Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/arch/parisc/mm/init.c
   4 *
   5 *  Copyright (C) 1995	Linus Torvalds
   6 *  Copyright 1999 SuSE GmbH
   7 *    changed by Philipp Rumpf
   8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
  10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  11 *
  12 */
  13
  14
  15#include <linux/module.h>
  16#include <linux/mm.h>
  17#include <linux/memblock.h>
  18#include <linux/gfp.h>
  19#include <linux/delay.h>
  20#include <linux/init.h>
 
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>	/* for node_online_map */
  25#include <linux/pagemap.h>	/* for release_pages */
  26#include <linux/compat.h>
  27#include <linux/execmem.h>
  28
  29#include <asm/pgalloc.h>
 
  30#include <asm/tlb.h>
  31#include <asm/pdc_chassis.h>
  32#include <asm/mmzone.h>
  33#include <asm/sections.h>
  34#include <asm/msgbuf.h>
  35#include <asm/sparsemem.h>
  36#include <asm/asm-offsets.h>
  37#include <asm/shmbuf.h>
  38
  39extern int  data_start;
  40extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
  41
  42#if CONFIG_PGTABLE_LEVELS == 3
  43pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
 
 
 
 
 
  44#endif
  45
  46pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
  47pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
 
 
 
 
 
  48
  49static struct resource data_resource = {
  50	.name	= "Kernel data",
  51	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  52};
  53
  54static struct resource code_resource = {
  55	.name	= "Kernel code",
  56	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  57};
  58
  59static struct resource pdcdata_resource = {
  60	.name	= "PDC data (Page Zero)",
  61	.start	= 0,
  62	.end	= 0x9ff,
  63	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  64};
  65
  66static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
  67
  68/* The following array is initialized from the firmware specific
  69 * information retrieved in kernel/inventory.c.
  70 */
  71
  72physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
  73int npmem_ranges __initdata;
  74
  75#ifdef CONFIG_64BIT
  76#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
  77#else /* !CONFIG_64BIT */
  78#define MAX_MEM         (3584U*1024U*1024U)
  79#endif /* !CONFIG_64BIT */
  80
  81static unsigned long mem_limit __read_mostly = MAX_MEM;
  82
  83static void __init mem_limit_func(void)
  84{
  85	char *cp, *end;
  86	unsigned long limit;
  87
  88	/* We need this before __setup() functions are called */
  89
  90	limit = MAX_MEM;
  91	for (cp = boot_command_line; *cp; ) {
  92		if (memcmp(cp, "mem=", 4) == 0) {
  93			cp += 4;
  94			limit = memparse(cp, &end);
  95			if (end != cp)
  96				break;
  97			cp = end;
  98		} else {
  99			while (*cp != ' ' && *cp)
 100				++cp;
 101			while (*cp == ' ')
 102				++cp;
 103		}
 104	}
 105
 106	if (limit < mem_limit)
 107		mem_limit = limit;
 108}
 109
 110#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 111
 112static void __init setup_bootmem(void)
 113{
 
 114	unsigned long mem_max;
 115#ifndef CONFIG_SPARSEMEM
 
 
 
 116	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 117	int npmem_holes;
 118#endif
 119	int i, sysram_resource_count;
 120
 121	disable_sr_hashing(); /* Turn off space register hashing */
 122
 123	/*
 124	 * Sort the ranges. Since the number of ranges is typically
 125	 * small, and performance is not an issue here, just do
 126	 * a simple insertion sort.
 127	 */
 128
 129	for (i = 1; i < npmem_ranges; i++) {
 130		int j;
 131
 132		for (j = i; j > 0; j--) {
 
 
 133			if (pmem_ranges[j-1].start_pfn <
 134			    pmem_ranges[j].start_pfn) {
 135
 136				break;
 137			}
 138			swap(pmem_ranges[j-1], pmem_ranges[j]);
 
 
 
 
 
 139		}
 140	}
 141
 142#ifndef CONFIG_SPARSEMEM
 143	/*
 144	 * Throw out ranges that are too far apart (controlled by
 145	 * MAX_GAP).
 146	 */
 147
 148	for (i = 1; i < npmem_ranges; i++) {
 149		if (pmem_ranges[i].start_pfn -
 150			(pmem_ranges[i-1].start_pfn +
 151			 pmem_ranges[i-1].pages) > MAX_GAP) {
 152			npmem_ranges = i;
 153			printk("Large gap in memory detected (%ld pages). "
 154			       "Consider turning on CONFIG_SPARSEMEM\n",
 155			       pmem_ranges[i].start_pfn -
 156			       (pmem_ranges[i-1].start_pfn +
 157			        pmem_ranges[i-1].pages));
 158			break;
 159		}
 160	}
 161#endif
 162
 163	/* Print the memory ranges */
 164	pr_info("Memory Ranges:\n");
 165
 166	for (i = 0; i < npmem_ranges; i++) {
 167		struct resource *res = &sysram_resources[i];
 168		unsigned long start;
 169		unsigned long size;
 170
 171		size = (pmem_ranges[i].pages << PAGE_SHIFT);
 172		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 173		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 174			i, start, start + (size - 1), size >> 20);
 175
 176		/* request memory resource */
 177		res->name = "System RAM";
 178		res->start = start;
 179		res->end = start + size - 1;
 180		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 181		request_resource(&iomem_resource, res);
 
 
 
 182	}
 183
 184	sysram_resource_count = npmem_ranges;
 
 
 
 
 
 
 
 
 185
 186	/*
 187	 * For 32 bit kernels we limit the amount of memory we can
 188	 * support, in order to preserve enough kernel address space
 189	 * for other purposes. For 64 bit kernels we don't normally
 190	 * limit the memory, but this mechanism can be used to
 191	 * artificially limit the amount of memory (and it is written
 192	 * to work with multiple memory ranges).
 193	 */
 194
 195	mem_limit_func();       /* check for "mem=" argument */
 196
 197	mem_max = 0;
 
 198	for (i = 0; i < npmem_ranges; i++) {
 199		unsigned long rsize;
 200
 201		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 202		if ((mem_max + rsize) > mem_limit) {
 203			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 204			if (mem_max == mem_limit)
 205				npmem_ranges = i;
 206			else {
 207				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 208						       - (mem_max >> PAGE_SHIFT);
 209				npmem_ranges = i + 1;
 210				mem_max = mem_limit;
 211			}
 
 212			break;
 213		}
 
 214		mem_max += rsize;
 215	}
 216
 217	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 218
 219#ifndef CONFIG_SPARSEMEM
 220	/* Merge the ranges, keeping track of the holes */
 
 221	{
 222		unsigned long end_pfn;
 223		unsigned long hole_pages;
 224
 225		npmem_holes = 0;
 226		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 227		for (i = 1; i < npmem_ranges; i++) {
 228
 229			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 230			if (hole_pages) {
 231				pmem_holes[npmem_holes].start_pfn = end_pfn;
 232				pmem_holes[npmem_holes++].pages = hole_pages;
 233				end_pfn += hole_pages;
 234			}
 235			end_pfn += pmem_ranges[i].pages;
 236		}
 237
 238		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 239		npmem_ranges = 1;
 240	}
 241#endif
 242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243	/*
 244	 * Initialize and free the full range of memory in each range.
 
 
 
 245	 */
 246
 
 247	max_pfn = 0;
 248	for (i = 0; i < npmem_ranges; i++) {
 249		unsigned long start_pfn;
 250		unsigned long npages;
 251		unsigned long start;
 252		unsigned long size;
 253
 254		start_pfn = pmem_ranges[i].start_pfn;
 255		npages = pmem_ranges[i].pages;
 256
 257		start = start_pfn << PAGE_SHIFT;
 258		size = npages << PAGE_SHIFT;
 259
 260		/* add system RAM memblock */
 261		memblock_add(start, size);
 262
 
 
 263		if ((start_pfn + npages) > max_pfn)
 264			max_pfn = start_pfn + npages;
 265	}
 266
 267	/*
 268	 * We can't use memblock top-down allocations because we only
 269	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
 270	 * the assembly bootup code.
 271	 */
 272	memblock_set_bottom_up(true);
 273
 274	/* IOMMU is always used to access "high mem" on those boxes
 275	 * that can support enough mem that a PCI device couldn't
 276	 * directly DMA to any physical addresses.
 277	 * ISA DMA support will need to revisit this.
 278	 */
 279	max_low_pfn = max_pfn;
 280
 
 
 
 281	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 282
 283#define PDC_CONSOLE_IO_IODC_SIZE 32768
 284
 285	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
 286				PDC_CONSOLE_IO_IODC_SIZE));
 287	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
 288			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
 
 
 
 
 289
 290#ifndef CONFIG_SPARSEMEM
 291
 292	/* reserve the holes */
 293
 294	for (i = 0; i < npmem_holes; i++) {
 295		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
 296				(pmem_holes[i].pages << PAGE_SHIFT));
 
 
 297	}
 298#endif
 299
 300#ifdef CONFIG_BLK_DEV_INITRD
 301	if (initrd_start) {
 302		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 303		if (__pa(initrd_start) < mem_max) {
 304			unsigned long initrd_reserve;
 305
 306			if (__pa(initrd_end) > mem_max) {
 307				initrd_reserve = mem_max - __pa(initrd_start);
 308			} else {
 309				initrd_reserve = initrd_end - initrd_start;
 310			}
 311			initrd_below_start_ok = 1;
 312			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 313
 314			memblock_reserve(__pa(initrd_start), initrd_reserve);
 
 315		}
 316	}
 317#endif
 318
 319	data_resource.start =  virt_to_phys(&data_start);
 320	data_resource.end = virt_to_phys(_end) - 1;
 321	code_resource.start = virt_to_phys(_text);
 322	code_resource.end = virt_to_phys(&data_start)-1;
 323
 324	/* We don't know which region the kernel will be in, so try
 325	 * all of them.
 326	 */
 327	for (i = 0; i < sysram_resource_count; i++) {
 328		struct resource *res = &sysram_resources[i];
 329		request_resource(res, &code_resource);
 330		request_resource(res, &data_resource);
 331	}
 332	request_resource(&sysram_resources[0], &pdcdata_resource);
 333
 334	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
 335	pdc_pdt_init();
 336
 337	memblock_allow_resize();
 338	memblock_dump_all();
 339}
 340
 341static bool kernel_set_to_readonly;
 342
 343static void __ref map_pages(unsigned long start_vaddr,
 344			    unsigned long start_paddr, unsigned long size,
 345			    pgprot_t pgprot, int force)
 346{
 
 347	pmd_t *pmd;
 348	pte_t *pg_table;
 349	unsigned long end_paddr;
 350	unsigned long start_pmd;
 351	unsigned long start_pte;
 352	unsigned long tmp1;
 353	unsigned long tmp2;
 354	unsigned long address;
 355	unsigned long vaddr;
 356	unsigned long ro_start;
 357	unsigned long ro_end;
 358	unsigned long kernel_start, kernel_end;
 
 
 
 359
 360	ro_start = __pa((unsigned long)_text);
 361	ro_end   = __pa((unsigned long)&data_start);
 362	kernel_start = __pa((unsigned long)&__init_begin);
 363	kernel_end  = __pa((unsigned long)&_end);
 364
 365	end_paddr = start_paddr + size;
 366
 367	/* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
 
 
 
 
 368	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 
 369	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 370
 371	address = start_paddr;
 372	vaddr = start_vaddr;
 373	while (address < end_paddr) {
 374		pgd_t *pgd = pgd_offset_k(vaddr);
 375		p4d_t *p4d = p4d_offset(pgd, vaddr);
 376		pud_t *pud = pud_offset(p4d, vaddr);
 
 377
 378#if CONFIG_PGTABLE_LEVELS == 3
 379		if (pud_none(*pud)) {
 380			pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
 381					     PAGE_SIZE << PMD_TABLE_ORDER);
 382			if (!pmd)
 383				panic("pmd allocation failed.\n");
 384			pud_populate(NULL, pud, pmd);
 385		}
 
 
 386#endif
 
 387
 388		pmd = pmd_offset(pud, vaddr);
 
 
 389		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 390			if (pmd_none(*pmd)) {
 391				pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 392				if (!pg_table)
 393					panic("page table allocation failed\n");
 394				pmd_populate_kernel(NULL, pmd, pg_table);
 
 
 
 
 
 395			}
 396
 397			pg_table = pte_offset_kernel(pmd, vaddr);
 
 
 
 
 398			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 399				pte_t pte;
 400				pgprot_t prot;
 401				bool huge = false;
 402
 403				if (force) {
 404					prot = pgprot;
 405				} else if (address < kernel_start || address >= kernel_end) {
 406					/* outside kernel memory */
 407					prot = PAGE_KERNEL;
 408				} else if (!kernel_set_to_readonly) {
 409					/* still initializing, allow writing to RO memory */
 410					prot = PAGE_KERNEL_RWX;
 411					huge = true;
 412				} else if (address >= ro_start) {
 413					/* Code (ro) and Data areas */
 414					prot = (address < ro_end) ?
 415						PAGE_KERNEL_EXEC : PAGE_KERNEL;
 416					huge = true;
 417				} else {
 418					prot = PAGE_KERNEL;
 419				}
 420
 421				pte = __mk_pte(address, prot);
 422				if (huge)
 423					pte = pte_mkhuge(pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424
 425				if (address >= end_paddr)
 426					break;
 
 
 
 
 427
 428				set_pte(pg_table, pte);
 429
 430				address += PAGE_SIZE;
 431				vaddr += PAGE_SIZE;
 432			}
 433			start_pte = 0;
 434
 435			if (address >= end_paddr)
 436			    break;
 437		}
 438		start_pmd = 0;
 439	}
 440}
 441
 442void __init set_kernel_text_rw(int enable_read_write)
 443{
 444	unsigned long start = (unsigned long) __init_begin;
 445	unsigned long end   = (unsigned long) &data_start;
 446
 447	map_pages(start, __pa(start), end-start,
 448		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
 449
 450	/* force the kernel to see the new page table entries */
 451	flush_cache_all();
 452	flush_tlb_all();
 453}
 454
 455void free_initmem(void)
 456{
 
 457	unsigned long init_begin = (unsigned long)__init_begin;
 458	unsigned long init_end = (unsigned long)__init_end;
 459	unsigned long kernel_end  = (unsigned long)&_end;
 460
 461	/* Remap kernel text and data, but do not touch init section yet. */
 462	map_pages(init_end, __pa(init_end), kernel_end - init_end,
 463		  PAGE_KERNEL, 0);
 464
 465	/* The init text pages are marked R-X.  We have to
 466	 * flush the icache and mark them RW-
 467	 *
 
 468	 * Do a dummy remap of the data section first (the data
 469	 * section is already PAGE_KERNEL) to pull in the TLB entries
 470	 * for map_kernel */
 471	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 472		  PAGE_KERNEL_RWX, 1);
 473	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 474	 * map_pages */
 475	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 476		  PAGE_KERNEL, 1);
 477
 478	/* force the kernel to see the new TLB entries */
 479	__flush_tlb_range(0, init_begin, kernel_end);
 480
 
 
 
 481	/* finally dump all the instructions which were cached, since the
 482	 * pages are no-longer executable */
 483	flush_icache_range(init_begin, init_end);
 484
 485	free_initmem_default(POISON_FREE_INITMEM);
 
 
 
 
 
 
 486
 487	/* set up a new led state on systems shipped LED State panel */
 488	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 
 
 
 489}
 490
 491
 492#ifdef CONFIG_STRICT_KERNEL_RWX
 493void mark_rodata_ro(void)
 494{
 495	unsigned long start = (unsigned long) &__start_rodata;
 496	unsigned long end = (unsigned long) &__end_rodata;
 497
 498	pr_info("Write protecting the kernel read-only data: %luk\n",
 499	       (end - start) >> 10);
 500
 501	kernel_set_to_readonly = true;
 502	map_pages(start, __pa(start), end - start, PAGE_KERNEL, 0);
 503
 504	/* force the kernel to see the new page table entries */
 505	flush_cache_all();
 506	flush_tlb_all();
 507}
 508#endif
 509
 510
 511/*
 512 * Just an arbitrary offset to serve as a "hole" between mapping areas
 513 * (between top of physical memory and a potential pcxl dma mapping
 514 * area, and below the vmalloc mapping area).
 515 *
 516 * The current 32K value just means that there will be a 32K "hole"
 517 * between mapping areas. That means that  any out-of-bounds memory
 518 * accesses will hopefully be caught. The vmalloc() routines leaves
 519 * a hole of 4kB between each vmalloced area for the same reason.
 520 */
 521
 522 /* Leave room for gateway page expansion */
 523#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 524#error KERNEL_MAP_START is in gateway reserved region
 525#endif
 526#define MAP_START (KERNEL_MAP_START)
 527
 528#define VM_MAP_OFFSET  (32*1024)
 529#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 530				     & ~(VM_MAP_OFFSET-1)))
 531
 532void *parisc_vmalloc_start __ro_after_init;
 533EXPORT_SYMBOL(parisc_vmalloc_start);
 534
 
 
 
 
 535void __init mem_init(void)
 536{
 537	/* Do sanity checks on IPC (compat) structures */
 538	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
 539#ifndef CONFIG_64BIT
 540	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
 541	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
 542	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
 543#endif
 544#ifdef CONFIG_COMPAT
 545	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
 546	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
 547	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
 548	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
 549#endif
 550
 551	/* Do sanity checks on page table constants */
 552	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 553	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 554	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 555	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 556			> BITS_PER_LONG);
 557#if CONFIG_PGTABLE_LEVELS == 3
 558	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
 
 
 
 
 559#else
 560	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
 561#endif
 562
 563#ifdef CONFIG_64BIT
 564	/* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
 565	BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000);
 566	BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000);
 567#endif
 568
 569	high_memory = __va((max_pfn << PAGE_SHIFT));
 570	set_max_mapnr(max_low_pfn);
 571	memblock_free_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572
 573#ifdef CONFIG_PA11
 574	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
 575		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 576		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 577						+ PCXL_DMA_MAP_SIZE);
 578	} else
 579#endif
 580		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 
 
 
 
 581
 582#if 0
 583	/*
 584	 * Do not expose the virtual kernel memory layout to userspace.
 585	 * But keep code for debugging purposes.
 586	 */
 
 
 
 
 
 587	printk("virtual kernel memory layout:\n"
 588	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
 589	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
 590	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
 591	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
 592	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
 593	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
 594
 595	       (void*)VMALLOC_START, (void*)VMALLOC_END,
 596	       (VMALLOC_END - VMALLOC_START) >> 20,
 597
 598	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
 599	       (unsigned long)(FIXMAP_SIZE / 1024),
 600
 601	       __va(0), high_memory,
 602	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 603
 604	       __init_begin, __init_end,
 605	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 606
 607	       _etext, _edata,
 608	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 609
 610	       _text, _etext,
 611	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
 612#endif
 613}
 614
 615unsigned long *empty_zero_page __ro_after_init;
 616EXPORT_SYMBOL(empty_zero_page);
 617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618/*
 619 * pagetable_init() sets up the page tables
 620 *
 621 * Note that gateway_init() places the Linux gateway page at page 0.
 622 * Since gateway pages cannot be dereferenced this has the desirable
 623 * side effect of trapping those pesky NULL-reference errors in the
 624 * kernel.
 625 */
 626static void __init pagetable_init(void)
 627{
 628	int range;
 629
 630	/* Map each physical memory range to its kernel vaddr */
 631
 632	for (range = 0; range < npmem_ranges; range++) {
 633		unsigned long start_paddr;
 
 634		unsigned long size;
 635
 636		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 
 637		size = pmem_ranges[range].pages << PAGE_SHIFT;
 638
 639		map_pages((unsigned long)__va(start_paddr), start_paddr,
 640			  size, PAGE_KERNEL, 0);
 641	}
 642
 643#ifdef CONFIG_BLK_DEV_INITRD
 644	if (initrd_end && initrd_end > mem_limit) {
 645		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 646		map_pages(initrd_start, __pa(initrd_start),
 647			  initrd_end - initrd_start, PAGE_KERNEL, 0);
 648	}
 649#endif
 650
 651	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 652	if (!empty_zero_page)
 653		panic("zero page allocation failed.\n");
 654
 655}
 656
 657static void __init gateway_init(void)
 658{
 659	unsigned long linux_gateway_page_addr;
 660	/* FIXME: This is 'const' in order to trick the compiler
 661	   into not treating it as DP-relative data. */
 662	extern void * const linux_gateway_page;
 663
 664	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 665
 666	/*
 667	 * Setup Linux Gateway page.
 668	 *
 669	 * The Linux gateway page will reside in kernel space (on virtual
 670	 * page 0), so it doesn't need to be aliased into user space.
 671	 */
 672
 673	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 674		  PAGE_SIZE, PAGE_GATEWAY, 1);
 675}
 676
 677static void __init fixmap_init(void)
 
 
 678{
 679	unsigned long addr = FIXMAP_START;
 680	unsigned long end = FIXMAP_START + FIXMAP_SIZE;
 681	pgd_t *pgd = pgd_offset_k(addr);
 682	p4d_t *p4d = p4d_offset(pgd, addr);
 683	pud_t *pud = pud_offset(p4d, addr);
 684	pmd_t *pmd;
 
 
 
 
 
 
 
 
 685
 686	BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE);
 687
 688#if CONFIG_PGTABLE_LEVELS == 3
 689	if (pud_none(*pud)) {
 690		pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
 691				     PAGE_SIZE << PMD_TABLE_ORDER);
 692		if (!pmd)
 693			panic("fixmap: pmd allocation failed.\n");
 694		pud_populate(NULL, pud, pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695	}
 
 
 696#endif
 
 697
 698	pmd = pmd_offset(pud, addr);
 699	do {
 700		pte_t *pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 701		if (!pte)
 702			panic("fixmap: pte allocation failed.\n");
 703
 704		pmd_populate_kernel(&init_mm, pmd, pte);
 
 
 705
 706		addr += PAGE_SIZE;
 707	} while (addr < end);
 708}
 709
 710static void __init parisc_bootmem_free(void)
 711{
 712	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
 713
 714	max_zone_pfn[0] = memblock_end_of_DRAM();
 715
 716	free_area_init(max_zone_pfn);
 
 717}
 
 
 718
 719void __init paging_init(void)
 720{
 
 
 721	setup_bootmem();
 722	pagetable_init();
 723	gateway_init();
 724	fixmap_init();
 725	flush_cache_all_local(); /* start with known state */
 726	flush_tlb_all_local(NULL);
 727
 728	sparse_init();
 729	parisc_bootmem_free();
 730}
 731
 732static void alloc_btlb(unsigned long start, unsigned long end, int *slot,
 733			unsigned long entry_info)
 734{
 735	const int slot_max = btlb_info.fixed_range_info.num_comb;
 736	int min_num_pages = btlb_info.min_size;
 737	unsigned long size;
 738
 739	/* map at minimum 4 pages */
 740	if (min_num_pages < 4)
 741		min_num_pages = 4;
 742
 743	size = HUGEPAGE_SIZE;
 744	while (start < end && *slot < slot_max && size >= PAGE_SIZE) {
 745		/* starting address must have same alignment as size! */
 746		/* if correctly aligned and fits in double size, increase */
 747		if (((start & (2 * size - 1)) == 0) &&
 748		    (end - start) >= (2 * size)) {
 749			size <<= 1;
 750			continue;
 751		}
 752		/* if current size alignment is too big, try smaller size */
 753		if ((start & (size - 1)) != 0) {
 754			size >>= 1;
 755			continue;
 756		}
 757		if ((end - start) >= size) {
 758			if ((size >> PAGE_SHIFT) >= min_num_pages)
 759				pdc_btlb_insert(start >> PAGE_SHIFT, __pa(start) >> PAGE_SHIFT,
 760					size >> PAGE_SHIFT, entry_info, *slot);
 761			(*slot)++;
 762			start += size;
 763			continue;
 764		}
 765		size /= 2;
 766		continue;
 767	}
 768}
 769
 770void btlb_init_per_cpu(void)
 771{
 772	unsigned long s, t, e;
 773	int slot;
 774
 775	/* BTLBs are not available on 64-bit CPUs */
 776	if (IS_ENABLED(CONFIG_PA20))
 777		return;
 778	else if (pdc_btlb_info(&btlb_info) < 0) {
 779		memset(&btlb_info, 0, sizeof btlb_info);
 780	}
 781
 782	/* insert BLTLBs for code and data segments */
 783	s = (uintptr_t) dereference_function_descriptor(&_stext);
 784	e = (uintptr_t) dereference_function_descriptor(&_etext);
 785	t = (uintptr_t) dereference_function_descriptor(&_sdata);
 786	BUG_ON(t != e);
 787
 788	/* code segments */
 789	slot = 0;
 790	alloc_btlb(s, e, &slot, 0x13800000);
 791
 792	/* sanity check */
 793	t = (uintptr_t) dereference_function_descriptor(&_edata);
 794	e = (uintptr_t) dereference_function_descriptor(&__bss_start);
 795	BUG_ON(t != e);
 796
 797	/* data segments */
 798	s = (uintptr_t) dereference_function_descriptor(&_sdata);
 799	e = (uintptr_t) dereference_function_descriptor(&__bss_stop);
 800	alloc_btlb(s, e, &slot, 0x11800000);
 801}
 802
 803#ifdef CONFIG_PA20
 804
 805/*
 806 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 807 * limiting factor (space ids are 32 bits).
 808 */
 809
 810#define NR_SPACE_IDS 262144
 811
 812#else
 813
 814/*
 815 * Currently we have a one-to-one relationship between space IDs and
 816 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 817 * support 15 bit protection IDs, so that is the limiting factor.
 818 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 819 * probably not worth the effort for a special case here.
 820 */
 821
 822#define NR_SPACE_IDS 32768
 823
 824#endif  /* !CONFIG_PA20 */
 825
 826#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 827#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 828
 829static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 830static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 831static unsigned long space_id_index;
 832static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 833static unsigned long dirty_space_ids;
 834
 835static DEFINE_SPINLOCK(sid_lock);
 836
 837unsigned long alloc_sid(void)
 838{
 839	unsigned long index;
 840
 841	spin_lock(&sid_lock);
 842
 843	if (free_space_ids == 0) {
 844		if (dirty_space_ids != 0) {
 845			spin_unlock(&sid_lock);
 846			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 847			spin_lock(&sid_lock);
 848		}
 849		BUG_ON(free_space_ids == 0);
 850	}
 851
 852	free_space_ids--;
 853
 854	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 855	space_id[BIT_WORD(index)] |= BIT_MASK(index);
 856	space_id_index = index;
 857
 858	spin_unlock(&sid_lock);
 859
 860	return index << SPACEID_SHIFT;
 861}
 862
 863void free_sid(unsigned long spaceid)
 864{
 865	unsigned long index = spaceid >> SPACEID_SHIFT;
 866	unsigned long *dirty_space_offset, mask;
 867
 868	dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
 869	mask = BIT_MASK(index);
 870
 871	spin_lock(&sid_lock);
 872
 873	BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
 874
 875	*dirty_space_offset |= mask;
 876	dirty_space_ids++;
 877
 878	spin_unlock(&sid_lock);
 879}
 880
 881
 882#ifdef CONFIG_SMP
 883static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 884{
 885	int i;
 886
 887	/* NOTE: sid_lock must be held upon entry */
 888
 889	*ndirtyptr = dirty_space_ids;
 890	if (dirty_space_ids != 0) {
 891	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
 892		dirty_array[i] = dirty_space_id[i];
 893		dirty_space_id[i] = 0;
 894	    }
 895	    dirty_space_ids = 0;
 896	}
 897
 898	return;
 899}
 900
 901static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
 902{
 903	int i;
 904
 905	/* NOTE: sid_lock must be held upon entry */
 906
 907	if (ndirty != 0) {
 908		for (i = 0; i < SID_ARRAY_SIZE; i++) {
 909			space_id[i] ^= dirty_array[i];
 910		}
 911
 912		free_space_ids += ndirty;
 913		space_id_index = 0;
 914	}
 915}
 916
 917#else /* CONFIG_SMP */
 918
 919static void recycle_sids(void)
 920{
 921	int i;
 922
 923	/* NOTE: sid_lock must be held upon entry */
 924
 925	if (dirty_space_ids != 0) {
 926		for (i = 0; i < SID_ARRAY_SIZE; i++) {
 927			space_id[i] ^= dirty_space_id[i];
 928			dirty_space_id[i] = 0;
 929		}
 930
 931		free_space_ids += dirty_space_ids;
 932		dirty_space_ids = 0;
 933		space_id_index = 0;
 934	}
 935}
 936#endif
 937
 938/*
 939 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 940 * purged, we can safely reuse the space ids that were released but
 941 * not flushed from the tlb.
 942 */
 943
 944#ifdef CONFIG_SMP
 945
 946static unsigned long recycle_ndirty;
 947static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
 948static unsigned int recycle_inuse;
 949
 950void flush_tlb_all(void)
 951{
 952	int do_recycle;
 953
 954	do_recycle = 0;
 955	spin_lock(&sid_lock);
 956	__inc_irq_stat(irq_tlb_count);
 957	if (dirty_space_ids > RECYCLE_THRESHOLD) {
 958	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
 959	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
 960	    recycle_inuse++;
 961	    do_recycle++;
 962	}
 963	spin_unlock(&sid_lock);
 964	on_each_cpu(flush_tlb_all_local, NULL, 1);
 965	if (do_recycle) {
 966	    spin_lock(&sid_lock);
 967	    recycle_sids(recycle_ndirty,recycle_dirty_array);
 968	    recycle_inuse = 0;
 969	    spin_unlock(&sid_lock);
 970	}
 971}
 972#else
 973void flush_tlb_all(void)
 974{
 975	spin_lock(&sid_lock);
 976	__inc_irq_stat(irq_tlb_count);
 977	flush_tlb_all_local(NULL);
 978	recycle_sids();
 979	spin_unlock(&sid_lock);
 980}
 981#endif
 982
 983static const pgprot_t protection_map[16] = {
 984	[VM_NONE]					= PAGE_NONE,
 985	[VM_READ]					= PAGE_READONLY,
 986	[VM_WRITE]					= PAGE_NONE,
 987	[VM_WRITE | VM_READ]				= PAGE_READONLY,
 988	[VM_EXEC]					= PAGE_EXECREAD,
 989	[VM_EXEC | VM_READ]				= PAGE_EXECREAD,
 990	[VM_EXEC | VM_WRITE]				= PAGE_EXECREAD,
 991	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_EXECREAD,
 992	[VM_SHARED]					= PAGE_NONE,
 993	[VM_SHARED | VM_READ]				= PAGE_READONLY,
 994	[VM_SHARED | VM_WRITE]				= PAGE_WRITEONLY,
 995	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
 996	[VM_SHARED | VM_EXEC]				= PAGE_EXECREAD,
 997	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_EXECREAD,
 998	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_RWX,
 999	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_RWX
1000};
1001DECLARE_VM_GET_PAGE_PROT
1002
1003#ifdef CONFIG_EXECMEM
1004static struct execmem_info execmem_info __ro_after_init;
1005
1006struct execmem_info __init *execmem_arch_setup(void)
1007{
1008	execmem_info = (struct execmem_info){
1009		.ranges = {
1010			[EXECMEM_DEFAULT] = {
1011				.start	= VMALLOC_START,
1012				.end	= VMALLOC_END,
1013				.pgprot	= PAGE_KERNEL_RWX,
1014				.alignment = 1,
1015			},
1016		},
1017	};
1018
1019	return &execmem_info;
1020}
1021#endif /* CONFIG_EXECMEM */
v3.5.6
 
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995	Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>	/* for node_online_map */
  25#include <linux/pagemap.h>	/* for release_pages and page_cache_release */
 
 
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
 
 
 
 
  33
  34extern int  data_start;
 
  35
  36#if PT_NLEVELS == 3
  37/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  38 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  39 * guarantee that global objects will be laid out in memory in the same order
  40 * as the order of declaration, so put these in different sections and use
  41 * the linker script to order them. */
  42pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  43#endif
  44
  45pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  46pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  47
  48#ifdef CONFIG_DISCONTIGMEM
  49struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  50unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  51#endif
  52
  53static struct resource data_resource = {
  54	.name	= "Kernel data",
  55	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  56};
  57
  58static struct resource code_resource = {
  59	.name	= "Kernel code",
  60	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  61};
  62
  63static struct resource pdcdata_resource = {
  64	.name	= "PDC data (Page Zero)",
  65	.start	= 0,
  66	.end	= 0x9ff,
  67	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  68};
  69
  70static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  71
  72/* The following array is initialized from the firmware specific
  73 * information retrieved in kernel/inventory.c.
  74 */
  75
  76physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  77int npmem_ranges __read_mostly;
  78
  79#ifdef CONFIG_64BIT
  80#define MAX_MEM         (~0UL)
  81#else /* !CONFIG_64BIT */
  82#define MAX_MEM         (3584U*1024U*1024U)
  83#endif /* !CONFIG_64BIT */
  84
  85static unsigned long mem_limit __read_mostly = MAX_MEM;
  86
  87static void __init mem_limit_func(void)
  88{
  89	char *cp, *end;
  90	unsigned long limit;
  91
  92	/* We need this before __setup() functions are called */
  93
  94	limit = MAX_MEM;
  95	for (cp = boot_command_line; *cp; ) {
  96		if (memcmp(cp, "mem=", 4) == 0) {
  97			cp += 4;
  98			limit = memparse(cp, &end);
  99			if (end != cp)
 100				break;
 101			cp = end;
 102		} else {
 103			while (*cp != ' ' && *cp)
 104				++cp;
 105			while (*cp == ' ')
 106				++cp;
 107		}
 108	}
 109
 110	if (limit < mem_limit)
 111		mem_limit = limit;
 112}
 113
 114#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 115
 116static void __init setup_bootmem(void)
 117{
 118	unsigned long bootmap_size;
 119	unsigned long mem_max;
 120	unsigned long bootmap_pages;
 121	unsigned long bootmap_start_pfn;
 122	unsigned long bootmap_pfn;
 123#ifndef CONFIG_DISCONTIGMEM
 124	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 125	int npmem_holes;
 126#endif
 127	int i, sysram_resource_count;
 128
 129	disable_sr_hashing(); /* Turn off space register hashing */
 130
 131	/*
 132	 * Sort the ranges. Since the number of ranges is typically
 133	 * small, and performance is not an issue here, just do
 134	 * a simple insertion sort.
 135	 */
 136
 137	for (i = 1; i < npmem_ranges; i++) {
 138		int j;
 139
 140		for (j = i; j > 0; j--) {
 141			unsigned long tmp;
 142
 143			if (pmem_ranges[j-1].start_pfn <
 144			    pmem_ranges[j].start_pfn) {
 145
 146				break;
 147			}
 148			tmp = pmem_ranges[j-1].start_pfn;
 149			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 150			pmem_ranges[j].start_pfn = tmp;
 151			tmp = pmem_ranges[j-1].pages;
 152			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 153			pmem_ranges[j].pages = tmp;
 154		}
 155	}
 156
 157#ifndef CONFIG_DISCONTIGMEM
 158	/*
 159	 * Throw out ranges that are too far apart (controlled by
 160	 * MAX_GAP).
 161	 */
 162
 163	for (i = 1; i < npmem_ranges; i++) {
 164		if (pmem_ranges[i].start_pfn -
 165			(pmem_ranges[i-1].start_pfn +
 166			 pmem_ranges[i-1].pages) > MAX_GAP) {
 167			npmem_ranges = i;
 168			printk("Large gap in memory detected (%ld pages). "
 169			       "Consider turning on CONFIG_DISCONTIGMEM\n",
 170			       pmem_ranges[i].start_pfn -
 171			       (pmem_ranges[i-1].start_pfn +
 172			        pmem_ranges[i-1].pages));
 173			break;
 174		}
 175	}
 176#endif
 177
 178	if (npmem_ranges > 1) {
 
 179
 180		/* Print the memory ranges */
 
 
 
 181
 182		printk(KERN_INFO "Memory Ranges:\n");
 
 
 
 183
 184		for (i = 0; i < npmem_ranges; i++) {
 185			unsigned long start;
 186			unsigned long size;
 187
 188			size = (pmem_ranges[i].pages << PAGE_SHIFT);
 189			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 190			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 191				i,start, start + (size - 1), size >> 20);
 192		}
 193	}
 194
 195	sysram_resource_count = npmem_ranges;
 196	for (i = 0; i < sysram_resource_count; i++) {
 197		struct resource *res = &sysram_resources[i];
 198		res->name = "System RAM";
 199		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 200		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 201		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 202		request_resource(&iomem_resource, res);
 203	}
 204
 205	/*
 206	 * For 32 bit kernels we limit the amount of memory we can
 207	 * support, in order to preserve enough kernel address space
 208	 * for other purposes. For 64 bit kernels we don't normally
 209	 * limit the memory, but this mechanism can be used to
 210	 * artificially limit the amount of memory (and it is written
 211	 * to work with multiple memory ranges).
 212	 */
 213
 214	mem_limit_func();       /* check for "mem=" argument */
 215
 216	mem_max = 0;
 217	num_physpages = 0;
 218	for (i = 0; i < npmem_ranges; i++) {
 219		unsigned long rsize;
 220
 221		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 222		if ((mem_max + rsize) > mem_limit) {
 223			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 224			if (mem_max == mem_limit)
 225				npmem_ranges = i;
 226			else {
 227				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 228						       - (mem_max >> PAGE_SHIFT);
 229				npmem_ranges = i + 1;
 230				mem_max = mem_limit;
 231			}
 232	        num_physpages += pmem_ranges[i].pages;
 233			break;
 234		}
 235	    num_physpages += pmem_ranges[i].pages;
 236		mem_max += rsize;
 237	}
 238
 239	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 240
 241#ifndef CONFIG_DISCONTIGMEM
 242	/* Merge the ranges, keeping track of the holes */
 243
 244	{
 245		unsigned long end_pfn;
 246		unsigned long hole_pages;
 247
 248		npmem_holes = 0;
 249		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 250		for (i = 1; i < npmem_ranges; i++) {
 251
 252			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 253			if (hole_pages) {
 254				pmem_holes[npmem_holes].start_pfn = end_pfn;
 255				pmem_holes[npmem_holes++].pages = hole_pages;
 256				end_pfn += hole_pages;
 257			}
 258			end_pfn += pmem_ranges[i].pages;
 259		}
 260
 261		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 262		npmem_ranges = 1;
 263	}
 264#endif
 265
 266	bootmap_pages = 0;
 267	for (i = 0; i < npmem_ranges; i++)
 268		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 269
 270	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 271
 272#ifdef CONFIG_DISCONTIGMEM
 273	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 274		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 275		NODE_DATA(i)->bdata = &bootmem_node_data[i];
 276	}
 277	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 278
 279	for (i = 0; i < npmem_ranges; i++) {
 280		node_set_state(i, N_NORMAL_MEMORY);
 281		node_set_online(i);
 282	}
 283#endif
 284
 285	/*
 286	 * Initialize and free the full range of memory in each range.
 287	 * Note that the only writing these routines do are to the bootmap,
 288	 * and we've made sure to locate the bootmap properly so that they
 289	 * won't be writing over anything important.
 290	 */
 291
 292	bootmap_pfn = bootmap_start_pfn;
 293	max_pfn = 0;
 294	for (i = 0; i < npmem_ranges; i++) {
 295		unsigned long start_pfn;
 296		unsigned long npages;
 
 
 297
 298		start_pfn = pmem_ranges[i].start_pfn;
 299		npages = pmem_ranges[i].pages;
 300
 301		bootmap_size = init_bootmem_node(NODE_DATA(i),
 302						bootmap_pfn,
 303						start_pfn,
 304						(start_pfn + npages) );
 305		free_bootmem_node(NODE_DATA(i),
 306				  (start_pfn << PAGE_SHIFT),
 307				  (npages << PAGE_SHIFT) );
 308		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 309		if ((start_pfn + npages) > max_pfn)
 310			max_pfn = start_pfn + npages;
 311	}
 312
 
 
 
 
 
 
 
 313	/* IOMMU is always used to access "high mem" on those boxes
 314	 * that can support enough mem that a PCI device couldn't
 315	 * directly DMA to any physical addresses.
 316	 * ISA DMA support will need to revisit this.
 317	 */
 318	max_low_pfn = max_pfn;
 319
 320	/* bootmap sizing messed up? */
 321	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 322
 323	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 324
 325#define PDC_CONSOLE_IO_IODC_SIZE 32768
 326
 327	reserve_bootmem_node(NODE_DATA(0), 0UL,
 328			(unsigned long)(PAGE0->mem_free +
 329				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 330	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
 331			(unsigned long)(_end - _text), BOOTMEM_DEFAULT);
 332	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 333			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 334			BOOTMEM_DEFAULT);
 335
 336#ifndef CONFIG_DISCONTIGMEM
 337
 338	/* reserve the holes */
 339
 340	for (i = 0; i < npmem_holes; i++) {
 341		reserve_bootmem_node(NODE_DATA(0),
 342				(pmem_holes[i].start_pfn << PAGE_SHIFT),
 343				(pmem_holes[i].pages << PAGE_SHIFT),
 344				BOOTMEM_DEFAULT);
 345	}
 346#endif
 347
 348#ifdef CONFIG_BLK_DEV_INITRD
 349	if (initrd_start) {
 350		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 351		if (__pa(initrd_start) < mem_max) {
 352			unsigned long initrd_reserve;
 353
 354			if (__pa(initrd_end) > mem_max) {
 355				initrd_reserve = mem_max - __pa(initrd_start);
 356			} else {
 357				initrd_reserve = initrd_end - initrd_start;
 358			}
 359			initrd_below_start_ok = 1;
 360			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 361
 362			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 363					initrd_reserve, BOOTMEM_DEFAULT);
 364		}
 365	}
 366#endif
 367
 368	data_resource.start =  virt_to_phys(&data_start);
 369	data_resource.end = virt_to_phys(_end) - 1;
 370	code_resource.start = virt_to_phys(_text);
 371	code_resource.end = virt_to_phys(&data_start)-1;
 372
 373	/* We don't know which region the kernel will be in, so try
 374	 * all of them.
 375	 */
 376	for (i = 0; i < sysram_resource_count; i++) {
 377		struct resource *res = &sysram_resources[i];
 378		request_resource(res, &code_resource);
 379		request_resource(res, &data_resource);
 380	}
 381	request_resource(&sysram_resources[0], &pdcdata_resource);
 
 
 
 
 
 
 382}
 383
 384static void __init map_pages(unsigned long start_vaddr,
 385			     unsigned long start_paddr, unsigned long size,
 386			     pgprot_t pgprot, int force)
 
 
 387{
 388	pgd_t *pg_dir;
 389	pmd_t *pmd;
 390	pte_t *pg_table;
 391	unsigned long end_paddr;
 392	unsigned long start_pmd;
 393	unsigned long start_pte;
 394	unsigned long tmp1;
 395	unsigned long tmp2;
 396	unsigned long address;
 397	unsigned long vaddr;
 398	unsigned long ro_start;
 399	unsigned long ro_end;
 400	unsigned long fv_addr;
 401	unsigned long gw_addr;
 402	extern const unsigned long fault_vector_20;
 403	extern void * const linux_gateway_page;
 404
 405	ro_start = __pa((unsigned long)_text);
 406	ro_end   = __pa((unsigned long)&data_start);
 407	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 408	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 409
 410	end_paddr = start_paddr + size;
 411
 412	pg_dir = pgd_offset_k(start_vaddr);
 413
 414#if PTRS_PER_PMD == 1
 415	start_pmd = 0;
 416#else
 417	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 418#endif
 419	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 420
 421	address = start_paddr;
 422	vaddr = start_vaddr;
 423	while (address < end_paddr) {
 424#if PTRS_PER_PMD == 1
 425		pmd = (pmd_t *)__pa(pg_dir);
 426#else
 427		pmd = (pmd_t *)pgd_address(*pg_dir);
 428
 429		/*
 430		 * pmd is physical at this point
 431		 */
 432
 433		if (!pmd) {
 434			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 435			pmd = (pmd_t *) __pa(pmd);
 436		}
 437
 438		pgd_populate(NULL, pg_dir, __va(pmd));
 439#endif
 440		pg_dir++;
 441
 442		/* now change pmd to kernel virtual addresses */
 443
 444		pmd = (pmd_t *)__va(pmd) + start_pmd;
 445		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 446
 447			/*
 448			 * pg_table is physical at this point
 449			 */
 450
 451			pg_table = (pte_t *)pmd_address(*pmd);
 452			if (!pg_table) {
 453				pg_table = (pte_t *)
 454					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 455				pg_table = (pte_t *) __pa(pg_table);
 456			}
 457
 458			pmd_populate_kernel(NULL, pmd, __va(pg_table));
 459
 460			/* now change pg_table to kernel virtual addresses */
 461
 462			pg_table = (pte_t *) __va(pg_table) + start_pte;
 463			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 464				pte_t pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466				/*
 467				 * Map the fault vector writable so we can
 468				 * write the HPMC checksum.
 469				 */
 470				if (force)
 471					pte =  __mk_pte(address, pgprot);
 472				else if (core_kernel_text(vaddr) &&
 473					 address != fv_addr)
 474					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 475				else
 476#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 477				if (address >= ro_start && address < ro_end
 478							&& address != fv_addr
 479							&& address != gw_addr)
 480					pte = __mk_pte(address, PAGE_KERNEL_RO);
 481				else
 482#endif
 483					pte = __mk_pte(address, pgprot);
 484
 485				if (address >= end_paddr) {
 486					if (force)
 487						break;
 488					else
 489						pte_val(pte) = 0;
 490				}
 491
 492				set_pte(pg_table, pte);
 493
 494				address += PAGE_SIZE;
 495				vaddr += PAGE_SIZE;
 496			}
 497			start_pte = 0;
 498
 499			if (address >= end_paddr)
 500			    break;
 501		}
 502		start_pmd = 0;
 503	}
 504}
 505
 
 
 
 
 
 
 
 
 
 
 
 
 
 506void free_initmem(void)
 507{
 508	unsigned long addr;
 509	unsigned long init_begin = (unsigned long)__init_begin;
 510	unsigned long init_end = (unsigned long)__init_end;
 
 
 
 
 
 511
 512	/* The init text pages are marked R-X.  We have to
 513	 * flush the icache and mark them RW-
 514	 *
 515	 * This is tricky, because map_pages is in the init section.
 516	 * Do a dummy remap of the data section first (the data
 517	 * section is already PAGE_KERNEL) to pull in the TLB entries
 518	 * for map_kernel */
 519	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 520		  PAGE_KERNEL_RWX, 1);
 521	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 522	 * map_pages */
 523	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 524		  PAGE_KERNEL, 1);
 525
 526	/* force the kernel to see the new TLB entries */
 527	__flush_tlb_range(0, init_begin, init_end);
 528	/* Attempt to catch anyone trying to execute code here
 529	 * by filling the page with BRK insns.
 530	 */
 531	memset((void *)init_begin, 0x00, init_end - init_begin);
 532	/* finally dump all the instructions which were cached, since the
 533	 * pages are no-longer executable */
 534	flush_icache_range(init_begin, init_end);
 535	
 536	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
 537		ClearPageReserved(virt_to_page(addr));
 538		init_page_count(virt_to_page(addr));
 539		free_page(addr);
 540		num_physpages++;
 541		totalram_pages++;
 542	}
 543
 544	/* set up a new led state on systems shipped LED State panel */
 545	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 546	
 547	printk(KERN_INFO "Freeing unused kernel memory: %luk freed\n",
 548		(init_end - init_begin) >> 10);
 549}
 550
 551
 552#ifdef CONFIG_DEBUG_RODATA
 553void mark_rodata_ro(void)
 554{
 555	/* rodata memory was already mapped with KERNEL_RO access rights by
 556           pagetable_init() and map_pages(). No need to do additional stuff here */
 557	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 558		(unsigned long)(__end_rodata - __start_rodata) >> 10);
 
 
 
 
 
 
 
 
 559}
 560#endif
 561
 562
 563/*
 564 * Just an arbitrary offset to serve as a "hole" between mapping areas
 565 * (between top of physical memory and a potential pcxl dma mapping
 566 * area, and below the vmalloc mapping area).
 567 *
 568 * The current 32K value just means that there will be a 32K "hole"
 569 * between mapping areas. That means that  any out-of-bounds memory
 570 * accesses will hopefully be caught. The vmalloc() routines leaves
 571 * a hole of 4kB between each vmalloced area for the same reason.
 572 */
 573
 574 /* Leave room for gateway page expansion */
 575#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 576#error KERNEL_MAP_START is in gateway reserved region
 577#endif
 578#define MAP_START (KERNEL_MAP_START)
 579
 580#define VM_MAP_OFFSET  (32*1024)
 581#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 582				     & ~(VM_MAP_OFFSET-1)))
 583
 584void *parisc_vmalloc_start __read_mostly;
 585EXPORT_SYMBOL(parisc_vmalloc_start);
 586
 587#ifdef CONFIG_PA11
 588unsigned long pcxl_dma_start __read_mostly;
 589#endif
 590
 591void __init mem_init(void)
 592{
 593	int codesize, reservedpages, datasize, initsize;
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595	/* Do sanity checks on page table constants */
 596	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 597	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 598	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 599	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 600			> BITS_PER_LONG);
 601
 602	high_memory = __va((max_pfn << PAGE_SHIFT));
 603
 604#ifndef CONFIG_DISCONTIGMEM
 605	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
 606	totalram_pages += free_all_bootmem();
 607#else
 608	{
 609		int i;
 610
 611		for (i = 0; i < npmem_ranges; i++)
 612			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
 613	}
 
 614#endif
 615
 616	codesize = (unsigned long)_etext - (unsigned long)_text;
 617	datasize = (unsigned long)_edata - (unsigned long)_etext;
 618	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
 619
 620	reservedpages = 0;
 621{
 622	unsigned long pfn;
 623#ifdef CONFIG_DISCONTIGMEM
 624	int i;
 625
 626	for (i = 0; i < npmem_ranges; i++) {
 627		for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
 628			if (PageReserved(pfn_to_page(pfn)))
 629				reservedpages++;
 630		}
 631	}
 632#else /* !CONFIG_DISCONTIGMEM */
 633	for (pfn = 0; pfn < max_pfn; pfn++) {
 634		/*
 635		 * Only count reserved RAM pages
 636		 */
 637		if (PageReserved(pfn_to_page(pfn)))
 638			reservedpages++;
 639	}
 640#endif
 641}
 642
 643#ifdef CONFIG_PA11
 644	if (hppa_dma_ops == &pcxl_dma_ops) {
 645		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 646		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 647						+ PCXL_DMA_MAP_SIZE);
 648	} else {
 649		pcxl_dma_start = 0;
 650		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 651	}
 652#else
 653	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 654#endif
 655
 656	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
 657		nr_free_pages() << (PAGE_SHIFT-10),
 658		num_physpages << (PAGE_SHIFT-10),
 659		codesize >> 10,
 660		reservedpages << (PAGE_SHIFT-10),
 661		datasize >> 10,
 662		initsize >> 10
 663	);
 664
 665#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 666	printk("virtual kernel memory layout:\n"
 667	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 668	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 669	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 670	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 671	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 
 672
 673	       (void*)VMALLOC_START, (void*)VMALLOC_END,
 674	       (VMALLOC_END - VMALLOC_START) >> 20,
 675
 
 
 
 676	       __va(0), high_memory,
 677	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 678
 679	       __init_begin, __init_end,
 680	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 681
 682	       _etext, _edata,
 683	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 684
 685	       _text, _etext,
 686	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
 687#endif
 688}
 689
 690unsigned long *empty_zero_page __read_mostly;
 691EXPORT_SYMBOL(empty_zero_page);
 692
 693void show_mem(unsigned int filter)
 694{
 695	int i,free = 0,total = 0,reserved = 0;
 696	int shared = 0, cached = 0;
 697
 698	printk(KERN_INFO "Mem-info:\n");
 699	show_free_areas(filter);
 700#ifndef CONFIG_DISCONTIGMEM
 701	i = max_mapnr;
 702	while (i-- > 0) {
 703		total++;
 704		if (PageReserved(mem_map+i))
 705			reserved++;
 706		else if (PageSwapCache(mem_map+i))
 707			cached++;
 708		else if (!page_count(&mem_map[i]))
 709			free++;
 710		else
 711			shared += page_count(&mem_map[i]) - 1;
 712	}
 713#else
 714	for (i = 0; i < npmem_ranges; i++) {
 715		int j;
 716
 717		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
 718			struct page *p;
 719			unsigned long flags;
 720
 721			pgdat_resize_lock(NODE_DATA(i), &flags);
 722			p = nid_page_nr(i, j) - node_start_pfn(i);
 723
 724			total++;
 725			if (PageReserved(p))
 726				reserved++;
 727			else if (PageSwapCache(p))
 728				cached++;
 729			else if (!page_count(p))
 730				free++;
 731			else
 732				shared += page_count(p) - 1;
 733			pgdat_resize_unlock(NODE_DATA(i), &flags);
 734        	}
 735	}
 736#endif
 737	printk(KERN_INFO "%d pages of RAM\n", total);
 738	printk(KERN_INFO "%d reserved pages\n", reserved);
 739	printk(KERN_INFO "%d pages shared\n", shared);
 740	printk(KERN_INFO "%d pages swap cached\n", cached);
 741
 742
 743#ifdef CONFIG_DISCONTIGMEM
 744	{
 745		struct zonelist *zl;
 746		int i, j;
 747
 748		for (i = 0; i < npmem_ranges; i++) {
 749			zl = node_zonelist(i, 0);
 750			for (j = 0; j < MAX_NR_ZONES; j++) {
 751				struct zoneref *z;
 752				struct zone *zone;
 753
 754				printk("Zone list for zone %d on node %d: ", j, i);
 755				for_each_zone_zonelist(zone, z, zl, j)
 756					printk("[%d/%s] ", zone_to_nid(zone),
 757								zone->name);
 758				printk("\n");
 759			}
 760		}
 761	}
 762#endif
 763}
 764
 765/*
 766 * pagetable_init() sets up the page tables
 767 *
 768 * Note that gateway_init() places the Linux gateway page at page 0.
 769 * Since gateway pages cannot be dereferenced this has the desirable
 770 * side effect of trapping those pesky NULL-reference errors in the
 771 * kernel.
 772 */
 773static void __init pagetable_init(void)
 774{
 775	int range;
 776
 777	/* Map each physical memory range to its kernel vaddr */
 778
 779	for (range = 0; range < npmem_ranges; range++) {
 780		unsigned long start_paddr;
 781		unsigned long end_paddr;
 782		unsigned long size;
 783
 784		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 785		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 786		size = pmem_ranges[range].pages << PAGE_SHIFT;
 787
 788		map_pages((unsigned long)__va(start_paddr), start_paddr,
 789			  size, PAGE_KERNEL, 0);
 790	}
 791
 792#ifdef CONFIG_BLK_DEV_INITRD
 793	if (initrd_end && initrd_end > mem_limit) {
 794		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 795		map_pages(initrd_start, __pa(initrd_start),
 796			  initrd_end - initrd_start, PAGE_KERNEL, 0);
 797	}
 798#endif
 799
 800	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 801	memset(empty_zero_page, 0, PAGE_SIZE);
 
 
 802}
 803
 804static void __init gateway_init(void)
 805{
 806	unsigned long linux_gateway_page_addr;
 807	/* FIXME: This is 'const' in order to trick the compiler
 808	   into not treating it as DP-relative data. */
 809	extern void * const linux_gateway_page;
 810
 811	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 812
 813	/*
 814	 * Setup Linux Gateway page.
 815	 *
 816	 * The Linux gateway page will reside in kernel space (on virtual
 817	 * page 0), so it doesn't need to be aliased into user space.
 818	 */
 819
 820	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 821		  PAGE_SIZE, PAGE_GATEWAY, 1);
 822}
 823
 824#ifdef CONFIG_HPUX
 825void
 826map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 827{
 828	pgd_t *pg_dir;
 
 
 
 
 829	pmd_t *pmd;
 830	pte_t *pg_table;
 831	unsigned long start_pmd;
 832	unsigned long start_pte;
 833	unsigned long address;
 834	unsigned long hpux_gw_page_addr;
 835	/* FIXME: This is 'const' in order to trick the compiler
 836	   into not treating it as DP-relative data. */
 837	extern void * const hpux_gateway_page;
 838
 839	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 840
 841	/*
 842	 * Setup HP-UX Gateway page.
 843	 *
 844	 * The HP-UX gateway page resides in the user address space,
 845	 * so it needs to be aliased into each process.
 846	 */
 847
 848	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 849
 850#if PTRS_PER_PMD == 1
 851	start_pmd = 0;
 852#else
 853	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 854#endif
 855	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 856
 857	address = __pa(&hpux_gateway_page);
 858#if PTRS_PER_PMD == 1
 859	pmd = (pmd_t *)__pa(pg_dir);
 860#else
 861	pmd = (pmd_t *) pgd_address(*pg_dir);
 862
 863	/*
 864	 * pmd is physical at this point
 865	 */
 866
 867	if (!pmd) {
 868		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 869		pmd = (pmd_t *) __pa(pmd);
 870	}
 871
 872	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 873#endif
 874	/* now change pmd to kernel virtual addresses */
 875
 876	pmd = (pmd_t *)__va(pmd) + start_pmd;
 
 
 
 
 877
 878	/*
 879	 * pg_table is physical at this point
 880	 */
 881
 882	pg_table = (pte_t *) pmd_address(*pmd);
 883	if (!pg_table)
 884		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 885
 886	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 
 
 887
 888	/* now change pg_table to kernel virtual addresses */
 889
 890	pg_table = (pte_t *) __va(pg_table) + start_pte;
 891	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 892}
 893EXPORT_SYMBOL(map_hpux_gateway_page);
 894#endif
 895
 896void __init paging_init(void)
 897{
 898	int i;
 899
 900	setup_bootmem();
 901	pagetable_init();
 902	gateway_init();
 
 903	flush_cache_all_local(); /* start with known state */
 904	flush_tlb_all_local(NULL);
 905
 906	for (i = 0; i < npmem_ranges; i++) {
 907		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 
 
 
 
 
 
 
 
 908
 909		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 
 
 910
 911#ifdef CONFIG_DISCONTIGMEM
 912		/* Need to initialize the pfnnid_map before we can initialize
 913		   the zone */
 914		{
 915		    int j;
 916		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 917			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 918			 j++) {
 919			pfnnid_map[j] = i;
 920		    }
 
 
 
 921		}
 922#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924		free_area_init_node(i, zones_size,
 925				pmem_ranges[i].start_pfn, NULL);
 
 
 
 926	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927}
 928
 929#ifdef CONFIG_PA20
 930
 931/*
 932 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 933 * limiting factor (space ids are 32 bits).
 934 */
 935
 936#define NR_SPACE_IDS 262144
 937
 938#else
 939
 940/*
 941 * Currently we have a one-to-one relationship between space IDs and
 942 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 943 * support 15 bit protection IDs, so that is the limiting factor.
 944 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 945 * probably not worth the effort for a special case here.
 946 */
 947
 948#define NR_SPACE_IDS 32768
 949
 950#endif  /* !CONFIG_PA20 */
 951
 952#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 953#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 954
 955static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 956static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 957static unsigned long space_id_index;
 958static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 959static unsigned long dirty_space_ids = 0;
 960
 961static DEFINE_SPINLOCK(sid_lock);
 962
 963unsigned long alloc_sid(void)
 964{
 965	unsigned long index;
 966
 967	spin_lock(&sid_lock);
 968
 969	if (free_space_ids == 0) {
 970		if (dirty_space_ids != 0) {
 971			spin_unlock(&sid_lock);
 972			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 973			spin_lock(&sid_lock);
 974		}
 975		BUG_ON(free_space_ids == 0);
 976	}
 977
 978	free_space_ids--;
 979
 980	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 981	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 982	space_id_index = index;
 983
 984	spin_unlock(&sid_lock);
 985
 986	return index << SPACEID_SHIFT;
 987}
 988
 989void free_sid(unsigned long spaceid)
 990{
 991	unsigned long index = spaceid >> SPACEID_SHIFT;
 992	unsigned long *dirty_space_offset;
 993
 994	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 995	index &= (BITS_PER_LONG - 1);
 996
 997	spin_lock(&sid_lock);
 998
 999	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
1000
1001	*dirty_space_offset |= (1L << index);
1002	dirty_space_ids++;
1003
1004	spin_unlock(&sid_lock);
1005}
1006
1007
1008#ifdef CONFIG_SMP
1009static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
1010{
1011	int i;
1012
1013	/* NOTE: sid_lock must be held upon entry */
1014
1015	*ndirtyptr = dirty_space_ids;
1016	if (dirty_space_ids != 0) {
1017	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
1018		dirty_array[i] = dirty_space_id[i];
1019		dirty_space_id[i] = 0;
1020	    }
1021	    dirty_space_ids = 0;
1022	}
1023
1024	return;
1025}
1026
1027static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
1028{
1029	int i;
1030
1031	/* NOTE: sid_lock must be held upon entry */
1032
1033	if (ndirty != 0) {
1034		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1035			space_id[i] ^= dirty_array[i];
1036		}
1037
1038		free_space_ids += ndirty;
1039		space_id_index = 0;
1040	}
1041}
1042
1043#else /* CONFIG_SMP */
1044
1045static void recycle_sids(void)
1046{
1047	int i;
1048
1049	/* NOTE: sid_lock must be held upon entry */
1050
1051	if (dirty_space_ids != 0) {
1052		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1053			space_id[i] ^= dirty_space_id[i];
1054			dirty_space_id[i] = 0;
1055		}
1056
1057		free_space_ids += dirty_space_ids;
1058		dirty_space_ids = 0;
1059		space_id_index = 0;
1060	}
1061}
1062#endif
1063
1064/*
1065 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1066 * purged, we can safely reuse the space ids that were released but
1067 * not flushed from the tlb.
1068 */
1069
1070#ifdef CONFIG_SMP
1071
1072static unsigned long recycle_ndirty;
1073static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1074static unsigned int recycle_inuse;
1075
1076void flush_tlb_all(void)
1077{
1078	int do_recycle;
1079
1080	do_recycle = 0;
1081	spin_lock(&sid_lock);
 
1082	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1083	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1084	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1085	    recycle_inuse++;
1086	    do_recycle++;
1087	}
1088	spin_unlock(&sid_lock);
1089	on_each_cpu(flush_tlb_all_local, NULL, 1);
1090	if (do_recycle) {
1091	    spin_lock(&sid_lock);
1092	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1093	    recycle_inuse = 0;
1094	    spin_unlock(&sid_lock);
1095	}
1096}
1097#else
1098void flush_tlb_all(void)
1099{
1100	spin_lock(&sid_lock);
 
1101	flush_tlb_all_local(NULL);
1102	recycle_sids();
1103	spin_unlock(&sid_lock);
1104}
1105#endif
1106
1107#ifdef CONFIG_BLK_DEV_INITRD
1108void free_initrd_mem(unsigned long start, unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109{
1110	if (start >= end)
1111		return;
1112	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1113	for (; start < end; start += PAGE_SIZE) {
1114		ClearPageReserved(virt_to_page(start));
1115		init_page_count(virt_to_page(start));
1116		free_page(start);
1117		num_physpages++;
1118		totalram_pages++;
1119	}
 
 
1120}
1121#endif