Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/consolemap.h>
29#include <linux/init.h>
30#include <linux/input.h>
31#include <linux/jiffies.h>
32#include <linux/kbd_diacr.h>
33#include <linux/kbd_kern.h>
34#include <linux/leds.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/nospec.h>
38#include <linux/notifier.h>
39#include <linux/reboot.h>
40#include <linux/sched/debug.h>
41#include <linux/sched/signal.h>
42#include <linux/slab.h>
43#include <linux/spinlock.h>
44#include <linux/string.h>
45#include <linux/tty_flip.h>
46#include <linux/tty.h>
47#include <linux/uaccess.h>
48#include <linux/vt_kern.h>
49
50#include <asm/irq_regs.h>
51
52/*
53 * Exported functions/variables
54 */
55
56#define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59#include <asm/kbdleds.h>
60#else
61static inline int kbd_defleds(void)
62{
63 return 0;
64}
65#endif
66
67#define KBD_DEFLOCK 0
68
69/*
70 * Handler Tables.
71 */
72
73#define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81static k_handler_fn K_HANDLERS;
82static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84#define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91typedef void (fn_handler_fn)(struct vc_data *vc);
92static fn_handler_fn FN_HANDLERS;
93static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95/*
96 * Variables exported for vt_ioctl.c
97 */
98
99struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103};
104
105
106/*
107 * Internal Data.
108 */
109
110static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111static struct kbd_struct *kbd = kbd_table;
112
113/* maximum values each key_handler can handle */
114static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130};
131
132static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134static void kbd_bh(struct tasklet_struct *unused);
135static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137static struct input_handler kbd_handler;
138static DEFINE_SPINLOCK(kbd_event_lock);
139static DEFINE_SPINLOCK(led_lock);
140static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143static bool dead_key_next;
144
145/* Handles a number being assembled on the number pad */
146static bool npadch_active;
147static unsigned int npadch_value;
148
149static unsigned int diacr;
150static bool rep; /* flag telling character repeat */
151
152static int shift_state = 0;
153
154static unsigned int ledstate = -1U; /* undefined */
155static unsigned char ledioctl;
156static bool vt_switch;
157
158/*
159 * Notifier list for console keyboard events
160 */
161static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
163int register_keyboard_notifier(struct notifier_block *nb)
164{
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166}
167EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
169int unregister_keyboard_notifier(struct notifier_block *nb)
170{
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172}
173EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175/*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188};
189
190static int getkeycode_helper(struct input_handle *handle, void *data)
191{
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197}
198
199static int getkeycode(unsigned int scancode)
200{
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215}
216
217static int setkeycode_helper(struct input_handle *handle, void *data)
218{
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224}
225
226static int setkeycode(unsigned int scancode, unsigned int keycode)
227{
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242}
243
244/*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
249static int kd_sound_helper(struct input_handle *handle, void *data)
250{
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265}
266
267static void kd_nosound(struct timer_list *unused)
268{
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272}
273
274static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
276void kd_mksound(unsigned int hz, unsigned int ticks)
277{
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284}
285EXPORT_SYMBOL(kd_mksound);
286
287/*
288 * Setting the keyboard rate.
289 */
290
291static int kbd_rate_helper(struct input_handle *handle, void *data)
292{
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310}
311
312int kbd_rate(struct kbd_repeat *rpt)
313{
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320}
321
322/*
323 * Helper Functions.
324 */
325static void put_queue(struct vc_data *vc, int ch)
326{
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329}
330
331static void puts_queue(struct vc_data *vc, const char *cp)
332{
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335}
336
337static void applkey(struct vc_data *vc, int key, char mode)
338{
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344}
345
346/*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
352static void to_utf8(struct vc_data *vc, uint c)
353{
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377}
378
379/* FIXME: review locking for vt.c callers */
380static void set_leds(void)
381{
382 tasklet_schedule(&keyboard_tasklet);
383}
384
385/*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
392static void do_compute_shiftstate(void)
393{
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411}
412
413/* We still have to export this method to vt.c */
414void vt_set_leds_compute_shiftstate(void)
415{
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429}
430
431/*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
438static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439{
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466}
467
468/*
469 * Special function handlers
470 */
471static void fn_enter(struct vc_data *vc)
472{
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487}
488
489static void fn_caps_toggle(struct vc_data *vc)
490{
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495}
496
497static void fn_caps_on(struct vc_data *vc)
498{
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503}
504
505static void fn_show_ptregs(struct vc_data *vc)
506{
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511}
512
513static void fn_hold(struct vc_data *vc)
514{
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529}
530
531static void fn_num(struct vc_data *vc)
532{
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537}
538
539/*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
545static void fn_bare_num(struct vc_data *vc)
546{
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549}
550
551static void fn_lastcons(struct vc_data *vc)
552{
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555}
556
557static void fn_dec_console(struct vc_data *vc)
558{
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572}
573
574static void fn_inc_console(struct vc_data *vc)
575{
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589}
590
591static void fn_send_intr(struct vc_data *vc)
592{
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595}
596
597static void fn_scroll_forw(struct vc_data *vc)
598{
599 scrollfront(vc, 0);
600}
601
602static void fn_scroll_back(struct vc_data *vc)
603{
604 scrollback(vc);
605}
606
607static void fn_show_mem(struct vc_data *vc)
608{
609 show_mem();
610}
611
612static void fn_show_state(struct vc_data *vc)
613{
614 show_state();
615}
616
617static void fn_boot_it(struct vc_data *vc)
618{
619 ctrl_alt_del();
620}
621
622static void fn_compose(struct vc_data *vc)
623{
624 dead_key_next = true;
625}
626
627static void fn_spawn_con(struct vc_data *vc)
628{
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636}
637
638static void fn_SAK(struct vc_data *vc)
639{
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642}
643
644static void fn_null(struct vc_data *vc)
645{
646 do_compute_shiftstate();
647}
648
649/*
650 * Special key handlers
651 */
652static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653{
654}
655
656static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657{
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668}
669
670static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671{
672 pr_err("k_lowercase was called - impossible\n");
673}
674
675static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676{
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695}
696
697/*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
702static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703{
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708}
709
710static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713}
714
715static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716{
717 k_deadunicode(vc, value, up_flag);
718}
719
720/*
721 * Obsolete - for backwards compatibility only
722 */
723static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724{
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756}
757
758static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759{
760 if (up_flag)
761 return;
762
763 set_console(value);
764}
765
766static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767{
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781}
782
783static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784{
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791}
792
793static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794{
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850}
851
852static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853{
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891}
892
893static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894{
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903}
904
905static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906{
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927}
928
929static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930{
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935}
936
937static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938{
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949}
950
951/* by default, 300ms interval for combination release */
952static unsigned brl_timeout = 300;
953MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954module_param(brl_timeout, uint, 0644);
955
956static unsigned brl_nbchords = 1;
957MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958module_param(brl_nbchords, uint, 0644);
959
960static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961{
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976}
977
978static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979{
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020}
1021
1022#if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027};
1028
1029static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030{
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_set_brightness(cdev, ledstate & trigger->mask ? LED_FULL : LED_OFF);
1037 tasklet_enable(&keyboard_tasklet);
1038
1039 return 0;
1040}
1041
1042#define KBD_LED_TRIGGER(_led_bit, _name) { \
1043 .trigger = { \
1044 .name = _name, \
1045 .activate = kbd_led_trigger_activate, \
1046 }, \
1047 .mask = BIT(_led_bit), \
1048 }
1049
1050#define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1051 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1052
1053static struct kbd_led_trigger kbd_led_triggers[] = {
1054 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1055 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1056 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1057 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1058
1059 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1060 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1061 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1067};
1068
1069static void kbd_propagate_led_state(unsigned int old_state,
1070 unsigned int new_state)
1071{
1072 struct kbd_led_trigger *trigger;
1073 unsigned int changed = old_state ^ new_state;
1074 int i;
1075
1076 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1077 trigger = &kbd_led_triggers[i];
1078
1079 if (changed & trigger->mask)
1080 led_trigger_event(&trigger->trigger,
1081 new_state & trigger->mask ?
1082 LED_FULL : LED_OFF);
1083 }
1084}
1085
1086static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1087{
1088 unsigned int led_state = *(unsigned int *)data;
1089
1090 if (test_bit(EV_LED, handle->dev->evbit))
1091 kbd_propagate_led_state(~led_state, led_state);
1092
1093 return 0;
1094}
1095
1096static void kbd_init_leds(void)
1097{
1098 int error;
1099 int i;
1100
1101 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1102 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1103 if (error)
1104 pr_err("error %d while registering trigger %s\n",
1105 error, kbd_led_triggers[i].trigger.name);
1106 }
1107}
1108
1109#else
1110
1111static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1112{
1113 unsigned int leds = *(unsigned int *)data;
1114
1115 if (test_bit(EV_LED, handle->dev->evbit)) {
1116 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1117 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1118 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1119 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1120 }
1121
1122 return 0;
1123}
1124
1125static void kbd_propagate_led_state(unsigned int old_state,
1126 unsigned int new_state)
1127{
1128 input_handler_for_each_handle(&kbd_handler, &new_state,
1129 kbd_update_leds_helper);
1130}
1131
1132static void kbd_init_leds(void)
1133{
1134}
1135
1136#endif
1137
1138/*
1139 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1140 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1141 * or (iii) specified bits of specified words in kernel memory.
1142 */
1143static unsigned char getledstate(void)
1144{
1145 return ledstate & 0xff;
1146}
1147
1148void setledstate(struct kbd_struct *kb, unsigned int led)
1149{
1150 unsigned long flags;
1151 spin_lock_irqsave(&led_lock, flags);
1152 if (!(led & ~7)) {
1153 ledioctl = led;
1154 kb->ledmode = LED_SHOW_IOCTL;
1155 } else
1156 kb->ledmode = LED_SHOW_FLAGS;
1157
1158 set_leds();
1159 spin_unlock_irqrestore(&led_lock, flags);
1160}
1161
1162static inline unsigned char getleds(void)
1163{
1164 struct kbd_struct *kb = kbd_table + fg_console;
1165
1166 if (kb->ledmode == LED_SHOW_IOCTL)
1167 return ledioctl;
1168
1169 return kb->ledflagstate;
1170}
1171
1172/**
1173 * vt_get_leds - helper for braille console
1174 * @console: console to read
1175 * @flag: flag we want to check
1176 *
1177 * Check the status of a keyboard led flag and report it back
1178 */
1179int vt_get_leds(unsigned int console, int flag)
1180{
1181 struct kbd_struct *kb = &kbd_table[console];
1182 int ret;
1183 unsigned long flags;
1184
1185 spin_lock_irqsave(&led_lock, flags);
1186 ret = vc_kbd_led(kb, flag);
1187 spin_unlock_irqrestore(&led_lock, flags);
1188
1189 return ret;
1190}
1191EXPORT_SYMBOL_GPL(vt_get_leds);
1192
1193/**
1194 * vt_set_led_state - set LED state of a console
1195 * @console: console to set
1196 * @leds: LED bits
1197 *
1198 * Set the LEDs on a console. This is a wrapper for the VT layer
1199 * so that we can keep kbd knowledge internal
1200 */
1201void vt_set_led_state(unsigned int console, int leds)
1202{
1203 struct kbd_struct *kb = &kbd_table[console];
1204 setledstate(kb, leds);
1205}
1206
1207/**
1208 * vt_kbd_con_start - Keyboard side of console start
1209 * @console: console
1210 *
1211 * Handle console start. This is a wrapper for the VT layer
1212 * so that we can keep kbd knowledge internal
1213 *
1214 * FIXME: We eventually need to hold the kbd lock here to protect
1215 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1216 * and start_tty under the kbd_event_lock, while normal tty paths
1217 * don't hold the lock. We probably need to split out an LED lock
1218 * but not during an -rc release!
1219 */
1220void vt_kbd_con_start(unsigned int console)
1221{
1222 struct kbd_struct *kb = &kbd_table[console];
1223 unsigned long flags;
1224 spin_lock_irqsave(&led_lock, flags);
1225 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1226 set_leds();
1227 spin_unlock_irqrestore(&led_lock, flags);
1228}
1229
1230/**
1231 * vt_kbd_con_stop - Keyboard side of console stop
1232 * @console: console
1233 *
1234 * Handle console stop. This is a wrapper for the VT layer
1235 * so that we can keep kbd knowledge internal
1236 */
1237void vt_kbd_con_stop(unsigned int console)
1238{
1239 struct kbd_struct *kb = &kbd_table[console];
1240 unsigned long flags;
1241 spin_lock_irqsave(&led_lock, flags);
1242 set_vc_kbd_led(kb, VC_SCROLLOCK);
1243 set_leds();
1244 spin_unlock_irqrestore(&led_lock, flags);
1245}
1246
1247/*
1248 * This is the tasklet that updates LED state of LEDs using standard
1249 * keyboard triggers. The reason we use tasklet is that we need to
1250 * handle the scenario when keyboard handler is not registered yet
1251 * but we already getting updates from the VT to update led state.
1252 */
1253static void kbd_bh(struct tasklet_struct *unused)
1254{
1255 unsigned int leds;
1256 unsigned long flags;
1257
1258 spin_lock_irqsave(&led_lock, flags);
1259 leds = getleds();
1260 leds |= (unsigned int)kbd->lockstate << 8;
1261 spin_unlock_irqrestore(&led_lock, flags);
1262
1263 if (vt_switch) {
1264 ledstate = ~leds;
1265 vt_switch = false;
1266 }
1267
1268 if (leds != ledstate) {
1269 kbd_propagate_led_state(ledstate, leds);
1270 ledstate = leds;
1271 }
1272}
1273
1274#if defined(CONFIG_X86) || defined(CONFIG_ALPHA) ||\
1275 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1276 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1277 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1278
1279static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1280{
1281 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1282 return false;
1283
1284 return dev->id.bustype == BUS_I8042 &&
1285 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1286}
1287
1288static const unsigned short x86_keycodes[256] =
1289 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1290 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1291 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1292 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1293 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1294 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1295 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1296 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1297 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1298 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1299 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1300 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1301 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1302 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1303 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1304
1305#ifdef CONFIG_SPARC
1306static int sparc_l1_a_state;
1307extern void sun_do_break(void);
1308#endif
1309
1310static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1311 unsigned char up_flag)
1312{
1313 int code;
1314
1315 switch (keycode) {
1316
1317 case KEY_PAUSE:
1318 put_queue(vc, 0xe1);
1319 put_queue(vc, 0x1d | up_flag);
1320 put_queue(vc, 0x45 | up_flag);
1321 break;
1322
1323 case KEY_HANGEUL:
1324 if (!up_flag)
1325 put_queue(vc, 0xf2);
1326 break;
1327
1328 case KEY_HANJA:
1329 if (!up_flag)
1330 put_queue(vc, 0xf1);
1331 break;
1332
1333 case KEY_SYSRQ:
1334 /*
1335 * Real AT keyboards (that's what we're trying
1336 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1337 * pressing PrtSc/SysRq alone, but simply 0x54
1338 * when pressing Alt+PrtSc/SysRq.
1339 */
1340 if (test_bit(KEY_LEFTALT, key_down) ||
1341 test_bit(KEY_RIGHTALT, key_down)) {
1342 put_queue(vc, 0x54 | up_flag);
1343 } else {
1344 put_queue(vc, 0xe0);
1345 put_queue(vc, 0x2a | up_flag);
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x37 | up_flag);
1348 }
1349 break;
1350
1351 default:
1352 if (keycode > 255)
1353 return -1;
1354
1355 code = x86_keycodes[keycode];
1356 if (!code)
1357 return -1;
1358
1359 if (code & 0x100)
1360 put_queue(vc, 0xe0);
1361 put_queue(vc, (code & 0x7f) | up_flag);
1362
1363 break;
1364 }
1365
1366 return 0;
1367}
1368
1369#else
1370
1371static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1372{
1373 return false;
1374}
1375
1376static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1377{
1378 if (keycode > 127)
1379 return -1;
1380
1381 put_queue(vc, keycode | up_flag);
1382 return 0;
1383}
1384#endif
1385
1386static void kbd_rawcode(unsigned char data)
1387{
1388 struct vc_data *vc = vc_cons[fg_console].d;
1389
1390 kbd = &kbd_table[vc->vc_num];
1391 if (kbd->kbdmode == VC_RAW)
1392 put_queue(vc, data);
1393}
1394
1395static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1396{
1397 struct vc_data *vc = vc_cons[fg_console].d;
1398 unsigned short keysym, *key_map;
1399 unsigned char type;
1400 bool raw_mode;
1401 struct tty_struct *tty;
1402 int shift_final;
1403 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1404 int rc;
1405
1406 tty = vc->port.tty;
1407
1408 if (tty && (!tty->driver_data)) {
1409 /* No driver data? Strange. Okay we fix it then. */
1410 tty->driver_data = vc;
1411 }
1412
1413 kbd = &kbd_table[vc->vc_num];
1414
1415#ifdef CONFIG_SPARC
1416 if (keycode == KEY_STOP)
1417 sparc_l1_a_state = down;
1418#endif
1419
1420 rep = (down == 2);
1421
1422 raw_mode = (kbd->kbdmode == VC_RAW);
1423 if (raw_mode && !hw_raw)
1424 if (emulate_raw(vc, keycode, !down << 7))
1425 if (keycode < BTN_MISC && printk_ratelimit())
1426 pr_warn("can't emulate rawmode for keycode %d\n",
1427 keycode);
1428
1429#ifdef CONFIG_SPARC
1430 if (keycode == KEY_A && sparc_l1_a_state) {
1431 sparc_l1_a_state = false;
1432 sun_do_break();
1433 }
1434#endif
1435
1436 if (kbd->kbdmode == VC_MEDIUMRAW) {
1437 /*
1438 * This is extended medium raw mode, with keys above 127
1439 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1440 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1441 * interfere with anything else. The two bytes after 0 will
1442 * always have the up flag set not to interfere with older
1443 * applications. This allows for 16384 different keycodes,
1444 * which should be enough.
1445 */
1446 if (keycode < 128) {
1447 put_queue(vc, keycode | (!down << 7));
1448 } else {
1449 put_queue(vc, !down << 7);
1450 put_queue(vc, (keycode >> 7) | BIT(7));
1451 put_queue(vc, keycode | BIT(7));
1452 }
1453 raw_mode = true;
1454 }
1455
1456 assign_bit(keycode, key_down, down);
1457
1458 if (rep &&
1459 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1460 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1461 /*
1462 * Don't repeat a key if the input buffers are not empty and the
1463 * characters get aren't echoed locally. This makes key repeat
1464 * usable with slow applications and under heavy loads.
1465 */
1466 return;
1467 }
1468
1469 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1470 param.ledstate = kbd->ledflagstate;
1471 key_map = key_maps[shift_final];
1472
1473 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1474 KBD_KEYCODE, ¶m);
1475 if (rc == NOTIFY_STOP || !key_map) {
1476 atomic_notifier_call_chain(&keyboard_notifier_list,
1477 KBD_UNBOUND_KEYCODE, ¶m);
1478 do_compute_shiftstate();
1479 kbd->slockstate = 0;
1480 return;
1481 }
1482
1483 if (keycode < NR_KEYS)
1484 keysym = key_map[keycode];
1485 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1486 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1487 else
1488 return;
1489
1490 type = KTYP(keysym);
1491
1492 if (type < 0xf0) {
1493 param.value = keysym;
1494 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1495 KBD_UNICODE, ¶m);
1496 if (rc != NOTIFY_STOP)
1497 if (down && !raw_mode)
1498 k_unicode(vc, keysym, !down);
1499 return;
1500 }
1501
1502 type -= 0xf0;
1503
1504 if (type == KT_LETTER) {
1505 type = KT_LATIN;
1506 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1507 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1508 if (key_map)
1509 keysym = key_map[keycode];
1510 }
1511 }
1512
1513 param.value = keysym;
1514 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1515 KBD_KEYSYM, ¶m);
1516 if (rc == NOTIFY_STOP)
1517 return;
1518
1519 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1520 return;
1521
1522 (*k_handler[type])(vc, keysym & 0xff, !down);
1523
1524 param.ledstate = kbd->ledflagstate;
1525 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1526
1527 if (type != KT_SLOCK)
1528 kbd->slockstate = 0;
1529}
1530
1531static void kbd_event(struct input_handle *handle, unsigned int event_type,
1532 unsigned int event_code, int value)
1533{
1534 /* We are called with interrupts disabled, just take the lock */
1535 spin_lock(&kbd_event_lock);
1536
1537 if (event_type == EV_MSC && event_code == MSC_RAW &&
1538 kbd_is_hw_raw(handle->dev))
1539 kbd_rawcode(value);
1540 if (event_type == EV_KEY && event_code <= KEY_MAX)
1541 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1542
1543 spin_unlock(&kbd_event_lock);
1544
1545 tasklet_schedule(&keyboard_tasklet);
1546 do_poke_blanked_console = 1;
1547 schedule_console_callback();
1548}
1549
1550static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1551{
1552 if (test_bit(EV_SND, dev->evbit))
1553 return true;
1554
1555 if (test_bit(EV_KEY, dev->evbit)) {
1556 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1557 BTN_MISC)
1558 return true;
1559 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1560 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1561 return true;
1562 }
1563
1564 return false;
1565}
1566
1567/*
1568 * When a keyboard (or other input device) is found, the kbd_connect
1569 * function is called. The function then looks at the device, and if it
1570 * likes it, it can open it and get events from it. In this (kbd_connect)
1571 * function, we should decide which VT to bind that keyboard to initially.
1572 */
1573static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1574 const struct input_device_id *id)
1575{
1576 struct input_handle *handle;
1577 int error;
1578
1579 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1580 if (!handle)
1581 return -ENOMEM;
1582
1583 handle->dev = dev;
1584 handle->handler = handler;
1585 handle->name = "kbd";
1586
1587 error = input_register_handle(handle);
1588 if (error)
1589 goto err_free_handle;
1590
1591 error = input_open_device(handle);
1592 if (error)
1593 goto err_unregister_handle;
1594
1595 return 0;
1596
1597 err_unregister_handle:
1598 input_unregister_handle(handle);
1599 err_free_handle:
1600 kfree(handle);
1601 return error;
1602}
1603
1604static void kbd_disconnect(struct input_handle *handle)
1605{
1606 input_close_device(handle);
1607 input_unregister_handle(handle);
1608 kfree(handle);
1609}
1610
1611/*
1612 * Start keyboard handler on the new keyboard by refreshing LED state to
1613 * match the rest of the system.
1614 */
1615static void kbd_start(struct input_handle *handle)
1616{
1617 tasklet_disable(&keyboard_tasklet);
1618
1619 if (ledstate != -1U)
1620 kbd_update_leds_helper(handle, &ledstate);
1621
1622 tasklet_enable(&keyboard_tasklet);
1623}
1624
1625static const struct input_device_id kbd_ids[] = {
1626 {
1627 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1628 .evbit = { BIT_MASK(EV_KEY) },
1629 },
1630
1631 {
1632 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1633 .evbit = { BIT_MASK(EV_SND) },
1634 },
1635
1636 { }, /* Terminating entry */
1637};
1638
1639MODULE_DEVICE_TABLE(input, kbd_ids);
1640
1641static struct input_handler kbd_handler = {
1642 .event = kbd_event,
1643 .match = kbd_match,
1644 .connect = kbd_connect,
1645 .disconnect = kbd_disconnect,
1646 .start = kbd_start,
1647 .name = "kbd",
1648 .id_table = kbd_ids,
1649};
1650
1651int __init kbd_init(void)
1652{
1653 int i;
1654 int error;
1655
1656 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1657 kbd_table[i].ledflagstate = kbd_defleds();
1658 kbd_table[i].default_ledflagstate = kbd_defleds();
1659 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1660 kbd_table[i].lockstate = KBD_DEFLOCK;
1661 kbd_table[i].slockstate = 0;
1662 kbd_table[i].modeflags = KBD_DEFMODE;
1663 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1664 }
1665
1666 kbd_init_leds();
1667
1668 error = input_register_handler(&kbd_handler);
1669 if (error)
1670 return error;
1671
1672 tasklet_enable(&keyboard_tasklet);
1673 tasklet_schedule(&keyboard_tasklet);
1674
1675 return 0;
1676}
1677
1678/* Ioctl support code */
1679
1680/**
1681 * vt_do_diacrit - diacritical table updates
1682 * @cmd: ioctl request
1683 * @udp: pointer to user data for ioctl
1684 * @perm: permissions check computed by caller
1685 *
1686 * Update the diacritical tables atomically and safely. Lock them
1687 * against simultaneous keypresses
1688 */
1689int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1690{
1691 unsigned long flags;
1692 int asize;
1693 int ret = 0;
1694
1695 switch (cmd) {
1696 case KDGKBDIACR:
1697 {
1698 struct kbdiacrs __user *a = udp;
1699 struct kbdiacr *dia;
1700 int i;
1701
1702 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1703 GFP_KERNEL);
1704 if (!dia)
1705 return -ENOMEM;
1706
1707 /* Lock the diacriticals table, make a copy and then
1708 copy it after we unlock */
1709 spin_lock_irqsave(&kbd_event_lock, flags);
1710
1711 asize = accent_table_size;
1712 for (i = 0; i < asize; i++) {
1713 dia[i].diacr = conv_uni_to_8bit(
1714 accent_table[i].diacr);
1715 dia[i].base = conv_uni_to_8bit(
1716 accent_table[i].base);
1717 dia[i].result = conv_uni_to_8bit(
1718 accent_table[i].result);
1719 }
1720 spin_unlock_irqrestore(&kbd_event_lock, flags);
1721
1722 if (put_user(asize, &a->kb_cnt))
1723 ret = -EFAULT;
1724 else if (copy_to_user(a->kbdiacr, dia,
1725 asize * sizeof(struct kbdiacr)))
1726 ret = -EFAULT;
1727 kfree(dia);
1728 return ret;
1729 }
1730 case KDGKBDIACRUC:
1731 {
1732 struct kbdiacrsuc __user *a = udp;
1733 void *buf;
1734
1735 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1736 GFP_KERNEL);
1737 if (buf == NULL)
1738 return -ENOMEM;
1739
1740 /* Lock the diacriticals table, make a copy and then
1741 copy it after we unlock */
1742 spin_lock_irqsave(&kbd_event_lock, flags);
1743
1744 asize = accent_table_size;
1745 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1746
1747 spin_unlock_irqrestore(&kbd_event_lock, flags);
1748
1749 if (put_user(asize, &a->kb_cnt))
1750 ret = -EFAULT;
1751 else if (copy_to_user(a->kbdiacruc, buf,
1752 asize*sizeof(struct kbdiacruc)))
1753 ret = -EFAULT;
1754 kfree(buf);
1755 return ret;
1756 }
1757
1758 case KDSKBDIACR:
1759 {
1760 struct kbdiacrs __user *a = udp;
1761 struct kbdiacr *dia = NULL;
1762 unsigned int ct;
1763 int i;
1764
1765 if (!perm)
1766 return -EPERM;
1767 if (get_user(ct, &a->kb_cnt))
1768 return -EFAULT;
1769 if (ct >= MAX_DIACR)
1770 return -EINVAL;
1771
1772 if (ct) {
1773 dia = memdup_array_user(a->kbdiacr,
1774 ct, sizeof(struct kbdiacr));
1775 if (IS_ERR(dia))
1776 return PTR_ERR(dia);
1777 }
1778
1779 spin_lock_irqsave(&kbd_event_lock, flags);
1780 accent_table_size = ct;
1781 for (i = 0; i < ct; i++) {
1782 accent_table[i].diacr =
1783 conv_8bit_to_uni(dia[i].diacr);
1784 accent_table[i].base =
1785 conv_8bit_to_uni(dia[i].base);
1786 accent_table[i].result =
1787 conv_8bit_to_uni(dia[i].result);
1788 }
1789 spin_unlock_irqrestore(&kbd_event_lock, flags);
1790 kfree(dia);
1791 return 0;
1792 }
1793
1794 case KDSKBDIACRUC:
1795 {
1796 struct kbdiacrsuc __user *a = udp;
1797 unsigned int ct;
1798 void *buf = NULL;
1799
1800 if (!perm)
1801 return -EPERM;
1802
1803 if (get_user(ct, &a->kb_cnt))
1804 return -EFAULT;
1805
1806 if (ct >= MAX_DIACR)
1807 return -EINVAL;
1808
1809 if (ct) {
1810 buf = memdup_array_user(a->kbdiacruc,
1811 ct, sizeof(struct kbdiacruc));
1812 if (IS_ERR(buf))
1813 return PTR_ERR(buf);
1814 }
1815 spin_lock_irqsave(&kbd_event_lock, flags);
1816 if (ct)
1817 memcpy(accent_table, buf,
1818 ct * sizeof(struct kbdiacruc));
1819 accent_table_size = ct;
1820 spin_unlock_irqrestore(&kbd_event_lock, flags);
1821 kfree(buf);
1822 return 0;
1823 }
1824 }
1825 return ret;
1826}
1827
1828/**
1829 * vt_do_kdskbmode - set keyboard mode ioctl
1830 * @console: the console to use
1831 * @arg: the requested mode
1832 *
1833 * Update the keyboard mode bits while holding the correct locks.
1834 * Return 0 for success or an error code.
1835 */
1836int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1837{
1838 struct kbd_struct *kb = &kbd_table[console];
1839 int ret = 0;
1840 unsigned long flags;
1841
1842 spin_lock_irqsave(&kbd_event_lock, flags);
1843 switch(arg) {
1844 case K_RAW:
1845 kb->kbdmode = VC_RAW;
1846 break;
1847 case K_MEDIUMRAW:
1848 kb->kbdmode = VC_MEDIUMRAW;
1849 break;
1850 case K_XLATE:
1851 kb->kbdmode = VC_XLATE;
1852 do_compute_shiftstate();
1853 break;
1854 case K_UNICODE:
1855 kb->kbdmode = VC_UNICODE;
1856 do_compute_shiftstate();
1857 break;
1858 case K_OFF:
1859 kb->kbdmode = VC_OFF;
1860 break;
1861 default:
1862 ret = -EINVAL;
1863 }
1864 spin_unlock_irqrestore(&kbd_event_lock, flags);
1865 return ret;
1866}
1867
1868/**
1869 * vt_do_kdskbmeta - set keyboard meta state
1870 * @console: the console to use
1871 * @arg: the requested meta state
1872 *
1873 * Update the keyboard meta bits while holding the correct locks.
1874 * Return 0 for success or an error code.
1875 */
1876int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1877{
1878 struct kbd_struct *kb = &kbd_table[console];
1879 int ret = 0;
1880 unsigned long flags;
1881
1882 spin_lock_irqsave(&kbd_event_lock, flags);
1883 switch(arg) {
1884 case K_METABIT:
1885 clr_vc_kbd_mode(kb, VC_META);
1886 break;
1887 case K_ESCPREFIX:
1888 set_vc_kbd_mode(kb, VC_META);
1889 break;
1890 default:
1891 ret = -EINVAL;
1892 }
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 return ret;
1895}
1896
1897int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1898 int perm)
1899{
1900 struct kbkeycode tmp;
1901 int kc = 0;
1902
1903 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1904 return -EFAULT;
1905 switch (cmd) {
1906 case KDGETKEYCODE:
1907 kc = getkeycode(tmp.scancode);
1908 if (kc >= 0)
1909 kc = put_user(kc, &user_kbkc->keycode);
1910 break;
1911 case KDSETKEYCODE:
1912 if (!perm)
1913 return -EPERM;
1914 kc = setkeycode(tmp.scancode, tmp.keycode);
1915 break;
1916 }
1917 return kc;
1918}
1919
1920static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1921 unsigned char map)
1922{
1923 unsigned short *key_map, val;
1924 unsigned long flags;
1925
1926 /* Ensure another thread doesn't free it under us */
1927 spin_lock_irqsave(&kbd_event_lock, flags);
1928 key_map = key_maps[map];
1929 if (key_map) {
1930 val = U(key_map[idx]);
1931 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1932 val = K_HOLE;
1933 } else
1934 val = idx ? K_HOLE : K_NOSUCHMAP;
1935 spin_unlock_irqrestore(&kbd_event_lock, flags);
1936
1937 return val;
1938}
1939
1940static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1941 unsigned char map, unsigned short val)
1942{
1943 unsigned long flags;
1944 unsigned short *key_map, *new_map, oldval;
1945
1946 if (!idx && val == K_NOSUCHMAP) {
1947 spin_lock_irqsave(&kbd_event_lock, flags);
1948 /* deallocate map */
1949 key_map = key_maps[map];
1950 if (map && key_map) {
1951 key_maps[map] = NULL;
1952 if (key_map[0] == U(K_ALLOCATED)) {
1953 kfree(key_map);
1954 keymap_count--;
1955 }
1956 }
1957 spin_unlock_irqrestore(&kbd_event_lock, flags);
1958
1959 return 0;
1960 }
1961
1962 if (KTYP(val) < NR_TYPES) {
1963 if (KVAL(val) > max_vals[KTYP(val)])
1964 return -EINVAL;
1965 } else if (kbdmode != VC_UNICODE)
1966 return -EINVAL;
1967
1968 /* ++Geert: non-PC keyboards may generate keycode zero */
1969#if !defined(__mc68000__) && !defined(__powerpc__)
1970 /* assignment to entry 0 only tests validity of args */
1971 if (!idx)
1972 return 0;
1973#endif
1974
1975 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1976 if (!new_map)
1977 return -ENOMEM;
1978
1979 spin_lock_irqsave(&kbd_event_lock, flags);
1980 key_map = key_maps[map];
1981 if (key_map == NULL) {
1982 int j;
1983
1984 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1985 !capable(CAP_SYS_RESOURCE)) {
1986 spin_unlock_irqrestore(&kbd_event_lock, flags);
1987 kfree(new_map);
1988 return -EPERM;
1989 }
1990 key_maps[map] = new_map;
1991 key_map = new_map;
1992 key_map[0] = U(K_ALLOCATED);
1993 for (j = 1; j < NR_KEYS; j++)
1994 key_map[j] = U(K_HOLE);
1995 keymap_count++;
1996 } else
1997 kfree(new_map);
1998
1999 oldval = U(key_map[idx]);
2000 if (val == oldval)
2001 goto out;
2002
2003 /* Attention Key */
2004 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2005 spin_unlock_irqrestore(&kbd_event_lock, flags);
2006 return -EPERM;
2007 }
2008
2009 key_map[idx] = U(val);
2010 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2011 do_compute_shiftstate();
2012out:
2013 spin_unlock_irqrestore(&kbd_event_lock, flags);
2014
2015 return 0;
2016}
2017
2018int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2019 unsigned int console)
2020{
2021 struct kbd_struct *kb = &kbd_table[console];
2022 struct kbentry kbe;
2023
2024 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2025 return -EFAULT;
2026
2027 switch (cmd) {
2028 case KDGKBENT:
2029 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2030 kbe.kb_table),
2031 &user_kbe->kb_value);
2032 case KDSKBENT:
2033 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2034 return -EPERM;
2035 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2036 kbe.kb_value);
2037 }
2038 return 0;
2039}
2040
2041static char *vt_kdskbsent(char *kbs, unsigned char cur)
2042{
2043 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2044 char *cur_f = func_table[cur];
2045
2046 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2047 strcpy(cur_f, kbs);
2048 return kbs;
2049 }
2050
2051 func_table[cur] = kbs;
2052
2053 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2054}
2055
2056int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2057{
2058 unsigned char kb_func;
2059 unsigned long flags;
2060 char *kbs;
2061 int ret;
2062
2063 if (get_user(kb_func, &user_kdgkb->kb_func))
2064 return -EFAULT;
2065
2066 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2067
2068 switch (cmd) {
2069 case KDGKBSENT: {
2070 /* size should have been a struct member */
2071 ssize_t len = sizeof(user_kdgkb->kb_string);
2072
2073 kbs = kmalloc(len, GFP_KERNEL);
2074 if (!kbs)
2075 return -ENOMEM;
2076
2077 spin_lock_irqsave(&func_buf_lock, flags);
2078 len = strscpy(kbs, func_table[kb_func] ? : "", len);
2079 spin_unlock_irqrestore(&func_buf_lock, flags);
2080
2081 if (len < 0) {
2082 ret = -ENOSPC;
2083 break;
2084 }
2085 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2086 -EFAULT : 0;
2087 break;
2088 }
2089 case KDSKBSENT:
2090 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2091 return -EPERM;
2092
2093 kbs = strndup_user(user_kdgkb->kb_string,
2094 sizeof(user_kdgkb->kb_string));
2095 if (IS_ERR(kbs))
2096 return PTR_ERR(kbs);
2097
2098 spin_lock_irqsave(&func_buf_lock, flags);
2099 kbs = vt_kdskbsent(kbs, kb_func);
2100 spin_unlock_irqrestore(&func_buf_lock, flags);
2101
2102 ret = 0;
2103 break;
2104 }
2105
2106 kfree(kbs);
2107
2108 return ret;
2109}
2110
2111int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2112{
2113 struct kbd_struct *kb = &kbd_table[console];
2114 unsigned long flags;
2115 unsigned char ucval;
2116
2117 switch(cmd) {
2118 /* the ioctls below read/set the flags usually shown in the leds */
2119 /* don't use them - they will go away without warning */
2120 case KDGKBLED:
2121 spin_lock_irqsave(&kbd_event_lock, flags);
2122 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2123 spin_unlock_irqrestore(&kbd_event_lock, flags);
2124 return put_user(ucval, (char __user *)arg);
2125
2126 case KDSKBLED:
2127 if (!perm)
2128 return -EPERM;
2129 if (arg & ~0x77)
2130 return -EINVAL;
2131 spin_lock_irqsave(&led_lock, flags);
2132 kb->ledflagstate = (arg & 7);
2133 kb->default_ledflagstate = ((arg >> 4) & 7);
2134 set_leds();
2135 spin_unlock_irqrestore(&led_lock, flags);
2136 return 0;
2137
2138 /* the ioctls below only set the lights, not the functions */
2139 /* for those, see KDGKBLED and KDSKBLED above */
2140 case KDGETLED:
2141 ucval = getledstate();
2142 return put_user(ucval, (char __user *)arg);
2143
2144 case KDSETLED:
2145 if (!perm)
2146 return -EPERM;
2147 setledstate(kb, arg);
2148 return 0;
2149 }
2150 return -ENOIOCTLCMD;
2151}
2152
2153int vt_do_kdgkbmode(unsigned int console)
2154{
2155 struct kbd_struct *kb = &kbd_table[console];
2156 /* This is a spot read so needs no locking */
2157 switch (kb->kbdmode) {
2158 case VC_RAW:
2159 return K_RAW;
2160 case VC_MEDIUMRAW:
2161 return K_MEDIUMRAW;
2162 case VC_UNICODE:
2163 return K_UNICODE;
2164 case VC_OFF:
2165 return K_OFF;
2166 default:
2167 return K_XLATE;
2168 }
2169}
2170
2171/**
2172 * vt_do_kdgkbmeta - report meta status
2173 * @console: console to report
2174 *
2175 * Report the meta flag status of this console
2176 */
2177int vt_do_kdgkbmeta(unsigned int console)
2178{
2179 struct kbd_struct *kb = &kbd_table[console];
2180 /* Again a spot read so no locking */
2181 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2182}
2183
2184/**
2185 * vt_reset_unicode - reset the unicode status
2186 * @console: console being reset
2187 *
2188 * Restore the unicode console state to its default
2189 */
2190void vt_reset_unicode(unsigned int console)
2191{
2192 unsigned long flags;
2193
2194 spin_lock_irqsave(&kbd_event_lock, flags);
2195 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2196 spin_unlock_irqrestore(&kbd_event_lock, flags);
2197}
2198
2199/**
2200 * vt_get_shift_state - shift bit state
2201 *
2202 * Report the shift bits from the keyboard state. We have to export
2203 * this to support some oddities in the vt layer.
2204 */
2205int vt_get_shift_state(void)
2206{
2207 /* Don't lock as this is a transient report */
2208 return shift_state;
2209}
2210
2211/**
2212 * vt_reset_keyboard - reset keyboard state
2213 * @console: console to reset
2214 *
2215 * Reset the keyboard bits for a console as part of a general console
2216 * reset event
2217 */
2218void vt_reset_keyboard(unsigned int console)
2219{
2220 struct kbd_struct *kb = &kbd_table[console];
2221 unsigned long flags;
2222
2223 spin_lock_irqsave(&kbd_event_lock, flags);
2224 set_vc_kbd_mode(kb, VC_REPEAT);
2225 clr_vc_kbd_mode(kb, VC_CKMODE);
2226 clr_vc_kbd_mode(kb, VC_APPLIC);
2227 clr_vc_kbd_mode(kb, VC_CRLF);
2228 kb->lockstate = 0;
2229 kb->slockstate = 0;
2230 spin_lock(&led_lock);
2231 kb->ledmode = LED_SHOW_FLAGS;
2232 kb->ledflagstate = kb->default_ledflagstate;
2233 spin_unlock(&led_lock);
2234 /* do not do set_leds here because this causes an endless tasklet loop
2235 when the keyboard hasn't been initialized yet */
2236 spin_unlock_irqrestore(&kbd_event_lock, flags);
2237}
2238
2239/**
2240 * vt_get_kbd_mode_bit - read keyboard status bits
2241 * @console: console to read from
2242 * @bit: mode bit to read
2243 *
2244 * Report back a vt mode bit. We do this without locking so the
2245 * caller must be sure that there are no synchronization needs
2246 */
2247
2248int vt_get_kbd_mode_bit(unsigned int console, int bit)
2249{
2250 struct kbd_struct *kb = &kbd_table[console];
2251 return vc_kbd_mode(kb, bit);
2252}
2253
2254/**
2255 * vt_set_kbd_mode_bit - read keyboard status bits
2256 * @console: console to read from
2257 * @bit: mode bit to read
2258 *
2259 * Set a vt mode bit. We do this without locking so the
2260 * caller must be sure that there are no synchronization needs
2261 */
2262
2263void vt_set_kbd_mode_bit(unsigned int console, int bit)
2264{
2265 struct kbd_struct *kb = &kbd_table[console];
2266 unsigned long flags;
2267
2268 spin_lock_irqsave(&kbd_event_lock, flags);
2269 set_vc_kbd_mode(kb, bit);
2270 spin_unlock_irqrestore(&kbd_event_lock, flags);
2271}
2272
2273/**
2274 * vt_clr_kbd_mode_bit - read keyboard status bits
2275 * @console: console to read from
2276 * @bit: mode bit to read
2277 *
2278 * Report back a vt mode bit. We do this without locking so the
2279 * caller must be sure that there are no synchronization needs
2280 */
2281
2282void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2283{
2284 struct kbd_struct *kb = &kbd_table[console];
2285 unsigned long flags;
2286
2287 spin_lock_irqsave(&kbd_event_lock, flags);
2288 clr_vc_kbd_mode(kb, bit);
2289 spin_unlock_irqrestore(&kbd_event_lock, flags);
2290}
1/*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/consolemap.h>
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/mm.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/slab.h>
36
37#include <linux/kbd_kern.h>
38#include <linux/kbd_diacr.h>
39#include <linux/vt_kern.h>
40#include <linux/input.h>
41#include <linux/reboot.h>
42#include <linux/notifier.h>
43#include <linux/jiffies.h>
44#include <linux/uaccess.h>
45
46#include <asm/irq_regs.h>
47
48extern void ctrl_alt_del(void);
49
50/*
51 * Exported functions/variables
52 */
53
54#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55
56#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
57#include <asm/kbdleds.h>
58#else
59static inline int kbd_defleds(void)
60{
61 return 0;
62}
63#endif
64
65#define KBD_DEFLOCK 0
66
67/*
68 * Handler Tables.
69 */
70
71#define K_HANDLERS\
72 k_self, k_fn, k_spec, k_pad,\
73 k_dead, k_cons, k_cur, k_shift,\
74 k_meta, k_ascii, k_lock, k_lowercase,\
75 k_slock, k_dead2, k_brl, k_ignore
76
77typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
78 char up_flag);
79static k_handler_fn K_HANDLERS;
80static k_handler_fn *k_handler[16] = { K_HANDLERS };
81
82#define FN_HANDLERS\
83 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
84 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
85 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
86 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
87 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
88
89typedef void (fn_handler_fn)(struct vc_data *vc);
90static fn_handler_fn FN_HANDLERS;
91static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
92
93/*
94 * Variables exported for vt_ioctl.c
95 */
96
97struct vt_spawn_console vt_spawn_con = {
98 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
99 .pid = NULL,
100 .sig = 0,
101};
102
103
104/*
105 * Internal Data.
106 */
107
108static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
109static struct kbd_struct *kbd = kbd_table;
110
111/* maximum values each key_handler can handle */
112static const int max_vals[] = {
113 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
114 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
115 255, NR_LOCK - 1, 255, NR_BRL - 1
116};
117
118static const int NR_TYPES = ARRAY_SIZE(max_vals);
119
120static struct input_handler kbd_handler;
121static DEFINE_SPINLOCK(kbd_event_lock);
122static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
123static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
124static bool dead_key_next;
125static int npadch = -1; /* -1 or number assembled on pad */
126static unsigned int diacr;
127static char rep; /* flag telling character repeat */
128
129static int shift_state = 0;
130
131static unsigned char ledstate = 0xff; /* undefined */
132static unsigned char ledioctl;
133
134static struct ledptr {
135 unsigned int *addr;
136 unsigned int mask;
137 unsigned char valid:1;
138} ledptrs[3];
139
140/*
141 * Notifier list for console keyboard events
142 */
143static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
144
145int register_keyboard_notifier(struct notifier_block *nb)
146{
147 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
148}
149EXPORT_SYMBOL_GPL(register_keyboard_notifier);
150
151int unregister_keyboard_notifier(struct notifier_block *nb)
152{
153 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
154}
155EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
156
157/*
158 * Translation of scancodes to keycodes. We set them on only the first
159 * keyboard in the list that accepts the scancode and keycode.
160 * Explanation for not choosing the first attached keyboard anymore:
161 * USB keyboards for example have two event devices: one for all "normal"
162 * keys and one for extra function keys (like "volume up", "make coffee",
163 * etc.). So this means that scancodes for the extra function keys won't
164 * be valid for the first event device, but will be for the second.
165 */
166
167struct getset_keycode_data {
168 struct input_keymap_entry ke;
169 int error;
170};
171
172static int getkeycode_helper(struct input_handle *handle, void *data)
173{
174 struct getset_keycode_data *d = data;
175
176 d->error = input_get_keycode(handle->dev, &d->ke);
177
178 return d->error == 0; /* stop as soon as we successfully get one */
179}
180
181static int getkeycode(unsigned int scancode)
182{
183 struct getset_keycode_data d = {
184 .ke = {
185 .flags = 0,
186 .len = sizeof(scancode),
187 .keycode = 0,
188 },
189 .error = -ENODEV,
190 };
191
192 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
193
194 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
195
196 return d.error ?: d.ke.keycode;
197}
198
199static int setkeycode_helper(struct input_handle *handle, void *data)
200{
201 struct getset_keycode_data *d = data;
202
203 d->error = input_set_keycode(handle->dev, &d->ke);
204
205 return d->error == 0; /* stop as soon as we successfully set one */
206}
207
208static int setkeycode(unsigned int scancode, unsigned int keycode)
209{
210 struct getset_keycode_data d = {
211 .ke = {
212 .flags = 0,
213 .len = sizeof(scancode),
214 .keycode = keycode,
215 },
216 .error = -ENODEV,
217 };
218
219 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
220
221 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
222
223 return d.error;
224}
225
226/*
227 * Making beeps and bells. Note that we prefer beeps to bells, but when
228 * shutting the sound off we do both.
229 */
230
231static int kd_sound_helper(struct input_handle *handle, void *data)
232{
233 unsigned int *hz = data;
234 struct input_dev *dev = handle->dev;
235
236 if (test_bit(EV_SND, dev->evbit)) {
237 if (test_bit(SND_TONE, dev->sndbit)) {
238 input_inject_event(handle, EV_SND, SND_TONE, *hz);
239 if (*hz)
240 return 0;
241 }
242 if (test_bit(SND_BELL, dev->sndbit))
243 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
244 }
245
246 return 0;
247}
248
249static void kd_nosound(unsigned long ignored)
250{
251 static unsigned int zero;
252
253 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
254}
255
256static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
257
258void kd_mksound(unsigned int hz, unsigned int ticks)
259{
260 del_timer_sync(&kd_mksound_timer);
261
262 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
263
264 if (hz && ticks)
265 mod_timer(&kd_mksound_timer, jiffies + ticks);
266}
267EXPORT_SYMBOL(kd_mksound);
268
269/*
270 * Setting the keyboard rate.
271 */
272
273static int kbd_rate_helper(struct input_handle *handle, void *data)
274{
275 struct input_dev *dev = handle->dev;
276 struct kbd_repeat *rep = data;
277
278 if (test_bit(EV_REP, dev->evbit)) {
279
280 if (rep[0].delay > 0)
281 input_inject_event(handle,
282 EV_REP, REP_DELAY, rep[0].delay);
283 if (rep[0].period > 0)
284 input_inject_event(handle,
285 EV_REP, REP_PERIOD, rep[0].period);
286
287 rep[1].delay = dev->rep[REP_DELAY];
288 rep[1].period = dev->rep[REP_PERIOD];
289 }
290
291 return 0;
292}
293
294int kbd_rate(struct kbd_repeat *rep)
295{
296 struct kbd_repeat data[2] = { *rep };
297
298 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
299 *rep = data[1]; /* Copy currently used settings */
300
301 return 0;
302}
303
304/*
305 * Helper Functions.
306 */
307static void put_queue(struct vc_data *vc, int ch)
308{
309 struct tty_struct *tty = vc->port.tty;
310
311 if (tty) {
312 tty_insert_flip_char(tty, ch, 0);
313 con_schedule_flip(tty);
314 }
315}
316
317static void puts_queue(struct vc_data *vc, char *cp)
318{
319 struct tty_struct *tty = vc->port.tty;
320
321 if (!tty)
322 return;
323
324 while (*cp) {
325 tty_insert_flip_char(tty, *cp, 0);
326 cp++;
327 }
328 con_schedule_flip(tty);
329}
330
331static void applkey(struct vc_data *vc, int key, char mode)
332{
333 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
334
335 buf[1] = (mode ? 'O' : '[');
336 buf[2] = key;
337 puts_queue(vc, buf);
338}
339
340/*
341 * Many other routines do put_queue, but I think either
342 * they produce ASCII, or they produce some user-assigned
343 * string, and in both cases we might assume that it is
344 * in utf-8 already.
345 */
346static void to_utf8(struct vc_data *vc, uint c)
347{
348 if (c < 0x80)
349 /* 0******* */
350 put_queue(vc, c);
351 else if (c < 0x800) {
352 /* 110***** 10****** */
353 put_queue(vc, 0xc0 | (c >> 6));
354 put_queue(vc, 0x80 | (c & 0x3f));
355 } else if (c < 0x10000) {
356 if (c >= 0xD800 && c < 0xE000)
357 return;
358 if (c == 0xFFFF)
359 return;
360 /* 1110**** 10****** 10****** */
361 put_queue(vc, 0xe0 | (c >> 12));
362 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
363 put_queue(vc, 0x80 | (c & 0x3f));
364 } else if (c < 0x110000) {
365 /* 11110*** 10****** 10****** 10****** */
366 put_queue(vc, 0xf0 | (c >> 18));
367 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 }
371}
372
373/*
374 * Called after returning from RAW mode or when changing consoles - recompute
375 * shift_down[] and shift_state from key_down[] maybe called when keymap is
376 * undefined, so that shiftkey release is seen. The caller must hold the
377 * kbd_event_lock.
378 */
379
380static void do_compute_shiftstate(void)
381{
382 unsigned int i, j, k, sym, val;
383
384 shift_state = 0;
385 memset(shift_down, 0, sizeof(shift_down));
386
387 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
388
389 if (!key_down[i])
390 continue;
391
392 k = i * BITS_PER_LONG;
393
394 for (j = 0; j < BITS_PER_LONG; j++, k++) {
395
396 if (!test_bit(k, key_down))
397 continue;
398
399 sym = U(key_maps[0][k]);
400 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
401 continue;
402
403 val = KVAL(sym);
404 if (val == KVAL(K_CAPSSHIFT))
405 val = KVAL(K_SHIFT);
406
407 shift_down[val]++;
408 shift_state |= (1 << val);
409 }
410 }
411}
412
413/* We still have to export this method to vt.c */
414void compute_shiftstate(void)
415{
416 unsigned long flags;
417 spin_lock_irqsave(&kbd_event_lock, flags);
418 do_compute_shiftstate();
419 spin_unlock_irqrestore(&kbd_event_lock, flags);
420}
421
422/*
423 * We have a combining character DIACR here, followed by the character CH.
424 * If the combination occurs in the table, return the corresponding value.
425 * Otherwise, if CH is a space or equals DIACR, return DIACR.
426 * Otherwise, conclude that DIACR was not combining after all,
427 * queue it and return CH.
428 */
429static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
430{
431 unsigned int d = diacr;
432 unsigned int i;
433
434 diacr = 0;
435
436 if ((d & ~0xff) == BRL_UC_ROW) {
437 if ((ch & ~0xff) == BRL_UC_ROW)
438 return d | ch;
439 } else {
440 for (i = 0; i < accent_table_size; i++)
441 if (accent_table[i].diacr == d && accent_table[i].base == ch)
442 return accent_table[i].result;
443 }
444
445 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
446 return d;
447
448 if (kbd->kbdmode == VC_UNICODE)
449 to_utf8(vc, d);
450 else {
451 int c = conv_uni_to_8bit(d);
452 if (c != -1)
453 put_queue(vc, c);
454 }
455
456 return ch;
457}
458
459/*
460 * Special function handlers
461 */
462static void fn_enter(struct vc_data *vc)
463{
464 if (diacr) {
465 if (kbd->kbdmode == VC_UNICODE)
466 to_utf8(vc, diacr);
467 else {
468 int c = conv_uni_to_8bit(diacr);
469 if (c != -1)
470 put_queue(vc, c);
471 }
472 diacr = 0;
473 }
474
475 put_queue(vc, 13);
476 if (vc_kbd_mode(kbd, VC_CRLF))
477 put_queue(vc, 10);
478}
479
480static void fn_caps_toggle(struct vc_data *vc)
481{
482 if (rep)
483 return;
484
485 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
486}
487
488static void fn_caps_on(struct vc_data *vc)
489{
490 if (rep)
491 return;
492
493 set_vc_kbd_led(kbd, VC_CAPSLOCK);
494}
495
496static void fn_show_ptregs(struct vc_data *vc)
497{
498 struct pt_regs *regs = get_irq_regs();
499
500 if (regs)
501 show_regs(regs);
502}
503
504static void fn_hold(struct vc_data *vc)
505{
506 struct tty_struct *tty = vc->port.tty;
507
508 if (rep || !tty)
509 return;
510
511 /*
512 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
513 * these routines are also activated by ^S/^Q.
514 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
515 */
516 if (tty->stopped)
517 start_tty(tty);
518 else
519 stop_tty(tty);
520}
521
522static void fn_num(struct vc_data *vc)
523{
524 if (vc_kbd_mode(kbd, VC_APPLIC))
525 applkey(vc, 'P', 1);
526 else
527 fn_bare_num(vc);
528}
529
530/*
531 * Bind this to Shift-NumLock if you work in application keypad mode
532 * but want to be able to change the NumLock flag.
533 * Bind this to NumLock if you prefer that the NumLock key always
534 * changes the NumLock flag.
535 */
536static void fn_bare_num(struct vc_data *vc)
537{
538 if (!rep)
539 chg_vc_kbd_led(kbd, VC_NUMLOCK);
540}
541
542static void fn_lastcons(struct vc_data *vc)
543{
544 /* switch to the last used console, ChN */
545 set_console(last_console);
546}
547
548static void fn_dec_console(struct vc_data *vc)
549{
550 int i, cur = fg_console;
551
552 /* Currently switching? Queue this next switch relative to that. */
553 if (want_console != -1)
554 cur = want_console;
555
556 for (i = cur - 1; i != cur; i--) {
557 if (i == -1)
558 i = MAX_NR_CONSOLES - 1;
559 if (vc_cons_allocated(i))
560 break;
561 }
562 set_console(i);
563}
564
565static void fn_inc_console(struct vc_data *vc)
566{
567 int i, cur = fg_console;
568
569 /* Currently switching? Queue this next switch relative to that. */
570 if (want_console != -1)
571 cur = want_console;
572
573 for (i = cur+1; i != cur; i++) {
574 if (i == MAX_NR_CONSOLES)
575 i = 0;
576 if (vc_cons_allocated(i))
577 break;
578 }
579 set_console(i);
580}
581
582static void fn_send_intr(struct vc_data *vc)
583{
584 struct tty_struct *tty = vc->port.tty;
585
586 if (!tty)
587 return;
588 tty_insert_flip_char(tty, 0, TTY_BREAK);
589 con_schedule_flip(tty);
590}
591
592static void fn_scroll_forw(struct vc_data *vc)
593{
594 scrollfront(vc, 0);
595}
596
597static void fn_scroll_back(struct vc_data *vc)
598{
599 scrollback(vc, 0);
600}
601
602static void fn_show_mem(struct vc_data *vc)
603{
604 show_mem(0);
605}
606
607static void fn_show_state(struct vc_data *vc)
608{
609 show_state();
610}
611
612static void fn_boot_it(struct vc_data *vc)
613{
614 ctrl_alt_del();
615}
616
617static void fn_compose(struct vc_data *vc)
618{
619 dead_key_next = true;
620}
621
622static void fn_spawn_con(struct vc_data *vc)
623{
624 spin_lock(&vt_spawn_con.lock);
625 if (vt_spawn_con.pid)
626 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
627 put_pid(vt_spawn_con.pid);
628 vt_spawn_con.pid = NULL;
629 }
630 spin_unlock(&vt_spawn_con.lock);
631}
632
633static void fn_SAK(struct vc_data *vc)
634{
635 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
636 schedule_work(SAK_work);
637}
638
639static void fn_null(struct vc_data *vc)
640{
641 do_compute_shiftstate();
642}
643
644/*
645 * Special key handlers
646 */
647static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
648{
649}
650
651static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
652{
653 if (up_flag)
654 return;
655 if (value >= ARRAY_SIZE(fn_handler))
656 return;
657 if ((kbd->kbdmode == VC_RAW ||
658 kbd->kbdmode == VC_MEDIUMRAW ||
659 kbd->kbdmode == VC_OFF) &&
660 value != KVAL(K_SAK))
661 return; /* SAK is allowed even in raw mode */
662 fn_handler[value](vc);
663}
664
665static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
666{
667 pr_err("k_lowercase was called - impossible\n");
668}
669
670static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
671{
672 if (up_flag)
673 return; /* no action, if this is a key release */
674
675 if (diacr)
676 value = handle_diacr(vc, value);
677
678 if (dead_key_next) {
679 dead_key_next = false;
680 diacr = value;
681 return;
682 }
683 if (kbd->kbdmode == VC_UNICODE)
684 to_utf8(vc, value);
685 else {
686 int c = conv_uni_to_8bit(value);
687 if (c != -1)
688 put_queue(vc, c);
689 }
690}
691
692/*
693 * Handle dead key. Note that we now may have several
694 * dead keys modifying the same character. Very useful
695 * for Vietnamese.
696 */
697static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
698{
699 if (up_flag)
700 return;
701
702 diacr = (diacr ? handle_diacr(vc, value) : value);
703}
704
705static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
706{
707 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
708}
709
710static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
711{
712 k_deadunicode(vc, value, up_flag);
713}
714
715/*
716 * Obsolete - for backwards compatibility only
717 */
718static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
719{
720 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
721
722 k_deadunicode(vc, ret_diacr[value], up_flag);
723}
724
725static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
726{
727 if (up_flag)
728 return;
729
730 set_console(value);
731}
732
733static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
734{
735 if (up_flag)
736 return;
737
738 if ((unsigned)value < ARRAY_SIZE(func_table)) {
739 if (func_table[value])
740 puts_queue(vc, func_table[value]);
741 } else
742 pr_err("k_fn called with value=%d\n", value);
743}
744
745static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
746{
747 static const char cur_chars[] = "BDCA";
748
749 if (up_flag)
750 return;
751
752 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
753}
754
755static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
756{
757 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
758 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
759
760 if (up_flag)
761 return; /* no action, if this is a key release */
762
763 /* kludge... shift forces cursor/number keys */
764 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
765 applkey(vc, app_map[value], 1);
766 return;
767 }
768
769 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
770
771 switch (value) {
772 case KVAL(K_PCOMMA):
773 case KVAL(K_PDOT):
774 k_fn(vc, KVAL(K_REMOVE), 0);
775 return;
776 case KVAL(K_P0):
777 k_fn(vc, KVAL(K_INSERT), 0);
778 return;
779 case KVAL(K_P1):
780 k_fn(vc, KVAL(K_SELECT), 0);
781 return;
782 case KVAL(K_P2):
783 k_cur(vc, KVAL(K_DOWN), 0);
784 return;
785 case KVAL(K_P3):
786 k_fn(vc, KVAL(K_PGDN), 0);
787 return;
788 case KVAL(K_P4):
789 k_cur(vc, KVAL(K_LEFT), 0);
790 return;
791 case KVAL(K_P6):
792 k_cur(vc, KVAL(K_RIGHT), 0);
793 return;
794 case KVAL(K_P7):
795 k_fn(vc, KVAL(K_FIND), 0);
796 return;
797 case KVAL(K_P8):
798 k_cur(vc, KVAL(K_UP), 0);
799 return;
800 case KVAL(K_P9):
801 k_fn(vc, KVAL(K_PGUP), 0);
802 return;
803 case KVAL(K_P5):
804 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
805 return;
806 }
807 }
808
809 put_queue(vc, pad_chars[value]);
810 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
811 put_queue(vc, 10);
812}
813
814static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
815{
816 int old_state = shift_state;
817
818 if (rep)
819 return;
820 /*
821 * Mimic typewriter:
822 * a CapsShift key acts like Shift but undoes CapsLock
823 */
824 if (value == KVAL(K_CAPSSHIFT)) {
825 value = KVAL(K_SHIFT);
826 if (!up_flag)
827 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
828 }
829
830 if (up_flag) {
831 /*
832 * handle the case that two shift or control
833 * keys are depressed simultaneously
834 */
835 if (shift_down[value])
836 shift_down[value]--;
837 } else
838 shift_down[value]++;
839
840 if (shift_down[value])
841 shift_state |= (1 << value);
842 else
843 shift_state &= ~(1 << value);
844
845 /* kludge */
846 if (up_flag && shift_state != old_state && npadch != -1) {
847 if (kbd->kbdmode == VC_UNICODE)
848 to_utf8(vc, npadch);
849 else
850 put_queue(vc, npadch & 0xff);
851 npadch = -1;
852 }
853}
854
855static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
856{
857 if (up_flag)
858 return;
859
860 if (vc_kbd_mode(kbd, VC_META)) {
861 put_queue(vc, '\033');
862 put_queue(vc, value);
863 } else
864 put_queue(vc, value | 0x80);
865}
866
867static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
868{
869 int base;
870
871 if (up_flag)
872 return;
873
874 if (value < 10) {
875 /* decimal input of code, while Alt depressed */
876 base = 10;
877 } else {
878 /* hexadecimal input of code, while AltGr depressed */
879 value -= 10;
880 base = 16;
881 }
882
883 if (npadch == -1)
884 npadch = value;
885 else
886 npadch = npadch * base + value;
887}
888
889static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
890{
891 if (up_flag || rep)
892 return;
893
894 chg_vc_kbd_lock(kbd, value);
895}
896
897static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
898{
899 k_shift(vc, value, up_flag);
900 if (up_flag || rep)
901 return;
902
903 chg_vc_kbd_slock(kbd, value);
904 /* try to make Alt, oops, AltGr and such work */
905 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
906 kbd->slockstate = 0;
907 chg_vc_kbd_slock(kbd, value);
908 }
909}
910
911/* by default, 300ms interval for combination release */
912static unsigned brl_timeout = 300;
913MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
914module_param(brl_timeout, uint, 0644);
915
916static unsigned brl_nbchords = 1;
917MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
918module_param(brl_nbchords, uint, 0644);
919
920static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
921{
922 static unsigned long chords;
923 static unsigned committed;
924
925 if (!brl_nbchords)
926 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
927 else {
928 committed |= pattern;
929 chords++;
930 if (chords == brl_nbchords) {
931 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
932 chords = 0;
933 committed = 0;
934 }
935 }
936}
937
938static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
939{
940 static unsigned pressed, committing;
941 static unsigned long releasestart;
942
943 if (kbd->kbdmode != VC_UNICODE) {
944 if (!up_flag)
945 pr_warning("keyboard mode must be unicode for braille patterns\n");
946 return;
947 }
948
949 if (!value) {
950 k_unicode(vc, BRL_UC_ROW, up_flag);
951 return;
952 }
953
954 if (value > 8)
955 return;
956
957 if (!up_flag) {
958 pressed |= 1 << (value - 1);
959 if (!brl_timeout)
960 committing = pressed;
961 } else if (brl_timeout) {
962 if (!committing ||
963 time_after(jiffies,
964 releasestart + msecs_to_jiffies(brl_timeout))) {
965 committing = pressed;
966 releasestart = jiffies;
967 }
968 pressed &= ~(1 << (value - 1));
969 if (!pressed && committing) {
970 k_brlcommit(vc, committing, 0);
971 committing = 0;
972 }
973 } else {
974 if (committing) {
975 k_brlcommit(vc, committing, 0);
976 committing = 0;
977 }
978 pressed &= ~(1 << (value - 1));
979 }
980}
981
982/*
983 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
984 * or (ii) whatever pattern of lights people want to show using KDSETLED,
985 * or (iii) specified bits of specified words in kernel memory.
986 */
987unsigned char getledstate(void)
988{
989 return ledstate;
990}
991
992void setledstate(struct kbd_struct *kbd, unsigned int led)
993{
994 unsigned long flags;
995 spin_lock_irqsave(&kbd_event_lock, flags);
996 if (!(led & ~7)) {
997 ledioctl = led;
998 kbd->ledmode = LED_SHOW_IOCTL;
999 } else
1000 kbd->ledmode = LED_SHOW_FLAGS;
1001
1002 set_leds();
1003 spin_unlock_irqrestore(&kbd_event_lock, flags);
1004}
1005
1006static inline unsigned char getleds(void)
1007{
1008 struct kbd_struct *kbd = kbd_table + fg_console;
1009 unsigned char leds;
1010 int i;
1011
1012 if (kbd->ledmode == LED_SHOW_IOCTL)
1013 return ledioctl;
1014
1015 leds = kbd->ledflagstate;
1016
1017 if (kbd->ledmode == LED_SHOW_MEM) {
1018 for (i = 0; i < 3; i++)
1019 if (ledptrs[i].valid) {
1020 if (*ledptrs[i].addr & ledptrs[i].mask)
1021 leds |= (1 << i);
1022 else
1023 leds &= ~(1 << i);
1024 }
1025 }
1026 return leds;
1027}
1028
1029static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1030{
1031 unsigned char leds = *(unsigned char *)data;
1032
1033 if (test_bit(EV_LED, handle->dev->evbit)) {
1034 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1035 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1036 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1037 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1038 }
1039
1040 return 0;
1041}
1042
1043/**
1044 * vt_get_leds - helper for braille console
1045 * @console: console to read
1046 * @flag: flag we want to check
1047 *
1048 * Check the status of a keyboard led flag and report it back
1049 */
1050int vt_get_leds(int console, int flag)
1051{
1052 struct kbd_struct * kbd = kbd_table + console;
1053 int ret;
1054
1055 ret = vc_kbd_led(kbd, flag);
1056
1057 return ret;
1058}
1059EXPORT_SYMBOL_GPL(vt_get_leds);
1060
1061/**
1062 * vt_set_led_state - set LED state of a console
1063 * @console: console to set
1064 * @leds: LED bits
1065 *
1066 * Set the LEDs on a console. This is a wrapper for the VT layer
1067 * so that we can keep kbd knowledge internal
1068 */
1069void vt_set_led_state(int console, int leds)
1070{
1071 struct kbd_struct * kbd = kbd_table + console;
1072 setledstate(kbd, leds);
1073}
1074
1075/**
1076 * vt_kbd_con_start - Keyboard side of console start
1077 * @console: console
1078 *
1079 * Handle console start. This is a wrapper for the VT layer
1080 * so that we can keep kbd knowledge internal
1081 *
1082 * FIXME: We eventually need to hold the kbd lock here to protect
1083 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1084 * and start_tty under the kbd_event_lock, while normal tty paths
1085 * don't hold the lock. We probably need to split out an LED lock
1086 * but not during an -rc release!
1087 */
1088void vt_kbd_con_start(int console)
1089{
1090 struct kbd_struct * kbd = kbd_table + console;
1091/* unsigned long flags; */
1092/* spin_lock_irqsave(&kbd_event_lock, flags); */
1093 clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1094 set_leds();
1095/* spin_unlock_irqrestore(&kbd_event_lock, flags); */
1096}
1097
1098/**
1099 * vt_kbd_con_stop - Keyboard side of console stop
1100 * @console: console
1101 *
1102 * Handle console stop. This is a wrapper for the VT layer
1103 * so that we can keep kbd knowledge internal
1104 *
1105 * FIXME: We eventually need to hold the kbd lock here to protect
1106 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1107 * and start_tty under the kbd_event_lock, while normal tty paths
1108 * don't hold the lock. We probably need to split out an LED lock
1109 * but not during an -rc release!
1110 */
1111void vt_kbd_con_stop(int console)
1112{
1113 struct kbd_struct * kbd = kbd_table + console;
1114/* unsigned long flags; */
1115/* spin_lock_irqsave(&kbd_event_lock, flags); */
1116 set_vc_kbd_led(kbd, VC_SCROLLOCK);
1117 set_leds();
1118/* spin_unlock_irqrestore(&kbd_event_lock, flags); */
1119}
1120
1121/*
1122 * This is the tasklet that updates LED state on all keyboards
1123 * attached to the box. The reason we use tasklet is that we
1124 * need to handle the scenario when keyboard handler is not
1125 * registered yet but we already getting updates from the VT to
1126 * update led state.
1127 */
1128static void kbd_bh(unsigned long dummy)
1129{
1130 unsigned char leds = getleds();
1131
1132 if (leds != ledstate) {
1133 input_handler_for_each_handle(&kbd_handler, &leds,
1134 kbd_update_leds_helper);
1135 ledstate = leds;
1136 }
1137}
1138
1139DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1140
1141#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1142 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1143 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1144 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1145 defined(CONFIG_AVR32)
1146
1147#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1148 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1149
1150static const unsigned short x86_keycodes[256] =
1151 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1152 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1153 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1154 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1155 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1156 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1157 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1158 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1159 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1160 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1161 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1162 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1163 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1164 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1165 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1166
1167#ifdef CONFIG_SPARC
1168static int sparc_l1_a_state;
1169extern void sun_do_break(void);
1170#endif
1171
1172static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1173 unsigned char up_flag)
1174{
1175 int code;
1176
1177 switch (keycode) {
1178
1179 case KEY_PAUSE:
1180 put_queue(vc, 0xe1);
1181 put_queue(vc, 0x1d | up_flag);
1182 put_queue(vc, 0x45 | up_flag);
1183 break;
1184
1185 case KEY_HANGEUL:
1186 if (!up_flag)
1187 put_queue(vc, 0xf2);
1188 break;
1189
1190 case KEY_HANJA:
1191 if (!up_flag)
1192 put_queue(vc, 0xf1);
1193 break;
1194
1195 case KEY_SYSRQ:
1196 /*
1197 * Real AT keyboards (that's what we're trying
1198 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1199 * pressing PrtSc/SysRq alone, but simply 0x54
1200 * when pressing Alt+PrtSc/SysRq.
1201 */
1202 if (test_bit(KEY_LEFTALT, key_down) ||
1203 test_bit(KEY_RIGHTALT, key_down)) {
1204 put_queue(vc, 0x54 | up_flag);
1205 } else {
1206 put_queue(vc, 0xe0);
1207 put_queue(vc, 0x2a | up_flag);
1208 put_queue(vc, 0xe0);
1209 put_queue(vc, 0x37 | up_flag);
1210 }
1211 break;
1212
1213 default:
1214 if (keycode > 255)
1215 return -1;
1216
1217 code = x86_keycodes[keycode];
1218 if (!code)
1219 return -1;
1220
1221 if (code & 0x100)
1222 put_queue(vc, 0xe0);
1223 put_queue(vc, (code & 0x7f) | up_flag);
1224
1225 break;
1226 }
1227
1228 return 0;
1229}
1230
1231#else
1232
1233#define HW_RAW(dev) 0
1234
1235static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1236{
1237 if (keycode > 127)
1238 return -1;
1239
1240 put_queue(vc, keycode | up_flag);
1241 return 0;
1242}
1243#endif
1244
1245static void kbd_rawcode(unsigned char data)
1246{
1247 struct vc_data *vc = vc_cons[fg_console].d;
1248
1249 kbd = kbd_table + vc->vc_num;
1250 if (kbd->kbdmode == VC_RAW)
1251 put_queue(vc, data);
1252}
1253
1254static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1255{
1256 struct vc_data *vc = vc_cons[fg_console].d;
1257 unsigned short keysym, *key_map;
1258 unsigned char type;
1259 bool raw_mode;
1260 struct tty_struct *tty;
1261 int shift_final;
1262 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1263 int rc;
1264
1265 tty = vc->port.tty;
1266
1267 if (tty && (!tty->driver_data)) {
1268 /* No driver data? Strange. Okay we fix it then. */
1269 tty->driver_data = vc;
1270 }
1271
1272 kbd = kbd_table + vc->vc_num;
1273
1274#ifdef CONFIG_SPARC
1275 if (keycode == KEY_STOP)
1276 sparc_l1_a_state = down;
1277#endif
1278
1279 rep = (down == 2);
1280
1281 raw_mode = (kbd->kbdmode == VC_RAW);
1282 if (raw_mode && !hw_raw)
1283 if (emulate_raw(vc, keycode, !down << 7))
1284 if (keycode < BTN_MISC && printk_ratelimit())
1285 pr_warning("can't emulate rawmode for keycode %d\n",
1286 keycode);
1287
1288#ifdef CONFIG_SPARC
1289 if (keycode == KEY_A && sparc_l1_a_state) {
1290 sparc_l1_a_state = false;
1291 sun_do_break();
1292 }
1293#endif
1294
1295 if (kbd->kbdmode == VC_MEDIUMRAW) {
1296 /*
1297 * This is extended medium raw mode, with keys above 127
1298 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1299 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1300 * interfere with anything else. The two bytes after 0 will
1301 * always have the up flag set not to interfere with older
1302 * applications. This allows for 16384 different keycodes,
1303 * which should be enough.
1304 */
1305 if (keycode < 128) {
1306 put_queue(vc, keycode | (!down << 7));
1307 } else {
1308 put_queue(vc, !down << 7);
1309 put_queue(vc, (keycode >> 7) | 0x80);
1310 put_queue(vc, keycode | 0x80);
1311 }
1312 raw_mode = true;
1313 }
1314
1315 if (down)
1316 set_bit(keycode, key_down);
1317 else
1318 clear_bit(keycode, key_down);
1319
1320 if (rep &&
1321 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1322 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1323 /*
1324 * Don't repeat a key if the input buffers are not empty and the
1325 * characters get aren't echoed locally. This makes key repeat
1326 * usable with slow applications and under heavy loads.
1327 */
1328 return;
1329 }
1330
1331 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1332 param.ledstate = kbd->ledflagstate;
1333 key_map = key_maps[shift_final];
1334
1335 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1336 KBD_KEYCODE, ¶m);
1337 if (rc == NOTIFY_STOP || !key_map) {
1338 atomic_notifier_call_chain(&keyboard_notifier_list,
1339 KBD_UNBOUND_KEYCODE, ¶m);
1340 do_compute_shiftstate();
1341 kbd->slockstate = 0;
1342 return;
1343 }
1344
1345 if (keycode < NR_KEYS)
1346 keysym = key_map[keycode];
1347 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1348 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1349 else
1350 return;
1351
1352 type = KTYP(keysym);
1353
1354 if (type < 0xf0) {
1355 param.value = keysym;
1356 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1357 KBD_UNICODE, ¶m);
1358 if (rc != NOTIFY_STOP)
1359 if (down && !raw_mode)
1360 to_utf8(vc, keysym);
1361 return;
1362 }
1363
1364 type -= 0xf0;
1365
1366 if (type == KT_LETTER) {
1367 type = KT_LATIN;
1368 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1369 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1370 if (key_map)
1371 keysym = key_map[keycode];
1372 }
1373 }
1374
1375 param.value = keysym;
1376 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1377 KBD_KEYSYM, ¶m);
1378 if (rc == NOTIFY_STOP)
1379 return;
1380
1381 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1382 return;
1383
1384 (*k_handler[type])(vc, keysym & 0xff, !down);
1385
1386 param.ledstate = kbd->ledflagstate;
1387 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1388
1389 if (type != KT_SLOCK)
1390 kbd->slockstate = 0;
1391}
1392
1393static void kbd_event(struct input_handle *handle, unsigned int event_type,
1394 unsigned int event_code, int value)
1395{
1396 /* We are called with interrupts disabled, just take the lock */
1397 spin_lock(&kbd_event_lock);
1398
1399 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1400 kbd_rawcode(value);
1401 if (event_type == EV_KEY)
1402 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1403
1404 spin_unlock(&kbd_event_lock);
1405
1406 tasklet_schedule(&keyboard_tasklet);
1407 do_poke_blanked_console = 1;
1408 schedule_console_callback();
1409}
1410
1411static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1412{
1413 int i;
1414
1415 if (test_bit(EV_SND, dev->evbit))
1416 return true;
1417
1418 if (test_bit(EV_KEY, dev->evbit)) {
1419 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1420 if (test_bit(i, dev->keybit))
1421 return true;
1422 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1423 if (test_bit(i, dev->keybit))
1424 return true;
1425 }
1426
1427 return false;
1428}
1429
1430/*
1431 * When a keyboard (or other input device) is found, the kbd_connect
1432 * function is called. The function then looks at the device, and if it
1433 * likes it, it can open it and get events from it. In this (kbd_connect)
1434 * function, we should decide which VT to bind that keyboard to initially.
1435 */
1436static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1437 const struct input_device_id *id)
1438{
1439 struct input_handle *handle;
1440 int error;
1441
1442 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1443 if (!handle)
1444 return -ENOMEM;
1445
1446 handle->dev = dev;
1447 handle->handler = handler;
1448 handle->name = "kbd";
1449
1450 error = input_register_handle(handle);
1451 if (error)
1452 goto err_free_handle;
1453
1454 error = input_open_device(handle);
1455 if (error)
1456 goto err_unregister_handle;
1457
1458 return 0;
1459
1460 err_unregister_handle:
1461 input_unregister_handle(handle);
1462 err_free_handle:
1463 kfree(handle);
1464 return error;
1465}
1466
1467static void kbd_disconnect(struct input_handle *handle)
1468{
1469 input_close_device(handle);
1470 input_unregister_handle(handle);
1471 kfree(handle);
1472}
1473
1474/*
1475 * Start keyboard handler on the new keyboard by refreshing LED state to
1476 * match the rest of the system.
1477 */
1478static void kbd_start(struct input_handle *handle)
1479{
1480 tasklet_disable(&keyboard_tasklet);
1481
1482 if (ledstate != 0xff)
1483 kbd_update_leds_helper(handle, &ledstate);
1484
1485 tasklet_enable(&keyboard_tasklet);
1486}
1487
1488static const struct input_device_id kbd_ids[] = {
1489 {
1490 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1491 .evbit = { BIT_MASK(EV_KEY) },
1492 },
1493
1494 {
1495 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1496 .evbit = { BIT_MASK(EV_SND) },
1497 },
1498
1499 { }, /* Terminating entry */
1500};
1501
1502MODULE_DEVICE_TABLE(input, kbd_ids);
1503
1504static struct input_handler kbd_handler = {
1505 .event = kbd_event,
1506 .match = kbd_match,
1507 .connect = kbd_connect,
1508 .disconnect = kbd_disconnect,
1509 .start = kbd_start,
1510 .name = "kbd",
1511 .id_table = kbd_ids,
1512};
1513
1514int __init kbd_init(void)
1515{
1516 int i;
1517 int error;
1518
1519 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1520 kbd_table[i].ledflagstate = kbd_defleds();
1521 kbd_table[i].default_ledflagstate = kbd_defleds();
1522 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1523 kbd_table[i].lockstate = KBD_DEFLOCK;
1524 kbd_table[i].slockstate = 0;
1525 kbd_table[i].modeflags = KBD_DEFMODE;
1526 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1527 }
1528
1529 error = input_register_handler(&kbd_handler);
1530 if (error)
1531 return error;
1532
1533 tasklet_enable(&keyboard_tasklet);
1534 tasklet_schedule(&keyboard_tasklet);
1535
1536 return 0;
1537}
1538
1539/* Ioctl support code */
1540
1541/**
1542 * vt_do_diacrit - diacritical table updates
1543 * @cmd: ioctl request
1544 * @up: pointer to user data for ioctl
1545 * @perm: permissions check computed by caller
1546 *
1547 * Update the diacritical tables atomically and safely. Lock them
1548 * against simultaneous keypresses
1549 */
1550int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1551{
1552 struct kbdiacrs __user *a = up;
1553 unsigned long flags;
1554 int asize;
1555 int ret = 0;
1556
1557 switch (cmd) {
1558 case KDGKBDIACR:
1559 {
1560 struct kbdiacr *diacr;
1561 int i;
1562
1563 diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1564 GFP_KERNEL);
1565 if (diacr == NULL)
1566 return -ENOMEM;
1567
1568 /* Lock the diacriticals table, make a copy and then
1569 copy it after we unlock */
1570 spin_lock_irqsave(&kbd_event_lock, flags);
1571
1572 asize = accent_table_size;
1573 for (i = 0; i < asize; i++) {
1574 diacr[i].diacr = conv_uni_to_8bit(
1575 accent_table[i].diacr);
1576 diacr[i].base = conv_uni_to_8bit(
1577 accent_table[i].base);
1578 diacr[i].result = conv_uni_to_8bit(
1579 accent_table[i].result);
1580 }
1581 spin_unlock_irqrestore(&kbd_event_lock, flags);
1582
1583 if (put_user(asize, &a->kb_cnt))
1584 ret = -EFAULT;
1585 else if (copy_to_user(a->kbdiacr, diacr,
1586 asize * sizeof(struct kbdiacr)))
1587 ret = -EFAULT;
1588 kfree(diacr);
1589 return ret;
1590 }
1591 case KDGKBDIACRUC:
1592 {
1593 struct kbdiacrsuc __user *a = up;
1594 void *buf;
1595
1596 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1597 GFP_KERNEL);
1598 if (buf == NULL)
1599 return -ENOMEM;
1600
1601 /* Lock the diacriticals table, make a copy and then
1602 copy it after we unlock */
1603 spin_lock_irqsave(&kbd_event_lock, flags);
1604
1605 asize = accent_table_size;
1606 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1607
1608 spin_unlock_irqrestore(&kbd_event_lock, flags);
1609
1610 if (put_user(asize, &a->kb_cnt))
1611 ret = -EFAULT;
1612 else if (copy_to_user(a->kbdiacruc, buf,
1613 asize*sizeof(struct kbdiacruc)))
1614 ret = -EFAULT;
1615 kfree(buf);
1616 return ret;
1617 }
1618
1619 case KDSKBDIACR:
1620 {
1621 struct kbdiacrs __user *a = up;
1622 struct kbdiacr *diacr = NULL;
1623 unsigned int ct;
1624 int i;
1625
1626 if (!perm)
1627 return -EPERM;
1628 if (get_user(ct, &a->kb_cnt))
1629 return -EFAULT;
1630 if (ct >= MAX_DIACR)
1631 return -EINVAL;
1632
1633 if (ct) {
1634 diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1635 GFP_KERNEL);
1636 if (diacr == NULL)
1637 return -ENOMEM;
1638
1639 if (copy_from_user(diacr, a->kbdiacr,
1640 sizeof(struct kbdiacr) * ct)) {
1641 kfree(diacr);
1642 return -EFAULT;
1643 }
1644 }
1645
1646 spin_lock_irqsave(&kbd_event_lock, flags);
1647 accent_table_size = ct;
1648 for (i = 0; i < ct; i++) {
1649 accent_table[i].diacr =
1650 conv_8bit_to_uni(diacr[i].diacr);
1651 accent_table[i].base =
1652 conv_8bit_to_uni(diacr[i].base);
1653 accent_table[i].result =
1654 conv_8bit_to_uni(diacr[i].result);
1655 }
1656 spin_unlock_irqrestore(&kbd_event_lock, flags);
1657 kfree(diacr);
1658 return 0;
1659 }
1660
1661 case KDSKBDIACRUC:
1662 {
1663 struct kbdiacrsuc __user *a = up;
1664 unsigned int ct;
1665 void *buf = NULL;
1666
1667 if (!perm)
1668 return -EPERM;
1669
1670 if (get_user(ct, &a->kb_cnt))
1671 return -EFAULT;
1672
1673 if (ct >= MAX_DIACR)
1674 return -EINVAL;
1675
1676 if (ct) {
1677 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1678 GFP_KERNEL);
1679 if (buf == NULL)
1680 return -ENOMEM;
1681
1682 if (copy_from_user(buf, a->kbdiacruc,
1683 ct * sizeof(struct kbdiacruc))) {
1684 kfree(buf);
1685 return -EFAULT;
1686 }
1687 }
1688 spin_lock_irqsave(&kbd_event_lock, flags);
1689 if (ct)
1690 memcpy(accent_table, buf,
1691 ct * sizeof(struct kbdiacruc));
1692 accent_table_size = ct;
1693 spin_unlock_irqrestore(&kbd_event_lock, flags);
1694 kfree(buf);
1695 return 0;
1696 }
1697 }
1698 return ret;
1699}
1700
1701/**
1702 * vt_do_kdskbmode - set keyboard mode ioctl
1703 * @console: the console to use
1704 * @arg: the requested mode
1705 *
1706 * Update the keyboard mode bits while holding the correct locks.
1707 * Return 0 for success or an error code.
1708 */
1709int vt_do_kdskbmode(int console, unsigned int arg)
1710{
1711 struct kbd_struct * kbd = kbd_table + console;
1712 int ret = 0;
1713 unsigned long flags;
1714
1715 spin_lock_irqsave(&kbd_event_lock, flags);
1716 switch(arg) {
1717 case K_RAW:
1718 kbd->kbdmode = VC_RAW;
1719 break;
1720 case K_MEDIUMRAW:
1721 kbd->kbdmode = VC_MEDIUMRAW;
1722 break;
1723 case K_XLATE:
1724 kbd->kbdmode = VC_XLATE;
1725 do_compute_shiftstate();
1726 break;
1727 case K_UNICODE:
1728 kbd->kbdmode = VC_UNICODE;
1729 do_compute_shiftstate();
1730 break;
1731 case K_OFF:
1732 kbd->kbdmode = VC_OFF;
1733 break;
1734 default:
1735 ret = -EINVAL;
1736 }
1737 spin_unlock_irqrestore(&kbd_event_lock, flags);
1738 return ret;
1739}
1740
1741/**
1742 * vt_do_kdskbmeta - set keyboard meta state
1743 * @console: the console to use
1744 * @arg: the requested meta state
1745 *
1746 * Update the keyboard meta bits while holding the correct locks.
1747 * Return 0 for success or an error code.
1748 */
1749int vt_do_kdskbmeta(int console, unsigned int arg)
1750{
1751 struct kbd_struct * kbd = kbd_table + console;
1752 int ret = 0;
1753 unsigned long flags;
1754
1755 spin_lock_irqsave(&kbd_event_lock, flags);
1756 switch(arg) {
1757 case K_METABIT:
1758 clr_vc_kbd_mode(kbd, VC_META);
1759 break;
1760 case K_ESCPREFIX:
1761 set_vc_kbd_mode(kbd, VC_META);
1762 break;
1763 default:
1764 ret = -EINVAL;
1765 }
1766 spin_unlock_irqrestore(&kbd_event_lock, flags);
1767 return ret;
1768}
1769
1770int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1771 int perm)
1772{
1773 struct kbkeycode tmp;
1774 int kc = 0;
1775
1776 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1777 return -EFAULT;
1778 switch (cmd) {
1779 case KDGETKEYCODE:
1780 kc = getkeycode(tmp.scancode);
1781 if (kc >= 0)
1782 kc = put_user(kc, &user_kbkc->keycode);
1783 break;
1784 case KDSETKEYCODE:
1785 if (!perm)
1786 return -EPERM;
1787 kc = setkeycode(tmp.scancode, tmp.keycode);
1788 break;
1789 }
1790 return kc;
1791}
1792
1793#define i (tmp.kb_index)
1794#define s (tmp.kb_table)
1795#define v (tmp.kb_value)
1796
1797int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1798 int console)
1799{
1800 struct kbd_struct * kbd = kbd_table + console;
1801 struct kbentry tmp;
1802 ushort *key_map, *new_map, val, ov;
1803 unsigned long flags;
1804
1805 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1806 return -EFAULT;
1807
1808 if (!capable(CAP_SYS_TTY_CONFIG))
1809 perm = 0;
1810
1811 switch (cmd) {
1812 case KDGKBENT:
1813 /* Ensure another thread doesn't free it under us */
1814 spin_lock_irqsave(&kbd_event_lock, flags);
1815 key_map = key_maps[s];
1816 if (key_map) {
1817 val = U(key_map[i]);
1818 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1819 val = K_HOLE;
1820 } else
1821 val = (i ? K_HOLE : K_NOSUCHMAP);
1822 spin_unlock_irqrestore(&kbd_event_lock, flags);
1823 return put_user(val, &user_kbe->kb_value);
1824 case KDSKBENT:
1825 if (!perm)
1826 return -EPERM;
1827 if (!i && v == K_NOSUCHMAP) {
1828 spin_lock_irqsave(&kbd_event_lock, flags);
1829 /* deallocate map */
1830 key_map = key_maps[s];
1831 if (s && key_map) {
1832 key_maps[s] = NULL;
1833 if (key_map[0] == U(K_ALLOCATED)) {
1834 kfree(key_map);
1835 keymap_count--;
1836 }
1837 }
1838 spin_unlock_irqrestore(&kbd_event_lock, flags);
1839 break;
1840 }
1841
1842 if (KTYP(v) < NR_TYPES) {
1843 if (KVAL(v) > max_vals[KTYP(v)])
1844 return -EINVAL;
1845 } else
1846 if (kbd->kbdmode != VC_UNICODE)
1847 return -EINVAL;
1848
1849 /* ++Geert: non-PC keyboards may generate keycode zero */
1850#if !defined(__mc68000__) && !defined(__powerpc__)
1851 /* assignment to entry 0 only tests validity of args */
1852 if (!i)
1853 break;
1854#endif
1855
1856 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1857 if (!new_map)
1858 return -ENOMEM;
1859 spin_lock_irqsave(&kbd_event_lock, flags);
1860 key_map = key_maps[s];
1861 if (key_map == NULL) {
1862 int j;
1863
1864 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1865 !capable(CAP_SYS_RESOURCE)) {
1866 spin_unlock_irqrestore(&kbd_event_lock, flags);
1867 kfree(new_map);
1868 return -EPERM;
1869 }
1870 key_maps[s] = new_map;
1871 key_map = new_map;
1872 key_map[0] = U(K_ALLOCATED);
1873 for (j = 1; j < NR_KEYS; j++)
1874 key_map[j] = U(K_HOLE);
1875 keymap_count++;
1876 } else
1877 kfree(new_map);
1878
1879 ov = U(key_map[i]);
1880 if (v == ov)
1881 goto out;
1882 /*
1883 * Attention Key.
1884 */
1885 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1886 spin_unlock_irqrestore(&kbd_event_lock, flags);
1887 return -EPERM;
1888 }
1889 key_map[i] = U(v);
1890 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1891 do_compute_shiftstate();
1892out:
1893 spin_unlock_irqrestore(&kbd_event_lock, flags);
1894 break;
1895 }
1896 return 0;
1897}
1898#undef i
1899#undef s
1900#undef v
1901
1902/* FIXME: This one needs untangling and locking */
1903int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1904{
1905 struct kbsentry *kbs;
1906 char *p;
1907 u_char *q;
1908 u_char __user *up;
1909 int sz;
1910 int delta;
1911 char *first_free, *fj, *fnw;
1912 int i, j, k;
1913 int ret;
1914
1915 if (!capable(CAP_SYS_TTY_CONFIG))
1916 perm = 0;
1917
1918 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1919 if (!kbs) {
1920 ret = -ENOMEM;
1921 goto reterr;
1922 }
1923
1924 /* we mostly copy too much here (512bytes), but who cares ;) */
1925 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1926 ret = -EFAULT;
1927 goto reterr;
1928 }
1929 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1930 i = kbs->kb_func;
1931
1932 switch (cmd) {
1933 case KDGKBSENT:
1934 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1935 a struct member */
1936 up = user_kdgkb->kb_string;
1937 p = func_table[i];
1938 if(p)
1939 for ( ; *p && sz; p++, sz--)
1940 if (put_user(*p, up++)) {
1941 ret = -EFAULT;
1942 goto reterr;
1943 }
1944 if (put_user('\0', up)) {
1945 ret = -EFAULT;
1946 goto reterr;
1947 }
1948 kfree(kbs);
1949 return ((p && *p) ? -EOVERFLOW : 0);
1950 case KDSKBSENT:
1951 if (!perm) {
1952 ret = -EPERM;
1953 goto reterr;
1954 }
1955
1956 q = func_table[i];
1957 first_free = funcbufptr + (funcbufsize - funcbufleft);
1958 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1959 ;
1960 if (j < MAX_NR_FUNC)
1961 fj = func_table[j];
1962 else
1963 fj = first_free;
1964
1965 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1966 if (delta <= funcbufleft) { /* it fits in current buf */
1967 if (j < MAX_NR_FUNC) {
1968 memmove(fj + delta, fj, first_free - fj);
1969 for (k = j; k < MAX_NR_FUNC; k++)
1970 if (func_table[k])
1971 func_table[k] += delta;
1972 }
1973 if (!q)
1974 func_table[i] = fj;
1975 funcbufleft -= delta;
1976 } else { /* allocate a larger buffer */
1977 sz = 256;
1978 while (sz < funcbufsize - funcbufleft + delta)
1979 sz <<= 1;
1980 fnw = kmalloc(sz, GFP_KERNEL);
1981 if(!fnw) {
1982 ret = -ENOMEM;
1983 goto reterr;
1984 }
1985
1986 if (!q)
1987 func_table[i] = fj;
1988 if (fj > funcbufptr)
1989 memmove(fnw, funcbufptr, fj - funcbufptr);
1990 for (k = 0; k < j; k++)
1991 if (func_table[k])
1992 func_table[k] = fnw + (func_table[k] - funcbufptr);
1993
1994 if (first_free > fj) {
1995 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
1996 for (k = j; k < MAX_NR_FUNC; k++)
1997 if (func_table[k])
1998 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
1999 }
2000 if (funcbufptr != func_buf)
2001 kfree(funcbufptr);
2002 funcbufptr = fnw;
2003 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2004 funcbufsize = sz;
2005 }
2006 strcpy(func_table[i], kbs->kb_string);
2007 break;
2008 }
2009 ret = 0;
2010reterr:
2011 kfree(kbs);
2012 return ret;
2013}
2014
2015int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2016{
2017 struct kbd_struct * kbd = kbd_table + console;
2018 unsigned long flags;
2019 unsigned char ucval;
2020
2021 switch(cmd) {
2022 /* the ioctls below read/set the flags usually shown in the leds */
2023 /* don't use them - they will go away without warning */
2024 case KDGKBLED:
2025 spin_lock_irqsave(&kbd_event_lock, flags);
2026 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
2027 spin_unlock_irqrestore(&kbd_event_lock, flags);
2028 return put_user(ucval, (char __user *)arg);
2029
2030 case KDSKBLED:
2031 if (!perm)
2032 return -EPERM;
2033 if (arg & ~0x77)
2034 return -EINVAL;
2035 spin_lock_irqsave(&kbd_event_lock, flags);
2036 kbd->ledflagstate = (arg & 7);
2037 kbd->default_ledflagstate = ((arg >> 4) & 7);
2038 set_leds();
2039 spin_unlock_irqrestore(&kbd_event_lock, flags);
2040 return 0;
2041
2042 /* the ioctls below only set the lights, not the functions */
2043 /* for those, see KDGKBLED and KDSKBLED above */
2044 case KDGETLED:
2045 ucval = getledstate();
2046 return put_user(ucval, (char __user *)arg);
2047
2048 case KDSETLED:
2049 if (!perm)
2050 return -EPERM;
2051 setledstate(kbd, arg);
2052 return 0;
2053 }
2054 return -ENOIOCTLCMD;
2055}
2056
2057int vt_do_kdgkbmode(int console)
2058{
2059 struct kbd_struct * kbd = kbd_table + console;
2060 /* This is a spot read so needs no locking */
2061 switch (kbd->kbdmode) {
2062 case VC_RAW:
2063 return K_RAW;
2064 case VC_MEDIUMRAW:
2065 return K_MEDIUMRAW;
2066 case VC_UNICODE:
2067 return K_UNICODE;
2068 case VC_OFF:
2069 return K_OFF;
2070 default:
2071 return K_XLATE;
2072 }
2073}
2074
2075/**
2076 * vt_do_kdgkbmeta - report meta status
2077 * @console: console to report
2078 *
2079 * Report the meta flag status of this console
2080 */
2081int vt_do_kdgkbmeta(int console)
2082{
2083 struct kbd_struct * kbd = kbd_table + console;
2084 /* Again a spot read so no locking */
2085 return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2086}
2087
2088/**
2089 * vt_reset_unicode - reset the unicode status
2090 * @console: console being reset
2091 *
2092 * Restore the unicode console state to its default
2093 */
2094void vt_reset_unicode(int console)
2095{
2096 unsigned long flags;
2097
2098 spin_lock_irqsave(&kbd_event_lock, flags);
2099 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2100 spin_unlock_irqrestore(&kbd_event_lock, flags);
2101}
2102
2103/**
2104 * vt_get_shiftstate - shift bit state
2105 *
2106 * Report the shift bits from the keyboard state. We have to export
2107 * this to support some oddities in the vt layer.
2108 */
2109int vt_get_shift_state(void)
2110{
2111 /* Don't lock as this is a transient report */
2112 return shift_state;
2113}
2114
2115/**
2116 * vt_reset_keyboard - reset keyboard state
2117 * @console: console to reset
2118 *
2119 * Reset the keyboard bits for a console as part of a general console
2120 * reset event
2121 */
2122void vt_reset_keyboard(int console)
2123{
2124 struct kbd_struct * kbd = kbd_table + console;
2125 unsigned long flags;
2126
2127 spin_lock_irqsave(&kbd_event_lock, flags);
2128 set_vc_kbd_mode(kbd, VC_REPEAT);
2129 clr_vc_kbd_mode(kbd, VC_CKMODE);
2130 clr_vc_kbd_mode(kbd, VC_APPLIC);
2131 clr_vc_kbd_mode(kbd, VC_CRLF);
2132 kbd->lockstate = 0;
2133 kbd->slockstate = 0;
2134 kbd->ledmode = LED_SHOW_FLAGS;
2135 kbd->ledflagstate = kbd->default_ledflagstate;
2136 /* do not do set_leds here because this causes an endless tasklet loop
2137 when the keyboard hasn't been initialized yet */
2138 spin_unlock_irqrestore(&kbd_event_lock, flags);
2139}
2140
2141/**
2142 * vt_get_kbd_mode_bit - read keyboard status bits
2143 * @console: console to read from
2144 * @bit: mode bit to read
2145 *
2146 * Report back a vt mode bit. We do this without locking so the
2147 * caller must be sure that there are no synchronization needs
2148 */
2149
2150int vt_get_kbd_mode_bit(int console, int bit)
2151{
2152 struct kbd_struct * kbd = kbd_table + console;
2153 return vc_kbd_mode(kbd, bit);
2154}
2155
2156/**
2157 * vt_set_kbd_mode_bit - read keyboard status bits
2158 * @console: console to read from
2159 * @bit: mode bit to read
2160 *
2161 * Set a vt mode bit. We do this without locking so the
2162 * caller must be sure that there are no synchronization needs
2163 */
2164
2165void vt_set_kbd_mode_bit(int console, int bit)
2166{
2167 struct kbd_struct * kbd = kbd_table + console;
2168 unsigned long flags;
2169
2170 spin_lock_irqsave(&kbd_event_lock, flags);
2171 set_vc_kbd_mode(kbd, bit);
2172 spin_unlock_irqrestore(&kbd_event_lock, flags);
2173}
2174
2175/**
2176 * vt_clr_kbd_mode_bit - read keyboard status bits
2177 * @console: console to read from
2178 * @bit: mode bit to read
2179 *
2180 * Report back a vt mode bit. We do this without locking so the
2181 * caller must be sure that there are no synchronization needs
2182 */
2183
2184void vt_clr_kbd_mode_bit(int console, int bit)
2185{
2186 struct kbd_struct * kbd = kbd_table + console;
2187 unsigned long flags;
2188
2189 spin_lock_irqsave(&kbd_event_lock, flags);
2190 clr_vc_kbd_mode(kbd, bit);
2191 spin_unlock_irqrestore(&kbd_event_lock, flags);
2192}