Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  4 *                   Takashi Iwai <tiwai@suse.de>
  5 * 
  6 *  Generic memory allocators
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 */
  8
 
 
 
 
  9#include <linux/slab.h>
 10#include <linux/mm.h>
 
 
 11#include <linux/dma-mapping.h>
 12#include <linux/dma-map-ops.h>
 13#include <linux/genalloc.h>
 14#include <linux/highmem.h>
 15#include <linux/vmalloc.h>
 16#ifdef CONFIG_X86
 17#include <asm/set_memory.h>
 18#endif
 19#include <sound/memalloc.h>
 20
 21struct snd_malloc_ops {
 22	void *(*alloc)(struct snd_dma_buffer *dmab, size_t size);
 23	void (*free)(struct snd_dma_buffer *dmab);
 24	dma_addr_t (*get_addr)(struct snd_dma_buffer *dmab, size_t offset);
 25	struct page *(*get_page)(struct snd_dma_buffer *dmab, size_t offset);
 26	unsigned int (*get_chunk_size)(struct snd_dma_buffer *dmab,
 27				       unsigned int ofs, unsigned int size);
 28	int (*mmap)(struct snd_dma_buffer *dmab, struct vm_area_struct *area);
 29	void (*sync)(struct snd_dma_buffer *dmab, enum snd_dma_sync_mode mode);
 
 
 
 
 
 
 
 
 30};
 31
 32#define DEFAULT_GFP \
 33	(GFP_KERNEL | \
 34	 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
 35	 __GFP_NOWARN)   /* no stack trace print - this call is non-critical */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
 
 
 
 
 38
 39static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
 
 
 40{
 41	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
 
 
 42
 43	if (WARN_ON_ONCE(!ops || !ops->alloc))
 44		return NULL;
 45	return ops->alloc(dmab, size);
 
 
 
 
 
 
 
 
 
 46}
 47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 48/**
 49 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
 50 *	type and direction
 51 * @type: the DMA buffer type
 52 * @device: the device pointer
 53 * @dir: DMA direction
 54 * @size: the buffer size to allocate
 55 * @dmab: buffer allocation record to store the allocated data
 56 *
 57 * Calls the memory-allocator function for the corresponding
 58 * buffer type.
 59 *
 60 * Return: Zero if the buffer with the given size is allocated successfully,
 61 * otherwise a negative value on error.
 62 */
 63int snd_dma_alloc_dir_pages(int type, struct device *device,
 64			    enum dma_data_direction dir, size_t size,
 65			    struct snd_dma_buffer *dmab)
 66{
 67	if (WARN_ON(!size))
 68		return -ENXIO;
 69	if (WARN_ON(!dmab))
 70		return -ENXIO;
 71
 72	size = PAGE_ALIGN(size);
 73	dmab->dev.type = type;
 74	dmab->dev.dev = device;
 75	dmab->dev.dir = dir;
 76	dmab->bytes = 0;
 77	dmab->addr = 0;
 78	dmab->private_data = NULL;
 79	dmab->area = __snd_dma_alloc_pages(dmab, size);
 80	if (!dmab->area)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 81		return -ENOMEM;
 82	dmab->bytes = size;
 83	return 0;
 84}
 85EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
 86
 87/**
 88 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
 89 * @type: the DMA buffer type
 90 * @device: the device pointer
 91 * @size: the buffer size to allocate
 92 * @dmab: buffer allocation record to store the allocated data
 93 *
 94 * Calls the memory-allocator function for the corresponding
 95 * buffer type.  When no space is left, this function reduces the size and
 96 * tries to allocate again.  The size actually allocated is stored in
 97 * res_size argument.
 98 *
 99 * Return: Zero if the buffer with the given size is allocated successfully,
100 * otherwise a negative value on error.
101 */
102int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
103				 struct snd_dma_buffer *dmab)
104{
105	int err;
106
107	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
 
108		if (err != -ENOMEM)
109			return err;
110		if (size <= PAGE_SIZE)
111			return -ENOMEM;
112		size >>= 1;
113		size = PAGE_SIZE << get_order(size);
 
 
 
114	}
115	if (! dmab->area)
116		return -ENOMEM;
117	return 0;
118}
119EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
120
121/**
122 * snd_dma_free_pages - release the allocated buffer
123 * @dmab: the buffer allocation record to release
124 *
125 * Releases the allocated buffer via snd_dma_alloc_pages().
126 */
127void snd_dma_free_pages(struct snd_dma_buffer *dmab)
128{
129	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
130
131	if (ops && ops->free)
132		ops->free(dmab);
 
 
 
 
 
 
 
 
 
 
 
 
 
133}
134EXPORT_SYMBOL(snd_dma_free_pages);
135
136/* called by devres */
137static void __snd_release_pages(struct device *dev, void *res)
138{
139	snd_dma_free_pages(res);
140}
141
142/**
143 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
144 * @dev: the device pointer
145 * @type: the DMA buffer type
146 * @dir: DMA direction
147 * @size: the buffer size to allocate
148 *
149 * Allocate buffer pages depending on the given type and manage using devres.
150 * The pages will be released automatically at the device removal.
151 *
152 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
153 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
154 * SNDRV_DMA_TYPE_VMALLOC type.
155 *
156 * Return: the snd_dma_buffer object at success, or NULL if failed
157 */
158struct snd_dma_buffer *
159snd_devm_alloc_dir_pages(struct device *dev, int type,
160			 enum dma_data_direction dir, size_t size)
161{
162	struct snd_dma_buffer *dmab;
163	int err;
164
165	if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
166		    type == SNDRV_DMA_TYPE_VMALLOC))
167		return NULL;
168
169	dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
170	if (!dmab)
171		return NULL;
172
173	err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
174	if (err < 0) {
175		devres_free(dmab);
176		return NULL;
 
 
 
 
 
 
 
 
 
 
177	}
178
179	devres_add(dev, dmab);
180	return dmab;
181}
182EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
183
184/**
185 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
186 * @dmab: buffer allocation information
187 * @area: VM area information
188 *
189 * Return: zero if successful, or a negative error code
190 */
191int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
192			struct vm_area_struct *area)
193{
194	const struct snd_malloc_ops *ops;
195
196	if (!dmab)
197		return -ENOENT;
198	ops = snd_dma_get_ops(dmab);
199	if (ops && ops->mmap)
200		return ops->mmap(dmab, area);
201	else
202		return -ENOENT;
203}
204EXPORT_SYMBOL(snd_dma_buffer_mmap);
205
206#ifdef CONFIG_HAS_DMA
207/**
208 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
209 * @dmab: buffer allocation information
210 * @mode: sync mode
211 */
212void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
213			 enum snd_dma_sync_mode mode)
214{
215	const struct snd_malloc_ops *ops;
216
217	if (!dmab || !dmab->dev.need_sync)
218		return;
219	ops = snd_dma_get_ops(dmab);
220	if (ops && ops->sync)
221		ops->sync(dmab, mode);
222}
223EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
224#endif /* CONFIG_HAS_DMA */
225
226/**
227 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
228 * @dmab: buffer allocation information
229 * @offset: offset in the ring buffer
230 *
231 * Return: the physical address
232 */
233dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
234{
235	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
236
237	if (ops && ops->get_addr)
238		return ops->get_addr(dmab, offset);
239	else
240		return dmab->addr + offset;
241}
242EXPORT_SYMBOL(snd_sgbuf_get_addr);
243
244/**
245 * snd_sgbuf_get_page - return the physical page at the corresponding offset
246 * @dmab: buffer allocation information
247 * @offset: offset in the ring buffer
248 *
249 * Return: the page pointer
250 */
251struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
252{
253	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
254
255	if (ops && ops->get_page)
256		return ops->get_page(dmab, offset);
257	else
258		return virt_to_page(dmab->area + offset);
259}
260EXPORT_SYMBOL(snd_sgbuf_get_page);
261
262/**
263 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
264 *	on sg-buffer
265 * @dmab: buffer allocation information
266 * @ofs: offset in the ring buffer
267 * @size: the requested size
268 *
269 * Return: the chunk size
 
 
270 */
271unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
272				      unsigned int ofs, unsigned int size)
273{
274	const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
275
276	if (ops && ops->get_chunk_size)
277		return ops->get_chunk_size(dmab, ofs, size);
278	else
279		return size;
 
 
 
 
 
 
 
280}
281EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
282
283/*
284 * Continuous pages allocator
285 */
286static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
287			    bool wc)
288{
289	void *p;
290	gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
291
292 again:
293	p = alloc_pages_exact(size, gfp);
294	if (!p)
295		return NULL;
296	*addr = page_to_phys(virt_to_page(p));
297	if (!dev)
298		return p;
299	if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
300		if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
301			gfp |= GFP_DMA32;
302			goto again;
303		}
304		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
305			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
306			goto again;
307		}
308	}
309#ifdef CONFIG_X86
310	if (wc)
311		set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
312#endif
313	return p;
314}
315
316static void do_free_pages(void *p, size_t size, bool wc)
317{
318#ifdef CONFIG_X86
319	if (wc)
320		set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
321#endif
322	free_pages_exact(p, size);
323}
324
325
326static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
327{
328	return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
329}
330
331static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
332{
333	do_free_pages(dmab->area, dmab->bytes, false);
334}
335
336static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
337				   struct vm_area_struct *area)
338{
339	return remap_pfn_range(area, area->vm_start,
340			       dmab->addr >> PAGE_SHIFT,
341			       area->vm_end - area->vm_start,
342			       area->vm_page_prot);
343}
344
345static const struct snd_malloc_ops snd_dma_continuous_ops = {
346	.alloc = snd_dma_continuous_alloc,
347	.free = snd_dma_continuous_free,
348	.mmap = snd_dma_continuous_mmap,
349};
350
 
351/*
352 * VMALLOC allocator
353 */
354static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
355{
356	return vmalloc(size);
357}
358
359static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
360{
361	vfree(dmab->area);
362}
363
364static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
365				struct vm_area_struct *area)
366{
367	return remap_vmalloc_range(area, dmab->area, 0);
368}
369
370#define get_vmalloc_page_addr(dmab, offset) \
371	page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
372
373static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
374					   size_t offset)
375{
376	return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
377}
378
379static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
380					     size_t offset)
381{
382	return vmalloc_to_page(dmab->area + offset);
383}
384
385static unsigned int
386snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
387			       unsigned int ofs, unsigned int size)
388{
389	unsigned int start, end;
390	unsigned long addr;
391
392	start = ALIGN_DOWN(ofs, PAGE_SIZE);
393	end = ofs + size - 1; /* the last byte address */
394	/* check page continuity */
395	addr = get_vmalloc_page_addr(dmab, start);
396	for (;;) {
397		start += PAGE_SIZE;
398		if (start > end)
399			break;
400		addr += PAGE_SIZE;
401		if (get_vmalloc_page_addr(dmab, start) != addr)
402			return start - ofs;
403	}
404	/* ok, all on continuous pages */
405	return size;
406}
407
408static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
409	.alloc = snd_dma_vmalloc_alloc,
410	.free = snd_dma_vmalloc_free,
411	.mmap = snd_dma_vmalloc_mmap,
412	.get_addr = snd_dma_vmalloc_get_addr,
413	.get_page = snd_dma_vmalloc_get_page,
414	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
415};
416
417#ifdef CONFIG_HAS_DMA
418/*
419 * IRAM allocator
420 */
421#ifdef CONFIG_GENERIC_ALLOCATOR
422static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
423{
424	struct device *dev = dmab->dev.dev;
425	struct gen_pool *pool;
426	void *p;
427
428	if (dev->of_node) {
429		pool = of_gen_pool_get(dev->of_node, "iram", 0);
430		/* Assign the pool into private_data field */
431		dmab->private_data = pool;
432
433		p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
434		if (p)
435			return p;
436	}
437
438	/* Internal memory might have limited size and no enough space,
439	 * so if we fail to malloc, try to fetch memory traditionally.
440	 */
441	dmab->dev.type = SNDRV_DMA_TYPE_DEV;
442	return __snd_dma_alloc_pages(dmab, size);
443}
444
445static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
446{
447	struct gen_pool *pool = dmab->private_data;
448
449	if (pool && dmab->area)
450		gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
451}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
452
453static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
454			     struct vm_area_struct *area)
455{
456	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
457	return remap_pfn_range(area, area->vm_start,
458			       dmab->addr >> PAGE_SHIFT,
459			       area->vm_end - area->vm_start,
460			       area->vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461}
 
462
463static const struct snd_malloc_ops snd_dma_iram_ops = {
464	.alloc = snd_dma_iram_alloc,
465	.free = snd_dma_iram_free,
466	.mmap = snd_dma_iram_mmap,
 
 
 
 
 
467};
468#endif /* CONFIG_GENERIC_ALLOCATOR */
469
470/*
471 * Coherent device pages allocator
472 */
473static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
474{
475	return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
476}
477
478static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
479{
480	dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
481}
482
483static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
484			    struct vm_area_struct *area)
485{
486	return dma_mmap_coherent(dmab->dev.dev, area,
487				 dmab->area, dmab->addr, dmab->bytes);
488}
489
490static const struct snd_malloc_ops snd_dma_dev_ops = {
491	.alloc = snd_dma_dev_alloc,
492	.free = snd_dma_dev_free,
493	.mmap = snd_dma_dev_mmap,
494};
495
496/*
497 * Write-combined pages
498 */
499#ifdef CONFIG_SND_DMA_SGBUF
500/* x86-specific allocations */
501static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
502{
503	void *p = do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
504
505	if (!p)
506		return NULL;
507	dmab->addr = dma_map_single(dmab->dev.dev, p, size, DMA_BIDIRECTIONAL);
508	if (dma_mapping_error(dmab->dev.dev, dmab->addr)) {
509		do_free_pages(dmab->area, size, true);
510		return NULL;
511	}
512	return p;
513}
514
515static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
516{
517	dma_unmap_single(dmab->dev.dev, dmab->addr, dmab->bytes,
518			 DMA_BIDIRECTIONAL);
519	do_free_pages(dmab->area, dmab->bytes, true);
520}
521
522static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
523			   struct vm_area_struct *area)
524{
525	area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
526	return dma_mmap_coherent(dmab->dev.dev, area,
527				 dmab->area, dmab->addr, dmab->bytes);
528}
529#else
530static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
531{
532	return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
533}
534
535static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
536{
537	dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
538}
539
540static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
541			   struct vm_area_struct *area)
542{
543	return dma_mmap_wc(dmab->dev.dev, area,
544			   dmab->area, dmab->addr, dmab->bytes);
545}
546#endif
547
548static const struct snd_malloc_ops snd_dma_wc_ops = {
549	.alloc = snd_dma_wc_alloc,
550	.free = snd_dma_wc_free,
551	.mmap = snd_dma_wc_mmap,
552};
553
554/*
555 * Non-contiguous pages allocator
556 */
557static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
558{
559	struct sg_table *sgt;
560	void *p;
561
562	sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
563				      DEFAULT_GFP, 0);
564	if (!sgt)
565		return NULL;
566
567	dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
568					    sg_dma_address(sgt->sgl));
569	p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
570	if (p) {
571		dmab->private_data = sgt;
572		/* store the first page address for convenience */
573		dmab->addr = snd_sgbuf_get_addr(dmab, 0);
574	} else {
575		dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
576	}
577	return p;
578}
579
580static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
581{
582	dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
583	dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
584			       dmab->dev.dir);
585}
586
587static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
588				  struct vm_area_struct *area)
589{
590	return dma_mmap_noncontiguous(dmab->dev.dev, area,
591				      dmab->bytes, dmab->private_data);
592}
593
594static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
595				   enum snd_dma_sync_mode mode)
596{
597	if (mode == SNDRV_DMA_SYNC_CPU) {
598		if (dmab->dev.dir == DMA_TO_DEVICE)
599			return;
600		invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
601		dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
602					 dmab->dev.dir);
603	} else {
604		if (dmab->dev.dir == DMA_FROM_DEVICE)
605			return;
606		flush_kernel_vmap_range(dmab->area, dmab->bytes);
607		dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
608					    dmab->dev.dir);
609	}
610}
611
612static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
613					      struct sg_page_iter *piter,
614					      size_t offset)
615{
616	struct sg_table *sgt = dmab->private_data;
617
618	__sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
619			     offset >> PAGE_SHIFT);
620}
621
622static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
623					     size_t offset)
624{
625	struct sg_dma_page_iter iter;
626
627	snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
628	__sg_page_iter_dma_next(&iter);
629	return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
630}
631
632static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
633					       size_t offset)
634{
635	struct sg_page_iter iter;
636
637	snd_dma_noncontig_iter_set(dmab, &iter, offset);
638	__sg_page_iter_next(&iter);
639	return sg_page_iter_page(&iter);
640}
641
642static unsigned int
643snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
644				 unsigned int ofs, unsigned int size)
645{
646	struct sg_dma_page_iter iter;
647	unsigned int start, end;
648	unsigned long addr;
649
650	start = ALIGN_DOWN(ofs, PAGE_SIZE);
651	end = ofs + size - 1; /* the last byte address */
652	snd_dma_noncontig_iter_set(dmab, &iter.base, start);
653	if (!__sg_page_iter_dma_next(&iter))
654		return 0;
655	/* check page continuity */
656	addr = sg_page_iter_dma_address(&iter);
657	for (;;) {
658		start += PAGE_SIZE;
659		if (start > end)
660			break;
661		addr += PAGE_SIZE;
662		if (!__sg_page_iter_dma_next(&iter) ||
663		    sg_page_iter_dma_address(&iter) != addr)
664			return start - ofs;
665	}
666	/* ok, all on continuous pages */
667	return size;
668}
669
670static const struct snd_malloc_ops snd_dma_noncontig_ops = {
671	.alloc = snd_dma_noncontig_alloc,
672	.free = snd_dma_noncontig_free,
673	.mmap = snd_dma_noncontig_mmap,
674	.sync = snd_dma_noncontig_sync,
675	.get_addr = snd_dma_noncontig_get_addr,
676	.get_page = snd_dma_noncontig_get_page,
677	.get_chunk_size = snd_dma_noncontig_get_chunk_size,
678};
679
680#ifdef CONFIG_SND_DMA_SGBUF
681/* Fallback SG-buffer allocations for x86 */
682struct snd_dma_sg_fallback {
683	struct sg_table sgt; /* used by get_addr - must be the first item */
684	size_t count;
685	struct page **pages;
686	unsigned int *npages;
687};
688
689static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
690				       struct snd_dma_sg_fallback *sgbuf)
691{
692	bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG;
693	size_t i, size;
694
695	if (sgbuf->pages && sgbuf->npages) {
696		i = 0;
697		while (i < sgbuf->count) {
698			size = sgbuf->npages[i];
699			if (!size)
700				break;
701			do_free_pages(page_address(sgbuf->pages[i]),
702				      size << PAGE_SHIFT, wc);
703			i += size;
704		}
705	}
706	kvfree(sgbuf->pages);
707	kvfree(sgbuf->npages);
708	kfree(sgbuf);
709}
710
711/* fallback manual S/G buffer allocations */
712static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
713{
714	bool wc = dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG;
715	struct snd_dma_sg_fallback *sgbuf;
716	struct page **pagep, *curp;
717	size_t chunk;
718	dma_addr_t addr;
719	unsigned int idx, npages;
720	void *p;
721
722	sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
723	if (!sgbuf)
724		return NULL;
725	size = PAGE_ALIGN(size);
726	sgbuf->count = size >> PAGE_SHIFT;
727	sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
728	sgbuf->npages = kvcalloc(sgbuf->count, sizeof(*sgbuf->npages), GFP_KERNEL);
729	if (!sgbuf->pages || !sgbuf->npages)
730		goto error;
731
732	pagep = sgbuf->pages;
733	chunk = size;
734	idx = 0;
735	while (size > 0) {
736		chunk = min(size, chunk);
737		p = do_alloc_pages(dmab->dev.dev, chunk, &addr, wc);
738		if (!p) {
739			if (chunk <= PAGE_SIZE)
740				goto error;
741			chunk >>= 1;
742			chunk = PAGE_SIZE << get_order(chunk);
743			continue;
744		}
745
746		size -= chunk;
747		/* fill pages */
748		npages = chunk >> PAGE_SHIFT;
749		sgbuf->npages[idx] = npages;
750		idx += npages;
751		curp = virt_to_page(p);
752		while (npages--)
753			*pagep++ = curp++;
754	}
755
756	if (sg_alloc_table_from_pages(&sgbuf->sgt, sgbuf->pages, sgbuf->count,
757				      0, sgbuf->count << PAGE_SHIFT, GFP_KERNEL))
758		goto error;
759
760	if (dma_map_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0))
761		goto error_dma_map;
762
763	p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
764	if (!p)
765		goto error_vmap;
766
767	dmab->private_data = sgbuf;
768	/* store the first page address for convenience */
769	dmab->addr = snd_sgbuf_get_addr(dmab, 0);
770	return p;
771
772 error_vmap:
773	dma_unmap_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0);
774 error_dma_map:
775	sg_free_table(&sgbuf->sgt);
776 error:
777	__snd_dma_sg_fallback_free(dmab, sgbuf);
778	return NULL;
779}
780
781static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
782{
783	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
784
785	vunmap(dmab->area);
786	dma_unmap_sgtable(dmab->dev.dev, &sgbuf->sgt, DMA_BIDIRECTIONAL, 0);
787	sg_free_table(&sgbuf->sgt);
788	__snd_dma_sg_fallback_free(dmab, dmab->private_data);
789}
790
791static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
792				    struct vm_area_struct *area)
793{
794	struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
795
796	if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
797		area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
798	return vm_map_pages(area, sgbuf->pages, sgbuf->count);
799}
800
801static void *snd_dma_sg_alloc(struct snd_dma_buffer *dmab, size_t size)
802{
803	int type = dmab->dev.type;
804	void *p;
805
806	/* try the standard DMA API allocation at first */
807	if (type == SNDRV_DMA_TYPE_DEV_WC_SG)
808		dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC;
809	else
810		dmab->dev.type = SNDRV_DMA_TYPE_DEV;
811	p = __snd_dma_alloc_pages(dmab, size);
812	if (p)
813		return p;
814
815	dmab->dev.type = type; /* restore the type */
816	return snd_dma_sg_fallback_alloc(dmab, size);
817}
818
819static const struct snd_malloc_ops snd_dma_sg_ops = {
820	.alloc = snd_dma_sg_alloc,
821	.free = snd_dma_sg_fallback_free,
822	.mmap = snd_dma_sg_fallback_mmap,
823	/* reuse noncontig helper */
824	.get_addr = snd_dma_noncontig_get_addr,
825	/* reuse vmalloc helpers */
826	.get_page = snd_dma_vmalloc_get_page,
827	.get_chunk_size = snd_dma_vmalloc_get_chunk_size,
828};
829#endif /* CONFIG_SND_DMA_SGBUF */
830
831/*
832 * Non-coherent pages allocator
833 */
834static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
835{
836	void *p;
837
838	p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
839				  dmab->dev.dir, DEFAULT_GFP);
840	if (p)
841		dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
842	return p;
843}
844
845static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
846{
847	dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
848			     dmab->addr, dmab->dev.dir);
849}
850
851static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
852				    struct vm_area_struct *area)
853{
854	area->vm_page_prot = vm_get_page_prot(area->vm_flags);
855	return dma_mmap_pages(dmab->dev.dev, area,
856			      area->vm_end - area->vm_start,
857			      virt_to_page(dmab->area));
858}
859
860static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
861				     enum snd_dma_sync_mode mode)
862{
863	if (mode == SNDRV_DMA_SYNC_CPU) {
864		if (dmab->dev.dir != DMA_TO_DEVICE)
865			dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
866						dmab->bytes, dmab->dev.dir);
867	} else {
868		if (dmab->dev.dir != DMA_FROM_DEVICE)
869			dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
870						   dmab->bytes, dmab->dev.dir);
871	}
872}
873
874static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
875	.alloc = snd_dma_noncoherent_alloc,
876	.free = snd_dma_noncoherent_free,
877	.mmap = snd_dma_noncoherent_mmap,
878	.sync = snd_dma_noncoherent_sync,
879};
880
881#endif /* CONFIG_HAS_DMA */
 
882
883/*
884 * Entry points
885 */
886static const struct snd_malloc_ops *snd_dma_ops[] = {
887	[SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
888	[SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
889#ifdef CONFIG_HAS_DMA
890	[SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
891	[SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
892	[SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
893	[SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
894#ifdef CONFIG_SND_DMA_SGBUF
895	[SNDRV_DMA_TYPE_DEV_SG] = &snd_dma_sg_ops,
896	[SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_ops,
897#endif
898#ifdef CONFIG_GENERIC_ALLOCATOR
899	[SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
900#endif /* CONFIG_GENERIC_ALLOCATOR */
901#endif /* CONFIG_HAS_DMA */
902};
903
904static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
905{
906	if (WARN_ON_ONCE(!dmab))
907		return NULL;
908	if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
909			 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
910		return NULL;
911	return snd_dma_ops[dmab->dev.type];
912}
v3.5.6
 
  1/*
  2 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  3 *                   Takashi Iwai <tiwai@suse.de>
  4 * 
  5 *  Generic memory allocators
  6 *
  7 *
  8 *   This program is free software; you can redistribute it and/or modify
  9 *   it under the terms of the GNU General Public License as published by
 10 *   the Free Software Foundation; either version 2 of the License, or
 11 *   (at your option) any later version.
 12 *
 13 *   This program is distributed in the hope that it will be useful,
 14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 *   GNU General Public License for more details.
 17 *
 18 *   You should have received a copy of the GNU General Public License
 19 *   along with this program; if not, write to the Free Software
 20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/proc_fs.h>
 26#include <linux/init.h>
 27#include <linux/pci.h>
 28#include <linux/slab.h>
 29#include <linux/mm.h>
 30#include <linux/seq_file.h>
 31#include <asm/uaccess.h>
 32#include <linux/dma-mapping.h>
 33#include <linux/moduleparam.h>
 34#include <linux/mutex.h>
 
 
 
 
 
 35#include <sound/memalloc.h>
 36
 37
 38MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@perex.cz>");
 39MODULE_DESCRIPTION("Memory allocator for ALSA system.");
 40MODULE_LICENSE("GPL");
 41
 42
 43/*
 44 */
 45
 46static DEFINE_MUTEX(list_mutex);
 47static LIST_HEAD(mem_list_head);
 48
 49/* buffer preservation list */
 50struct snd_mem_list {
 51	struct snd_dma_buffer buffer;
 52	unsigned int id;
 53	struct list_head list;
 54};
 55
 56/* id for pre-allocated buffers */
 57#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
 58
 59/*
 60 *
 61 *  Generic memory allocators
 62 *
 63 */
 64
 65static long snd_allocated_pages; /* holding the number of allocated pages */
 66
 67static inline void inc_snd_pages(int order)
 68{
 69	snd_allocated_pages += 1 << order;
 70}
 71
 72static inline void dec_snd_pages(int order)
 73{
 74	snd_allocated_pages -= 1 << order;
 75}
 76
 77/**
 78 * snd_malloc_pages - allocate pages with the given size
 79 * @size: the size to allocate in bytes
 80 * @gfp_flags: the allocation conditions, GFP_XXX
 81 *
 82 * Allocates the physically contiguous pages with the given size.
 83 *
 84 * Returns the pointer of the buffer, or NULL if no enoguh memory.
 85 */
 86void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
 87{
 88	int pg;
 89	void *res;
 90
 91	if (WARN_ON(!size))
 92		return NULL;
 93	if (WARN_ON(!gfp_flags))
 94		return NULL;
 95	gfp_flags |= __GFP_COMP;	/* compound page lets parts be mapped */
 96	pg = get_order(size);
 97	if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
 98		inc_snd_pages(pg);
 99	return res;
100}
101
102/**
103 * snd_free_pages - release the pages
104 * @ptr: the buffer pointer to release
105 * @size: the allocated buffer size
106 *
107 * Releases the buffer allocated via snd_malloc_pages().
108 */
109void snd_free_pages(void *ptr, size_t size)
110{
111	int pg;
112
113	if (ptr == NULL)
114		return;
115	pg = get_order(size);
116	dec_snd_pages(pg);
117	free_pages((unsigned long) ptr, pg);
118}
119
120/*
121 *
122 *  Bus-specific memory allocators
123 *
124 */
125
126#ifdef CONFIG_HAS_DMA
127/* allocate the coherent DMA pages */
128static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
129{
130	int pg;
131	void *res;
132	gfp_t gfp_flags;
133
134	if (WARN_ON(!dma))
135		return NULL;
136	pg = get_order(size);
137	gfp_flags = GFP_KERNEL
138		| __GFP_COMP	/* compound page lets parts be mapped */
139		| __GFP_NORETRY /* don't trigger OOM-killer */
140		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
141	res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
142	if (res != NULL)
143		inc_snd_pages(pg);
144
145	return res;
146}
147
148/* free the coherent DMA pages */
149static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
150			       dma_addr_t dma)
151{
152	int pg;
153
154	if (ptr == NULL)
155		return;
156	pg = get_order(size);
157	dec_snd_pages(pg);
158	dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
159}
160#endif /* CONFIG_HAS_DMA */
161
162/*
163 *
164 *  ALSA generic memory management
165 *
166 */
167
168
169/**
170 * snd_dma_alloc_pages - allocate the buffer area according to the given type
 
171 * @type: the DMA buffer type
172 * @device: the device pointer
 
173 * @size: the buffer size to allocate
174 * @dmab: buffer allocation record to store the allocated data
175 *
176 * Calls the memory-allocator function for the corresponding
177 * buffer type.
178 * 
179 * Returns zero if the buffer with the given size is allocated successfully,
180 * other a negative value at error.
181 */
182int snd_dma_alloc_pages(int type, struct device *device, size_t size,
183			struct snd_dma_buffer *dmab)
 
184{
185	if (WARN_ON(!size))
186		return -ENXIO;
187	if (WARN_ON(!dmab))
188		return -ENXIO;
189
 
190	dmab->dev.type = type;
191	dmab->dev.dev = device;
 
192	dmab->bytes = 0;
193	switch (type) {
194	case SNDRV_DMA_TYPE_CONTINUOUS:
195		dmab->area = snd_malloc_pages(size,
196					(__force gfp_t)(unsigned long)device);
197		dmab->addr = 0;
198		break;
199#ifdef CONFIG_HAS_DMA
200	case SNDRV_DMA_TYPE_DEV:
201		dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
202		break;
203#endif
204#ifdef CONFIG_SND_DMA_SGBUF
205	case SNDRV_DMA_TYPE_DEV_SG:
206		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
207		break;
208#endif
209	default:
210		printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
211		dmab->area = NULL;
212		dmab->addr = 0;
213		return -ENXIO;
214	}
215	if (! dmab->area)
216		return -ENOMEM;
217	dmab->bytes = size;
218	return 0;
219}
 
220
221/**
222 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
223 * @type: the DMA buffer type
224 * @device: the device pointer
225 * @size: the buffer size to allocate
226 * @dmab: buffer allocation record to store the allocated data
227 *
228 * Calls the memory-allocator function for the corresponding
229 * buffer type.  When no space is left, this function reduces the size and
230 * tries to allocate again.  The size actually allocated is stored in
231 * res_size argument.
232 * 
233 * Returns zero if the buffer with the given size is allocated successfully,
234 * other a negative value at error.
235 */
236int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
237				 struct snd_dma_buffer *dmab)
238{
239	int err;
240
241	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
242		size_t aligned_size;
243		if (err != -ENOMEM)
244			return err;
245		if (size <= PAGE_SIZE)
246			return -ENOMEM;
247		aligned_size = PAGE_SIZE << get_order(size);
248		if (size != aligned_size)
249			size = aligned_size;
250		else
251			size >>= 1;
252	}
253	if (! dmab->area)
254		return -ENOMEM;
255	return 0;
256}
257
258
259/**
260 * snd_dma_free_pages - release the allocated buffer
261 * @dmab: the buffer allocation record to release
262 *
263 * Releases the allocated buffer via snd_dma_alloc_pages().
264 */
265void snd_dma_free_pages(struct snd_dma_buffer *dmab)
266{
267	switch (dmab->dev.type) {
268	case SNDRV_DMA_TYPE_CONTINUOUS:
269		snd_free_pages(dmab->area, dmab->bytes);
270		break;
271#ifdef CONFIG_HAS_DMA
272	case SNDRV_DMA_TYPE_DEV:
273		snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
274		break;
275#endif
276#ifdef CONFIG_SND_DMA_SGBUF
277	case SNDRV_DMA_TYPE_DEV_SG:
278		snd_free_sgbuf_pages(dmab);
279		break;
280#endif
281	default:
282		printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
283	}
284}
 
285
 
 
 
 
 
286
287/**
288 * snd_dma_get_reserved - get the reserved buffer for the given device
289 * @dmab: the buffer allocation record to store
290 * @id: the buffer id
 
 
 
 
 
291 *
292 * Looks for the reserved-buffer list and re-uses if the same buffer
293 * is found in the list.  When the buffer is found, it's removed from the free list.
 
294 *
295 * Returns the size of buffer if the buffer is found, or zero if not found.
296 */
297size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
 
 
298{
299	struct snd_mem_list *mem;
 
 
 
 
 
300
301	if (WARN_ON(!dmab))
302		return 0;
 
303
304	mutex_lock(&list_mutex);
305	list_for_each_entry(mem, &mem_list_head, list) {
306		if (mem->id == id &&
307		    (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
308		     ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
309			struct device *dev = dmab->dev.dev;
310			list_del(&mem->list);
311			*dmab = mem->buffer;
312			if (dmab->dev.dev == NULL)
313				dmab->dev.dev = dev;
314			kfree(mem);
315			mutex_unlock(&list_mutex);
316			return dmab->bytes;
317		}
318	}
319	mutex_unlock(&list_mutex);
320	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321}
 
322
323/**
324 * snd_dma_reserve_buf - reserve the buffer
325 * @dmab: the buffer to reserve
326 * @id: the buffer id
 
 
327 *
328 * Reserves the given buffer as a reserved buffer.
329 * 
330 * Returns zero if successful, or a negative code at error.
331 */
332int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
 
333{
334	struct snd_mem_list *mem;
335
336	if (WARN_ON(!dmab))
337		return -EINVAL;
338	mem = kmalloc(sizeof(*mem), GFP_KERNEL);
339	if (! mem)
340		return -ENOMEM;
341	mutex_lock(&list_mutex);
342	mem->buffer = *dmab;
343	mem->id = id;
344	list_add_tail(&mem->list, &mem_list_head);
345	mutex_unlock(&list_mutex);
346	return 0;
347}
 
348
349/*
350 * purge all reserved buffers
351 */
352static void free_all_reserved_pages(void)
 
353{
354	struct list_head *p;
355	struct snd_mem_list *mem;
356
357	mutex_lock(&list_mutex);
358	while (! list_empty(&mem_list_head)) {
359		p = mem_list_head.next;
360		mem = list_entry(p, struct snd_mem_list, list);
361		list_del(p);
362		snd_dma_free_pages(&mem->buffer);
363		kfree(mem);
 
 
 
 
 
 
 
 
 
364	}
365	mutex_unlock(&list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366}
367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
369#ifdef CONFIG_PROC_FS
370/*
371 * proc file interface
372 */
373#define SND_MEM_PROC_FILE	"driver/snd-page-alloc"
374static struct proc_dir_entry *snd_mem_proc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375
376static int snd_mem_proc_read(struct seq_file *seq, void *offset)
 
377{
378	long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
379	struct snd_mem_list *mem;
380	int devno;
381	static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG" };
382
383	mutex_lock(&list_mutex);
384	seq_printf(seq, "pages  : %li bytes (%li pages per %likB)\n",
385		   pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
386	devno = 0;
387	list_for_each_entry(mem, &mem_list_head, list) {
388		devno++;
389		seq_printf(seq, "buffer %d : ID %08x : type %s\n",
390			   devno, mem->id, types[mem->buffer.dev.type]);
391		seq_printf(seq, "  addr = 0x%lx, size = %d bytes\n",
392			   (unsigned long)mem->buffer.addr,
393			   (int)mem->buffer.bytes);
 
 
 
 
 
394	}
395	mutex_unlock(&list_mutex);
396	return 0;
397}
398
399static int snd_mem_proc_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400{
401	return single_open(file, snd_mem_proc_read, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402}
403
404/* FIXME: for pci only - other bus? */
405#ifdef CONFIG_PCI
406#define gettoken(bufp) strsep(bufp, " \t\n")
407
408static ssize_t snd_mem_proc_write(struct file *file, const char __user * buffer,
409				  size_t count, loff_t * ppos)
410{
411	char buf[128];
412	char *token, *p;
413
414	if (count > sizeof(buf) - 1)
415		return -EINVAL;
416	if (copy_from_user(buf, buffer, count))
417		return -EFAULT;
418	buf[count] = '\0';
419
420	p = buf;
421	token = gettoken(&p);
422	if (! token || *token == '#')
423		return count;
424	if (strcmp(token, "add") == 0) {
425		char *endp;
426		int vendor, device, size, buffers;
427		long mask;
428		int i, alloced;
429		struct pci_dev *pci;
430
431		if ((token = gettoken(&p)) == NULL ||
432		    (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
433		    (token = gettoken(&p)) == NULL ||
434		    (device = simple_strtol(token, NULL, 0)) <= 0 ||
435		    (token = gettoken(&p)) == NULL ||
436		    (mask = simple_strtol(token, NULL, 0)) < 0 ||
437		    (token = gettoken(&p)) == NULL ||
438		    (size = memparse(token, &endp)) < 64*1024 ||
439		    size > 16*1024*1024 /* too big */ ||
440		    (token = gettoken(&p)) == NULL ||
441		    (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
442		    buffers > 4) {
443			printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
444			return count;
445		}
446		vendor &= 0xffff;
447		device &= 0xffff;
448
449		alloced = 0;
450		pci = NULL;
451		while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
452			if (mask > 0 && mask < 0xffffffff) {
453				if (pci_set_dma_mask(pci, mask) < 0 ||
454				    pci_set_consistent_dma_mask(pci, mask) < 0) {
455					printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
456					pci_dev_put(pci);
457					return count;
458				}
459			}
460			for (i = 0; i < buffers; i++) {
461				struct snd_dma_buffer dmab;
462				memset(&dmab, 0, sizeof(dmab));
463				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
464							size, &dmab) < 0) {
465					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
466					pci_dev_put(pci);
467					return count;
468				}
469				snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
470			}
471			alloced++;
472		}
473		if (! alloced) {
474			for (i = 0; i < buffers; i++) {
475				struct snd_dma_buffer dmab;
476				memset(&dmab, 0, sizeof(dmab));
477				/* FIXME: We can allocate only in ZONE_DMA
478				 * without a device pointer!
479				 */
480				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
481							size, &dmab) < 0) {
482					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
483					break;
484				}
485				snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
486			}
487		}
488	} else if (strcmp(token, "erase") == 0)
489		/* FIXME: need for releasing each buffer chunk? */
490		free_all_reserved_pages();
491	else
492		printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
493	return count;
494}
495#endif /* CONFIG_PCI */
496
497static const struct file_operations snd_mem_proc_fops = {
498	.owner		= THIS_MODULE,
499	.open		= snd_mem_proc_open,
500	.read		= seq_read,
501#ifdef CONFIG_PCI
502	.write		= snd_mem_proc_write,
503#endif
504	.llseek		= seq_lseek,
505	.release	= single_release,
506};
 
507
508#endif /* CONFIG_PROC_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509
510/*
511 * module entry
512 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513
514static int __init snd_mem_init(void)
 
515{
516#ifdef CONFIG_PROC_FS
517	snd_mem_proc = proc_create(SND_MEM_PROC_FILE, 0644, NULL,
518				   &snd_mem_proc_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519#endif
520	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521}
522
523static void __exit snd_mem_exit(void)
524{
525	remove_proc_entry(SND_MEM_PROC_FILE, NULL);
526	free_all_reserved_pages();
527	if (snd_allocated_pages > 0)
528		printk(KERN_ERR "snd-malloc: Memory leak?  pages not freed = %li\n", snd_allocated_pages);
 
 
529}
530
 
 
 
 
 
 
 
 
 
531
532module_init(snd_mem_init)
533module_exit(snd_mem_exit)
 
 
534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535
536/*
537 * exports
538 */
539EXPORT_SYMBOL(snd_dma_alloc_pages);
540EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
541EXPORT_SYMBOL(snd_dma_free_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542
543EXPORT_SYMBOL(snd_dma_get_reserved_buf);
544EXPORT_SYMBOL(snd_dma_reserve_buf);
545
546EXPORT_SYMBOL(snd_malloc_pages);
547EXPORT_SYMBOL(snd_free_pages);