Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Generic pidhash and scalable, time-bounded PID allocator
  4 *
  5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
  6 * (C) 2004 Nadia Yvette Chambers, Oracle
  7 * (C) 2002-2004 Ingo Molnar, Red Hat
  8 *
  9 * pid-structures are backing objects for tasks sharing a given ID to chain
 10 * against. There is very little to them aside from hashing them and
 11 * parking tasks using given ID's on a list.
 12 *
 13 * The hash is always changed with the tasklist_lock write-acquired,
 14 * and the hash is only accessed with the tasklist_lock at least
 15 * read-acquired, so there's no additional SMP locking needed here.
 16 *
 17 * We have a list of bitmap pages, which bitmaps represent the PID space.
 18 * Allocating and freeing PIDs is completely lockless. The worst-case
 19 * allocation scenario when all but one out of 1 million PIDs possible are
 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 22 *
 23 * Pid namespaces:
 24 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 25 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 26 *     Many thanks to Oleg Nesterov for comments and help
 27 *
 28 */
 29
 30#include <linux/mm.h>
 31#include <linux/export.h>
 32#include <linux/slab.h>
 33#include <linux/init.h>
 34#include <linux/rculist.h>
 35#include <linux/memblock.h>
 
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39#include <linux/proc_ns.h>
 40#include <linux/refcount.h>
 41#include <linux/anon_inodes.h>
 42#include <linux/sched/signal.h>
 43#include <linux/sched/task.h>
 44#include <linux/idr.h>
 45#include <linux/pidfs.h>
 46#include <net/sock.h>
 47#include <uapi/linux/pidfd.h>
 48
 49struct pid init_struct_pid = {
 50	.count		= REFCOUNT_INIT(1),
 51	.tasks		= {
 52		{ .first = NULL },
 53		{ .first = NULL },
 54		{ .first = NULL },
 55	},
 56	.level		= 0,
 57	.numbers	= { {
 58		.nr		= 0,
 59		.ns		= &init_pid_ns,
 60	}, }
 61};
 62
 63int pid_max = PID_MAX_DEFAULT;
 64
 
 
 65int pid_max_min = RESERVED_PIDS + 1;
 66int pid_max_max = PID_MAX_LIMIT;
 67/*
 68 * Pseudo filesystems start inode numbering after one. We use Reserved
 69 * PIDs as a natural offset.
 70 */
 71static u64 pidfs_ino = RESERVED_PIDS;
 
 
 
 
 
 
 
 72
 73/*
 74 * PID-map pages start out as NULL, they get allocated upon
 75 * first use and are never deallocated. This way a low pid_max
 76 * value does not cause lots of bitmaps to be allocated, but
 77 * the scheme scales to up to 4 million PIDs, runtime.
 78 */
 79struct pid_namespace init_pid_ns = {
 80	.ns.count = REFCOUNT_INIT(2),
 81	.idr = IDR_INIT(init_pid_ns.idr),
 82	.pid_allocated = PIDNS_ADDING,
 
 
 
 
 83	.level = 0,
 84	.child_reaper = &init_task,
 85	.user_ns = &init_user_ns,
 86	.ns.inum = PROC_PID_INIT_INO,
 87#ifdef CONFIG_PID_NS
 88	.ns.ops = &pidns_operations,
 89#endif
 90#if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
 91	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
 92#endif
 93};
 94EXPORT_SYMBOL_GPL(init_pid_ns);
 95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96/*
 97 * Note: disable interrupts while the pidmap_lock is held as an
 98 * interrupt might come in and do read_lock(&tasklist_lock).
 99 *
100 * If we don't disable interrupts there is a nasty deadlock between
101 * detach_pid()->free_pid() and another cpu that does
102 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
103 * read_lock(&tasklist_lock);
104 *
105 * After we clean up the tasklist_lock and know there are no
106 * irq handlers that take it we can leave the interrupts enabled.
107 * For now it is easier to be safe than to prove it can't happen.
108 */
109
110static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112void put_pid(struct pid *pid)
113{
114	struct pid_namespace *ns;
115
116	if (!pid)
117		return;
118
119	ns = pid->numbers[pid->level].ns;
120	if (refcount_dec_and_test(&pid->count)) {
 
121		kmem_cache_free(ns->pid_cachep, pid);
122		put_pid_ns(ns);
123	}
124}
125EXPORT_SYMBOL_GPL(put_pid);
126
127static void delayed_put_pid(struct rcu_head *rhp)
128{
129	struct pid *pid = container_of(rhp, struct pid, rcu);
130	put_pid(pid);
131}
132
133void free_pid(struct pid *pid)
134{
135	/* We can be called with write_lock_irq(&tasklist_lock) held */
136	int i;
137	unsigned long flags;
138
139	spin_lock_irqsave(&pidmap_lock, flags);
140	for (i = 0; i <= pid->level; i++) {
141		struct upid *upid = pid->numbers + i;
142		struct pid_namespace *ns = upid->ns;
143		switch (--ns->pid_allocated) {
144		case 2:
145		case 1:
146			/* When all that is left in the pid namespace
147			 * is the reaper wake up the reaper.  The reaper
148			 * may be sleeping in zap_pid_ns_processes().
149			 */
150			wake_up_process(ns->child_reaper);
151			break;
152		case PIDNS_ADDING:
153			/* Handle a fork failure of the first process */
154			WARN_ON(ns->child_reaper);
155			ns->pid_allocated = 0;
156			break;
157		}
158
159		idr_remove(&ns->idr, upid->nr);
160	}
161	spin_unlock_irqrestore(&pidmap_lock, flags);
162
 
 
 
163	call_rcu(&pid->rcu, delayed_put_pid);
164}
165
166struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
167		      size_t set_tid_size)
168{
169	struct pid *pid;
170	enum pid_type type;
171	int i, nr;
172	struct pid_namespace *tmp;
173	struct upid *upid;
174	int retval = -ENOMEM;
175
176	/*
177	 * set_tid_size contains the size of the set_tid array. Starting at
178	 * the most nested currently active PID namespace it tells alloc_pid()
179	 * which PID to set for a process in that most nested PID namespace
180	 * up to set_tid_size PID namespaces. It does not have to set the PID
181	 * for a process in all nested PID namespaces but set_tid_size must
182	 * never be greater than the current ns->level + 1.
183	 */
184	if (set_tid_size > ns->level + 1)
185		return ERR_PTR(-EINVAL);
186
187	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
188	if (!pid)
189		return ERR_PTR(retval);
190
191	tmp = ns;
192	pid->level = ns->level;
193
194	for (i = ns->level; i >= 0; i--) {
195		int tid = 0;
196
197		if (set_tid_size) {
198			tid = set_tid[ns->level - i];
199
200			retval = -EINVAL;
201			if (tid < 1 || tid >= pid_max)
202				goto out_free;
203			/*
204			 * Also fail if a PID != 1 is requested and
205			 * no PID 1 exists.
206			 */
207			if (tid != 1 && !tmp->child_reaper)
208				goto out_free;
209			retval = -EPERM;
210			if (!checkpoint_restore_ns_capable(tmp->user_ns))
211				goto out_free;
212			set_tid_size--;
213		}
214
215		idr_preload(GFP_KERNEL);
216		spin_lock_irq(&pidmap_lock);
217
218		if (tid) {
219			nr = idr_alloc(&tmp->idr, NULL, tid,
220				       tid + 1, GFP_ATOMIC);
221			/*
222			 * If ENOSPC is returned it means that the PID is
223			 * alreay in use. Return EEXIST in that case.
224			 */
225			if (nr == -ENOSPC)
226				nr = -EEXIST;
227		} else {
228			int pid_min = 1;
229			/*
230			 * init really needs pid 1, but after reaching the
231			 * maximum wrap back to RESERVED_PIDS
232			 */
233			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
234				pid_min = RESERVED_PIDS;
235
236			/*
237			 * Store a null pointer so find_pid_ns does not find
238			 * a partially initialized PID (see below).
239			 */
240			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
241					      pid_max, GFP_ATOMIC);
242		}
243		spin_unlock_irq(&pidmap_lock);
244		idr_preload_end();
245
246		if (nr < 0) {
247			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
248			goto out_free;
249		}
250
251		pid->numbers[i].nr = nr;
252		pid->numbers[i].ns = tmp;
253		tmp = tmp->parent;
254	}
255
256	/*
257	 * ENOMEM is not the most obvious choice especially for the case
258	 * where the child subreaper has already exited and the pid
259	 * namespace denies the creation of any new processes. But ENOMEM
260	 * is what we have exposed to userspace for a long time and it is
261	 * documented behavior for pid namespaces. So we can't easily
262	 * change it even if there were an error code better suited.
263	 */
264	retval = -ENOMEM;
265
266	get_pid_ns(ns);
267	refcount_set(&pid->count, 1);
268	spin_lock_init(&pid->lock);
269	for (type = 0; type < PIDTYPE_MAX; ++type)
270		INIT_HLIST_HEAD(&pid->tasks[type]);
271
272	init_waitqueue_head(&pid->wait_pidfd);
273	INIT_HLIST_HEAD(&pid->inodes);
274
275	upid = pid->numbers + ns->level;
276	spin_lock_irq(&pidmap_lock);
277	if (!(ns->pid_allocated & PIDNS_ADDING))
278		goto out_unlock;
279	pid->stashed = NULL;
280	pid->ino = ++pidfs_ino;
281	for ( ; upid >= pid->numbers; --upid) {
282		/* Make the PID visible to find_pid_ns. */
283		idr_replace(&upid->ns->idr, pid, upid->nr);
284		upid->ns->pid_allocated++;
285	}
286	spin_unlock_irq(&pidmap_lock);
287
 
288	return pid;
289
290out_unlock:
291	spin_unlock_irq(&pidmap_lock);
292	put_pid_ns(ns);
293
294out_free:
295	spin_lock_irq(&pidmap_lock);
296	while (++i <= ns->level) {
297		upid = pid->numbers + i;
298		idr_remove(&upid->ns->idr, upid->nr);
299	}
300
301	/* On failure to allocate the first pid, reset the state */
302	if (ns->pid_allocated == PIDNS_ADDING)
303		idr_set_cursor(&ns->idr, 0);
304
305	spin_unlock_irq(&pidmap_lock);
306
307	kmem_cache_free(ns->pid_cachep, pid);
308	return ERR_PTR(retval);
309}
310
311void disable_pid_allocation(struct pid_namespace *ns)
312{
313	spin_lock_irq(&pidmap_lock);
314	ns->pid_allocated &= ~PIDNS_ADDING;
315	spin_unlock_irq(&pidmap_lock);
316}
317
318struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319{
320	return idr_find(&ns->idr, nr);
 
 
 
 
 
 
 
 
 
321}
322EXPORT_SYMBOL_GPL(find_pid_ns);
323
324struct pid *find_vpid(int nr)
325{
326	return find_pid_ns(nr, task_active_pid_ns(current));
327}
328EXPORT_SYMBOL_GPL(find_vpid);
329
330static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331{
332	return (type == PIDTYPE_PID) ?
333		&task->thread_pid :
334		&task->signal->pids[type];
335}
336
337/*
338 * attach_pid() must be called with the tasklist_lock write-held.
339 */
340void attach_pid(struct task_struct *task, enum pid_type type)
 
341{
342	struct pid *pid = *task_pid_ptr(task, type);
343	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
 
 
 
344}
345
346static void __change_pid(struct task_struct *task, enum pid_type type,
347			struct pid *new)
348{
349	struct pid **pid_ptr = task_pid_ptr(task, type);
350	struct pid *pid;
351	int tmp;
352
353	pid = *pid_ptr;
354
355	hlist_del_rcu(&task->pid_links[type]);
356	*pid_ptr = new;
357
358	if (type == PIDTYPE_PID) {
359		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
360		wake_up_all(&pid->wait_pidfd);
361	}
362
363	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364		if (pid_has_task(pid, tmp))
365			return;
366
367	free_pid(pid);
368}
369
370void detach_pid(struct task_struct *task, enum pid_type type)
371{
372	__change_pid(task, type, NULL);
373}
374
375void change_pid(struct task_struct *task, enum pid_type type,
376		struct pid *pid)
377{
378	__change_pid(task, type, pid);
379	attach_pid(task, type);
380}
381
382void exchange_tids(struct task_struct *left, struct task_struct *right)
383{
384	struct pid *pid1 = left->thread_pid;
385	struct pid *pid2 = right->thread_pid;
386	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
387	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
388
389	/* Swap the single entry tid lists */
390	hlists_swap_heads_rcu(head1, head2);
391
392	/* Swap the per task_struct pid */
393	rcu_assign_pointer(left->thread_pid, pid2);
394	rcu_assign_pointer(right->thread_pid, pid1);
395
396	/* Swap the cached value */
397	WRITE_ONCE(left->pid, pid_nr(pid2));
398	WRITE_ONCE(right->pid, pid_nr(pid1));
399}
400
401/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
402void transfer_pid(struct task_struct *old, struct task_struct *new,
403			   enum pid_type type)
404{
405	WARN_ON_ONCE(type == PIDTYPE_PID);
406	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
407}
408
409struct task_struct *pid_task(struct pid *pid, enum pid_type type)
410{
411	struct task_struct *result = NULL;
412	if (pid) {
413		struct hlist_node *first;
414		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
415					      lockdep_tasklist_lock_is_held());
416		if (first)
417			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
418	}
419	return result;
420}
421EXPORT_SYMBOL(pid_task);
422
423/*
424 * Must be called under rcu_read_lock().
425 */
426struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
427{
428	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
 
430	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
431}
432
433struct task_struct *find_task_by_vpid(pid_t vnr)
434{
435	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
436}
437
438struct task_struct *find_get_task_by_vpid(pid_t nr)
439{
440	struct task_struct *task;
441
442	rcu_read_lock();
443	task = find_task_by_vpid(nr);
444	if (task)
445		get_task_struct(task);
446	rcu_read_unlock();
447
448	return task;
449}
450
451struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
452{
453	struct pid *pid;
454	rcu_read_lock();
455	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
 
 
456	rcu_read_unlock();
457	return pid;
458}
459EXPORT_SYMBOL_GPL(get_task_pid);
460
461struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
462{
463	struct task_struct *result;
464	rcu_read_lock();
465	result = pid_task(pid, type);
466	if (result)
467		get_task_struct(result);
468	rcu_read_unlock();
469	return result;
470}
471EXPORT_SYMBOL_GPL(get_pid_task);
472
473struct pid *find_get_pid(pid_t nr)
474{
475	struct pid *pid;
476
477	rcu_read_lock();
478	pid = get_pid(find_vpid(nr));
479	rcu_read_unlock();
480
481	return pid;
482}
483EXPORT_SYMBOL_GPL(find_get_pid);
484
485pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
486{
487	struct upid *upid;
488	pid_t nr = 0;
489
490	if (pid && ns->level <= pid->level) {
491		upid = &pid->numbers[ns->level];
492		if (upid->ns == ns)
493			nr = upid->nr;
494	}
495	return nr;
496}
497EXPORT_SYMBOL_GPL(pid_nr_ns);
498
499pid_t pid_vnr(struct pid *pid)
500{
501	return pid_nr_ns(pid, task_active_pid_ns(current));
502}
503EXPORT_SYMBOL_GPL(pid_vnr);
504
505pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506			struct pid_namespace *ns)
507{
508	pid_t nr = 0;
509
510	rcu_read_lock();
511	if (!ns)
512		ns = task_active_pid_ns(current);
513	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
 
 
 
 
514	rcu_read_unlock();
515
516	return nr;
517}
518EXPORT_SYMBOL(__task_pid_nr_ns);
519
 
 
 
 
 
 
520struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
521{
522	return ns_of_pid(task_pid(tsk));
523}
524EXPORT_SYMBOL_GPL(task_active_pid_ns);
525
526/*
527 * Used by proc to find the first pid that is greater than or equal to nr.
528 *
529 * If there is a pid at nr this function is exactly the same as find_pid_ns.
530 */
531struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
532{
533	return idr_get_next(&ns->idr, &nr);
534}
535EXPORT_SYMBOL_GPL(find_ge_pid);
536
537struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
538{
539	CLASS(fd, f)(fd);
540	struct pid *pid;
541
542	if (fd_empty(f))
543		return ERR_PTR(-EBADF);
 
 
 
 
544
545	pid = pidfd_pid(fd_file(f));
546	if (!IS_ERR(pid)) {
547		get_pid(pid);
548		*flags = fd_file(f)->f_flags;
549	}
550	return pid;
551}
552
553/**
554 * pidfd_get_task() - Get the task associated with a pidfd
555 *
556 * @pidfd: pidfd for which to get the task
557 * @flags: flags associated with this pidfd
558 *
559 * Return the task associated with @pidfd. The function takes a reference on
560 * the returned task. The caller is responsible for releasing that reference.
561 *
562 * Return: On success, the task_struct associated with the pidfd.
563 *	   On error, a negative errno number will be returned.
564 */
565struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
566{
567	unsigned int f_flags;
568	struct pid *pid;
569	struct task_struct *task;
570
571	pid = pidfd_get_pid(pidfd, &f_flags);
572	if (IS_ERR(pid))
573		return ERR_CAST(pid);
574
575	task = get_pid_task(pid, PIDTYPE_TGID);
576	put_pid(pid);
577	if (!task)
578		return ERR_PTR(-ESRCH);
579
580	*flags = f_flags;
581	return task;
582}
583
584/**
585 * pidfd_create() - Create a new pid file descriptor.
586 *
587 * @pid:   struct pid that the pidfd will reference
588 * @flags: flags to pass
589 *
590 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
591 *
592 * Note, that this function can only be called after the fd table has
593 * been unshared to avoid leaking the pidfd to the new process.
594 *
595 * This symbol should not be explicitly exported to loadable modules.
596 *
597 * Return: On success, a cloexec pidfd is returned.
598 *         On error, a negative errno number will be returned.
599 */
600static int pidfd_create(struct pid *pid, unsigned int flags)
601{
602	int pidfd;
603	struct file *pidfd_file;
604
605	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
606	if (pidfd < 0)
607		return pidfd;
 
 
608
609	fd_install(pidfd, pidfd_file);
610	return pidfd;
611}
612
613/**
614 * sys_pidfd_open() - Open new pid file descriptor.
615 *
616 * @pid:   pid for which to retrieve a pidfd
617 * @flags: flags to pass
618 *
619 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
620 * the task identified by @pid. Without PIDFD_THREAD flag the target task
621 * must be a thread-group leader.
622 *
623 * Return: On success, a cloexec pidfd is returned.
624 *         On error, a negative errno number will be returned.
625 */
626SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
627{
628	int fd;
629	struct pid *p;
630
631	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
632		return -EINVAL;
633
634	if (pid <= 0)
635		return -EINVAL;
636
637	p = find_get_pid(pid);
638	if (!p)
639		return -ESRCH;
640
641	fd = pidfd_create(p, flags);
642
643	put_pid(p);
644	return fd;
645}
646
647void __init pid_idr_init(void)
648{
649	/* Verify no one has done anything silly: */
650	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
651
652	/* bump default and minimum pid_max based on number of cpus */
653	pid_max = min(pid_max_max, max_t(int, pid_max,
654				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
655	pid_max_min = max_t(int, pid_max_min,
656				PIDS_PER_CPU_MIN * num_possible_cpus());
657	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
658
659	idr_init(&init_pid_ns.idr);
660
661	init_pid_ns.pid_cachep = kmem_cache_create("pid",
662			struct_size_t(struct pid, numbers, 1),
663			__alignof__(struct pid),
664			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
665			NULL);
666}
667
668static struct file *__pidfd_fget(struct task_struct *task, int fd)
669{
670	struct file *file;
671	int ret;
672
673	ret = down_read_killable(&task->signal->exec_update_lock);
674	if (ret)
675		return ERR_PTR(ret);
676
677	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
678		file = fget_task(task, fd);
679	else
680		file = ERR_PTR(-EPERM);
681
682	up_read(&task->signal->exec_update_lock);
683
684	if (!file) {
685		/*
686		 * It is possible that the target thread is exiting; it can be
687		 * either:
688		 * 1. before exit_signals(), which gives a real fd
689		 * 2. before exit_files() takes the task_lock() gives a real fd
690		 * 3. after exit_files() releases task_lock(), ->files is NULL;
691		 *    this has PF_EXITING, since it was set in exit_signals(),
692		 *    __pidfd_fget() returns EBADF.
693		 * In case 3 we get EBADF, but that really means ESRCH, since
694		 * the task is currently exiting and has freed its files
695		 * struct, so we fix it up.
696		 */
697		if (task->flags & PF_EXITING)
698			file = ERR_PTR(-ESRCH);
699		else
700			file = ERR_PTR(-EBADF);
701	}
702
703	return file;
704}
705
706static int pidfd_getfd(struct pid *pid, int fd)
707{
708	struct task_struct *task;
709	struct file *file;
710	int ret;
711
712	task = get_pid_task(pid, PIDTYPE_PID);
713	if (!task)
714		return -ESRCH;
715
716	file = __pidfd_fget(task, fd);
717	put_task_struct(task);
718	if (IS_ERR(file))
719		return PTR_ERR(file);
720
721	ret = receive_fd(file, NULL, O_CLOEXEC);
722	fput(file);
723
724	return ret;
725}
726
727/**
728 * sys_pidfd_getfd() - Get a file descriptor from another process
729 *
730 * @pidfd:	the pidfd file descriptor of the process
731 * @fd:		the file descriptor number to get
732 * @flags:	flags on how to get the fd (reserved)
733 *
734 * This syscall gets a copy of a file descriptor from another process
735 * based on the pidfd, and file descriptor number. It requires that
736 * the calling process has the ability to ptrace the process represented
737 * by the pidfd. The process which is having its file descriptor copied
738 * is otherwise unaffected.
739 *
740 * Return: On success, a cloexec file descriptor is returned.
741 *         On error, a negative errno number will be returned.
742 */
743SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
744		unsigned int, flags)
745{
746	struct pid *pid;
747
748	/* flags is currently unused - make sure it's unset */
749	if (flags)
750		return -EINVAL;
751
752	CLASS(fd, f)(pidfd);
753	if (fd_empty(f))
754		return -EBADF;
755
756	pid = pidfd_pid(fd_file(f));
757	if (IS_ERR(pid))
758		return PTR_ERR(pid);
759
760	return pidfd_getfd(pid, fd);
 
761}
v3.5.6
 
  1/*
  2 * Generic pidhash and scalable, time-bounded PID allocator
  3 *
  4 * (C) 2002-2003 William Irwin, IBM
  5 * (C) 2004 William Irwin, Oracle
  6 * (C) 2002-2004 Ingo Molnar, Red Hat
  7 *
  8 * pid-structures are backing objects for tasks sharing a given ID to chain
  9 * against. There is very little to them aside from hashing them and
 10 * parking tasks using given ID's on a list.
 11 *
 12 * The hash is always changed with the tasklist_lock write-acquired,
 13 * and the hash is only accessed with the tasklist_lock at least
 14 * read-acquired, so there's no additional SMP locking needed here.
 15 *
 16 * We have a list of bitmap pages, which bitmaps represent the PID space.
 17 * Allocating and freeing PIDs is completely lockless. The worst-case
 18 * allocation scenario when all but one out of 1 million PIDs possible are
 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 21 *
 22 * Pid namespaces:
 23 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 24 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 25 *     Many thanks to Oleg Nesterov for comments and help
 26 *
 27 */
 28
 29#include <linux/mm.h>
 30#include <linux/export.h>
 31#include <linux/slab.h>
 32#include <linux/init.h>
 33#include <linux/rculist.h>
 34#include <linux/bootmem.h>
 35#include <linux/hash.h>
 36#include <linux/pid_namespace.h>
 37#include <linux/init_task.h>
 38#include <linux/syscalls.h>
 39
 40#define pid_hashfn(nr, ns)	\
 41	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
 42static struct hlist_head *pid_hash;
 43static unsigned int pidhash_shift = 4;
 44struct pid init_struct_pid = INIT_STRUCT_PID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45
 46int pid_max = PID_MAX_DEFAULT;
 47
 48#define RESERVED_PIDS		300
 49
 50int pid_max_min = RESERVED_PIDS + 1;
 51int pid_max_max = PID_MAX_LIMIT;
 52
 53#define BITS_PER_PAGE		(PAGE_SIZE*8)
 54#define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
 55
 56static inline int mk_pid(struct pid_namespace *pid_ns,
 57		struct pidmap *map, int off)
 58{
 59	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
 60}
 61
 62#define find_next_offset(map, off)					\
 63		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
 64
 65/*
 66 * PID-map pages start out as NULL, they get allocated upon
 67 * first use and are never deallocated. This way a low pid_max
 68 * value does not cause lots of bitmaps to be allocated, but
 69 * the scheme scales to up to 4 million PIDs, runtime.
 70 */
 71struct pid_namespace init_pid_ns = {
 72	.kref = {
 73		.refcount       = ATOMIC_INIT(2),
 74	},
 75	.pidmap = {
 76		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
 77	},
 78	.last_pid = 0,
 79	.level = 0,
 80	.child_reaper = &init_task,
 
 
 
 
 
 
 
 
 81};
 82EXPORT_SYMBOL_GPL(init_pid_ns);
 83
 84int is_container_init(struct task_struct *tsk)
 85{
 86	int ret = 0;
 87	struct pid *pid;
 88
 89	rcu_read_lock();
 90	pid = task_pid(tsk);
 91	if (pid != NULL && pid->numbers[pid->level].nr == 1)
 92		ret = 1;
 93	rcu_read_unlock();
 94
 95	return ret;
 96}
 97EXPORT_SYMBOL(is_container_init);
 98
 99/*
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
102 *
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
107 *
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
111 */
112
113static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
114
115static void free_pidmap(struct upid *upid)
116{
117	int nr = upid->nr;
118	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
119	int offset = nr & BITS_PER_PAGE_MASK;
120
121	clear_bit(offset, map->page);
122	atomic_inc(&map->nr_free);
123}
124
125/*
126 * If we started walking pids at 'base', is 'a' seen before 'b'?
127 */
128static int pid_before(int base, int a, int b)
129{
130	/*
131	 * This is the same as saying
132	 *
133	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
134	 * and that mapping orders 'a' and 'b' with respect to 'base'.
135	 */
136	return (unsigned)(a - base) < (unsigned)(b - base);
137}
138
139/*
140 * We might be racing with someone else trying to set pid_ns->last_pid
141 * at the pid allocation time (there's also a sysctl for this, but racing
142 * with this one is OK, see comment in kernel/pid_namespace.c about it).
143 * We want the winner to have the "later" value, because if the
144 * "earlier" value prevails, then a pid may get reused immediately.
145 *
146 * Since pids rollover, it is not sufficient to just pick the bigger
147 * value.  We have to consider where we started counting from.
148 *
149 * 'base' is the value of pid_ns->last_pid that we observed when
150 * we started looking for a pid.
151 *
152 * 'pid' is the pid that we eventually found.
153 */
154static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
155{
156	int prev;
157	int last_write = base;
158	do {
159		prev = last_write;
160		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
161	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
162}
163
164static int alloc_pidmap(struct pid_namespace *pid_ns)
165{
166	int i, offset, max_scan, pid, last = pid_ns->last_pid;
167	struct pidmap *map;
168
169	pid = last + 1;
170	if (pid >= pid_max)
171		pid = RESERVED_PIDS;
172	offset = pid & BITS_PER_PAGE_MASK;
173	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
174	/*
175	 * If last_pid points into the middle of the map->page we
176	 * want to scan this bitmap block twice, the second time
177	 * we start with offset == 0 (or RESERVED_PIDS).
178	 */
179	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
180	for (i = 0; i <= max_scan; ++i) {
181		if (unlikely(!map->page)) {
182			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
183			/*
184			 * Free the page if someone raced with us
185			 * installing it:
186			 */
187			spin_lock_irq(&pidmap_lock);
188			if (!map->page) {
189				map->page = page;
190				page = NULL;
191			}
192			spin_unlock_irq(&pidmap_lock);
193			kfree(page);
194			if (unlikely(!map->page))
195				break;
196		}
197		if (likely(atomic_read(&map->nr_free))) {
198			do {
199				if (!test_and_set_bit(offset, map->page)) {
200					atomic_dec(&map->nr_free);
201					set_last_pid(pid_ns, last, pid);
202					return pid;
203				}
204				offset = find_next_offset(map, offset);
205				pid = mk_pid(pid_ns, map, offset);
206			} while (offset < BITS_PER_PAGE && pid < pid_max);
207		}
208		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
209			++map;
210			offset = 0;
211		} else {
212			map = &pid_ns->pidmap[0];
213			offset = RESERVED_PIDS;
214			if (unlikely(last == offset))
215				break;
216		}
217		pid = mk_pid(pid_ns, map, offset);
218	}
219	return -1;
220}
221
222int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
223{
224	int offset;
225	struct pidmap *map, *end;
226
227	if (last >= PID_MAX_LIMIT)
228		return -1;
229
230	offset = (last + 1) & BITS_PER_PAGE_MASK;
231	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
232	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
233	for (; map < end; map++, offset = 0) {
234		if (unlikely(!map->page))
235			continue;
236		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
237		if (offset < BITS_PER_PAGE)
238			return mk_pid(pid_ns, map, offset);
239	}
240	return -1;
241}
242
243void put_pid(struct pid *pid)
244{
245	struct pid_namespace *ns;
246
247	if (!pid)
248		return;
249
250	ns = pid->numbers[pid->level].ns;
251	if ((atomic_read(&pid->count) == 1) ||
252	     atomic_dec_and_test(&pid->count)) {
253		kmem_cache_free(ns->pid_cachep, pid);
254		put_pid_ns(ns);
255	}
256}
257EXPORT_SYMBOL_GPL(put_pid);
258
259static void delayed_put_pid(struct rcu_head *rhp)
260{
261	struct pid *pid = container_of(rhp, struct pid, rcu);
262	put_pid(pid);
263}
264
265void free_pid(struct pid *pid)
266{
267	/* We can be called with write_lock_irq(&tasklist_lock) held */
268	int i;
269	unsigned long flags;
270
271	spin_lock_irqsave(&pidmap_lock, flags);
272	for (i = 0; i <= pid->level; i++)
273		hlist_del_rcu(&pid->numbers[i].pid_chain);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274	spin_unlock_irqrestore(&pidmap_lock, flags);
275
276	for (i = 0; i <= pid->level; i++)
277		free_pidmap(pid->numbers + i);
278
279	call_rcu(&pid->rcu, delayed_put_pid);
280}
281
282struct pid *alloc_pid(struct pid_namespace *ns)
 
283{
284	struct pid *pid;
285	enum pid_type type;
286	int i, nr;
287	struct pid_namespace *tmp;
288	struct upid *upid;
 
 
 
 
 
 
 
 
 
 
 
 
289
290	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
291	if (!pid)
292		goto out;
293
294	tmp = ns;
 
 
295	for (i = ns->level; i >= 0; i--) {
296		nr = alloc_pidmap(tmp);
297		if (nr < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298			goto out_free;
 
299
300		pid->numbers[i].nr = nr;
301		pid->numbers[i].ns = tmp;
302		tmp = tmp->parent;
303	}
304
 
 
 
 
 
 
 
 
 
 
305	get_pid_ns(ns);
306	pid->level = ns->level;
307	atomic_set(&pid->count, 1);
308	for (type = 0; type < PIDTYPE_MAX; ++type)
309		INIT_HLIST_HEAD(&pid->tasks[type]);
310
 
 
 
311	upid = pid->numbers + ns->level;
312	spin_lock_irq(&pidmap_lock);
313	for ( ; upid >= pid->numbers; --upid)
314		hlist_add_head_rcu(&upid->pid_chain,
315				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
 
 
 
 
 
 
316	spin_unlock_irq(&pidmap_lock);
317
318out:
319	return pid;
320
 
 
 
 
321out_free:
322	while (++i <= ns->level)
323		free_pidmap(pid->numbers + i);
 
 
 
 
 
 
 
 
 
324
325	kmem_cache_free(ns->pid_cachep, pid);
326	pid = NULL;
327	goto out;
 
 
 
 
 
 
328}
329
330struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
331{
332	struct hlist_node *elem;
333	struct upid *pnr;
334
335	hlist_for_each_entry_rcu(pnr, elem,
336			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
337		if (pnr->nr == nr && pnr->ns == ns)
338			return container_of(pnr, struct pid,
339					numbers[ns->level]);
340
341	return NULL;
342}
343EXPORT_SYMBOL_GPL(find_pid_ns);
344
345struct pid *find_vpid(int nr)
346{
347	return find_pid_ns(nr, current->nsproxy->pid_ns);
348}
349EXPORT_SYMBOL_GPL(find_vpid);
350
 
 
 
 
 
 
 
351/*
352 * attach_pid() must be called with the tasklist_lock write-held.
353 */
354void attach_pid(struct task_struct *task, enum pid_type type,
355		struct pid *pid)
356{
357	struct pid_link *link;
358
359	link = &task->pids[type];
360	link->pid = pid;
361	hlist_add_head_rcu(&link->node, &pid->tasks[type]);
362}
363
364static void __change_pid(struct task_struct *task, enum pid_type type,
365			struct pid *new)
366{
367	struct pid_link *link;
368	struct pid *pid;
369	int tmp;
370
371	link = &task->pids[type];
372	pid = link->pid;
 
 
373
374	hlist_del_rcu(&link->node);
375	link->pid = new;
 
 
376
377	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
378		if (!hlist_empty(&pid->tasks[tmp]))
379			return;
380
381	free_pid(pid);
382}
383
384void detach_pid(struct task_struct *task, enum pid_type type)
385{
386	__change_pid(task, type, NULL);
387}
388
389void change_pid(struct task_struct *task, enum pid_type type,
390		struct pid *pid)
391{
392	__change_pid(task, type, pid);
393	attach_pid(task, type, pid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394}
395
396/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
397void transfer_pid(struct task_struct *old, struct task_struct *new,
398			   enum pid_type type)
399{
400	new->pids[type].pid = old->pids[type].pid;
401	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
402}
403
404struct task_struct *pid_task(struct pid *pid, enum pid_type type)
405{
406	struct task_struct *result = NULL;
407	if (pid) {
408		struct hlist_node *first;
409		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
410					      lockdep_tasklist_lock_is_held());
411		if (first)
412			result = hlist_entry(first, struct task_struct, pids[(type)].node);
413	}
414	return result;
415}
416EXPORT_SYMBOL(pid_task);
417
418/*
419 * Must be called under rcu_read_lock().
420 */
421struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
422{
423	rcu_lockdep_assert(rcu_read_lock_held(),
424			   "find_task_by_pid_ns() needs rcu_read_lock()"
425			   " protection");
426	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
427}
428
429struct task_struct *find_task_by_vpid(pid_t vnr)
430{
431	return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
 
 
 
 
 
 
 
 
 
 
 
 
 
432}
433
434struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
435{
436	struct pid *pid;
437	rcu_read_lock();
438	if (type != PIDTYPE_PID)
439		task = task->group_leader;
440	pid = get_pid(task->pids[type].pid);
441	rcu_read_unlock();
442	return pid;
443}
444EXPORT_SYMBOL_GPL(get_task_pid);
445
446struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
447{
448	struct task_struct *result;
449	rcu_read_lock();
450	result = pid_task(pid, type);
451	if (result)
452		get_task_struct(result);
453	rcu_read_unlock();
454	return result;
455}
456EXPORT_SYMBOL_GPL(get_pid_task);
457
458struct pid *find_get_pid(pid_t nr)
459{
460	struct pid *pid;
461
462	rcu_read_lock();
463	pid = get_pid(find_vpid(nr));
464	rcu_read_unlock();
465
466	return pid;
467}
468EXPORT_SYMBOL_GPL(find_get_pid);
469
470pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
471{
472	struct upid *upid;
473	pid_t nr = 0;
474
475	if (pid && ns->level <= pid->level) {
476		upid = &pid->numbers[ns->level];
477		if (upid->ns == ns)
478			nr = upid->nr;
479	}
480	return nr;
481}
 
482
483pid_t pid_vnr(struct pid *pid)
484{
485	return pid_nr_ns(pid, current->nsproxy->pid_ns);
486}
487EXPORT_SYMBOL_GPL(pid_vnr);
488
489pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
490			struct pid_namespace *ns)
491{
492	pid_t nr = 0;
493
494	rcu_read_lock();
495	if (!ns)
496		ns = current->nsproxy->pid_ns;
497	if (likely(pid_alive(task))) {
498		if (type != PIDTYPE_PID)
499			task = task->group_leader;
500		nr = pid_nr_ns(task->pids[type].pid, ns);
501	}
502	rcu_read_unlock();
503
504	return nr;
505}
506EXPORT_SYMBOL(__task_pid_nr_ns);
507
508pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
509{
510	return pid_nr_ns(task_tgid(tsk), ns);
511}
512EXPORT_SYMBOL(task_tgid_nr_ns);
513
514struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
515{
516	return ns_of_pid(task_pid(tsk));
517}
518EXPORT_SYMBOL_GPL(task_active_pid_ns);
519
520/*
521 * Used by proc to find the first pid that is greater than or equal to nr.
522 *
523 * If there is a pid at nr this function is exactly the same as find_pid_ns.
524 */
525struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
526{
 
 
 
 
 
 
 
527	struct pid *pid;
528
529	do {
530		pid = find_pid_ns(nr, ns);
531		if (pid)
532			break;
533		nr = next_pidmap(ns, nr);
534	} while (nr > 0);
535
 
 
 
 
 
536	return pid;
537}
538
539/*
540 * The pid hash table is scaled according to the amount of memory in the
541 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
542 * more.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543 */
544void __init pidhash_init(void)
545{
546	unsigned int i, pidhash_size;
 
547
548	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
549					   HASH_EARLY | HASH_SMALL,
550					   &pidhash_shift, NULL,
551					   0, 4096);
552	pidhash_size = 1U << pidhash_shift;
553
554	for (i = 0; i < pidhash_size; i++)
555		INIT_HLIST_HEAD(&pid_hash[i]);
556}
557
558void __init pidmap_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
559{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560	/* bump default and minimum pid_max based on number of cpus */
561	pid_max = min(pid_max_max, max_t(int, pid_max,
562				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
563	pid_max_min = max_t(int, pid_max_min,
564				PIDS_PER_CPU_MIN * num_possible_cpus());
565	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
566
567	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
568	/* Reserve PID 0. We never call free_pidmap(0) */
569	set_bit(0, init_pid_ns.pidmap[0].page);
570	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
571
572	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
573			SLAB_HWCACHE_ALIGN | SLAB_PANIC);
574}