Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/mm_inline.h>
45#include <linux/sched/mm.h>
46#include <linux/sched/numa_balancing.h>
47#include <linux/sched/task.h>
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
53#include <linux/memremap.h>
54#include <linux/kmsan.h>
55#include <linux/ksm.h>
56#include <linux/rmap.h>
57#include <linux/export.h>
58#include <linux/delayacct.h>
59#include <linux/init.h>
60#include <linux/pfn_t.h>
61#include <linux/writeback.h>
62#include <linux/memcontrol.h>
63#include <linux/mmu_notifier.h>
64#include <linux/swapops.h>
65#include <linux/elf.h>
66#include <linux/gfp.h>
67#include <linux/migrate.h>
68#include <linux/string.h>
69#include <linux/memory-tiers.h>
70#include <linux/debugfs.h>
71#include <linux/userfaultfd_k.h>
72#include <linux/dax.h>
73#include <linux/oom.h>
74#include <linux/numa.h>
75#include <linux/perf_event.h>
76#include <linux/ptrace.h>
77#include <linux/vmalloc.h>
78#include <linux/sched/sysctl.h>
79
80#include <trace/events/kmem.h>
81
82#include <asm/io.h>
83#include <asm/mmu_context.h>
84#include <asm/pgalloc.h>
85#include <linux/uaccess.h>
86#include <asm/tlb.h>
87#include <asm/tlbflush.h>
88
89#include "pgalloc-track.h"
90#include "internal.h"
91#include "swap.h"
92
93#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95#endif
96
97#ifndef CONFIG_NUMA
98unsigned long max_mapnr;
99EXPORT_SYMBOL(max_mapnr);
100
101struct page *mem_map;
102EXPORT_SYMBOL(mem_map);
103#endif
104
105static vm_fault_t do_fault(struct vm_fault *vmf);
106static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
107static bool vmf_pte_changed(struct vm_fault *vmf);
108
109/*
110 * Return true if the original pte was a uffd-wp pte marker (so the pte was
111 * wr-protected).
112 */
113static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
114{
115 if (!userfaultfd_wp(vmf->vma))
116 return false;
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121}
122
123/*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL.
127 */
128void *high_memory;
129EXPORT_SYMBOL(high_memory);
130
131/*
132 * Randomize the address space (stacks, mmaps, brk, etc.).
133 *
134 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135 * as ancient (libc5 based) binaries can segfault. )
136 */
137int randomize_va_space __read_mostly =
138#ifdef CONFIG_COMPAT_BRK
139 1;
140#else
141 2;
142#endif
143
144#ifndef arch_wants_old_prefaulted_pte
145static inline bool arch_wants_old_prefaulted_pte(void)
146{
147 /*
148 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 * some architectures, even if it's performed in hardware. By
150 * default, "false" means prefaulted entries will be 'young'.
151 */
152 return false;
153}
154#endif
155
156static int __init disable_randmaps(char *s)
157{
158 randomize_va_space = 0;
159 return 1;
160}
161__setup("norandmaps", disable_randmaps);
162
163unsigned long zero_pfn __read_mostly;
164EXPORT_SYMBOL(zero_pfn);
165
166unsigned long highest_memmap_pfn __read_mostly;
167
168/*
169 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170 */
171static int __init init_zero_pfn(void)
172{
173 zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 return 0;
175}
176early_initcall(init_zero_pfn);
177
178void mm_trace_rss_stat(struct mm_struct *mm, int member)
179{
180 trace_rss_stat(mm, member);
181}
182
183/*
184 * Note: this doesn't free the actual pages themselves. That
185 * has been handled earlier when unmapping all the memory regions.
186 */
187static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 unsigned long addr)
189{
190 pgtable_t token = pmd_pgtable(*pmd);
191 pmd_clear(pmd);
192 pte_free_tlb(tlb, token, addr);
193 mm_dec_nr_ptes(tlb->mm);
194}
195
196static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 unsigned long addr, unsigned long end,
198 unsigned long floor, unsigned long ceiling)
199{
200 pmd_t *pmd;
201 unsigned long next;
202 unsigned long start;
203
204 start = addr;
205 pmd = pmd_offset(pud, addr);
206 do {
207 next = pmd_addr_end(addr, end);
208 if (pmd_none_or_clear_bad(pmd))
209 continue;
210 free_pte_range(tlb, pmd, addr);
211 } while (pmd++, addr = next, addr != end);
212
213 start &= PUD_MASK;
214 if (start < floor)
215 return;
216 if (ceiling) {
217 ceiling &= PUD_MASK;
218 if (!ceiling)
219 return;
220 }
221 if (end - 1 > ceiling - 1)
222 return;
223
224 pmd = pmd_offset(pud, start);
225 pud_clear(pud);
226 pmd_free_tlb(tlb, pmd, start);
227 mm_dec_nr_pmds(tlb->mm);
228}
229
230static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 unsigned long addr, unsigned long end,
232 unsigned long floor, unsigned long ceiling)
233{
234 pud_t *pud;
235 unsigned long next;
236 unsigned long start;
237
238 start = addr;
239 pud = pud_offset(p4d, addr);
240 do {
241 next = pud_addr_end(addr, end);
242 if (pud_none_or_clear_bad(pud))
243 continue;
244 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 } while (pud++, addr = next, addr != end);
246
247 start &= P4D_MASK;
248 if (start < floor)
249 return;
250 if (ceiling) {
251 ceiling &= P4D_MASK;
252 if (!ceiling)
253 return;
254 }
255 if (end - 1 > ceiling - 1)
256 return;
257
258 pud = pud_offset(p4d, start);
259 p4d_clear(p4d);
260 pud_free_tlb(tlb, pud, start);
261 mm_dec_nr_puds(tlb->mm);
262}
263
264static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 unsigned long addr, unsigned long end,
266 unsigned long floor, unsigned long ceiling)
267{
268 p4d_t *p4d;
269 unsigned long next;
270 unsigned long start;
271
272 start = addr;
273 p4d = p4d_offset(pgd, addr);
274 do {
275 next = p4d_addr_end(addr, end);
276 if (p4d_none_or_clear_bad(p4d))
277 continue;
278 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 } while (p4d++, addr = next, addr != end);
280
281 start &= PGDIR_MASK;
282 if (start < floor)
283 return;
284 if (ceiling) {
285 ceiling &= PGDIR_MASK;
286 if (!ceiling)
287 return;
288 }
289 if (end - 1 > ceiling - 1)
290 return;
291
292 p4d = p4d_offset(pgd, start);
293 pgd_clear(pgd);
294 p4d_free_tlb(tlb, p4d, start);
295}
296
297/*
298 * This function frees user-level page tables of a process.
299 */
300void free_pgd_range(struct mmu_gather *tlb,
301 unsigned long addr, unsigned long end,
302 unsigned long floor, unsigned long ceiling)
303{
304 pgd_t *pgd;
305 unsigned long next;
306
307 /*
308 * The next few lines have given us lots of grief...
309 *
310 * Why are we testing PMD* at this top level? Because often
311 * there will be no work to do at all, and we'd prefer not to
312 * go all the way down to the bottom just to discover that.
313 *
314 * Why all these "- 1"s? Because 0 represents both the bottom
315 * of the address space and the top of it (using -1 for the
316 * top wouldn't help much: the masks would do the wrong thing).
317 * The rule is that addr 0 and floor 0 refer to the bottom of
318 * the address space, but end 0 and ceiling 0 refer to the top
319 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 * that end 0 case should be mythical).
321 *
322 * Wherever addr is brought up or ceiling brought down, we must
323 * be careful to reject "the opposite 0" before it confuses the
324 * subsequent tests. But what about where end is brought down
325 * by PMD_SIZE below? no, end can't go down to 0 there.
326 *
327 * Whereas we round start (addr) and ceiling down, by different
328 * masks at different levels, in order to test whether a table
329 * now has no other vmas using it, so can be freed, we don't
330 * bother to round floor or end up - the tests don't need that.
331 */
332
333 addr &= PMD_MASK;
334 if (addr < floor) {
335 addr += PMD_SIZE;
336 if (!addr)
337 return;
338 }
339 if (ceiling) {
340 ceiling &= PMD_MASK;
341 if (!ceiling)
342 return;
343 }
344 if (end - 1 > ceiling - 1)
345 end -= PMD_SIZE;
346 if (addr > end - 1)
347 return;
348 /*
349 * We add page table cache pages with PAGE_SIZE,
350 * (see pte_free_tlb()), flush the tlb if we need
351 */
352 tlb_change_page_size(tlb, PAGE_SIZE);
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
360}
361
362void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 struct vm_area_struct *vma, unsigned long floor,
364 unsigned long ceiling, bool mm_wr_locked)
365{
366 struct unlink_vma_file_batch vb;
367
368 do {
369 unsigned long addr = vma->vm_start;
370 struct vm_area_struct *next;
371
372 /*
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
375 */
376 next = mas_find(mas, ceiling - 1);
377 if (unlikely(xa_is_zero(next)))
378 next = NULL;
379
380 /*
381 * Hide vma from rmap and truncate_pagecache before freeing
382 * pgtables
383 */
384 if (mm_wr_locked)
385 vma_start_write(vma);
386 unlink_anon_vmas(vma);
387
388 if (is_vm_hugetlb_page(vma)) {
389 unlink_file_vma(vma);
390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next ? next->vm_start : ceiling);
392 } else {
393 unlink_file_vma_batch_init(&vb);
394 unlink_file_vma_batch_add(&vb, vma);
395
396 /*
397 * Optimization: gather nearby vmas into one call down
398 */
399 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
400 && !is_vm_hugetlb_page(next)) {
401 vma = next;
402 next = mas_find(mas, ceiling - 1);
403 if (unlikely(xa_is_zero(next)))
404 next = NULL;
405 if (mm_wr_locked)
406 vma_start_write(vma);
407 unlink_anon_vmas(vma);
408 unlink_file_vma_batch_add(&vb, vma);
409 }
410 unlink_file_vma_batch_final(&vb);
411 free_pgd_range(tlb, addr, vma->vm_end,
412 floor, next ? next->vm_start : ceiling);
413 }
414 vma = next;
415 } while (vma);
416}
417
418void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
419{
420 spinlock_t *ptl = pmd_lock(mm, pmd);
421
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
423 mm_inc_nr_ptes(mm);
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_rmb() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 pmd_populate(mm, pmd, *pte);
439 *pte = NULL;
440 }
441 spin_unlock(ptl);
442}
443
444int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
445{
446 pgtable_t new = pte_alloc_one(mm);
447 if (!new)
448 return -ENOMEM;
449
450 pmd_install(mm, pmd, &new);
451 if (new)
452 pte_free(mm, new);
453 return 0;
454}
455
456int __pte_alloc_kernel(pmd_t *pmd)
457{
458 pte_t *new = pte_alloc_one_kernel(&init_mm);
459 if (!new)
460 return -ENOMEM;
461
462 spin_lock(&init_mm.page_table_lock);
463 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
464 smp_wmb(); /* See comment in pmd_install() */
465 pmd_populate_kernel(&init_mm, pmd, new);
466 new = NULL;
467 }
468 spin_unlock(&init_mm.page_table_lock);
469 if (new)
470 pte_free_kernel(&init_mm, new);
471 return 0;
472}
473
474static inline void init_rss_vec(int *rss)
475{
476 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
477}
478
479static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
480{
481 int i;
482
483 for (i = 0; i < NR_MM_COUNTERS; i++)
484 if (rss[i])
485 add_mm_counter(mm, i, rss[i]);
486}
487
488/*
489 * This function is called to print an error when a bad pte
490 * is found. For example, we might have a PFN-mapped pte in
491 * a region that doesn't allow it.
492 *
493 * The calling function must still handle the error.
494 */
495static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
496 pte_t pte, struct page *page)
497{
498 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
499 p4d_t *p4d = p4d_offset(pgd, addr);
500 pud_t *pud = pud_offset(p4d, addr);
501 pmd_t *pmd = pmd_offset(pud, addr);
502 struct address_space *mapping;
503 pgoff_t index;
504 static unsigned long resume;
505 static unsigned long nr_shown;
506 static unsigned long nr_unshown;
507
508 /*
509 * Allow a burst of 60 reports, then keep quiet for that minute;
510 * or allow a steady drip of one report per second.
511 */
512 if (nr_shown == 60) {
513 if (time_before(jiffies, resume)) {
514 nr_unshown++;
515 return;
516 }
517 if (nr_unshown) {
518 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 nr_unshown);
520 nr_unshown = 0;
521 }
522 nr_shown = 0;
523 }
524 if (nr_shown++ == 0)
525 resume = jiffies + 60 * HZ;
526
527 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
528 index = linear_page_index(vma, addr);
529
530 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
531 current->comm,
532 (long long)pte_val(pte), (long long)pmd_val(*pmd));
533 if (page)
534 dump_page(page, "bad pte");
535 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
536 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
537 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
538 vma->vm_file,
539 vma->vm_ops ? vma->vm_ops->fault : NULL,
540 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
541 mapping ? mapping->a_ops->read_folio : NULL);
542 dump_stack();
543 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
544}
545
546/*
547 * vm_normal_page -- This function gets the "struct page" associated with a pte.
548 *
549 * "Special" mappings do not wish to be associated with a "struct page" (either
550 * it doesn't exist, or it exists but they don't want to touch it). In this
551 * case, NULL is returned here. "Normal" mappings do have a struct page.
552 *
553 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
554 * pte bit, in which case this function is trivial. Secondly, an architecture
555 * may not have a spare pte bit, which requires a more complicated scheme,
556 * described below.
557 *
558 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
559 * special mapping (even if there are underlying and valid "struct pages").
560 * COWed pages of a VM_PFNMAP are always normal.
561 *
562 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
563 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
564 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
565 * mapping will always honor the rule
566 *
567 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
568 *
569 * And for normal mappings this is false.
570 *
571 * This restricts such mappings to be a linear translation from virtual address
572 * to pfn. To get around this restriction, we allow arbitrary mappings so long
573 * as the vma is not a COW mapping; in that case, we know that all ptes are
574 * special (because none can have been COWed).
575 *
576 *
577 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
578 *
579 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
580 * page" backing, however the difference is that _all_ pages with a struct
581 * page (that is, those where pfn_valid is true) are refcounted and considered
582 * normal pages by the VM. The only exception are zeropages, which are
583 * *never* refcounted.
584 *
585 * The disadvantage is that pages are refcounted (which can be slower and
586 * simply not an option for some PFNMAP users). The advantage is that we
587 * don't have to follow the strict linearity rule of PFNMAP mappings in
588 * order to support COWable mappings.
589 *
590 */
591struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 pte_t pte)
593{
594 unsigned long pfn = pte_pfn(pte);
595
596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 if (likely(!pte_special(pte)))
598 goto check_pfn;
599 if (vma->vm_ops && vma->vm_ops->find_special_page)
600 return vma->vm_ops->find_special_page(vma, addr);
601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 return NULL;
603 if (is_zero_pfn(pfn))
604 return NULL;
605 if (pte_devmap(pte))
606 /*
607 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
608 * and will have refcounts incremented on their struct pages
609 * when they are inserted into PTEs, thus they are safe to
610 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
611 * do not have refcounts. Example of legacy ZONE_DEVICE is
612 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
613 */
614 return NULL;
615
616 print_bad_pte(vma, addr, pte, NULL);
617 return NULL;
618 }
619
620 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
621
622 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
623 if (vma->vm_flags & VM_MIXEDMAP) {
624 if (!pfn_valid(pfn))
625 return NULL;
626 if (is_zero_pfn(pfn))
627 return NULL;
628 goto out;
629 } else {
630 unsigned long off;
631 off = (addr - vma->vm_start) >> PAGE_SHIFT;
632 if (pfn == vma->vm_pgoff + off)
633 return NULL;
634 if (!is_cow_mapping(vma->vm_flags))
635 return NULL;
636 }
637 }
638
639 if (is_zero_pfn(pfn))
640 return NULL;
641
642check_pfn:
643 if (unlikely(pfn > highest_memmap_pfn)) {
644 print_bad_pte(vma, addr, pte, NULL);
645 return NULL;
646 }
647
648 /*
649 * NOTE! We still have PageReserved() pages in the page tables.
650 * eg. VDSO mappings can cause them to exist.
651 */
652out:
653 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
654 return pfn_to_page(pfn);
655}
656
657struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
658 pte_t pte)
659{
660 struct page *page = vm_normal_page(vma, addr, pte);
661
662 if (page)
663 return page_folio(page);
664 return NULL;
665}
666
667#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
668struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 pmd_t pmd)
670{
671 unsigned long pfn = pmd_pfn(pmd);
672
673 /* Currently it's only used for huge pfnmaps */
674 if (unlikely(pmd_special(pmd)))
675 return NULL;
676
677 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
678 if (vma->vm_flags & VM_MIXEDMAP) {
679 if (!pfn_valid(pfn))
680 return NULL;
681 goto out;
682 } else {
683 unsigned long off;
684 off = (addr - vma->vm_start) >> PAGE_SHIFT;
685 if (pfn == vma->vm_pgoff + off)
686 return NULL;
687 if (!is_cow_mapping(vma->vm_flags))
688 return NULL;
689 }
690 }
691
692 if (pmd_devmap(pmd))
693 return NULL;
694 if (is_huge_zero_pmd(pmd))
695 return NULL;
696 if (unlikely(pfn > highest_memmap_pfn))
697 return NULL;
698
699 /*
700 * NOTE! We still have PageReserved() pages in the page tables.
701 * eg. VDSO mappings can cause them to exist.
702 */
703out:
704 return pfn_to_page(pfn);
705}
706
707struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
708 unsigned long addr, pmd_t pmd)
709{
710 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
711
712 if (page)
713 return page_folio(page);
714 return NULL;
715}
716#endif
717
718static void restore_exclusive_pte(struct vm_area_struct *vma,
719 struct page *page, unsigned long address,
720 pte_t *ptep)
721{
722 struct folio *folio = page_folio(page);
723 pte_t orig_pte;
724 pte_t pte;
725 swp_entry_t entry;
726
727 orig_pte = ptep_get(ptep);
728 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 if (pte_swp_soft_dirty(orig_pte))
730 pte = pte_mksoft_dirty(pte);
731
732 entry = pte_to_swp_entry(orig_pte);
733 if (pte_swp_uffd_wp(orig_pte))
734 pte = pte_mkuffd_wp(pte);
735 else if (is_writable_device_exclusive_entry(entry))
736 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
737
738 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
739 PageAnonExclusive(page)), folio);
740
741 /*
742 * No need to take a page reference as one was already
743 * created when the swap entry was made.
744 */
745 if (folio_test_anon(folio))
746 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
747 else
748 /*
749 * Currently device exclusive access only supports anonymous
750 * memory so the entry shouldn't point to a filebacked page.
751 */
752 WARN_ON_ONCE(1);
753
754 set_pte_at(vma->vm_mm, address, ptep, pte);
755
756 /*
757 * No need to invalidate - it was non-present before. However
758 * secondary CPUs may have mappings that need invalidating.
759 */
760 update_mmu_cache(vma, address, ptep);
761}
762
763/*
764 * Tries to restore an exclusive pte if the page lock can be acquired without
765 * sleeping.
766 */
767static int
768try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
769 unsigned long addr)
770{
771 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
772 struct page *page = pfn_swap_entry_to_page(entry);
773
774 if (trylock_page(page)) {
775 restore_exclusive_pte(vma, page, addr, src_pte);
776 unlock_page(page);
777 return 0;
778 }
779
780 return -EBUSY;
781}
782
783/*
784 * copy one vm_area from one task to the other. Assumes the page tables
785 * already present in the new task to be cleared in the whole range
786 * covered by this vma.
787 */
788
789static unsigned long
790copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
792 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
793{
794 unsigned long vm_flags = dst_vma->vm_flags;
795 pte_t orig_pte = ptep_get(src_pte);
796 pte_t pte = orig_pte;
797 struct folio *folio;
798 struct page *page;
799 swp_entry_t entry = pte_to_swp_entry(orig_pte);
800
801 if (likely(!non_swap_entry(entry))) {
802 if (swap_duplicate(entry) < 0)
803 return -EIO;
804
805 /* make sure dst_mm is on swapoff's mmlist. */
806 if (unlikely(list_empty(&dst_mm->mmlist))) {
807 spin_lock(&mmlist_lock);
808 if (list_empty(&dst_mm->mmlist))
809 list_add(&dst_mm->mmlist,
810 &src_mm->mmlist);
811 spin_unlock(&mmlist_lock);
812 }
813 /* Mark the swap entry as shared. */
814 if (pte_swp_exclusive(orig_pte)) {
815 pte = pte_swp_clear_exclusive(orig_pte);
816 set_pte_at(src_mm, addr, src_pte, pte);
817 }
818 rss[MM_SWAPENTS]++;
819 } else if (is_migration_entry(entry)) {
820 folio = pfn_swap_entry_folio(entry);
821
822 rss[mm_counter(folio)]++;
823
824 if (!is_readable_migration_entry(entry) &&
825 is_cow_mapping(vm_flags)) {
826 /*
827 * COW mappings require pages in both parent and child
828 * to be set to read. A previously exclusive entry is
829 * now shared.
830 */
831 entry = make_readable_migration_entry(
832 swp_offset(entry));
833 pte = swp_entry_to_pte(entry);
834 if (pte_swp_soft_dirty(orig_pte))
835 pte = pte_swp_mksoft_dirty(pte);
836 if (pte_swp_uffd_wp(orig_pte))
837 pte = pte_swp_mkuffd_wp(pte);
838 set_pte_at(src_mm, addr, src_pte, pte);
839 }
840 } else if (is_device_private_entry(entry)) {
841 page = pfn_swap_entry_to_page(entry);
842 folio = page_folio(page);
843
844 /*
845 * Update rss count even for unaddressable pages, as
846 * they should treated just like normal pages in this
847 * respect.
848 *
849 * We will likely want to have some new rss counters
850 * for unaddressable pages, at some point. But for now
851 * keep things as they are.
852 */
853 folio_get(folio);
854 rss[mm_counter(folio)]++;
855 /* Cannot fail as these pages cannot get pinned. */
856 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
857
858 /*
859 * We do not preserve soft-dirty information, because so
860 * far, checkpoint/restore is the only feature that
861 * requires that. And checkpoint/restore does not work
862 * when a device driver is involved (you cannot easily
863 * save and restore device driver state).
864 */
865 if (is_writable_device_private_entry(entry) &&
866 is_cow_mapping(vm_flags)) {
867 entry = make_readable_device_private_entry(
868 swp_offset(entry));
869 pte = swp_entry_to_pte(entry);
870 if (pte_swp_uffd_wp(orig_pte))
871 pte = pte_swp_mkuffd_wp(pte);
872 set_pte_at(src_mm, addr, src_pte, pte);
873 }
874 } else if (is_device_exclusive_entry(entry)) {
875 /*
876 * Make device exclusive entries present by restoring the
877 * original entry then copying as for a present pte. Device
878 * exclusive entries currently only support private writable
879 * (ie. COW) mappings.
880 */
881 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
882 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
883 return -EBUSY;
884 return -ENOENT;
885 } else if (is_pte_marker_entry(entry)) {
886 pte_marker marker = copy_pte_marker(entry, dst_vma);
887
888 if (marker)
889 set_pte_at(dst_mm, addr, dst_pte,
890 make_pte_marker(marker));
891 return 0;
892 }
893 if (!userfaultfd_wp(dst_vma))
894 pte = pte_swp_clear_uffd_wp(pte);
895 set_pte_at(dst_mm, addr, dst_pte, pte);
896 return 0;
897}
898
899/*
900 * Copy a present and normal page.
901 *
902 * NOTE! The usual case is that this isn't required;
903 * instead, the caller can just increase the page refcount
904 * and re-use the pte the traditional way.
905 *
906 * And if we need a pre-allocated page but don't yet have
907 * one, return a negative error to let the preallocation
908 * code know so that it can do so outside the page table
909 * lock.
910 */
911static inline int
912copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
913 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
914 struct folio **prealloc, struct page *page)
915{
916 struct folio *new_folio;
917 pte_t pte;
918
919 new_folio = *prealloc;
920 if (!new_folio)
921 return -EAGAIN;
922
923 /*
924 * We have a prealloc page, all good! Take it
925 * over and copy the page & arm it.
926 */
927
928 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
929 return -EHWPOISON;
930
931 *prealloc = NULL;
932 __folio_mark_uptodate(new_folio);
933 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 folio_add_lru_vma(new_folio, dst_vma);
935 rss[MM_ANONPAGES]++;
936
937 /* All done, just insert the new page copy in the child */
938 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 /* Uffd-wp needs to be delivered to dest pte as well */
942 pte = pte_mkuffd_wp(pte);
943 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 return 0;
945}
946
947static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 pte_t pte, unsigned long addr, int nr)
950{
951 struct mm_struct *src_mm = src_vma->vm_mm;
952
953 /* If it's a COW mapping, write protect it both processes. */
954 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 wrprotect_ptes(src_mm, addr, src_pte, nr);
956 pte = pte_wrprotect(pte);
957 }
958
959 /* If it's a shared mapping, mark it clean in the child. */
960 if (src_vma->vm_flags & VM_SHARED)
961 pte = pte_mkclean(pte);
962 pte = pte_mkold(pte);
963
964 if (!userfaultfd_wp(dst_vma))
965 pte = pte_clear_uffd_wp(pte);
966
967 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968}
969
970/*
971 * Copy one present PTE, trying to batch-process subsequent PTEs that map
972 * consecutive pages of the same folio by copying them as well.
973 *
974 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975 * Otherwise, returns the number of copied PTEs (at least 1).
976 */
977static inline int
978copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 int max_nr, int *rss, struct folio **prealloc)
981{
982 struct page *page;
983 struct folio *folio;
984 bool any_writable;
985 fpb_t flags = 0;
986 int err, nr;
987
988 page = vm_normal_page(src_vma, addr, pte);
989 if (unlikely(!page))
990 goto copy_pte;
991
992 folio = page_folio(page);
993
994 /*
995 * If we likely have to copy, just don't bother with batching. Make
996 * sure that the common "small folio" case is as fast as possible
997 * by keeping the batching logic separate.
998 */
999 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 if (src_vma->vm_flags & VM_SHARED)
1001 flags |= FPB_IGNORE_DIRTY;
1002 if (!vma_soft_dirty_enabled(src_vma))
1003 flags |= FPB_IGNORE_SOFT_DIRTY;
1004
1005 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 &any_writable, NULL, NULL);
1007 folio_ref_add(folio, nr);
1008 if (folio_test_anon(folio)) {
1009 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 nr, src_vma))) {
1011 folio_ref_sub(folio, nr);
1012 return -EAGAIN;
1013 }
1014 rss[MM_ANONPAGES] += nr;
1015 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 } else {
1017 folio_dup_file_rmap_ptes(folio, page, nr);
1018 rss[mm_counter_file(folio)] += nr;
1019 }
1020 if (any_writable)
1021 pte = pte_mkwrite(pte, src_vma);
1022 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 addr, nr);
1024 return nr;
1025 }
1026
1027 folio_get(folio);
1028 if (folio_test_anon(folio)) {
1029 /*
1030 * If this page may have been pinned by the parent process,
1031 * copy the page immediately for the child so that we'll always
1032 * guarantee the pinned page won't be randomly replaced in the
1033 * future.
1034 */
1035 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 /* Page may be pinned, we have to copy. */
1037 folio_put(folio);
1038 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 addr, rss, prealloc, page);
1040 return err ? err : 1;
1041 }
1042 rss[MM_ANONPAGES]++;
1043 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 } else {
1045 folio_dup_file_rmap_pte(folio, page);
1046 rss[mm_counter_file(folio)]++;
1047 }
1048
1049copy_pte:
1050 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 return 1;
1052}
1053
1054static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056{
1057 struct folio *new_folio;
1058
1059 if (need_zero)
1060 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 else
1062 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1063
1064 if (!new_folio)
1065 return NULL;
1066
1067 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1068 folio_put(new_folio);
1069 return NULL;
1070 }
1071 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1072
1073 return new_folio;
1074}
1075
1076static int
1077copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1078 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 unsigned long end)
1080{
1081 struct mm_struct *dst_mm = dst_vma->vm_mm;
1082 struct mm_struct *src_mm = src_vma->vm_mm;
1083 pte_t *orig_src_pte, *orig_dst_pte;
1084 pte_t *src_pte, *dst_pte;
1085 pmd_t dummy_pmdval;
1086 pte_t ptent;
1087 spinlock_t *src_ptl, *dst_ptl;
1088 int progress, max_nr, ret = 0;
1089 int rss[NR_MM_COUNTERS];
1090 swp_entry_t entry = (swp_entry_t){0};
1091 struct folio *prealloc = NULL;
1092 int nr;
1093
1094again:
1095 progress = 0;
1096 init_rss_vec(rss);
1097
1098 /*
1099 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 * error handling here, assume that exclusive mmap_lock on dst and src
1101 * protects anon from unexpected THP transitions; with shmem and file
1102 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1104 * can remove such assumptions later, but this is good enough for now.
1105 */
1106 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 if (!dst_pte) {
1108 ret = -ENOMEM;
1109 goto out;
1110 }
1111
1112 /*
1113 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1114 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1115 * the PTE page is stable, and there is no need to get pmdval and do
1116 * pmd_same() check.
1117 */
1118 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1119 &src_ptl);
1120 if (!src_pte) {
1121 pte_unmap_unlock(dst_pte, dst_ptl);
1122 /* ret == 0 */
1123 goto out;
1124 }
1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 orig_src_pte = src_pte;
1127 orig_dst_pte = dst_pte;
1128 arch_enter_lazy_mmu_mode();
1129
1130 do {
1131 nr = 1;
1132
1133 /*
1134 * We are holding two locks at this point - either of them
1135 * could generate latencies in another task on another CPU.
1136 */
1137 if (progress >= 32) {
1138 progress = 0;
1139 if (need_resched() ||
1140 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1141 break;
1142 }
1143 ptent = ptep_get(src_pte);
1144 if (pte_none(ptent)) {
1145 progress++;
1146 continue;
1147 }
1148 if (unlikely(!pte_present(ptent))) {
1149 ret = copy_nonpresent_pte(dst_mm, src_mm,
1150 dst_pte, src_pte,
1151 dst_vma, src_vma,
1152 addr, rss);
1153 if (ret == -EIO) {
1154 entry = pte_to_swp_entry(ptep_get(src_pte));
1155 break;
1156 } else if (ret == -EBUSY) {
1157 break;
1158 } else if (!ret) {
1159 progress += 8;
1160 continue;
1161 }
1162 ptent = ptep_get(src_pte);
1163 VM_WARN_ON_ONCE(!pte_present(ptent));
1164
1165 /*
1166 * Device exclusive entry restored, continue by copying
1167 * the now present pte.
1168 */
1169 WARN_ON_ONCE(ret != -ENOENT);
1170 }
1171 /* copy_present_ptes() will clear `*prealloc' if consumed */
1172 max_nr = (end - addr) / PAGE_SIZE;
1173 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1174 ptent, addr, max_nr, rss, &prealloc);
1175 /*
1176 * If we need a pre-allocated page for this pte, drop the
1177 * locks, allocate, and try again.
1178 * If copy failed due to hwpoison in source page, break out.
1179 */
1180 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1181 break;
1182 if (unlikely(prealloc)) {
1183 /*
1184 * pre-alloc page cannot be reused by next time so as
1185 * to strictly follow mempolicy (e.g., alloc_page_vma()
1186 * will allocate page according to address). This
1187 * could only happen if one pinned pte changed.
1188 */
1189 folio_put(prealloc);
1190 prealloc = NULL;
1191 }
1192 nr = ret;
1193 progress += 8 * nr;
1194 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1195 addr != end);
1196
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(orig_src_pte, src_ptl);
1199 add_mm_rss_vec(dst_mm, rss);
1200 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1201 cond_resched();
1202
1203 if (ret == -EIO) {
1204 VM_WARN_ON_ONCE(!entry.val);
1205 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1206 ret = -ENOMEM;
1207 goto out;
1208 }
1209 entry.val = 0;
1210 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1211 goto out;
1212 } else if (ret == -EAGAIN) {
1213 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1214 if (!prealloc)
1215 return -ENOMEM;
1216 } else if (ret < 0) {
1217 VM_WARN_ON_ONCE(1);
1218 }
1219
1220 /* We've captured and resolved the error. Reset, try again. */
1221 ret = 0;
1222
1223 if (addr != end)
1224 goto again;
1225out:
1226 if (unlikely(prealloc))
1227 folio_put(prealloc);
1228 return ret;
1229}
1230
1231static inline int
1232copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1234 unsigned long end)
1235{
1236 struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 struct mm_struct *src_mm = src_vma->vm_mm;
1238 pmd_t *src_pmd, *dst_pmd;
1239 unsigned long next;
1240
1241 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1242 if (!dst_pmd)
1243 return -ENOMEM;
1244 src_pmd = pmd_offset(src_pud, addr);
1245 do {
1246 next = pmd_addr_end(addr, end);
1247 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1248 || pmd_devmap(*src_pmd)) {
1249 int err;
1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 addr, dst_vma, src_vma);
1253 if (err == -ENOMEM)
1254 return -ENOMEM;
1255 if (!err)
1256 continue;
1257 /* fall through */
1258 }
1259 if (pmd_none_or_clear_bad(src_pmd))
1260 continue;
1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 addr, next))
1263 return -ENOMEM;
1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 return 0;
1266}
1267
1268static inline int
1269copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 unsigned long end)
1272{
1273 struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 struct mm_struct *src_mm = src_vma->vm_mm;
1275 pud_t *src_pud, *dst_pud;
1276 unsigned long next;
1277
1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 if (!dst_pud)
1280 return -ENOMEM;
1281 src_pud = pud_offset(src_p4d, addr);
1282 do {
1283 next = pud_addr_end(addr, end);
1284 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1285 int err;
1286
1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 err = copy_huge_pud(dst_mm, src_mm,
1289 dst_pud, src_pud, addr, src_vma);
1290 if (err == -ENOMEM)
1291 return -ENOMEM;
1292 if (!err)
1293 continue;
1294 /* fall through */
1295 }
1296 if (pud_none_or_clear_bad(src_pud))
1297 continue;
1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 addr, next))
1300 return -ENOMEM;
1301 } while (dst_pud++, src_pud++, addr = next, addr != end);
1302 return 0;
1303}
1304
1305static inline int
1306copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 unsigned long end)
1309{
1310 struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 p4d_t *src_p4d, *dst_p4d;
1312 unsigned long next;
1313
1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 if (!dst_p4d)
1316 return -ENOMEM;
1317 src_p4d = p4d_offset(src_pgd, addr);
1318 do {
1319 next = p4d_addr_end(addr, end);
1320 if (p4d_none_or_clear_bad(src_p4d))
1321 continue;
1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 addr, next))
1324 return -ENOMEM;
1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 return 0;
1327}
1328
1329/*
1330 * Return true if the vma needs to copy the pgtable during this fork(). Return
1331 * false when we can speed up fork() by allowing lazy page faults later until
1332 * when the child accesses the memory range.
1333 */
1334static bool
1335vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1336{
1337 /*
1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 * contains uffd-wp protection information, that's something we can't
1341 * retrieve from page cache, and skip copying will lose those info.
1342 */
1343 if (userfaultfd_wp(dst_vma))
1344 return true;
1345
1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 return true;
1348
1349 if (src_vma->anon_vma)
1350 return true;
1351
1352 /*
1353 * Don't copy ptes where a page fault will fill them correctly. Fork
1354 * becomes much lighter when there are big shared or private readonly
1355 * mappings. The tradeoff is that copy_page_range is more efficient
1356 * than faulting.
1357 */
1358 return false;
1359}
1360
1361int
1362copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1363{
1364 pgd_t *src_pgd, *dst_pgd;
1365 unsigned long next;
1366 unsigned long addr = src_vma->vm_start;
1367 unsigned long end = src_vma->vm_end;
1368 struct mm_struct *dst_mm = dst_vma->vm_mm;
1369 struct mm_struct *src_mm = src_vma->vm_mm;
1370 struct mmu_notifier_range range;
1371 bool is_cow;
1372 int ret;
1373
1374 if (!vma_needs_copy(dst_vma, src_vma))
1375 return 0;
1376
1377 if (is_vm_hugetlb_page(src_vma))
1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1379
1380 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1381 /*
1382 * We do not free on error cases below as remove_vma
1383 * gets called on error from higher level routine
1384 */
1385 ret = track_pfn_copy(src_vma);
1386 if (ret)
1387 return ret;
1388 }
1389
1390 /*
1391 * We need to invalidate the secondary MMU mappings only when
1392 * there could be a permission downgrade on the ptes of the
1393 * parent mm. And a permission downgrade will only happen if
1394 * is_cow_mapping() returns true.
1395 */
1396 is_cow = is_cow_mapping(src_vma->vm_flags);
1397
1398 if (is_cow) {
1399 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1400 0, src_mm, addr, end);
1401 mmu_notifier_invalidate_range_start(&range);
1402 /*
1403 * Disabling preemption is not needed for the write side, as
1404 * the read side doesn't spin, but goes to the mmap_lock.
1405 *
1406 * Use the raw variant of the seqcount_t write API to avoid
1407 * lockdep complaining about preemptibility.
1408 */
1409 vma_assert_write_locked(src_vma);
1410 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1411 }
1412
1413 ret = 0;
1414 dst_pgd = pgd_offset(dst_mm, addr);
1415 src_pgd = pgd_offset(src_mm, addr);
1416 do {
1417 next = pgd_addr_end(addr, end);
1418 if (pgd_none_or_clear_bad(src_pgd))
1419 continue;
1420 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1421 addr, next))) {
1422 untrack_pfn_clear(dst_vma);
1423 ret = -ENOMEM;
1424 break;
1425 }
1426 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1427
1428 if (is_cow) {
1429 raw_write_seqcount_end(&src_mm->write_protect_seq);
1430 mmu_notifier_invalidate_range_end(&range);
1431 }
1432 return ret;
1433}
1434
1435/* Whether we should zap all COWed (private) pages too */
1436static inline bool should_zap_cows(struct zap_details *details)
1437{
1438 /* By default, zap all pages */
1439 if (!details)
1440 return true;
1441
1442 /* Or, we zap COWed pages only if the caller wants to */
1443 return details->even_cows;
1444}
1445
1446/* Decides whether we should zap this folio with the folio pointer specified */
1447static inline bool should_zap_folio(struct zap_details *details,
1448 struct folio *folio)
1449{
1450 /* If we can make a decision without *folio.. */
1451 if (should_zap_cows(details))
1452 return true;
1453
1454 /* Otherwise we should only zap non-anon folios */
1455 return !folio_test_anon(folio);
1456}
1457
1458static inline bool zap_drop_markers(struct zap_details *details)
1459{
1460 if (!details)
1461 return false;
1462
1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1464}
1465
1466/*
1467 * This function makes sure that we'll replace the none pte with an uffd-wp
1468 * swap special pte marker when necessary. Must be with the pgtable lock held.
1469 */
1470static inline void
1471zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1472 unsigned long addr, pte_t *pte, int nr,
1473 struct zap_details *details, pte_t pteval)
1474{
1475 /* Zap on anonymous always means dropping everything */
1476 if (vma_is_anonymous(vma))
1477 return;
1478
1479 if (zap_drop_markers(details))
1480 return;
1481
1482 for (;;) {
1483 /* the PFN in the PTE is irrelevant. */
1484 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1485 if (--nr == 0)
1486 break;
1487 pte++;
1488 addr += PAGE_SIZE;
1489 }
1490}
1491
1492static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1493 struct vm_area_struct *vma, struct folio *folio,
1494 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1495 unsigned long addr, struct zap_details *details, int *rss,
1496 bool *force_flush, bool *force_break)
1497{
1498 struct mm_struct *mm = tlb->mm;
1499 bool delay_rmap = false;
1500
1501 if (!folio_test_anon(folio)) {
1502 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1503 if (pte_dirty(ptent)) {
1504 folio_mark_dirty(folio);
1505 if (tlb_delay_rmap(tlb)) {
1506 delay_rmap = true;
1507 *force_flush = true;
1508 }
1509 }
1510 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1511 folio_mark_accessed(folio);
1512 rss[mm_counter(folio)] -= nr;
1513 } else {
1514 /* We don't need up-to-date accessed/dirty bits. */
1515 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1516 rss[MM_ANONPAGES] -= nr;
1517 }
1518 /* Checking a single PTE in a batch is sufficient. */
1519 arch_check_zapped_pte(vma, ptent);
1520 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1521 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1522 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1523 ptent);
1524
1525 if (!delay_rmap) {
1526 folio_remove_rmap_ptes(folio, page, nr, vma);
1527
1528 if (unlikely(folio_mapcount(folio) < 0))
1529 print_bad_pte(vma, addr, ptent, page);
1530 }
1531 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1532 *force_flush = true;
1533 *force_break = true;
1534 }
1535}
1536
1537/*
1538 * Zap or skip at least one present PTE, trying to batch-process subsequent
1539 * PTEs that map consecutive pages of the same folio.
1540 *
1541 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1542 */
1543static inline int zap_present_ptes(struct mmu_gather *tlb,
1544 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1545 unsigned int max_nr, unsigned long addr,
1546 struct zap_details *details, int *rss, bool *force_flush,
1547 bool *force_break)
1548{
1549 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1550 struct mm_struct *mm = tlb->mm;
1551 struct folio *folio;
1552 struct page *page;
1553 int nr;
1554
1555 page = vm_normal_page(vma, addr, ptent);
1556 if (!page) {
1557 /* We don't need up-to-date accessed/dirty bits. */
1558 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1559 arch_check_zapped_pte(vma, ptent);
1560 tlb_remove_tlb_entry(tlb, pte, addr);
1561 if (userfaultfd_pte_wp(vma, ptent))
1562 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1563 details, ptent);
1564 ksm_might_unmap_zero_page(mm, ptent);
1565 return 1;
1566 }
1567
1568 folio = page_folio(page);
1569 if (unlikely(!should_zap_folio(details, folio)))
1570 return 1;
1571
1572 /*
1573 * Make sure that the common "small folio" case is as fast as possible
1574 * by keeping the batching logic separate.
1575 */
1576 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1577 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1578 NULL, NULL, NULL);
1579
1580 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1581 addr, details, rss, force_flush,
1582 force_break);
1583 return nr;
1584 }
1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1586 details, rss, force_flush, force_break);
1587 return 1;
1588}
1589
1590static unsigned long zap_pte_range(struct mmu_gather *tlb,
1591 struct vm_area_struct *vma, pmd_t *pmd,
1592 unsigned long addr, unsigned long end,
1593 struct zap_details *details)
1594{
1595 bool force_flush = false, force_break = false;
1596 struct mm_struct *mm = tlb->mm;
1597 int rss[NR_MM_COUNTERS];
1598 spinlock_t *ptl;
1599 pte_t *start_pte;
1600 pte_t *pte;
1601 swp_entry_t entry;
1602 int nr;
1603
1604 tlb_change_page_size(tlb, PAGE_SIZE);
1605 init_rss_vec(rss);
1606 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1607 if (!pte)
1608 return addr;
1609
1610 flush_tlb_batched_pending(mm);
1611 arch_enter_lazy_mmu_mode();
1612 do {
1613 pte_t ptent = ptep_get(pte);
1614 struct folio *folio;
1615 struct page *page;
1616 int max_nr;
1617
1618 nr = 1;
1619 if (pte_none(ptent))
1620 continue;
1621
1622 if (need_resched())
1623 break;
1624
1625 if (pte_present(ptent)) {
1626 max_nr = (end - addr) / PAGE_SIZE;
1627 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1628 addr, details, rss, &force_flush,
1629 &force_break);
1630 if (unlikely(force_break)) {
1631 addr += nr * PAGE_SIZE;
1632 break;
1633 }
1634 continue;
1635 }
1636
1637 entry = pte_to_swp_entry(ptent);
1638 if (is_device_private_entry(entry) ||
1639 is_device_exclusive_entry(entry)) {
1640 page = pfn_swap_entry_to_page(entry);
1641 folio = page_folio(page);
1642 if (unlikely(!should_zap_folio(details, folio)))
1643 continue;
1644 /*
1645 * Both device private/exclusive mappings should only
1646 * work with anonymous page so far, so we don't need to
1647 * consider uffd-wp bit when zap. For more information,
1648 * see zap_install_uffd_wp_if_needed().
1649 */
1650 WARN_ON_ONCE(!vma_is_anonymous(vma));
1651 rss[mm_counter(folio)]--;
1652 if (is_device_private_entry(entry))
1653 folio_remove_rmap_pte(folio, page, vma);
1654 folio_put(folio);
1655 } else if (!non_swap_entry(entry)) {
1656 max_nr = (end - addr) / PAGE_SIZE;
1657 nr = swap_pte_batch(pte, max_nr, ptent);
1658 /* Genuine swap entries, hence a private anon pages */
1659 if (!should_zap_cows(details))
1660 continue;
1661 rss[MM_SWAPENTS] -= nr;
1662 free_swap_and_cache_nr(entry, nr);
1663 } else if (is_migration_entry(entry)) {
1664 folio = pfn_swap_entry_folio(entry);
1665 if (!should_zap_folio(details, folio))
1666 continue;
1667 rss[mm_counter(folio)]--;
1668 } else if (pte_marker_entry_uffd_wp(entry)) {
1669 /*
1670 * For anon: always drop the marker; for file: only
1671 * drop the marker if explicitly requested.
1672 */
1673 if (!vma_is_anonymous(vma) &&
1674 !zap_drop_markers(details))
1675 continue;
1676 } else if (is_guard_swp_entry(entry)) {
1677 /*
1678 * Ordinary zapping should not remove guard PTE
1679 * markers. Only do so if we should remove PTE markers
1680 * in general.
1681 */
1682 if (!zap_drop_markers(details))
1683 continue;
1684 } else if (is_hwpoison_entry(entry) ||
1685 is_poisoned_swp_entry(entry)) {
1686 if (!should_zap_cows(details))
1687 continue;
1688 } else {
1689 /* We should have covered all the swap entry types */
1690 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1691 WARN_ON_ONCE(1);
1692 }
1693 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1694 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1695 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1696
1697 add_mm_rss_vec(mm, rss);
1698 arch_leave_lazy_mmu_mode();
1699
1700 /* Do the actual TLB flush before dropping ptl */
1701 if (force_flush) {
1702 tlb_flush_mmu_tlbonly(tlb);
1703 tlb_flush_rmaps(tlb, vma);
1704 }
1705 pte_unmap_unlock(start_pte, ptl);
1706
1707 /*
1708 * If we forced a TLB flush (either due to running out of
1709 * batch buffers or because we needed to flush dirty TLB
1710 * entries before releasing the ptl), free the batched
1711 * memory too. Come back again if we didn't do everything.
1712 */
1713 if (force_flush)
1714 tlb_flush_mmu(tlb);
1715
1716 return addr;
1717}
1718
1719static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1720 struct vm_area_struct *vma, pud_t *pud,
1721 unsigned long addr, unsigned long end,
1722 struct zap_details *details)
1723{
1724 pmd_t *pmd;
1725 unsigned long next;
1726
1727 pmd = pmd_offset(pud, addr);
1728 do {
1729 next = pmd_addr_end(addr, end);
1730 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1731 if (next - addr != HPAGE_PMD_SIZE)
1732 __split_huge_pmd(vma, pmd, addr, false, NULL);
1733 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1734 addr = next;
1735 continue;
1736 }
1737 /* fall through */
1738 } else if (details && details->single_folio &&
1739 folio_test_pmd_mappable(details->single_folio) &&
1740 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1741 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1742 /*
1743 * Take and drop THP pmd lock so that we cannot return
1744 * prematurely, while zap_huge_pmd() has cleared *pmd,
1745 * but not yet decremented compound_mapcount().
1746 */
1747 spin_unlock(ptl);
1748 }
1749 if (pmd_none(*pmd)) {
1750 addr = next;
1751 continue;
1752 }
1753 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1754 if (addr != next)
1755 pmd--;
1756 } while (pmd++, cond_resched(), addr != end);
1757
1758 return addr;
1759}
1760
1761static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1762 struct vm_area_struct *vma, p4d_t *p4d,
1763 unsigned long addr, unsigned long end,
1764 struct zap_details *details)
1765{
1766 pud_t *pud;
1767 unsigned long next;
1768
1769 pud = pud_offset(p4d, addr);
1770 do {
1771 next = pud_addr_end(addr, end);
1772 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1773 if (next - addr != HPAGE_PUD_SIZE) {
1774 mmap_assert_locked(tlb->mm);
1775 split_huge_pud(vma, pud, addr);
1776 } else if (zap_huge_pud(tlb, vma, pud, addr))
1777 goto next;
1778 /* fall through */
1779 }
1780 if (pud_none_or_clear_bad(pud))
1781 continue;
1782 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1783next:
1784 cond_resched();
1785 } while (pud++, addr = next, addr != end);
1786
1787 return addr;
1788}
1789
1790static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1791 struct vm_area_struct *vma, pgd_t *pgd,
1792 unsigned long addr, unsigned long end,
1793 struct zap_details *details)
1794{
1795 p4d_t *p4d;
1796 unsigned long next;
1797
1798 p4d = p4d_offset(pgd, addr);
1799 do {
1800 next = p4d_addr_end(addr, end);
1801 if (p4d_none_or_clear_bad(p4d))
1802 continue;
1803 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1804 } while (p4d++, addr = next, addr != end);
1805
1806 return addr;
1807}
1808
1809void unmap_page_range(struct mmu_gather *tlb,
1810 struct vm_area_struct *vma,
1811 unsigned long addr, unsigned long end,
1812 struct zap_details *details)
1813{
1814 pgd_t *pgd;
1815 unsigned long next;
1816
1817 BUG_ON(addr >= end);
1818 tlb_start_vma(tlb, vma);
1819 pgd = pgd_offset(vma->vm_mm, addr);
1820 do {
1821 next = pgd_addr_end(addr, end);
1822 if (pgd_none_or_clear_bad(pgd))
1823 continue;
1824 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1825 } while (pgd++, addr = next, addr != end);
1826 tlb_end_vma(tlb, vma);
1827}
1828
1829
1830static void unmap_single_vma(struct mmu_gather *tlb,
1831 struct vm_area_struct *vma, unsigned long start_addr,
1832 unsigned long end_addr,
1833 struct zap_details *details, bool mm_wr_locked)
1834{
1835 unsigned long start = max(vma->vm_start, start_addr);
1836 unsigned long end;
1837
1838 if (start >= vma->vm_end)
1839 return;
1840 end = min(vma->vm_end, end_addr);
1841 if (end <= vma->vm_start)
1842 return;
1843
1844 if (vma->vm_file)
1845 uprobe_munmap(vma, start, end);
1846
1847 if (unlikely(vma->vm_flags & VM_PFNMAP))
1848 untrack_pfn(vma, 0, 0, mm_wr_locked);
1849
1850 if (start != end) {
1851 if (unlikely(is_vm_hugetlb_page(vma))) {
1852 /*
1853 * It is undesirable to test vma->vm_file as it
1854 * should be non-null for valid hugetlb area.
1855 * However, vm_file will be NULL in the error
1856 * cleanup path of mmap_region. When
1857 * hugetlbfs ->mmap method fails,
1858 * mmap_region() nullifies vma->vm_file
1859 * before calling this function to clean up.
1860 * Since no pte has actually been setup, it is
1861 * safe to do nothing in this case.
1862 */
1863 if (vma->vm_file) {
1864 zap_flags_t zap_flags = details ?
1865 details->zap_flags : 0;
1866 __unmap_hugepage_range(tlb, vma, start, end,
1867 NULL, zap_flags);
1868 }
1869 } else
1870 unmap_page_range(tlb, vma, start, end, details);
1871 }
1872}
1873
1874/**
1875 * unmap_vmas - unmap a range of memory covered by a list of vma's
1876 * @tlb: address of the caller's struct mmu_gather
1877 * @mas: the maple state
1878 * @vma: the starting vma
1879 * @start_addr: virtual address at which to start unmapping
1880 * @end_addr: virtual address at which to end unmapping
1881 * @tree_end: The maximum index to check
1882 * @mm_wr_locked: lock flag
1883 *
1884 * Unmap all pages in the vma list.
1885 *
1886 * Only addresses between `start' and `end' will be unmapped.
1887 *
1888 * The VMA list must be sorted in ascending virtual address order.
1889 *
1890 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1891 * range after unmap_vmas() returns. So the only responsibility here is to
1892 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1893 * drops the lock and schedules.
1894 */
1895void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1896 struct vm_area_struct *vma, unsigned long start_addr,
1897 unsigned long end_addr, unsigned long tree_end,
1898 bool mm_wr_locked)
1899{
1900 struct mmu_notifier_range range;
1901 struct zap_details details = {
1902 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1903 /* Careful - we need to zap private pages too! */
1904 .even_cows = true,
1905 };
1906
1907 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1908 start_addr, end_addr);
1909 mmu_notifier_invalidate_range_start(&range);
1910 do {
1911 unsigned long start = start_addr;
1912 unsigned long end = end_addr;
1913 hugetlb_zap_begin(vma, &start, &end);
1914 unmap_single_vma(tlb, vma, start, end, &details,
1915 mm_wr_locked);
1916 hugetlb_zap_end(vma, &details);
1917 vma = mas_find(mas, tree_end - 1);
1918 } while (vma && likely(!xa_is_zero(vma)));
1919 mmu_notifier_invalidate_range_end(&range);
1920}
1921
1922/**
1923 * zap_page_range_single - remove user pages in a given range
1924 * @vma: vm_area_struct holding the applicable pages
1925 * @address: starting address of pages to zap
1926 * @size: number of bytes to zap
1927 * @details: details of shared cache invalidation
1928 *
1929 * The range must fit into one VMA.
1930 */
1931void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1932 unsigned long size, struct zap_details *details)
1933{
1934 const unsigned long end = address + size;
1935 struct mmu_notifier_range range;
1936 struct mmu_gather tlb;
1937
1938 lru_add_drain();
1939 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1940 address, end);
1941 hugetlb_zap_begin(vma, &range.start, &range.end);
1942 tlb_gather_mmu(&tlb, vma->vm_mm);
1943 update_hiwater_rss(vma->vm_mm);
1944 mmu_notifier_invalidate_range_start(&range);
1945 /*
1946 * unmap 'address-end' not 'range.start-range.end' as range
1947 * could have been expanded for hugetlb pmd sharing.
1948 */
1949 unmap_single_vma(&tlb, vma, address, end, details, false);
1950 mmu_notifier_invalidate_range_end(&range);
1951 tlb_finish_mmu(&tlb);
1952 hugetlb_zap_end(vma, details);
1953}
1954
1955/**
1956 * zap_vma_ptes - remove ptes mapping the vma
1957 * @vma: vm_area_struct holding ptes to be zapped
1958 * @address: starting address of pages to zap
1959 * @size: number of bytes to zap
1960 *
1961 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1962 *
1963 * The entire address range must be fully contained within the vma.
1964 *
1965 */
1966void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1967 unsigned long size)
1968{
1969 if (!range_in_vma(vma, address, address + size) ||
1970 !(vma->vm_flags & VM_PFNMAP))
1971 return;
1972
1973 zap_page_range_single(vma, address, size, NULL);
1974}
1975EXPORT_SYMBOL_GPL(zap_vma_ptes);
1976
1977static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1978{
1979 pgd_t *pgd;
1980 p4d_t *p4d;
1981 pud_t *pud;
1982 pmd_t *pmd;
1983
1984 pgd = pgd_offset(mm, addr);
1985 p4d = p4d_alloc(mm, pgd, addr);
1986 if (!p4d)
1987 return NULL;
1988 pud = pud_alloc(mm, p4d, addr);
1989 if (!pud)
1990 return NULL;
1991 pmd = pmd_alloc(mm, pud, addr);
1992 if (!pmd)
1993 return NULL;
1994
1995 VM_BUG_ON(pmd_trans_huge(*pmd));
1996 return pmd;
1997}
1998
1999pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2000 spinlock_t **ptl)
2001{
2002 pmd_t *pmd = walk_to_pmd(mm, addr);
2003
2004 if (!pmd)
2005 return NULL;
2006 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2007}
2008
2009static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2010{
2011 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2012 /*
2013 * Whoever wants to forbid the zeropage after some zeropages
2014 * might already have been mapped has to scan the page tables and
2015 * bail out on any zeropages. Zeropages in COW mappings can
2016 * be unshared using FAULT_FLAG_UNSHARE faults.
2017 */
2018 if (mm_forbids_zeropage(vma->vm_mm))
2019 return false;
2020 /* zeropages in COW mappings are common and unproblematic. */
2021 if (is_cow_mapping(vma->vm_flags))
2022 return true;
2023 /* Mappings that do not allow for writable PTEs are unproblematic. */
2024 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2025 return true;
2026 /*
2027 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2028 * find the shared zeropage and longterm-pin it, which would
2029 * be problematic as soon as the zeropage gets replaced by a different
2030 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2031 * now differ to what GUP looked up. FSDAX is incompatible to
2032 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2033 * check_vma_flags).
2034 */
2035 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2036 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2037}
2038
2039static int validate_page_before_insert(struct vm_area_struct *vma,
2040 struct page *page)
2041{
2042 struct folio *folio = page_folio(page);
2043
2044 if (!folio_ref_count(folio))
2045 return -EINVAL;
2046 if (unlikely(is_zero_folio(folio))) {
2047 if (!vm_mixed_zeropage_allowed(vma))
2048 return -EINVAL;
2049 return 0;
2050 }
2051 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2052 page_has_type(page))
2053 return -EINVAL;
2054 flush_dcache_folio(folio);
2055 return 0;
2056}
2057
2058static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2059 unsigned long addr, struct page *page, pgprot_t prot)
2060{
2061 struct folio *folio = page_folio(page);
2062 pte_t pteval;
2063
2064 if (!pte_none(ptep_get(pte)))
2065 return -EBUSY;
2066 /* Ok, finally just insert the thing.. */
2067 pteval = mk_pte(page, prot);
2068 if (unlikely(is_zero_folio(folio))) {
2069 pteval = pte_mkspecial(pteval);
2070 } else {
2071 folio_get(folio);
2072 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2073 folio_add_file_rmap_pte(folio, page, vma);
2074 }
2075 set_pte_at(vma->vm_mm, addr, pte, pteval);
2076 return 0;
2077}
2078
2079static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2080 struct page *page, pgprot_t prot)
2081{
2082 int retval;
2083 pte_t *pte;
2084 spinlock_t *ptl;
2085
2086 retval = validate_page_before_insert(vma, page);
2087 if (retval)
2088 goto out;
2089 retval = -ENOMEM;
2090 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2091 if (!pte)
2092 goto out;
2093 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2094 pte_unmap_unlock(pte, ptl);
2095out:
2096 return retval;
2097}
2098
2099static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2100 unsigned long addr, struct page *page, pgprot_t prot)
2101{
2102 int err;
2103
2104 err = validate_page_before_insert(vma, page);
2105 if (err)
2106 return err;
2107 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2108}
2109
2110/* insert_pages() amortizes the cost of spinlock operations
2111 * when inserting pages in a loop.
2112 */
2113static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2114 struct page **pages, unsigned long *num, pgprot_t prot)
2115{
2116 pmd_t *pmd = NULL;
2117 pte_t *start_pte, *pte;
2118 spinlock_t *pte_lock;
2119 struct mm_struct *const mm = vma->vm_mm;
2120 unsigned long curr_page_idx = 0;
2121 unsigned long remaining_pages_total = *num;
2122 unsigned long pages_to_write_in_pmd;
2123 int ret;
2124more:
2125 ret = -EFAULT;
2126 pmd = walk_to_pmd(mm, addr);
2127 if (!pmd)
2128 goto out;
2129
2130 pages_to_write_in_pmd = min_t(unsigned long,
2131 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2132
2133 /* Allocate the PTE if necessary; takes PMD lock once only. */
2134 ret = -ENOMEM;
2135 if (pte_alloc(mm, pmd))
2136 goto out;
2137
2138 while (pages_to_write_in_pmd) {
2139 int pte_idx = 0;
2140 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2141
2142 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2143 if (!start_pte) {
2144 ret = -EFAULT;
2145 goto out;
2146 }
2147 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2148 int err = insert_page_in_batch_locked(vma, pte,
2149 addr, pages[curr_page_idx], prot);
2150 if (unlikely(err)) {
2151 pte_unmap_unlock(start_pte, pte_lock);
2152 ret = err;
2153 remaining_pages_total -= pte_idx;
2154 goto out;
2155 }
2156 addr += PAGE_SIZE;
2157 ++curr_page_idx;
2158 }
2159 pte_unmap_unlock(start_pte, pte_lock);
2160 pages_to_write_in_pmd -= batch_size;
2161 remaining_pages_total -= batch_size;
2162 }
2163 if (remaining_pages_total)
2164 goto more;
2165 ret = 0;
2166out:
2167 *num = remaining_pages_total;
2168 return ret;
2169}
2170
2171/**
2172 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2173 * @vma: user vma to map to
2174 * @addr: target start user address of these pages
2175 * @pages: source kernel pages
2176 * @num: in: number of pages to map. out: number of pages that were *not*
2177 * mapped. (0 means all pages were successfully mapped).
2178 *
2179 * Preferred over vm_insert_page() when inserting multiple pages.
2180 *
2181 * In case of error, we may have mapped a subset of the provided
2182 * pages. It is the caller's responsibility to account for this case.
2183 *
2184 * The same restrictions apply as in vm_insert_page().
2185 */
2186int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2187 struct page **pages, unsigned long *num)
2188{
2189 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2190
2191 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2192 return -EFAULT;
2193 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2194 BUG_ON(mmap_read_trylock(vma->vm_mm));
2195 BUG_ON(vma->vm_flags & VM_PFNMAP);
2196 vm_flags_set(vma, VM_MIXEDMAP);
2197 }
2198 /* Defer page refcount checking till we're about to map that page. */
2199 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2200}
2201EXPORT_SYMBOL(vm_insert_pages);
2202
2203/**
2204 * vm_insert_page - insert single page into user vma
2205 * @vma: user vma to map to
2206 * @addr: target user address of this page
2207 * @page: source kernel page
2208 *
2209 * This allows drivers to insert individual pages they've allocated
2210 * into a user vma. The zeropage is supported in some VMAs,
2211 * see vm_mixed_zeropage_allowed().
2212 *
2213 * The page has to be a nice clean _individual_ kernel allocation.
2214 * If you allocate a compound page, you need to have marked it as
2215 * such (__GFP_COMP), or manually just split the page up yourself
2216 * (see split_page()).
2217 *
2218 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2219 * took an arbitrary page protection parameter. This doesn't allow
2220 * that. Your vma protection will have to be set up correctly, which
2221 * means that if you want a shared writable mapping, you'd better
2222 * ask for a shared writable mapping!
2223 *
2224 * The page does not need to be reserved.
2225 *
2226 * Usually this function is called from f_op->mmap() handler
2227 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2228 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2229 * function from other places, for example from page-fault handler.
2230 *
2231 * Return: %0 on success, negative error code otherwise.
2232 */
2233int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2234 struct page *page)
2235{
2236 if (addr < vma->vm_start || addr >= vma->vm_end)
2237 return -EFAULT;
2238 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2239 BUG_ON(mmap_read_trylock(vma->vm_mm));
2240 BUG_ON(vma->vm_flags & VM_PFNMAP);
2241 vm_flags_set(vma, VM_MIXEDMAP);
2242 }
2243 return insert_page(vma, addr, page, vma->vm_page_prot);
2244}
2245EXPORT_SYMBOL(vm_insert_page);
2246
2247/*
2248 * __vm_map_pages - maps range of kernel pages into user vma
2249 * @vma: user vma to map to
2250 * @pages: pointer to array of source kernel pages
2251 * @num: number of pages in page array
2252 * @offset: user's requested vm_pgoff
2253 *
2254 * This allows drivers to map range of kernel pages into a user vma.
2255 * The zeropage is supported in some VMAs, see
2256 * vm_mixed_zeropage_allowed().
2257 *
2258 * Return: 0 on success and error code otherwise.
2259 */
2260static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2261 unsigned long num, unsigned long offset)
2262{
2263 unsigned long count = vma_pages(vma);
2264 unsigned long uaddr = vma->vm_start;
2265 int ret, i;
2266
2267 /* Fail if the user requested offset is beyond the end of the object */
2268 if (offset >= num)
2269 return -ENXIO;
2270
2271 /* Fail if the user requested size exceeds available object size */
2272 if (count > num - offset)
2273 return -ENXIO;
2274
2275 for (i = 0; i < count; i++) {
2276 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2277 if (ret < 0)
2278 return ret;
2279 uaddr += PAGE_SIZE;
2280 }
2281
2282 return 0;
2283}
2284
2285/**
2286 * vm_map_pages - maps range of kernel pages starts with non zero offset
2287 * @vma: user vma to map to
2288 * @pages: pointer to array of source kernel pages
2289 * @num: number of pages in page array
2290 *
2291 * Maps an object consisting of @num pages, catering for the user's
2292 * requested vm_pgoff
2293 *
2294 * If we fail to insert any page into the vma, the function will return
2295 * immediately leaving any previously inserted pages present. Callers
2296 * from the mmap handler may immediately return the error as their caller
2297 * will destroy the vma, removing any successfully inserted pages. Other
2298 * callers should make their own arrangements for calling unmap_region().
2299 *
2300 * Context: Process context. Called by mmap handlers.
2301 * Return: 0 on success and error code otherwise.
2302 */
2303int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2304 unsigned long num)
2305{
2306 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2307}
2308EXPORT_SYMBOL(vm_map_pages);
2309
2310/**
2311 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2312 * @vma: user vma to map to
2313 * @pages: pointer to array of source kernel pages
2314 * @num: number of pages in page array
2315 *
2316 * Similar to vm_map_pages(), except that it explicitly sets the offset
2317 * to 0. This function is intended for the drivers that did not consider
2318 * vm_pgoff.
2319 *
2320 * Context: Process context. Called by mmap handlers.
2321 * Return: 0 on success and error code otherwise.
2322 */
2323int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2324 unsigned long num)
2325{
2326 return __vm_map_pages(vma, pages, num, 0);
2327}
2328EXPORT_SYMBOL(vm_map_pages_zero);
2329
2330static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2331 pfn_t pfn, pgprot_t prot, bool mkwrite)
2332{
2333 struct mm_struct *mm = vma->vm_mm;
2334 pte_t *pte, entry;
2335 spinlock_t *ptl;
2336
2337 pte = get_locked_pte(mm, addr, &ptl);
2338 if (!pte)
2339 return VM_FAULT_OOM;
2340 entry = ptep_get(pte);
2341 if (!pte_none(entry)) {
2342 if (mkwrite) {
2343 /*
2344 * For read faults on private mappings the PFN passed
2345 * in may not match the PFN we have mapped if the
2346 * mapped PFN is a writeable COW page. In the mkwrite
2347 * case we are creating a writable PTE for a shared
2348 * mapping and we expect the PFNs to match. If they
2349 * don't match, we are likely racing with block
2350 * allocation and mapping invalidation so just skip the
2351 * update.
2352 */
2353 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2354 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2355 goto out_unlock;
2356 }
2357 entry = pte_mkyoung(entry);
2358 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2359 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2360 update_mmu_cache(vma, addr, pte);
2361 }
2362 goto out_unlock;
2363 }
2364
2365 /* Ok, finally just insert the thing.. */
2366 if (pfn_t_devmap(pfn))
2367 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2368 else
2369 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2370
2371 if (mkwrite) {
2372 entry = pte_mkyoung(entry);
2373 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2374 }
2375
2376 set_pte_at(mm, addr, pte, entry);
2377 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2378
2379out_unlock:
2380 pte_unmap_unlock(pte, ptl);
2381 return VM_FAULT_NOPAGE;
2382}
2383
2384/**
2385 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2386 * @vma: user vma to map to
2387 * @addr: target user address of this page
2388 * @pfn: source kernel pfn
2389 * @pgprot: pgprot flags for the inserted page
2390 *
2391 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2392 * to override pgprot on a per-page basis.
2393 *
2394 * This only makes sense for IO mappings, and it makes no sense for
2395 * COW mappings. In general, using multiple vmas is preferable;
2396 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2397 * impractical.
2398 *
2399 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2400 * caching- and encryption bits different than those of @vma->vm_page_prot,
2401 * because the caching- or encryption mode may not be known at mmap() time.
2402 *
2403 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2404 * to set caching and encryption bits for those vmas (except for COW pages).
2405 * This is ensured by core vm only modifying these page table entries using
2406 * functions that don't touch caching- or encryption bits, using pte_modify()
2407 * if needed. (See for example mprotect()).
2408 *
2409 * Also when new page-table entries are created, this is only done using the
2410 * fault() callback, and never using the value of vma->vm_page_prot,
2411 * except for page-table entries that point to anonymous pages as the result
2412 * of COW.
2413 *
2414 * Context: Process context. May allocate using %GFP_KERNEL.
2415 * Return: vm_fault_t value.
2416 */
2417vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2418 unsigned long pfn, pgprot_t pgprot)
2419{
2420 /*
2421 * Technically, architectures with pte_special can avoid all these
2422 * restrictions (same for remap_pfn_range). However we would like
2423 * consistency in testing and feature parity among all, so we should
2424 * try to keep these invariants in place for everybody.
2425 */
2426 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2427 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2428 (VM_PFNMAP|VM_MIXEDMAP));
2429 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2430 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2431
2432 if (addr < vma->vm_start || addr >= vma->vm_end)
2433 return VM_FAULT_SIGBUS;
2434
2435 if (!pfn_modify_allowed(pfn, pgprot))
2436 return VM_FAULT_SIGBUS;
2437
2438 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2439
2440 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2441 false);
2442}
2443EXPORT_SYMBOL(vmf_insert_pfn_prot);
2444
2445/**
2446 * vmf_insert_pfn - insert single pfn into user vma
2447 * @vma: user vma to map to
2448 * @addr: target user address of this page
2449 * @pfn: source kernel pfn
2450 *
2451 * Similar to vm_insert_page, this allows drivers to insert individual pages
2452 * they've allocated into a user vma. Same comments apply.
2453 *
2454 * This function should only be called from a vm_ops->fault handler, and
2455 * in that case the handler should return the result of this function.
2456 *
2457 * vma cannot be a COW mapping.
2458 *
2459 * As this is called only for pages that do not currently exist, we
2460 * do not need to flush old virtual caches or the TLB.
2461 *
2462 * Context: Process context. May allocate using %GFP_KERNEL.
2463 * Return: vm_fault_t value.
2464 */
2465vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2466 unsigned long pfn)
2467{
2468 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2469}
2470EXPORT_SYMBOL(vmf_insert_pfn);
2471
2472static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2473{
2474 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2475 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2476 return false;
2477 /* these checks mirror the abort conditions in vm_normal_page */
2478 if (vma->vm_flags & VM_MIXEDMAP)
2479 return true;
2480 if (pfn_t_devmap(pfn))
2481 return true;
2482 if (pfn_t_special(pfn))
2483 return true;
2484 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2485 return true;
2486 return false;
2487}
2488
2489static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2490 unsigned long addr, pfn_t pfn, bool mkwrite)
2491{
2492 pgprot_t pgprot = vma->vm_page_prot;
2493 int err;
2494
2495 if (!vm_mixed_ok(vma, pfn, mkwrite))
2496 return VM_FAULT_SIGBUS;
2497
2498 if (addr < vma->vm_start || addr >= vma->vm_end)
2499 return VM_FAULT_SIGBUS;
2500
2501 track_pfn_insert(vma, &pgprot, pfn);
2502
2503 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2504 return VM_FAULT_SIGBUS;
2505
2506 /*
2507 * If we don't have pte special, then we have to use the pfn_valid()
2508 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2509 * refcount the page if pfn_valid is true (hence insert_page rather
2510 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2511 * without pte special, it would there be refcounted as a normal page.
2512 */
2513 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2514 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2515 struct page *page;
2516
2517 /*
2518 * At this point we are committed to insert_page()
2519 * regardless of whether the caller specified flags that
2520 * result in pfn_t_has_page() == false.
2521 */
2522 page = pfn_to_page(pfn_t_to_pfn(pfn));
2523 err = insert_page(vma, addr, page, pgprot);
2524 } else {
2525 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2526 }
2527
2528 if (err == -ENOMEM)
2529 return VM_FAULT_OOM;
2530 if (err < 0 && err != -EBUSY)
2531 return VM_FAULT_SIGBUS;
2532
2533 return VM_FAULT_NOPAGE;
2534}
2535
2536vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2537 pfn_t pfn)
2538{
2539 return __vm_insert_mixed(vma, addr, pfn, false);
2540}
2541EXPORT_SYMBOL(vmf_insert_mixed);
2542
2543/*
2544 * If the insertion of PTE failed because someone else already added a
2545 * different entry in the mean time, we treat that as success as we assume
2546 * the same entry was actually inserted.
2547 */
2548vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2549 unsigned long addr, pfn_t pfn)
2550{
2551 return __vm_insert_mixed(vma, addr, pfn, true);
2552}
2553
2554/*
2555 * maps a range of physical memory into the requested pages. the old
2556 * mappings are removed. any references to nonexistent pages results
2557 * in null mappings (currently treated as "copy-on-access")
2558 */
2559static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2560 unsigned long addr, unsigned long end,
2561 unsigned long pfn, pgprot_t prot)
2562{
2563 pte_t *pte, *mapped_pte;
2564 spinlock_t *ptl;
2565 int err = 0;
2566
2567 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2568 if (!pte)
2569 return -ENOMEM;
2570 arch_enter_lazy_mmu_mode();
2571 do {
2572 BUG_ON(!pte_none(ptep_get(pte)));
2573 if (!pfn_modify_allowed(pfn, prot)) {
2574 err = -EACCES;
2575 break;
2576 }
2577 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2578 pfn++;
2579 } while (pte++, addr += PAGE_SIZE, addr != end);
2580 arch_leave_lazy_mmu_mode();
2581 pte_unmap_unlock(mapped_pte, ptl);
2582 return err;
2583}
2584
2585static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2586 unsigned long addr, unsigned long end,
2587 unsigned long pfn, pgprot_t prot)
2588{
2589 pmd_t *pmd;
2590 unsigned long next;
2591 int err;
2592
2593 pfn -= addr >> PAGE_SHIFT;
2594 pmd = pmd_alloc(mm, pud, addr);
2595 if (!pmd)
2596 return -ENOMEM;
2597 VM_BUG_ON(pmd_trans_huge(*pmd));
2598 do {
2599 next = pmd_addr_end(addr, end);
2600 err = remap_pte_range(mm, pmd, addr, next,
2601 pfn + (addr >> PAGE_SHIFT), prot);
2602 if (err)
2603 return err;
2604 } while (pmd++, addr = next, addr != end);
2605 return 0;
2606}
2607
2608static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2609 unsigned long addr, unsigned long end,
2610 unsigned long pfn, pgprot_t prot)
2611{
2612 pud_t *pud;
2613 unsigned long next;
2614 int err;
2615
2616 pfn -= addr >> PAGE_SHIFT;
2617 pud = pud_alloc(mm, p4d, addr);
2618 if (!pud)
2619 return -ENOMEM;
2620 do {
2621 next = pud_addr_end(addr, end);
2622 err = remap_pmd_range(mm, pud, addr, next,
2623 pfn + (addr >> PAGE_SHIFT), prot);
2624 if (err)
2625 return err;
2626 } while (pud++, addr = next, addr != end);
2627 return 0;
2628}
2629
2630static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2631 unsigned long addr, unsigned long end,
2632 unsigned long pfn, pgprot_t prot)
2633{
2634 p4d_t *p4d;
2635 unsigned long next;
2636 int err;
2637
2638 pfn -= addr >> PAGE_SHIFT;
2639 p4d = p4d_alloc(mm, pgd, addr);
2640 if (!p4d)
2641 return -ENOMEM;
2642 do {
2643 next = p4d_addr_end(addr, end);
2644 err = remap_pud_range(mm, p4d, addr, next,
2645 pfn + (addr >> PAGE_SHIFT), prot);
2646 if (err)
2647 return err;
2648 } while (p4d++, addr = next, addr != end);
2649 return 0;
2650}
2651
2652static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2653 unsigned long pfn, unsigned long size, pgprot_t prot)
2654{
2655 pgd_t *pgd;
2656 unsigned long next;
2657 unsigned long end = addr + PAGE_ALIGN(size);
2658 struct mm_struct *mm = vma->vm_mm;
2659 int err;
2660
2661 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2662 return -EINVAL;
2663
2664 /*
2665 * Physically remapped pages are special. Tell the
2666 * rest of the world about it:
2667 * VM_IO tells people not to look at these pages
2668 * (accesses can have side effects).
2669 * VM_PFNMAP tells the core MM that the base pages are just
2670 * raw PFN mappings, and do not have a "struct page" associated
2671 * with them.
2672 * VM_DONTEXPAND
2673 * Disable vma merging and expanding with mremap().
2674 * VM_DONTDUMP
2675 * Omit vma from core dump, even when VM_IO turned off.
2676 *
2677 * There's a horrible special case to handle copy-on-write
2678 * behaviour that some programs depend on. We mark the "original"
2679 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2680 * See vm_normal_page() for details.
2681 */
2682 if (is_cow_mapping(vma->vm_flags)) {
2683 if (addr != vma->vm_start || end != vma->vm_end)
2684 return -EINVAL;
2685 vma->vm_pgoff = pfn;
2686 }
2687
2688 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2689
2690 BUG_ON(addr >= end);
2691 pfn -= addr >> PAGE_SHIFT;
2692 pgd = pgd_offset(mm, addr);
2693 flush_cache_range(vma, addr, end);
2694 do {
2695 next = pgd_addr_end(addr, end);
2696 err = remap_p4d_range(mm, pgd, addr, next,
2697 pfn + (addr >> PAGE_SHIFT), prot);
2698 if (err)
2699 return err;
2700 } while (pgd++, addr = next, addr != end);
2701
2702 return 0;
2703}
2704
2705/*
2706 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2707 * must have pre-validated the caching bits of the pgprot_t.
2708 */
2709int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2710 unsigned long pfn, unsigned long size, pgprot_t prot)
2711{
2712 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2713
2714 if (!error)
2715 return 0;
2716
2717 /*
2718 * A partial pfn range mapping is dangerous: it does not
2719 * maintain page reference counts, and callers may free
2720 * pages due to the error. So zap it early.
2721 */
2722 zap_page_range_single(vma, addr, size, NULL);
2723 return error;
2724}
2725
2726/**
2727 * remap_pfn_range - remap kernel memory to userspace
2728 * @vma: user vma to map to
2729 * @addr: target page aligned user address to start at
2730 * @pfn: page frame number of kernel physical memory address
2731 * @size: size of mapping area
2732 * @prot: page protection flags for this mapping
2733 *
2734 * Note: this is only safe if the mm semaphore is held when called.
2735 *
2736 * Return: %0 on success, negative error code otherwise.
2737 */
2738int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2739 unsigned long pfn, unsigned long size, pgprot_t prot)
2740{
2741 int err;
2742
2743 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2744 if (err)
2745 return -EINVAL;
2746
2747 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2748 if (err)
2749 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2750 return err;
2751}
2752EXPORT_SYMBOL(remap_pfn_range);
2753
2754/**
2755 * vm_iomap_memory - remap memory to userspace
2756 * @vma: user vma to map to
2757 * @start: start of the physical memory to be mapped
2758 * @len: size of area
2759 *
2760 * This is a simplified io_remap_pfn_range() for common driver use. The
2761 * driver just needs to give us the physical memory range to be mapped,
2762 * we'll figure out the rest from the vma information.
2763 *
2764 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2765 * whatever write-combining details or similar.
2766 *
2767 * Return: %0 on success, negative error code otherwise.
2768 */
2769int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2770{
2771 unsigned long vm_len, pfn, pages;
2772
2773 /* Check that the physical memory area passed in looks valid */
2774 if (start + len < start)
2775 return -EINVAL;
2776 /*
2777 * You *really* shouldn't map things that aren't page-aligned,
2778 * but we've historically allowed it because IO memory might
2779 * just have smaller alignment.
2780 */
2781 len += start & ~PAGE_MASK;
2782 pfn = start >> PAGE_SHIFT;
2783 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2784 if (pfn + pages < pfn)
2785 return -EINVAL;
2786
2787 /* We start the mapping 'vm_pgoff' pages into the area */
2788 if (vma->vm_pgoff > pages)
2789 return -EINVAL;
2790 pfn += vma->vm_pgoff;
2791 pages -= vma->vm_pgoff;
2792
2793 /* Can we fit all of the mapping? */
2794 vm_len = vma->vm_end - vma->vm_start;
2795 if (vm_len >> PAGE_SHIFT > pages)
2796 return -EINVAL;
2797
2798 /* Ok, let it rip */
2799 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2800}
2801EXPORT_SYMBOL(vm_iomap_memory);
2802
2803static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2804 unsigned long addr, unsigned long end,
2805 pte_fn_t fn, void *data, bool create,
2806 pgtbl_mod_mask *mask)
2807{
2808 pte_t *pte, *mapped_pte;
2809 int err = 0;
2810 spinlock_t *ptl;
2811
2812 if (create) {
2813 mapped_pte = pte = (mm == &init_mm) ?
2814 pte_alloc_kernel_track(pmd, addr, mask) :
2815 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2816 if (!pte)
2817 return -ENOMEM;
2818 } else {
2819 mapped_pte = pte = (mm == &init_mm) ?
2820 pte_offset_kernel(pmd, addr) :
2821 pte_offset_map_lock(mm, pmd, addr, &ptl);
2822 if (!pte)
2823 return -EINVAL;
2824 }
2825
2826 arch_enter_lazy_mmu_mode();
2827
2828 if (fn) {
2829 do {
2830 if (create || !pte_none(ptep_get(pte))) {
2831 err = fn(pte++, addr, data);
2832 if (err)
2833 break;
2834 }
2835 } while (addr += PAGE_SIZE, addr != end);
2836 }
2837 *mask |= PGTBL_PTE_MODIFIED;
2838
2839 arch_leave_lazy_mmu_mode();
2840
2841 if (mm != &init_mm)
2842 pte_unmap_unlock(mapped_pte, ptl);
2843 return err;
2844}
2845
2846static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2847 unsigned long addr, unsigned long end,
2848 pte_fn_t fn, void *data, bool create,
2849 pgtbl_mod_mask *mask)
2850{
2851 pmd_t *pmd;
2852 unsigned long next;
2853 int err = 0;
2854
2855 BUG_ON(pud_leaf(*pud));
2856
2857 if (create) {
2858 pmd = pmd_alloc_track(mm, pud, addr, mask);
2859 if (!pmd)
2860 return -ENOMEM;
2861 } else {
2862 pmd = pmd_offset(pud, addr);
2863 }
2864 do {
2865 next = pmd_addr_end(addr, end);
2866 if (pmd_none(*pmd) && !create)
2867 continue;
2868 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2869 return -EINVAL;
2870 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2871 if (!create)
2872 continue;
2873 pmd_clear_bad(pmd);
2874 }
2875 err = apply_to_pte_range(mm, pmd, addr, next,
2876 fn, data, create, mask);
2877 if (err)
2878 break;
2879 } while (pmd++, addr = next, addr != end);
2880
2881 return err;
2882}
2883
2884static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2885 unsigned long addr, unsigned long end,
2886 pte_fn_t fn, void *data, bool create,
2887 pgtbl_mod_mask *mask)
2888{
2889 pud_t *pud;
2890 unsigned long next;
2891 int err = 0;
2892
2893 if (create) {
2894 pud = pud_alloc_track(mm, p4d, addr, mask);
2895 if (!pud)
2896 return -ENOMEM;
2897 } else {
2898 pud = pud_offset(p4d, addr);
2899 }
2900 do {
2901 next = pud_addr_end(addr, end);
2902 if (pud_none(*pud) && !create)
2903 continue;
2904 if (WARN_ON_ONCE(pud_leaf(*pud)))
2905 return -EINVAL;
2906 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2907 if (!create)
2908 continue;
2909 pud_clear_bad(pud);
2910 }
2911 err = apply_to_pmd_range(mm, pud, addr, next,
2912 fn, data, create, mask);
2913 if (err)
2914 break;
2915 } while (pud++, addr = next, addr != end);
2916
2917 return err;
2918}
2919
2920static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2921 unsigned long addr, unsigned long end,
2922 pte_fn_t fn, void *data, bool create,
2923 pgtbl_mod_mask *mask)
2924{
2925 p4d_t *p4d;
2926 unsigned long next;
2927 int err = 0;
2928
2929 if (create) {
2930 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2931 if (!p4d)
2932 return -ENOMEM;
2933 } else {
2934 p4d = p4d_offset(pgd, addr);
2935 }
2936 do {
2937 next = p4d_addr_end(addr, end);
2938 if (p4d_none(*p4d) && !create)
2939 continue;
2940 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2941 return -EINVAL;
2942 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2943 if (!create)
2944 continue;
2945 p4d_clear_bad(p4d);
2946 }
2947 err = apply_to_pud_range(mm, p4d, addr, next,
2948 fn, data, create, mask);
2949 if (err)
2950 break;
2951 } while (p4d++, addr = next, addr != end);
2952
2953 return err;
2954}
2955
2956static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2957 unsigned long size, pte_fn_t fn,
2958 void *data, bool create)
2959{
2960 pgd_t *pgd;
2961 unsigned long start = addr, next;
2962 unsigned long end = addr + size;
2963 pgtbl_mod_mask mask = 0;
2964 int err = 0;
2965
2966 if (WARN_ON(addr >= end))
2967 return -EINVAL;
2968
2969 pgd = pgd_offset(mm, addr);
2970 do {
2971 next = pgd_addr_end(addr, end);
2972 if (pgd_none(*pgd) && !create)
2973 continue;
2974 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
2975 err = -EINVAL;
2976 break;
2977 }
2978 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2979 if (!create)
2980 continue;
2981 pgd_clear_bad(pgd);
2982 }
2983 err = apply_to_p4d_range(mm, pgd, addr, next,
2984 fn, data, create, &mask);
2985 if (err)
2986 break;
2987 } while (pgd++, addr = next, addr != end);
2988
2989 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2990 arch_sync_kernel_mappings(start, start + size);
2991
2992 return err;
2993}
2994
2995/*
2996 * Scan a region of virtual memory, filling in page tables as necessary
2997 * and calling a provided function on each leaf page table.
2998 */
2999int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3000 unsigned long size, pte_fn_t fn, void *data)
3001{
3002 return __apply_to_page_range(mm, addr, size, fn, data, true);
3003}
3004EXPORT_SYMBOL_GPL(apply_to_page_range);
3005
3006/*
3007 * Scan a region of virtual memory, calling a provided function on
3008 * each leaf page table where it exists.
3009 *
3010 * Unlike apply_to_page_range, this does _not_ fill in page tables
3011 * where they are absent.
3012 */
3013int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3014 unsigned long size, pte_fn_t fn, void *data)
3015{
3016 return __apply_to_page_range(mm, addr, size, fn, data, false);
3017}
3018EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3019
3020/*
3021 * handle_pte_fault chooses page fault handler according to an entry which was
3022 * read non-atomically. Before making any commitment, on those architectures
3023 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3024 * parts, do_swap_page must check under lock before unmapping the pte and
3025 * proceeding (but do_wp_page is only called after already making such a check;
3026 * and do_anonymous_page can safely check later on).
3027 */
3028static inline int pte_unmap_same(struct vm_fault *vmf)
3029{
3030 int same = 1;
3031#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3032 if (sizeof(pte_t) > sizeof(unsigned long)) {
3033 spin_lock(vmf->ptl);
3034 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3035 spin_unlock(vmf->ptl);
3036 }
3037#endif
3038 pte_unmap(vmf->pte);
3039 vmf->pte = NULL;
3040 return same;
3041}
3042
3043/*
3044 * Return:
3045 * 0: copied succeeded
3046 * -EHWPOISON: copy failed due to hwpoison in source page
3047 * -EAGAIN: copied failed (some other reason)
3048 */
3049static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3050 struct vm_fault *vmf)
3051{
3052 int ret;
3053 void *kaddr;
3054 void __user *uaddr;
3055 struct vm_area_struct *vma = vmf->vma;
3056 struct mm_struct *mm = vma->vm_mm;
3057 unsigned long addr = vmf->address;
3058
3059 if (likely(src)) {
3060 if (copy_mc_user_highpage(dst, src, addr, vma))
3061 return -EHWPOISON;
3062 return 0;
3063 }
3064
3065 /*
3066 * If the source page was a PFN mapping, we don't have
3067 * a "struct page" for it. We do a best-effort copy by
3068 * just copying from the original user address. If that
3069 * fails, we just zero-fill it. Live with it.
3070 */
3071 kaddr = kmap_local_page(dst);
3072 pagefault_disable();
3073 uaddr = (void __user *)(addr & PAGE_MASK);
3074
3075 /*
3076 * On architectures with software "accessed" bits, we would
3077 * take a double page fault, so mark it accessed here.
3078 */
3079 vmf->pte = NULL;
3080 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3081 pte_t entry;
3082
3083 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3084 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3085 /*
3086 * Other thread has already handled the fault
3087 * and update local tlb only
3088 */
3089 if (vmf->pte)
3090 update_mmu_tlb(vma, addr, vmf->pte);
3091 ret = -EAGAIN;
3092 goto pte_unlock;
3093 }
3094
3095 entry = pte_mkyoung(vmf->orig_pte);
3096 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3097 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3098 }
3099
3100 /*
3101 * This really shouldn't fail, because the page is there
3102 * in the page tables. But it might just be unreadable,
3103 * in which case we just give up and fill the result with
3104 * zeroes.
3105 */
3106 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3107 if (vmf->pte)
3108 goto warn;
3109
3110 /* Re-validate under PTL if the page is still mapped */
3111 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3112 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3113 /* The PTE changed under us, update local tlb */
3114 if (vmf->pte)
3115 update_mmu_tlb(vma, addr, vmf->pte);
3116 ret = -EAGAIN;
3117 goto pte_unlock;
3118 }
3119
3120 /*
3121 * The same page can be mapped back since last copy attempt.
3122 * Try to copy again under PTL.
3123 */
3124 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3125 /*
3126 * Give a warn in case there can be some obscure
3127 * use-case
3128 */
3129warn:
3130 WARN_ON_ONCE(1);
3131 clear_page(kaddr);
3132 }
3133 }
3134
3135 ret = 0;
3136
3137pte_unlock:
3138 if (vmf->pte)
3139 pte_unmap_unlock(vmf->pte, vmf->ptl);
3140 pagefault_enable();
3141 kunmap_local(kaddr);
3142 flush_dcache_page(dst);
3143
3144 return ret;
3145}
3146
3147static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3148{
3149 struct file *vm_file = vma->vm_file;
3150
3151 if (vm_file)
3152 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3153
3154 /*
3155 * Special mappings (e.g. VDSO) do not have any file so fake
3156 * a default GFP_KERNEL for them.
3157 */
3158 return GFP_KERNEL;
3159}
3160
3161/*
3162 * Notify the address space that the page is about to become writable so that
3163 * it can prohibit this or wait for the page to get into an appropriate state.
3164 *
3165 * We do this without the lock held, so that it can sleep if it needs to.
3166 */
3167static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3168{
3169 vm_fault_t ret;
3170 unsigned int old_flags = vmf->flags;
3171
3172 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3173
3174 if (vmf->vma->vm_file &&
3175 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3176 return VM_FAULT_SIGBUS;
3177
3178 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3179 /* Restore original flags so that caller is not surprised */
3180 vmf->flags = old_flags;
3181 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3182 return ret;
3183 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3184 folio_lock(folio);
3185 if (!folio->mapping) {
3186 folio_unlock(folio);
3187 return 0; /* retry */
3188 }
3189 ret |= VM_FAULT_LOCKED;
3190 } else
3191 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3192 return ret;
3193}
3194
3195/*
3196 * Handle dirtying of a page in shared file mapping on a write fault.
3197 *
3198 * The function expects the page to be locked and unlocks it.
3199 */
3200static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3201{
3202 struct vm_area_struct *vma = vmf->vma;
3203 struct address_space *mapping;
3204 struct folio *folio = page_folio(vmf->page);
3205 bool dirtied;
3206 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3207
3208 dirtied = folio_mark_dirty(folio);
3209 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3210 /*
3211 * Take a local copy of the address_space - folio.mapping may be zeroed
3212 * by truncate after folio_unlock(). The address_space itself remains
3213 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3214 * release semantics to prevent the compiler from undoing this copying.
3215 */
3216 mapping = folio_raw_mapping(folio);
3217 folio_unlock(folio);
3218
3219 if (!page_mkwrite)
3220 file_update_time(vma->vm_file);
3221
3222 /*
3223 * Throttle page dirtying rate down to writeback speed.
3224 *
3225 * mapping may be NULL here because some device drivers do not
3226 * set page.mapping but still dirty their pages
3227 *
3228 * Drop the mmap_lock before waiting on IO, if we can. The file
3229 * is pinning the mapping, as per above.
3230 */
3231 if ((dirtied || page_mkwrite) && mapping) {
3232 struct file *fpin;
3233
3234 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3235 balance_dirty_pages_ratelimited(mapping);
3236 if (fpin) {
3237 fput(fpin);
3238 return VM_FAULT_COMPLETED;
3239 }
3240 }
3241
3242 return 0;
3243}
3244
3245/*
3246 * Handle write page faults for pages that can be reused in the current vma
3247 *
3248 * This can happen either due to the mapping being with the VM_SHARED flag,
3249 * or due to us being the last reference standing to the page. In either
3250 * case, all we need to do here is to mark the page as writable and update
3251 * any related book-keeping.
3252 */
3253static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3254 __releases(vmf->ptl)
3255{
3256 struct vm_area_struct *vma = vmf->vma;
3257 pte_t entry;
3258
3259 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3260 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3261
3262 if (folio) {
3263 VM_BUG_ON(folio_test_anon(folio) &&
3264 !PageAnonExclusive(vmf->page));
3265 /*
3266 * Clear the folio's cpupid information as the existing
3267 * information potentially belongs to a now completely
3268 * unrelated process.
3269 */
3270 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3271 }
3272
3273 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3274 entry = pte_mkyoung(vmf->orig_pte);
3275 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3276 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3277 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3278 pte_unmap_unlock(vmf->pte, vmf->ptl);
3279 count_vm_event(PGREUSE);
3280}
3281
3282/*
3283 * We could add a bitflag somewhere, but for now, we know that all
3284 * vm_ops that have a ->map_pages have been audited and don't need
3285 * the mmap_lock to be held.
3286 */
3287static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3288{
3289 struct vm_area_struct *vma = vmf->vma;
3290
3291 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3292 return 0;
3293 vma_end_read(vma);
3294 return VM_FAULT_RETRY;
3295}
3296
3297/**
3298 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3299 * @vmf: The vm_fault descriptor passed from the fault handler.
3300 *
3301 * When preparing to insert an anonymous page into a VMA from a
3302 * fault handler, call this function rather than anon_vma_prepare().
3303 * If this vma does not already have an associated anon_vma and we are
3304 * only protected by the per-VMA lock, the caller must retry with the
3305 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3306 * determine if this VMA can share its anon_vma, and that's not safe to
3307 * do with only the per-VMA lock held for this VMA.
3308 *
3309 * Return: 0 if fault handling can proceed. Any other value should be
3310 * returned to the caller.
3311 */
3312vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3313{
3314 struct vm_area_struct *vma = vmf->vma;
3315 vm_fault_t ret = 0;
3316
3317 if (likely(vma->anon_vma))
3318 return 0;
3319 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3320 if (!mmap_read_trylock(vma->vm_mm))
3321 return VM_FAULT_RETRY;
3322 }
3323 if (__anon_vma_prepare(vma))
3324 ret = VM_FAULT_OOM;
3325 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3326 mmap_read_unlock(vma->vm_mm);
3327 return ret;
3328}
3329
3330/*
3331 * Handle the case of a page which we actually need to copy to a new page,
3332 * either due to COW or unsharing.
3333 *
3334 * Called with mmap_lock locked and the old page referenced, but
3335 * without the ptl held.
3336 *
3337 * High level logic flow:
3338 *
3339 * - Allocate a page, copy the content of the old page to the new one.
3340 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3341 * - Take the PTL. If the pte changed, bail out and release the allocated page
3342 * - If the pte is still the way we remember it, update the page table and all
3343 * relevant references. This includes dropping the reference the page-table
3344 * held to the old page, as well as updating the rmap.
3345 * - In any case, unlock the PTL and drop the reference we took to the old page.
3346 */
3347static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3348{
3349 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3350 struct vm_area_struct *vma = vmf->vma;
3351 struct mm_struct *mm = vma->vm_mm;
3352 struct folio *old_folio = NULL;
3353 struct folio *new_folio = NULL;
3354 pte_t entry;
3355 int page_copied = 0;
3356 struct mmu_notifier_range range;
3357 vm_fault_t ret;
3358 bool pfn_is_zero;
3359
3360 delayacct_wpcopy_start();
3361
3362 if (vmf->page)
3363 old_folio = page_folio(vmf->page);
3364 ret = vmf_anon_prepare(vmf);
3365 if (unlikely(ret))
3366 goto out;
3367
3368 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3369 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3370 if (!new_folio)
3371 goto oom;
3372
3373 if (!pfn_is_zero) {
3374 int err;
3375
3376 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3377 if (err) {
3378 /*
3379 * COW failed, if the fault was solved by other,
3380 * it's fine. If not, userspace would re-fault on
3381 * the same address and we will handle the fault
3382 * from the second attempt.
3383 * The -EHWPOISON case will not be retried.
3384 */
3385 folio_put(new_folio);
3386 if (old_folio)
3387 folio_put(old_folio);
3388
3389 delayacct_wpcopy_end();
3390 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3391 }
3392 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3393 }
3394
3395 __folio_mark_uptodate(new_folio);
3396
3397 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3398 vmf->address & PAGE_MASK,
3399 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3400 mmu_notifier_invalidate_range_start(&range);
3401
3402 /*
3403 * Re-check the pte - we dropped the lock
3404 */
3405 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3406 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3407 if (old_folio) {
3408 if (!folio_test_anon(old_folio)) {
3409 dec_mm_counter(mm, mm_counter_file(old_folio));
3410 inc_mm_counter(mm, MM_ANONPAGES);
3411 }
3412 } else {
3413 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3414 inc_mm_counter(mm, MM_ANONPAGES);
3415 }
3416 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3417 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3418 entry = pte_sw_mkyoung(entry);
3419 if (unlikely(unshare)) {
3420 if (pte_soft_dirty(vmf->orig_pte))
3421 entry = pte_mksoft_dirty(entry);
3422 if (pte_uffd_wp(vmf->orig_pte))
3423 entry = pte_mkuffd_wp(entry);
3424 } else {
3425 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3426 }
3427
3428 /*
3429 * Clear the pte entry and flush it first, before updating the
3430 * pte with the new entry, to keep TLBs on different CPUs in
3431 * sync. This code used to set the new PTE then flush TLBs, but
3432 * that left a window where the new PTE could be loaded into
3433 * some TLBs while the old PTE remains in others.
3434 */
3435 ptep_clear_flush(vma, vmf->address, vmf->pte);
3436 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3437 folio_add_lru_vma(new_folio, vma);
3438 BUG_ON(unshare && pte_write(entry));
3439 set_pte_at(mm, vmf->address, vmf->pte, entry);
3440 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3441 if (old_folio) {
3442 /*
3443 * Only after switching the pte to the new page may
3444 * we remove the mapcount here. Otherwise another
3445 * process may come and find the rmap count decremented
3446 * before the pte is switched to the new page, and
3447 * "reuse" the old page writing into it while our pte
3448 * here still points into it and can be read by other
3449 * threads.
3450 *
3451 * The critical issue is to order this
3452 * folio_remove_rmap_pte() with the ptp_clear_flush
3453 * above. Those stores are ordered by (if nothing else,)
3454 * the barrier present in the atomic_add_negative
3455 * in folio_remove_rmap_pte();
3456 *
3457 * Then the TLB flush in ptep_clear_flush ensures that
3458 * no process can access the old page before the
3459 * decremented mapcount is visible. And the old page
3460 * cannot be reused until after the decremented
3461 * mapcount is visible. So transitively, TLBs to
3462 * old page will be flushed before it can be reused.
3463 */
3464 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3465 }
3466
3467 /* Free the old page.. */
3468 new_folio = old_folio;
3469 page_copied = 1;
3470 pte_unmap_unlock(vmf->pte, vmf->ptl);
3471 } else if (vmf->pte) {
3472 update_mmu_tlb(vma, vmf->address, vmf->pte);
3473 pte_unmap_unlock(vmf->pte, vmf->ptl);
3474 }
3475
3476 mmu_notifier_invalidate_range_end(&range);
3477
3478 if (new_folio)
3479 folio_put(new_folio);
3480 if (old_folio) {
3481 if (page_copied)
3482 free_swap_cache(old_folio);
3483 folio_put(old_folio);
3484 }
3485
3486 delayacct_wpcopy_end();
3487 return 0;
3488oom:
3489 ret = VM_FAULT_OOM;
3490out:
3491 if (old_folio)
3492 folio_put(old_folio);
3493
3494 delayacct_wpcopy_end();
3495 return ret;
3496}
3497
3498/**
3499 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3500 * writeable once the page is prepared
3501 *
3502 * @vmf: structure describing the fault
3503 * @folio: the folio of vmf->page
3504 *
3505 * This function handles all that is needed to finish a write page fault in a
3506 * shared mapping due to PTE being read-only once the mapped page is prepared.
3507 * It handles locking of PTE and modifying it.
3508 *
3509 * The function expects the page to be locked or other protection against
3510 * concurrent faults / writeback (such as DAX radix tree locks).
3511 *
3512 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3513 * we acquired PTE lock.
3514 */
3515static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3516{
3517 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3518 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3519 &vmf->ptl);
3520 if (!vmf->pte)
3521 return VM_FAULT_NOPAGE;
3522 /*
3523 * We might have raced with another page fault while we released the
3524 * pte_offset_map_lock.
3525 */
3526 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3527 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3528 pte_unmap_unlock(vmf->pte, vmf->ptl);
3529 return VM_FAULT_NOPAGE;
3530 }
3531 wp_page_reuse(vmf, folio);
3532 return 0;
3533}
3534
3535/*
3536 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3537 * mapping
3538 */
3539static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3540{
3541 struct vm_area_struct *vma = vmf->vma;
3542
3543 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3544 vm_fault_t ret;
3545
3546 pte_unmap_unlock(vmf->pte, vmf->ptl);
3547 ret = vmf_can_call_fault(vmf);
3548 if (ret)
3549 return ret;
3550
3551 vmf->flags |= FAULT_FLAG_MKWRITE;
3552 ret = vma->vm_ops->pfn_mkwrite(vmf);
3553 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3554 return ret;
3555 return finish_mkwrite_fault(vmf, NULL);
3556 }
3557 wp_page_reuse(vmf, NULL);
3558 return 0;
3559}
3560
3561static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3562 __releases(vmf->ptl)
3563{
3564 struct vm_area_struct *vma = vmf->vma;
3565 vm_fault_t ret = 0;
3566
3567 folio_get(folio);
3568
3569 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3570 vm_fault_t tmp;
3571
3572 pte_unmap_unlock(vmf->pte, vmf->ptl);
3573 tmp = vmf_can_call_fault(vmf);
3574 if (tmp) {
3575 folio_put(folio);
3576 return tmp;
3577 }
3578
3579 tmp = do_page_mkwrite(vmf, folio);
3580 if (unlikely(!tmp || (tmp &
3581 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3582 folio_put(folio);
3583 return tmp;
3584 }
3585 tmp = finish_mkwrite_fault(vmf, folio);
3586 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3587 folio_unlock(folio);
3588 folio_put(folio);
3589 return tmp;
3590 }
3591 } else {
3592 wp_page_reuse(vmf, folio);
3593 folio_lock(folio);
3594 }
3595 ret |= fault_dirty_shared_page(vmf);
3596 folio_put(folio);
3597
3598 return ret;
3599}
3600
3601static bool wp_can_reuse_anon_folio(struct folio *folio,
3602 struct vm_area_struct *vma)
3603{
3604 /*
3605 * We could currently only reuse a subpage of a large folio if no
3606 * other subpages of the large folios are still mapped. However,
3607 * let's just consistently not reuse subpages even if we could
3608 * reuse in that scenario, and give back a large folio a bit
3609 * sooner.
3610 */
3611 if (folio_test_large(folio))
3612 return false;
3613
3614 /*
3615 * We have to verify under folio lock: these early checks are
3616 * just an optimization to avoid locking the folio and freeing
3617 * the swapcache if there is little hope that we can reuse.
3618 *
3619 * KSM doesn't necessarily raise the folio refcount.
3620 */
3621 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3622 return false;
3623 if (!folio_test_lru(folio))
3624 /*
3625 * We cannot easily detect+handle references from
3626 * remote LRU caches or references to LRU folios.
3627 */
3628 lru_add_drain();
3629 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3630 return false;
3631 if (!folio_trylock(folio))
3632 return false;
3633 if (folio_test_swapcache(folio))
3634 folio_free_swap(folio);
3635 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3636 folio_unlock(folio);
3637 return false;
3638 }
3639 /*
3640 * Ok, we've got the only folio reference from our mapping
3641 * and the folio is locked, it's dark out, and we're wearing
3642 * sunglasses. Hit it.
3643 */
3644 folio_move_anon_rmap(folio, vma);
3645 folio_unlock(folio);
3646 return true;
3647}
3648
3649/*
3650 * This routine handles present pages, when
3651 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3652 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3653 * (FAULT_FLAG_UNSHARE)
3654 *
3655 * It is done by copying the page to a new address and decrementing the
3656 * shared-page counter for the old page.
3657 *
3658 * Note that this routine assumes that the protection checks have been
3659 * done by the caller (the low-level page fault routine in most cases).
3660 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3661 * done any necessary COW.
3662 *
3663 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3664 * though the page will change only once the write actually happens. This
3665 * avoids a few races, and potentially makes it more efficient.
3666 *
3667 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3668 * but allow concurrent faults), with pte both mapped and locked.
3669 * We return with mmap_lock still held, but pte unmapped and unlocked.
3670 */
3671static vm_fault_t do_wp_page(struct vm_fault *vmf)
3672 __releases(vmf->ptl)
3673{
3674 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3675 struct vm_area_struct *vma = vmf->vma;
3676 struct folio *folio = NULL;
3677 pte_t pte;
3678
3679 if (likely(!unshare)) {
3680 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3681 if (!userfaultfd_wp_async(vma)) {
3682 pte_unmap_unlock(vmf->pte, vmf->ptl);
3683 return handle_userfault(vmf, VM_UFFD_WP);
3684 }
3685
3686 /*
3687 * Nothing needed (cache flush, TLB invalidations,
3688 * etc.) because we're only removing the uffd-wp bit,
3689 * which is completely invisible to the user.
3690 */
3691 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3692
3693 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3694 /*
3695 * Update this to be prepared for following up CoW
3696 * handling
3697 */
3698 vmf->orig_pte = pte;
3699 }
3700
3701 /*
3702 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3703 * is flushed in this case before copying.
3704 */
3705 if (unlikely(userfaultfd_wp(vmf->vma) &&
3706 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3707 flush_tlb_page(vmf->vma, vmf->address);
3708 }
3709
3710 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3711
3712 if (vmf->page)
3713 folio = page_folio(vmf->page);
3714
3715 /*
3716 * Shared mapping: we are guaranteed to have VM_WRITE and
3717 * FAULT_FLAG_WRITE set at this point.
3718 */
3719 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3720 /*
3721 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3722 * VM_PFNMAP VMA.
3723 *
3724 * We should not cow pages in a shared writeable mapping.
3725 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3726 */
3727 if (!vmf->page)
3728 return wp_pfn_shared(vmf);
3729 return wp_page_shared(vmf, folio);
3730 }
3731
3732 /*
3733 * Private mapping: create an exclusive anonymous page copy if reuse
3734 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3735 *
3736 * If we encounter a page that is marked exclusive, we must reuse
3737 * the page without further checks.
3738 */
3739 if (folio && folio_test_anon(folio) &&
3740 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3741 if (!PageAnonExclusive(vmf->page))
3742 SetPageAnonExclusive(vmf->page);
3743 if (unlikely(unshare)) {
3744 pte_unmap_unlock(vmf->pte, vmf->ptl);
3745 return 0;
3746 }
3747 wp_page_reuse(vmf, folio);
3748 return 0;
3749 }
3750 /*
3751 * Ok, we need to copy. Oh, well..
3752 */
3753 if (folio)
3754 folio_get(folio);
3755
3756 pte_unmap_unlock(vmf->pte, vmf->ptl);
3757#ifdef CONFIG_KSM
3758 if (folio && folio_test_ksm(folio))
3759 count_vm_event(COW_KSM);
3760#endif
3761 return wp_page_copy(vmf);
3762}
3763
3764static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3765 unsigned long start_addr, unsigned long end_addr,
3766 struct zap_details *details)
3767{
3768 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3769}
3770
3771static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3772 pgoff_t first_index,
3773 pgoff_t last_index,
3774 struct zap_details *details)
3775{
3776 struct vm_area_struct *vma;
3777 pgoff_t vba, vea, zba, zea;
3778
3779 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3780 vba = vma->vm_pgoff;
3781 vea = vba + vma_pages(vma) - 1;
3782 zba = max(first_index, vba);
3783 zea = min(last_index, vea);
3784
3785 unmap_mapping_range_vma(vma,
3786 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3787 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3788 details);
3789 }
3790}
3791
3792/**
3793 * unmap_mapping_folio() - Unmap single folio from processes.
3794 * @folio: The locked folio to be unmapped.
3795 *
3796 * Unmap this folio from any userspace process which still has it mmaped.
3797 * Typically, for efficiency, the range of nearby pages has already been
3798 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3799 * truncation or invalidation holds the lock on a folio, it may find that
3800 * the page has been remapped again: and then uses unmap_mapping_folio()
3801 * to unmap it finally.
3802 */
3803void unmap_mapping_folio(struct folio *folio)
3804{
3805 struct address_space *mapping = folio->mapping;
3806 struct zap_details details = { };
3807 pgoff_t first_index;
3808 pgoff_t last_index;
3809
3810 VM_BUG_ON(!folio_test_locked(folio));
3811
3812 first_index = folio->index;
3813 last_index = folio_next_index(folio) - 1;
3814
3815 details.even_cows = false;
3816 details.single_folio = folio;
3817 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3818
3819 i_mmap_lock_read(mapping);
3820 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3821 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3822 last_index, &details);
3823 i_mmap_unlock_read(mapping);
3824}
3825
3826/**
3827 * unmap_mapping_pages() - Unmap pages from processes.
3828 * @mapping: The address space containing pages to be unmapped.
3829 * @start: Index of first page to be unmapped.
3830 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3831 * @even_cows: Whether to unmap even private COWed pages.
3832 *
3833 * Unmap the pages in this address space from any userspace process which
3834 * has them mmaped. Generally, you want to remove COWed pages as well when
3835 * a file is being truncated, but not when invalidating pages from the page
3836 * cache.
3837 */
3838void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3839 pgoff_t nr, bool even_cows)
3840{
3841 struct zap_details details = { };
3842 pgoff_t first_index = start;
3843 pgoff_t last_index = start + nr - 1;
3844
3845 details.even_cows = even_cows;
3846 if (last_index < first_index)
3847 last_index = ULONG_MAX;
3848
3849 i_mmap_lock_read(mapping);
3850 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3851 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3852 last_index, &details);
3853 i_mmap_unlock_read(mapping);
3854}
3855EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3856
3857/**
3858 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3859 * address_space corresponding to the specified byte range in the underlying
3860 * file.
3861 *
3862 * @mapping: the address space containing mmaps to be unmapped.
3863 * @holebegin: byte in first page to unmap, relative to the start of
3864 * the underlying file. This will be rounded down to a PAGE_SIZE
3865 * boundary. Note that this is different from truncate_pagecache(), which
3866 * must keep the partial page. In contrast, we must get rid of
3867 * partial pages.
3868 * @holelen: size of prospective hole in bytes. This will be rounded
3869 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3870 * end of the file.
3871 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3872 * but 0 when invalidating pagecache, don't throw away private data.
3873 */
3874void unmap_mapping_range(struct address_space *mapping,
3875 loff_t const holebegin, loff_t const holelen, int even_cows)
3876{
3877 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3878 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3879
3880 /* Check for overflow. */
3881 if (sizeof(holelen) > sizeof(hlen)) {
3882 long long holeend =
3883 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3884 if (holeend & ~(long long)ULONG_MAX)
3885 hlen = ULONG_MAX - hba + 1;
3886 }
3887
3888 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3889}
3890EXPORT_SYMBOL(unmap_mapping_range);
3891
3892/*
3893 * Restore a potential device exclusive pte to a working pte entry
3894 */
3895static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3896{
3897 struct folio *folio = page_folio(vmf->page);
3898 struct vm_area_struct *vma = vmf->vma;
3899 struct mmu_notifier_range range;
3900 vm_fault_t ret;
3901
3902 /*
3903 * We need a reference to lock the folio because we don't hold
3904 * the PTL so a racing thread can remove the device-exclusive
3905 * entry and unmap it. If the folio is free the entry must
3906 * have been removed already. If it happens to have already
3907 * been re-allocated after being freed all we do is lock and
3908 * unlock it.
3909 */
3910 if (!folio_try_get(folio))
3911 return 0;
3912
3913 ret = folio_lock_or_retry(folio, vmf);
3914 if (ret) {
3915 folio_put(folio);
3916 return ret;
3917 }
3918 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3919 vma->vm_mm, vmf->address & PAGE_MASK,
3920 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3921 mmu_notifier_invalidate_range_start(&range);
3922
3923 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3924 &vmf->ptl);
3925 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3926 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3927
3928 if (vmf->pte)
3929 pte_unmap_unlock(vmf->pte, vmf->ptl);
3930 folio_unlock(folio);
3931 folio_put(folio);
3932
3933 mmu_notifier_invalidate_range_end(&range);
3934 return 0;
3935}
3936
3937static inline bool should_try_to_free_swap(struct folio *folio,
3938 struct vm_area_struct *vma,
3939 unsigned int fault_flags)
3940{
3941 if (!folio_test_swapcache(folio))
3942 return false;
3943 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3944 folio_test_mlocked(folio))
3945 return true;
3946 /*
3947 * If we want to map a page that's in the swapcache writable, we
3948 * have to detect via the refcount if we're really the exclusive
3949 * user. Try freeing the swapcache to get rid of the swapcache
3950 * reference only in case it's likely that we'll be the exlusive user.
3951 */
3952 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3953 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3954}
3955
3956static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3957{
3958 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3959 vmf->address, &vmf->ptl);
3960 if (!vmf->pte)
3961 return 0;
3962 /*
3963 * Be careful so that we will only recover a special uffd-wp pte into a
3964 * none pte. Otherwise it means the pte could have changed, so retry.
3965 *
3966 * This should also cover the case where e.g. the pte changed
3967 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3968 * So is_pte_marker() check is not enough to safely drop the pte.
3969 */
3970 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3971 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3972 pte_unmap_unlock(vmf->pte, vmf->ptl);
3973 return 0;
3974}
3975
3976static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3977{
3978 if (vma_is_anonymous(vmf->vma))
3979 return do_anonymous_page(vmf);
3980 else
3981 return do_fault(vmf);
3982}
3983
3984/*
3985 * This is actually a page-missing access, but with uffd-wp special pte
3986 * installed. It means this pte was wr-protected before being unmapped.
3987 */
3988static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3989{
3990 /*
3991 * Just in case there're leftover special ptes even after the region
3992 * got unregistered - we can simply clear them.
3993 */
3994 if (unlikely(!userfaultfd_wp(vmf->vma)))
3995 return pte_marker_clear(vmf);
3996
3997 return do_pte_missing(vmf);
3998}
3999
4000static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4001{
4002 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4003 unsigned long marker = pte_marker_get(entry);
4004
4005 /*
4006 * PTE markers should never be empty. If anything weird happened,
4007 * the best thing to do is to kill the process along with its mm.
4008 */
4009 if (WARN_ON_ONCE(!marker))
4010 return VM_FAULT_SIGBUS;
4011
4012 /* Higher priority than uffd-wp when data corrupted */
4013 if (marker & PTE_MARKER_POISONED)
4014 return VM_FAULT_HWPOISON;
4015
4016 /* Hitting a guard page is always a fatal condition. */
4017 if (marker & PTE_MARKER_GUARD)
4018 return VM_FAULT_SIGSEGV;
4019
4020 if (pte_marker_entry_uffd_wp(entry))
4021 return pte_marker_handle_uffd_wp(vmf);
4022
4023 /* This is an unknown pte marker */
4024 return VM_FAULT_SIGBUS;
4025}
4026
4027static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4028{
4029 struct vm_area_struct *vma = vmf->vma;
4030 struct folio *folio;
4031 swp_entry_t entry;
4032
4033 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4034 if (!folio)
4035 return NULL;
4036
4037 entry = pte_to_swp_entry(vmf->orig_pte);
4038 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4039 GFP_KERNEL, entry)) {
4040 folio_put(folio);
4041 return NULL;
4042 }
4043
4044 return folio;
4045}
4046
4047#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4048static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4049{
4050 struct swap_info_struct *si = swp_swap_info(entry);
4051 pgoff_t offset = swp_offset(entry);
4052 int i;
4053
4054 /*
4055 * While allocating a large folio and doing swap_read_folio, which is
4056 * the case the being faulted pte doesn't have swapcache. We need to
4057 * ensure all PTEs have no cache as well, otherwise, we might go to
4058 * swap devices while the content is in swapcache.
4059 */
4060 for (i = 0; i < max_nr; i++) {
4061 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4062 return i;
4063 }
4064
4065 return i;
4066}
4067
4068/*
4069 * Check if the PTEs within a range are contiguous swap entries
4070 * and have consistent swapcache, zeromap.
4071 */
4072static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4073{
4074 unsigned long addr;
4075 swp_entry_t entry;
4076 int idx;
4077 pte_t pte;
4078
4079 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4080 idx = (vmf->address - addr) / PAGE_SIZE;
4081 pte = ptep_get(ptep);
4082
4083 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4084 return false;
4085 entry = pte_to_swp_entry(pte);
4086 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4087 return false;
4088
4089 /*
4090 * swap_read_folio() can't handle the case a large folio is hybridly
4091 * from different backends. And they are likely corner cases. Similar
4092 * things might be added once zswap support large folios.
4093 */
4094 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4095 return false;
4096 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4097 return false;
4098
4099 return true;
4100}
4101
4102static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4103 unsigned long addr,
4104 unsigned long orders)
4105{
4106 int order, nr;
4107
4108 order = highest_order(orders);
4109
4110 /*
4111 * To swap in a THP with nr pages, we require that its first swap_offset
4112 * is aligned with that number, as it was when the THP was swapped out.
4113 * This helps filter out most invalid entries.
4114 */
4115 while (orders) {
4116 nr = 1 << order;
4117 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4118 break;
4119 order = next_order(&orders, order);
4120 }
4121
4122 return orders;
4123}
4124
4125static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4126{
4127 struct vm_area_struct *vma = vmf->vma;
4128 unsigned long orders;
4129 struct folio *folio;
4130 unsigned long addr;
4131 swp_entry_t entry;
4132 spinlock_t *ptl;
4133 pte_t *pte;
4134 gfp_t gfp;
4135 int order;
4136
4137 /*
4138 * If uffd is active for the vma we need per-page fault fidelity to
4139 * maintain the uffd semantics.
4140 */
4141 if (unlikely(userfaultfd_armed(vma)))
4142 goto fallback;
4143
4144 /*
4145 * A large swapped out folio could be partially or fully in zswap. We
4146 * lack handling for such cases, so fallback to swapping in order-0
4147 * folio.
4148 */
4149 if (!zswap_never_enabled())
4150 goto fallback;
4151
4152 entry = pte_to_swp_entry(vmf->orig_pte);
4153 /*
4154 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4155 * and suitable for swapping THP.
4156 */
4157 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4158 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4159 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4160 orders = thp_swap_suitable_orders(swp_offset(entry),
4161 vmf->address, orders);
4162
4163 if (!orders)
4164 goto fallback;
4165
4166 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4167 vmf->address & PMD_MASK, &ptl);
4168 if (unlikely(!pte))
4169 goto fallback;
4170
4171 /*
4172 * For do_swap_page, find the highest order where the aligned range is
4173 * completely swap entries with contiguous swap offsets.
4174 */
4175 order = highest_order(orders);
4176 while (orders) {
4177 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4178 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4179 break;
4180 order = next_order(&orders, order);
4181 }
4182
4183 pte_unmap_unlock(pte, ptl);
4184
4185 /* Try allocating the highest of the remaining orders. */
4186 gfp = vma_thp_gfp_mask(vma);
4187 while (orders) {
4188 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4189 folio = vma_alloc_folio(gfp, order, vma, addr);
4190 if (folio) {
4191 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4192 gfp, entry))
4193 return folio;
4194 folio_put(folio);
4195 }
4196 order = next_order(&orders, order);
4197 }
4198
4199fallback:
4200 return __alloc_swap_folio(vmf);
4201}
4202#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4203static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4204{
4205 return __alloc_swap_folio(vmf);
4206}
4207#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4208
4209static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4210
4211/*
4212 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4213 * but allow concurrent faults), and pte mapped but not yet locked.
4214 * We return with pte unmapped and unlocked.
4215 *
4216 * We return with the mmap_lock locked or unlocked in the same cases
4217 * as does filemap_fault().
4218 */
4219vm_fault_t do_swap_page(struct vm_fault *vmf)
4220{
4221 struct vm_area_struct *vma = vmf->vma;
4222 struct folio *swapcache, *folio = NULL;
4223 DECLARE_WAITQUEUE(wait, current);
4224 struct page *page;
4225 struct swap_info_struct *si = NULL;
4226 rmap_t rmap_flags = RMAP_NONE;
4227 bool need_clear_cache = false;
4228 bool exclusive = false;
4229 swp_entry_t entry;
4230 pte_t pte;
4231 vm_fault_t ret = 0;
4232 void *shadow = NULL;
4233 int nr_pages;
4234 unsigned long page_idx;
4235 unsigned long address;
4236 pte_t *ptep;
4237
4238 if (!pte_unmap_same(vmf))
4239 goto out;
4240
4241 entry = pte_to_swp_entry(vmf->orig_pte);
4242 if (unlikely(non_swap_entry(entry))) {
4243 if (is_migration_entry(entry)) {
4244 migration_entry_wait(vma->vm_mm, vmf->pmd,
4245 vmf->address);
4246 } else if (is_device_exclusive_entry(entry)) {
4247 vmf->page = pfn_swap_entry_to_page(entry);
4248 ret = remove_device_exclusive_entry(vmf);
4249 } else if (is_device_private_entry(entry)) {
4250 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4251 /*
4252 * migrate_to_ram is not yet ready to operate
4253 * under VMA lock.
4254 */
4255 vma_end_read(vma);
4256 ret = VM_FAULT_RETRY;
4257 goto out;
4258 }
4259
4260 vmf->page = pfn_swap_entry_to_page(entry);
4261 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4262 vmf->address, &vmf->ptl);
4263 if (unlikely(!vmf->pte ||
4264 !pte_same(ptep_get(vmf->pte),
4265 vmf->orig_pte)))
4266 goto unlock;
4267
4268 /*
4269 * Get a page reference while we know the page can't be
4270 * freed.
4271 */
4272 get_page(vmf->page);
4273 pte_unmap_unlock(vmf->pte, vmf->ptl);
4274 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4275 put_page(vmf->page);
4276 } else if (is_hwpoison_entry(entry)) {
4277 ret = VM_FAULT_HWPOISON;
4278 } else if (is_pte_marker_entry(entry)) {
4279 ret = handle_pte_marker(vmf);
4280 } else {
4281 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4282 ret = VM_FAULT_SIGBUS;
4283 }
4284 goto out;
4285 }
4286
4287 /* Prevent swapoff from happening to us. */
4288 si = get_swap_device(entry);
4289 if (unlikely(!si))
4290 goto out;
4291
4292 folio = swap_cache_get_folio(entry, vma, vmf->address);
4293 if (folio)
4294 page = folio_file_page(folio, swp_offset(entry));
4295 swapcache = folio;
4296
4297 if (!folio) {
4298 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4299 __swap_count(entry) == 1) {
4300 /* skip swapcache */
4301 folio = alloc_swap_folio(vmf);
4302 if (folio) {
4303 __folio_set_locked(folio);
4304 __folio_set_swapbacked(folio);
4305
4306 nr_pages = folio_nr_pages(folio);
4307 if (folio_test_large(folio))
4308 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4309 /*
4310 * Prevent parallel swapin from proceeding with
4311 * the cache flag. Otherwise, another thread
4312 * may finish swapin first, free the entry, and
4313 * swapout reusing the same entry. It's
4314 * undetectable as pte_same() returns true due
4315 * to entry reuse.
4316 */
4317 if (swapcache_prepare(entry, nr_pages)) {
4318 /*
4319 * Relax a bit to prevent rapid
4320 * repeated page faults.
4321 */
4322 add_wait_queue(&swapcache_wq, &wait);
4323 schedule_timeout_uninterruptible(1);
4324 remove_wait_queue(&swapcache_wq, &wait);
4325 goto out_page;
4326 }
4327 need_clear_cache = true;
4328
4329 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4330
4331 shadow = get_shadow_from_swap_cache(entry);
4332 if (shadow)
4333 workingset_refault(folio, shadow);
4334
4335 folio_add_lru(folio);
4336
4337 /* To provide entry to swap_read_folio() */
4338 folio->swap = entry;
4339 swap_read_folio(folio, NULL);
4340 folio->private = NULL;
4341 }
4342 } else {
4343 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4344 vmf);
4345 swapcache = folio;
4346 }
4347
4348 if (!folio) {
4349 /*
4350 * Back out if somebody else faulted in this pte
4351 * while we released the pte lock.
4352 */
4353 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4354 vmf->address, &vmf->ptl);
4355 if (likely(vmf->pte &&
4356 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4357 ret = VM_FAULT_OOM;
4358 goto unlock;
4359 }
4360
4361 /* Had to read the page from swap area: Major fault */
4362 ret = VM_FAULT_MAJOR;
4363 count_vm_event(PGMAJFAULT);
4364 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4365 page = folio_file_page(folio, swp_offset(entry));
4366 } else if (PageHWPoison(page)) {
4367 /*
4368 * hwpoisoned dirty swapcache pages are kept for killing
4369 * owner processes (which may be unknown at hwpoison time)
4370 */
4371 ret = VM_FAULT_HWPOISON;
4372 goto out_release;
4373 }
4374
4375 ret |= folio_lock_or_retry(folio, vmf);
4376 if (ret & VM_FAULT_RETRY)
4377 goto out_release;
4378
4379 if (swapcache) {
4380 /*
4381 * Make sure folio_free_swap() or swapoff did not release the
4382 * swapcache from under us. The page pin, and pte_same test
4383 * below, are not enough to exclude that. Even if it is still
4384 * swapcache, we need to check that the page's swap has not
4385 * changed.
4386 */
4387 if (unlikely(!folio_test_swapcache(folio) ||
4388 page_swap_entry(page).val != entry.val))
4389 goto out_page;
4390
4391 /*
4392 * KSM sometimes has to copy on read faults, for example, if
4393 * page->index of !PageKSM() pages would be nonlinear inside the
4394 * anon VMA -- PageKSM() is lost on actual swapout.
4395 */
4396 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4397 if (unlikely(!folio)) {
4398 ret = VM_FAULT_OOM;
4399 folio = swapcache;
4400 goto out_page;
4401 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4402 ret = VM_FAULT_HWPOISON;
4403 folio = swapcache;
4404 goto out_page;
4405 }
4406 if (folio != swapcache)
4407 page = folio_page(folio, 0);
4408
4409 /*
4410 * If we want to map a page that's in the swapcache writable, we
4411 * have to detect via the refcount if we're really the exclusive
4412 * owner. Try removing the extra reference from the local LRU
4413 * caches if required.
4414 */
4415 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4416 !folio_test_ksm(folio) && !folio_test_lru(folio))
4417 lru_add_drain();
4418 }
4419
4420 folio_throttle_swaprate(folio, GFP_KERNEL);
4421
4422 /*
4423 * Back out if somebody else already faulted in this pte.
4424 */
4425 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4426 &vmf->ptl);
4427 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4428 goto out_nomap;
4429
4430 if (unlikely(!folio_test_uptodate(folio))) {
4431 ret = VM_FAULT_SIGBUS;
4432 goto out_nomap;
4433 }
4434
4435 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4436 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4437 unsigned long nr = folio_nr_pages(folio);
4438 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4439 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4440 pte_t *folio_ptep = vmf->pte - idx;
4441 pte_t folio_pte = ptep_get(folio_ptep);
4442
4443 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4444 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4445 goto out_nomap;
4446
4447 page_idx = idx;
4448 address = folio_start;
4449 ptep = folio_ptep;
4450 goto check_folio;
4451 }
4452
4453 nr_pages = 1;
4454 page_idx = 0;
4455 address = vmf->address;
4456 ptep = vmf->pte;
4457 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4458 int nr = folio_nr_pages(folio);
4459 unsigned long idx = folio_page_idx(folio, page);
4460 unsigned long folio_start = address - idx * PAGE_SIZE;
4461 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4462 pte_t *folio_ptep;
4463 pte_t folio_pte;
4464
4465 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4466 goto check_folio;
4467 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4468 goto check_folio;
4469
4470 folio_ptep = vmf->pte - idx;
4471 folio_pte = ptep_get(folio_ptep);
4472 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4473 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4474 goto check_folio;
4475
4476 page_idx = idx;
4477 address = folio_start;
4478 ptep = folio_ptep;
4479 nr_pages = nr;
4480 entry = folio->swap;
4481 page = &folio->page;
4482 }
4483
4484check_folio:
4485 /*
4486 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4487 * must never point at an anonymous page in the swapcache that is
4488 * PG_anon_exclusive. Sanity check that this holds and especially, that
4489 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4490 * check after taking the PT lock and making sure that nobody
4491 * concurrently faulted in this page and set PG_anon_exclusive.
4492 */
4493 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4494 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4495
4496 /*
4497 * Check under PT lock (to protect against concurrent fork() sharing
4498 * the swap entry concurrently) for certainly exclusive pages.
4499 */
4500 if (!folio_test_ksm(folio)) {
4501 exclusive = pte_swp_exclusive(vmf->orig_pte);
4502 if (folio != swapcache) {
4503 /*
4504 * We have a fresh page that is not exposed to the
4505 * swapcache -> certainly exclusive.
4506 */
4507 exclusive = true;
4508 } else if (exclusive && folio_test_writeback(folio) &&
4509 data_race(si->flags & SWP_STABLE_WRITES)) {
4510 /*
4511 * This is tricky: not all swap backends support
4512 * concurrent page modifications while under writeback.
4513 *
4514 * So if we stumble over such a page in the swapcache
4515 * we must not set the page exclusive, otherwise we can
4516 * map it writable without further checks and modify it
4517 * while still under writeback.
4518 *
4519 * For these problematic swap backends, simply drop the
4520 * exclusive marker: this is perfectly fine as we start
4521 * writeback only if we fully unmapped the page and
4522 * there are no unexpected references on the page after
4523 * unmapping succeeded. After fully unmapped, no
4524 * further GUP references (FOLL_GET and FOLL_PIN) can
4525 * appear, so dropping the exclusive marker and mapping
4526 * it only R/O is fine.
4527 */
4528 exclusive = false;
4529 }
4530 }
4531
4532 /*
4533 * Some architectures may have to restore extra metadata to the page
4534 * when reading from swap. This metadata may be indexed by swap entry
4535 * so this must be called before swap_free().
4536 */
4537 arch_swap_restore(folio_swap(entry, folio), folio);
4538
4539 /*
4540 * Remove the swap entry and conditionally try to free up the swapcache.
4541 * We're already holding a reference on the page but haven't mapped it
4542 * yet.
4543 */
4544 swap_free_nr(entry, nr_pages);
4545 if (should_try_to_free_swap(folio, vma, vmf->flags))
4546 folio_free_swap(folio);
4547
4548 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4549 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4550 pte = mk_pte(page, vma->vm_page_prot);
4551 if (pte_swp_soft_dirty(vmf->orig_pte))
4552 pte = pte_mksoft_dirty(pte);
4553 if (pte_swp_uffd_wp(vmf->orig_pte))
4554 pte = pte_mkuffd_wp(pte);
4555
4556 /*
4557 * Same logic as in do_wp_page(); however, optimize for pages that are
4558 * certainly not shared either because we just allocated them without
4559 * exposing them to the swapcache or because the swap entry indicates
4560 * exclusivity.
4561 */
4562 if (!folio_test_ksm(folio) &&
4563 (exclusive || folio_ref_count(folio) == 1)) {
4564 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4565 !pte_needs_soft_dirty_wp(vma, pte)) {
4566 pte = pte_mkwrite(pte, vma);
4567 if (vmf->flags & FAULT_FLAG_WRITE) {
4568 pte = pte_mkdirty(pte);
4569 vmf->flags &= ~FAULT_FLAG_WRITE;
4570 }
4571 }
4572 rmap_flags |= RMAP_EXCLUSIVE;
4573 }
4574 folio_ref_add(folio, nr_pages - 1);
4575 flush_icache_pages(vma, page, nr_pages);
4576 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4577
4578 /* ksm created a completely new copy */
4579 if (unlikely(folio != swapcache && swapcache)) {
4580 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4581 folio_add_lru_vma(folio, vma);
4582 } else if (!folio_test_anon(folio)) {
4583 /*
4584 * We currently only expect small !anon folios which are either
4585 * fully exclusive or fully shared, or new allocated large
4586 * folios which are fully exclusive. If we ever get large
4587 * folios within swapcache here, we have to be careful.
4588 */
4589 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4590 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4591 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4592 } else {
4593 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4594 rmap_flags);
4595 }
4596
4597 VM_BUG_ON(!folio_test_anon(folio) ||
4598 (pte_write(pte) && !PageAnonExclusive(page)));
4599 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4600 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4601 pte, pte, nr_pages);
4602
4603 folio_unlock(folio);
4604 if (folio != swapcache && swapcache) {
4605 /*
4606 * Hold the lock to avoid the swap entry to be reused
4607 * until we take the PT lock for the pte_same() check
4608 * (to avoid false positives from pte_same). For
4609 * further safety release the lock after the swap_free
4610 * so that the swap count won't change under a
4611 * parallel locked swapcache.
4612 */
4613 folio_unlock(swapcache);
4614 folio_put(swapcache);
4615 }
4616
4617 if (vmf->flags & FAULT_FLAG_WRITE) {
4618 ret |= do_wp_page(vmf);
4619 if (ret & VM_FAULT_ERROR)
4620 ret &= VM_FAULT_ERROR;
4621 goto out;
4622 }
4623
4624 /* No need to invalidate - it was non-present before */
4625 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4626unlock:
4627 if (vmf->pte)
4628 pte_unmap_unlock(vmf->pte, vmf->ptl);
4629out:
4630 /* Clear the swap cache pin for direct swapin after PTL unlock */
4631 if (need_clear_cache) {
4632 swapcache_clear(si, entry, nr_pages);
4633 if (waitqueue_active(&swapcache_wq))
4634 wake_up(&swapcache_wq);
4635 }
4636 if (si)
4637 put_swap_device(si);
4638 return ret;
4639out_nomap:
4640 if (vmf->pte)
4641 pte_unmap_unlock(vmf->pte, vmf->ptl);
4642out_page:
4643 folio_unlock(folio);
4644out_release:
4645 folio_put(folio);
4646 if (folio != swapcache && swapcache) {
4647 folio_unlock(swapcache);
4648 folio_put(swapcache);
4649 }
4650 if (need_clear_cache) {
4651 swapcache_clear(si, entry, nr_pages);
4652 if (waitqueue_active(&swapcache_wq))
4653 wake_up(&swapcache_wq);
4654 }
4655 if (si)
4656 put_swap_device(si);
4657 return ret;
4658}
4659
4660static bool pte_range_none(pte_t *pte, int nr_pages)
4661{
4662 int i;
4663
4664 for (i = 0; i < nr_pages; i++) {
4665 if (!pte_none(ptep_get_lockless(pte + i)))
4666 return false;
4667 }
4668
4669 return true;
4670}
4671
4672static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4673{
4674 struct vm_area_struct *vma = vmf->vma;
4675#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4676 unsigned long orders;
4677 struct folio *folio;
4678 unsigned long addr;
4679 pte_t *pte;
4680 gfp_t gfp;
4681 int order;
4682
4683 /*
4684 * If uffd is active for the vma we need per-page fault fidelity to
4685 * maintain the uffd semantics.
4686 */
4687 if (unlikely(userfaultfd_armed(vma)))
4688 goto fallback;
4689
4690 /*
4691 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4692 * for this vma. Then filter out the orders that can't be allocated over
4693 * the faulting address and still be fully contained in the vma.
4694 */
4695 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4696 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4697 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4698
4699 if (!orders)
4700 goto fallback;
4701
4702 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4703 if (!pte)
4704 return ERR_PTR(-EAGAIN);
4705
4706 /*
4707 * Find the highest order where the aligned range is completely
4708 * pte_none(). Note that all remaining orders will be completely
4709 * pte_none().
4710 */
4711 order = highest_order(orders);
4712 while (orders) {
4713 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4714 if (pte_range_none(pte + pte_index(addr), 1 << order))
4715 break;
4716 order = next_order(&orders, order);
4717 }
4718
4719 pte_unmap(pte);
4720
4721 if (!orders)
4722 goto fallback;
4723
4724 /* Try allocating the highest of the remaining orders. */
4725 gfp = vma_thp_gfp_mask(vma);
4726 while (orders) {
4727 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4728 folio = vma_alloc_folio(gfp, order, vma, addr);
4729 if (folio) {
4730 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4731 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4732 folio_put(folio);
4733 goto next;
4734 }
4735 folio_throttle_swaprate(folio, gfp);
4736 /*
4737 * When a folio is not zeroed during allocation
4738 * (__GFP_ZERO not used) or user folios require special
4739 * handling, folio_zero_user() is used to make sure
4740 * that the page corresponding to the faulting address
4741 * will be hot in the cache after zeroing.
4742 */
4743 if (user_alloc_needs_zeroing())
4744 folio_zero_user(folio, vmf->address);
4745 return folio;
4746 }
4747next:
4748 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4749 order = next_order(&orders, order);
4750 }
4751
4752fallback:
4753#endif
4754 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4755}
4756
4757/*
4758 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4759 * but allow concurrent faults), and pte mapped but not yet locked.
4760 * We return with mmap_lock still held, but pte unmapped and unlocked.
4761 */
4762static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4763{
4764 struct vm_area_struct *vma = vmf->vma;
4765 unsigned long addr = vmf->address;
4766 struct folio *folio;
4767 vm_fault_t ret = 0;
4768 int nr_pages = 1;
4769 pte_t entry;
4770
4771 /* File mapping without ->vm_ops ? */
4772 if (vma->vm_flags & VM_SHARED)
4773 return VM_FAULT_SIGBUS;
4774
4775 /*
4776 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4777 * be distinguished from a transient failure of pte_offset_map().
4778 */
4779 if (pte_alloc(vma->vm_mm, vmf->pmd))
4780 return VM_FAULT_OOM;
4781
4782 /* Use the zero-page for reads */
4783 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4784 !mm_forbids_zeropage(vma->vm_mm)) {
4785 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4786 vma->vm_page_prot));
4787 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4788 vmf->address, &vmf->ptl);
4789 if (!vmf->pte)
4790 goto unlock;
4791 if (vmf_pte_changed(vmf)) {
4792 update_mmu_tlb(vma, vmf->address, vmf->pte);
4793 goto unlock;
4794 }
4795 ret = check_stable_address_space(vma->vm_mm);
4796 if (ret)
4797 goto unlock;
4798 /* Deliver the page fault to userland, check inside PT lock */
4799 if (userfaultfd_missing(vma)) {
4800 pte_unmap_unlock(vmf->pte, vmf->ptl);
4801 return handle_userfault(vmf, VM_UFFD_MISSING);
4802 }
4803 goto setpte;
4804 }
4805
4806 /* Allocate our own private page. */
4807 ret = vmf_anon_prepare(vmf);
4808 if (ret)
4809 return ret;
4810 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4811 folio = alloc_anon_folio(vmf);
4812 if (IS_ERR(folio))
4813 return 0;
4814 if (!folio)
4815 goto oom;
4816
4817 nr_pages = folio_nr_pages(folio);
4818 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4819
4820 /*
4821 * The memory barrier inside __folio_mark_uptodate makes sure that
4822 * preceding stores to the page contents become visible before
4823 * the set_pte_at() write.
4824 */
4825 __folio_mark_uptodate(folio);
4826
4827 entry = mk_pte(&folio->page, vma->vm_page_prot);
4828 entry = pte_sw_mkyoung(entry);
4829 if (vma->vm_flags & VM_WRITE)
4830 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4831
4832 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4833 if (!vmf->pte)
4834 goto release;
4835 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4836 update_mmu_tlb(vma, addr, vmf->pte);
4837 goto release;
4838 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4839 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4840 goto release;
4841 }
4842
4843 ret = check_stable_address_space(vma->vm_mm);
4844 if (ret)
4845 goto release;
4846
4847 /* Deliver the page fault to userland, check inside PT lock */
4848 if (userfaultfd_missing(vma)) {
4849 pte_unmap_unlock(vmf->pte, vmf->ptl);
4850 folio_put(folio);
4851 return handle_userfault(vmf, VM_UFFD_MISSING);
4852 }
4853
4854 folio_ref_add(folio, nr_pages - 1);
4855 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4856 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4857 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4858 folio_add_lru_vma(folio, vma);
4859setpte:
4860 if (vmf_orig_pte_uffd_wp(vmf))
4861 entry = pte_mkuffd_wp(entry);
4862 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4863
4864 /* No need to invalidate - it was non-present before */
4865 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4866unlock:
4867 if (vmf->pte)
4868 pte_unmap_unlock(vmf->pte, vmf->ptl);
4869 return ret;
4870release:
4871 folio_put(folio);
4872 goto unlock;
4873oom:
4874 return VM_FAULT_OOM;
4875}
4876
4877/*
4878 * The mmap_lock must have been held on entry, and may have been
4879 * released depending on flags and vma->vm_ops->fault() return value.
4880 * See filemap_fault() and __lock_page_retry().
4881 */
4882static vm_fault_t __do_fault(struct vm_fault *vmf)
4883{
4884 struct vm_area_struct *vma = vmf->vma;
4885 struct folio *folio;
4886 vm_fault_t ret;
4887
4888 /*
4889 * Preallocate pte before we take page_lock because this might lead to
4890 * deadlocks for memcg reclaim which waits for pages under writeback:
4891 * lock_page(A)
4892 * SetPageWriteback(A)
4893 * unlock_page(A)
4894 * lock_page(B)
4895 * lock_page(B)
4896 * pte_alloc_one
4897 * shrink_folio_list
4898 * wait_on_page_writeback(A)
4899 * SetPageWriteback(B)
4900 * unlock_page(B)
4901 * # flush A, B to clear the writeback
4902 */
4903 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4904 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4905 if (!vmf->prealloc_pte)
4906 return VM_FAULT_OOM;
4907 }
4908
4909 ret = vma->vm_ops->fault(vmf);
4910 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4911 VM_FAULT_DONE_COW)))
4912 return ret;
4913
4914 folio = page_folio(vmf->page);
4915 if (unlikely(PageHWPoison(vmf->page))) {
4916 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4917 if (ret & VM_FAULT_LOCKED) {
4918 if (page_mapped(vmf->page))
4919 unmap_mapping_folio(folio);
4920 /* Retry if a clean folio was removed from the cache. */
4921 if (mapping_evict_folio(folio->mapping, folio))
4922 poisonret = VM_FAULT_NOPAGE;
4923 folio_unlock(folio);
4924 }
4925 folio_put(folio);
4926 vmf->page = NULL;
4927 return poisonret;
4928 }
4929
4930 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4931 folio_lock(folio);
4932 else
4933 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4934
4935 return ret;
4936}
4937
4938#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4939static void deposit_prealloc_pte(struct vm_fault *vmf)
4940{
4941 struct vm_area_struct *vma = vmf->vma;
4942
4943 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4944 /*
4945 * We are going to consume the prealloc table,
4946 * count that as nr_ptes.
4947 */
4948 mm_inc_nr_ptes(vma->vm_mm);
4949 vmf->prealloc_pte = NULL;
4950}
4951
4952vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4953{
4954 struct folio *folio = page_folio(page);
4955 struct vm_area_struct *vma = vmf->vma;
4956 bool write = vmf->flags & FAULT_FLAG_WRITE;
4957 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4958 pmd_t entry;
4959 vm_fault_t ret = VM_FAULT_FALLBACK;
4960
4961 /*
4962 * It is too late to allocate a small folio, we already have a large
4963 * folio in the pagecache: especially s390 KVM cannot tolerate any
4964 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4965 * PMD mappings if THPs are disabled.
4966 */
4967 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4968 return ret;
4969
4970 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4971 return ret;
4972
4973 if (folio_order(folio) != HPAGE_PMD_ORDER)
4974 return ret;
4975 page = &folio->page;
4976
4977 /*
4978 * Just backoff if any subpage of a THP is corrupted otherwise
4979 * the corrupted page may mapped by PMD silently to escape the
4980 * check. This kind of THP just can be PTE mapped. Access to
4981 * the corrupted subpage should trigger SIGBUS as expected.
4982 */
4983 if (unlikely(folio_test_has_hwpoisoned(folio)))
4984 return ret;
4985
4986 /*
4987 * Archs like ppc64 need additional space to store information
4988 * related to pte entry. Use the preallocated table for that.
4989 */
4990 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4991 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4992 if (!vmf->prealloc_pte)
4993 return VM_FAULT_OOM;
4994 }
4995
4996 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4997 if (unlikely(!pmd_none(*vmf->pmd)))
4998 goto out;
4999
5000 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5001
5002 entry = mk_huge_pmd(page, vma->vm_page_prot);
5003 if (write)
5004 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5005
5006 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5007 folio_add_file_rmap_pmd(folio, page, vma);
5008
5009 /*
5010 * deposit and withdraw with pmd lock held
5011 */
5012 if (arch_needs_pgtable_deposit())
5013 deposit_prealloc_pte(vmf);
5014
5015 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5016
5017 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5018
5019 /* fault is handled */
5020 ret = 0;
5021 count_vm_event(THP_FILE_MAPPED);
5022out:
5023 spin_unlock(vmf->ptl);
5024 return ret;
5025}
5026#else
5027vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5028{
5029 return VM_FAULT_FALLBACK;
5030}
5031#endif
5032
5033/**
5034 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5035 * @vmf: Fault decription.
5036 * @folio: The folio that contains @page.
5037 * @page: The first page to create a PTE for.
5038 * @nr: The number of PTEs to create.
5039 * @addr: The first address to create a PTE for.
5040 */
5041void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5042 struct page *page, unsigned int nr, unsigned long addr)
5043{
5044 struct vm_area_struct *vma = vmf->vma;
5045 bool write = vmf->flags & FAULT_FLAG_WRITE;
5046 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5047 pte_t entry;
5048
5049 flush_icache_pages(vma, page, nr);
5050 entry = mk_pte(page, vma->vm_page_prot);
5051
5052 if (prefault && arch_wants_old_prefaulted_pte())
5053 entry = pte_mkold(entry);
5054 else
5055 entry = pte_sw_mkyoung(entry);
5056
5057 if (write)
5058 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5059 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5060 entry = pte_mkuffd_wp(entry);
5061 /* copy-on-write page */
5062 if (write && !(vma->vm_flags & VM_SHARED)) {
5063 VM_BUG_ON_FOLIO(nr != 1, folio);
5064 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5065 folio_add_lru_vma(folio, vma);
5066 } else {
5067 folio_add_file_rmap_ptes(folio, page, nr, vma);
5068 }
5069 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5070
5071 /* no need to invalidate: a not-present page won't be cached */
5072 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5073}
5074
5075static bool vmf_pte_changed(struct vm_fault *vmf)
5076{
5077 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5078 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5079
5080 return !pte_none(ptep_get(vmf->pte));
5081}
5082
5083/**
5084 * finish_fault - finish page fault once we have prepared the page to fault
5085 *
5086 * @vmf: structure describing the fault
5087 *
5088 * This function handles all that is needed to finish a page fault once the
5089 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5090 * given page, adds reverse page mapping, handles memcg charges and LRU
5091 * addition.
5092 *
5093 * The function expects the page to be locked and on success it consumes a
5094 * reference of a page being mapped (for the PTE which maps it).
5095 *
5096 * Return: %0 on success, %VM_FAULT_ code in case of error.
5097 */
5098vm_fault_t finish_fault(struct vm_fault *vmf)
5099{
5100 struct vm_area_struct *vma = vmf->vma;
5101 struct page *page;
5102 struct folio *folio;
5103 vm_fault_t ret;
5104 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5105 !(vma->vm_flags & VM_SHARED);
5106 int type, nr_pages;
5107 unsigned long addr;
5108 bool needs_fallback = false;
5109
5110fallback:
5111 addr = vmf->address;
5112
5113 /* Did we COW the page? */
5114 if (is_cow)
5115 page = vmf->cow_page;
5116 else
5117 page = vmf->page;
5118
5119 /*
5120 * check even for read faults because we might have lost our CoWed
5121 * page
5122 */
5123 if (!(vma->vm_flags & VM_SHARED)) {
5124 ret = check_stable_address_space(vma->vm_mm);
5125 if (ret)
5126 return ret;
5127 }
5128
5129 if (pmd_none(*vmf->pmd)) {
5130 if (PageTransCompound(page)) {
5131 ret = do_set_pmd(vmf, page);
5132 if (ret != VM_FAULT_FALLBACK)
5133 return ret;
5134 }
5135
5136 if (vmf->prealloc_pte)
5137 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5138 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5139 return VM_FAULT_OOM;
5140 }
5141
5142 folio = page_folio(page);
5143 nr_pages = folio_nr_pages(folio);
5144
5145 /*
5146 * Using per-page fault to maintain the uffd semantics, and same
5147 * approach also applies to non-anonymous-shmem faults to avoid
5148 * inflating the RSS of the process.
5149 */
5150 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5151 unlikely(needs_fallback)) {
5152 nr_pages = 1;
5153 } else if (nr_pages > 1) {
5154 pgoff_t idx = folio_page_idx(folio, page);
5155 /* The page offset of vmf->address within the VMA. */
5156 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5157 /* The index of the entry in the pagetable for fault page. */
5158 pgoff_t pte_off = pte_index(vmf->address);
5159
5160 /*
5161 * Fallback to per-page fault in case the folio size in page
5162 * cache beyond the VMA limits and PMD pagetable limits.
5163 */
5164 if (unlikely(vma_off < idx ||
5165 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5166 pte_off < idx ||
5167 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5168 nr_pages = 1;
5169 } else {
5170 /* Now we can set mappings for the whole large folio. */
5171 addr = vmf->address - idx * PAGE_SIZE;
5172 page = &folio->page;
5173 }
5174 }
5175
5176 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5177 addr, &vmf->ptl);
5178 if (!vmf->pte)
5179 return VM_FAULT_NOPAGE;
5180
5181 /* Re-check under ptl */
5182 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5183 update_mmu_tlb(vma, addr, vmf->pte);
5184 ret = VM_FAULT_NOPAGE;
5185 goto unlock;
5186 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5187 needs_fallback = true;
5188 pte_unmap_unlock(vmf->pte, vmf->ptl);
5189 goto fallback;
5190 }
5191
5192 folio_ref_add(folio, nr_pages - 1);
5193 set_pte_range(vmf, folio, page, nr_pages, addr);
5194 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5195 add_mm_counter(vma->vm_mm, type, nr_pages);
5196 ret = 0;
5197
5198unlock:
5199 pte_unmap_unlock(vmf->pte, vmf->ptl);
5200 return ret;
5201}
5202
5203static unsigned long fault_around_pages __read_mostly =
5204 65536 >> PAGE_SHIFT;
5205
5206#ifdef CONFIG_DEBUG_FS
5207static int fault_around_bytes_get(void *data, u64 *val)
5208{
5209 *val = fault_around_pages << PAGE_SHIFT;
5210 return 0;
5211}
5212
5213/*
5214 * fault_around_bytes must be rounded down to the nearest page order as it's
5215 * what do_fault_around() expects to see.
5216 */
5217static int fault_around_bytes_set(void *data, u64 val)
5218{
5219 if (val / PAGE_SIZE > PTRS_PER_PTE)
5220 return -EINVAL;
5221
5222 /*
5223 * The minimum value is 1 page, however this results in no fault-around
5224 * at all. See should_fault_around().
5225 */
5226 val = max(val, PAGE_SIZE);
5227 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5228
5229 return 0;
5230}
5231DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5232 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5233
5234static int __init fault_around_debugfs(void)
5235{
5236 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5237 &fault_around_bytes_fops);
5238 return 0;
5239}
5240late_initcall(fault_around_debugfs);
5241#endif
5242
5243/*
5244 * do_fault_around() tries to map few pages around the fault address. The hope
5245 * is that the pages will be needed soon and this will lower the number of
5246 * faults to handle.
5247 *
5248 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5249 * not ready to be mapped: not up-to-date, locked, etc.
5250 *
5251 * This function doesn't cross VMA or page table boundaries, in order to call
5252 * map_pages() and acquire a PTE lock only once.
5253 *
5254 * fault_around_pages defines how many pages we'll try to map.
5255 * do_fault_around() expects it to be set to a power of two less than or equal
5256 * to PTRS_PER_PTE.
5257 *
5258 * The virtual address of the area that we map is naturally aligned to
5259 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5260 * (and therefore to page order). This way it's easier to guarantee
5261 * that we don't cross page table boundaries.
5262 */
5263static vm_fault_t do_fault_around(struct vm_fault *vmf)
5264{
5265 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5266 pgoff_t pte_off = pte_index(vmf->address);
5267 /* The page offset of vmf->address within the VMA. */
5268 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5269 pgoff_t from_pte, to_pte;
5270 vm_fault_t ret;
5271
5272 /* The PTE offset of the start address, clamped to the VMA. */
5273 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5274 pte_off - min(pte_off, vma_off));
5275
5276 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5277 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5278 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5279
5280 if (pmd_none(*vmf->pmd)) {
5281 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5282 if (!vmf->prealloc_pte)
5283 return VM_FAULT_OOM;
5284 }
5285
5286 rcu_read_lock();
5287 ret = vmf->vma->vm_ops->map_pages(vmf,
5288 vmf->pgoff + from_pte - pte_off,
5289 vmf->pgoff + to_pte - pte_off);
5290 rcu_read_unlock();
5291
5292 return ret;
5293}
5294
5295/* Return true if we should do read fault-around, false otherwise */
5296static inline bool should_fault_around(struct vm_fault *vmf)
5297{
5298 /* No ->map_pages? No way to fault around... */
5299 if (!vmf->vma->vm_ops->map_pages)
5300 return false;
5301
5302 if (uffd_disable_fault_around(vmf->vma))
5303 return false;
5304
5305 /* A single page implies no faulting 'around' at all. */
5306 return fault_around_pages > 1;
5307}
5308
5309static vm_fault_t do_read_fault(struct vm_fault *vmf)
5310{
5311 vm_fault_t ret = 0;
5312 struct folio *folio;
5313
5314 /*
5315 * Let's call ->map_pages() first and use ->fault() as fallback
5316 * if page by the offset is not ready to be mapped (cold cache or
5317 * something).
5318 */
5319 if (should_fault_around(vmf)) {
5320 ret = do_fault_around(vmf);
5321 if (ret)
5322 return ret;
5323 }
5324
5325 ret = vmf_can_call_fault(vmf);
5326 if (ret)
5327 return ret;
5328
5329 ret = __do_fault(vmf);
5330 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5331 return ret;
5332
5333 ret |= finish_fault(vmf);
5334 folio = page_folio(vmf->page);
5335 folio_unlock(folio);
5336 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5337 folio_put(folio);
5338 return ret;
5339}
5340
5341static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5342{
5343 struct vm_area_struct *vma = vmf->vma;
5344 struct folio *folio;
5345 vm_fault_t ret;
5346
5347 ret = vmf_can_call_fault(vmf);
5348 if (!ret)
5349 ret = vmf_anon_prepare(vmf);
5350 if (ret)
5351 return ret;
5352
5353 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5354 if (!folio)
5355 return VM_FAULT_OOM;
5356
5357 vmf->cow_page = &folio->page;
5358
5359 ret = __do_fault(vmf);
5360 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5361 goto uncharge_out;
5362 if (ret & VM_FAULT_DONE_COW)
5363 return ret;
5364
5365 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5366 ret = VM_FAULT_HWPOISON;
5367 goto unlock;
5368 }
5369 __folio_mark_uptodate(folio);
5370
5371 ret |= finish_fault(vmf);
5372unlock:
5373 unlock_page(vmf->page);
5374 put_page(vmf->page);
5375 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5376 goto uncharge_out;
5377 return ret;
5378uncharge_out:
5379 folio_put(folio);
5380 return ret;
5381}
5382
5383static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5384{
5385 struct vm_area_struct *vma = vmf->vma;
5386 vm_fault_t ret, tmp;
5387 struct folio *folio;
5388
5389 ret = vmf_can_call_fault(vmf);
5390 if (ret)
5391 return ret;
5392
5393 ret = __do_fault(vmf);
5394 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5395 return ret;
5396
5397 folio = page_folio(vmf->page);
5398
5399 /*
5400 * Check if the backing address space wants to know that the page is
5401 * about to become writable
5402 */
5403 if (vma->vm_ops->page_mkwrite) {
5404 folio_unlock(folio);
5405 tmp = do_page_mkwrite(vmf, folio);
5406 if (unlikely(!tmp ||
5407 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5408 folio_put(folio);
5409 return tmp;
5410 }
5411 }
5412
5413 ret |= finish_fault(vmf);
5414 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5415 VM_FAULT_RETRY))) {
5416 folio_unlock(folio);
5417 folio_put(folio);
5418 return ret;
5419 }
5420
5421 ret |= fault_dirty_shared_page(vmf);
5422 return ret;
5423}
5424
5425/*
5426 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5427 * but allow concurrent faults).
5428 * The mmap_lock may have been released depending on flags and our
5429 * return value. See filemap_fault() and __folio_lock_or_retry().
5430 * If mmap_lock is released, vma may become invalid (for example
5431 * by other thread calling munmap()).
5432 */
5433static vm_fault_t do_fault(struct vm_fault *vmf)
5434{
5435 struct vm_area_struct *vma = vmf->vma;
5436 struct mm_struct *vm_mm = vma->vm_mm;
5437 vm_fault_t ret;
5438
5439 /*
5440 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5441 */
5442 if (!vma->vm_ops->fault) {
5443 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5444 vmf->address, &vmf->ptl);
5445 if (unlikely(!vmf->pte))
5446 ret = VM_FAULT_SIGBUS;
5447 else {
5448 /*
5449 * Make sure this is not a temporary clearing of pte
5450 * by holding ptl and checking again. A R/M/W update
5451 * of pte involves: take ptl, clearing the pte so that
5452 * we don't have concurrent modification by hardware
5453 * followed by an update.
5454 */
5455 if (unlikely(pte_none(ptep_get(vmf->pte))))
5456 ret = VM_FAULT_SIGBUS;
5457 else
5458 ret = VM_FAULT_NOPAGE;
5459
5460 pte_unmap_unlock(vmf->pte, vmf->ptl);
5461 }
5462 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5463 ret = do_read_fault(vmf);
5464 else if (!(vma->vm_flags & VM_SHARED))
5465 ret = do_cow_fault(vmf);
5466 else
5467 ret = do_shared_fault(vmf);
5468
5469 /* preallocated pagetable is unused: free it */
5470 if (vmf->prealloc_pte) {
5471 pte_free(vm_mm, vmf->prealloc_pte);
5472 vmf->prealloc_pte = NULL;
5473 }
5474 return ret;
5475}
5476
5477int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5478 unsigned long addr, int *flags,
5479 bool writable, int *last_cpupid)
5480{
5481 struct vm_area_struct *vma = vmf->vma;
5482
5483 /*
5484 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5485 * much anyway since they can be in shared cache state. This misses
5486 * the case where a mapping is writable but the process never writes
5487 * to it but pte_write gets cleared during protection updates and
5488 * pte_dirty has unpredictable behaviour between PTE scan updates,
5489 * background writeback, dirty balancing and application behaviour.
5490 */
5491 if (!writable)
5492 *flags |= TNF_NO_GROUP;
5493
5494 /*
5495 * Flag if the folio is shared between multiple address spaces. This
5496 * is later used when determining whether to group tasks together
5497 */
5498 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5499 *flags |= TNF_SHARED;
5500 /*
5501 * For memory tiering mode, cpupid of slow memory page is used
5502 * to record page access time. So use default value.
5503 */
5504 if (folio_use_access_time(folio))
5505 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5506 else
5507 *last_cpupid = folio_last_cpupid(folio);
5508
5509 /* Record the current PID acceesing VMA */
5510 vma_set_access_pid_bit(vma);
5511
5512 count_vm_numa_event(NUMA_HINT_FAULTS);
5513#ifdef CONFIG_NUMA_BALANCING
5514 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5515#endif
5516 if (folio_nid(folio) == numa_node_id()) {
5517 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5518 *flags |= TNF_FAULT_LOCAL;
5519 }
5520
5521 return mpol_misplaced(folio, vmf, addr);
5522}
5523
5524static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5525 unsigned long fault_addr, pte_t *fault_pte,
5526 bool writable)
5527{
5528 pte_t pte, old_pte;
5529
5530 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5531 pte = pte_modify(old_pte, vma->vm_page_prot);
5532 pte = pte_mkyoung(pte);
5533 if (writable)
5534 pte = pte_mkwrite(pte, vma);
5535 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5536 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5537}
5538
5539static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5540 struct folio *folio, pte_t fault_pte,
5541 bool ignore_writable, bool pte_write_upgrade)
5542{
5543 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5544 unsigned long start, end, addr = vmf->address;
5545 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5546 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5547 pte_t *start_ptep;
5548
5549 /* Stay within the VMA and within the page table. */
5550 start = max3(addr_start, pt_start, vma->vm_start);
5551 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5552 vma->vm_end);
5553 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5554
5555 /* Restore all PTEs' mapping of the large folio */
5556 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5557 pte_t ptent = ptep_get(start_ptep);
5558 bool writable = false;
5559
5560 if (!pte_present(ptent) || !pte_protnone(ptent))
5561 continue;
5562
5563 if (pfn_folio(pte_pfn(ptent)) != folio)
5564 continue;
5565
5566 if (!ignore_writable) {
5567 ptent = pte_modify(ptent, vma->vm_page_prot);
5568 writable = pte_write(ptent);
5569 if (!writable && pte_write_upgrade &&
5570 can_change_pte_writable(vma, addr, ptent))
5571 writable = true;
5572 }
5573
5574 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5575 }
5576}
5577
5578static vm_fault_t do_numa_page(struct vm_fault *vmf)
5579{
5580 struct vm_area_struct *vma = vmf->vma;
5581 struct folio *folio = NULL;
5582 int nid = NUMA_NO_NODE;
5583 bool writable = false, ignore_writable = false;
5584 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5585 int last_cpupid;
5586 int target_nid;
5587 pte_t pte, old_pte;
5588 int flags = 0, nr_pages;
5589
5590 /*
5591 * The pte cannot be used safely until we verify, while holding the page
5592 * table lock, that its contents have not changed during fault handling.
5593 */
5594 spin_lock(vmf->ptl);
5595 /* Read the live PTE from the page tables: */
5596 old_pte = ptep_get(vmf->pte);
5597
5598 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5599 pte_unmap_unlock(vmf->pte, vmf->ptl);
5600 return 0;
5601 }
5602
5603 pte = pte_modify(old_pte, vma->vm_page_prot);
5604
5605 /*
5606 * Detect now whether the PTE could be writable; this information
5607 * is only valid while holding the PT lock.
5608 */
5609 writable = pte_write(pte);
5610 if (!writable && pte_write_upgrade &&
5611 can_change_pte_writable(vma, vmf->address, pte))
5612 writable = true;
5613
5614 folio = vm_normal_folio(vma, vmf->address, pte);
5615 if (!folio || folio_is_zone_device(folio))
5616 goto out_map;
5617
5618 nid = folio_nid(folio);
5619 nr_pages = folio_nr_pages(folio);
5620
5621 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5622 writable, &last_cpupid);
5623 if (target_nid == NUMA_NO_NODE)
5624 goto out_map;
5625 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5626 flags |= TNF_MIGRATE_FAIL;
5627 goto out_map;
5628 }
5629 /* The folio is isolated and isolation code holds a folio reference. */
5630 pte_unmap_unlock(vmf->pte, vmf->ptl);
5631 writable = false;
5632 ignore_writable = true;
5633
5634 /* Migrate to the requested node */
5635 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5636 nid = target_nid;
5637 flags |= TNF_MIGRATED;
5638 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5639 return 0;
5640 }
5641
5642 flags |= TNF_MIGRATE_FAIL;
5643 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5644 vmf->address, &vmf->ptl);
5645 if (unlikely(!vmf->pte))
5646 return 0;
5647 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5648 pte_unmap_unlock(vmf->pte, vmf->ptl);
5649 return 0;
5650 }
5651out_map:
5652 /*
5653 * Make it present again, depending on how arch implements
5654 * non-accessible ptes, some can allow access by kernel mode.
5655 */
5656 if (folio && folio_test_large(folio))
5657 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5658 pte_write_upgrade);
5659 else
5660 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5661 writable);
5662 pte_unmap_unlock(vmf->pte, vmf->ptl);
5663
5664 if (nid != NUMA_NO_NODE)
5665 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5666 return 0;
5667}
5668
5669static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5670{
5671 struct vm_area_struct *vma = vmf->vma;
5672 if (vma_is_anonymous(vma))
5673 return do_huge_pmd_anonymous_page(vmf);
5674 if (vma->vm_ops->huge_fault)
5675 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5676 return VM_FAULT_FALLBACK;
5677}
5678
5679/* `inline' is required to avoid gcc 4.1.2 build error */
5680static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5681{
5682 struct vm_area_struct *vma = vmf->vma;
5683 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5684 vm_fault_t ret;
5685
5686 if (vma_is_anonymous(vma)) {
5687 if (likely(!unshare) &&
5688 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5689 if (userfaultfd_wp_async(vmf->vma))
5690 goto split;
5691 return handle_userfault(vmf, VM_UFFD_WP);
5692 }
5693 return do_huge_pmd_wp_page(vmf);
5694 }
5695
5696 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5697 if (vma->vm_ops->huge_fault) {
5698 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5699 if (!(ret & VM_FAULT_FALLBACK))
5700 return ret;
5701 }
5702 }
5703
5704split:
5705 /* COW or write-notify handled on pte level: split pmd. */
5706 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5707
5708 return VM_FAULT_FALLBACK;
5709}
5710
5711static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5712{
5713#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5714 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5715 struct vm_area_struct *vma = vmf->vma;
5716 /* No support for anonymous transparent PUD pages yet */
5717 if (vma_is_anonymous(vma))
5718 return VM_FAULT_FALLBACK;
5719 if (vma->vm_ops->huge_fault)
5720 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5721#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5722 return VM_FAULT_FALLBACK;
5723}
5724
5725static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5726{
5727#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5728 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5729 struct vm_area_struct *vma = vmf->vma;
5730 vm_fault_t ret;
5731
5732 /* No support for anonymous transparent PUD pages yet */
5733 if (vma_is_anonymous(vma))
5734 goto split;
5735 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5736 if (vma->vm_ops->huge_fault) {
5737 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5738 if (!(ret & VM_FAULT_FALLBACK))
5739 return ret;
5740 }
5741 }
5742split:
5743 /* COW or write-notify not handled on PUD level: split pud.*/
5744 __split_huge_pud(vma, vmf->pud, vmf->address);
5745#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5746 return VM_FAULT_FALLBACK;
5747}
5748
5749/*
5750 * These routines also need to handle stuff like marking pages dirty
5751 * and/or accessed for architectures that don't do it in hardware (most
5752 * RISC architectures). The early dirtying is also good on the i386.
5753 *
5754 * There is also a hook called "update_mmu_cache()" that architectures
5755 * with external mmu caches can use to update those (ie the Sparc or
5756 * PowerPC hashed page tables that act as extended TLBs).
5757 *
5758 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5759 * concurrent faults).
5760 *
5761 * The mmap_lock may have been released depending on flags and our return value.
5762 * See filemap_fault() and __folio_lock_or_retry().
5763 */
5764static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5765{
5766 pte_t entry;
5767
5768 if (unlikely(pmd_none(*vmf->pmd))) {
5769 /*
5770 * Leave __pte_alloc() until later: because vm_ops->fault may
5771 * want to allocate huge page, and if we expose page table
5772 * for an instant, it will be difficult to retract from
5773 * concurrent faults and from rmap lookups.
5774 */
5775 vmf->pte = NULL;
5776 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5777 } else {
5778 pmd_t dummy_pmdval;
5779
5780 /*
5781 * A regular pmd is established and it can't morph into a huge
5782 * pmd by anon khugepaged, since that takes mmap_lock in write
5783 * mode; but shmem or file collapse to THP could still morph
5784 * it into a huge pmd: just retry later if so.
5785 *
5786 * Use the maywrite version to indicate that vmf->pte may be
5787 * modified, but since we will use pte_same() to detect the
5788 * change of the !pte_none() entry, there is no need to recheck
5789 * the pmdval. Here we chooes to pass a dummy variable instead
5790 * of NULL, which helps new user think about why this place is
5791 * special.
5792 */
5793 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5794 vmf->address, &dummy_pmdval,
5795 &vmf->ptl);
5796 if (unlikely(!vmf->pte))
5797 return 0;
5798 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5799 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5800
5801 if (pte_none(vmf->orig_pte)) {
5802 pte_unmap(vmf->pte);
5803 vmf->pte = NULL;
5804 }
5805 }
5806
5807 if (!vmf->pte)
5808 return do_pte_missing(vmf);
5809
5810 if (!pte_present(vmf->orig_pte))
5811 return do_swap_page(vmf);
5812
5813 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5814 return do_numa_page(vmf);
5815
5816 spin_lock(vmf->ptl);
5817 entry = vmf->orig_pte;
5818 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5819 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5820 goto unlock;
5821 }
5822 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5823 if (!pte_write(entry))
5824 return do_wp_page(vmf);
5825 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5826 entry = pte_mkdirty(entry);
5827 }
5828 entry = pte_mkyoung(entry);
5829 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5830 vmf->flags & FAULT_FLAG_WRITE)) {
5831 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5832 vmf->pte, 1);
5833 } else {
5834 /* Skip spurious TLB flush for retried page fault */
5835 if (vmf->flags & FAULT_FLAG_TRIED)
5836 goto unlock;
5837 /*
5838 * This is needed only for protection faults but the arch code
5839 * is not yet telling us if this is a protection fault or not.
5840 * This still avoids useless tlb flushes for .text page faults
5841 * with threads.
5842 */
5843 if (vmf->flags & FAULT_FLAG_WRITE)
5844 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5845 vmf->pte);
5846 }
5847unlock:
5848 pte_unmap_unlock(vmf->pte, vmf->ptl);
5849 return 0;
5850}
5851
5852/*
5853 * On entry, we hold either the VMA lock or the mmap_lock
5854 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5855 * the result, the mmap_lock is not held on exit. See filemap_fault()
5856 * and __folio_lock_or_retry().
5857 */
5858static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5859 unsigned long address, unsigned int flags)
5860{
5861 struct vm_fault vmf = {
5862 .vma = vma,
5863 .address = address & PAGE_MASK,
5864 .real_address = address,
5865 .flags = flags,
5866 .pgoff = linear_page_index(vma, address),
5867 .gfp_mask = __get_fault_gfp_mask(vma),
5868 };
5869 struct mm_struct *mm = vma->vm_mm;
5870 unsigned long vm_flags = vma->vm_flags;
5871 pgd_t *pgd;
5872 p4d_t *p4d;
5873 vm_fault_t ret;
5874
5875 pgd = pgd_offset(mm, address);
5876 p4d = p4d_alloc(mm, pgd, address);
5877 if (!p4d)
5878 return VM_FAULT_OOM;
5879
5880 vmf.pud = pud_alloc(mm, p4d, address);
5881 if (!vmf.pud)
5882 return VM_FAULT_OOM;
5883retry_pud:
5884 if (pud_none(*vmf.pud) &&
5885 thp_vma_allowable_order(vma, vm_flags,
5886 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5887 ret = create_huge_pud(&vmf);
5888 if (!(ret & VM_FAULT_FALLBACK))
5889 return ret;
5890 } else {
5891 pud_t orig_pud = *vmf.pud;
5892
5893 barrier();
5894 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5895
5896 /*
5897 * TODO once we support anonymous PUDs: NUMA case and
5898 * FAULT_FLAG_UNSHARE handling.
5899 */
5900 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5901 ret = wp_huge_pud(&vmf, orig_pud);
5902 if (!(ret & VM_FAULT_FALLBACK))
5903 return ret;
5904 } else {
5905 huge_pud_set_accessed(&vmf, orig_pud);
5906 return 0;
5907 }
5908 }
5909 }
5910
5911 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5912 if (!vmf.pmd)
5913 return VM_FAULT_OOM;
5914
5915 /* Huge pud page fault raced with pmd_alloc? */
5916 if (pud_trans_unstable(vmf.pud))
5917 goto retry_pud;
5918
5919 if (pmd_none(*vmf.pmd) &&
5920 thp_vma_allowable_order(vma, vm_flags,
5921 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5922 ret = create_huge_pmd(&vmf);
5923 if (!(ret & VM_FAULT_FALLBACK))
5924 return ret;
5925 } else {
5926 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5927
5928 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5929 VM_BUG_ON(thp_migration_supported() &&
5930 !is_pmd_migration_entry(vmf.orig_pmd));
5931 if (is_pmd_migration_entry(vmf.orig_pmd))
5932 pmd_migration_entry_wait(mm, vmf.pmd);
5933 return 0;
5934 }
5935 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5936 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5937 return do_huge_pmd_numa_page(&vmf);
5938
5939 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5940 !pmd_write(vmf.orig_pmd)) {
5941 ret = wp_huge_pmd(&vmf);
5942 if (!(ret & VM_FAULT_FALLBACK))
5943 return ret;
5944 } else {
5945 huge_pmd_set_accessed(&vmf);
5946 return 0;
5947 }
5948 }
5949 }
5950
5951 return handle_pte_fault(&vmf);
5952}
5953
5954/**
5955 * mm_account_fault - Do page fault accounting
5956 * @mm: mm from which memcg should be extracted. It can be NULL.
5957 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5958 * of perf event counters, but we'll still do the per-task accounting to
5959 * the task who triggered this page fault.
5960 * @address: the faulted address.
5961 * @flags: the fault flags.
5962 * @ret: the fault retcode.
5963 *
5964 * This will take care of most of the page fault accounting. Meanwhile, it
5965 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5966 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5967 * still be in per-arch page fault handlers at the entry of page fault.
5968 */
5969static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5970 unsigned long address, unsigned int flags,
5971 vm_fault_t ret)
5972{
5973 bool major;
5974
5975 /* Incomplete faults will be accounted upon completion. */
5976 if (ret & VM_FAULT_RETRY)
5977 return;
5978
5979 /*
5980 * To preserve the behavior of older kernels, PGFAULT counters record
5981 * both successful and failed faults, as opposed to perf counters,
5982 * which ignore failed cases.
5983 */
5984 count_vm_event(PGFAULT);
5985 count_memcg_event_mm(mm, PGFAULT);
5986
5987 /*
5988 * Do not account for unsuccessful faults (e.g. when the address wasn't
5989 * valid). That includes arch_vma_access_permitted() failing before
5990 * reaching here. So this is not a "this many hardware page faults"
5991 * counter. We should use the hw profiling for that.
5992 */
5993 if (ret & VM_FAULT_ERROR)
5994 return;
5995
5996 /*
5997 * We define the fault as a major fault when the final successful fault
5998 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5999 * handle it immediately previously).
6000 */
6001 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6002
6003 if (major)
6004 current->maj_flt++;
6005 else
6006 current->min_flt++;
6007
6008 /*
6009 * If the fault is done for GUP, regs will be NULL. We only do the
6010 * accounting for the per thread fault counters who triggered the
6011 * fault, and we skip the perf event updates.
6012 */
6013 if (!regs)
6014 return;
6015
6016 if (major)
6017 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6018 else
6019 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6020}
6021
6022#ifdef CONFIG_LRU_GEN
6023static void lru_gen_enter_fault(struct vm_area_struct *vma)
6024{
6025 /* the LRU algorithm only applies to accesses with recency */
6026 current->in_lru_fault = vma_has_recency(vma);
6027}
6028
6029static void lru_gen_exit_fault(void)
6030{
6031 current->in_lru_fault = false;
6032}
6033#else
6034static void lru_gen_enter_fault(struct vm_area_struct *vma)
6035{
6036}
6037
6038static void lru_gen_exit_fault(void)
6039{
6040}
6041#endif /* CONFIG_LRU_GEN */
6042
6043static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6044 unsigned int *flags)
6045{
6046 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6047 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6048 return VM_FAULT_SIGSEGV;
6049 /*
6050 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6051 * just treat it like an ordinary read-fault otherwise.
6052 */
6053 if (!is_cow_mapping(vma->vm_flags))
6054 *flags &= ~FAULT_FLAG_UNSHARE;
6055 } else if (*flags & FAULT_FLAG_WRITE) {
6056 /* Write faults on read-only mappings are impossible ... */
6057 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6058 return VM_FAULT_SIGSEGV;
6059 /* ... and FOLL_FORCE only applies to COW mappings. */
6060 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6061 !is_cow_mapping(vma->vm_flags)))
6062 return VM_FAULT_SIGSEGV;
6063 }
6064#ifdef CONFIG_PER_VMA_LOCK
6065 /*
6066 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6067 * the assumption that lock is dropped on VM_FAULT_RETRY.
6068 */
6069 if (WARN_ON_ONCE((*flags &
6070 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6071 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6072 return VM_FAULT_SIGSEGV;
6073#endif
6074
6075 return 0;
6076}
6077
6078/*
6079 * By the time we get here, we already hold the mm semaphore
6080 *
6081 * The mmap_lock may have been released depending on flags and our
6082 * return value. See filemap_fault() and __folio_lock_or_retry().
6083 */
6084vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6085 unsigned int flags, struct pt_regs *regs)
6086{
6087 /* If the fault handler drops the mmap_lock, vma may be freed */
6088 struct mm_struct *mm = vma->vm_mm;
6089 vm_fault_t ret;
6090 bool is_droppable;
6091
6092 __set_current_state(TASK_RUNNING);
6093
6094 ret = sanitize_fault_flags(vma, &flags);
6095 if (ret)
6096 goto out;
6097
6098 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6099 flags & FAULT_FLAG_INSTRUCTION,
6100 flags & FAULT_FLAG_REMOTE)) {
6101 ret = VM_FAULT_SIGSEGV;
6102 goto out;
6103 }
6104
6105 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6106
6107 /*
6108 * Enable the memcg OOM handling for faults triggered in user
6109 * space. Kernel faults are handled more gracefully.
6110 */
6111 if (flags & FAULT_FLAG_USER)
6112 mem_cgroup_enter_user_fault();
6113
6114 lru_gen_enter_fault(vma);
6115
6116 if (unlikely(is_vm_hugetlb_page(vma)))
6117 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6118 else
6119 ret = __handle_mm_fault(vma, address, flags);
6120
6121 /*
6122 * Warning: It is no longer safe to dereference vma-> after this point,
6123 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6124 * vma might be destroyed from underneath us.
6125 */
6126
6127 lru_gen_exit_fault();
6128
6129 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6130 if (is_droppable)
6131 ret &= ~VM_FAULT_OOM;
6132
6133 if (flags & FAULT_FLAG_USER) {
6134 mem_cgroup_exit_user_fault();
6135 /*
6136 * The task may have entered a memcg OOM situation but
6137 * if the allocation error was handled gracefully (no
6138 * VM_FAULT_OOM), there is no need to kill anything.
6139 * Just clean up the OOM state peacefully.
6140 */
6141 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6142 mem_cgroup_oom_synchronize(false);
6143 }
6144out:
6145 mm_account_fault(mm, regs, address, flags, ret);
6146
6147 return ret;
6148}
6149EXPORT_SYMBOL_GPL(handle_mm_fault);
6150
6151#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6152#include <linux/extable.h>
6153
6154static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6155{
6156 if (likely(mmap_read_trylock(mm)))
6157 return true;
6158
6159 if (regs && !user_mode(regs)) {
6160 unsigned long ip = exception_ip(regs);
6161 if (!search_exception_tables(ip))
6162 return false;
6163 }
6164
6165 return !mmap_read_lock_killable(mm);
6166}
6167
6168static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6169{
6170 /*
6171 * We don't have this operation yet.
6172 *
6173 * It should be easy enough to do: it's basically a
6174 * atomic_long_try_cmpxchg_acquire()
6175 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6176 * it also needs the proper lockdep magic etc.
6177 */
6178 return false;
6179}
6180
6181static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6182{
6183 mmap_read_unlock(mm);
6184 if (regs && !user_mode(regs)) {
6185 unsigned long ip = exception_ip(regs);
6186 if (!search_exception_tables(ip))
6187 return false;
6188 }
6189 return !mmap_write_lock_killable(mm);
6190}
6191
6192/*
6193 * Helper for page fault handling.
6194 *
6195 * This is kind of equivalend to "mmap_read_lock()" followed
6196 * by "find_extend_vma()", except it's a lot more careful about
6197 * the locking (and will drop the lock on failure).
6198 *
6199 * For example, if we have a kernel bug that causes a page
6200 * fault, we don't want to just use mmap_read_lock() to get
6201 * the mm lock, because that would deadlock if the bug were
6202 * to happen while we're holding the mm lock for writing.
6203 *
6204 * So this checks the exception tables on kernel faults in
6205 * order to only do this all for instructions that are actually
6206 * expected to fault.
6207 *
6208 * We can also actually take the mm lock for writing if we
6209 * need to extend the vma, which helps the VM layer a lot.
6210 */
6211struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6212 unsigned long addr, struct pt_regs *regs)
6213{
6214 struct vm_area_struct *vma;
6215
6216 if (!get_mmap_lock_carefully(mm, regs))
6217 return NULL;
6218
6219 vma = find_vma(mm, addr);
6220 if (likely(vma && (vma->vm_start <= addr)))
6221 return vma;
6222
6223 /*
6224 * Well, dang. We might still be successful, but only
6225 * if we can extend a vma to do so.
6226 */
6227 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6228 mmap_read_unlock(mm);
6229 return NULL;
6230 }
6231
6232 /*
6233 * We can try to upgrade the mmap lock atomically,
6234 * in which case we can continue to use the vma
6235 * we already looked up.
6236 *
6237 * Otherwise we'll have to drop the mmap lock and
6238 * re-take it, and also look up the vma again,
6239 * re-checking it.
6240 */
6241 if (!mmap_upgrade_trylock(mm)) {
6242 if (!upgrade_mmap_lock_carefully(mm, regs))
6243 return NULL;
6244
6245 vma = find_vma(mm, addr);
6246 if (!vma)
6247 goto fail;
6248 if (vma->vm_start <= addr)
6249 goto success;
6250 if (!(vma->vm_flags & VM_GROWSDOWN))
6251 goto fail;
6252 }
6253
6254 if (expand_stack_locked(vma, addr))
6255 goto fail;
6256
6257success:
6258 mmap_write_downgrade(mm);
6259 return vma;
6260
6261fail:
6262 mmap_write_unlock(mm);
6263 return NULL;
6264}
6265#endif
6266
6267#ifdef CONFIG_PER_VMA_LOCK
6268/*
6269 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6270 * stable and not isolated. If the VMA is not found or is being modified the
6271 * function returns NULL.
6272 */
6273struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6274 unsigned long address)
6275{
6276 MA_STATE(mas, &mm->mm_mt, address, address);
6277 struct vm_area_struct *vma;
6278
6279 rcu_read_lock();
6280retry:
6281 vma = mas_walk(&mas);
6282 if (!vma)
6283 goto inval;
6284
6285 if (!vma_start_read(vma))
6286 goto inval;
6287
6288 /* Check if the VMA got isolated after we found it */
6289 if (vma->detached) {
6290 vma_end_read(vma);
6291 count_vm_vma_lock_event(VMA_LOCK_MISS);
6292 /* The area was replaced with another one */
6293 goto retry;
6294 }
6295 /*
6296 * At this point, we have a stable reference to a VMA: The VMA is
6297 * locked and we know it hasn't already been isolated.
6298 * From here on, we can access the VMA without worrying about which
6299 * fields are accessible for RCU readers.
6300 */
6301
6302 /* Check since vm_start/vm_end might change before we lock the VMA */
6303 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6304 goto inval_end_read;
6305
6306 rcu_read_unlock();
6307 return vma;
6308
6309inval_end_read:
6310 vma_end_read(vma);
6311inval:
6312 rcu_read_unlock();
6313 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6314 return NULL;
6315}
6316#endif /* CONFIG_PER_VMA_LOCK */
6317
6318#ifndef __PAGETABLE_P4D_FOLDED
6319/*
6320 * Allocate p4d page table.
6321 * We've already handled the fast-path in-line.
6322 */
6323int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6324{
6325 p4d_t *new = p4d_alloc_one(mm, address);
6326 if (!new)
6327 return -ENOMEM;
6328
6329 spin_lock(&mm->page_table_lock);
6330 if (pgd_present(*pgd)) { /* Another has populated it */
6331 p4d_free(mm, new);
6332 } else {
6333 smp_wmb(); /* See comment in pmd_install() */
6334 pgd_populate(mm, pgd, new);
6335 }
6336 spin_unlock(&mm->page_table_lock);
6337 return 0;
6338}
6339#endif /* __PAGETABLE_P4D_FOLDED */
6340
6341#ifndef __PAGETABLE_PUD_FOLDED
6342/*
6343 * Allocate page upper directory.
6344 * We've already handled the fast-path in-line.
6345 */
6346int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6347{
6348 pud_t *new = pud_alloc_one(mm, address);
6349 if (!new)
6350 return -ENOMEM;
6351
6352 spin_lock(&mm->page_table_lock);
6353 if (!p4d_present(*p4d)) {
6354 mm_inc_nr_puds(mm);
6355 smp_wmb(); /* See comment in pmd_install() */
6356 p4d_populate(mm, p4d, new);
6357 } else /* Another has populated it */
6358 pud_free(mm, new);
6359 spin_unlock(&mm->page_table_lock);
6360 return 0;
6361}
6362#endif /* __PAGETABLE_PUD_FOLDED */
6363
6364#ifndef __PAGETABLE_PMD_FOLDED
6365/*
6366 * Allocate page middle directory.
6367 * We've already handled the fast-path in-line.
6368 */
6369int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6370{
6371 spinlock_t *ptl;
6372 pmd_t *new = pmd_alloc_one(mm, address);
6373 if (!new)
6374 return -ENOMEM;
6375
6376 ptl = pud_lock(mm, pud);
6377 if (!pud_present(*pud)) {
6378 mm_inc_nr_pmds(mm);
6379 smp_wmb(); /* See comment in pmd_install() */
6380 pud_populate(mm, pud, new);
6381 } else { /* Another has populated it */
6382 pmd_free(mm, new);
6383 }
6384 spin_unlock(ptl);
6385 return 0;
6386}
6387#endif /* __PAGETABLE_PMD_FOLDED */
6388
6389static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6390 spinlock_t *lock, pte_t *ptep,
6391 pgprot_t pgprot, unsigned long pfn_base,
6392 unsigned long addr_mask, bool writable,
6393 bool special)
6394{
6395 args->lock = lock;
6396 args->ptep = ptep;
6397 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6398 args->pgprot = pgprot;
6399 args->writable = writable;
6400 args->special = special;
6401}
6402
6403static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6404{
6405#ifdef CONFIG_LOCKDEP
6406 struct file *file = vma->vm_file;
6407 struct address_space *mapping = file ? file->f_mapping : NULL;
6408
6409 if (mapping)
6410 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6411 lockdep_is_held(&vma->vm_mm->mmap_lock));
6412 else
6413 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6414#endif
6415}
6416
6417/**
6418 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6419 * @args: Pointer to struct @follow_pfnmap_args
6420 *
6421 * The caller needs to setup args->vma and args->address to point to the
6422 * virtual address as the target of such lookup. On a successful return,
6423 * the results will be put into other output fields.
6424 *
6425 * After the caller finished using the fields, the caller must invoke
6426 * another follow_pfnmap_end() to proper releases the locks and resources
6427 * of such look up request.
6428 *
6429 * During the start() and end() calls, the results in @args will be valid
6430 * as proper locks will be held. After the end() is called, all the fields
6431 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6432 * use of such information after end() may require proper synchronizations
6433 * by the caller with page table updates, otherwise it can create a
6434 * security bug.
6435 *
6436 * If the PTE maps a refcounted page, callers are responsible to protect
6437 * against invalidation with MMU notifiers; otherwise access to the PFN at
6438 * a later point in time can trigger use-after-free.
6439 *
6440 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6441 * should be taken for read, and the mmap semaphore cannot be released
6442 * before the end() is invoked.
6443 *
6444 * This function must not be used to modify PTE content.
6445 *
6446 * Return: zero on success, negative otherwise.
6447 */
6448int follow_pfnmap_start(struct follow_pfnmap_args *args)
6449{
6450 struct vm_area_struct *vma = args->vma;
6451 unsigned long address = args->address;
6452 struct mm_struct *mm = vma->vm_mm;
6453 spinlock_t *lock;
6454 pgd_t *pgdp;
6455 p4d_t *p4dp, p4d;
6456 pud_t *pudp, pud;
6457 pmd_t *pmdp, pmd;
6458 pte_t *ptep, pte;
6459
6460 pfnmap_lockdep_assert(vma);
6461
6462 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6463 goto out;
6464
6465 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6466 goto out;
6467retry:
6468 pgdp = pgd_offset(mm, address);
6469 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6470 goto out;
6471
6472 p4dp = p4d_offset(pgdp, address);
6473 p4d = READ_ONCE(*p4dp);
6474 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6475 goto out;
6476
6477 pudp = pud_offset(p4dp, address);
6478 pud = READ_ONCE(*pudp);
6479 if (pud_none(pud))
6480 goto out;
6481 if (pud_leaf(pud)) {
6482 lock = pud_lock(mm, pudp);
6483 if (!unlikely(pud_leaf(pud))) {
6484 spin_unlock(lock);
6485 goto retry;
6486 }
6487 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6488 pud_pfn(pud), PUD_MASK, pud_write(pud),
6489 pud_special(pud));
6490 return 0;
6491 }
6492
6493 pmdp = pmd_offset(pudp, address);
6494 pmd = pmdp_get_lockless(pmdp);
6495 if (pmd_leaf(pmd)) {
6496 lock = pmd_lock(mm, pmdp);
6497 if (!unlikely(pmd_leaf(pmd))) {
6498 spin_unlock(lock);
6499 goto retry;
6500 }
6501 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6502 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6503 pmd_special(pmd));
6504 return 0;
6505 }
6506
6507 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6508 if (!ptep)
6509 goto out;
6510 pte = ptep_get(ptep);
6511 if (!pte_present(pte))
6512 goto unlock;
6513 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6514 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6515 pte_special(pte));
6516 return 0;
6517unlock:
6518 pte_unmap_unlock(ptep, lock);
6519out:
6520 return -EINVAL;
6521}
6522EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6523
6524/**
6525 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6526 * @args: Pointer to struct @follow_pfnmap_args
6527 *
6528 * Must be used in pair of follow_pfnmap_start(). See the start() function
6529 * above for more information.
6530 */
6531void follow_pfnmap_end(struct follow_pfnmap_args *args)
6532{
6533 if (args->lock)
6534 spin_unlock(args->lock);
6535 if (args->ptep)
6536 pte_unmap(args->ptep);
6537}
6538EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6539
6540#ifdef CONFIG_HAVE_IOREMAP_PROT
6541/**
6542 * generic_access_phys - generic implementation for iomem mmap access
6543 * @vma: the vma to access
6544 * @addr: userspace address, not relative offset within @vma
6545 * @buf: buffer to read/write
6546 * @len: length of transfer
6547 * @write: set to FOLL_WRITE when writing, otherwise reading
6548 *
6549 * This is a generic implementation for &vm_operations_struct.access for an
6550 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6551 * not page based.
6552 */
6553int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6554 void *buf, int len, int write)
6555{
6556 resource_size_t phys_addr;
6557 unsigned long prot = 0;
6558 void __iomem *maddr;
6559 int offset = offset_in_page(addr);
6560 int ret = -EINVAL;
6561 bool writable;
6562 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6563
6564retry:
6565 if (follow_pfnmap_start(&args))
6566 return -EINVAL;
6567 prot = pgprot_val(args.pgprot);
6568 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6569 writable = args.writable;
6570 follow_pfnmap_end(&args);
6571
6572 if ((write & FOLL_WRITE) && !writable)
6573 return -EINVAL;
6574
6575 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6576 if (!maddr)
6577 return -ENOMEM;
6578
6579 if (follow_pfnmap_start(&args))
6580 goto out_unmap;
6581
6582 if ((prot != pgprot_val(args.pgprot)) ||
6583 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6584 (writable != args.writable)) {
6585 follow_pfnmap_end(&args);
6586 iounmap(maddr);
6587 goto retry;
6588 }
6589
6590 if (write)
6591 memcpy_toio(maddr + offset, buf, len);
6592 else
6593 memcpy_fromio(buf, maddr + offset, len);
6594 ret = len;
6595 follow_pfnmap_end(&args);
6596out_unmap:
6597 iounmap(maddr);
6598
6599 return ret;
6600}
6601EXPORT_SYMBOL_GPL(generic_access_phys);
6602#endif
6603
6604/*
6605 * Access another process' address space as given in mm.
6606 */
6607static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6608 void *buf, int len, unsigned int gup_flags)
6609{
6610 void *old_buf = buf;
6611 int write = gup_flags & FOLL_WRITE;
6612
6613 if (mmap_read_lock_killable(mm))
6614 return 0;
6615
6616 /* Untag the address before looking up the VMA */
6617 addr = untagged_addr_remote(mm, addr);
6618
6619 /* Avoid triggering the temporary warning in __get_user_pages */
6620 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6621 return 0;
6622
6623 /* ignore errors, just check how much was successfully transferred */
6624 while (len) {
6625 int bytes, offset;
6626 void *maddr;
6627 struct vm_area_struct *vma = NULL;
6628 struct page *page = get_user_page_vma_remote(mm, addr,
6629 gup_flags, &vma);
6630
6631 if (IS_ERR(page)) {
6632 /* We might need to expand the stack to access it */
6633 vma = vma_lookup(mm, addr);
6634 if (!vma) {
6635 vma = expand_stack(mm, addr);
6636
6637 /* mmap_lock was dropped on failure */
6638 if (!vma)
6639 return buf - old_buf;
6640
6641 /* Try again if stack expansion worked */
6642 continue;
6643 }
6644
6645 /*
6646 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6647 * we can access using slightly different code.
6648 */
6649 bytes = 0;
6650#ifdef CONFIG_HAVE_IOREMAP_PROT
6651 if (vma->vm_ops && vma->vm_ops->access)
6652 bytes = vma->vm_ops->access(vma, addr, buf,
6653 len, write);
6654#endif
6655 if (bytes <= 0)
6656 break;
6657 } else {
6658 bytes = len;
6659 offset = addr & (PAGE_SIZE-1);
6660 if (bytes > PAGE_SIZE-offset)
6661 bytes = PAGE_SIZE-offset;
6662
6663 maddr = kmap_local_page(page);
6664 if (write) {
6665 copy_to_user_page(vma, page, addr,
6666 maddr + offset, buf, bytes);
6667 set_page_dirty_lock(page);
6668 } else {
6669 copy_from_user_page(vma, page, addr,
6670 buf, maddr + offset, bytes);
6671 }
6672 unmap_and_put_page(page, maddr);
6673 }
6674 len -= bytes;
6675 buf += bytes;
6676 addr += bytes;
6677 }
6678 mmap_read_unlock(mm);
6679
6680 return buf - old_buf;
6681}
6682
6683/**
6684 * access_remote_vm - access another process' address space
6685 * @mm: the mm_struct of the target address space
6686 * @addr: start address to access
6687 * @buf: source or destination buffer
6688 * @len: number of bytes to transfer
6689 * @gup_flags: flags modifying lookup behaviour
6690 *
6691 * The caller must hold a reference on @mm.
6692 *
6693 * Return: number of bytes copied from source to destination.
6694 */
6695int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6696 void *buf, int len, unsigned int gup_flags)
6697{
6698 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6699}
6700
6701/*
6702 * Access another process' address space.
6703 * Source/target buffer must be kernel space,
6704 * Do not walk the page table directly, use get_user_pages
6705 */
6706int access_process_vm(struct task_struct *tsk, unsigned long addr,
6707 void *buf, int len, unsigned int gup_flags)
6708{
6709 struct mm_struct *mm;
6710 int ret;
6711
6712 mm = get_task_mm(tsk);
6713 if (!mm)
6714 return 0;
6715
6716 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6717
6718 mmput(mm);
6719
6720 return ret;
6721}
6722EXPORT_SYMBOL_GPL(access_process_vm);
6723
6724/*
6725 * Print the name of a VMA.
6726 */
6727void print_vma_addr(char *prefix, unsigned long ip)
6728{
6729 struct mm_struct *mm = current->mm;
6730 struct vm_area_struct *vma;
6731
6732 /*
6733 * we might be running from an atomic context so we cannot sleep
6734 */
6735 if (!mmap_read_trylock(mm))
6736 return;
6737
6738 vma = vma_lookup(mm, ip);
6739 if (vma && vma->vm_file) {
6740 struct file *f = vma->vm_file;
6741 ip -= vma->vm_start;
6742 ip += vma->vm_pgoff << PAGE_SHIFT;
6743 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6744 vma->vm_start,
6745 vma->vm_end - vma->vm_start);
6746 }
6747 mmap_read_unlock(mm);
6748}
6749
6750#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6751void __might_fault(const char *file, int line)
6752{
6753 if (pagefault_disabled())
6754 return;
6755 __might_sleep(file, line);
6756#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6757 if (current->mm)
6758 might_lock_read(¤t->mm->mmap_lock);
6759#endif
6760}
6761EXPORT_SYMBOL(__might_fault);
6762#endif
6763
6764#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6765/*
6766 * Process all subpages of the specified huge page with the specified
6767 * operation. The target subpage will be processed last to keep its
6768 * cache lines hot.
6769 */
6770static inline int process_huge_page(
6771 unsigned long addr_hint, unsigned int nr_pages,
6772 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6773 void *arg)
6774{
6775 int i, n, base, l, ret;
6776 unsigned long addr = addr_hint &
6777 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6778
6779 /* Process target subpage last to keep its cache lines hot */
6780 might_sleep();
6781 n = (addr_hint - addr) / PAGE_SIZE;
6782 if (2 * n <= nr_pages) {
6783 /* If target subpage in first half of huge page */
6784 base = 0;
6785 l = n;
6786 /* Process subpages at the end of huge page */
6787 for (i = nr_pages - 1; i >= 2 * n; i--) {
6788 cond_resched();
6789 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6790 if (ret)
6791 return ret;
6792 }
6793 } else {
6794 /* If target subpage in second half of huge page */
6795 base = nr_pages - 2 * (nr_pages - n);
6796 l = nr_pages - n;
6797 /* Process subpages at the begin of huge page */
6798 for (i = 0; i < base; i++) {
6799 cond_resched();
6800 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6801 if (ret)
6802 return ret;
6803 }
6804 }
6805 /*
6806 * Process remaining subpages in left-right-left-right pattern
6807 * towards the target subpage
6808 */
6809 for (i = 0; i < l; i++) {
6810 int left_idx = base + i;
6811 int right_idx = base + 2 * l - 1 - i;
6812
6813 cond_resched();
6814 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6815 if (ret)
6816 return ret;
6817 cond_resched();
6818 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6819 if (ret)
6820 return ret;
6821 }
6822 return 0;
6823}
6824
6825static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6826 unsigned int nr_pages)
6827{
6828 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6829 int i;
6830
6831 might_sleep();
6832 for (i = 0; i < nr_pages; i++) {
6833 cond_resched();
6834 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6835 }
6836}
6837
6838static int clear_subpage(unsigned long addr, int idx, void *arg)
6839{
6840 struct folio *folio = arg;
6841
6842 clear_user_highpage(folio_page(folio, idx), addr);
6843 return 0;
6844}
6845
6846/**
6847 * folio_zero_user - Zero a folio which will be mapped to userspace.
6848 * @folio: The folio to zero.
6849 * @addr_hint: The address will be accessed or the base address if uncelar.
6850 */
6851void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6852{
6853 unsigned int nr_pages = folio_nr_pages(folio);
6854
6855 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6856 clear_gigantic_page(folio, addr_hint, nr_pages);
6857 else
6858 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6859}
6860
6861static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6862 unsigned long addr_hint,
6863 struct vm_area_struct *vma,
6864 unsigned int nr_pages)
6865{
6866 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6867 struct page *dst_page;
6868 struct page *src_page;
6869 int i;
6870
6871 for (i = 0; i < nr_pages; i++) {
6872 dst_page = folio_page(dst, i);
6873 src_page = folio_page(src, i);
6874
6875 cond_resched();
6876 if (copy_mc_user_highpage(dst_page, src_page,
6877 addr + i*PAGE_SIZE, vma))
6878 return -EHWPOISON;
6879 }
6880 return 0;
6881}
6882
6883struct copy_subpage_arg {
6884 struct folio *dst;
6885 struct folio *src;
6886 struct vm_area_struct *vma;
6887};
6888
6889static int copy_subpage(unsigned long addr, int idx, void *arg)
6890{
6891 struct copy_subpage_arg *copy_arg = arg;
6892 struct page *dst = folio_page(copy_arg->dst, idx);
6893 struct page *src = folio_page(copy_arg->src, idx);
6894
6895 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6896 return -EHWPOISON;
6897 return 0;
6898}
6899
6900int copy_user_large_folio(struct folio *dst, struct folio *src,
6901 unsigned long addr_hint, struct vm_area_struct *vma)
6902{
6903 unsigned int nr_pages = folio_nr_pages(dst);
6904 struct copy_subpage_arg arg = {
6905 .dst = dst,
6906 .src = src,
6907 .vma = vma,
6908 };
6909
6910 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6911 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6912
6913 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6914}
6915
6916long copy_folio_from_user(struct folio *dst_folio,
6917 const void __user *usr_src,
6918 bool allow_pagefault)
6919{
6920 void *kaddr;
6921 unsigned long i, rc = 0;
6922 unsigned int nr_pages = folio_nr_pages(dst_folio);
6923 unsigned long ret_val = nr_pages * PAGE_SIZE;
6924 struct page *subpage;
6925
6926 for (i = 0; i < nr_pages; i++) {
6927 subpage = folio_page(dst_folio, i);
6928 kaddr = kmap_local_page(subpage);
6929 if (!allow_pagefault)
6930 pagefault_disable();
6931 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6932 if (!allow_pagefault)
6933 pagefault_enable();
6934 kunmap_local(kaddr);
6935
6936 ret_val -= (PAGE_SIZE - rc);
6937 if (rc)
6938 break;
6939
6940 flush_dcache_page(subpage);
6941
6942 cond_resched();
6943 }
6944 return ret_val;
6945}
6946#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6947
6948#if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6949
6950static struct kmem_cache *page_ptl_cachep;
6951
6952void __init ptlock_cache_init(void)
6953{
6954 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6955 SLAB_PANIC, NULL);
6956}
6957
6958bool ptlock_alloc(struct ptdesc *ptdesc)
6959{
6960 spinlock_t *ptl;
6961
6962 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6963 if (!ptl)
6964 return false;
6965 ptdesc->ptl = ptl;
6966 return true;
6967}
6968
6969void ptlock_free(struct ptdesc *ptdesc)
6970{
6971 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6972}
6973#endif
6974
6975void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6976{
6977 if (is_vm_hugetlb_page(vma))
6978 hugetlb_vma_lock_read(vma);
6979}
6980
6981void vma_pgtable_walk_end(struct vm_area_struct *vma)
6982{
6983 if (is_vm_hugetlb_page(vma))
6984 hugetlb_vma_unlock_read(vma);
6985}
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/export.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60
61#include <asm/io.h>
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
68#include "internal.h"
69
70#ifndef CONFIG_NEED_MULTIPLE_NODES
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
91
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
108 return 1;
109}
110__setup("norandmaps", disable_randmaps);
111
112unsigned long zero_pfn __read_mostly;
113unsigned long highest_memmap_pfn __read_mostly;
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
124
125
126#if defined(SPLIT_RSS_COUNTING)
127
128void sync_mm_rss(struct mm_struct *mm)
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
136 }
137 }
138 current->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
161}
162#else /* SPLIT_RSS_COUNTING */
163
164#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167static void check_sync_rss_stat(struct task_struct *task)
168{
169}
170
171#endif /* SPLIT_RSS_COUNTING */
172
173#ifdef HAVE_GENERIC_MMU_GATHER
174
175static int tlb_next_batch(struct mmu_gather *tlb)
176{
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
188
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
192
193 tlb->active->next = batch;
194 tlb->active = batch;
195
196 return 1;
197}
198
199/* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205{
206 tlb->mm = mm;
207
208 tlb->fullmm = fullmm;
209 tlb->need_flush = 0;
210 tlb->fast_mode = (num_possible_cpus() == 1);
211 tlb->local.next = NULL;
212 tlb->local.nr = 0;
213 tlb->local.max = ARRAY_SIZE(tlb->__pages);
214 tlb->active = &tlb->local;
215
216#ifdef CONFIG_HAVE_RCU_TABLE_FREE
217 tlb->batch = NULL;
218#endif
219}
220
221void tlb_flush_mmu(struct mmu_gather *tlb)
222{
223 struct mmu_gather_batch *batch;
224
225 if (!tlb->need_flush)
226 return;
227 tlb->need_flush = 0;
228 tlb_flush(tlb);
229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb_table_flush(tlb);
231#endif
232
233 if (tlb_fast_mode(tlb))
234 return;
235
236 for (batch = &tlb->local; batch; batch = batch->next) {
237 free_pages_and_swap_cache(batch->pages, batch->nr);
238 batch->nr = 0;
239 }
240 tlb->active = &tlb->local;
241}
242
243/* tlb_finish_mmu
244 * Called at the end of the shootdown operation to free up any resources
245 * that were required.
246 */
247void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
248{
249 struct mmu_gather_batch *batch, *next;
250
251 tlb_flush_mmu(tlb);
252
253 /* keep the page table cache within bounds */
254 check_pgt_cache();
255
256 for (batch = tlb->local.next; batch; batch = next) {
257 next = batch->next;
258 free_pages((unsigned long)batch, 0);
259 }
260 tlb->local.next = NULL;
261}
262
263/* __tlb_remove_page
264 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265 * handling the additional races in SMP caused by other CPUs caching valid
266 * mappings in their TLBs. Returns the number of free page slots left.
267 * When out of page slots we must call tlb_flush_mmu().
268 */
269int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
270{
271 struct mmu_gather_batch *batch;
272
273 VM_BUG_ON(!tlb->need_flush);
274
275 if (tlb_fast_mode(tlb)) {
276 free_page_and_swap_cache(page);
277 return 1; /* avoid calling tlb_flush_mmu() */
278 }
279
280 batch = tlb->active;
281 batch->pages[batch->nr++] = page;
282 if (batch->nr == batch->max) {
283 if (!tlb_next_batch(tlb))
284 return 0;
285 batch = tlb->active;
286 }
287 VM_BUG_ON(batch->nr > batch->max);
288
289 return batch->max - batch->nr;
290}
291
292#endif /* HAVE_GENERIC_MMU_GATHER */
293
294#ifdef CONFIG_HAVE_RCU_TABLE_FREE
295
296/*
297 * See the comment near struct mmu_table_batch.
298 */
299
300static void tlb_remove_table_smp_sync(void *arg)
301{
302 /* Simply deliver the interrupt */
303}
304
305static void tlb_remove_table_one(void *table)
306{
307 /*
308 * This isn't an RCU grace period and hence the page-tables cannot be
309 * assumed to be actually RCU-freed.
310 *
311 * It is however sufficient for software page-table walkers that rely on
312 * IRQ disabling. See the comment near struct mmu_table_batch.
313 */
314 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315 __tlb_remove_table(table);
316}
317
318static void tlb_remove_table_rcu(struct rcu_head *head)
319{
320 struct mmu_table_batch *batch;
321 int i;
322
323 batch = container_of(head, struct mmu_table_batch, rcu);
324
325 for (i = 0; i < batch->nr; i++)
326 __tlb_remove_table(batch->tables[i]);
327
328 free_page((unsigned long)batch);
329}
330
331void tlb_table_flush(struct mmu_gather *tlb)
332{
333 struct mmu_table_batch **batch = &tlb->batch;
334
335 if (*batch) {
336 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337 *batch = NULL;
338 }
339}
340
341void tlb_remove_table(struct mmu_gather *tlb, void *table)
342{
343 struct mmu_table_batch **batch = &tlb->batch;
344
345 tlb->need_flush = 1;
346
347 /*
348 * When there's less then two users of this mm there cannot be a
349 * concurrent page-table walk.
350 */
351 if (atomic_read(&tlb->mm->mm_users) < 2) {
352 __tlb_remove_table(table);
353 return;
354 }
355
356 if (*batch == NULL) {
357 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358 if (*batch == NULL) {
359 tlb_remove_table_one(table);
360 return;
361 }
362 (*batch)->nr = 0;
363 }
364 (*batch)->tables[(*batch)->nr++] = table;
365 if ((*batch)->nr == MAX_TABLE_BATCH)
366 tlb_table_flush(tlb);
367}
368
369#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
370
371/*
372 * If a p?d_bad entry is found while walking page tables, report
373 * the error, before resetting entry to p?d_none. Usually (but
374 * very seldom) called out from the p?d_none_or_clear_bad macros.
375 */
376
377void pgd_clear_bad(pgd_t *pgd)
378{
379 pgd_ERROR(*pgd);
380 pgd_clear(pgd);
381}
382
383void pud_clear_bad(pud_t *pud)
384{
385 pud_ERROR(*pud);
386 pud_clear(pud);
387}
388
389void pmd_clear_bad(pmd_t *pmd)
390{
391 pmd_ERROR(*pmd);
392 pmd_clear(pmd);
393}
394
395/*
396 * Note: this doesn't free the actual pages themselves. That
397 * has been handled earlier when unmapping all the memory regions.
398 */
399static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400 unsigned long addr)
401{
402 pgtable_t token = pmd_pgtable(*pmd);
403 pmd_clear(pmd);
404 pte_free_tlb(tlb, token, addr);
405 tlb->mm->nr_ptes--;
406}
407
408static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409 unsigned long addr, unsigned long end,
410 unsigned long floor, unsigned long ceiling)
411{
412 pmd_t *pmd;
413 unsigned long next;
414 unsigned long start;
415
416 start = addr;
417 pmd = pmd_offset(pud, addr);
418 do {
419 next = pmd_addr_end(addr, end);
420 if (pmd_none_or_clear_bad(pmd))
421 continue;
422 free_pte_range(tlb, pmd, addr);
423 } while (pmd++, addr = next, addr != end);
424
425 start &= PUD_MASK;
426 if (start < floor)
427 return;
428 if (ceiling) {
429 ceiling &= PUD_MASK;
430 if (!ceiling)
431 return;
432 }
433 if (end - 1 > ceiling - 1)
434 return;
435
436 pmd = pmd_offset(pud, start);
437 pud_clear(pud);
438 pmd_free_tlb(tlb, pmd, start);
439}
440
441static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442 unsigned long addr, unsigned long end,
443 unsigned long floor, unsigned long ceiling)
444{
445 pud_t *pud;
446 unsigned long next;
447 unsigned long start;
448
449 start = addr;
450 pud = pud_offset(pgd, addr);
451 do {
452 next = pud_addr_end(addr, end);
453 if (pud_none_or_clear_bad(pud))
454 continue;
455 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456 } while (pud++, addr = next, addr != end);
457
458 start &= PGDIR_MASK;
459 if (start < floor)
460 return;
461 if (ceiling) {
462 ceiling &= PGDIR_MASK;
463 if (!ceiling)
464 return;
465 }
466 if (end - 1 > ceiling - 1)
467 return;
468
469 pud = pud_offset(pgd, start);
470 pgd_clear(pgd);
471 pud_free_tlb(tlb, pud, start);
472}
473
474/*
475 * This function frees user-level page tables of a process.
476 *
477 * Must be called with pagetable lock held.
478 */
479void free_pgd_range(struct mmu_gather *tlb,
480 unsigned long addr, unsigned long end,
481 unsigned long floor, unsigned long ceiling)
482{
483 pgd_t *pgd;
484 unsigned long next;
485
486 /*
487 * The next few lines have given us lots of grief...
488 *
489 * Why are we testing PMD* at this top level? Because often
490 * there will be no work to do at all, and we'd prefer not to
491 * go all the way down to the bottom just to discover that.
492 *
493 * Why all these "- 1"s? Because 0 represents both the bottom
494 * of the address space and the top of it (using -1 for the
495 * top wouldn't help much: the masks would do the wrong thing).
496 * The rule is that addr 0 and floor 0 refer to the bottom of
497 * the address space, but end 0 and ceiling 0 refer to the top
498 * Comparisons need to use "end - 1" and "ceiling - 1" (though
499 * that end 0 case should be mythical).
500 *
501 * Wherever addr is brought up or ceiling brought down, we must
502 * be careful to reject "the opposite 0" before it confuses the
503 * subsequent tests. But what about where end is brought down
504 * by PMD_SIZE below? no, end can't go down to 0 there.
505 *
506 * Whereas we round start (addr) and ceiling down, by different
507 * masks at different levels, in order to test whether a table
508 * now has no other vmas using it, so can be freed, we don't
509 * bother to round floor or end up - the tests don't need that.
510 */
511
512 addr &= PMD_MASK;
513 if (addr < floor) {
514 addr += PMD_SIZE;
515 if (!addr)
516 return;
517 }
518 if (ceiling) {
519 ceiling &= PMD_MASK;
520 if (!ceiling)
521 return;
522 }
523 if (end - 1 > ceiling - 1)
524 end -= PMD_SIZE;
525 if (addr > end - 1)
526 return;
527
528 pgd = pgd_offset(tlb->mm, addr);
529 do {
530 next = pgd_addr_end(addr, end);
531 if (pgd_none_or_clear_bad(pgd))
532 continue;
533 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534 } while (pgd++, addr = next, addr != end);
535}
536
537void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538 unsigned long floor, unsigned long ceiling)
539{
540 while (vma) {
541 struct vm_area_struct *next = vma->vm_next;
542 unsigned long addr = vma->vm_start;
543
544 /*
545 * Hide vma from rmap and truncate_pagecache before freeing
546 * pgtables
547 */
548 unlink_anon_vmas(vma);
549 unlink_file_vma(vma);
550
551 if (is_vm_hugetlb_page(vma)) {
552 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553 floor, next? next->vm_start: ceiling);
554 } else {
555 /*
556 * Optimization: gather nearby vmas into one call down
557 */
558 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559 && !is_vm_hugetlb_page(next)) {
560 vma = next;
561 next = vma->vm_next;
562 unlink_anon_vmas(vma);
563 unlink_file_vma(vma);
564 }
565 free_pgd_range(tlb, addr, vma->vm_end,
566 floor, next? next->vm_start: ceiling);
567 }
568 vma = next;
569 }
570}
571
572int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573 pmd_t *pmd, unsigned long address)
574{
575 pgtable_t new = pte_alloc_one(mm, address);
576 int wait_split_huge_page;
577 if (!new)
578 return -ENOMEM;
579
580 /*
581 * Ensure all pte setup (eg. pte page lock and page clearing) are
582 * visible before the pte is made visible to other CPUs by being
583 * put into page tables.
584 *
585 * The other side of the story is the pointer chasing in the page
586 * table walking code (when walking the page table without locking;
587 * ie. most of the time). Fortunately, these data accesses consist
588 * of a chain of data-dependent loads, meaning most CPUs (alpha
589 * being the notable exception) will already guarantee loads are
590 * seen in-order. See the alpha page table accessors for the
591 * smp_read_barrier_depends() barriers in page table walking code.
592 */
593 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
594
595 spin_lock(&mm->page_table_lock);
596 wait_split_huge_page = 0;
597 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
598 mm->nr_ptes++;
599 pmd_populate(mm, pmd, new);
600 new = NULL;
601 } else if (unlikely(pmd_trans_splitting(*pmd)))
602 wait_split_huge_page = 1;
603 spin_unlock(&mm->page_table_lock);
604 if (new)
605 pte_free(mm, new);
606 if (wait_split_huge_page)
607 wait_split_huge_page(vma->anon_vma, pmd);
608 return 0;
609}
610
611int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
612{
613 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614 if (!new)
615 return -ENOMEM;
616
617 smp_wmb(); /* See comment in __pte_alloc */
618
619 spin_lock(&init_mm.page_table_lock);
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
621 pmd_populate_kernel(&init_mm, pmd, new);
622 new = NULL;
623 } else
624 VM_BUG_ON(pmd_trans_splitting(*pmd));
625 spin_unlock(&init_mm.page_table_lock);
626 if (new)
627 pte_free_kernel(&init_mm, new);
628 return 0;
629}
630
631static inline void init_rss_vec(int *rss)
632{
633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634}
635
636static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637{
638 int i;
639
640 if (current->mm == mm)
641 sync_mm_rss(mm);
642 for (i = 0; i < NR_MM_COUNTERS; i++)
643 if (rss[i])
644 add_mm_counter(mm, i, rss[i]);
645}
646
647/*
648 * This function is called to print an error when a bad pte
649 * is found. For example, we might have a PFN-mapped pte in
650 * a region that doesn't allow it.
651 *
652 * The calling function must still handle the error.
653 */
654static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 pte_t pte, struct page *page)
656{
657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 pud_t *pud = pud_offset(pgd, addr);
659 pmd_t *pmd = pmd_offset(pud, addr);
660 struct address_space *mapping;
661 pgoff_t index;
662 static unsigned long resume;
663 static unsigned long nr_shown;
664 static unsigned long nr_unshown;
665
666 /*
667 * Allow a burst of 60 reports, then keep quiet for that minute;
668 * or allow a steady drip of one report per second.
669 */
670 if (nr_shown == 60) {
671 if (time_before(jiffies, resume)) {
672 nr_unshown++;
673 return;
674 }
675 if (nr_unshown) {
676 printk(KERN_ALERT
677 "BUG: Bad page map: %lu messages suppressed\n",
678 nr_unshown);
679 nr_unshown = 0;
680 }
681 nr_shown = 0;
682 }
683 if (nr_shown++ == 0)
684 resume = jiffies + 60 * HZ;
685
686 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687 index = linear_page_index(vma, addr);
688
689 printk(KERN_ALERT
690 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
691 current->comm,
692 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693 if (page)
694 dump_page(page);
695 printk(KERN_ALERT
696 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698 /*
699 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700 */
701 if (vma->vm_ops)
702 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703 (unsigned long)vma->vm_ops->fault);
704 if (vma->vm_file && vma->vm_file->f_op)
705 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706 (unsigned long)vma->vm_file->f_op->mmap);
707 dump_stack();
708 add_taint(TAINT_BAD_PAGE);
709}
710
711static inline int is_cow_mapping(vm_flags_t flags)
712{
713 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714}
715
716#ifndef is_zero_pfn
717static inline int is_zero_pfn(unsigned long pfn)
718{
719 return pfn == zero_pfn;
720}
721#endif
722
723#ifndef my_zero_pfn
724static inline unsigned long my_zero_pfn(unsigned long addr)
725{
726 return zero_pfn;
727}
728#endif
729
730/*
731 * vm_normal_page -- This function gets the "struct page" associated with a pte.
732 *
733 * "Special" mappings do not wish to be associated with a "struct page" (either
734 * it doesn't exist, or it exists but they don't want to touch it). In this
735 * case, NULL is returned here. "Normal" mappings do have a struct page.
736 *
737 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738 * pte bit, in which case this function is trivial. Secondly, an architecture
739 * may not have a spare pte bit, which requires a more complicated scheme,
740 * described below.
741 *
742 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743 * special mapping (even if there are underlying and valid "struct pages").
744 * COWed pages of a VM_PFNMAP are always normal.
745 *
746 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749 * mapping will always honor the rule
750 *
751 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
752 *
753 * And for normal mappings this is false.
754 *
755 * This restricts such mappings to be a linear translation from virtual address
756 * to pfn. To get around this restriction, we allow arbitrary mappings so long
757 * as the vma is not a COW mapping; in that case, we know that all ptes are
758 * special (because none can have been COWed).
759 *
760 *
761 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
762 *
763 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764 * page" backing, however the difference is that _all_ pages with a struct
765 * page (that is, those where pfn_valid is true) are refcounted and considered
766 * normal pages by the VM. The disadvantage is that pages are refcounted
767 * (which can be slower and simply not an option for some PFNMAP users). The
768 * advantage is that we don't have to follow the strict linearity rule of
769 * PFNMAP mappings in order to support COWable mappings.
770 *
771 */
772#ifdef __HAVE_ARCH_PTE_SPECIAL
773# define HAVE_PTE_SPECIAL 1
774#else
775# define HAVE_PTE_SPECIAL 0
776#endif
777struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778 pte_t pte)
779{
780 unsigned long pfn = pte_pfn(pte);
781
782 if (HAVE_PTE_SPECIAL) {
783 if (likely(!pte_special(pte)))
784 goto check_pfn;
785 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786 return NULL;
787 if (!is_zero_pfn(pfn))
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
791
792 /* !HAVE_PTE_SPECIAL case follows: */
793
794 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795 if (vma->vm_flags & VM_MIXEDMAP) {
796 if (!pfn_valid(pfn))
797 return NULL;
798 goto out;
799 } else {
800 unsigned long off;
801 off = (addr - vma->vm_start) >> PAGE_SHIFT;
802 if (pfn == vma->vm_pgoff + off)
803 return NULL;
804 if (!is_cow_mapping(vma->vm_flags))
805 return NULL;
806 }
807 }
808
809 if (is_zero_pfn(pfn))
810 return NULL;
811check_pfn:
812 if (unlikely(pfn > highest_memmap_pfn)) {
813 print_bad_pte(vma, addr, pte, NULL);
814 return NULL;
815 }
816
817 /*
818 * NOTE! We still have PageReserved() pages in the page tables.
819 * eg. VDSO mappings can cause them to exist.
820 */
821out:
822 return pfn_to_page(pfn);
823}
824
825/*
826 * copy one vm_area from one task to the other. Assumes the page tables
827 * already present in the new task to be cleared in the whole range
828 * covered by this vma.
829 */
830
831static inline unsigned long
832copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
834 unsigned long addr, int *rss)
835{
836 unsigned long vm_flags = vma->vm_flags;
837 pte_t pte = *src_pte;
838 struct page *page;
839
840 /* pte contains position in swap or file, so copy. */
841 if (unlikely(!pte_present(pte))) {
842 if (!pte_file(pte)) {
843 swp_entry_t entry = pte_to_swp_entry(pte);
844
845 if (swap_duplicate(entry) < 0)
846 return entry.val;
847
848 /* make sure dst_mm is on swapoff's mmlist. */
849 if (unlikely(list_empty(&dst_mm->mmlist))) {
850 spin_lock(&mmlist_lock);
851 if (list_empty(&dst_mm->mmlist))
852 list_add(&dst_mm->mmlist,
853 &src_mm->mmlist);
854 spin_unlock(&mmlist_lock);
855 }
856 if (likely(!non_swap_entry(entry)))
857 rss[MM_SWAPENTS]++;
858 else if (is_migration_entry(entry)) {
859 page = migration_entry_to_page(entry);
860
861 if (PageAnon(page))
862 rss[MM_ANONPAGES]++;
863 else
864 rss[MM_FILEPAGES]++;
865
866 if (is_write_migration_entry(entry) &&
867 is_cow_mapping(vm_flags)) {
868 /*
869 * COW mappings require pages in both
870 * parent and child to be set to read.
871 */
872 make_migration_entry_read(&entry);
873 pte = swp_entry_to_pte(entry);
874 set_pte_at(src_mm, addr, src_pte, pte);
875 }
876 }
877 }
878 goto out_set_pte;
879 }
880
881 /*
882 * If it's a COW mapping, write protect it both
883 * in the parent and the child
884 */
885 if (is_cow_mapping(vm_flags)) {
886 ptep_set_wrprotect(src_mm, addr, src_pte);
887 pte = pte_wrprotect(pte);
888 }
889
890 /*
891 * If it's a shared mapping, mark it clean in
892 * the child
893 */
894 if (vm_flags & VM_SHARED)
895 pte = pte_mkclean(pte);
896 pte = pte_mkold(pte);
897
898 page = vm_normal_page(vma, addr, pte);
899 if (page) {
900 get_page(page);
901 page_dup_rmap(page);
902 if (PageAnon(page))
903 rss[MM_ANONPAGES]++;
904 else
905 rss[MM_FILEPAGES]++;
906 }
907
908out_set_pte:
909 set_pte_at(dst_mm, addr, dst_pte, pte);
910 return 0;
911}
912
913int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
915 unsigned long addr, unsigned long end)
916{
917 pte_t *orig_src_pte, *orig_dst_pte;
918 pte_t *src_pte, *dst_pte;
919 spinlock_t *src_ptl, *dst_ptl;
920 int progress = 0;
921 int rss[NR_MM_COUNTERS];
922 swp_entry_t entry = (swp_entry_t){0};
923
924again:
925 init_rss_vec(rss);
926
927 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
928 if (!dst_pte)
929 return -ENOMEM;
930 src_pte = pte_offset_map(src_pmd, addr);
931 src_ptl = pte_lockptr(src_mm, src_pmd);
932 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933 orig_src_pte = src_pte;
934 orig_dst_pte = dst_pte;
935 arch_enter_lazy_mmu_mode();
936
937 do {
938 /*
939 * We are holding two locks at this point - either of them
940 * could generate latencies in another task on another CPU.
941 */
942 if (progress >= 32) {
943 progress = 0;
944 if (need_resched() ||
945 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
946 break;
947 }
948 if (pte_none(*src_pte)) {
949 progress++;
950 continue;
951 }
952 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
953 vma, addr, rss);
954 if (entry.val)
955 break;
956 progress += 8;
957 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
958
959 arch_leave_lazy_mmu_mode();
960 spin_unlock(src_ptl);
961 pte_unmap(orig_src_pte);
962 add_mm_rss_vec(dst_mm, rss);
963 pte_unmap_unlock(orig_dst_pte, dst_ptl);
964 cond_resched();
965
966 if (entry.val) {
967 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
968 return -ENOMEM;
969 progress = 0;
970 }
971 if (addr != end)
972 goto again;
973 return 0;
974}
975
976static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
978 unsigned long addr, unsigned long end)
979{
980 pmd_t *src_pmd, *dst_pmd;
981 unsigned long next;
982
983 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
984 if (!dst_pmd)
985 return -ENOMEM;
986 src_pmd = pmd_offset(src_pud, addr);
987 do {
988 next = pmd_addr_end(addr, end);
989 if (pmd_trans_huge(*src_pmd)) {
990 int err;
991 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
992 err = copy_huge_pmd(dst_mm, src_mm,
993 dst_pmd, src_pmd, addr, vma);
994 if (err == -ENOMEM)
995 return -ENOMEM;
996 if (!err)
997 continue;
998 /* fall through */
999 }
1000 if (pmd_none_or_clear_bad(src_pmd))
1001 continue;
1002 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003 vma, addr, next))
1004 return -ENOMEM;
1005 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006 return 0;
1007}
1008
1009static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011 unsigned long addr, unsigned long end)
1012{
1013 pud_t *src_pud, *dst_pud;
1014 unsigned long next;
1015
1016 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017 if (!dst_pud)
1018 return -ENOMEM;
1019 src_pud = pud_offset(src_pgd, addr);
1020 do {
1021 next = pud_addr_end(addr, end);
1022 if (pud_none_or_clear_bad(src_pud))
1023 continue;
1024 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025 vma, addr, next))
1026 return -ENOMEM;
1027 } while (dst_pud++, src_pud++, addr = next, addr != end);
1028 return 0;
1029}
1030
1031int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032 struct vm_area_struct *vma)
1033{
1034 pgd_t *src_pgd, *dst_pgd;
1035 unsigned long next;
1036 unsigned long addr = vma->vm_start;
1037 unsigned long end = vma->vm_end;
1038 int ret;
1039
1040 /*
1041 * Don't copy ptes where a page fault will fill them correctly.
1042 * Fork becomes much lighter when there are big shared or private
1043 * readonly mappings. The tradeoff is that copy_page_range is more
1044 * efficient than faulting.
1045 */
1046 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047 if (!vma->anon_vma)
1048 return 0;
1049 }
1050
1051 if (is_vm_hugetlb_page(vma))
1052 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053
1054 if (unlikely(is_pfn_mapping(vma))) {
1055 /*
1056 * We do not free on error cases below as remove_vma
1057 * gets called on error from higher level routine
1058 */
1059 ret = track_pfn_vma_copy(vma);
1060 if (ret)
1061 return ret;
1062 }
1063
1064 /*
1065 * We need to invalidate the secondary MMU mappings only when
1066 * there could be a permission downgrade on the ptes of the
1067 * parent mm. And a permission downgrade will only happen if
1068 * is_cow_mapping() returns true.
1069 */
1070 if (is_cow_mapping(vma->vm_flags))
1071 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1072
1073 ret = 0;
1074 dst_pgd = pgd_offset(dst_mm, addr);
1075 src_pgd = pgd_offset(src_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(src_pgd))
1079 continue;
1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 vma, addr, next))) {
1082 ret = -ENOMEM;
1083 break;
1084 }
1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087 if (is_cow_mapping(vma->vm_flags))
1088 mmu_notifier_invalidate_range_end(src_mm,
1089 vma->vm_start, end);
1090 return ret;
1091}
1092
1093static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094 struct vm_area_struct *vma, pmd_t *pmd,
1095 unsigned long addr, unsigned long end,
1096 struct zap_details *details)
1097{
1098 struct mm_struct *mm = tlb->mm;
1099 int force_flush = 0;
1100 int rss[NR_MM_COUNTERS];
1101 spinlock_t *ptl;
1102 pte_t *start_pte;
1103 pte_t *pte;
1104
1105again:
1106 init_rss_vec(rss);
1107 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108 pte = start_pte;
1109 arch_enter_lazy_mmu_mode();
1110 do {
1111 pte_t ptent = *pte;
1112 if (pte_none(ptent)) {
1113 continue;
1114 }
1115
1116 if (pte_present(ptent)) {
1117 struct page *page;
1118
1119 page = vm_normal_page(vma, addr, ptent);
1120 if (unlikely(details) && page) {
1121 /*
1122 * unmap_shared_mapping_pages() wants to
1123 * invalidate cache without truncating:
1124 * unmap shared but keep private pages.
1125 */
1126 if (details->check_mapping &&
1127 details->check_mapping != page->mapping)
1128 continue;
1129 /*
1130 * Each page->index must be checked when
1131 * invalidating or truncating nonlinear.
1132 */
1133 if (details->nonlinear_vma &&
1134 (page->index < details->first_index ||
1135 page->index > details->last_index))
1136 continue;
1137 }
1138 ptent = ptep_get_and_clear_full(mm, addr, pte,
1139 tlb->fullmm);
1140 tlb_remove_tlb_entry(tlb, pte, addr);
1141 if (unlikely(!page))
1142 continue;
1143 if (unlikely(details) && details->nonlinear_vma
1144 && linear_page_index(details->nonlinear_vma,
1145 addr) != page->index)
1146 set_pte_at(mm, addr, pte,
1147 pgoff_to_pte(page->index));
1148 if (PageAnon(page))
1149 rss[MM_ANONPAGES]--;
1150 else {
1151 if (pte_dirty(ptent))
1152 set_page_dirty(page);
1153 if (pte_young(ptent) &&
1154 likely(!VM_SequentialReadHint(vma)))
1155 mark_page_accessed(page);
1156 rss[MM_FILEPAGES]--;
1157 }
1158 page_remove_rmap(page);
1159 if (unlikely(page_mapcount(page) < 0))
1160 print_bad_pte(vma, addr, ptent, page);
1161 force_flush = !__tlb_remove_page(tlb, page);
1162 if (force_flush)
1163 break;
1164 continue;
1165 }
1166 /*
1167 * If details->check_mapping, we leave swap entries;
1168 * if details->nonlinear_vma, we leave file entries.
1169 */
1170 if (unlikely(details))
1171 continue;
1172 if (pte_file(ptent)) {
1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 print_bad_pte(vma, addr, ptent, NULL);
1175 } else {
1176 swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178 if (!non_swap_entry(entry))
1179 rss[MM_SWAPENTS]--;
1180 else if (is_migration_entry(entry)) {
1181 struct page *page;
1182
1183 page = migration_entry_to_page(entry);
1184
1185 if (PageAnon(page))
1186 rss[MM_ANONPAGES]--;
1187 else
1188 rss[MM_FILEPAGES]--;
1189 }
1190 if (unlikely(!free_swap_and_cache(entry)))
1191 print_bad_pte(vma, addr, ptent, NULL);
1192 }
1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194 } while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196 add_mm_rss_vec(mm, rss);
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(start_pte, ptl);
1199
1200 /*
1201 * mmu_gather ran out of room to batch pages, we break out of
1202 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 * and page-free while holding it.
1204 */
1205 if (force_flush) {
1206 force_flush = 0;
1207 tlb_flush_mmu(tlb);
1208 if (addr != end)
1209 goto again;
1210 }
1211
1212 return addr;
1213}
1214
1215static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216 struct vm_area_struct *vma, pud_t *pud,
1217 unsigned long addr, unsigned long end,
1218 struct zap_details *details)
1219{
1220 pmd_t *pmd;
1221 unsigned long next;
1222
1223 pmd = pmd_offset(pud, addr);
1224 do {
1225 next = pmd_addr_end(addr, end);
1226 if (pmd_trans_huge(*pmd)) {
1227 if (next - addr != HPAGE_PMD_SIZE) {
1228#ifdef CONFIG_DEBUG_VM
1229 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1230 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1231 __func__, addr, end,
1232 vma->vm_start,
1233 vma->vm_end);
1234 BUG();
1235 }
1236#endif
1237 split_huge_page_pmd(vma->vm_mm, pmd);
1238 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1239 goto next;
1240 /* fall through */
1241 }
1242 /*
1243 * Here there can be other concurrent MADV_DONTNEED or
1244 * trans huge page faults running, and if the pmd is
1245 * none or trans huge it can change under us. This is
1246 * because MADV_DONTNEED holds the mmap_sem in read
1247 * mode.
1248 */
1249 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1250 goto next;
1251 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1252next:
1253 cond_resched();
1254 } while (pmd++, addr = next, addr != end);
1255
1256 return addr;
1257}
1258
1259static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1260 struct vm_area_struct *vma, pgd_t *pgd,
1261 unsigned long addr, unsigned long end,
1262 struct zap_details *details)
1263{
1264 pud_t *pud;
1265 unsigned long next;
1266
1267 pud = pud_offset(pgd, addr);
1268 do {
1269 next = pud_addr_end(addr, end);
1270 if (pud_none_or_clear_bad(pud))
1271 continue;
1272 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1273 } while (pud++, addr = next, addr != end);
1274
1275 return addr;
1276}
1277
1278static void unmap_page_range(struct mmu_gather *tlb,
1279 struct vm_area_struct *vma,
1280 unsigned long addr, unsigned long end,
1281 struct zap_details *details)
1282{
1283 pgd_t *pgd;
1284 unsigned long next;
1285
1286 if (details && !details->check_mapping && !details->nonlinear_vma)
1287 details = NULL;
1288
1289 BUG_ON(addr >= end);
1290 mem_cgroup_uncharge_start();
1291 tlb_start_vma(tlb, vma);
1292 pgd = pgd_offset(vma->vm_mm, addr);
1293 do {
1294 next = pgd_addr_end(addr, end);
1295 if (pgd_none_or_clear_bad(pgd))
1296 continue;
1297 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1298 } while (pgd++, addr = next, addr != end);
1299 tlb_end_vma(tlb, vma);
1300 mem_cgroup_uncharge_end();
1301}
1302
1303
1304static void unmap_single_vma(struct mmu_gather *tlb,
1305 struct vm_area_struct *vma, unsigned long start_addr,
1306 unsigned long end_addr,
1307 struct zap_details *details)
1308{
1309 unsigned long start = max(vma->vm_start, start_addr);
1310 unsigned long end;
1311
1312 if (start >= vma->vm_end)
1313 return;
1314 end = min(vma->vm_end, end_addr);
1315 if (end <= vma->vm_start)
1316 return;
1317
1318 if (vma->vm_file)
1319 uprobe_munmap(vma, start, end);
1320
1321 if (unlikely(is_pfn_mapping(vma)))
1322 untrack_pfn_vma(vma, 0, 0);
1323
1324 if (start != end) {
1325 if (unlikely(is_vm_hugetlb_page(vma))) {
1326 /*
1327 * It is undesirable to test vma->vm_file as it
1328 * should be non-null for valid hugetlb area.
1329 * However, vm_file will be NULL in the error
1330 * cleanup path of do_mmap_pgoff. When
1331 * hugetlbfs ->mmap method fails,
1332 * do_mmap_pgoff() nullifies vma->vm_file
1333 * before calling this function to clean up.
1334 * Since no pte has actually been setup, it is
1335 * safe to do nothing in this case.
1336 */
1337 if (vma->vm_file)
1338 unmap_hugepage_range(vma, start, end, NULL);
1339 } else
1340 unmap_page_range(tlb, vma, start, end, details);
1341 }
1342}
1343
1344/**
1345 * unmap_vmas - unmap a range of memory covered by a list of vma's
1346 * @tlb: address of the caller's struct mmu_gather
1347 * @vma: the starting vma
1348 * @start_addr: virtual address at which to start unmapping
1349 * @end_addr: virtual address at which to end unmapping
1350 *
1351 * Unmap all pages in the vma list.
1352 *
1353 * Only addresses between `start' and `end' will be unmapped.
1354 *
1355 * The VMA list must be sorted in ascending virtual address order.
1356 *
1357 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1358 * range after unmap_vmas() returns. So the only responsibility here is to
1359 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1360 * drops the lock and schedules.
1361 */
1362void unmap_vmas(struct mmu_gather *tlb,
1363 struct vm_area_struct *vma, unsigned long start_addr,
1364 unsigned long end_addr)
1365{
1366 struct mm_struct *mm = vma->vm_mm;
1367
1368 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1369 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1371 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372}
1373
1374/**
1375 * zap_page_range - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @start: starting address of pages to zap
1378 * @size: number of bytes to zap
1379 * @details: details of nonlinear truncation or shared cache invalidation
1380 *
1381 * Caller must protect the VMA list
1382 */
1383void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1384 unsigned long size, struct zap_details *details)
1385{
1386 struct mm_struct *mm = vma->vm_mm;
1387 struct mmu_gather tlb;
1388 unsigned long end = start + size;
1389
1390 lru_add_drain();
1391 tlb_gather_mmu(&tlb, mm, 0);
1392 update_hiwater_rss(mm);
1393 mmu_notifier_invalidate_range_start(mm, start, end);
1394 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1395 unmap_single_vma(&tlb, vma, start, end, details);
1396 mmu_notifier_invalidate_range_end(mm, start, end);
1397 tlb_finish_mmu(&tlb, start, end);
1398}
1399
1400/**
1401 * zap_page_range_single - remove user pages in a given range
1402 * @vma: vm_area_struct holding the applicable pages
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 * @details: details of nonlinear truncation or shared cache invalidation
1406 *
1407 * The range must fit into one VMA.
1408 */
1409static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1410 unsigned long size, struct zap_details *details)
1411{
1412 struct mm_struct *mm = vma->vm_mm;
1413 struct mmu_gather tlb;
1414 unsigned long end = address + size;
1415
1416 lru_add_drain();
1417 tlb_gather_mmu(&tlb, mm, 0);
1418 update_hiwater_rss(mm);
1419 mmu_notifier_invalidate_range_start(mm, address, end);
1420 unmap_single_vma(&tlb, vma, address, end, details);
1421 mmu_notifier_invalidate_range_end(mm, address, end);
1422 tlb_finish_mmu(&tlb, address, end);
1423}
1424
1425/**
1426 * zap_vma_ptes - remove ptes mapping the vma
1427 * @vma: vm_area_struct holding ptes to be zapped
1428 * @address: starting address of pages to zap
1429 * @size: number of bytes to zap
1430 *
1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432 *
1433 * The entire address range must be fully contained within the vma.
1434 *
1435 * Returns 0 if successful.
1436 */
1437int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438 unsigned long size)
1439{
1440 if (address < vma->vm_start || address + size > vma->vm_end ||
1441 !(vma->vm_flags & VM_PFNMAP))
1442 return -1;
1443 zap_page_range_single(vma, address, size, NULL);
1444 return 0;
1445}
1446EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447
1448/**
1449 * follow_page - look up a page descriptor from a user-virtual address
1450 * @vma: vm_area_struct mapping @address
1451 * @address: virtual address to look up
1452 * @flags: flags modifying lookup behaviour
1453 *
1454 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1455 *
1456 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1457 * an error pointer if there is a mapping to something not represented
1458 * by a page descriptor (see also vm_normal_page()).
1459 */
1460struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1461 unsigned int flags)
1462{
1463 pgd_t *pgd;
1464 pud_t *pud;
1465 pmd_t *pmd;
1466 pte_t *ptep, pte;
1467 spinlock_t *ptl;
1468 struct page *page;
1469 struct mm_struct *mm = vma->vm_mm;
1470
1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 if (!IS_ERR(page)) {
1473 BUG_ON(flags & FOLL_GET);
1474 goto out;
1475 }
1476
1477 page = NULL;
1478 pgd = pgd_offset(mm, address);
1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480 goto no_page_table;
1481
1482 pud = pud_offset(pgd, address);
1483 if (pud_none(*pud))
1484 goto no_page_table;
1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486 BUG_ON(flags & FOLL_GET);
1487 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1488 goto out;
1489 }
1490 if (unlikely(pud_bad(*pud)))
1491 goto no_page_table;
1492
1493 pmd = pmd_offset(pud, address);
1494 if (pmd_none(*pmd))
1495 goto no_page_table;
1496 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1497 BUG_ON(flags & FOLL_GET);
1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499 goto out;
1500 }
1501 if (pmd_trans_huge(*pmd)) {
1502 if (flags & FOLL_SPLIT) {
1503 split_huge_page_pmd(mm, pmd);
1504 goto split_fallthrough;
1505 }
1506 spin_lock(&mm->page_table_lock);
1507 if (likely(pmd_trans_huge(*pmd))) {
1508 if (unlikely(pmd_trans_splitting(*pmd))) {
1509 spin_unlock(&mm->page_table_lock);
1510 wait_split_huge_page(vma->anon_vma, pmd);
1511 } else {
1512 page = follow_trans_huge_pmd(mm, address,
1513 pmd, flags);
1514 spin_unlock(&mm->page_table_lock);
1515 goto out;
1516 }
1517 } else
1518 spin_unlock(&mm->page_table_lock);
1519 /* fall through */
1520 }
1521split_fallthrough:
1522 if (unlikely(pmd_bad(*pmd)))
1523 goto no_page_table;
1524
1525 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1526
1527 pte = *ptep;
1528 if (!pte_present(pte))
1529 goto no_page;
1530 if ((flags & FOLL_WRITE) && !pte_write(pte))
1531 goto unlock;
1532
1533 page = vm_normal_page(vma, address, pte);
1534 if (unlikely(!page)) {
1535 if ((flags & FOLL_DUMP) ||
1536 !is_zero_pfn(pte_pfn(pte)))
1537 goto bad_page;
1538 page = pte_page(pte);
1539 }
1540
1541 if (flags & FOLL_GET)
1542 get_page_foll(page);
1543 if (flags & FOLL_TOUCH) {
1544 if ((flags & FOLL_WRITE) &&
1545 !pte_dirty(pte) && !PageDirty(page))
1546 set_page_dirty(page);
1547 /*
1548 * pte_mkyoung() would be more correct here, but atomic care
1549 * is needed to avoid losing the dirty bit: it is easier to use
1550 * mark_page_accessed().
1551 */
1552 mark_page_accessed(page);
1553 }
1554 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1555 /*
1556 * The preliminary mapping check is mainly to avoid the
1557 * pointless overhead of lock_page on the ZERO_PAGE
1558 * which might bounce very badly if there is contention.
1559 *
1560 * If the page is already locked, we don't need to
1561 * handle it now - vmscan will handle it later if and
1562 * when it attempts to reclaim the page.
1563 */
1564 if (page->mapping && trylock_page(page)) {
1565 lru_add_drain(); /* push cached pages to LRU */
1566 /*
1567 * Because we lock page here and migration is
1568 * blocked by the pte's page reference, we need
1569 * only check for file-cache page truncation.
1570 */
1571 if (page->mapping)
1572 mlock_vma_page(page);
1573 unlock_page(page);
1574 }
1575 }
1576unlock:
1577 pte_unmap_unlock(ptep, ptl);
1578out:
1579 return page;
1580
1581bad_page:
1582 pte_unmap_unlock(ptep, ptl);
1583 return ERR_PTR(-EFAULT);
1584
1585no_page:
1586 pte_unmap_unlock(ptep, ptl);
1587 if (!pte_none(pte))
1588 return page;
1589
1590no_page_table:
1591 /*
1592 * When core dumping an enormous anonymous area that nobody
1593 * has touched so far, we don't want to allocate unnecessary pages or
1594 * page tables. Return error instead of NULL to skip handle_mm_fault,
1595 * then get_dump_page() will return NULL to leave a hole in the dump.
1596 * But we can only make this optimization where a hole would surely
1597 * be zero-filled if handle_mm_fault() actually did handle it.
1598 */
1599 if ((flags & FOLL_DUMP) &&
1600 (!vma->vm_ops || !vma->vm_ops->fault))
1601 return ERR_PTR(-EFAULT);
1602 return page;
1603}
1604
1605static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1606{
1607 return stack_guard_page_start(vma, addr) ||
1608 stack_guard_page_end(vma, addr+PAGE_SIZE);
1609}
1610
1611/**
1612 * __get_user_pages() - pin user pages in memory
1613 * @tsk: task_struct of target task
1614 * @mm: mm_struct of target mm
1615 * @start: starting user address
1616 * @nr_pages: number of pages from start to pin
1617 * @gup_flags: flags modifying pin behaviour
1618 * @pages: array that receives pointers to the pages pinned.
1619 * Should be at least nr_pages long. Or NULL, if caller
1620 * only intends to ensure the pages are faulted in.
1621 * @vmas: array of pointers to vmas corresponding to each page.
1622 * Or NULL if the caller does not require them.
1623 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1624 *
1625 * Returns number of pages pinned. This may be fewer than the number
1626 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1627 * were pinned, returns -errno. Each page returned must be released
1628 * with a put_page() call when it is finished with. vmas will only
1629 * remain valid while mmap_sem is held.
1630 *
1631 * Must be called with mmap_sem held for read or write.
1632 *
1633 * __get_user_pages walks a process's page tables and takes a reference to
1634 * each struct page that each user address corresponds to at a given
1635 * instant. That is, it takes the page that would be accessed if a user
1636 * thread accesses the given user virtual address at that instant.
1637 *
1638 * This does not guarantee that the page exists in the user mappings when
1639 * __get_user_pages returns, and there may even be a completely different
1640 * page there in some cases (eg. if mmapped pagecache has been invalidated
1641 * and subsequently re faulted). However it does guarantee that the page
1642 * won't be freed completely. And mostly callers simply care that the page
1643 * contains data that was valid *at some point in time*. Typically, an IO
1644 * or similar operation cannot guarantee anything stronger anyway because
1645 * locks can't be held over the syscall boundary.
1646 *
1647 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1648 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1649 * appropriate) must be called after the page is finished with, and
1650 * before put_page is called.
1651 *
1652 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1653 * or mmap_sem contention, and if waiting is needed to pin all pages,
1654 * *@nonblocking will be set to 0.
1655 *
1656 * In most cases, get_user_pages or get_user_pages_fast should be used
1657 * instead of __get_user_pages. __get_user_pages should be used only if
1658 * you need some special @gup_flags.
1659 */
1660int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1661 unsigned long start, int nr_pages, unsigned int gup_flags,
1662 struct page **pages, struct vm_area_struct **vmas,
1663 int *nonblocking)
1664{
1665 int i;
1666 unsigned long vm_flags;
1667
1668 if (nr_pages <= 0)
1669 return 0;
1670
1671 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1672
1673 /*
1674 * Require read or write permissions.
1675 * If FOLL_FORCE is set, we only require the "MAY" flags.
1676 */
1677 vm_flags = (gup_flags & FOLL_WRITE) ?
1678 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1679 vm_flags &= (gup_flags & FOLL_FORCE) ?
1680 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1681 i = 0;
1682
1683 do {
1684 struct vm_area_struct *vma;
1685
1686 vma = find_extend_vma(mm, start);
1687 if (!vma && in_gate_area(mm, start)) {
1688 unsigned long pg = start & PAGE_MASK;
1689 pgd_t *pgd;
1690 pud_t *pud;
1691 pmd_t *pmd;
1692 pte_t *pte;
1693
1694 /* user gate pages are read-only */
1695 if (gup_flags & FOLL_WRITE)
1696 return i ? : -EFAULT;
1697 if (pg > TASK_SIZE)
1698 pgd = pgd_offset_k(pg);
1699 else
1700 pgd = pgd_offset_gate(mm, pg);
1701 BUG_ON(pgd_none(*pgd));
1702 pud = pud_offset(pgd, pg);
1703 BUG_ON(pud_none(*pud));
1704 pmd = pmd_offset(pud, pg);
1705 if (pmd_none(*pmd))
1706 return i ? : -EFAULT;
1707 VM_BUG_ON(pmd_trans_huge(*pmd));
1708 pte = pte_offset_map(pmd, pg);
1709 if (pte_none(*pte)) {
1710 pte_unmap(pte);
1711 return i ? : -EFAULT;
1712 }
1713 vma = get_gate_vma(mm);
1714 if (pages) {
1715 struct page *page;
1716
1717 page = vm_normal_page(vma, start, *pte);
1718 if (!page) {
1719 if (!(gup_flags & FOLL_DUMP) &&
1720 is_zero_pfn(pte_pfn(*pte)))
1721 page = pte_page(*pte);
1722 else {
1723 pte_unmap(pte);
1724 return i ? : -EFAULT;
1725 }
1726 }
1727 pages[i] = page;
1728 get_page(page);
1729 }
1730 pte_unmap(pte);
1731 goto next_page;
1732 }
1733
1734 if (!vma ||
1735 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1736 !(vm_flags & vma->vm_flags))
1737 return i ? : -EFAULT;
1738
1739 if (is_vm_hugetlb_page(vma)) {
1740 i = follow_hugetlb_page(mm, vma, pages, vmas,
1741 &start, &nr_pages, i, gup_flags);
1742 continue;
1743 }
1744
1745 do {
1746 struct page *page;
1747 unsigned int foll_flags = gup_flags;
1748
1749 /*
1750 * If we have a pending SIGKILL, don't keep faulting
1751 * pages and potentially allocating memory.
1752 */
1753 if (unlikely(fatal_signal_pending(current)))
1754 return i ? i : -ERESTARTSYS;
1755
1756 cond_resched();
1757 while (!(page = follow_page(vma, start, foll_flags))) {
1758 int ret;
1759 unsigned int fault_flags = 0;
1760
1761 /* For mlock, just skip the stack guard page. */
1762 if (foll_flags & FOLL_MLOCK) {
1763 if (stack_guard_page(vma, start))
1764 goto next_page;
1765 }
1766 if (foll_flags & FOLL_WRITE)
1767 fault_flags |= FAULT_FLAG_WRITE;
1768 if (nonblocking)
1769 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1770 if (foll_flags & FOLL_NOWAIT)
1771 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1772
1773 ret = handle_mm_fault(mm, vma, start,
1774 fault_flags);
1775
1776 if (ret & VM_FAULT_ERROR) {
1777 if (ret & VM_FAULT_OOM)
1778 return i ? i : -ENOMEM;
1779 if (ret & (VM_FAULT_HWPOISON |
1780 VM_FAULT_HWPOISON_LARGE)) {
1781 if (i)
1782 return i;
1783 else if (gup_flags & FOLL_HWPOISON)
1784 return -EHWPOISON;
1785 else
1786 return -EFAULT;
1787 }
1788 if (ret & VM_FAULT_SIGBUS)
1789 return i ? i : -EFAULT;
1790 BUG();
1791 }
1792
1793 if (tsk) {
1794 if (ret & VM_FAULT_MAJOR)
1795 tsk->maj_flt++;
1796 else
1797 tsk->min_flt++;
1798 }
1799
1800 if (ret & VM_FAULT_RETRY) {
1801 if (nonblocking)
1802 *nonblocking = 0;
1803 return i;
1804 }
1805
1806 /*
1807 * The VM_FAULT_WRITE bit tells us that
1808 * do_wp_page has broken COW when necessary,
1809 * even if maybe_mkwrite decided not to set
1810 * pte_write. We can thus safely do subsequent
1811 * page lookups as if they were reads. But only
1812 * do so when looping for pte_write is futile:
1813 * in some cases userspace may also be wanting
1814 * to write to the gotten user page, which a
1815 * read fault here might prevent (a readonly
1816 * page might get reCOWed by userspace write).
1817 */
1818 if ((ret & VM_FAULT_WRITE) &&
1819 !(vma->vm_flags & VM_WRITE))
1820 foll_flags &= ~FOLL_WRITE;
1821
1822 cond_resched();
1823 }
1824 if (IS_ERR(page))
1825 return i ? i : PTR_ERR(page);
1826 if (pages) {
1827 pages[i] = page;
1828
1829 flush_anon_page(vma, page, start);
1830 flush_dcache_page(page);
1831 }
1832next_page:
1833 if (vmas)
1834 vmas[i] = vma;
1835 i++;
1836 start += PAGE_SIZE;
1837 nr_pages--;
1838 } while (nr_pages && start < vma->vm_end);
1839 } while (nr_pages);
1840 return i;
1841}
1842EXPORT_SYMBOL(__get_user_pages);
1843
1844/*
1845 * fixup_user_fault() - manually resolve a user page fault
1846 * @tsk: the task_struct to use for page fault accounting, or
1847 * NULL if faults are not to be recorded.
1848 * @mm: mm_struct of target mm
1849 * @address: user address
1850 * @fault_flags:flags to pass down to handle_mm_fault()
1851 *
1852 * This is meant to be called in the specific scenario where for locking reasons
1853 * we try to access user memory in atomic context (within a pagefault_disable()
1854 * section), this returns -EFAULT, and we want to resolve the user fault before
1855 * trying again.
1856 *
1857 * Typically this is meant to be used by the futex code.
1858 *
1859 * The main difference with get_user_pages() is that this function will
1860 * unconditionally call handle_mm_fault() which will in turn perform all the
1861 * necessary SW fixup of the dirty and young bits in the PTE, while
1862 * handle_mm_fault() only guarantees to update these in the struct page.
1863 *
1864 * This is important for some architectures where those bits also gate the
1865 * access permission to the page because they are maintained in software. On
1866 * such architectures, gup() will not be enough to make a subsequent access
1867 * succeed.
1868 *
1869 * This should be called with the mm_sem held for read.
1870 */
1871int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1872 unsigned long address, unsigned int fault_flags)
1873{
1874 struct vm_area_struct *vma;
1875 int ret;
1876
1877 vma = find_extend_vma(mm, address);
1878 if (!vma || address < vma->vm_start)
1879 return -EFAULT;
1880
1881 ret = handle_mm_fault(mm, vma, address, fault_flags);
1882 if (ret & VM_FAULT_ERROR) {
1883 if (ret & VM_FAULT_OOM)
1884 return -ENOMEM;
1885 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1886 return -EHWPOISON;
1887 if (ret & VM_FAULT_SIGBUS)
1888 return -EFAULT;
1889 BUG();
1890 }
1891 if (tsk) {
1892 if (ret & VM_FAULT_MAJOR)
1893 tsk->maj_flt++;
1894 else
1895 tsk->min_flt++;
1896 }
1897 return 0;
1898}
1899
1900/*
1901 * get_user_pages() - pin user pages in memory
1902 * @tsk: the task_struct to use for page fault accounting, or
1903 * NULL if faults are not to be recorded.
1904 * @mm: mm_struct of target mm
1905 * @start: starting user address
1906 * @nr_pages: number of pages from start to pin
1907 * @write: whether pages will be written to by the caller
1908 * @force: whether to force write access even if user mapping is
1909 * readonly. This will result in the page being COWed even
1910 * in MAP_SHARED mappings. You do not want this.
1911 * @pages: array that receives pointers to the pages pinned.
1912 * Should be at least nr_pages long. Or NULL, if caller
1913 * only intends to ensure the pages are faulted in.
1914 * @vmas: array of pointers to vmas corresponding to each page.
1915 * Or NULL if the caller does not require them.
1916 *
1917 * Returns number of pages pinned. This may be fewer than the number
1918 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1919 * were pinned, returns -errno. Each page returned must be released
1920 * with a put_page() call when it is finished with. vmas will only
1921 * remain valid while mmap_sem is held.
1922 *
1923 * Must be called with mmap_sem held for read or write.
1924 *
1925 * get_user_pages walks a process's page tables and takes a reference to
1926 * each struct page that each user address corresponds to at a given
1927 * instant. That is, it takes the page that would be accessed if a user
1928 * thread accesses the given user virtual address at that instant.
1929 *
1930 * This does not guarantee that the page exists in the user mappings when
1931 * get_user_pages returns, and there may even be a completely different
1932 * page there in some cases (eg. if mmapped pagecache has been invalidated
1933 * and subsequently re faulted). However it does guarantee that the page
1934 * won't be freed completely. And mostly callers simply care that the page
1935 * contains data that was valid *at some point in time*. Typically, an IO
1936 * or similar operation cannot guarantee anything stronger anyway because
1937 * locks can't be held over the syscall boundary.
1938 *
1939 * If write=0, the page must not be written to. If the page is written to,
1940 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1941 * after the page is finished with, and before put_page is called.
1942 *
1943 * get_user_pages is typically used for fewer-copy IO operations, to get a
1944 * handle on the memory by some means other than accesses via the user virtual
1945 * addresses. The pages may be submitted for DMA to devices or accessed via
1946 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1947 * use the correct cache flushing APIs.
1948 *
1949 * See also get_user_pages_fast, for performance critical applications.
1950 */
1951int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1952 unsigned long start, int nr_pages, int write, int force,
1953 struct page **pages, struct vm_area_struct **vmas)
1954{
1955 int flags = FOLL_TOUCH;
1956
1957 if (pages)
1958 flags |= FOLL_GET;
1959 if (write)
1960 flags |= FOLL_WRITE;
1961 if (force)
1962 flags |= FOLL_FORCE;
1963
1964 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1965 NULL);
1966}
1967EXPORT_SYMBOL(get_user_pages);
1968
1969/**
1970 * get_dump_page() - pin user page in memory while writing it to core dump
1971 * @addr: user address
1972 *
1973 * Returns struct page pointer of user page pinned for dump,
1974 * to be freed afterwards by page_cache_release() or put_page().
1975 *
1976 * Returns NULL on any kind of failure - a hole must then be inserted into
1977 * the corefile, to preserve alignment with its headers; and also returns
1978 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1979 * allowing a hole to be left in the corefile to save diskspace.
1980 *
1981 * Called without mmap_sem, but after all other threads have been killed.
1982 */
1983#ifdef CONFIG_ELF_CORE
1984struct page *get_dump_page(unsigned long addr)
1985{
1986 struct vm_area_struct *vma;
1987 struct page *page;
1988
1989 if (__get_user_pages(current, current->mm, addr, 1,
1990 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1991 NULL) < 1)
1992 return NULL;
1993 flush_cache_page(vma, addr, page_to_pfn(page));
1994 return page;
1995}
1996#endif /* CONFIG_ELF_CORE */
1997
1998pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1999 spinlock_t **ptl)
2000{
2001 pgd_t * pgd = pgd_offset(mm, addr);
2002 pud_t * pud = pud_alloc(mm, pgd, addr);
2003 if (pud) {
2004 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2005 if (pmd) {
2006 VM_BUG_ON(pmd_trans_huge(*pmd));
2007 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2008 }
2009 }
2010 return NULL;
2011}
2012
2013/*
2014 * This is the old fallback for page remapping.
2015 *
2016 * For historical reasons, it only allows reserved pages. Only
2017 * old drivers should use this, and they needed to mark their
2018 * pages reserved for the old functions anyway.
2019 */
2020static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2021 struct page *page, pgprot_t prot)
2022{
2023 struct mm_struct *mm = vma->vm_mm;
2024 int retval;
2025 pte_t *pte;
2026 spinlock_t *ptl;
2027
2028 retval = -EINVAL;
2029 if (PageAnon(page))
2030 goto out;
2031 retval = -ENOMEM;
2032 flush_dcache_page(page);
2033 pte = get_locked_pte(mm, addr, &ptl);
2034 if (!pte)
2035 goto out;
2036 retval = -EBUSY;
2037 if (!pte_none(*pte))
2038 goto out_unlock;
2039
2040 /* Ok, finally just insert the thing.. */
2041 get_page(page);
2042 inc_mm_counter_fast(mm, MM_FILEPAGES);
2043 page_add_file_rmap(page);
2044 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2045
2046 retval = 0;
2047 pte_unmap_unlock(pte, ptl);
2048 return retval;
2049out_unlock:
2050 pte_unmap_unlock(pte, ptl);
2051out:
2052 return retval;
2053}
2054
2055/**
2056 * vm_insert_page - insert single page into user vma
2057 * @vma: user vma to map to
2058 * @addr: target user address of this page
2059 * @page: source kernel page
2060 *
2061 * This allows drivers to insert individual pages they've allocated
2062 * into a user vma.
2063 *
2064 * The page has to be a nice clean _individual_ kernel allocation.
2065 * If you allocate a compound page, you need to have marked it as
2066 * such (__GFP_COMP), or manually just split the page up yourself
2067 * (see split_page()).
2068 *
2069 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2070 * took an arbitrary page protection parameter. This doesn't allow
2071 * that. Your vma protection will have to be set up correctly, which
2072 * means that if you want a shared writable mapping, you'd better
2073 * ask for a shared writable mapping!
2074 *
2075 * The page does not need to be reserved.
2076 */
2077int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2078 struct page *page)
2079{
2080 if (addr < vma->vm_start || addr >= vma->vm_end)
2081 return -EFAULT;
2082 if (!page_count(page))
2083 return -EINVAL;
2084 vma->vm_flags |= VM_INSERTPAGE;
2085 return insert_page(vma, addr, page, vma->vm_page_prot);
2086}
2087EXPORT_SYMBOL(vm_insert_page);
2088
2089static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2090 unsigned long pfn, pgprot_t prot)
2091{
2092 struct mm_struct *mm = vma->vm_mm;
2093 int retval;
2094 pte_t *pte, entry;
2095 spinlock_t *ptl;
2096
2097 retval = -ENOMEM;
2098 pte = get_locked_pte(mm, addr, &ptl);
2099 if (!pte)
2100 goto out;
2101 retval = -EBUSY;
2102 if (!pte_none(*pte))
2103 goto out_unlock;
2104
2105 /* Ok, finally just insert the thing.. */
2106 entry = pte_mkspecial(pfn_pte(pfn, prot));
2107 set_pte_at(mm, addr, pte, entry);
2108 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2109
2110 retval = 0;
2111out_unlock:
2112 pte_unmap_unlock(pte, ptl);
2113out:
2114 return retval;
2115}
2116
2117/**
2118 * vm_insert_pfn - insert single pfn into user vma
2119 * @vma: user vma to map to
2120 * @addr: target user address of this page
2121 * @pfn: source kernel pfn
2122 *
2123 * Similar to vm_inert_page, this allows drivers to insert individual pages
2124 * they've allocated into a user vma. Same comments apply.
2125 *
2126 * This function should only be called from a vm_ops->fault handler, and
2127 * in that case the handler should return NULL.
2128 *
2129 * vma cannot be a COW mapping.
2130 *
2131 * As this is called only for pages that do not currently exist, we
2132 * do not need to flush old virtual caches or the TLB.
2133 */
2134int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135 unsigned long pfn)
2136{
2137 int ret;
2138 pgprot_t pgprot = vma->vm_page_prot;
2139 /*
2140 * Technically, architectures with pte_special can avoid all these
2141 * restrictions (same for remap_pfn_range). However we would like
2142 * consistency in testing and feature parity among all, so we should
2143 * try to keep these invariants in place for everybody.
2144 */
2145 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2146 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2147 (VM_PFNMAP|VM_MIXEDMAP));
2148 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2149 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2150
2151 if (addr < vma->vm_start || addr >= vma->vm_end)
2152 return -EFAULT;
2153 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2154 return -EINVAL;
2155
2156 ret = insert_pfn(vma, addr, pfn, pgprot);
2157
2158 if (ret)
2159 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2160
2161 return ret;
2162}
2163EXPORT_SYMBOL(vm_insert_pfn);
2164
2165int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2166 unsigned long pfn)
2167{
2168 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2169
2170 if (addr < vma->vm_start || addr >= vma->vm_end)
2171 return -EFAULT;
2172
2173 /*
2174 * If we don't have pte special, then we have to use the pfn_valid()
2175 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2176 * refcount the page if pfn_valid is true (hence insert_page rather
2177 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2178 * without pte special, it would there be refcounted as a normal page.
2179 */
2180 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2181 struct page *page;
2182
2183 page = pfn_to_page(pfn);
2184 return insert_page(vma, addr, page, vma->vm_page_prot);
2185 }
2186 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2187}
2188EXPORT_SYMBOL(vm_insert_mixed);
2189
2190/*
2191 * maps a range of physical memory into the requested pages. the old
2192 * mappings are removed. any references to nonexistent pages results
2193 * in null mappings (currently treated as "copy-on-access")
2194 */
2195static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2196 unsigned long addr, unsigned long end,
2197 unsigned long pfn, pgprot_t prot)
2198{
2199 pte_t *pte;
2200 spinlock_t *ptl;
2201
2202 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2203 if (!pte)
2204 return -ENOMEM;
2205 arch_enter_lazy_mmu_mode();
2206 do {
2207 BUG_ON(!pte_none(*pte));
2208 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2209 pfn++;
2210 } while (pte++, addr += PAGE_SIZE, addr != end);
2211 arch_leave_lazy_mmu_mode();
2212 pte_unmap_unlock(pte - 1, ptl);
2213 return 0;
2214}
2215
2216static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2217 unsigned long addr, unsigned long end,
2218 unsigned long pfn, pgprot_t prot)
2219{
2220 pmd_t *pmd;
2221 unsigned long next;
2222
2223 pfn -= addr >> PAGE_SHIFT;
2224 pmd = pmd_alloc(mm, pud, addr);
2225 if (!pmd)
2226 return -ENOMEM;
2227 VM_BUG_ON(pmd_trans_huge(*pmd));
2228 do {
2229 next = pmd_addr_end(addr, end);
2230 if (remap_pte_range(mm, pmd, addr, next,
2231 pfn + (addr >> PAGE_SHIFT), prot))
2232 return -ENOMEM;
2233 } while (pmd++, addr = next, addr != end);
2234 return 0;
2235}
2236
2237static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2238 unsigned long addr, unsigned long end,
2239 unsigned long pfn, pgprot_t prot)
2240{
2241 pud_t *pud;
2242 unsigned long next;
2243
2244 pfn -= addr >> PAGE_SHIFT;
2245 pud = pud_alloc(mm, pgd, addr);
2246 if (!pud)
2247 return -ENOMEM;
2248 do {
2249 next = pud_addr_end(addr, end);
2250 if (remap_pmd_range(mm, pud, addr, next,
2251 pfn + (addr >> PAGE_SHIFT), prot))
2252 return -ENOMEM;
2253 } while (pud++, addr = next, addr != end);
2254 return 0;
2255}
2256
2257/**
2258 * remap_pfn_range - remap kernel memory to userspace
2259 * @vma: user vma to map to
2260 * @addr: target user address to start at
2261 * @pfn: physical address of kernel memory
2262 * @size: size of map area
2263 * @prot: page protection flags for this mapping
2264 *
2265 * Note: this is only safe if the mm semaphore is held when called.
2266 */
2267int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2268 unsigned long pfn, unsigned long size, pgprot_t prot)
2269{
2270 pgd_t *pgd;
2271 unsigned long next;
2272 unsigned long end = addr + PAGE_ALIGN(size);
2273 struct mm_struct *mm = vma->vm_mm;
2274 int err;
2275
2276 /*
2277 * Physically remapped pages are special. Tell the
2278 * rest of the world about it:
2279 * VM_IO tells people not to look at these pages
2280 * (accesses can have side effects).
2281 * VM_RESERVED is specified all over the place, because
2282 * in 2.4 it kept swapout's vma scan off this vma; but
2283 * in 2.6 the LRU scan won't even find its pages, so this
2284 * flag means no more than count its pages in reserved_vm,
2285 * and omit it from core dump, even when VM_IO turned off.
2286 * VM_PFNMAP tells the core MM that the base pages are just
2287 * raw PFN mappings, and do not have a "struct page" associated
2288 * with them.
2289 *
2290 * There's a horrible special case to handle copy-on-write
2291 * behaviour that some programs depend on. We mark the "original"
2292 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2293 */
2294 if (addr == vma->vm_start && end == vma->vm_end) {
2295 vma->vm_pgoff = pfn;
2296 vma->vm_flags |= VM_PFN_AT_MMAP;
2297 } else if (is_cow_mapping(vma->vm_flags))
2298 return -EINVAL;
2299
2300 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2301
2302 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2303 if (err) {
2304 /*
2305 * To indicate that track_pfn related cleanup is not
2306 * needed from higher level routine calling unmap_vmas
2307 */
2308 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2309 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2310 return -EINVAL;
2311 }
2312
2313 BUG_ON(addr >= end);
2314 pfn -= addr >> PAGE_SHIFT;
2315 pgd = pgd_offset(mm, addr);
2316 flush_cache_range(vma, addr, end);
2317 do {
2318 next = pgd_addr_end(addr, end);
2319 err = remap_pud_range(mm, pgd, addr, next,
2320 pfn + (addr >> PAGE_SHIFT), prot);
2321 if (err)
2322 break;
2323 } while (pgd++, addr = next, addr != end);
2324
2325 if (err)
2326 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2327
2328 return err;
2329}
2330EXPORT_SYMBOL(remap_pfn_range);
2331
2332static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2333 unsigned long addr, unsigned long end,
2334 pte_fn_t fn, void *data)
2335{
2336 pte_t *pte;
2337 int err;
2338 pgtable_t token;
2339 spinlock_t *uninitialized_var(ptl);
2340
2341 pte = (mm == &init_mm) ?
2342 pte_alloc_kernel(pmd, addr) :
2343 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2344 if (!pte)
2345 return -ENOMEM;
2346
2347 BUG_ON(pmd_huge(*pmd));
2348
2349 arch_enter_lazy_mmu_mode();
2350
2351 token = pmd_pgtable(*pmd);
2352
2353 do {
2354 err = fn(pte++, token, addr, data);
2355 if (err)
2356 break;
2357 } while (addr += PAGE_SIZE, addr != end);
2358
2359 arch_leave_lazy_mmu_mode();
2360
2361 if (mm != &init_mm)
2362 pte_unmap_unlock(pte-1, ptl);
2363 return err;
2364}
2365
2366static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2367 unsigned long addr, unsigned long end,
2368 pte_fn_t fn, void *data)
2369{
2370 pmd_t *pmd;
2371 unsigned long next;
2372 int err;
2373
2374 BUG_ON(pud_huge(*pud));
2375
2376 pmd = pmd_alloc(mm, pud, addr);
2377 if (!pmd)
2378 return -ENOMEM;
2379 do {
2380 next = pmd_addr_end(addr, end);
2381 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2382 if (err)
2383 break;
2384 } while (pmd++, addr = next, addr != end);
2385 return err;
2386}
2387
2388static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2389 unsigned long addr, unsigned long end,
2390 pte_fn_t fn, void *data)
2391{
2392 pud_t *pud;
2393 unsigned long next;
2394 int err;
2395
2396 pud = pud_alloc(mm, pgd, addr);
2397 if (!pud)
2398 return -ENOMEM;
2399 do {
2400 next = pud_addr_end(addr, end);
2401 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2402 if (err)
2403 break;
2404 } while (pud++, addr = next, addr != end);
2405 return err;
2406}
2407
2408/*
2409 * Scan a region of virtual memory, filling in page tables as necessary
2410 * and calling a provided function on each leaf page table.
2411 */
2412int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2413 unsigned long size, pte_fn_t fn, void *data)
2414{
2415 pgd_t *pgd;
2416 unsigned long next;
2417 unsigned long end = addr + size;
2418 int err;
2419
2420 BUG_ON(addr >= end);
2421 pgd = pgd_offset(mm, addr);
2422 do {
2423 next = pgd_addr_end(addr, end);
2424 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2425 if (err)
2426 break;
2427 } while (pgd++, addr = next, addr != end);
2428
2429 return err;
2430}
2431EXPORT_SYMBOL_GPL(apply_to_page_range);
2432
2433/*
2434 * handle_pte_fault chooses page fault handler according to an entry
2435 * which was read non-atomically. Before making any commitment, on
2436 * those architectures or configurations (e.g. i386 with PAE) which
2437 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2438 * must check under lock before unmapping the pte and proceeding
2439 * (but do_wp_page is only called after already making such a check;
2440 * and do_anonymous_page can safely check later on).
2441 */
2442static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2443 pte_t *page_table, pte_t orig_pte)
2444{
2445 int same = 1;
2446#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2447 if (sizeof(pte_t) > sizeof(unsigned long)) {
2448 spinlock_t *ptl = pte_lockptr(mm, pmd);
2449 spin_lock(ptl);
2450 same = pte_same(*page_table, orig_pte);
2451 spin_unlock(ptl);
2452 }
2453#endif
2454 pte_unmap(page_table);
2455 return same;
2456}
2457
2458static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2459{
2460 /*
2461 * If the source page was a PFN mapping, we don't have
2462 * a "struct page" for it. We do a best-effort copy by
2463 * just copying from the original user address. If that
2464 * fails, we just zero-fill it. Live with it.
2465 */
2466 if (unlikely(!src)) {
2467 void *kaddr = kmap_atomic(dst);
2468 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2469
2470 /*
2471 * This really shouldn't fail, because the page is there
2472 * in the page tables. But it might just be unreadable,
2473 * in which case we just give up and fill the result with
2474 * zeroes.
2475 */
2476 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2477 clear_page(kaddr);
2478 kunmap_atomic(kaddr);
2479 flush_dcache_page(dst);
2480 } else
2481 copy_user_highpage(dst, src, va, vma);
2482}
2483
2484/*
2485 * This routine handles present pages, when users try to write
2486 * to a shared page. It is done by copying the page to a new address
2487 * and decrementing the shared-page counter for the old page.
2488 *
2489 * Note that this routine assumes that the protection checks have been
2490 * done by the caller (the low-level page fault routine in most cases).
2491 * Thus we can safely just mark it writable once we've done any necessary
2492 * COW.
2493 *
2494 * We also mark the page dirty at this point even though the page will
2495 * change only once the write actually happens. This avoids a few races,
2496 * and potentially makes it more efficient.
2497 *
2498 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2499 * but allow concurrent faults), with pte both mapped and locked.
2500 * We return with mmap_sem still held, but pte unmapped and unlocked.
2501 */
2502static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2503 unsigned long address, pte_t *page_table, pmd_t *pmd,
2504 spinlock_t *ptl, pte_t orig_pte)
2505 __releases(ptl)
2506{
2507 struct page *old_page, *new_page;
2508 pte_t entry;
2509 int ret = 0;
2510 int page_mkwrite = 0;
2511 struct page *dirty_page = NULL;
2512
2513 old_page = vm_normal_page(vma, address, orig_pte);
2514 if (!old_page) {
2515 /*
2516 * VM_MIXEDMAP !pfn_valid() case
2517 *
2518 * We should not cow pages in a shared writeable mapping.
2519 * Just mark the pages writable as we can't do any dirty
2520 * accounting on raw pfn maps.
2521 */
2522 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2523 (VM_WRITE|VM_SHARED))
2524 goto reuse;
2525 goto gotten;
2526 }
2527
2528 /*
2529 * Take out anonymous pages first, anonymous shared vmas are
2530 * not dirty accountable.
2531 */
2532 if (PageAnon(old_page) && !PageKsm(old_page)) {
2533 if (!trylock_page(old_page)) {
2534 page_cache_get(old_page);
2535 pte_unmap_unlock(page_table, ptl);
2536 lock_page(old_page);
2537 page_table = pte_offset_map_lock(mm, pmd, address,
2538 &ptl);
2539 if (!pte_same(*page_table, orig_pte)) {
2540 unlock_page(old_page);
2541 goto unlock;
2542 }
2543 page_cache_release(old_page);
2544 }
2545 if (reuse_swap_page(old_page)) {
2546 /*
2547 * The page is all ours. Move it to our anon_vma so
2548 * the rmap code will not search our parent or siblings.
2549 * Protected against the rmap code by the page lock.
2550 */
2551 page_move_anon_rmap(old_page, vma, address);
2552 unlock_page(old_page);
2553 goto reuse;
2554 }
2555 unlock_page(old_page);
2556 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557 (VM_WRITE|VM_SHARED))) {
2558 /*
2559 * Only catch write-faults on shared writable pages,
2560 * read-only shared pages can get COWed by
2561 * get_user_pages(.write=1, .force=1).
2562 */
2563 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2564 struct vm_fault vmf;
2565 int tmp;
2566
2567 vmf.virtual_address = (void __user *)(address &
2568 PAGE_MASK);
2569 vmf.pgoff = old_page->index;
2570 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2571 vmf.page = old_page;
2572
2573 /*
2574 * Notify the address space that the page is about to
2575 * become writable so that it can prohibit this or wait
2576 * for the page to get into an appropriate state.
2577 *
2578 * We do this without the lock held, so that it can
2579 * sleep if it needs to.
2580 */
2581 page_cache_get(old_page);
2582 pte_unmap_unlock(page_table, ptl);
2583
2584 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2585 if (unlikely(tmp &
2586 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2587 ret = tmp;
2588 goto unwritable_page;
2589 }
2590 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2591 lock_page(old_page);
2592 if (!old_page->mapping) {
2593 ret = 0; /* retry the fault */
2594 unlock_page(old_page);
2595 goto unwritable_page;
2596 }
2597 } else
2598 VM_BUG_ON(!PageLocked(old_page));
2599
2600 /*
2601 * Since we dropped the lock we need to revalidate
2602 * the PTE as someone else may have changed it. If
2603 * they did, we just return, as we can count on the
2604 * MMU to tell us if they didn't also make it writable.
2605 */
2606 page_table = pte_offset_map_lock(mm, pmd, address,
2607 &ptl);
2608 if (!pte_same(*page_table, orig_pte)) {
2609 unlock_page(old_page);
2610 goto unlock;
2611 }
2612
2613 page_mkwrite = 1;
2614 }
2615 dirty_page = old_page;
2616 get_page(dirty_page);
2617
2618reuse:
2619 flush_cache_page(vma, address, pte_pfn(orig_pte));
2620 entry = pte_mkyoung(orig_pte);
2621 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2623 update_mmu_cache(vma, address, page_table);
2624 pte_unmap_unlock(page_table, ptl);
2625 ret |= VM_FAULT_WRITE;
2626
2627 if (!dirty_page)
2628 return ret;
2629
2630 /*
2631 * Yes, Virginia, this is actually required to prevent a race
2632 * with clear_page_dirty_for_io() from clearing the page dirty
2633 * bit after it clear all dirty ptes, but before a racing
2634 * do_wp_page installs a dirty pte.
2635 *
2636 * __do_fault is protected similarly.
2637 */
2638 if (!page_mkwrite) {
2639 wait_on_page_locked(dirty_page);
2640 set_page_dirty_balance(dirty_page, page_mkwrite);
2641 }
2642 put_page(dirty_page);
2643 if (page_mkwrite) {
2644 struct address_space *mapping = dirty_page->mapping;
2645
2646 set_page_dirty(dirty_page);
2647 unlock_page(dirty_page);
2648 page_cache_release(dirty_page);
2649 if (mapping) {
2650 /*
2651 * Some device drivers do not set page.mapping
2652 * but still dirty their pages
2653 */
2654 balance_dirty_pages_ratelimited(mapping);
2655 }
2656 }
2657
2658 /* file_update_time outside page_lock */
2659 if (vma->vm_file)
2660 file_update_time(vma->vm_file);
2661
2662 return ret;
2663 }
2664
2665 /*
2666 * Ok, we need to copy. Oh, well..
2667 */
2668 page_cache_get(old_page);
2669gotten:
2670 pte_unmap_unlock(page_table, ptl);
2671
2672 if (unlikely(anon_vma_prepare(vma)))
2673 goto oom;
2674
2675 if (is_zero_pfn(pte_pfn(orig_pte))) {
2676 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2677 if (!new_page)
2678 goto oom;
2679 } else {
2680 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2681 if (!new_page)
2682 goto oom;
2683 cow_user_page(new_page, old_page, address, vma);
2684 }
2685 __SetPageUptodate(new_page);
2686
2687 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2688 goto oom_free_new;
2689
2690 /*
2691 * Re-check the pte - we dropped the lock
2692 */
2693 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2694 if (likely(pte_same(*page_table, orig_pte))) {
2695 if (old_page) {
2696 if (!PageAnon(old_page)) {
2697 dec_mm_counter_fast(mm, MM_FILEPAGES);
2698 inc_mm_counter_fast(mm, MM_ANONPAGES);
2699 }
2700 } else
2701 inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 flush_cache_page(vma, address, pte_pfn(orig_pte));
2703 entry = mk_pte(new_page, vma->vm_page_prot);
2704 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2705 /*
2706 * Clear the pte entry and flush it first, before updating the
2707 * pte with the new entry. This will avoid a race condition
2708 * seen in the presence of one thread doing SMC and another
2709 * thread doing COW.
2710 */
2711 ptep_clear_flush(vma, address, page_table);
2712 page_add_new_anon_rmap(new_page, vma, address);
2713 /*
2714 * We call the notify macro here because, when using secondary
2715 * mmu page tables (such as kvm shadow page tables), we want the
2716 * new page to be mapped directly into the secondary page table.
2717 */
2718 set_pte_at_notify(mm, address, page_table, entry);
2719 update_mmu_cache(vma, address, page_table);
2720 if (old_page) {
2721 /*
2722 * Only after switching the pte to the new page may
2723 * we remove the mapcount here. Otherwise another
2724 * process may come and find the rmap count decremented
2725 * before the pte is switched to the new page, and
2726 * "reuse" the old page writing into it while our pte
2727 * here still points into it and can be read by other
2728 * threads.
2729 *
2730 * The critical issue is to order this
2731 * page_remove_rmap with the ptp_clear_flush above.
2732 * Those stores are ordered by (if nothing else,)
2733 * the barrier present in the atomic_add_negative
2734 * in page_remove_rmap.
2735 *
2736 * Then the TLB flush in ptep_clear_flush ensures that
2737 * no process can access the old page before the
2738 * decremented mapcount is visible. And the old page
2739 * cannot be reused until after the decremented
2740 * mapcount is visible. So transitively, TLBs to
2741 * old page will be flushed before it can be reused.
2742 */
2743 page_remove_rmap(old_page);
2744 }
2745
2746 /* Free the old page.. */
2747 new_page = old_page;
2748 ret |= VM_FAULT_WRITE;
2749 } else
2750 mem_cgroup_uncharge_page(new_page);
2751
2752 if (new_page)
2753 page_cache_release(new_page);
2754unlock:
2755 pte_unmap_unlock(page_table, ptl);
2756 if (old_page) {
2757 /*
2758 * Don't let another task, with possibly unlocked vma,
2759 * keep the mlocked page.
2760 */
2761 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2762 lock_page(old_page); /* LRU manipulation */
2763 munlock_vma_page(old_page);
2764 unlock_page(old_page);
2765 }
2766 page_cache_release(old_page);
2767 }
2768 return ret;
2769oom_free_new:
2770 page_cache_release(new_page);
2771oom:
2772 if (old_page) {
2773 if (page_mkwrite) {
2774 unlock_page(old_page);
2775 page_cache_release(old_page);
2776 }
2777 page_cache_release(old_page);
2778 }
2779 return VM_FAULT_OOM;
2780
2781unwritable_page:
2782 page_cache_release(old_page);
2783 return ret;
2784}
2785
2786static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2787 unsigned long start_addr, unsigned long end_addr,
2788 struct zap_details *details)
2789{
2790 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2791}
2792
2793static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2794 struct zap_details *details)
2795{
2796 struct vm_area_struct *vma;
2797 struct prio_tree_iter iter;
2798 pgoff_t vba, vea, zba, zea;
2799
2800 vma_prio_tree_foreach(vma, &iter, root,
2801 details->first_index, details->last_index) {
2802
2803 vba = vma->vm_pgoff;
2804 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2805 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2806 zba = details->first_index;
2807 if (zba < vba)
2808 zba = vba;
2809 zea = details->last_index;
2810 if (zea > vea)
2811 zea = vea;
2812
2813 unmap_mapping_range_vma(vma,
2814 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2815 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2816 details);
2817 }
2818}
2819
2820static inline void unmap_mapping_range_list(struct list_head *head,
2821 struct zap_details *details)
2822{
2823 struct vm_area_struct *vma;
2824
2825 /*
2826 * In nonlinear VMAs there is no correspondence between virtual address
2827 * offset and file offset. So we must perform an exhaustive search
2828 * across *all* the pages in each nonlinear VMA, not just the pages
2829 * whose virtual address lies outside the file truncation point.
2830 */
2831 list_for_each_entry(vma, head, shared.vm_set.list) {
2832 details->nonlinear_vma = vma;
2833 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2834 }
2835}
2836
2837/**
2838 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2839 * @mapping: the address space containing mmaps to be unmapped.
2840 * @holebegin: byte in first page to unmap, relative to the start of
2841 * the underlying file. This will be rounded down to a PAGE_SIZE
2842 * boundary. Note that this is different from truncate_pagecache(), which
2843 * must keep the partial page. In contrast, we must get rid of
2844 * partial pages.
2845 * @holelen: size of prospective hole in bytes. This will be rounded
2846 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2847 * end of the file.
2848 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2849 * but 0 when invalidating pagecache, don't throw away private data.
2850 */
2851void unmap_mapping_range(struct address_space *mapping,
2852 loff_t const holebegin, loff_t const holelen, int even_cows)
2853{
2854 struct zap_details details;
2855 pgoff_t hba = holebegin >> PAGE_SHIFT;
2856 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2857
2858 /* Check for overflow. */
2859 if (sizeof(holelen) > sizeof(hlen)) {
2860 long long holeend =
2861 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862 if (holeend & ~(long long)ULONG_MAX)
2863 hlen = ULONG_MAX - hba + 1;
2864 }
2865
2866 details.check_mapping = even_cows? NULL: mapping;
2867 details.nonlinear_vma = NULL;
2868 details.first_index = hba;
2869 details.last_index = hba + hlen - 1;
2870 if (details.last_index < details.first_index)
2871 details.last_index = ULONG_MAX;
2872
2873
2874 mutex_lock(&mapping->i_mmap_mutex);
2875 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2876 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2877 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2878 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2879 mutex_unlock(&mapping->i_mmap_mutex);
2880}
2881EXPORT_SYMBOL(unmap_mapping_range);
2882
2883/*
2884 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2885 * but allow concurrent faults), and pte mapped but not yet locked.
2886 * We return with mmap_sem still held, but pte unmapped and unlocked.
2887 */
2888static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2889 unsigned long address, pte_t *page_table, pmd_t *pmd,
2890 unsigned int flags, pte_t orig_pte)
2891{
2892 spinlock_t *ptl;
2893 struct page *page, *swapcache = NULL;
2894 swp_entry_t entry;
2895 pte_t pte;
2896 int locked;
2897 struct mem_cgroup *ptr;
2898 int exclusive = 0;
2899 int ret = 0;
2900
2901 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2902 goto out;
2903
2904 entry = pte_to_swp_entry(orig_pte);
2905 if (unlikely(non_swap_entry(entry))) {
2906 if (is_migration_entry(entry)) {
2907 migration_entry_wait(mm, pmd, address);
2908 } else if (is_hwpoison_entry(entry)) {
2909 ret = VM_FAULT_HWPOISON;
2910 } else {
2911 print_bad_pte(vma, address, orig_pte, NULL);
2912 ret = VM_FAULT_SIGBUS;
2913 }
2914 goto out;
2915 }
2916 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2917 page = lookup_swap_cache(entry);
2918 if (!page) {
2919 page = swapin_readahead(entry,
2920 GFP_HIGHUSER_MOVABLE, vma, address);
2921 if (!page) {
2922 /*
2923 * Back out if somebody else faulted in this pte
2924 * while we released the pte lock.
2925 */
2926 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2927 if (likely(pte_same(*page_table, orig_pte)))
2928 ret = VM_FAULT_OOM;
2929 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2930 goto unlock;
2931 }
2932
2933 /* Had to read the page from swap area: Major fault */
2934 ret = VM_FAULT_MAJOR;
2935 count_vm_event(PGMAJFAULT);
2936 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2937 } else if (PageHWPoison(page)) {
2938 /*
2939 * hwpoisoned dirty swapcache pages are kept for killing
2940 * owner processes (which may be unknown at hwpoison time)
2941 */
2942 ret = VM_FAULT_HWPOISON;
2943 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2944 goto out_release;
2945 }
2946
2947 locked = lock_page_or_retry(page, mm, flags);
2948
2949 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2950 if (!locked) {
2951 ret |= VM_FAULT_RETRY;
2952 goto out_release;
2953 }
2954
2955 /*
2956 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2957 * release the swapcache from under us. The page pin, and pte_same
2958 * test below, are not enough to exclude that. Even if it is still
2959 * swapcache, we need to check that the page's swap has not changed.
2960 */
2961 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2962 goto out_page;
2963
2964 if (ksm_might_need_to_copy(page, vma, address)) {
2965 swapcache = page;
2966 page = ksm_does_need_to_copy(page, vma, address);
2967
2968 if (unlikely(!page)) {
2969 ret = VM_FAULT_OOM;
2970 page = swapcache;
2971 swapcache = NULL;
2972 goto out_page;
2973 }
2974 }
2975
2976 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2977 ret = VM_FAULT_OOM;
2978 goto out_page;
2979 }
2980
2981 /*
2982 * Back out if somebody else already faulted in this pte.
2983 */
2984 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2985 if (unlikely(!pte_same(*page_table, orig_pte)))
2986 goto out_nomap;
2987
2988 if (unlikely(!PageUptodate(page))) {
2989 ret = VM_FAULT_SIGBUS;
2990 goto out_nomap;
2991 }
2992
2993 /*
2994 * The page isn't present yet, go ahead with the fault.
2995 *
2996 * Be careful about the sequence of operations here.
2997 * To get its accounting right, reuse_swap_page() must be called
2998 * while the page is counted on swap but not yet in mapcount i.e.
2999 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3000 * must be called after the swap_free(), or it will never succeed.
3001 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3002 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3003 * in page->private. In this case, a record in swap_cgroup is silently
3004 * discarded at swap_free().
3005 */
3006
3007 inc_mm_counter_fast(mm, MM_ANONPAGES);
3008 dec_mm_counter_fast(mm, MM_SWAPENTS);
3009 pte = mk_pte(page, vma->vm_page_prot);
3010 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3011 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3012 flags &= ~FAULT_FLAG_WRITE;
3013 ret |= VM_FAULT_WRITE;
3014 exclusive = 1;
3015 }
3016 flush_icache_page(vma, page);
3017 set_pte_at(mm, address, page_table, pte);
3018 do_page_add_anon_rmap(page, vma, address, exclusive);
3019 /* It's better to call commit-charge after rmap is established */
3020 mem_cgroup_commit_charge_swapin(page, ptr);
3021
3022 swap_free(entry);
3023 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3024 try_to_free_swap(page);
3025 unlock_page(page);
3026 if (swapcache) {
3027 /*
3028 * Hold the lock to avoid the swap entry to be reused
3029 * until we take the PT lock for the pte_same() check
3030 * (to avoid false positives from pte_same). For
3031 * further safety release the lock after the swap_free
3032 * so that the swap count won't change under a
3033 * parallel locked swapcache.
3034 */
3035 unlock_page(swapcache);
3036 page_cache_release(swapcache);
3037 }
3038
3039 if (flags & FAULT_FLAG_WRITE) {
3040 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3041 if (ret & VM_FAULT_ERROR)
3042 ret &= VM_FAULT_ERROR;
3043 goto out;
3044 }
3045
3046 /* No need to invalidate - it was non-present before */
3047 update_mmu_cache(vma, address, page_table);
3048unlock:
3049 pte_unmap_unlock(page_table, ptl);
3050out:
3051 return ret;
3052out_nomap:
3053 mem_cgroup_cancel_charge_swapin(ptr);
3054 pte_unmap_unlock(page_table, ptl);
3055out_page:
3056 unlock_page(page);
3057out_release:
3058 page_cache_release(page);
3059 if (swapcache) {
3060 unlock_page(swapcache);
3061 page_cache_release(swapcache);
3062 }
3063 return ret;
3064}
3065
3066/*
3067 * This is like a special single-page "expand_{down|up}wards()",
3068 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3069 * doesn't hit another vma.
3070 */
3071static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3072{
3073 address &= PAGE_MASK;
3074 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3075 struct vm_area_struct *prev = vma->vm_prev;
3076
3077 /*
3078 * Is there a mapping abutting this one below?
3079 *
3080 * That's only ok if it's the same stack mapping
3081 * that has gotten split..
3082 */
3083 if (prev && prev->vm_end == address)
3084 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3085
3086 expand_downwards(vma, address - PAGE_SIZE);
3087 }
3088 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3089 struct vm_area_struct *next = vma->vm_next;
3090
3091 /* As VM_GROWSDOWN but s/below/above/ */
3092 if (next && next->vm_start == address + PAGE_SIZE)
3093 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3094
3095 expand_upwards(vma, address + PAGE_SIZE);
3096 }
3097 return 0;
3098}
3099
3100/*
3101 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3102 * but allow concurrent faults), and pte mapped but not yet locked.
3103 * We return with mmap_sem still held, but pte unmapped and unlocked.
3104 */
3105static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3106 unsigned long address, pte_t *page_table, pmd_t *pmd,
3107 unsigned int flags)
3108{
3109 struct page *page;
3110 spinlock_t *ptl;
3111 pte_t entry;
3112
3113 pte_unmap(page_table);
3114
3115 /* Check if we need to add a guard page to the stack */
3116 if (check_stack_guard_page(vma, address) < 0)
3117 return VM_FAULT_SIGBUS;
3118
3119 /* Use the zero-page for reads */
3120 if (!(flags & FAULT_FLAG_WRITE)) {
3121 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3122 vma->vm_page_prot));
3123 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3124 if (!pte_none(*page_table))
3125 goto unlock;
3126 goto setpte;
3127 }
3128
3129 /* Allocate our own private page. */
3130 if (unlikely(anon_vma_prepare(vma)))
3131 goto oom;
3132 page = alloc_zeroed_user_highpage_movable(vma, address);
3133 if (!page)
3134 goto oom;
3135 __SetPageUptodate(page);
3136
3137 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3138 goto oom_free_page;
3139
3140 entry = mk_pte(page, vma->vm_page_prot);
3141 if (vma->vm_flags & VM_WRITE)
3142 entry = pte_mkwrite(pte_mkdirty(entry));
3143
3144 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3145 if (!pte_none(*page_table))
3146 goto release;
3147
3148 inc_mm_counter_fast(mm, MM_ANONPAGES);
3149 page_add_new_anon_rmap(page, vma, address);
3150setpte:
3151 set_pte_at(mm, address, page_table, entry);
3152
3153 /* No need to invalidate - it was non-present before */
3154 update_mmu_cache(vma, address, page_table);
3155unlock:
3156 pte_unmap_unlock(page_table, ptl);
3157 return 0;
3158release:
3159 mem_cgroup_uncharge_page(page);
3160 page_cache_release(page);
3161 goto unlock;
3162oom_free_page:
3163 page_cache_release(page);
3164oom:
3165 return VM_FAULT_OOM;
3166}
3167
3168/*
3169 * __do_fault() tries to create a new page mapping. It aggressively
3170 * tries to share with existing pages, but makes a separate copy if
3171 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3172 * the next page fault.
3173 *
3174 * As this is called only for pages that do not currently exist, we
3175 * do not need to flush old virtual caches or the TLB.
3176 *
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults), and pte neither mapped nor locked.
3179 * We return with mmap_sem still held, but pte unmapped and unlocked.
3180 */
3181static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3182 unsigned long address, pmd_t *pmd,
3183 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3184{
3185 pte_t *page_table;
3186 spinlock_t *ptl;
3187 struct page *page;
3188 struct page *cow_page;
3189 pte_t entry;
3190 int anon = 0;
3191 struct page *dirty_page = NULL;
3192 struct vm_fault vmf;
3193 int ret;
3194 int page_mkwrite = 0;
3195
3196 /*
3197 * If we do COW later, allocate page befor taking lock_page()
3198 * on the file cache page. This will reduce lock holding time.
3199 */
3200 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3201
3202 if (unlikely(anon_vma_prepare(vma)))
3203 return VM_FAULT_OOM;
3204
3205 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3206 if (!cow_page)
3207 return VM_FAULT_OOM;
3208
3209 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3210 page_cache_release(cow_page);
3211 return VM_FAULT_OOM;
3212 }
3213 } else
3214 cow_page = NULL;
3215
3216 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3217 vmf.pgoff = pgoff;
3218 vmf.flags = flags;
3219 vmf.page = NULL;
3220
3221 ret = vma->vm_ops->fault(vma, &vmf);
3222 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3223 VM_FAULT_RETRY)))
3224 goto uncharge_out;
3225
3226 if (unlikely(PageHWPoison(vmf.page))) {
3227 if (ret & VM_FAULT_LOCKED)
3228 unlock_page(vmf.page);
3229 ret = VM_FAULT_HWPOISON;
3230 goto uncharge_out;
3231 }
3232
3233 /*
3234 * For consistency in subsequent calls, make the faulted page always
3235 * locked.
3236 */
3237 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3238 lock_page(vmf.page);
3239 else
3240 VM_BUG_ON(!PageLocked(vmf.page));
3241
3242 /*
3243 * Should we do an early C-O-W break?
3244 */
3245 page = vmf.page;
3246 if (flags & FAULT_FLAG_WRITE) {
3247 if (!(vma->vm_flags & VM_SHARED)) {
3248 page = cow_page;
3249 anon = 1;
3250 copy_user_highpage(page, vmf.page, address, vma);
3251 __SetPageUptodate(page);
3252 } else {
3253 /*
3254 * If the page will be shareable, see if the backing
3255 * address space wants to know that the page is about
3256 * to become writable
3257 */
3258 if (vma->vm_ops->page_mkwrite) {
3259 int tmp;
3260
3261 unlock_page(page);
3262 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3263 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3264 if (unlikely(tmp &
3265 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3266 ret = tmp;
3267 goto unwritable_page;
3268 }
3269 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3270 lock_page(page);
3271 if (!page->mapping) {
3272 ret = 0; /* retry the fault */
3273 unlock_page(page);
3274 goto unwritable_page;
3275 }
3276 } else
3277 VM_BUG_ON(!PageLocked(page));
3278 page_mkwrite = 1;
3279 }
3280 }
3281
3282 }
3283
3284 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3285
3286 /*
3287 * This silly early PAGE_DIRTY setting removes a race
3288 * due to the bad i386 page protection. But it's valid
3289 * for other architectures too.
3290 *
3291 * Note that if FAULT_FLAG_WRITE is set, we either now have
3292 * an exclusive copy of the page, or this is a shared mapping,
3293 * so we can make it writable and dirty to avoid having to
3294 * handle that later.
3295 */
3296 /* Only go through if we didn't race with anybody else... */
3297 if (likely(pte_same(*page_table, orig_pte))) {
3298 flush_icache_page(vma, page);
3299 entry = mk_pte(page, vma->vm_page_prot);
3300 if (flags & FAULT_FLAG_WRITE)
3301 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3302 if (anon) {
3303 inc_mm_counter_fast(mm, MM_ANONPAGES);
3304 page_add_new_anon_rmap(page, vma, address);
3305 } else {
3306 inc_mm_counter_fast(mm, MM_FILEPAGES);
3307 page_add_file_rmap(page);
3308 if (flags & FAULT_FLAG_WRITE) {
3309 dirty_page = page;
3310 get_page(dirty_page);
3311 }
3312 }
3313 set_pte_at(mm, address, page_table, entry);
3314
3315 /* no need to invalidate: a not-present page won't be cached */
3316 update_mmu_cache(vma, address, page_table);
3317 } else {
3318 if (cow_page)
3319 mem_cgroup_uncharge_page(cow_page);
3320 if (anon)
3321 page_cache_release(page);
3322 else
3323 anon = 1; /* no anon but release faulted_page */
3324 }
3325
3326 pte_unmap_unlock(page_table, ptl);
3327
3328 if (dirty_page) {
3329 struct address_space *mapping = page->mapping;
3330
3331 if (set_page_dirty(dirty_page))
3332 page_mkwrite = 1;
3333 unlock_page(dirty_page);
3334 put_page(dirty_page);
3335 if (page_mkwrite && mapping) {
3336 /*
3337 * Some device drivers do not set page.mapping but still
3338 * dirty their pages
3339 */
3340 balance_dirty_pages_ratelimited(mapping);
3341 }
3342
3343 /* file_update_time outside page_lock */
3344 if (vma->vm_file)
3345 file_update_time(vma->vm_file);
3346 } else {
3347 unlock_page(vmf.page);
3348 if (anon)
3349 page_cache_release(vmf.page);
3350 }
3351
3352 return ret;
3353
3354unwritable_page:
3355 page_cache_release(page);
3356 return ret;
3357uncharge_out:
3358 /* fs's fault handler get error */
3359 if (cow_page) {
3360 mem_cgroup_uncharge_page(cow_page);
3361 page_cache_release(cow_page);
3362 }
3363 return ret;
3364}
3365
3366static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3367 unsigned long address, pte_t *page_table, pmd_t *pmd,
3368 unsigned int flags, pte_t orig_pte)
3369{
3370 pgoff_t pgoff = (((address & PAGE_MASK)
3371 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3372
3373 pte_unmap(page_table);
3374 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3375}
3376
3377/*
3378 * Fault of a previously existing named mapping. Repopulate the pte
3379 * from the encoded file_pte if possible. This enables swappable
3380 * nonlinear vmas.
3381 *
3382 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3383 * but allow concurrent faults), and pte mapped but not yet locked.
3384 * We return with mmap_sem still held, but pte unmapped and unlocked.
3385 */
3386static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3387 unsigned long address, pte_t *page_table, pmd_t *pmd,
3388 unsigned int flags, pte_t orig_pte)
3389{
3390 pgoff_t pgoff;
3391
3392 flags |= FAULT_FLAG_NONLINEAR;
3393
3394 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3395 return 0;
3396
3397 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3398 /*
3399 * Page table corrupted: show pte and kill process.
3400 */
3401 print_bad_pte(vma, address, orig_pte, NULL);
3402 return VM_FAULT_SIGBUS;
3403 }
3404
3405 pgoff = pte_to_pgoff(orig_pte);
3406 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3407}
3408
3409/*
3410 * These routines also need to handle stuff like marking pages dirty
3411 * and/or accessed for architectures that don't do it in hardware (most
3412 * RISC architectures). The early dirtying is also good on the i386.
3413 *
3414 * There is also a hook called "update_mmu_cache()" that architectures
3415 * with external mmu caches can use to update those (ie the Sparc or
3416 * PowerPC hashed page tables that act as extended TLBs).
3417 *
3418 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3419 * but allow concurrent faults), and pte mapped but not yet locked.
3420 * We return with mmap_sem still held, but pte unmapped and unlocked.
3421 */
3422int handle_pte_fault(struct mm_struct *mm,
3423 struct vm_area_struct *vma, unsigned long address,
3424 pte_t *pte, pmd_t *pmd, unsigned int flags)
3425{
3426 pte_t entry;
3427 spinlock_t *ptl;
3428
3429 entry = *pte;
3430 if (!pte_present(entry)) {
3431 if (pte_none(entry)) {
3432 if (vma->vm_ops) {
3433 if (likely(vma->vm_ops->fault))
3434 return do_linear_fault(mm, vma, address,
3435 pte, pmd, flags, entry);
3436 }
3437 return do_anonymous_page(mm, vma, address,
3438 pte, pmd, flags);
3439 }
3440 if (pte_file(entry))
3441 return do_nonlinear_fault(mm, vma, address,
3442 pte, pmd, flags, entry);
3443 return do_swap_page(mm, vma, address,
3444 pte, pmd, flags, entry);
3445 }
3446
3447 ptl = pte_lockptr(mm, pmd);
3448 spin_lock(ptl);
3449 if (unlikely(!pte_same(*pte, entry)))
3450 goto unlock;
3451 if (flags & FAULT_FLAG_WRITE) {
3452 if (!pte_write(entry))
3453 return do_wp_page(mm, vma, address,
3454 pte, pmd, ptl, entry);
3455 entry = pte_mkdirty(entry);
3456 }
3457 entry = pte_mkyoung(entry);
3458 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3459 update_mmu_cache(vma, address, pte);
3460 } else {
3461 /*
3462 * This is needed only for protection faults but the arch code
3463 * is not yet telling us if this is a protection fault or not.
3464 * This still avoids useless tlb flushes for .text page faults
3465 * with threads.
3466 */
3467 if (flags & FAULT_FLAG_WRITE)
3468 flush_tlb_fix_spurious_fault(vma, address);
3469 }
3470unlock:
3471 pte_unmap_unlock(pte, ptl);
3472 return 0;
3473}
3474
3475/*
3476 * By the time we get here, we already hold the mm semaphore
3477 */
3478int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3479 unsigned long address, unsigned int flags)
3480{
3481 pgd_t *pgd;
3482 pud_t *pud;
3483 pmd_t *pmd;
3484 pte_t *pte;
3485
3486 __set_current_state(TASK_RUNNING);
3487
3488 count_vm_event(PGFAULT);
3489 mem_cgroup_count_vm_event(mm, PGFAULT);
3490
3491 /* do counter updates before entering really critical section. */
3492 check_sync_rss_stat(current);
3493
3494 if (unlikely(is_vm_hugetlb_page(vma)))
3495 return hugetlb_fault(mm, vma, address, flags);
3496
3497retry:
3498 pgd = pgd_offset(mm, address);
3499 pud = pud_alloc(mm, pgd, address);
3500 if (!pud)
3501 return VM_FAULT_OOM;
3502 pmd = pmd_alloc(mm, pud, address);
3503 if (!pmd)
3504 return VM_FAULT_OOM;
3505 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3506 if (!vma->vm_ops)
3507 return do_huge_pmd_anonymous_page(mm, vma, address,
3508 pmd, flags);
3509 } else {
3510 pmd_t orig_pmd = *pmd;
3511 int ret;
3512
3513 barrier();
3514 if (pmd_trans_huge(orig_pmd)) {
3515 if (flags & FAULT_FLAG_WRITE &&
3516 !pmd_write(orig_pmd) &&
3517 !pmd_trans_splitting(orig_pmd)) {
3518 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3519 orig_pmd);
3520 /*
3521 * If COW results in an oom, the huge pmd will
3522 * have been split, so retry the fault on the
3523 * pte for a smaller charge.
3524 */
3525 if (unlikely(ret & VM_FAULT_OOM))
3526 goto retry;
3527 return ret;
3528 }
3529 return 0;
3530 }
3531 }
3532
3533 /*
3534 * Use __pte_alloc instead of pte_alloc_map, because we can't
3535 * run pte_offset_map on the pmd, if an huge pmd could
3536 * materialize from under us from a different thread.
3537 */
3538 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3539 return VM_FAULT_OOM;
3540 /* if an huge pmd materialized from under us just retry later */
3541 if (unlikely(pmd_trans_huge(*pmd)))
3542 return 0;
3543 /*
3544 * A regular pmd is established and it can't morph into a huge pmd
3545 * from under us anymore at this point because we hold the mmap_sem
3546 * read mode and khugepaged takes it in write mode. So now it's
3547 * safe to run pte_offset_map().
3548 */
3549 pte = pte_offset_map(pmd, address);
3550
3551 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3552}
3553
3554#ifndef __PAGETABLE_PUD_FOLDED
3555/*
3556 * Allocate page upper directory.
3557 * We've already handled the fast-path in-line.
3558 */
3559int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3560{
3561 pud_t *new = pud_alloc_one(mm, address);
3562 if (!new)
3563 return -ENOMEM;
3564
3565 smp_wmb(); /* See comment in __pte_alloc */
3566
3567 spin_lock(&mm->page_table_lock);
3568 if (pgd_present(*pgd)) /* Another has populated it */
3569 pud_free(mm, new);
3570 else
3571 pgd_populate(mm, pgd, new);
3572 spin_unlock(&mm->page_table_lock);
3573 return 0;
3574}
3575#endif /* __PAGETABLE_PUD_FOLDED */
3576
3577#ifndef __PAGETABLE_PMD_FOLDED
3578/*
3579 * Allocate page middle directory.
3580 * We've already handled the fast-path in-line.
3581 */
3582int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3583{
3584 pmd_t *new = pmd_alloc_one(mm, address);
3585 if (!new)
3586 return -ENOMEM;
3587
3588 smp_wmb(); /* See comment in __pte_alloc */
3589
3590 spin_lock(&mm->page_table_lock);
3591#ifndef __ARCH_HAS_4LEVEL_HACK
3592 if (pud_present(*pud)) /* Another has populated it */
3593 pmd_free(mm, new);
3594 else
3595 pud_populate(mm, pud, new);
3596#else
3597 if (pgd_present(*pud)) /* Another has populated it */
3598 pmd_free(mm, new);
3599 else
3600 pgd_populate(mm, pud, new);
3601#endif /* __ARCH_HAS_4LEVEL_HACK */
3602 spin_unlock(&mm->page_table_lock);
3603 return 0;
3604}
3605#endif /* __PAGETABLE_PMD_FOLDED */
3606
3607int make_pages_present(unsigned long addr, unsigned long end)
3608{
3609 int ret, len, write;
3610 struct vm_area_struct * vma;
3611
3612 vma = find_vma(current->mm, addr);
3613 if (!vma)
3614 return -ENOMEM;
3615 /*
3616 * We want to touch writable mappings with a write fault in order
3617 * to break COW, except for shared mappings because these don't COW
3618 * and we would not want to dirty them for nothing.
3619 */
3620 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3621 BUG_ON(addr >= end);
3622 BUG_ON(end > vma->vm_end);
3623 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3624 ret = get_user_pages(current, current->mm, addr,
3625 len, write, 0, NULL, NULL);
3626 if (ret < 0)
3627 return ret;
3628 return ret == len ? 0 : -EFAULT;
3629}
3630
3631#if !defined(__HAVE_ARCH_GATE_AREA)
3632
3633#if defined(AT_SYSINFO_EHDR)
3634static struct vm_area_struct gate_vma;
3635
3636static int __init gate_vma_init(void)
3637{
3638 gate_vma.vm_mm = NULL;
3639 gate_vma.vm_start = FIXADDR_USER_START;
3640 gate_vma.vm_end = FIXADDR_USER_END;
3641 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3642 gate_vma.vm_page_prot = __P101;
3643
3644 return 0;
3645}
3646__initcall(gate_vma_init);
3647#endif
3648
3649struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3650{
3651#ifdef AT_SYSINFO_EHDR
3652 return &gate_vma;
3653#else
3654 return NULL;
3655#endif
3656}
3657
3658int in_gate_area_no_mm(unsigned long addr)
3659{
3660#ifdef AT_SYSINFO_EHDR
3661 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3662 return 1;
3663#endif
3664 return 0;
3665}
3666
3667#endif /* __HAVE_ARCH_GATE_AREA */
3668
3669static int __follow_pte(struct mm_struct *mm, unsigned long address,
3670 pte_t **ptepp, spinlock_t **ptlp)
3671{
3672 pgd_t *pgd;
3673 pud_t *pud;
3674 pmd_t *pmd;
3675 pte_t *ptep;
3676
3677 pgd = pgd_offset(mm, address);
3678 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3679 goto out;
3680
3681 pud = pud_offset(pgd, address);
3682 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3683 goto out;
3684
3685 pmd = pmd_offset(pud, address);
3686 VM_BUG_ON(pmd_trans_huge(*pmd));
3687 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3688 goto out;
3689
3690 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3691 if (pmd_huge(*pmd))
3692 goto out;
3693
3694 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3695 if (!ptep)
3696 goto out;
3697 if (!pte_present(*ptep))
3698 goto unlock;
3699 *ptepp = ptep;
3700 return 0;
3701unlock:
3702 pte_unmap_unlock(ptep, *ptlp);
3703out:
3704 return -EINVAL;
3705}
3706
3707static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3708 pte_t **ptepp, spinlock_t **ptlp)
3709{
3710 int res;
3711
3712 /* (void) is needed to make gcc happy */
3713 (void) __cond_lock(*ptlp,
3714 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3715 return res;
3716}
3717
3718/**
3719 * follow_pfn - look up PFN at a user virtual address
3720 * @vma: memory mapping
3721 * @address: user virtual address
3722 * @pfn: location to store found PFN
3723 *
3724 * Only IO mappings and raw PFN mappings are allowed.
3725 *
3726 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3727 */
3728int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3729 unsigned long *pfn)
3730{
3731 int ret = -EINVAL;
3732 spinlock_t *ptl;
3733 pte_t *ptep;
3734
3735 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3736 return ret;
3737
3738 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3739 if (ret)
3740 return ret;
3741 *pfn = pte_pfn(*ptep);
3742 pte_unmap_unlock(ptep, ptl);
3743 return 0;
3744}
3745EXPORT_SYMBOL(follow_pfn);
3746
3747#ifdef CONFIG_HAVE_IOREMAP_PROT
3748int follow_phys(struct vm_area_struct *vma,
3749 unsigned long address, unsigned int flags,
3750 unsigned long *prot, resource_size_t *phys)
3751{
3752 int ret = -EINVAL;
3753 pte_t *ptep, pte;
3754 spinlock_t *ptl;
3755
3756 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3757 goto out;
3758
3759 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3760 goto out;
3761 pte = *ptep;
3762
3763 if ((flags & FOLL_WRITE) && !pte_write(pte))
3764 goto unlock;
3765
3766 *prot = pgprot_val(pte_pgprot(pte));
3767 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3768
3769 ret = 0;
3770unlock:
3771 pte_unmap_unlock(ptep, ptl);
3772out:
3773 return ret;
3774}
3775
3776int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3777 void *buf, int len, int write)
3778{
3779 resource_size_t phys_addr;
3780 unsigned long prot = 0;
3781 void __iomem *maddr;
3782 int offset = addr & (PAGE_SIZE-1);
3783
3784 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3785 return -EINVAL;
3786
3787 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3788 if (write)
3789 memcpy_toio(maddr + offset, buf, len);
3790 else
3791 memcpy_fromio(buf, maddr + offset, len);
3792 iounmap(maddr);
3793
3794 return len;
3795}
3796#endif
3797
3798/*
3799 * Access another process' address space as given in mm. If non-NULL, use the
3800 * given task for page fault accounting.
3801 */
3802static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3803 unsigned long addr, void *buf, int len, int write)
3804{
3805 struct vm_area_struct *vma;
3806 void *old_buf = buf;
3807
3808 down_read(&mm->mmap_sem);
3809 /* ignore errors, just check how much was successfully transferred */
3810 while (len) {
3811 int bytes, ret, offset;
3812 void *maddr;
3813 struct page *page = NULL;
3814
3815 ret = get_user_pages(tsk, mm, addr, 1,
3816 write, 1, &page, &vma);
3817 if (ret <= 0) {
3818 /*
3819 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3820 * we can access using slightly different code.
3821 */
3822#ifdef CONFIG_HAVE_IOREMAP_PROT
3823 vma = find_vma(mm, addr);
3824 if (!vma || vma->vm_start > addr)
3825 break;
3826 if (vma->vm_ops && vma->vm_ops->access)
3827 ret = vma->vm_ops->access(vma, addr, buf,
3828 len, write);
3829 if (ret <= 0)
3830#endif
3831 break;
3832 bytes = ret;
3833 } else {
3834 bytes = len;
3835 offset = addr & (PAGE_SIZE-1);
3836 if (bytes > PAGE_SIZE-offset)
3837 bytes = PAGE_SIZE-offset;
3838
3839 maddr = kmap(page);
3840 if (write) {
3841 copy_to_user_page(vma, page, addr,
3842 maddr + offset, buf, bytes);
3843 set_page_dirty_lock(page);
3844 } else {
3845 copy_from_user_page(vma, page, addr,
3846 buf, maddr + offset, bytes);
3847 }
3848 kunmap(page);
3849 page_cache_release(page);
3850 }
3851 len -= bytes;
3852 buf += bytes;
3853 addr += bytes;
3854 }
3855 up_read(&mm->mmap_sem);
3856
3857 return buf - old_buf;
3858}
3859
3860/**
3861 * access_remote_vm - access another process' address space
3862 * @mm: the mm_struct of the target address space
3863 * @addr: start address to access
3864 * @buf: source or destination buffer
3865 * @len: number of bytes to transfer
3866 * @write: whether the access is a write
3867 *
3868 * The caller must hold a reference on @mm.
3869 */
3870int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3871 void *buf, int len, int write)
3872{
3873 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3874}
3875
3876/*
3877 * Access another process' address space.
3878 * Source/target buffer must be kernel space,
3879 * Do not walk the page table directly, use get_user_pages
3880 */
3881int access_process_vm(struct task_struct *tsk, unsigned long addr,
3882 void *buf, int len, int write)
3883{
3884 struct mm_struct *mm;
3885 int ret;
3886
3887 mm = get_task_mm(tsk);
3888 if (!mm)
3889 return 0;
3890
3891 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3892 mmput(mm);
3893
3894 return ret;
3895}
3896
3897/*
3898 * Print the name of a VMA.
3899 */
3900void print_vma_addr(char *prefix, unsigned long ip)
3901{
3902 struct mm_struct *mm = current->mm;
3903 struct vm_area_struct *vma;
3904
3905 /*
3906 * Do not print if we are in atomic
3907 * contexts (in exception stacks, etc.):
3908 */
3909 if (preempt_count())
3910 return;
3911
3912 down_read(&mm->mmap_sem);
3913 vma = find_vma(mm, ip);
3914 if (vma && vma->vm_file) {
3915 struct file *f = vma->vm_file;
3916 char *buf = (char *)__get_free_page(GFP_KERNEL);
3917 if (buf) {
3918 char *p, *s;
3919
3920 p = d_path(&f->f_path, buf, PAGE_SIZE);
3921 if (IS_ERR(p))
3922 p = "?";
3923 s = strrchr(p, '/');
3924 if (s)
3925 p = s+1;
3926 printk("%s%s[%lx+%lx]", prefix, p,
3927 vma->vm_start,
3928 vma->vm_end - vma->vm_start);
3929 free_page((unsigned long)buf);
3930 }
3931 }
3932 up_read(¤t->mm->mmap_sem);
3933}
3934
3935#ifdef CONFIG_PROVE_LOCKING
3936void might_fault(void)
3937{
3938 /*
3939 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3940 * holding the mmap_sem, this is safe because kernel memory doesn't
3941 * get paged out, therefore we'll never actually fault, and the
3942 * below annotations will generate false positives.
3943 */
3944 if (segment_eq(get_fs(), KERNEL_DS))
3945 return;
3946
3947 might_sleep();
3948 /*
3949 * it would be nicer only to annotate paths which are not under
3950 * pagefault_disable, however that requires a larger audit and
3951 * providing helpers like get_user_atomic.
3952 */
3953 if (!in_atomic() && current->mm)
3954 might_lock_read(¤t->mm->mmap_sem);
3955}
3956EXPORT_SYMBOL(might_fault);
3957#endif
3958
3959#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3960static void clear_gigantic_page(struct page *page,
3961 unsigned long addr,
3962 unsigned int pages_per_huge_page)
3963{
3964 int i;
3965 struct page *p = page;
3966
3967 might_sleep();
3968 for (i = 0; i < pages_per_huge_page;
3969 i++, p = mem_map_next(p, page, i)) {
3970 cond_resched();
3971 clear_user_highpage(p, addr + i * PAGE_SIZE);
3972 }
3973}
3974void clear_huge_page(struct page *page,
3975 unsigned long addr, unsigned int pages_per_huge_page)
3976{
3977 int i;
3978
3979 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3980 clear_gigantic_page(page, addr, pages_per_huge_page);
3981 return;
3982 }
3983
3984 might_sleep();
3985 for (i = 0; i < pages_per_huge_page; i++) {
3986 cond_resched();
3987 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3988 }
3989}
3990
3991static void copy_user_gigantic_page(struct page *dst, struct page *src,
3992 unsigned long addr,
3993 struct vm_area_struct *vma,
3994 unsigned int pages_per_huge_page)
3995{
3996 int i;
3997 struct page *dst_base = dst;
3998 struct page *src_base = src;
3999
4000 for (i = 0; i < pages_per_huge_page; ) {
4001 cond_resched();
4002 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4003
4004 i++;
4005 dst = mem_map_next(dst, dst_base, i);
4006 src = mem_map_next(src, src_base, i);
4007 }
4008}
4009
4010void copy_user_huge_page(struct page *dst, struct page *src,
4011 unsigned long addr, struct vm_area_struct *vma,
4012 unsigned int pages_per_huge_page)
4013{
4014 int i;
4015
4016 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4017 copy_user_gigantic_page(dst, src, addr, vma,
4018 pages_per_huge_page);
4019 return;
4020 }
4021
4022 might_sleep();
4023 for (i = 0; i < pages_per_huge_page; i++) {
4024 cond_resched();
4025 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4026 }
4027}
4028#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */