>
 21#include <linux/syscalls.h>
 22#include <linux/compat.h>
 23#include <linux/kprobes.h>
 24#include <linux/random.h>
 25#include <linux/module.h>
 26#include <asm/io.h>
 
 
 
 
 
 
 27#include <asm/processor.h>
 
 
 
 
 28#include <asm/irq.h>
 29#include <asm/timer.h>
 30#include <asm/nmi.h>
 31#include <asm/smp.h>
 32#include <asm/switch_to.h>
 
 
 33#include "entry.h"
 34
 35asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
 36
 37/*
 38 * Return saved PC of a blocked thread. used in kernel/sched.
 39 * resume in entry.S does not create a new stack frame, it
 40 * just stores the registers %r6-%r15 to the frame given by
 41 * schedule. We want to return the address of the caller of
 42 * schedule, so we have to walk the backchain one time to
 43 * find the frame schedule() store its return address.
 44 */
 45unsigned long thread_saved_pc(struct task_struct *tsk)
 46{
 47	struct stack_frame *sf, *low, *high;
 
 
 48
 49	if (!tsk || !task_stack_page(tsk))
 50		return 0;
 51	low = task_stack_page(tsk);
 52	high = (struct stack_frame *) task_pt_regs(tsk);
 53	sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
 54	if (sf <= low || sf > high)
 55		return 0;
 56	sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
 57	if (sf <= low || sf > high)
 58		return 0;
 59	return sf->gprs[8];
 60}
 61
 62/*
 63 * The idle loop on a S390...
 64 */
 65static void default_idle(void)
 66{
 67	if (cpu_is_offline(smp_processor_id()))
 68		cpu_die();
 69	local_irq_disable();
 70	if (need_resched()) {
 71		local_irq_enable();
 72		return;
 73	}
 74	local_mcck_disable();
 75	if (test_thread_flag(TIF_MCCK_PENDING)) {
 76		local_mcck_enable();
 77		local_irq_enable();
 78		return;
 79	}
 80	/* Halt the cpu and keep track of cpu time accounting. */
 81	vtime_stop_cpu();
 82}
 83
 84void cpu_idle(void)
 85{
 86	for (;;) {
 87		tick_nohz_idle_enter();
 88		rcu_idle_enter();
 89		while (!need_resched() && !test_thread_flag(TIF_MCCK_PENDING))
 90			default_idle();
 91		rcu_idle_exit();
 92		tick_nohz_idle_exit();
 93		if (test_thread_flag(TIF_MCCK_PENDING))
 94			s390_handle_mcck();
 95		schedule_preempt_disabled();
 96	}
 97}
 98
 99extern void __kprobes kernel_thread_starter(void);
100
101asm(
102	".section .kprobes.text, \"ax\"\n"
103	".global kernel_thread_starter\n"
104	"kernel_thread_starter:\n"
105	"    la    2,0(10)\n"
106	"    basr  14,9\n"
107	"    la    2,0\n"
108	"    br    11\n"
109	".previous\n");
110
111int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
112{
113	struct pt_regs regs;
114
115	memset(&regs, 0, sizeof(regs));
116	regs.psw.mask = psw_kernel_bits |
117		PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
118	regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
119	regs.gprs[9] = (unsigned long) fn;
120	regs.gprs[10] = (unsigned long) arg;
121	regs.gprs[11] = (unsigned long) do_exit;
122	regs.orig_gpr2 = -1;
123
124	/* Ok, create the new process.. */
125	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
126		       0, &regs, 0, NULL, NULL);
127}
128EXPORT_SYMBOL(kernel_thread);
129
130/*
131 * Free current thread data structures etc..
132 */
133void exit_thread(void)
134{
135}
 
 
 
136
137void flush_thread(void)
138{
139}
 
 
 
 
 
 
 
140
141void release_thread(struct task_struct *dead_task)
142{
143}
144
145int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
146		unsigned long unused,
147		struct task_struct *p, struct pt_regs *regs)
148{
149	struct thread_info *ti;
 
 
150	struct fake_frame
151	{
152		struct stack_frame sf;
153		struct pt_regs childregs;
154	} *frame;
155
156	frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
157	p->thread.ksp = (unsigned long) frame;
158	/* Store access registers to kernel stack of new process. */
159	frame->childregs = *regs;
160	frame->childregs.gprs[2] = 0;	/* child returns 0 on fork. */
161	frame->childregs.gprs[15] = new_stackp;
 
 
 
 
 
 
 
 
 
 
 
 
162	frame->sf.back_chain = 0;
163
 
164	/* new return point is ret_from_fork */
165	frame->sf.gprs[8] = (unsigned long) ret_from_fork;
166
167	/* fake return stack for resume(), don't go back to schedule */
168	frame->sf.gprs[9] = (unsigned long) frame;
169
170	/* Save access registers to new thread structure. */
171	save_access_regs(&p->thread.acrs[0]);
172
173#ifndef CONFIG_64BIT
 
 
 
 
 
 
 
 
 
 
 
 
 
174	/*
175	 * save fprs to current->thread.fp_regs to merge them with
176	 * the emulated registers and then copy the result to the child.
177	 */
178	save_fp_regs(&current->thread.fp_regs);
179	memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
180	       sizeof(s390_fp_regs));
181	/* Set a new TLS ?  */
182	if (clone_flags & CLONE_SETTLS)
183		p->thread.acrs[0] = regs->gprs[6];
184#else /* CONFIG_64BIT */
185	/* Save the fpu registers to new thread structure. */
186	save_fp_regs(&p->thread.fp_regs);
187	/* Set a new TLS ?  */
188	if (clone_flags & CLONE_SETTLS) {
189		if (is_compat_task()) {
190			p->thread.acrs[0] = (unsigned int) regs->gprs[6];
191		} else {
192			p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
193			p->thread.acrs[1] = (unsigned int) regs->gprs[6];
194		}
195	}
196#endif /* CONFIG_64BIT */
197	/* start new process with ar4 pointing to the correct address space */
198	p->thread.mm_segment = get_fs();
199	/* Don't copy debug registers */
200	memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
201	memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
202	clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
203	clear_tsk_thread_flag(p, TIF_PER_TRAP);
204	/* Initialize per thread user and system timer values */
205	ti = task_thread_info(p);
206	ti->user_timer = 0;
207	ti->system_timer = 0;
208	return 0;
209}
210
211SYSCALL_DEFINE0(fork)
212{
213	struct pt_regs *regs = task_pt_regs(current);
214	return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
215}
216
217SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
218		int __user *, parent_tidptr, int __user *, child_tidptr)
219{
220	struct pt_regs *regs = task_pt_regs(current);
221
222	if (!newsp)
223		newsp = regs->gprs[15];
224	return do_fork(clone_flags, newsp, regs, 0,
225		       parent_tidptr, child_tidptr);
 
 
 
 
 
226}
227
228/*
229 * This is trivial, and on the face of it looks like it
230 * could equally well be done in user mode.
231 *
232 * Not so, for quite unobvious reasons - register pressure.
233 * In user mode vfork() cannot have a stack frame, and if
234 * done by calling the "clone()" system call directly, you
235 * do not have enough call-clobbered registers to hold all
236 * the information you need.
237 */
238SYSCALL_DEFINE0(vfork)
239{
240	struct pt_regs *regs = task_pt_regs(current);
241	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
242		       regs->gprs[15], regs, 0, NULL, NULL);
243}
 
244
245asmlinkage void execve_tail(void)
246{
247	current->thread.fp_regs.fpc = 0;
248	if (MACHINE_HAS_IEEE)
249		asm volatile("sfpc %0,%0" : : "d" (0));
250}
251
252/*
253 * sys_execve() executes a new program.
254 */
255SYSCALL_DEFINE3(execve, const char __user *, name,
256		const char __user *const __user *, argv,
257		const char __user *const __user *, envp)
258{
259	struct pt_regs *regs = task_pt_regs(current);
260	char *filename;
261	long rc;
262
263	filename = getname(name);
264	rc = PTR_ERR(filename);
265	if (IS_ERR(filename))
266		return rc;
267	rc = do_execve(filename, argv, envp, regs);
268	if (rc)
269		goto out;
270	execve_tail();
271	rc = regs->gprs[2];
272out:
273	putname(filename);
274	return rc;
275}
276
277/*
278 * fill in the FPU structure for a core dump.
279 */
280int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
281{
282#ifndef CONFIG_64BIT
283	/*
284	 * save fprs to current->thread.fp_regs to merge them with
285	 * the emulated registers and then copy the result to the dump.
286	 */
287	save_fp_regs(&current->thread.fp_regs);
288	memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
289#else /* CONFIG_64BIT */
290	save_fp_regs(fpregs);
291#endif /* CONFIG_64BIT */
292	return 1;
293}
294EXPORT_SYMBOL(dump_fpu);
295
296unsigned long get_wchan(struct task_struct *p)
297{
298	struct stack_frame *sf, *low, *high;
299	unsigned long return_address;
300	int count;
301
302	if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
303		return 0;
304	low = task_stack_page(p);
305	high = (struct stack_frame *) task_pt_regs(p);
306	sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
307	if (sf <= low || sf > high)
308		return 0;
309	for (count = 0; count < 16; count++) {
310		sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
311		if (sf <= low || sf > high)
312			return 0;
313		return_address = sf->gprs[8] & PSW_ADDR_INSN;
314		if (!in_sched_functions(return_address))
315			return return_address;
316	}
317	return 0;
 
 
318}
319
320unsigned long arch_align_stack(unsigned long sp)
321{
322	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
323		sp -= get_random_int() & ~PAGE_MASK;
324	return sp & ~0xf;
325}
326
327static inline unsigned long brk_rnd(void)
328{
329	/* 8MB for 32bit, 1GB for 64bit */
330	if (is_32bit_task())
331		return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
332	else
333		return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
334}
335
336unsigned long arch_randomize_brk(struct mm_struct *mm)
337{
338	unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
339
340	if (ret < mm->brk)
341		return mm->brk;
342	return ret;
343}
344
345unsigned long randomize_et_dyn(unsigned long base)
346{
347	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
348
349	if (!(current->flags & PF_RANDOMIZE))
350		return base;
351	if (ret < base)
352		return base;
353	return ret;
354}