Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Kerberos-based RxRPC security
   3 *
   4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <crypto/skcipher.h>
  11#include <linux/module.h>
  12#include <linux/net.h>
  13#include <linux/skbuff.h>
  14#include <linux/udp.h>
 
  15#include <linux/scatterlist.h>
  16#include <linux/ctype.h>
  17#include <linux/slab.h>
  18#include <linux/key-type.h>
  19#include <net/sock.h>
  20#include <net/af_rxrpc.h>
  21#include <keys/rxrpc-type.h>
 
  22#include "ar-internal.h"
  23
  24#define RXKAD_VERSION			2
  25#define MAXKRB5TICKETLEN		1024
  26#define RXKAD_TKT_TYPE_KERBEROS_V5	256
  27#define ANAME_SZ			40	/* size of authentication name */
  28#define INST_SZ				40	/* size of principal's instance */
  29#define REALM_SZ			40	/* size of principal's auth domain */
  30#define SNAME_SZ			40	/* size of service name */
  31#define RXKAD_ALIGN			8
 
 
 
  32
  33struct rxkad_level1_hdr {
  34	__be32	data_size;	/* true data size (excluding padding) */
  35};
  36
  37struct rxkad_level2_hdr {
  38	__be32	data_size;	/* true data size (excluding padding) */
  39	__be32	checksum;	/* decrypted data checksum */
  40};
  41
  42static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
  43				       struct crypto_sync_skcipher *ci);
 
  44
  45/*
  46 * this holds a pinned cipher so that keventd doesn't get called by the cipher
  47 * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
  48 * packets
  49 */
  50static struct crypto_sync_skcipher *rxkad_ci;
  51static struct skcipher_request *rxkad_ci_req;
  52static DEFINE_MUTEX(rxkad_ci_mutex);
  53
  54/*
  55 * Parse the information from a server key
  56 *
  57 * The data should be the 8-byte secret key.
  58 */
  59static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
  60{
  61	struct crypto_skcipher *ci;
  62
  63	if (prep->datalen != 8)
  64		return -EINVAL;
  65
  66	memcpy(&prep->payload.data[2], prep->data, 8);
  67
  68	ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
  69	if (IS_ERR(ci)) {
  70		_leave(" = %ld", PTR_ERR(ci));
  71		return PTR_ERR(ci);
  72	}
  73
  74	if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
  75		BUG();
  76
  77	prep->payload.data[0] = ci;
  78	_leave(" = 0");
  79	return 0;
  80}
  81
  82static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
  83{
  84
  85	if (prep->payload.data[0])
  86		crypto_free_skcipher(prep->payload.data[0]);
  87}
  88
  89static void rxkad_destroy_server_key(struct key *key)
  90{
  91	if (key->payload.data[0]) {
  92		crypto_free_skcipher(key->payload.data[0]);
  93		key->payload.data[0] = NULL;
  94	}
  95}
  96
  97/*
  98 * initialise connection security
  99 */
 100static int rxkad_init_connection_security(struct rxrpc_connection *conn,
 101					  struct rxrpc_key_token *token)
 102{
 103	struct crypto_sync_skcipher *ci;
 
 104	int ret;
 105
 106	_enter("{%d},{%x}", conn->debug_id, key_serial(conn->key));
 107
 
 108	conn->security_ix = token->security_index;
 109
 110	ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
 111	if (IS_ERR(ci)) {
 112		_debug("no cipher");
 113		ret = PTR_ERR(ci);
 114		goto error;
 115	}
 116
 117	if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
 118				   sizeof(token->kad->session_key)) < 0)
 119		BUG();
 120
 121	switch (conn->security_level) {
 122	case RXRPC_SECURITY_PLAIN:
 
 123	case RXRPC_SECURITY_AUTH:
 
 
 
 
 124	case RXRPC_SECURITY_ENCRYPT:
 
 
 
 125		break;
 126	default:
 127		ret = -EKEYREJECTED;
 128		goto error;
 129	}
 130
 131	ret = rxkad_prime_packet_security(conn, ci);
 132	if (ret < 0)
 133		goto error_ci;
 134
 135	conn->rxkad.cipher = ci;
 136	return 0;
 137
 138error_ci:
 139	crypto_free_sync_skcipher(ci);
 140error:
 141	_leave(" = %d", ret);
 142	return ret;
 143}
 144
 145/*
 146 * Work out how much data we can put in a packet.
 147 */
 148static struct rxrpc_txbuf *rxkad_alloc_txbuf(struct rxrpc_call *call, size_t remain, gfp_t gfp)
 149{
 150	struct rxrpc_txbuf *txb;
 151	size_t shdr, space;
 152
 153	remain = min(remain, 65535 - sizeof(struct rxrpc_wire_header));
 154
 155	switch (call->conn->security_level) {
 156	default:
 157		space = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
 158		return rxrpc_alloc_data_txbuf(call, space, 1, gfp);
 159	case RXRPC_SECURITY_AUTH:
 160		shdr = sizeof(struct rxkad_level1_hdr);
 161		break;
 162	case RXRPC_SECURITY_ENCRYPT:
 163		shdr = sizeof(struct rxkad_level2_hdr);
 164		break;
 165	}
 166
 167	space = min_t(size_t, round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN), remain + shdr);
 168	space = round_up(space, RXKAD_ALIGN);
 169
 170	txb = rxrpc_alloc_data_txbuf(call, space, RXKAD_ALIGN, gfp);
 171	if (!txb)
 172		return NULL;
 173
 174	txb->offset += shdr;
 175	txb->space -= shdr;
 176	return txb;
 177}
 178
 179/*
 180 * prime the encryption state with the invariant parts of a connection's
 181 * description
 182 */
 183static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
 184				       struct crypto_sync_skcipher *ci)
 185{
 186	struct skcipher_request *req;
 187	struct rxrpc_key_token *token;
 188	struct scatterlist sg;
 
 189	struct rxrpc_crypt iv;
 190	__be32 *tmpbuf;
 191	size_t tmpsize = 4 * sizeof(__be32);
 
 192
 193	_enter("");
 194
 195	if (!conn->key)
 196		return 0;
 197
 198	tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
 199	if (!tmpbuf)
 200		return -ENOMEM;
 201
 202	req = skcipher_request_alloc(&ci->base, GFP_NOFS);
 203	if (!req) {
 204		kfree(tmpbuf);
 205		return -ENOMEM;
 206	}
 207
 208	token = conn->key->payload.data[0];
 209	memcpy(&iv, token->kad->session_key, sizeof(iv));
 210
 211	tmpbuf[0] = htonl(conn->proto.epoch);
 212	tmpbuf[1] = htonl(conn->proto.cid);
 213	tmpbuf[2] = 0;
 214	tmpbuf[3] = htonl(conn->security_ix);
 215
 216	sg_init_one(&sg, tmpbuf, tmpsize);
 217	skcipher_request_set_sync_tfm(req, ci);
 218	skcipher_request_set_callback(req, 0, NULL, NULL);
 219	skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
 220	crypto_skcipher_encrypt(req);
 221	skcipher_request_free(req);
 222
 223	memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
 224	kfree(tmpbuf);
 225	_leave(" = 0");
 226	return 0;
 227}
 228
 229/*
 230 * Allocate and prepare the crypto request on a call.  For any particular call,
 231 * this is called serially for the packets, so no lock should be necessary.
 232 */
 233static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
 234{
 235	struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
 236
 237	return skcipher_request_alloc(tfm, GFP_NOFS);
 238}
 239
 240/*
 241 * Clean up the crypto on a call.
 242 */
 243static void rxkad_free_call_crypto(struct rxrpc_call *call)
 244{
 245}
 246
 247/*
 248 * partially encrypt a packet (level 1 security)
 249 */
 250static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
 251				    struct rxrpc_txbuf *txb,
 252				    struct skcipher_request *req)
 
 253{
 254	struct rxrpc_wire_header *whdr = txb->kvec[0].iov_base;
 255	struct rxkad_level1_hdr *hdr = (void *)(whdr + 1);
 256	struct rxrpc_crypt iv;
 257	struct scatterlist sg;
 258	size_t pad;
 
 
 
 259	u16 check;
 260
 
 
 261	_enter("");
 262
 263	check = txb->seq ^ call->call_id;
 264	hdr->data_size = htonl((u32)check << 16 | txb->len);
 265
 266	txb->len += sizeof(struct rxkad_level1_hdr);
 267	pad = txb->len;
 268	pad = RXKAD_ALIGN - pad;
 269	pad &= RXKAD_ALIGN - 1;
 270	if (pad) {
 271		memset(txb->kvec[0].iov_base + txb->offset, 0, pad);
 272		txb->len += pad;
 273	}
 274
 275	/* start the encryption afresh */
 276	memset(&iv, 0, sizeof(iv));
 
 
 
 
 
 
 
 277
 278	sg_init_one(&sg, hdr, 8);
 279	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
 280	skcipher_request_set_callback(req, 0, NULL, NULL);
 281	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
 282	crypto_skcipher_encrypt(req);
 283	skcipher_request_zero(req);
 284
 285	_leave(" = 0");
 286	return 0;
 287}
 288
 289/*
 290 * wholly encrypt a packet (level 2 security)
 291 */
 292static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
 293				       struct rxrpc_txbuf *txb,
 294				       struct skcipher_request *req)
 
 295{
 296	const struct rxrpc_key_token *token;
 297	struct rxrpc_wire_header *whdr = txb->kvec[0].iov_base;
 298	struct rxkad_level2_hdr *rxkhdr = (void *)(whdr + 1);
 
 
 299	struct rxrpc_crypt iv;
 300	struct scatterlist sg;
 301	size_t pad;
 
 302	u16 check;
 303	int ret;
 
 
 304
 305	_enter("");
 306
 307	check = txb->seq ^ call->call_id;
 308
 309	rxkhdr->data_size = htonl(txb->len | (u32)check << 16);
 310	rxkhdr->checksum = 0;
 311
 312	txb->len += sizeof(struct rxkad_level2_hdr);
 313	pad = txb->len;
 314	pad = RXKAD_ALIGN - pad;
 315	pad &= RXKAD_ALIGN - 1;
 316	if (pad) {
 317		memset(txb->kvec[0].iov_base + txb->offset, 0, pad);
 318		txb->len += pad;
 319	}
 320
 321	/* encrypt from the session key */
 322	token = call->conn->key->payload.data[0];
 323	memcpy(&iv, token->kad->session_key, sizeof(iv));
 
 
 
 
 
 
 
 
 
 
 
 
 324
 325	sg_init_one(&sg, rxkhdr, txb->len);
 326	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
 327	skcipher_request_set_callback(req, 0, NULL, NULL);
 328	skcipher_request_set_crypt(req, &sg, &sg, txb->len, iv.x);
 329	ret = crypto_skcipher_encrypt(req);
 330	skcipher_request_zero(req);
 331	return ret;
 
 
 332}
 333
 334/*
 335 * checksum an RxRPC packet header
 336 */
 337static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb)
 
 
 
 338{
 339	struct skcipher_request	*req;
 
 340	struct rxrpc_crypt iv;
 341	struct scatterlist sg;
 342	union {
 343		__be32 buf[2];
 344	} crypto __aligned(8);
 345	u32 x, y;
 
 346	int ret;
 347
 348	_enter("{%d{%x}},{#%u},%u,",
 349	       call->debug_id, key_serial(call->conn->key),
 350	       txb->seq, txb->len);
 351
 352	if (!call->conn->rxkad.cipher)
 
 
 
 
 353		return 0;
 354
 355	ret = key_validate(call->conn->key);
 356	if (ret < 0)
 357		return ret;
 358
 359	req = rxkad_get_call_crypto(call);
 360	if (!req)
 361		return -ENOMEM;
 362
 363	/* continue encrypting from where we left off */
 364	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
 
 
 
 365
 366	/* calculate the security checksum */
 367	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
 368	x |= txb->seq & 0x3fffffff;
 369	crypto.buf[0] = htonl(call->call_id);
 370	crypto.buf[1] = htonl(x);
 371
 372	sg_init_one(&sg, crypto.buf, 8);
 373	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
 374	skcipher_request_set_callback(req, 0, NULL, NULL);
 375	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
 376	crypto_skcipher_encrypt(req);
 377	skcipher_request_zero(req);
 378
 379	y = ntohl(crypto.buf[1]);
 380	y = (y >> 16) & 0xffff;
 381	if (y == 0)
 382		y = 1; /* zero checksums are not permitted */
 383	txb->cksum = htons(y);
 384
 385	switch (call->conn->security_level) {
 386	case RXRPC_SECURITY_PLAIN:
 387		ret = 0;
 388		break;
 389	case RXRPC_SECURITY_AUTH:
 390		ret = rxkad_secure_packet_auth(call, txb, req);
 391		break;
 392	case RXRPC_SECURITY_ENCRYPT:
 393		ret = rxkad_secure_packet_encrypt(call, txb, req);
 
 394		break;
 395	default:
 396		ret = -EPERM;
 397		break;
 398	}
 399
 400	skcipher_request_free(req);
 401	_leave(" = %d [set %x]", ret, y);
 402	return ret;
 403}
 404
 405/*
 406 * decrypt partial encryption on a packet (level 1 security)
 407 */
 408static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
 409				 rxrpc_seq_t seq,
 410				 struct skcipher_request *req)
 411{
 412	struct rxkad_level1_hdr sechdr;
 413	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
 
 414	struct rxrpc_crypt iv;
 415	struct scatterlist sg[16];
 
 416	u32 data_size, buf;
 417	u16 check;
 418	int ret;
 419
 420	_enter("");
 421
 422	if (sp->len < 8)
 423		return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
 424					  rxkad_abort_1_short_header);
 425
 426	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
 427	 * directly into the target buffer.
 428	 */
 429	sg_init_table(sg, ARRAY_SIZE(sg));
 430	ret = skb_to_sgvec(skb, sg, sp->offset, 8);
 431	if (unlikely(ret < 0))
 432		return ret;
 433
 434	/* start the decryption afresh */
 435	memset(&iv, 0, sizeof(iv));
 436
 437	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
 438	skcipher_request_set_callback(req, 0, NULL, NULL);
 439	skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
 440	crypto_skcipher_decrypt(req);
 441	skcipher_request_zero(req);
 442
 443	/* Extract the decrypted packet length */
 444	if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
 445		return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
 446					  rxkad_abort_1_short_encdata);
 447	sp->offset += sizeof(sechdr);
 448	sp->len    -= sizeof(sechdr);
 449
 450	buf = ntohl(sechdr.data_size);
 451	data_size = buf & 0xffff;
 452
 453	check = buf >> 16;
 454	check ^= seq ^ call->call_id;
 455	check &= 0xffff;
 456	if (check != 0)
 457		return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
 458					  rxkad_abort_1_short_check);
 459	if (data_size > sp->len)
 460		return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
 461					  rxkad_abort_1_short_data);
 462	sp->len = data_size;
 
 
 
 463
 464	_leave(" = 0 [dlen=%x]", data_size);
 465	return 0;
 
 
 
 
 
 
 
 
 
 
 466}
 467
 468/*
 469 * wholly decrypt a packet (level 2 security)
 470 */
 471static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
 472				 rxrpc_seq_t seq,
 473				 struct skcipher_request *req)
 474{
 475	const struct rxrpc_key_token *token;
 476	struct rxkad_level2_hdr sechdr;
 477	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
 
 478	struct rxrpc_crypt iv;
 479	struct scatterlist _sg[4], *sg;
 
 480	u32 data_size, buf;
 481	u16 check;
 482	int nsg, ret;
 483
 484	_enter(",{%d}", sp->len);
 485
 486	if (sp->len < 8)
 487		return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
 488					  rxkad_abort_2_short_header);
 
 
 
 489
 490	/* Decrypt the skbuff in-place.  TODO: We really want to decrypt
 491	 * directly into the target buffer.
 492	 */
 493	sg = _sg;
 494	nsg = skb_shinfo(skb)->nr_frags + 1;
 495	if (nsg <= 4) {
 496		nsg = 4;
 497	} else {
 498		sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
 499		if (!sg)
 500			return -ENOMEM;
 501	}
 502
 503	sg_init_table(sg, nsg);
 504	ret = skb_to_sgvec(skb, sg, sp->offset, sp->len);
 505	if (unlikely(ret < 0)) {
 506		if (sg != _sg)
 507			kfree(sg);
 508		return ret;
 509	}
 510
 511	/* decrypt from the session key */
 512	token = call->conn->key->payload.data[0];
 513	memcpy(&iv, token->kad->session_key, sizeof(iv));
 
 
 
 514
 515	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
 516	skcipher_request_set_callback(req, 0, NULL, NULL);
 517	skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x);
 518	crypto_skcipher_decrypt(req);
 519	skcipher_request_zero(req);
 520	if (sg != _sg)
 521		kfree(sg);
 522
 523	/* Extract the decrypted packet length */
 524	if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
 525		return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
 526					  rxkad_abort_2_short_len);
 527	sp->offset += sizeof(sechdr);
 528	sp->len    -= sizeof(sechdr);
 529
 530	buf = ntohl(sechdr.data_size);
 531	data_size = buf & 0xffff;
 532
 533	check = buf >> 16;
 534	check ^= seq ^ call->call_id;
 535	check &= 0xffff;
 536	if (check != 0)
 537		return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
 538					  rxkad_abort_2_short_check);
 539
 540	if (data_size > sp->len)
 541		return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
 542					  rxkad_abort_2_short_data);
 
 
 
 543
 544	sp->len = data_size;
 545	_leave(" = 0 [dlen=%x]", data_size);
 546	return 0;
 
 
 
 
 
 
 
 
 
 
 547}
 548
 549/*
 550 * Verify the security on a received packet and the subpackets therein.
 551 */
 552static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb)
 
 
 553{
 554	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
 555	struct skcipher_request	*req;
 556	struct rxrpc_crypt iv;
 557	struct scatterlist sg;
 558	union {
 559		__be32 buf[2];
 560	} crypto __aligned(8);
 561	rxrpc_seq_t seq = sp->hdr.seq;
 
 
 562	int ret;
 563	u16 cksum;
 564	u32 x, y;
 565
 566	_enter("{%d{%x}},{#%u}",
 567	       call->debug_id, key_serial(call->conn->key), seq);
 
 568
 569	if (!call->conn->rxkad.cipher)
 570		return 0;
 571
 572	req = rxkad_get_call_crypto(call);
 573	if (!req)
 574		return -ENOMEM;
 
 
 575
 576	/* continue encrypting from where we left off */
 577	memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
 
 
 
 578
 579	/* validate the security checksum */
 580	x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
 581	x |= seq & 0x3fffffff;
 582	crypto.buf[0] = htonl(call->call_id);
 583	crypto.buf[1] = htonl(x);
 584
 585	sg_init_one(&sg, crypto.buf, 8);
 586	skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
 587	skcipher_request_set_callback(req, 0, NULL, NULL);
 588	skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
 589	crypto_skcipher_encrypt(req);
 590	skcipher_request_zero(req);
 591
 592	y = ntohl(crypto.buf[1]);
 593	cksum = (y >> 16) & 0xffff;
 594	if (cksum == 0)
 595		cksum = 1; /* zero checksums are not permitted */
 596
 597	if (cksum != sp->hdr.cksum) {
 598		ret = rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
 599					 rxkad_abort_bad_checksum);
 600		goto out;
 601	}
 602
 603	switch (call->conn->security_level) {
 604	case RXRPC_SECURITY_PLAIN:
 605		ret = 0;
 606		break;
 607	case RXRPC_SECURITY_AUTH:
 608		ret = rxkad_verify_packet_1(call, skb, seq, req);
 609		break;
 610	case RXRPC_SECURITY_ENCRYPT:
 611		ret = rxkad_verify_packet_2(call, skb, seq, req);
 612		break;
 613	default:
 614		ret = -ENOANO;
 615		break;
 616	}
 617
 618out:
 619	skcipher_request_free(req);
 620	return ret;
 621}
 622
 623/*
 624 * issue a challenge
 625 */
 626static int rxkad_issue_challenge(struct rxrpc_connection *conn)
 627{
 628	struct rxkad_challenge challenge;
 629	struct rxrpc_wire_header whdr;
 630	struct msghdr msg;
 631	struct kvec iov[2];
 632	size_t len;
 633	u32 serial;
 634	int ret;
 635
 636	_enter("{%d}", conn->debug_id);
 
 
 
 
 637
 638	get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
 639
 640	challenge.version	= htonl(2);
 641	challenge.nonce		= htonl(conn->rxkad.nonce);
 642	challenge.min_level	= htonl(0);
 643	challenge.__padding	= 0;
 644
 645	msg.msg_name	= &conn->peer->srx.transport;
 646	msg.msg_namelen	= conn->peer->srx.transport_len;
 647	msg.msg_control	= NULL;
 648	msg.msg_controllen = 0;
 649	msg.msg_flags	= 0;
 650
 651	whdr.epoch	= htonl(conn->proto.epoch);
 652	whdr.cid	= htonl(conn->proto.cid);
 653	whdr.callNumber	= 0;
 654	whdr.seq	= 0;
 655	whdr.type	= RXRPC_PACKET_TYPE_CHALLENGE;
 656	whdr.flags	= conn->out_clientflag;
 657	whdr.userStatus	= 0;
 658	whdr.securityIndex = conn->security_ix;
 659	whdr._rsvd	= 0;
 660	whdr.serviceId	= htons(conn->service_id);
 661
 662	iov[0].iov_base	= &whdr;
 663	iov[0].iov_len	= sizeof(whdr);
 664	iov[1].iov_base	= &challenge;
 665	iov[1].iov_len	= sizeof(challenge);
 666
 667	len = iov[0].iov_len + iov[1].iov_len;
 668
 669	serial = rxrpc_get_next_serial(conn);
 670	whdr.serial = htonl(serial);
 671
 672	ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len);
 673	if (ret < 0) {
 674		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
 675				    rxrpc_tx_point_rxkad_challenge);
 676		return -EAGAIN;
 677	}
 678
 679	conn->peer->last_tx_at = ktime_get_seconds();
 680	trace_rxrpc_tx_packet(conn->debug_id, &whdr,
 681			      rxrpc_tx_point_rxkad_challenge);
 682	_leave(" = 0");
 683	return 0;
 684}
 685
 686/*
 687 * send a Kerberos security response
 688 */
 689static int rxkad_send_response(struct rxrpc_connection *conn,
 690			       struct rxrpc_host_header *hdr,
 691			       struct rxkad_response *resp,
 692			       const struct rxkad_key *s2)
 693{
 694	struct rxrpc_wire_header whdr;
 695	struct msghdr msg;
 696	struct kvec iov[3];
 697	size_t len;
 698	u32 serial;
 699	int ret;
 700
 701	_enter("");
 702
 703	msg.msg_name	= &conn->peer->srx.transport;
 704	msg.msg_namelen	= conn->peer->srx.transport_len;
 705	msg.msg_control	= NULL;
 706	msg.msg_controllen = 0;
 707	msg.msg_flags	= 0;
 708
 709	memset(&whdr, 0, sizeof(whdr));
 710	whdr.epoch	= htonl(hdr->epoch);
 711	whdr.cid	= htonl(hdr->cid);
 712	whdr.type	= RXRPC_PACKET_TYPE_RESPONSE;
 713	whdr.flags	= conn->out_clientflag;
 714	whdr.securityIndex = hdr->securityIndex;
 715	whdr.serviceId	= htons(hdr->serviceId);
 716
 717	iov[0].iov_base	= &whdr;
 718	iov[0].iov_len	= sizeof(whdr);
 719	iov[1].iov_base	= resp;
 720	iov[1].iov_len	= sizeof(*resp);
 721	iov[2].iov_base	= (void *)s2->ticket;
 722	iov[2].iov_len	= s2->ticket_len;
 723
 724	len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
 725
 726	serial = rxrpc_get_next_serial(conn);
 727	whdr.serial = htonl(serial);
 728
 729	rxrpc_local_dont_fragment(conn->local, false);
 730	ret = kernel_sendmsg(conn->local->socket, &msg, iov, 3, len);
 731	if (ret < 0) {
 732		trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
 733				    rxrpc_tx_point_rxkad_response);
 734		return -EAGAIN;
 735	}
 736
 737	conn->peer->last_tx_at = ktime_get_seconds();
 738	_leave(" = 0");
 739	return 0;
 740}
 741
 742/*
 743 * calculate the response checksum
 744 */
 745static void rxkad_calc_response_checksum(struct rxkad_response *response)
 746{
 747	u32 csum = 1000003;
 748	int loop;
 749	u8 *p = (u8 *) response;
 750
 751	for (loop = sizeof(*response); loop > 0; loop--)
 752		csum = csum * 0x10204081 + *p++;
 753
 754	response->encrypted.checksum = htonl(csum);
 755}
 756
 757/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758 * encrypt the response packet
 759 */
 760static int rxkad_encrypt_response(struct rxrpc_connection *conn,
 761				  struct rxkad_response *resp,
 762				  const struct rxkad_key *s2)
 763{
 764	struct skcipher_request *req;
 765	struct rxrpc_crypt iv;
 766	struct scatterlist sg[1];
 767
 768	req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
 769	if (!req)
 770		return -ENOMEM;
 771
 772	/* continue encrypting from where we left off */
 773	memcpy(&iv, s2->session_key, sizeof(iv));
 
 
 
 774
 775	sg_init_table(sg, 1);
 776	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
 777	skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
 778	skcipher_request_set_callback(req, 0, NULL, NULL);
 779	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
 780	crypto_skcipher_encrypt(req);
 781	skcipher_request_free(req);
 782	return 0;
 783}
 784
 785/*
 786 * respond to a challenge packet
 787 */
 788static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
 789				      struct sk_buff *skb)
 
 790{
 791	const struct rxrpc_key_token *token;
 792	struct rxkad_challenge challenge;
 793	struct rxkad_response *resp;
 794	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
 795	u32 version, nonce, min_level;
 796	int ret = -EPROTO;
 
 797
 798	_enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
 799
 800	if (!conn->key)
 801		return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO,
 802					rxkad_abort_chall_no_key);
 
 803
 804	ret = key_validate(conn->key);
 805	if (ret < 0)
 806		return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
 807					rxkad_abort_chall_key_expired);
 
 808
 809	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
 810			  &challenge, sizeof(challenge)) < 0)
 811		return rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
 812					rxkad_abort_chall_short);
 813
 814	version = ntohl(challenge.version);
 815	nonce = ntohl(challenge.nonce);
 816	min_level = ntohl(challenge.min_level);
 817
 818	trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, nonce, min_level);
 
 819
 
 820	if (version != RXKAD_VERSION)
 821		return rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
 822					rxkad_abort_chall_version);
 823
 
 824	if (conn->security_level < min_level)
 825		return rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EACCES,
 826					rxkad_abort_chall_level);
 827
 828	token = conn->key->payload.data[0];
 829
 830	/* build the response packet */
 831	resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
 832	if (!resp)
 833		return -ENOMEM;
 834
 835	resp->version			= htonl(RXKAD_VERSION);
 836	resp->encrypted.epoch		= htonl(conn->proto.epoch);
 837	resp->encrypted.cid		= htonl(conn->proto.cid);
 838	resp->encrypted.securityIndex	= htonl(conn->security_ix);
 839	resp->encrypted.inc_nonce	= htonl(nonce + 1);
 840	resp->encrypted.level		= htonl(conn->security_level);
 841	resp->kvno			= htonl(token->kad->kvno);
 842	resp->ticket_len		= htonl(token->kad->ticket_len);
 843	resp->encrypted.call_id[0]	= htonl(conn->channels[0].call_counter);
 844	resp->encrypted.call_id[1]	= htonl(conn->channels[1].call_counter);
 845	resp->encrypted.call_id[2]	= htonl(conn->channels[2].call_counter);
 846	resp->encrypted.call_id[3]	= htonl(conn->channels[3].call_counter);
 
 
 
 
 847
 848	/* calculate the response checksum and then do the encryption */
 849	rxkad_calc_response_checksum(resp);
 850	ret = rxkad_encrypt_response(conn, resp, token->kad);
 851	if (ret == 0)
 852		ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
 853	kfree(resp);
 854	return ret;
 
 
 855}
 856
 857/*
 858 * decrypt the kerberos IV ticket in the response
 859 */
 860static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
 861				struct key *server_key,
 862				struct sk_buff *skb,
 863				void *ticket, size_t ticket_len,
 864				struct rxrpc_crypt *_session_key,
 865				time64_t *_expiry)
 
 866{
 867	struct skcipher_request *req;
 868	struct rxrpc_crypt iv, key;
 869	struct scatterlist sg[1];
 870	struct in_addr addr;
 871	unsigned int life;
 872	time64_t issue, now;
 873	bool little_endian;
 
 874	u8 *p, *q, *name, *end;
 875
 876	_enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
 877
 878	*_expiry = 0;
 879
 880	ASSERT(server_key->payload.data[0] != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 881	ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
 882
 883	memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
 884
 885	req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
 886	if (!req)
 887		return -ENOMEM;
 888
 889	sg_init_one(&sg[0], ticket, ticket_len);
 890	skcipher_request_set_callback(req, 0, NULL, NULL);
 891	skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
 892	crypto_skcipher_decrypt(req);
 893	skcipher_request_free(req);
 894
 895	p = ticket;
 896	end = p + ticket_len;
 897
 898#define Z(field, fieldl)						\
 899	({								\
 900		u8 *__str = p;						\
 901		q = memchr(p, 0, end - p);				\
 902		if (!q || q - p > field##_SZ)				\
 903			return rxrpc_abort_conn(			\
 904				conn, skb, RXKADBADTICKET, -EPROTO,	\
 905				rxkad_abort_resp_tkt_##fieldl);		\
 906		for (; p < q; p++)					\
 907			if (!isprint(*p))				\
 908				return rxrpc_abort_conn(		\
 909					conn, skb, RXKADBADTICKET, -EPROTO, \
 910					rxkad_abort_resp_tkt_##fieldl);	\
 911		p++;							\
 912		__str;							\
 913	})
 914
 915	/* extract the ticket flags */
 916	_debug("KIV FLAGS: %x", *p);
 917	little_endian = *p & 1;
 918	p++;
 919
 920	/* extract the authentication name */
 921	name = Z(ANAME, aname);
 922	_debug("KIV ANAME: %s", name);
 923
 924	/* extract the principal's instance */
 925	name = Z(INST, inst);
 926	_debug("KIV INST : %s", name);
 927
 928	/* extract the principal's authentication domain */
 929	name = Z(REALM, realm);
 930	_debug("KIV REALM: %s", name);
 931
 932	if (end - p < 4 + 8 + 4 + 2)
 933		return rxrpc_abort_conn(conn, skb, RXKADBADTICKET, -EPROTO,
 934					rxkad_abort_resp_tkt_short);
 935
 936	/* get the IPv4 address of the entity that requested the ticket */
 937	memcpy(&addr, p, sizeof(addr));
 938	p += 4;
 939	_debug("KIV ADDR : %pI4", &addr);
 940
 941	/* get the session key from the ticket */
 942	memcpy(&key, p, sizeof(key));
 943	p += 8;
 944	_debug("KIV KEY  : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
 945	memcpy(_session_key, &key, sizeof(key));
 946
 947	/* get the ticket's lifetime */
 948	life = *p++ * 5 * 60;
 949	_debug("KIV LIFE : %u", life);
 950
 951	/* get the issue time of the ticket */
 952	if (little_endian) {
 953		__le32 stamp;
 954		memcpy(&stamp, p, 4);
 955		issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
 956	} else {
 957		__be32 stamp;
 958		memcpy(&stamp, p, 4);
 959		issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
 960	}
 961	p += 4;
 962	now = ktime_get_real_seconds();
 963	_debug("KIV ISSUE: %llx [%llx]", issue, now);
 964
 965	/* check the ticket is in date */
 966	if (issue > now)
 967		return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, -EKEYREJECTED,
 968					rxkad_abort_resp_tkt_future);
 969	if (issue < now - life)
 970		return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, -EKEYEXPIRED,
 971					rxkad_abort_resp_tkt_expired);
 
 
 
 
 
 972
 973	*_expiry = issue + life;
 974
 975	/* get the service name */
 976	name = Z(SNAME, sname);
 977	_debug("KIV SNAME: %s", name);
 978
 979	/* get the service instance name */
 980	name = Z(INST, sinst);
 981	_debug("KIV SINST: %s", name);
 982	return 0;
 
 
 
 
 
 
 
 
 
 983}
 984
 985/*
 986 * decrypt the response packet
 987 */
 988static void rxkad_decrypt_response(struct rxrpc_connection *conn,
 989				   struct rxkad_response *resp,
 990				   const struct rxrpc_crypt *session_key)
 991{
 992	struct skcipher_request *req = rxkad_ci_req;
 993	struct scatterlist sg[1];
 994	struct rxrpc_crypt iv;
 995
 996	_enter(",,%08x%08x",
 997	       ntohl(session_key->n[0]), ntohl(session_key->n[1]));
 998
 
 
 999	mutex_lock(&rxkad_ci_mutex);
1000	if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
1001					sizeof(*session_key)) < 0)
1002		BUG();
1003
1004	memcpy(&iv, session_key, sizeof(iv));
 
 
 
1005
1006	sg_init_table(sg, 1);
1007	sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1008	skcipher_request_set_sync_tfm(req, rxkad_ci);
1009	skcipher_request_set_callback(req, 0, NULL, NULL);
1010	skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1011	crypto_skcipher_decrypt(req);
1012	skcipher_request_zero(req);
1013
1014	mutex_unlock(&rxkad_ci_mutex);
1015
1016	_leave("");
1017}
1018
1019/*
1020 * verify a response
1021 */
1022static int rxkad_verify_response(struct rxrpc_connection *conn,
1023				 struct sk_buff *skb)
 
1024{
1025	struct rxkad_response *response;
1026	struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
 
1027	struct rxrpc_crypt session_key;
1028	struct key *server_key;
1029	time64_t expiry;
1030	void *ticket;
1031	u32 version, kvno, ticket_len, level;
1032	__be32 csum;
1033	int ret, i;
1034
1035	_enter("{%d}", conn->debug_id);
1036
1037	server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1038	if (IS_ERR(server_key)) {
1039		ret = PTR_ERR(server_key);
1040		switch (ret) {
1041		case -ENOKEY:
1042			return rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, ret,
1043						rxkad_abort_resp_nokey);
1044		case -EKEYEXPIRED:
1045			return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
1046						rxkad_abort_resp_key_expired);
1047		default:
1048			return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, ret,
1049						rxkad_abort_resp_key_rejected);
1050		}
1051	}
1052
1053	ret = -ENOMEM;
1054	response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1055	if (!response)
1056		goto temporary_error;
1057
1058	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1059			  response, sizeof(*response)) < 0) {
1060		rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
1061				 rxkad_abort_resp_short);
1062		goto protocol_error;
1063	}
 
 
 
 
 
 
 
 
1064
1065	version = ntohl(response->version);
1066	ticket_len = ntohl(response->ticket_len);
1067	kvno = ntohl(response->kvno);
1068
1069	trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len);
1070
1071	if (version != RXKAD_VERSION) {
1072		rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
1073				 rxkad_abort_resp_version);
1074		goto protocol_error;
1075	}
1076
1077	if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN) {
1078		rxrpc_abort_conn(conn, skb, RXKADTICKETLEN, -EPROTO,
1079				 rxkad_abort_resp_tkt_len);
1080		goto protocol_error;
1081	}
1082
1083	if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5) {
1084		rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, -EPROTO,
1085				 rxkad_abort_resp_unknown_tkt);
1086		goto protocol_error;
1087	}
1088
1089	/* extract the kerberos ticket and decrypt and decode it */
1090	ret = -ENOMEM;
1091	ticket = kmalloc(ticket_len, GFP_NOFS);
1092	if (!ticket)
1093		goto temporary_error_free_resp;
1094
1095	if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1096			  ticket, ticket_len) < 0) {
1097		rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
1098				 rxkad_abort_resp_short_tkt);
1099		goto protocol_error;
1100	}
1101
1102	ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1103				   &session_key, &expiry);
1104	if (ret < 0)
1105		goto temporary_error_free_ticket;
 
 
 
1106
1107	/* use the session key from inside the ticket to decrypt the
1108	 * response */
1109	rxkad_decrypt_response(conn, response, &session_key);
1110
1111	if (ntohl(response->encrypted.epoch) != conn->proto.epoch ||
1112	    ntohl(response->encrypted.cid) != conn->proto.cid ||
1113	    ntohl(response->encrypted.securityIndex) != conn->security_ix) {
1114		rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1115				 rxkad_abort_resp_bad_param);
1116		goto protocol_error_free;
1117	}
1118
1119	csum = response->encrypted.checksum;
1120	response->encrypted.checksum = 0;
1121	rxkad_calc_response_checksum(response);
1122	if (response->encrypted.checksum != csum) {
1123		rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1124				 rxkad_abort_resp_bad_checksum);
1125		goto protocol_error_free;
1126	}
1127
1128	for (i = 0; i < RXRPC_MAXCALLS; i++) {
1129		u32 call_id = ntohl(response->encrypted.call_id[i]);
1130		u32 counter = READ_ONCE(conn->channels[i].call_counter);
1131
1132		if (call_id > INT_MAX) {
1133			rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1134					 rxkad_abort_resp_bad_callid);
1135			goto protocol_error_free;
1136		}
1137
1138		if (call_id < counter) {
1139			rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1140					 rxkad_abort_resp_call_ctr);
1141			goto protocol_error_free;
1142		}
1143
1144		if (call_id > counter) {
1145			if (conn->channels[i].call) {
1146				rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1147						 rxkad_abort_resp_call_state);
1148				goto protocol_error_free;
1149			}
1150			conn->channels[i].call_counter = call_id;
1151		}
1152	}
1153
1154	if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1) {
1155		rxrpc_abort_conn(conn, skb, RXKADOUTOFSEQUENCE, -EPROTO,
1156				 rxkad_abort_resp_ooseq);
1157		goto protocol_error_free;
1158	}
1159
1160	level = ntohl(response->encrypted.level);
1161	if (level > RXRPC_SECURITY_ENCRYPT) {
1162		rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EPROTO,
1163				 rxkad_abort_resp_level);
1164		goto protocol_error_free;
1165	}
1166	conn->security_level = level;
1167
1168	/* create a key to hold the security data and expiration time - after
1169	 * this the connection security can be handled in exactly the same way
1170	 * as for a client connection */
1171	ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1172	if (ret < 0)
1173		goto temporary_error_free_ticket;
 
 
1174
1175	kfree(ticket);
1176	kfree(response);
1177	_leave(" = 0");
1178	return 0;
1179
1180protocol_error_free:
1181	kfree(ticket);
1182protocol_error:
1183	kfree(response);
1184	key_put(server_key);
1185	return -EPROTO;
1186
1187temporary_error_free_ticket:
1188	kfree(ticket);
1189temporary_error_free_resp:
1190	kfree(response);
1191temporary_error:
1192	/* Ignore the response packet if we got a temporary error such as
1193	 * ENOMEM.  We just want to send the challenge again.  Note that we
1194	 * also come out this way if the ticket decryption fails.
1195	 */
1196	key_put(server_key);
1197	return ret;
1198}
1199
1200/*
1201 * clear the connection security
1202 */
1203static void rxkad_clear(struct rxrpc_connection *conn)
1204{
1205	_enter("");
1206
1207	if (conn->rxkad.cipher)
1208		crypto_free_sync_skcipher(conn->rxkad.cipher);
1209}
1210
1211/*
1212 * Initialise the rxkad security service.
1213 */
1214static int rxkad_init(void)
1215{
1216	struct crypto_sync_skcipher *tfm;
1217	struct skcipher_request *req;
1218
1219	/* pin the cipher we need so that the crypto layer doesn't invoke
1220	 * keventd to go get it */
1221	tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1222	if (IS_ERR(tfm))
1223		return PTR_ERR(tfm);
1224
1225	req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1226	if (!req)
1227		goto nomem_tfm;
1228
1229	rxkad_ci_req = req;
1230	rxkad_ci = tfm;
1231	return 0;
1232
1233nomem_tfm:
1234	crypto_free_sync_skcipher(tfm);
1235	return -ENOMEM;
1236}
1237
1238/*
1239 * Clean up the rxkad security service.
1240 */
1241static void rxkad_exit(void)
1242{
1243	crypto_free_sync_skcipher(rxkad_ci);
1244	skcipher_request_free(rxkad_ci_req);
1245}
1246
1247/*
1248 * RxRPC Kerberos-based security
1249 */
1250const struct rxrpc_security rxkad = {
 
1251	.name				= "rxkad",
1252	.security_index			= RXRPC_SECURITY_RXKAD,
1253	.no_key_abort			= RXKADUNKNOWNKEY,
1254	.init				= rxkad_init,
1255	.exit				= rxkad_exit,
1256	.preparse_server_key		= rxkad_preparse_server_key,
1257	.free_preparse_server_key	= rxkad_free_preparse_server_key,
1258	.destroy_server_key		= rxkad_destroy_server_key,
1259	.init_connection_security	= rxkad_init_connection_security,
1260	.alloc_txbuf			= rxkad_alloc_txbuf,
1261	.secure_packet			= rxkad_secure_packet,
1262	.verify_packet			= rxkad_verify_packet,
1263	.free_call_crypto		= rxkad_free_call_crypto,
1264	.issue_challenge		= rxkad_issue_challenge,
1265	.respond_to_challenge		= rxkad_respond_to_challenge,
1266	.verify_response		= rxkad_verify_response,
1267	.clear				= rxkad_clear,
1268};
v3.5.6
 
   1/* Kerberos-based RxRPC security
   2 *
   3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
 
 
 
  12#include <linux/module.h>
  13#include <linux/net.h>
  14#include <linux/skbuff.h>
  15#include <linux/udp.h>
  16#include <linux/crypto.h>
  17#include <linux/scatterlist.h>
  18#include <linux/ctype.h>
  19#include <linux/slab.h>
 
  20#include <net/sock.h>
  21#include <net/af_rxrpc.h>
  22#include <keys/rxrpc-type.h>
  23#define rxrpc_debug rxkad_debug
  24#include "ar-internal.h"
  25
  26#define RXKAD_VERSION			2
  27#define MAXKRB5TICKETLEN		1024
  28#define RXKAD_TKT_TYPE_KERBEROS_V5	256
  29#define ANAME_SZ			40	/* size of authentication name */
  30#define INST_SZ				40	/* size of principal's instance */
  31#define REALM_SZ			40	/* size of principal's auth domain */
  32#define SNAME_SZ			40	/* size of service name */
  33
  34unsigned int rxrpc_debug;
  35module_param_named(debug, rxrpc_debug, uint, S_IWUSR | S_IRUGO);
  36MODULE_PARM_DESC(debug, "rxkad debugging mask");
  37
  38struct rxkad_level1_hdr {
  39	__be32	data_size;	/* true data size (excluding padding) */
  40};
  41
  42struct rxkad_level2_hdr {
  43	__be32	data_size;	/* true data size (excluding padding) */
  44	__be32	checksum;	/* decrypted data checksum */
  45};
  46
  47MODULE_DESCRIPTION("RxRPC network protocol type-2 security (Kerberos 4)");
  48MODULE_AUTHOR("Red Hat, Inc.");
  49MODULE_LICENSE("GPL");
  50
  51/*
  52 * this holds a pinned cipher so that keventd doesn't get called by the cipher
  53 * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
  54 * packets
  55 */
  56static struct crypto_blkcipher *rxkad_ci;
 
  57static DEFINE_MUTEX(rxkad_ci_mutex);
  58
  59/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60 * initialise connection security
  61 */
  62static int rxkad_init_connection_security(struct rxrpc_connection *conn)
 
  63{
  64	struct crypto_blkcipher *ci;
  65	struct rxrpc_key_token *token;
  66	int ret;
  67
  68	_enter("{%d},{%x}", conn->debug_id, key_serial(conn->key));
  69
  70	token = conn->key->payload.data;
  71	conn->security_ix = token->security_index;
  72
  73	ci = crypto_alloc_blkcipher("pcbc(fcrypt)", 0, CRYPTO_ALG_ASYNC);
  74	if (IS_ERR(ci)) {
  75		_debug("no cipher");
  76		ret = PTR_ERR(ci);
  77		goto error;
  78	}
  79
  80	if (crypto_blkcipher_setkey(ci, token->kad->session_key,
  81				    sizeof(token->kad->session_key)) < 0)
  82		BUG();
  83
  84	switch (conn->security_level) {
  85	case RXRPC_SECURITY_PLAIN:
  86		break;
  87	case RXRPC_SECURITY_AUTH:
  88		conn->size_align = 8;
  89		conn->security_size = sizeof(struct rxkad_level1_hdr);
  90		conn->header_size += sizeof(struct rxkad_level1_hdr);
  91		break;
  92	case RXRPC_SECURITY_ENCRYPT:
  93		conn->size_align = 8;
  94		conn->security_size = sizeof(struct rxkad_level2_hdr);
  95		conn->header_size += sizeof(struct rxkad_level2_hdr);
  96		break;
  97	default:
  98		ret = -EKEYREJECTED;
  99		goto error;
 100	}
 101
 102	conn->cipher = ci;
 103	ret = 0;
 
 
 
 
 
 
 
 104error:
 105	_leave(" = %d", ret);
 106	return ret;
 107}
 108
 109/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110 * prime the encryption state with the invariant parts of a connection's
 111 * description
 112 */
 113static void rxkad_prime_packet_security(struct rxrpc_connection *conn)
 
 114{
 
 115	struct rxrpc_key_token *token;
 116	struct blkcipher_desc desc;
 117	struct scatterlist sg[2];
 118	struct rxrpc_crypt iv;
 119	struct {
 120		__be32 x[4];
 121	} tmpbuf __attribute__((aligned(16))); /* must all be in same page */
 122
 123	_enter("");
 124
 125	if (!conn->key)
 126		return;
 
 
 
 
 
 
 
 
 
 
 127
 128	token = conn->key->payload.data;
 129	memcpy(&iv, token->kad->session_key, sizeof(iv));
 130
 131	desc.tfm = conn->cipher;
 132	desc.info = iv.x;
 133	desc.flags = 0;
 134
 135	tmpbuf.x[0] = conn->epoch;
 136	tmpbuf.x[1] = conn->cid;
 137	tmpbuf.x[2] = 0;
 138	tmpbuf.x[3] = htonl(conn->security_ix);
 139
 140	sg_init_one(&sg[0], &tmpbuf, sizeof(tmpbuf));
 141	sg_init_one(&sg[1], &tmpbuf, sizeof(tmpbuf));
 142	crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(tmpbuf));
 
 
 
 
 
 
 
 
 
 
 
 
 
 143
 144	memcpy(&conn->csum_iv, &tmpbuf.x[2], sizeof(conn->csum_iv));
 145	ASSERTCMP(conn->csum_iv.n[0], ==, tmpbuf.x[2]);
 146
 147	_leave("");
 
 
 
 
 148}
 149
 150/*
 151 * partially encrypt a packet (level 1 security)
 152 */
 153static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
 154				    struct sk_buff *skb,
 155				    u32 data_size,
 156				    void *sechdr)
 157{
 158	struct rxrpc_skb_priv *sp;
 159	struct blkcipher_desc desc;
 160	struct rxrpc_crypt iv;
 161	struct scatterlist sg[2];
 162	struct {
 163		struct rxkad_level1_hdr hdr;
 164		__be32	first;	/* first four bytes of data and padding */
 165	} tmpbuf __attribute__((aligned(8))); /* must all be in same page */
 166	u16 check;
 167
 168	sp = rxrpc_skb(skb);
 169
 170	_enter("");
 171
 172	check = ntohl(sp->hdr.seq ^ sp->hdr.callNumber);
 173	data_size |= (u32) check << 16;
 174
 175	tmpbuf.hdr.data_size = htonl(data_size);
 176	memcpy(&tmpbuf.first, sechdr + 4, sizeof(tmpbuf.first));
 
 
 
 
 
 
 177
 178	/* start the encryption afresh */
 179	memset(&iv, 0, sizeof(iv));
 180	desc.tfm = call->conn->cipher;
 181	desc.info = iv.x;
 182	desc.flags = 0;
 183
 184	sg_init_one(&sg[0], &tmpbuf, sizeof(tmpbuf));
 185	sg_init_one(&sg[1], &tmpbuf, sizeof(tmpbuf));
 186	crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(tmpbuf));
 187
 188	memcpy(sechdr, &tmpbuf, sizeof(tmpbuf));
 
 
 
 
 
 189
 190	_leave(" = 0");
 191	return 0;
 192}
 193
 194/*
 195 * wholly encrypt a packet (level 2 security)
 196 */
 197static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
 198					struct sk_buff *skb,
 199					u32 data_size,
 200					void *sechdr)
 201{
 202	const struct rxrpc_key_token *token;
 203	struct rxkad_level2_hdr rxkhdr
 204		__attribute__((aligned(8))); /* must be all on one page */
 205	struct rxrpc_skb_priv *sp;
 206	struct blkcipher_desc desc;
 207	struct rxrpc_crypt iv;
 208	struct scatterlist sg[16];
 209	struct sk_buff *trailer;
 210	unsigned int len;
 211	u16 check;
 212	int nsg;
 213
 214	sp = rxrpc_skb(skb);
 215
 216	_enter("");
 217
 218	check = ntohl(sp->hdr.seq ^ sp->hdr.callNumber);
 219
 220	rxkhdr.data_size = htonl(data_size | (u32) check << 16);
 221	rxkhdr.checksum = 0;
 
 
 
 
 
 
 
 
 
 222
 223	/* encrypt from the session key */
 224	token = call->conn->key->payload.data;
 225	memcpy(&iv, token->kad->session_key, sizeof(iv));
 226	desc.tfm = call->conn->cipher;
 227	desc.info = iv.x;
 228	desc.flags = 0;
 229
 230	sg_init_one(&sg[0], sechdr, sizeof(rxkhdr));
 231	sg_init_one(&sg[1], &rxkhdr, sizeof(rxkhdr));
 232	crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(rxkhdr));
 233
 234	/* we want to encrypt the skbuff in-place */
 235	nsg = skb_cow_data(skb, 0, &trailer);
 236	if (nsg < 0 || nsg > 16)
 237		return -ENOMEM;
 238
 239	len = data_size + call->conn->size_align - 1;
 240	len &= ~(call->conn->size_align - 1);
 241
 242	sg_init_table(sg, nsg);
 243	skb_to_sgvec(skb, sg, 0, len);
 244	crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
 245
 246	_leave(" = 0");
 247	return 0;
 248}
 249
 250/*
 251 * checksum an RxRPC packet header
 252 */
 253static int rxkad_secure_packet(const struct rxrpc_call *call,
 254				struct sk_buff *skb,
 255				size_t data_size,
 256				void *sechdr)
 257{
 258	struct rxrpc_skb_priv *sp;
 259	struct blkcipher_desc desc;
 260	struct rxrpc_crypt iv;
 261	struct scatterlist sg[2];
 262	struct {
 263		__be32 x[2];
 264	} tmpbuf __attribute__((aligned(8))); /* must all be in same page */
 265	__be32 x;
 266	u32 y;
 267	int ret;
 268
 269	sp = rxrpc_skb(skb);
 
 
 270
 271	_enter("{%d{%x}},{#%u},%zu,",
 272	       call->debug_id, key_serial(call->conn->key), ntohl(sp->hdr.seq),
 273	       data_size);
 274
 275	if (!call->conn->cipher)
 276		return 0;
 277
 278	ret = key_validate(call->conn->key);
 279	if (ret < 0)
 280		return ret;
 281
 
 
 
 
 282	/* continue encrypting from where we left off */
 283	memcpy(&iv, call->conn->csum_iv.x, sizeof(iv));
 284	desc.tfm = call->conn->cipher;
 285	desc.info = iv.x;
 286	desc.flags = 0;
 287
 288	/* calculate the security checksum */
 289	x = htonl(call->channel << (32 - RXRPC_CIDSHIFT));
 290	x |= sp->hdr.seq & cpu_to_be32(0x3fffffff);
 291	tmpbuf.x[0] = sp->hdr.callNumber;
 292	tmpbuf.x[1] = x;
 293
 294	sg_init_one(&sg[0], &tmpbuf, sizeof(tmpbuf));
 295	sg_init_one(&sg[1], &tmpbuf, sizeof(tmpbuf));
 296	crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(tmpbuf));
 
 
 
 297
 298	y = ntohl(tmpbuf.x[1]);
 299	y = (y >> 16) & 0xffff;
 300	if (y == 0)
 301		y = 1; /* zero checksums are not permitted */
 302	sp->hdr.cksum = htons(y);
 303
 304	switch (call->conn->security_level) {
 305	case RXRPC_SECURITY_PLAIN:
 306		ret = 0;
 307		break;
 308	case RXRPC_SECURITY_AUTH:
 309		ret = rxkad_secure_packet_auth(call, skb, data_size, sechdr);
 310		break;
 311	case RXRPC_SECURITY_ENCRYPT:
 312		ret = rxkad_secure_packet_encrypt(call, skb, data_size,
 313						  sechdr);
 314		break;
 315	default:
 316		ret = -EPERM;
 317		break;
 318	}
 319
 320	_leave(" = %d [set %hx]", ret, y);
 
 321	return ret;
 322}
 323
 324/*
 325 * decrypt partial encryption on a packet (level 1 security)
 326 */
 327static int rxkad_verify_packet_auth(const struct rxrpc_call *call,
 328				    struct sk_buff *skb,
 329				    u32 *_abort_code)
 330{
 331	struct rxkad_level1_hdr sechdr;
 332	struct rxrpc_skb_priv *sp;
 333	struct blkcipher_desc desc;
 334	struct rxrpc_crypt iv;
 335	struct scatterlist sg[16];
 336	struct sk_buff *trailer;
 337	u32 data_size, buf;
 338	u16 check;
 339	int nsg;
 340
 341	_enter("");
 342
 343	sp = rxrpc_skb(skb);
 344
 345	/* we want to decrypt the skbuff in-place */
 346	nsg = skb_cow_data(skb, 0, &trailer);
 347	if (nsg < 0 || nsg > 16)
 348		goto nomem;
 349
 350	sg_init_table(sg, nsg);
 351	skb_to_sgvec(skb, sg, 0, 8);
 
 
 352
 353	/* start the decryption afresh */
 354	memset(&iv, 0, sizeof(iv));
 355	desc.tfm = call->conn->cipher;
 356	desc.info = iv.x;
 357	desc.flags = 0;
 358
 359	crypto_blkcipher_decrypt_iv(&desc, sg, sg, 8);
 360
 361	/* remove the decrypted packet length */
 362	if (skb_copy_bits(skb, 0, &sechdr, sizeof(sechdr)) < 0)
 363		goto datalen_error;
 364	if (!skb_pull(skb, sizeof(sechdr)))
 365		BUG();
 
 
 366
 367	buf = ntohl(sechdr.data_size);
 368	data_size = buf & 0xffff;
 369
 370	check = buf >> 16;
 371	check ^= ntohl(sp->hdr.seq ^ sp->hdr.callNumber);
 372	check &= 0xffff;
 373	if (check != 0) {
 374		*_abort_code = RXKADSEALEDINCON;
 375		goto protocol_error;
 376	}
 377
 378	/* shorten the packet to remove the padding */
 379	if (data_size > skb->len)
 380		goto datalen_error;
 381	else if (data_size < skb->len)
 382		skb->len = data_size;
 383
 384	_leave(" = 0 [dlen=%x]", data_size);
 385	return 0;
 386
 387datalen_error:
 388	*_abort_code = RXKADDATALEN;
 389protocol_error:
 390	_leave(" = -EPROTO");
 391	return -EPROTO;
 392
 393nomem:
 394	_leave(" = -ENOMEM");
 395	return -ENOMEM;
 396}
 397
 398/*
 399 * wholly decrypt a packet (level 2 security)
 400 */
 401static int rxkad_verify_packet_encrypt(const struct rxrpc_call *call,
 402				       struct sk_buff *skb,
 403				       u32 *_abort_code)
 404{
 405	const struct rxrpc_key_token *token;
 406	struct rxkad_level2_hdr sechdr;
 407	struct rxrpc_skb_priv *sp;
 408	struct blkcipher_desc desc;
 409	struct rxrpc_crypt iv;
 410	struct scatterlist _sg[4], *sg;
 411	struct sk_buff *trailer;
 412	u32 data_size, buf;
 413	u16 check;
 414	int nsg;
 415
 416	_enter(",{%d}", skb->len);
 417
 418	sp = rxrpc_skb(skb);
 419
 420	/* we want to decrypt the skbuff in-place */
 421	nsg = skb_cow_data(skb, 0, &trailer);
 422	if (nsg < 0)
 423		goto nomem;
 424
 
 
 
 425	sg = _sg;
 426	if (unlikely(nsg > 4)) {
 427		sg = kmalloc(sizeof(*sg) * nsg, GFP_NOIO);
 
 
 
 428		if (!sg)
 429			goto nomem;
 430	}
 431
 432	sg_init_table(sg, nsg);
 433	skb_to_sgvec(skb, sg, 0, skb->len);
 
 
 
 
 
 434
 435	/* decrypt from the session key */
 436	token = call->conn->key->payload.data;
 437	memcpy(&iv, token->kad->session_key, sizeof(iv));
 438	desc.tfm = call->conn->cipher;
 439	desc.info = iv.x;
 440	desc.flags = 0;
 441
 442	crypto_blkcipher_decrypt_iv(&desc, sg, sg, skb->len);
 
 
 
 
 443	if (sg != _sg)
 444		kfree(sg);
 445
 446	/* remove the decrypted packet length */
 447	if (skb_copy_bits(skb, 0, &sechdr, sizeof(sechdr)) < 0)
 448		goto datalen_error;
 449	if (!skb_pull(skb, sizeof(sechdr)))
 450		BUG();
 
 451
 452	buf = ntohl(sechdr.data_size);
 453	data_size = buf & 0xffff;
 454
 455	check = buf >> 16;
 456	check ^= ntohl(sp->hdr.seq ^ sp->hdr.callNumber);
 457	check &= 0xffff;
 458	if (check != 0) {
 459		*_abort_code = RXKADSEALEDINCON;
 460		goto protocol_error;
 461	}
 462
 463	/* shorten the packet to remove the padding */
 464	if (data_size > skb->len)
 465		goto datalen_error;
 466	else if (data_size < skb->len)
 467		skb->len = data_size;
 468
 
 469	_leave(" = 0 [dlen=%x]", data_size);
 470	return 0;
 471
 472datalen_error:
 473	*_abort_code = RXKADDATALEN;
 474protocol_error:
 475	_leave(" = -EPROTO");
 476	return -EPROTO;
 477
 478nomem:
 479	_leave(" = -ENOMEM");
 480	return -ENOMEM;
 481}
 482
 483/*
 484 * verify the security on a received packet
 485 */
 486static int rxkad_verify_packet(const struct rxrpc_call *call,
 487			       struct sk_buff *skb,
 488			       u32 *_abort_code)
 489{
 490	struct blkcipher_desc desc;
 491	struct rxrpc_skb_priv *sp;
 492	struct rxrpc_crypt iv;
 493	struct scatterlist sg[2];
 494	struct {
 495		__be32 x[2];
 496	} tmpbuf __attribute__((aligned(8))); /* must all be in same page */
 497	__be32 x;
 498	__be16 cksum;
 499	u32 y;
 500	int ret;
 501
 502	sp = rxrpc_skb(skb);
 503
 504	_enter("{%d{%x}},{#%u}",
 505	       call->debug_id, key_serial(call->conn->key),
 506	       ntohl(sp->hdr.seq));
 507
 508	if (!call->conn->cipher)
 509		return 0;
 510
 511	if (sp->hdr.securityIndex != RXRPC_SECURITY_RXKAD) {
 512		*_abort_code = RXKADINCONSISTENCY;
 513		_leave(" = -EPROTO [not rxkad]");
 514		return -EPROTO;
 515	}
 516
 517	/* continue encrypting from where we left off */
 518	memcpy(&iv, call->conn->csum_iv.x, sizeof(iv));
 519	desc.tfm = call->conn->cipher;
 520	desc.info = iv.x;
 521	desc.flags = 0;
 522
 523	/* validate the security checksum */
 524	x = htonl(call->channel << (32 - RXRPC_CIDSHIFT));
 525	x |= sp->hdr.seq & cpu_to_be32(0x3fffffff);
 526	tmpbuf.x[0] = call->call_id;
 527	tmpbuf.x[1] = x;
 528
 529	sg_init_one(&sg[0], &tmpbuf, sizeof(tmpbuf));
 530	sg_init_one(&sg[1], &tmpbuf, sizeof(tmpbuf));
 531	crypto_blkcipher_encrypt_iv(&desc, &sg[0], &sg[1], sizeof(tmpbuf));
 532
 533	y = ntohl(tmpbuf.x[1]);
 534	y = (y >> 16) & 0xffff;
 535	if (y == 0)
 536		y = 1; /* zero checksums are not permitted */
 537
 538	cksum = htons(y);
 539	if (sp->hdr.cksum != cksum) {
 540		*_abort_code = RXKADSEALEDINCON;
 541		_leave(" = -EPROTO [csum failed]");
 542		return -EPROTO;
 
 
 543	}
 544
 545	switch (call->conn->security_level) {
 546	case RXRPC_SECURITY_PLAIN:
 547		ret = 0;
 548		break;
 549	case RXRPC_SECURITY_AUTH:
 550		ret = rxkad_verify_packet_auth(call, skb, _abort_code);
 551		break;
 552	case RXRPC_SECURITY_ENCRYPT:
 553		ret = rxkad_verify_packet_encrypt(call, skb, _abort_code);
 554		break;
 555	default:
 556		ret = -ENOANO;
 557		break;
 558	}
 559
 560	_leave(" = %d", ret);
 
 561	return ret;
 562}
 563
 564/*
 565 * issue a challenge
 566 */
 567static int rxkad_issue_challenge(struct rxrpc_connection *conn)
 568{
 569	struct rxkad_challenge challenge;
 570	struct rxrpc_header hdr;
 571	struct msghdr msg;
 572	struct kvec iov[2];
 573	size_t len;
 
 574	int ret;
 575
 576	_enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
 577
 578	ret = key_validate(conn->key);
 579	if (ret < 0)
 580		return ret;
 581
 582	get_random_bytes(&conn->security_nonce, sizeof(conn->security_nonce));
 583
 584	challenge.version	= htonl(2);
 585	challenge.nonce		= htonl(conn->security_nonce);
 586	challenge.min_level	= htonl(0);
 587	challenge.__padding	= 0;
 588
 589	msg.msg_name	= &conn->trans->peer->srx.transport.sin;
 590	msg.msg_namelen	= sizeof(conn->trans->peer->srx.transport.sin);
 591	msg.msg_control	= NULL;
 592	msg.msg_controllen = 0;
 593	msg.msg_flags	= 0;
 594
 595	hdr.epoch	= conn->epoch;
 596	hdr.cid		= conn->cid;
 597	hdr.callNumber	= 0;
 598	hdr.seq		= 0;
 599	hdr.type	= RXRPC_PACKET_TYPE_CHALLENGE;
 600	hdr.flags	= conn->out_clientflag;
 601	hdr.userStatus	= 0;
 602	hdr.securityIndex = conn->security_ix;
 603	hdr._rsvd	= 0;
 604	hdr.serviceId	= conn->service_id;
 605
 606	iov[0].iov_base	= &hdr;
 607	iov[0].iov_len	= sizeof(hdr);
 608	iov[1].iov_base	= &challenge;
 609	iov[1].iov_len	= sizeof(challenge);
 610
 611	len = iov[0].iov_len + iov[1].iov_len;
 612
 613	hdr.serial = htonl(atomic_inc_return(&conn->serial));
 614	_proto("Tx CHALLENGE %%%u", ntohl(hdr.serial));
 615
 616	ret = kernel_sendmsg(conn->trans->local->socket, &msg, iov, 2, len);
 617	if (ret < 0) {
 618		_debug("sendmsg failed: %d", ret);
 
 619		return -EAGAIN;
 620	}
 621
 
 
 
 622	_leave(" = 0");
 623	return 0;
 624}
 625
 626/*
 627 * send a Kerberos security response
 628 */
 629static int rxkad_send_response(struct rxrpc_connection *conn,
 630			       struct rxrpc_header *hdr,
 631			       struct rxkad_response *resp,
 632			       const struct rxkad_key *s2)
 633{
 
 634	struct msghdr msg;
 635	struct kvec iov[3];
 636	size_t len;
 
 637	int ret;
 638
 639	_enter("");
 640
 641	msg.msg_name	= &conn->trans->peer->srx.transport.sin;
 642	msg.msg_namelen	= sizeof(conn->trans->peer->srx.transport.sin);
 643	msg.msg_control	= NULL;
 644	msg.msg_controllen = 0;
 645	msg.msg_flags	= 0;
 646
 647	hdr->epoch	= conn->epoch;
 648	hdr->seq	= 0;
 649	hdr->type	= RXRPC_PACKET_TYPE_RESPONSE;
 650	hdr->flags	= conn->out_clientflag;
 651	hdr->userStatus	= 0;
 652	hdr->_rsvd	= 0;
 
 653
 654	iov[0].iov_base	= hdr;
 655	iov[0].iov_len	= sizeof(*hdr);
 656	iov[1].iov_base	= resp;
 657	iov[1].iov_len	= sizeof(*resp);
 658	iov[2].iov_base	= (void *) s2->ticket;
 659	iov[2].iov_len	= s2->ticket_len;
 660
 661	len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
 662
 663	hdr->serial = htonl(atomic_inc_return(&conn->serial));
 664	_proto("Tx RESPONSE %%%u", ntohl(hdr->serial));
 665
 666	ret = kernel_sendmsg(conn->trans->local->socket, &msg, iov, 3, len);
 
 667	if (ret < 0) {
 668		_debug("sendmsg failed: %d", ret);
 
 669		return -EAGAIN;
 670	}
 671
 
 672	_leave(" = 0");
 673	return 0;
 674}
 675
 676/*
 677 * calculate the response checksum
 678 */
 679static void rxkad_calc_response_checksum(struct rxkad_response *response)
 680{
 681	u32 csum = 1000003;
 682	int loop;
 683	u8 *p = (u8 *) response;
 684
 685	for (loop = sizeof(*response); loop > 0; loop--)
 686		csum = csum * 0x10204081 + *p++;
 687
 688	response->encrypted.checksum = htonl(csum);
 689}
 690
 691/*
 692 * load a scatterlist with a potentially split-page buffer
 693 */
 694static void rxkad_sg_set_buf2(struct scatterlist sg[2],
 695			      void *buf, size_t buflen)
 696{
 697	int nsg = 1;
 698
 699	sg_init_table(sg, 2);
 700
 701	sg_set_buf(&sg[0], buf, buflen);
 702	if (sg[0].offset + buflen > PAGE_SIZE) {
 703		/* the buffer was split over two pages */
 704		sg[0].length = PAGE_SIZE - sg[0].offset;
 705		sg_set_buf(&sg[1], buf + sg[0].length, buflen - sg[0].length);
 706		nsg++;
 707	}
 708
 709	sg_mark_end(&sg[nsg - 1]);
 710
 711	ASSERTCMP(sg[0].length + sg[1].length, ==, buflen);
 712}
 713
 714/*
 715 * encrypt the response packet
 716 */
 717static void rxkad_encrypt_response(struct rxrpc_connection *conn,
 718				   struct rxkad_response *resp,
 719				   const struct rxkad_key *s2)
 720{
 721	struct blkcipher_desc desc;
 722	struct rxrpc_crypt iv;
 723	struct scatterlist sg[2];
 
 
 
 
 724
 725	/* continue encrypting from where we left off */
 726	memcpy(&iv, s2->session_key, sizeof(iv));
 727	desc.tfm = conn->cipher;
 728	desc.info = iv.x;
 729	desc.flags = 0;
 730
 731	rxkad_sg_set_buf2(sg, &resp->encrypted, sizeof(resp->encrypted));
 732	crypto_blkcipher_encrypt_iv(&desc, sg, sg, sizeof(resp->encrypted));
 
 
 
 
 
 
 733}
 734
 735/*
 736 * respond to a challenge packet
 737 */
 738static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
 739				      struct sk_buff *skb,
 740				      u32 *_abort_code)
 741{
 742	const struct rxrpc_key_token *token;
 743	struct rxkad_challenge challenge;
 744	struct rxkad_response resp
 745		__attribute__((aligned(8))); /* must be aligned for crypto */
 746	struct rxrpc_skb_priv *sp;
 747	u32 version, nonce, min_level, abort_code;
 748	int ret;
 749
 750	_enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
 751
 752	if (!conn->key) {
 753		_leave(" = -EPROTO [no key]");
 754		return -EPROTO;
 755	}
 756
 757	ret = key_validate(conn->key);
 758	if (ret < 0) {
 759		*_abort_code = RXKADEXPIRED;
 760		return ret;
 761	}
 762
 763	abort_code = RXKADPACKETSHORT;
 764	sp = rxrpc_skb(skb);
 765	if (skb_copy_bits(skb, 0, &challenge, sizeof(challenge)) < 0)
 766		goto protocol_error;
 767
 768	version = ntohl(challenge.version);
 769	nonce = ntohl(challenge.nonce);
 770	min_level = ntohl(challenge.min_level);
 771
 772	_proto("Rx CHALLENGE %%%u { v=%u n=%u ml=%u }",
 773	       ntohl(sp->hdr.serial), version, nonce, min_level);
 774
 775	abort_code = RXKADINCONSISTENCY;
 776	if (version != RXKAD_VERSION)
 777		goto protocol_error;
 
 778
 779	abort_code = RXKADLEVELFAIL;
 780	if (conn->security_level < min_level)
 781		goto protocol_error;
 
 782
 783	token = conn->key->payload.data;
 784
 785	/* build the response packet */
 786	memset(&resp, 0, sizeof(resp));
 
 
 787
 788	resp.version = RXKAD_VERSION;
 789	resp.encrypted.epoch = conn->epoch;
 790	resp.encrypted.cid = conn->cid;
 791	resp.encrypted.securityIndex = htonl(conn->security_ix);
 792	resp.encrypted.call_id[0] =
 793		(conn->channels[0] ? conn->channels[0]->call_id : 0);
 794	resp.encrypted.call_id[1] =
 795		(conn->channels[1] ? conn->channels[1]->call_id : 0);
 796	resp.encrypted.call_id[2] =
 797		(conn->channels[2] ? conn->channels[2]->call_id : 0);
 798	resp.encrypted.call_id[3] =
 799		(conn->channels[3] ? conn->channels[3]->call_id : 0);
 800	resp.encrypted.inc_nonce = htonl(nonce + 1);
 801	resp.encrypted.level = htonl(conn->security_level);
 802	resp.kvno = htonl(token->kad->kvno);
 803	resp.ticket_len = htonl(token->kad->ticket_len);
 804
 805	/* calculate the response checksum and then do the encryption */
 806	rxkad_calc_response_checksum(&resp);
 807	rxkad_encrypt_response(conn, &resp, token->kad);
 808	return rxkad_send_response(conn, &sp->hdr, &resp, token->kad);
 809
 810protocol_error:
 811	*_abort_code = abort_code;
 812	_leave(" = -EPROTO [%d]", abort_code);
 813	return -EPROTO;
 814}
 815
 816/*
 817 * decrypt the kerberos IV ticket in the response
 818 */
 819static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
 
 
 820				void *ticket, size_t ticket_len,
 821				struct rxrpc_crypt *_session_key,
 822				time_t *_expiry,
 823				u32 *_abort_code)
 824{
 825	struct blkcipher_desc desc;
 826	struct rxrpc_crypt iv, key;
 827	struct scatterlist sg[1];
 828	struct in_addr addr;
 829	unsigned int life;
 830	time_t issue, now;
 831	bool little_endian;
 832	int ret;
 833	u8 *p, *q, *name, *end;
 834
 835	_enter("{%d},{%x}", conn->debug_id, key_serial(conn->server_key));
 836
 837	*_expiry = 0;
 838
 839	ret = key_validate(conn->server_key);
 840	if (ret < 0) {
 841		switch (ret) {
 842		case -EKEYEXPIRED:
 843			*_abort_code = RXKADEXPIRED;
 844			goto error;
 845		default:
 846			*_abort_code = RXKADNOAUTH;
 847			goto error;
 848		}
 849	}
 850
 851	ASSERT(conn->server_key->payload.data != NULL);
 852	ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
 853
 854	memcpy(&iv, &conn->server_key->type_data, sizeof(iv));
 855
 856	desc.tfm = conn->server_key->payload.data;
 857	desc.info = iv.x;
 858	desc.flags = 0;
 859
 860	sg_init_one(&sg[0], ticket, ticket_len);
 861	crypto_blkcipher_decrypt_iv(&desc, sg, sg, ticket_len);
 
 
 
 862
 863	p = ticket;
 864	end = p + ticket_len;
 865
 866#define Z(size)						\
 867	({						\
 868		u8 *__str = p;				\
 869		q = memchr(p, 0, end - p);		\
 870		if (!q || q - p > (size))		\
 871			goto bad_ticket;		\
 872		for (; p < q; p++)			\
 873			if (!isprint(*p))		\
 874				goto bad_ticket;	\
 875		p++;					\
 876		__str;					\
 
 
 
 
 877	})
 878
 879	/* extract the ticket flags */
 880	_debug("KIV FLAGS: %x", *p);
 881	little_endian = *p & 1;
 882	p++;
 883
 884	/* extract the authentication name */
 885	name = Z(ANAME_SZ);
 886	_debug("KIV ANAME: %s", name);
 887
 888	/* extract the principal's instance */
 889	name = Z(INST_SZ);
 890	_debug("KIV INST : %s", name);
 891
 892	/* extract the principal's authentication domain */
 893	name = Z(REALM_SZ);
 894	_debug("KIV REALM: %s", name);
 895
 896	if (end - p < 4 + 8 + 4 + 2)
 897		goto bad_ticket;
 
 898
 899	/* get the IPv4 address of the entity that requested the ticket */
 900	memcpy(&addr, p, sizeof(addr));
 901	p += 4;
 902	_debug("KIV ADDR : %pI4", &addr);
 903
 904	/* get the session key from the ticket */
 905	memcpy(&key, p, sizeof(key));
 906	p += 8;
 907	_debug("KIV KEY  : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
 908	memcpy(_session_key, &key, sizeof(key));
 909
 910	/* get the ticket's lifetime */
 911	life = *p++ * 5 * 60;
 912	_debug("KIV LIFE : %u", life);
 913
 914	/* get the issue time of the ticket */
 915	if (little_endian) {
 916		__le32 stamp;
 917		memcpy(&stamp, p, 4);
 918		issue = le32_to_cpu(stamp);
 919	} else {
 920		__be32 stamp;
 921		memcpy(&stamp, p, 4);
 922		issue = be32_to_cpu(stamp);
 923	}
 924	p += 4;
 925	now = get_seconds();
 926	_debug("KIV ISSUE: %lx [%lx]", issue, now);
 927
 928	/* check the ticket is in date */
 929	if (issue > now) {
 930		*_abort_code = RXKADNOAUTH;
 931		ret = -EKEYREJECTED;
 932		goto error;
 933	}
 934
 935	if (issue < now - life) {
 936		*_abort_code = RXKADEXPIRED;
 937		ret = -EKEYEXPIRED;
 938		goto error;
 939	}
 940
 941	*_expiry = issue + life;
 942
 943	/* get the service name */
 944	name = Z(SNAME_SZ);
 945	_debug("KIV SNAME: %s", name);
 946
 947	/* get the service instance name */
 948	name = Z(INST_SZ);
 949	_debug("KIV SINST: %s", name);
 950
 951	ret = 0;
 952error:
 953	_leave(" = %d", ret);
 954	return ret;
 955
 956bad_ticket:
 957	*_abort_code = RXKADBADTICKET;
 958	ret = -EBADMSG;
 959	goto error;
 960}
 961
 962/*
 963 * decrypt the response packet
 964 */
 965static void rxkad_decrypt_response(struct rxrpc_connection *conn,
 966				   struct rxkad_response *resp,
 967				   const struct rxrpc_crypt *session_key)
 968{
 969	struct blkcipher_desc desc;
 970	struct scatterlist sg[2];
 971	struct rxrpc_crypt iv;
 972
 973	_enter(",,%08x%08x",
 974	       ntohl(session_key->n[0]), ntohl(session_key->n[1]));
 975
 976	ASSERT(rxkad_ci != NULL);
 977
 978	mutex_lock(&rxkad_ci_mutex);
 979	if (crypto_blkcipher_setkey(rxkad_ci, session_key->x,
 980				    sizeof(*session_key)) < 0)
 981		BUG();
 982
 983	memcpy(&iv, session_key, sizeof(iv));
 984	desc.tfm = rxkad_ci;
 985	desc.info = iv.x;
 986	desc.flags = 0;
 987
 988	rxkad_sg_set_buf2(sg, &resp->encrypted, sizeof(resp->encrypted));
 989	crypto_blkcipher_decrypt_iv(&desc, sg, sg, sizeof(resp->encrypted));
 
 
 
 
 
 
 990	mutex_unlock(&rxkad_ci_mutex);
 991
 992	_leave("");
 993}
 994
 995/*
 996 * verify a response
 997 */
 998static int rxkad_verify_response(struct rxrpc_connection *conn,
 999				 struct sk_buff *skb,
1000				 u32 *_abort_code)
1001{
1002	struct rxkad_response response
1003		__attribute__((aligned(8))); /* must be aligned for crypto */
1004	struct rxrpc_skb_priv *sp;
1005	struct rxrpc_crypt session_key;
1006	time_t expiry;
 
1007	void *ticket;
1008	u32 abort_code, version, kvno, ticket_len, level;
1009	__be32 csum;
1010	int ret;
 
 
1011
1012	_enter("{%d,%x}", conn->debug_id, key_serial(conn->server_key));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013
1014	abort_code = RXKADPACKETSHORT;
1015	if (skb_copy_bits(skb, 0, &response, sizeof(response)) < 0)
 
 
 
 
 
 
 
1016		goto protocol_error;
1017	if (!pskb_pull(skb, sizeof(response)))
1018		BUG();
1019
1020	version = ntohl(response.version);
1021	ticket_len = ntohl(response.ticket_len);
1022	kvno = ntohl(response.kvno);
1023	sp = rxrpc_skb(skb);
1024	_proto("Rx RESPONSE %%%u { v=%u kv=%u tl=%u }",
1025	       ntohl(sp->hdr.serial), version, kvno, ticket_len);
1026
1027	abort_code = RXKADINCONSISTENCY;
1028	if (version != RXKAD_VERSION)
 
 
 
 
 
 
 
1029		goto protocol_error;
 
1030
1031	abort_code = RXKADTICKETLEN;
1032	if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
 
1033		goto protocol_error;
 
1034
1035	abort_code = RXKADUNKNOWNKEY;
1036	if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
 
1037		goto protocol_error;
 
1038
1039	/* extract the kerberos ticket and decrypt and decode it */
 
1040	ticket = kmalloc(ticket_len, GFP_NOFS);
1041	if (!ticket)
1042		return -ENOMEM;
1043
1044	abort_code = RXKADPACKETSHORT;
1045	if (skb_copy_bits(skb, 0, ticket, ticket_len) < 0)
1046		goto protocol_error_free;
 
 
 
1047
1048	ret = rxkad_decrypt_ticket(conn, ticket, ticket_len, &session_key,
1049				   &expiry, &abort_code);
1050	if (ret < 0) {
1051		*_abort_code = abort_code;
1052		kfree(ticket);
1053		return ret;
1054	}
1055
1056	/* use the session key from inside the ticket to decrypt the
1057	 * response */
1058	rxkad_decrypt_response(conn, &response, &session_key);
1059
1060	abort_code = RXKADSEALEDINCON;
1061	if (response.encrypted.epoch != conn->epoch)
 
 
 
1062		goto protocol_error_free;
1063	if (response.encrypted.cid != conn->cid)
1064		goto protocol_error_free;
1065	if (ntohl(response.encrypted.securityIndex) != conn->security_ix)
1066		goto protocol_error_free;
1067	csum = response.encrypted.checksum;
1068	response.encrypted.checksum = 0;
1069	rxkad_calc_response_checksum(&response);
1070	if (response.encrypted.checksum != csum)
1071		goto protocol_error_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	if (ntohl(response.encrypted.call_id[0]) > INT_MAX ||
1074	    ntohl(response.encrypted.call_id[1]) > INT_MAX ||
1075	    ntohl(response.encrypted.call_id[2]) > INT_MAX ||
1076	    ntohl(response.encrypted.call_id[3]) > INT_MAX)
1077		goto protocol_error_free;
 
 
 
 
1078
1079	abort_code = RXKADOUTOFSEQUENCE;
1080	if (response.encrypted.inc_nonce != htonl(conn->security_nonce + 1))
 
1081		goto protocol_error_free;
 
1082
1083	abort_code = RXKADLEVELFAIL;
1084	level = ntohl(response.encrypted.level);
1085	if (level > RXRPC_SECURITY_ENCRYPT)
 
1086		goto protocol_error_free;
 
1087	conn->security_level = level;
1088
1089	/* create a key to hold the security data and expiration time - after
1090	 * this the connection security can be handled in exactly the same way
1091	 * as for a client connection */
1092	ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1093	if (ret < 0) {
1094		kfree(ticket);
1095		return ret;
1096	}
1097
1098	kfree(ticket);
 
1099	_leave(" = 0");
1100	return 0;
1101
1102protocol_error_free:
1103	kfree(ticket);
1104protocol_error:
1105	*_abort_code = abort_code;
1106	_leave(" = -EPROTO [%d]", abort_code);
1107	return -EPROTO;
 
 
 
 
 
 
 
 
 
 
 
 
1108}
1109
1110/*
1111 * clear the connection security
1112 */
1113static void rxkad_clear(struct rxrpc_connection *conn)
1114{
1115	_enter("");
1116
1117	if (conn->cipher)
1118		crypto_free_blkcipher(conn->cipher);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119}
1120
1121/*
1122 * RxRPC Kerberos-based security
1123 */
1124static struct rxrpc_security rxkad = {
1125	.owner				= THIS_MODULE,
1126	.name				= "rxkad",
1127	.security_index			= RXRPC_SECURITY_RXKAD,
 
 
 
 
 
 
1128	.init_connection_security	= rxkad_init_connection_security,
1129	.prime_packet_security		= rxkad_prime_packet_security,
1130	.secure_packet			= rxkad_secure_packet,
1131	.verify_packet			= rxkad_verify_packet,
 
1132	.issue_challenge		= rxkad_issue_challenge,
1133	.respond_to_challenge		= rxkad_respond_to_challenge,
1134	.verify_response		= rxkad_verify_response,
1135	.clear				= rxkad_clear,
1136};
1137
1138static __init int rxkad_init(void)
1139{
1140	_enter("");
1141
1142	/* pin the cipher we need so that the crypto layer doesn't invoke
1143	 * keventd to go get it */
1144	rxkad_ci = crypto_alloc_blkcipher("pcbc(fcrypt)", 0, CRYPTO_ALG_ASYNC);
1145	if (IS_ERR(rxkad_ci))
1146		return PTR_ERR(rxkad_ci);
1147
1148	return rxrpc_register_security(&rxkad);
1149}
1150
1151module_init(rxkad_init);
1152
1153static __exit void rxkad_exit(void)
1154{
1155	_enter("");
1156
1157	rxrpc_unregister_security(&rxkad);
1158	crypto_free_blkcipher(rxkad_ci);
1159}
1160
1161module_exit(rxkad_exit);