Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
  4 *
  5 * Use the z/Architecture Vector Extension Facility to accelerate the
  6 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
  7 * and Castagnoli.
  8 *
  9 * This CRC-32 implementation algorithm is bitreflected and processes
 10 * the least-significant bit first (Little-Endian).
 11 *
 12 * Copyright IBM Corp. 2015
 13 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
 14 */
 15
 16#include <linux/types.h>
 17#include <asm/fpu.h>
 18#include "crc32-vx.h"
 19
 20/* Vector register range containing CRC-32 constants */
 21#define CONST_PERM_LE2BE	9
 22#define CONST_R2R1		10
 23#define CONST_R4R3		11
 24#define CONST_R5		12
 25#define CONST_RU_POLY		13
 26#define CONST_CRC_POLY		14
 27
 28/*
 29 * The CRC-32 constant block contains reduction constants to fold and
 30 * process particular chunks of the input data stream in parallel.
 31 *
 32 * For the CRC-32 variants, the constants are precomputed according to
 33 * these definitions:
 34 *
 35 *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
 36 *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
 37 *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1
 38 *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1
 39 *	R5 = [(x64 mod P'(x) << 32)]'	    << 1
 40 *	R6 = [(x32 mod P'(x) << 32)]'	    << 1
 41 *
 42 *	The bitreflected Barret reduction constant, u', is defined as
 43 *	the bit reversal of floor(x**64 / P(x)).
 44 *
 45 *	where P(x) is the polynomial in the normal domain and the P'(x) is the
 46 *	polynomial in the reversed (bitreflected) domain.
 47 *
 48 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
 49 *
 50 *	P(x)  = 0x04C11DB7
 51 *	P'(x) = 0xEDB88320
 52 *
 53 * CRC-32C (Castagnoli) polynomials:
 54 *
 55 *	P(x)  = 0x1EDC6F41
 56 *	P'(x) = 0x82F63B78
 57 */
 58
 59static unsigned long constants_CRC_32_LE[] = {
 60	0x0f0e0d0c0b0a0908, 0x0706050403020100,	/* BE->LE mask */
 61	0x1c6e41596, 0x154442bd4,		/* R2, R1 */
 62	0x0ccaa009e, 0x1751997d0,		/* R4, R3 */
 63	0x0, 0x163cd6124,			/* R5 */
 64	0x0, 0x1f7011641,			/* u' */
 65	0x0, 0x1db710641			/* P'(x) << 1 */
 66};
 67
 68static unsigned long constants_CRC_32C_LE[] = {
 69	0x0f0e0d0c0b0a0908, 0x0706050403020100,	/* BE->LE mask */
 70	0x09e4addf8, 0x740eef02,		/* R2, R1 */
 71	0x14cd00bd6, 0xf20c0dfe,		/* R4, R3 */
 72	0x0, 0x0dd45aab8,			/* R5 */
 73	0x0, 0x0dea713f1,			/* u' */
 74	0x0, 0x105ec76f0			/* P'(x) << 1 */
 75};
 76
 77/**
 78 * crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers
 79 * @crc: Initial CRC value, typically ~0.
 80 * @buf: Input buffer pointer, performance might be improved if the
 81 *	 buffer is on a doubleword boundary.
 82 * @size: Size of the buffer, must be 64 bytes or greater.
 83 * @constants: CRC-32 constant pool base pointer.
 84 *
 85 * Register usage:
 86 *	V0:	  Initial CRC value and intermediate constants and results.
 87 *	V1..V4:	  Data for CRC computation.
 88 *	V5..V8:	  Next data chunks that are fetched from the input buffer.
 89 *	V9:	  Constant for BE->LE conversion and shift operations
 90 *	V10..V14: CRC-32 constants.
 91 */
 92static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants)
 93{
 94	/* Load CRC-32 constants */
 95	fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants);
 96
 97	/*
 98	 * Load the initial CRC value.
 99	 *
100	 * The CRC value is loaded into the rightmost word of the
101	 * vector register and is later XORed with the LSB portion
102	 * of the loaded input data.
103	 */
104	fpu_vzero(0);			/* Clear V0 */
105	fpu_vlvgf(0, crc, 3);		/* Load CRC into rightmost word */
106
107	/* Load a 64-byte data chunk and XOR with CRC */
108	fpu_vlm(1, 4, buf);
109	fpu_vperm(1, 1, 1, CONST_PERM_LE2BE);
110	fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
111	fpu_vperm(3, 3, 3, CONST_PERM_LE2BE);
112	fpu_vperm(4, 4, 4, CONST_PERM_LE2BE);
113
114	fpu_vx(1, 0, 1);		/* V1 ^= CRC */
115	buf += 64;
116	size -= 64;
117
118	while (size >= 64) {
119		fpu_vlm(5, 8, buf);
120		fpu_vperm(5, 5, 5, CONST_PERM_LE2BE);
121		fpu_vperm(6, 6, 6, CONST_PERM_LE2BE);
122		fpu_vperm(7, 7, 7, CONST_PERM_LE2BE);
123		fpu_vperm(8, 8, 8, CONST_PERM_LE2BE);
124		/*
125		 * Perform a GF(2) multiplication of the doublewords in V1 with
126		 * the R1 and R2 reduction constants in V0.  The intermediate
127		 * result is then folded (accumulated) with the next data chunk
128		 * in V5 and stored in V1. Repeat this step for the register
129		 * contents in V2, V3, and V4 respectively.
130		 */
131		fpu_vgfmag(1, CONST_R2R1, 1, 5);
132		fpu_vgfmag(2, CONST_R2R1, 2, 6);
133		fpu_vgfmag(3, CONST_R2R1, 3, 7);
134		fpu_vgfmag(4, CONST_R2R1, 4, 8);
135		buf += 64;
136		size -= 64;
137	}
138
139	/*
140	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
141	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
142	 * value remains.
143	 */
144	fpu_vgfmag(1, CONST_R4R3, 1, 2);
145	fpu_vgfmag(1, CONST_R4R3, 1, 3);
146	fpu_vgfmag(1, CONST_R4R3, 1, 4);
147
148	while (size >= 16) {
149		fpu_vl(2, buf);
150		fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
151		fpu_vgfmag(1, CONST_R4R3, 1, 2);
152		buf += 16;
153		size -= 16;
154	}
155
156	/*
157	 * Set up a vector register for byte shifts.  The shift value must
158	 * be loaded in bits 1-4 in byte element 7 of a vector register.
159	 * Shift by 8 bytes: 0x40
160	 * Shift by 4 bytes: 0x20
161	 */
162	fpu_vleib(9, 0x40, 7);
163
164	/*
165	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
166	 * to move R4 into the rightmost doubleword and set the leftmost
167	 * doubleword to 0x1.
168	 */
169	fpu_vsrlb(0, CONST_R4R3, 9);
170	fpu_vleig(0, 1, 0);
171
172	/*
173	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword
174	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
175	 * multiplied by 0x1 and is then XORed with rightmost product.
176	 * Implicitly, the intermediate leftmost product becomes padded
177	 */
178	fpu_vgfmg(1, 0, 1);
179
180	/*
181	 * Now do the final 32-bit fold by multiplying the rightmost word
182	 * in V1 with R5 and XOR the result with the remaining bits in V1.
183	 *
184	 * To achieve this by a single VGFMAG, right shift V1 by a word
185	 * and store the result in V2 which is then accumulated.  Use the
186	 * vector unpack instruction to load the rightmost half of the
187	 * doubleword into the rightmost doubleword element of V1; the other
188	 * half is loaded in the leftmost doubleword.
189	 * The vector register with CONST_R5 contains the R5 constant in the
190	 * rightmost doubleword and the leftmost doubleword is zero to ignore
191	 * the leftmost product of V1.
192	 */
193	fpu_vleib(9, 0x20, 7);		  /* Shift by words */
194	fpu_vsrlb(2, 1, 9);		  /* Store remaining bits in V2 */
195	fpu_vupllf(1, 1);		  /* Split rightmost doubleword */
196	fpu_vgfmag(1, CONST_R5, 1, 2);	  /* V1 = (V1 * R5) XOR V2 */
197
198	/*
199	 * Apply a Barret reduction to compute the final 32-bit CRC value.
200	 *
201	 * The input values to the Barret reduction are the degree-63 polynomial
202	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
203	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
204	 * P(x).
205	 *
206	 * The Barret reduction algorithm is defined as:
207	 *
208	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
209	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
210	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
211	 *
212	 *  Note: The leftmost doubleword of vector register containing
213	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
214	 *  is zero and does not contribute to the final result.
215	 */
216
217	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
218	fpu_vupllf(2, 1);
219	fpu_vgfmg(2, CONST_RU_POLY, 2);
220
221	/*
222	 * Compute the GF(2) product of the CRC polynomial with T1(x) in
223	 * V2 and XOR the intermediate result, T2(x), with the value in V1.
224	 * The final result is stored in word element 2 of V2.
225	 */
226	fpu_vupllf(2, 2);
227	fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
228
229	return fpu_vlgvf(2, 2);
230}
231
232u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
233{
234	return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]);
235}
236
237u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
238{
239	return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]);
240}