Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/page_pool/helpers.h>
  42#include <net/selftests.h>
  43#include <net/tso.h>
  44#include <linux/tcp.h>
  45#include <linux/udp.h>
  46#include <linux/icmp.h>
  47#include <linux/spinlock.h>
  48#include <linux/workqueue.h>
  49#include <linux/bitops.h>
  50#include <linux/io.h>
  51#include <linux/irq.h>
  52#include <linux/clk.h>
  53#include <linux/crc32.h>
  54#include <linux/platform_device.h>
  55#include <linux/property.h>
  56#include <linux/mdio.h>
  57#include <linux/phy.h>
  58#include <linux/fec.h>
  59#include <linux/of.h>
  60#include <linux/of_mdio.h>
  61#include <linux/of_net.h>
  62#include <linux/regulator/consumer.h>
  63#include <linux/if_vlan.h>
  64#include <linux/pinctrl/consumer.h>
  65#include <linux/gpio/consumer.h>
  66#include <linux/prefetch.h>
  67#include <linux/mfd/syscon.h>
  68#include <linux/regmap.h>
  69#include <soc/imx/cpuidle.h>
  70#include <linux/filter.h>
  71#include <linux/bpf.h>
  72#include <linux/bpf_trace.h>
  73
  74#include <asm/cacheflush.h>
  75
  76#include "fec.h"
  77
  78static void set_multicast_list(struct net_device *ndev);
  79static void fec_enet_itr_coal_set(struct net_device *ndev);
  80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
  81				int cpu, struct xdp_buff *xdp,
  82				u32 dma_sync_len);
  83
  84#define DRIVER_NAME	"fec"
  85
  86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
  87
  88#define FEC_ENET_RSEM_V	0x84
  89#define FEC_ENET_RSFL_V	16
  90#define FEC_ENET_RAEM_V	0x8
  91#define FEC_ENET_RAFL_V	0x8
  92#define FEC_ENET_OPD_V	0xFFF0
  93#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  94
  95#define FEC_ENET_XDP_PASS          0
  96#define FEC_ENET_XDP_CONSUMED      BIT(0)
  97#define FEC_ENET_XDP_TX            BIT(1)
  98#define FEC_ENET_XDP_REDIR         BIT(2)
  99
 100struct fec_devinfo {
 101	u32 quirks;
 102};
 103
 104static const struct fec_devinfo fec_imx25_info = {
 105	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
 106		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
 107};
 108
 109static const struct fec_devinfo fec_imx27_info = {
 110	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
 111		  FEC_QUIRK_HAS_MDIO_C45,
 112};
 113
 114static const struct fec_devinfo fec_imx28_info = {
 115	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 116		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 117		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
 118		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
 119};
 120
 121static const struct fec_devinfo fec_imx6q_info = {
 122	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 123		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 124		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 125		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
 126		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
 127};
 128
 129static const struct fec_devinfo fec_mvf600_info = {
 130	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
 131		  FEC_QUIRK_HAS_MDIO_C45,
 132};
 133
 134static const struct fec_devinfo fec_imx6x_info = {
 135	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 136		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 137		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 138		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 139		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 140		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 141		  FEC_QUIRK_HAS_MDIO_C45,
 142};
 143
 144static const struct fec_devinfo fec_imx6ul_info = {
 145	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 146		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 147		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 148		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 149		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
 150		  FEC_QUIRK_HAS_MDIO_C45,
 151};
 152
 153static const struct fec_devinfo fec_imx8mq_info = {
 154	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 155		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 156		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 157		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 158		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 159		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 160		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
 161		  FEC_QUIRK_HAS_MDIO_C45,
 162};
 163
 164static const struct fec_devinfo fec_imx8qm_info = {
 165	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 166		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 167		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 168		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 169		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 170		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 171		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
 172};
 173
 174static const struct fec_devinfo fec_s32v234_info = {
 175	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 176		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 177		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 178		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 179		  FEC_QUIRK_HAS_MDIO_C45,
 180};
 181
 182static struct platform_device_id fec_devtype[] = {
 183	{
 184		/* keep it for coldfire */
 185		.name = DRIVER_NAME,
 186		.driver_data = 0,
 187	}, {
 188		/* sentinel */
 189	}
 190};
 191MODULE_DEVICE_TABLE(platform, fec_devtype);
 192
 193static const struct of_device_id fec_dt_ids[] = {
 194	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
 195	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
 196	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
 197	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
 198	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
 199	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
 200	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
 201	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
 202	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
 203	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
 204	{ /* sentinel */ }
 205};
 206MODULE_DEVICE_TABLE(of, fec_dt_ids);
 207
 208static unsigned char macaddr[ETH_ALEN];
 209module_param_array(macaddr, byte, NULL, 0);
 210MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 211
 212#if defined(CONFIG_M5272)
 213/*
 214 * Some hardware gets it MAC address out of local flash memory.
 215 * if this is non-zero then assume it is the address to get MAC from.
 216 */
 217#if defined(CONFIG_NETtel)
 218#define	FEC_FLASHMAC	0xf0006006
 219#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 220#define	FEC_FLASHMAC	0xf0006000
 221#elif defined(CONFIG_CANCam)
 222#define	FEC_FLASHMAC	0xf0020000
 223#elif defined (CONFIG_M5272C3)
 224#define	FEC_FLASHMAC	(0xffe04000 + 4)
 225#elif defined(CONFIG_MOD5272)
 226#define FEC_FLASHMAC	0xffc0406b
 227#else
 228#define	FEC_FLASHMAC	0
 229#endif
 230#endif /* CONFIG_M5272 */
 231
 232/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 233 *
 234 * 2048 byte skbufs are allocated. However, alignment requirements
 235 * varies between FEC variants. Worst case is 64, so round down by 64.
 236 */
 237#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 238#define PKT_MINBUF_SIZE		64
 239
 240/* FEC receive acceleration */
 241#define FEC_RACC_IPDIS		BIT(1)
 242#define FEC_RACC_PRODIS		BIT(2)
 243#define FEC_RACC_SHIFT16	BIT(7)
 244#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 245
 246/* MIB Control Register */
 247#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 248
 249/*
 250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 251 * size bits. Other FEC hardware does not, so we need to take that into
 252 * account when setting it.
 253 */
 254#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 255    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 256    defined(CONFIG_ARM64)
 257#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 258#else
 259#define	OPT_FRAME_SIZE	0
 260#endif
 261
 262/* FEC MII MMFR bits definition */
 263#define FEC_MMFR_ST		(1 << 30)
 264#define FEC_MMFR_ST_C45		(0)
 265#define FEC_MMFR_OP_READ	(2 << 28)
 266#define FEC_MMFR_OP_READ_C45	(3 << 28)
 267#define FEC_MMFR_OP_WRITE	(1 << 28)
 268#define FEC_MMFR_OP_ADDR_WRITE	(0)
 269#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 270#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 271#define FEC_MMFR_TA		(2 << 16)
 272#define FEC_MMFR_DATA(v)	(v & 0xffff)
 273/* FEC ECR bits definition */
 274#define FEC_ECR_RESET           BIT(0)
 275#define FEC_ECR_ETHEREN         BIT(1)
 276#define FEC_ECR_MAGICEN         BIT(2)
 277#define FEC_ECR_SLEEP           BIT(3)
 278#define FEC_ECR_EN1588          BIT(4)
 279#define FEC_ECR_BYTESWP         BIT(8)
 280/* FEC RCR bits definition */
 281#define FEC_RCR_LOOP            BIT(0)
 282#define FEC_RCR_HALFDPX         BIT(1)
 283#define FEC_RCR_MII             BIT(2)
 284#define FEC_RCR_PROMISC         BIT(3)
 285#define FEC_RCR_BC_REJ          BIT(4)
 286#define FEC_RCR_FLOWCTL         BIT(5)
 287#define FEC_RCR_RMII            BIT(8)
 288#define FEC_RCR_10BASET         BIT(9)
 289/* TX WMARK bits */
 290#define FEC_TXWMRK_STRFWD       BIT(8)
 291
 292#define FEC_MII_TIMEOUT		30000 /* us */
 293
 294/* Transmitter timeout */
 295#define TX_TIMEOUT (2 * HZ)
 296
 297#define FEC_PAUSE_FLAG_AUTONEG	0x1
 298#define FEC_PAUSE_FLAG_ENABLE	0x2
 299#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 300#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 301#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 302
 303/* Max number of allowed TCP segments for software TSO */
 304#define FEC_MAX_TSO_SEGS	100
 305#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 306
 307#define IS_TSO_HEADER(txq, addr) \
 308	((addr >= txq->tso_hdrs_dma) && \
 309	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 310
 311static int mii_cnt;
 312
 313static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 314					     struct bufdesc_prop *bd)
 315{
 316	return (bdp >= bd->last) ? bd->base
 317			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 318}
 319
 320static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 321					     struct bufdesc_prop *bd)
 322{
 323	return (bdp <= bd->base) ? bd->last
 324			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 325}
 326
 327static int fec_enet_get_bd_index(struct bufdesc *bdp,
 328				 struct bufdesc_prop *bd)
 329{
 330	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 331}
 332
 333static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 334{
 335	int entries;
 336
 337	entries = (((const char *)txq->dirty_tx -
 338			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 339
 340	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 341}
 342
 343static void swap_buffer(void *bufaddr, int len)
 344{
 345	int i;
 346	unsigned int *buf = bufaddr;
 347
 348	for (i = 0; i < len; i += 4, buf++)
 349		swab32s(buf);
 350}
 351
 352static void fec_dump(struct net_device *ndev)
 353{
 354	struct fec_enet_private *fep = netdev_priv(ndev);
 355	struct bufdesc *bdp;
 356	struct fec_enet_priv_tx_q *txq;
 357	int index = 0;
 358
 359	netdev_info(ndev, "TX ring dump\n");
 360	pr_info("Nr     SC     addr       len  SKB\n");
 361
 362	txq = fep->tx_queue[0];
 363	bdp = txq->bd.base;
 364
 365	do {
 366		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 367			index,
 368			bdp == txq->bd.cur ? 'S' : ' ',
 369			bdp == txq->dirty_tx ? 'H' : ' ',
 370			fec16_to_cpu(bdp->cbd_sc),
 371			fec32_to_cpu(bdp->cbd_bufaddr),
 372			fec16_to_cpu(bdp->cbd_datlen),
 373			txq->tx_buf[index].buf_p);
 374		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 375		index++;
 376	} while (bdp != txq->bd.base);
 377}
 378
 379/*
 380 * Coldfire does not support DMA coherent allocations, and has historically used
 381 * a band-aid with a manual flush in fec_enet_rx_queue.
 382 */
 383#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
 384static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 385		gfp_t gfp)
 386{
 387	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
 388}
 389
 390static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 391		dma_addr_t handle)
 392{
 393	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
 394}
 395#else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 396static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 397		gfp_t gfp)
 398{
 399	return dma_alloc_coherent(dev, size, handle, gfp);
 400}
 401
 402static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 403		dma_addr_t handle)
 404{
 405	dma_free_coherent(dev, size, cpu_addr, handle);
 406}
 407#endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 408
 409struct fec_dma_devres {
 410	size_t		size;
 411	void		*vaddr;
 412	dma_addr_t	dma_handle;
 413};
 414
 415static void fec_dmam_release(struct device *dev, void *res)
 416{
 417	struct fec_dma_devres *this = res;
 418
 419	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
 420}
 421
 422static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 423		gfp_t gfp)
 424{
 425	struct fec_dma_devres *dr;
 426	void *vaddr;
 427
 428	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
 429	if (!dr)
 430		return NULL;
 431	vaddr = fec_dma_alloc(dev, size, handle, gfp);
 432	if (!vaddr) {
 433		devres_free(dr);
 434		return NULL;
 435	}
 436	dr->vaddr = vaddr;
 437	dr->dma_handle = *handle;
 438	dr->size = size;
 439	devres_add(dev, dr);
 440	return vaddr;
 441}
 442
 443static inline bool is_ipv4_pkt(struct sk_buff *skb)
 444{
 445	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 446}
 447
 448static int
 449fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 450{
 451	/* Only run for packets requiring a checksum. */
 452	if (skb->ip_summed != CHECKSUM_PARTIAL)
 453		return 0;
 454
 455	if (unlikely(skb_cow_head(skb, 0)))
 456		return -1;
 457
 458	if (is_ipv4_pkt(skb))
 459		ip_hdr(skb)->check = 0;
 460	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 461
 462	return 0;
 463}
 464
 465static int
 466fec_enet_create_page_pool(struct fec_enet_private *fep,
 467			  struct fec_enet_priv_rx_q *rxq, int size)
 468{
 469	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
 470	struct page_pool_params pp_params = {
 471		.order = 0,
 472		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
 473		.pool_size = size,
 474		.nid = dev_to_node(&fep->pdev->dev),
 475		.dev = &fep->pdev->dev,
 476		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
 477		.offset = FEC_ENET_XDP_HEADROOM,
 478		.max_len = FEC_ENET_RX_FRSIZE,
 479	};
 480	int err;
 481
 482	rxq->page_pool = page_pool_create(&pp_params);
 483	if (IS_ERR(rxq->page_pool)) {
 484		err = PTR_ERR(rxq->page_pool);
 485		rxq->page_pool = NULL;
 486		return err;
 487	}
 488
 489	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
 490	if (err < 0)
 491		goto err_free_pp;
 492
 493	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
 494					 rxq->page_pool);
 495	if (err)
 496		goto err_unregister_rxq;
 497
 498	return 0;
 499
 500err_unregister_rxq:
 501	xdp_rxq_info_unreg(&rxq->xdp_rxq);
 502err_free_pp:
 503	page_pool_destroy(rxq->page_pool);
 504	rxq->page_pool = NULL;
 505	return err;
 506}
 507
 508static struct bufdesc *
 509fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 510			     struct sk_buff *skb,
 511			     struct net_device *ndev)
 512{
 513	struct fec_enet_private *fep = netdev_priv(ndev);
 514	struct bufdesc *bdp = txq->bd.cur;
 515	struct bufdesc_ex *ebdp;
 516	int nr_frags = skb_shinfo(skb)->nr_frags;
 517	int frag, frag_len;
 518	unsigned short status;
 519	unsigned int estatus = 0;
 520	skb_frag_t *this_frag;
 521	unsigned int index;
 522	void *bufaddr;
 523	dma_addr_t addr;
 524	int i;
 525
 526	for (frag = 0; frag < nr_frags; frag++) {
 527		this_frag = &skb_shinfo(skb)->frags[frag];
 528		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 529		ebdp = (struct bufdesc_ex *)bdp;
 530
 531		status = fec16_to_cpu(bdp->cbd_sc);
 532		status &= ~BD_ENET_TX_STATS;
 533		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 534		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 535
 536		/* Handle the last BD specially */
 537		if (frag == nr_frags - 1) {
 538			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 539			if (fep->bufdesc_ex) {
 540				estatus |= BD_ENET_TX_INT;
 541				if (unlikely(skb_shinfo(skb)->tx_flags &
 542					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 543					estatus |= BD_ENET_TX_TS;
 544			}
 545		}
 546
 547		if (fep->bufdesc_ex) {
 548			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 549				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 550			if (skb->ip_summed == CHECKSUM_PARTIAL)
 551				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 552
 553			ebdp->cbd_bdu = 0;
 554			ebdp->cbd_esc = cpu_to_fec32(estatus);
 555		}
 556
 557		bufaddr = skb_frag_address(this_frag);
 558
 559		index = fec_enet_get_bd_index(bdp, &txq->bd);
 560		if (((unsigned long) bufaddr) & fep->tx_align ||
 561			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 562			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 563			bufaddr = txq->tx_bounce[index];
 564
 565			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 566				swap_buffer(bufaddr, frag_len);
 567		}
 568
 569		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 570				      DMA_TO_DEVICE);
 571		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 572			if (net_ratelimit())
 573				netdev_err(ndev, "Tx DMA memory map failed\n");
 574			goto dma_mapping_error;
 575		}
 576
 577		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 578		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 579		/* Make sure the updates to rest of the descriptor are
 580		 * performed before transferring ownership.
 581		 */
 582		wmb();
 583		bdp->cbd_sc = cpu_to_fec16(status);
 584	}
 585
 586	return bdp;
 587dma_mapping_error:
 588	bdp = txq->bd.cur;
 589	for (i = 0; i < frag; i++) {
 590		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 591		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 592				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 593	}
 594	return ERR_PTR(-ENOMEM);
 595}
 596
 597static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 598				   struct sk_buff *skb, struct net_device *ndev)
 599{
 600	struct fec_enet_private *fep = netdev_priv(ndev);
 601	int nr_frags = skb_shinfo(skb)->nr_frags;
 602	struct bufdesc *bdp, *last_bdp;
 603	void *bufaddr;
 604	dma_addr_t addr;
 605	unsigned short status;
 606	unsigned short buflen;
 607	unsigned int estatus = 0;
 608	unsigned int index;
 609	int entries_free;
 610
 611	entries_free = fec_enet_get_free_txdesc_num(txq);
 612	if (entries_free < MAX_SKB_FRAGS + 1) {
 613		dev_kfree_skb_any(skb);
 614		if (net_ratelimit())
 615			netdev_err(ndev, "NOT enough BD for SG!\n");
 616		return NETDEV_TX_OK;
 617	}
 618
 619	/* Protocol checksum off-load for TCP and UDP. */
 620	if (fec_enet_clear_csum(skb, ndev)) {
 621		dev_kfree_skb_any(skb);
 622		return NETDEV_TX_OK;
 623	}
 624
 625	/* Fill in a Tx ring entry */
 626	bdp = txq->bd.cur;
 627	last_bdp = bdp;
 628	status = fec16_to_cpu(bdp->cbd_sc);
 629	status &= ~BD_ENET_TX_STATS;
 630
 631	/* Set buffer length and buffer pointer */
 632	bufaddr = skb->data;
 633	buflen = skb_headlen(skb);
 634
 635	index = fec_enet_get_bd_index(bdp, &txq->bd);
 636	if (((unsigned long) bufaddr) & fep->tx_align ||
 637		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 638		memcpy(txq->tx_bounce[index], skb->data, buflen);
 639		bufaddr = txq->tx_bounce[index];
 640
 641		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 642			swap_buffer(bufaddr, buflen);
 643	}
 644
 645	/* Push the data cache so the CPM does not get stale memory data. */
 646	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 647	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 648		dev_kfree_skb_any(skb);
 649		if (net_ratelimit())
 650			netdev_err(ndev, "Tx DMA memory map failed\n");
 651		return NETDEV_TX_OK;
 652	}
 653
 654	if (nr_frags) {
 655		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 656		if (IS_ERR(last_bdp)) {
 657			dma_unmap_single(&fep->pdev->dev, addr,
 658					 buflen, DMA_TO_DEVICE);
 659			dev_kfree_skb_any(skb);
 660			return NETDEV_TX_OK;
 661		}
 662	} else {
 663		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 664		if (fep->bufdesc_ex) {
 665			estatus = BD_ENET_TX_INT;
 666			if (unlikely(skb_shinfo(skb)->tx_flags &
 667				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 668				estatus |= BD_ENET_TX_TS;
 669		}
 670	}
 671	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 672	bdp->cbd_datlen = cpu_to_fec16(buflen);
 673
 674	if (fep->bufdesc_ex) {
 675
 676		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 677
 678		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 679			fep->hwts_tx_en))
 680			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 681
 682		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 683			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 684
 685		if (skb->ip_summed == CHECKSUM_PARTIAL)
 686			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 687
 688		ebdp->cbd_bdu = 0;
 689		ebdp->cbd_esc = cpu_to_fec32(estatus);
 690	}
 691
 692	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 693	/* Save skb pointer */
 694	txq->tx_buf[index].buf_p = skb;
 695
 696	/* Make sure the updates to rest of the descriptor are performed before
 697	 * transferring ownership.
 698	 */
 699	wmb();
 700
 701	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 702	 * it's the last BD of the frame, and to put the CRC on the end.
 703	 */
 704	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 705	bdp->cbd_sc = cpu_to_fec16(status);
 706
 707	/* If this was the last BD in the ring, start at the beginning again. */
 708	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 709
 710	skb_tx_timestamp(skb);
 711
 712	/* Make sure the update to bdp is performed before txq->bd.cur. */
 713	wmb();
 714	txq->bd.cur = bdp;
 715
 716	/* Trigger transmission start */
 717	writel(0, txq->bd.reg_desc_active);
 718
 719	return 0;
 720}
 721
 722static int
 723fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 724			  struct net_device *ndev,
 725			  struct bufdesc *bdp, int index, char *data,
 726			  int size, bool last_tcp, bool is_last)
 727{
 728	struct fec_enet_private *fep = netdev_priv(ndev);
 729	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 730	unsigned short status;
 731	unsigned int estatus = 0;
 732	dma_addr_t addr;
 733
 734	status = fec16_to_cpu(bdp->cbd_sc);
 735	status &= ~BD_ENET_TX_STATS;
 736
 737	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 738
 739	if (((unsigned long) data) & fep->tx_align ||
 740		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 741		memcpy(txq->tx_bounce[index], data, size);
 742		data = txq->tx_bounce[index];
 743
 744		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 745			swap_buffer(data, size);
 746	}
 747
 748	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 749	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 750		dev_kfree_skb_any(skb);
 751		if (net_ratelimit())
 752			netdev_err(ndev, "Tx DMA memory map failed\n");
 753		return NETDEV_TX_OK;
 754	}
 755
 756	bdp->cbd_datlen = cpu_to_fec16(size);
 757	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 758
 759	if (fep->bufdesc_ex) {
 760		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 761			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 762		if (skb->ip_summed == CHECKSUM_PARTIAL)
 763			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 764		ebdp->cbd_bdu = 0;
 765		ebdp->cbd_esc = cpu_to_fec32(estatus);
 766	}
 767
 768	/* Handle the last BD specially */
 769	if (last_tcp)
 770		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 771	if (is_last) {
 772		status |= BD_ENET_TX_INTR;
 773		if (fep->bufdesc_ex)
 774			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 775	}
 776
 777	bdp->cbd_sc = cpu_to_fec16(status);
 778
 779	return 0;
 780}
 781
 782static int
 783fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 784			 struct sk_buff *skb, struct net_device *ndev,
 785			 struct bufdesc *bdp, int index)
 786{
 787	struct fec_enet_private *fep = netdev_priv(ndev);
 788	int hdr_len = skb_tcp_all_headers(skb);
 789	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 790	void *bufaddr;
 791	unsigned long dmabuf;
 792	unsigned short status;
 793	unsigned int estatus = 0;
 794
 795	status = fec16_to_cpu(bdp->cbd_sc);
 796	status &= ~BD_ENET_TX_STATS;
 797	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 798
 799	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 800	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 801	if (((unsigned long)bufaddr) & fep->tx_align ||
 802		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 803		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 804		bufaddr = txq->tx_bounce[index];
 805
 806		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 807			swap_buffer(bufaddr, hdr_len);
 808
 809		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 810					hdr_len, DMA_TO_DEVICE);
 811		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 812			dev_kfree_skb_any(skb);
 813			if (net_ratelimit())
 814				netdev_err(ndev, "Tx DMA memory map failed\n");
 815			return NETDEV_TX_OK;
 816		}
 817	}
 818
 819	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 820	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 821
 822	if (fep->bufdesc_ex) {
 823		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 824			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 825		if (skb->ip_summed == CHECKSUM_PARTIAL)
 826			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 827		ebdp->cbd_bdu = 0;
 828		ebdp->cbd_esc = cpu_to_fec32(estatus);
 829	}
 830
 831	bdp->cbd_sc = cpu_to_fec16(status);
 832
 833	return 0;
 834}
 835
 836static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 837				   struct sk_buff *skb,
 838				   struct net_device *ndev)
 839{
 840	struct fec_enet_private *fep = netdev_priv(ndev);
 841	int hdr_len, total_len, data_left;
 842	struct bufdesc *bdp = txq->bd.cur;
 843	struct bufdesc *tmp_bdp;
 844	struct bufdesc_ex *ebdp;
 845	struct tso_t tso;
 846	unsigned int index = 0;
 847	int ret;
 848
 849	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 850		dev_kfree_skb_any(skb);
 851		if (net_ratelimit())
 852			netdev_err(ndev, "NOT enough BD for TSO!\n");
 853		return NETDEV_TX_OK;
 854	}
 855
 856	/* Protocol checksum off-load for TCP and UDP. */
 857	if (fec_enet_clear_csum(skb, ndev)) {
 858		dev_kfree_skb_any(skb);
 859		return NETDEV_TX_OK;
 860	}
 861
 862	/* Initialize the TSO handler, and prepare the first payload */
 863	hdr_len = tso_start(skb, &tso);
 864
 865	total_len = skb->len - hdr_len;
 866	while (total_len > 0) {
 867		char *hdr;
 868
 869		index = fec_enet_get_bd_index(bdp, &txq->bd);
 870		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 871		total_len -= data_left;
 872
 873		/* prepare packet headers: MAC + IP + TCP */
 874		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 875		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 876		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 877		if (ret)
 878			goto err_release;
 879
 880		while (data_left > 0) {
 881			int size;
 882
 883			size = min_t(int, tso.size, data_left);
 884			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 885			index = fec_enet_get_bd_index(bdp, &txq->bd);
 886			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 887							bdp, index,
 888							tso.data, size,
 889							size == data_left,
 890							total_len == 0);
 891			if (ret)
 892				goto err_release;
 893
 894			data_left -= size;
 895			tso_build_data(skb, &tso, size);
 896		}
 897
 898		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 899	}
 900
 901	/* Save skb pointer */
 902	txq->tx_buf[index].buf_p = skb;
 903
 904	skb_tx_timestamp(skb);
 905	txq->bd.cur = bdp;
 906
 907	/* Trigger transmission start */
 908	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 909	    !readl(txq->bd.reg_desc_active) ||
 910	    !readl(txq->bd.reg_desc_active) ||
 911	    !readl(txq->bd.reg_desc_active) ||
 912	    !readl(txq->bd.reg_desc_active))
 913		writel(0, txq->bd.reg_desc_active);
 914
 915	return 0;
 916
 917err_release:
 918	/* Release all used data descriptors for TSO */
 919	tmp_bdp = txq->bd.cur;
 920
 921	while (tmp_bdp != bdp) {
 922		/* Unmap data buffers */
 923		if (tmp_bdp->cbd_bufaddr &&
 924		    !IS_TSO_HEADER(txq, fec32_to_cpu(tmp_bdp->cbd_bufaddr)))
 925			dma_unmap_single(&fep->pdev->dev,
 926					 fec32_to_cpu(tmp_bdp->cbd_bufaddr),
 927					 fec16_to_cpu(tmp_bdp->cbd_datlen),
 928					 DMA_TO_DEVICE);
 929
 930		/* Clear standard buffer descriptor fields */
 931		tmp_bdp->cbd_sc = 0;
 932		tmp_bdp->cbd_datlen = 0;
 933		tmp_bdp->cbd_bufaddr = 0;
 934
 935		/* Handle extended descriptor if enabled */
 936		if (fep->bufdesc_ex) {
 937			ebdp = (struct bufdesc_ex *)tmp_bdp;
 938			ebdp->cbd_esc = 0;
 939		}
 940
 941		tmp_bdp = fec_enet_get_nextdesc(tmp_bdp, &txq->bd);
 942	}
 943
 944	dev_kfree_skb_any(skb);
 945
 946	return ret;
 947}
 948
 949static netdev_tx_t
 950fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 951{
 952	struct fec_enet_private *fep = netdev_priv(ndev);
 953	int entries_free;
 954	unsigned short queue;
 955	struct fec_enet_priv_tx_q *txq;
 956	struct netdev_queue *nq;
 957	int ret;
 958
 959	queue = skb_get_queue_mapping(skb);
 960	txq = fep->tx_queue[queue];
 961	nq = netdev_get_tx_queue(ndev, queue);
 962
 963	if (skb_is_gso(skb))
 964		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 965	else
 966		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 967	if (ret)
 968		return ret;
 969
 970	entries_free = fec_enet_get_free_txdesc_num(txq);
 971	if (entries_free <= txq->tx_stop_threshold)
 972		netif_tx_stop_queue(nq);
 973
 974	return NETDEV_TX_OK;
 975}
 976
 977/* Init RX & TX buffer descriptors
 978 */
 979static void fec_enet_bd_init(struct net_device *dev)
 980{
 981	struct fec_enet_private *fep = netdev_priv(dev);
 982	struct fec_enet_priv_tx_q *txq;
 983	struct fec_enet_priv_rx_q *rxq;
 984	struct bufdesc *bdp;
 985	unsigned int i;
 986	unsigned int q;
 987
 988	for (q = 0; q < fep->num_rx_queues; q++) {
 989		/* Initialize the receive buffer descriptors. */
 990		rxq = fep->rx_queue[q];
 991		bdp = rxq->bd.base;
 992
 993		for (i = 0; i < rxq->bd.ring_size; i++) {
 994
 995			/* Initialize the BD for every fragment in the page. */
 996			if (bdp->cbd_bufaddr)
 997				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 998			else
 999				bdp->cbd_sc = cpu_to_fec16(0);
1000			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1001		}
1002
1003		/* Set the last buffer to wrap */
1004		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
1005		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006
1007		rxq->bd.cur = rxq->bd.base;
1008	}
1009
1010	for (q = 0; q < fep->num_tx_queues; q++) {
1011		/* ...and the same for transmit */
1012		txq = fep->tx_queue[q];
1013		bdp = txq->bd.base;
1014		txq->bd.cur = bdp;
1015
1016		for (i = 0; i < txq->bd.ring_size; i++) {
1017			/* Initialize the BD for every fragment in the page. */
1018			bdp->cbd_sc = cpu_to_fec16(0);
1019			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
1020				if (bdp->cbd_bufaddr &&
1021				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1022					dma_unmap_single(&fep->pdev->dev,
1023							 fec32_to_cpu(bdp->cbd_bufaddr),
1024							 fec16_to_cpu(bdp->cbd_datlen),
1025							 DMA_TO_DEVICE);
1026				if (txq->tx_buf[i].buf_p)
1027					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
1028			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1029				if (bdp->cbd_bufaddr)
1030					dma_unmap_single(&fep->pdev->dev,
1031							 fec32_to_cpu(bdp->cbd_bufaddr),
1032							 fec16_to_cpu(bdp->cbd_datlen),
1033							 DMA_TO_DEVICE);
1034
1035				if (txq->tx_buf[i].buf_p)
1036					xdp_return_frame(txq->tx_buf[i].buf_p);
1037			} else {
1038				struct page *page = txq->tx_buf[i].buf_p;
1039
1040				if (page)
1041					page_pool_put_page(page->pp, page, 0, false);
1042			}
1043
1044			txq->tx_buf[i].buf_p = NULL;
1045			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1046			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1047			bdp->cbd_bufaddr = cpu_to_fec32(0);
1048			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1049		}
1050
1051		/* Set the last buffer to wrap */
1052		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1053		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1054		txq->dirty_tx = bdp;
1055	}
1056}
1057
1058static void fec_enet_active_rxring(struct net_device *ndev)
1059{
1060	struct fec_enet_private *fep = netdev_priv(ndev);
1061	int i;
1062
1063	for (i = 0; i < fep->num_rx_queues; i++)
1064		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1065}
1066
1067static void fec_enet_enable_ring(struct net_device *ndev)
1068{
1069	struct fec_enet_private *fep = netdev_priv(ndev);
1070	struct fec_enet_priv_tx_q *txq;
1071	struct fec_enet_priv_rx_q *rxq;
1072	int i;
1073
1074	for (i = 0; i < fep->num_rx_queues; i++) {
1075		rxq = fep->rx_queue[i];
1076		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1077		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1078
1079		/* enable DMA1/2 */
1080		if (i)
1081			writel(RCMR_MATCHEN | RCMR_CMP(i),
1082			       fep->hwp + FEC_RCMR(i));
1083	}
1084
1085	for (i = 0; i < fep->num_tx_queues; i++) {
1086		txq = fep->tx_queue[i];
1087		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1088
1089		/* enable DMA1/2 */
1090		if (i)
1091			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1092			       fep->hwp + FEC_DMA_CFG(i));
1093	}
1094}
1095
1096/*
1097 * This function is called to start or restart the FEC during a link
1098 * change, transmit timeout, or to reconfigure the FEC.  The network
1099 * packet processing for this device must be stopped before this call.
1100 */
1101static void
1102fec_restart(struct net_device *ndev)
1103{
1104	struct fec_enet_private *fep = netdev_priv(ndev);
1105	u32 temp_mac[2];
1106	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1107	u32 ecntl = FEC_ECR_ETHEREN;
1108
1109	if (fep->bufdesc_ex)
1110		fec_ptp_save_state(fep);
1111
1112	/* Whack a reset.  We should wait for this.
1113	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1114	 * instead of reset MAC itself.
1115	 */
1116	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1117	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1118		writel(0, fep->hwp + FEC_ECNTRL);
1119	} else {
1120		writel(1, fep->hwp + FEC_ECNTRL);
1121		udelay(10);
1122	}
1123
1124	/*
1125	 * enet-mac reset will reset mac address registers too,
1126	 * so need to reconfigure it.
1127	 */
1128	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1129	writel((__force u32)cpu_to_be32(temp_mac[0]),
1130	       fep->hwp + FEC_ADDR_LOW);
1131	writel((__force u32)cpu_to_be32(temp_mac[1]),
1132	       fep->hwp + FEC_ADDR_HIGH);
1133
1134	/* Clear any outstanding interrupt, except MDIO. */
1135	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1136
1137	fec_enet_bd_init(ndev);
1138
1139	fec_enet_enable_ring(ndev);
1140
1141	/* Enable MII mode */
1142	if (fep->full_duplex == DUPLEX_FULL) {
1143		/* FD enable */
1144		writel(0x04, fep->hwp + FEC_X_CNTRL);
1145	} else {
1146		/* No Rcv on Xmit */
1147		rcntl |= 0x02;
1148		writel(0x0, fep->hwp + FEC_X_CNTRL);
1149	}
1150
1151	/* Set MII speed */
1152	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1153
1154#if !defined(CONFIG_M5272)
1155	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1156		u32 val = readl(fep->hwp + FEC_RACC);
1157
1158		/* align IP header */
1159		val |= FEC_RACC_SHIFT16;
1160		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1161			/* set RX checksum */
1162			val |= FEC_RACC_OPTIONS;
1163		else
1164			val &= ~FEC_RACC_OPTIONS;
1165		writel(val, fep->hwp + FEC_RACC);
1166		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1167	}
1168#endif
1169
1170	/*
1171	 * The phy interface and speed need to get configured
1172	 * differently on enet-mac.
1173	 */
1174	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1175		/* Enable flow control and length check */
1176		rcntl |= 0x40000000 | 0x00000020;
1177
1178		/* RGMII, RMII or MII */
1179		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1180		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1181		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1182		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1183			rcntl |= (1 << 6);
1184		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1185			rcntl |= FEC_RCR_RMII;
1186		else
1187			rcntl &= ~FEC_RCR_RMII;
1188
1189		/* 1G, 100M or 10M */
1190		if (ndev->phydev) {
1191			if (ndev->phydev->speed == SPEED_1000)
1192				ecntl |= (1 << 5);
1193			else if (ndev->phydev->speed == SPEED_100)
1194				rcntl &= ~FEC_RCR_10BASET;
1195			else
1196				rcntl |= FEC_RCR_10BASET;
1197		}
1198	} else {
1199#ifdef FEC_MIIGSK_ENR
1200		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1201			u32 cfgr;
1202			/* disable the gasket and wait */
1203			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1204			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1205				udelay(1);
1206
1207			/*
1208			 * configure the gasket:
1209			 *   RMII, 50 MHz, no loopback, no echo
1210			 *   MII, 25 MHz, no loopback, no echo
1211			 */
1212			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1213				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1214			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1215				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1216			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1217
1218			/* re-enable the gasket */
1219			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1220		}
1221#endif
1222	}
1223
1224#if !defined(CONFIG_M5272)
1225	/* enable pause frame*/
1226	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1227	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1228	     ndev->phydev && ndev->phydev->pause)) {
1229		rcntl |= FEC_RCR_FLOWCTL;
1230
1231		/* set FIFO threshold parameter to reduce overrun */
1232		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1233		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1234		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1235		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1236
1237		/* OPD */
1238		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1239	} else {
1240		rcntl &= ~FEC_RCR_FLOWCTL;
1241	}
1242#endif /* !defined(CONFIG_M5272) */
1243
1244	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1245
1246	/* Setup multicast filter. */
1247	set_multicast_list(ndev);
1248#ifndef CONFIG_M5272
1249	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1250	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1251#endif
1252
1253	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1254		/* enable ENET endian swap */
1255		ecntl |= FEC_ECR_BYTESWP;
1256		/* enable ENET store and forward mode */
1257		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1258	}
1259
1260	if (fep->bufdesc_ex)
1261		ecntl |= FEC_ECR_EN1588;
1262
1263	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1264	    fep->rgmii_txc_dly)
1265		ecntl |= FEC_ENET_TXC_DLY;
1266	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1267	    fep->rgmii_rxc_dly)
1268		ecntl |= FEC_ENET_RXC_DLY;
1269
1270#ifndef CONFIG_M5272
1271	/* Enable the MIB statistic event counters */
1272	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1273#endif
1274
1275	/* And last, enable the transmit and receive processing */
1276	writel(ecntl, fep->hwp + FEC_ECNTRL);
1277	fec_enet_active_rxring(ndev);
1278
1279	if (fep->bufdesc_ex) {
1280		fec_ptp_start_cyclecounter(ndev);
1281		fec_ptp_restore_state(fep);
1282	}
1283
1284	/* Enable interrupts we wish to service */
1285	if (fep->link)
1286		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1287	else
1288		writel(0, fep->hwp + FEC_IMASK);
1289
1290	/* Init the interrupt coalescing */
1291	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1292		fec_enet_itr_coal_set(ndev);
1293}
1294
1295static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1296{
1297	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1298	      of_machine_is_compatible("fsl,imx8qxp") ||
1299	      of_machine_is_compatible("fsl,imx8dxl")))
1300		return 0;
1301
1302	return imx_scu_get_handle(&fep->ipc_handle);
1303}
1304
1305static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1306{
1307	struct device_node *np = fep->pdev->dev.of_node;
1308	u32 rsrc_id, val;
1309	int idx;
1310
1311	if (!np || !fep->ipc_handle)
1312		return;
1313
1314	idx = of_alias_get_id(np, "ethernet");
1315	if (idx < 0)
1316		idx = 0;
1317	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1318
1319	val = enabled ? 1 : 0;
1320	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1321}
1322
1323static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1324{
1325	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1326	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1327
1328	if (stop_gpr->gpr) {
1329		if (enabled)
1330			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1331					   BIT(stop_gpr->bit),
1332					   BIT(stop_gpr->bit));
1333		else
1334			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1335					   BIT(stop_gpr->bit), 0);
1336	} else if (pdata && pdata->sleep_mode_enable) {
1337		pdata->sleep_mode_enable(enabled);
1338	} else {
1339		fec_enet_ipg_stop_set(fep, enabled);
1340	}
1341}
1342
1343static void fec_irqs_disable(struct net_device *ndev)
1344{
1345	struct fec_enet_private *fep = netdev_priv(ndev);
1346
1347	writel(0, fep->hwp + FEC_IMASK);
1348}
1349
1350static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1351{
1352	struct fec_enet_private *fep = netdev_priv(ndev);
1353
1354	writel(0, fep->hwp + FEC_IMASK);
1355	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1356}
1357
1358static void
1359fec_stop(struct net_device *ndev)
1360{
1361	struct fec_enet_private *fep = netdev_priv(ndev);
1362	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1363	u32 val;
1364
1365	/* We cannot expect a graceful transmit stop without link !!! */
1366	if (fep->link) {
1367		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1368		udelay(10);
1369		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1370			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1371	}
1372
1373	if (fep->bufdesc_ex)
1374		fec_ptp_save_state(fep);
1375
1376	/* Whack a reset.  We should wait for this.
1377	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1378	 * instead of reset MAC itself.
1379	 */
1380	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1381		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1382			writel(0, fep->hwp + FEC_ECNTRL);
1383		} else {
1384			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1385			udelay(10);
1386		}
1387	} else {
1388		val = readl(fep->hwp + FEC_ECNTRL);
1389		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1390		writel(val, fep->hwp + FEC_ECNTRL);
1391	}
1392	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1393	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1394
1395	/* We have to keep ENET enabled to have MII interrupt stay working */
1396	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1397		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1398		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1399		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1400	}
1401
1402	if (fep->bufdesc_ex) {
1403		val = readl(fep->hwp + FEC_ECNTRL);
1404		val |= FEC_ECR_EN1588;
1405		writel(val, fep->hwp + FEC_ECNTRL);
1406
1407		fec_ptp_start_cyclecounter(ndev);
1408		fec_ptp_restore_state(fep);
1409	}
1410}
1411
1412static void
1413fec_timeout(struct net_device *ndev, unsigned int txqueue)
1414{
1415	struct fec_enet_private *fep = netdev_priv(ndev);
1416
1417	fec_dump(ndev);
1418
1419	ndev->stats.tx_errors++;
1420
1421	schedule_work(&fep->tx_timeout_work);
1422}
1423
1424static void fec_enet_timeout_work(struct work_struct *work)
1425{
1426	struct fec_enet_private *fep =
1427		container_of(work, struct fec_enet_private, tx_timeout_work);
1428	struct net_device *ndev = fep->netdev;
1429
1430	rtnl_lock();
1431	if (netif_device_present(ndev) || netif_running(ndev)) {
1432		napi_disable(&fep->napi);
1433		netif_tx_lock_bh(ndev);
1434		fec_restart(ndev);
1435		netif_tx_wake_all_queues(ndev);
1436		netif_tx_unlock_bh(ndev);
1437		napi_enable(&fep->napi);
1438	}
1439	rtnl_unlock();
1440}
1441
1442static void
1443fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1444	struct skb_shared_hwtstamps *hwtstamps)
1445{
1446	unsigned long flags;
1447	u64 ns;
1448
1449	spin_lock_irqsave(&fep->tmreg_lock, flags);
1450	ns = timecounter_cyc2time(&fep->tc, ts);
1451	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1452
1453	memset(hwtstamps, 0, sizeof(*hwtstamps));
1454	hwtstamps->hwtstamp = ns_to_ktime(ns);
1455}
1456
1457static void
1458fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1459{
1460	struct	fec_enet_private *fep;
1461	struct xdp_frame *xdpf;
1462	struct bufdesc *bdp;
1463	unsigned short status;
1464	struct	sk_buff	*skb;
1465	struct fec_enet_priv_tx_q *txq;
1466	struct netdev_queue *nq;
1467	int	index = 0;
1468	int	entries_free;
1469	struct page *page;
1470	int frame_len;
1471
1472	fep = netdev_priv(ndev);
1473
1474	txq = fep->tx_queue[queue_id];
1475	/* get next bdp of dirty_tx */
1476	nq = netdev_get_tx_queue(ndev, queue_id);
1477	bdp = txq->dirty_tx;
1478
1479	/* get next bdp of dirty_tx */
1480	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1481
1482	while (bdp != READ_ONCE(txq->bd.cur)) {
1483		/* Order the load of bd.cur and cbd_sc */
1484		rmb();
1485		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1486		if (status & BD_ENET_TX_READY)
1487			break;
1488
1489		index = fec_enet_get_bd_index(bdp, &txq->bd);
1490
1491		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1492			skb = txq->tx_buf[index].buf_p;
1493			if (bdp->cbd_bufaddr &&
1494			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1495				dma_unmap_single(&fep->pdev->dev,
1496						 fec32_to_cpu(bdp->cbd_bufaddr),
1497						 fec16_to_cpu(bdp->cbd_datlen),
1498						 DMA_TO_DEVICE);
1499			bdp->cbd_bufaddr = cpu_to_fec32(0);
1500			if (!skb)
1501				goto tx_buf_done;
1502		} else {
1503			/* Tx processing cannot call any XDP (or page pool) APIs if
1504			 * the "budget" is 0. Because NAPI is called with budget of
1505			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1506			 * however, we can't use the page pool from IRQ context.
1507			 */
1508			if (unlikely(!budget))
1509				break;
1510
1511			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1512				xdpf = txq->tx_buf[index].buf_p;
1513				if (bdp->cbd_bufaddr)
1514					dma_unmap_single(&fep->pdev->dev,
1515							 fec32_to_cpu(bdp->cbd_bufaddr),
1516							 fec16_to_cpu(bdp->cbd_datlen),
1517							 DMA_TO_DEVICE);
1518			} else {
1519				page = txq->tx_buf[index].buf_p;
1520			}
1521
1522			bdp->cbd_bufaddr = cpu_to_fec32(0);
1523			if (unlikely(!txq->tx_buf[index].buf_p)) {
1524				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1525				goto tx_buf_done;
1526			}
1527
1528			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1529		}
1530
1531		/* Check for errors. */
1532		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1533				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1534				   BD_ENET_TX_CSL)) {
1535			ndev->stats.tx_errors++;
1536			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1537				ndev->stats.tx_heartbeat_errors++;
1538			if (status & BD_ENET_TX_LC)  /* Late collision */
1539				ndev->stats.tx_window_errors++;
1540			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1541				ndev->stats.tx_aborted_errors++;
1542			if (status & BD_ENET_TX_UN)  /* Underrun */
1543				ndev->stats.tx_fifo_errors++;
1544			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1545				ndev->stats.tx_carrier_errors++;
1546		} else {
1547			ndev->stats.tx_packets++;
1548
1549			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1550				ndev->stats.tx_bytes += skb->len;
1551			else
1552				ndev->stats.tx_bytes += frame_len;
1553		}
1554
1555		/* Deferred means some collisions occurred during transmit,
1556		 * but we eventually sent the packet OK.
1557		 */
1558		if (status & BD_ENET_TX_DEF)
1559			ndev->stats.collisions++;
1560
1561		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1562			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1563			 * are to time stamp the packet, so we still need to check time
1564			 * stamping enabled flag.
1565			 */
1566			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1567				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1568				struct skb_shared_hwtstamps shhwtstamps;
1569				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1570
1571				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1572				skb_tstamp_tx(skb, &shhwtstamps);
1573			}
1574
1575			/* Free the sk buffer associated with this last transmit */
1576			napi_consume_skb(skb, budget);
1577		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1578			xdp_return_frame_rx_napi(xdpf);
1579		} else { /* recycle pages of XDP_TX frames */
1580			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1581			page_pool_put_page(page->pp, page, 0, true);
1582		}
1583
1584		txq->tx_buf[index].buf_p = NULL;
1585		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1586		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1587
1588tx_buf_done:
1589		/* Make sure the update to bdp and tx_buf are performed
1590		 * before dirty_tx
1591		 */
1592		wmb();
1593		txq->dirty_tx = bdp;
1594
1595		/* Update pointer to next buffer descriptor to be transmitted */
1596		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1597
1598		/* Since we have freed up a buffer, the ring is no longer full
1599		 */
1600		if (netif_tx_queue_stopped(nq)) {
1601			entries_free = fec_enet_get_free_txdesc_num(txq);
1602			if (entries_free >= txq->tx_wake_threshold)
1603				netif_tx_wake_queue(nq);
1604		}
1605	}
1606
1607	/* ERR006358: Keep the transmitter going */
1608	if (bdp != txq->bd.cur &&
1609	    readl(txq->bd.reg_desc_active) == 0)
1610		writel(0, txq->bd.reg_desc_active);
1611}
1612
1613static void fec_enet_tx(struct net_device *ndev, int budget)
1614{
1615	struct fec_enet_private *fep = netdev_priv(ndev);
1616	int i;
1617
1618	/* Make sure that AVB queues are processed first. */
1619	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1620		fec_enet_tx_queue(ndev, i, budget);
1621}
1622
1623static int fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1624				struct bufdesc *bdp, int index)
1625{
1626	struct page *new_page;
1627	dma_addr_t phys_addr;
1628
1629	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1630	if (unlikely(!new_page))
1631		return -ENOMEM;
1632
1633	rxq->rx_skb_info[index].page = new_page;
1634	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1635	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1636	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1637
1638	return 0;
1639}
1640
1641static u32
1642fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1643		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1644{
1645	unsigned int sync, len = xdp->data_end - xdp->data;
1646	u32 ret = FEC_ENET_XDP_PASS;
1647	struct page *page;
1648	int err;
1649	u32 act;
1650
1651	act = bpf_prog_run_xdp(prog, xdp);
1652
1653	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1654	 * max len CPU touch
1655	 */
1656	sync = xdp->data_end - xdp->data;
1657	sync = max(sync, len);
1658
1659	switch (act) {
1660	case XDP_PASS:
1661		rxq->stats[RX_XDP_PASS]++;
1662		ret = FEC_ENET_XDP_PASS;
1663		break;
1664
1665	case XDP_REDIRECT:
1666		rxq->stats[RX_XDP_REDIRECT]++;
1667		err = xdp_do_redirect(fep->netdev, xdp, prog);
1668		if (unlikely(err))
1669			goto xdp_err;
1670
1671		ret = FEC_ENET_XDP_REDIR;
1672		break;
1673
1674	case XDP_TX:
1675		rxq->stats[RX_XDP_TX]++;
1676		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1677		if (unlikely(err)) {
1678			rxq->stats[RX_XDP_TX_ERRORS]++;
1679			goto xdp_err;
1680		}
1681
1682		ret = FEC_ENET_XDP_TX;
1683		break;
1684
1685	default:
1686		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1687		fallthrough;
1688
1689	case XDP_ABORTED:
1690		fallthrough;    /* handle aborts by dropping packet */
1691
1692	case XDP_DROP:
1693		rxq->stats[RX_XDP_DROP]++;
1694xdp_err:
1695		ret = FEC_ENET_XDP_CONSUMED;
1696		page = virt_to_head_page(xdp->data);
1697		page_pool_put_page(rxq->page_pool, page, sync, true);
1698		if (act != XDP_DROP)
1699			trace_xdp_exception(fep->netdev, prog, act);
1700		break;
1701	}
1702
1703	return ret;
1704}
1705
1706/* During a receive, the bd_rx.cur points to the current incoming buffer.
1707 * When we update through the ring, if the next incoming buffer has
1708 * not been given to the system, we just set the empty indicator,
1709 * effectively tossing the packet.
1710 */
1711static int
1712fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1713{
1714	struct fec_enet_private *fep = netdev_priv(ndev);
1715	struct fec_enet_priv_rx_q *rxq;
1716	struct bufdesc *bdp;
1717	unsigned short status;
1718	struct  sk_buff *skb;
1719	ushort	pkt_len;
1720	__u8 *data;
1721	int	pkt_received = 0;
1722	struct	bufdesc_ex *ebdp = NULL;
1723	bool	vlan_packet_rcvd = false;
1724	u16	vlan_tag;
1725	int	index = 0;
1726	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1727	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1728	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1729	u32 data_start = FEC_ENET_XDP_HEADROOM;
1730	int cpu = smp_processor_id();
1731	struct xdp_buff xdp;
1732	struct page *page;
1733	__fec32 cbd_bufaddr;
1734	u32 sub_len = 4;
1735
1736#if !defined(CONFIG_M5272)
1737	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1738	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1739	 */
1740	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1741		data_start += 2;
1742		sub_len += 2;
1743	}
1744#endif
1745
1746#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1747	/*
1748	 * Hacky flush of all caches instead of using the DMA API for the TSO
1749	 * headers.
1750	 */
1751	flush_cache_all();
1752#endif
1753	rxq = fep->rx_queue[queue_id];
1754
1755	/* First, grab all of the stats for the incoming packet.
1756	 * These get messed up if we get called due to a busy condition.
1757	 */
1758	bdp = rxq->bd.cur;
1759	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1760
1761	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1762
1763		if (pkt_received >= budget)
1764			break;
1765		pkt_received++;
1766
1767		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1768
1769		/* Check for errors. */
1770		status ^= BD_ENET_RX_LAST;
1771		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1772			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1773			   BD_ENET_RX_CL)) {
1774			ndev->stats.rx_errors++;
1775			if (status & BD_ENET_RX_OV) {
1776				/* FIFO overrun */
1777				ndev->stats.rx_fifo_errors++;
1778				goto rx_processing_done;
1779			}
1780			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1781						| BD_ENET_RX_LAST)) {
1782				/* Frame too long or too short. */
1783				ndev->stats.rx_length_errors++;
1784				if (status & BD_ENET_RX_LAST)
1785					netdev_err(ndev, "rcv is not +last\n");
1786			}
1787			if (status & BD_ENET_RX_CR)	/* CRC Error */
1788				ndev->stats.rx_crc_errors++;
1789			/* Report late collisions as a frame error. */
1790			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1791				ndev->stats.rx_frame_errors++;
1792			goto rx_processing_done;
1793		}
1794
1795		/* Process the incoming frame. */
1796		ndev->stats.rx_packets++;
1797		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1798		ndev->stats.rx_bytes += pkt_len;
1799
1800		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1801		page = rxq->rx_skb_info[index].page;
1802		cbd_bufaddr = bdp->cbd_bufaddr;
1803		if (fec_enet_update_cbd(rxq, bdp, index)) {
1804			ndev->stats.rx_dropped++;
1805			goto rx_processing_done;
1806		}
1807
1808		dma_sync_single_for_cpu(&fep->pdev->dev,
1809					fec32_to_cpu(cbd_bufaddr),
1810					pkt_len,
1811					DMA_FROM_DEVICE);
1812		prefetch(page_address(page));
1813
1814		if (xdp_prog) {
1815			xdp_buff_clear_frags_flag(&xdp);
1816			/* subtract 16bit shift and FCS */
1817			xdp_prepare_buff(&xdp, page_address(page),
1818					 data_start, pkt_len - sub_len, false);
1819			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1820			xdp_result |= ret;
1821			if (ret != FEC_ENET_XDP_PASS)
1822				goto rx_processing_done;
1823		}
1824
1825		/* The packet length includes FCS, but we don't want to
1826		 * include that when passing upstream as it messes up
1827		 * bridging applications.
1828		 */
1829		skb = build_skb(page_address(page), PAGE_SIZE);
1830		if (unlikely(!skb)) {
1831			page_pool_recycle_direct(rxq->page_pool, page);
1832			ndev->stats.rx_dropped++;
1833
1834			netdev_err_once(ndev, "build_skb failed!\n");
1835			goto rx_processing_done;
1836		}
1837
1838		skb_reserve(skb, data_start);
1839		skb_put(skb, pkt_len - sub_len);
1840		skb_mark_for_recycle(skb);
1841
1842		if (unlikely(need_swap)) {
1843			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1844			swap_buffer(data, pkt_len);
1845		}
1846		data = skb->data;
1847
1848		/* Extract the enhanced buffer descriptor */
1849		ebdp = NULL;
1850		if (fep->bufdesc_ex)
1851			ebdp = (struct bufdesc_ex *)bdp;
1852
1853		/* If this is a VLAN packet remove the VLAN Tag */
1854		vlan_packet_rcvd = false;
1855		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1856		    fep->bufdesc_ex &&
1857		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1858			/* Push and remove the vlan tag */
1859			struct vlan_hdr *vlan_header =
1860					(struct vlan_hdr *) (data + ETH_HLEN);
1861			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1862
1863			vlan_packet_rcvd = true;
1864
1865			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1866			skb_pull(skb, VLAN_HLEN);
1867		}
1868
1869		skb->protocol = eth_type_trans(skb, ndev);
1870
1871		/* Get receive timestamp from the skb */
1872		if (fep->hwts_rx_en && fep->bufdesc_ex)
1873			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1874					  skb_hwtstamps(skb));
1875
1876		if (fep->bufdesc_ex &&
1877		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1878			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1879				/* don't check it */
1880				skb->ip_summed = CHECKSUM_UNNECESSARY;
1881			} else {
1882				skb_checksum_none_assert(skb);
1883			}
1884		}
1885
1886		/* Handle received VLAN packets */
1887		if (vlan_packet_rcvd)
1888			__vlan_hwaccel_put_tag(skb,
1889					       htons(ETH_P_8021Q),
1890					       vlan_tag);
1891
1892		skb_record_rx_queue(skb, queue_id);
1893		napi_gro_receive(&fep->napi, skb);
1894
1895rx_processing_done:
1896		/* Clear the status flags for this buffer */
1897		status &= ~BD_ENET_RX_STATS;
1898
1899		/* Mark the buffer empty */
1900		status |= BD_ENET_RX_EMPTY;
1901
1902		if (fep->bufdesc_ex) {
1903			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1904
1905			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1906			ebdp->cbd_prot = 0;
1907			ebdp->cbd_bdu = 0;
1908		}
1909		/* Make sure the updates to rest of the descriptor are
1910		 * performed before transferring ownership.
1911		 */
1912		wmb();
1913		bdp->cbd_sc = cpu_to_fec16(status);
1914
1915		/* Update BD pointer to next entry */
1916		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1917
1918		/* Doing this here will keep the FEC running while we process
1919		 * incoming frames.  On a heavily loaded network, we should be
1920		 * able to keep up at the expense of system resources.
1921		 */
1922		writel(0, rxq->bd.reg_desc_active);
1923	}
1924	rxq->bd.cur = bdp;
1925
1926	if (xdp_result & FEC_ENET_XDP_REDIR)
1927		xdp_do_flush();
1928
1929	return pkt_received;
1930}
1931
1932static int fec_enet_rx(struct net_device *ndev, int budget)
1933{
1934	struct fec_enet_private *fep = netdev_priv(ndev);
1935	int i, done = 0;
1936
1937	/* Make sure that AVB queues are processed first. */
1938	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1939		done += fec_enet_rx_queue(ndev, budget - done, i);
1940
1941	return done;
1942}
1943
1944static bool fec_enet_collect_events(struct fec_enet_private *fep)
1945{
1946	uint int_events;
1947
1948	int_events = readl(fep->hwp + FEC_IEVENT);
1949
1950	/* Don't clear MDIO events, we poll for those */
1951	int_events &= ~FEC_ENET_MII;
1952
1953	writel(int_events, fep->hwp + FEC_IEVENT);
1954
1955	return int_events != 0;
1956}
1957
1958static irqreturn_t
1959fec_enet_interrupt(int irq, void *dev_id)
1960{
1961	struct net_device *ndev = dev_id;
1962	struct fec_enet_private *fep = netdev_priv(ndev);
1963	irqreturn_t ret = IRQ_NONE;
1964
1965	if (fec_enet_collect_events(fep) && fep->link) {
1966		ret = IRQ_HANDLED;
1967
1968		if (napi_schedule_prep(&fep->napi)) {
1969			/* Disable interrupts */
1970			writel(0, fep->hwp + FEC_IMASK);
1971			__napi_schedule(&fep->napi);
1972		}
1973	}
1974
1975	return ret;
1976}
1977
1978static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1979{
1980	struct net_device *ndev = napi->dev;
1981	struct fec_enet_private *fep = netdev_priv(ndev);
1982	int done = 0;
1983
1984	do {
1985		done += fec_enet_rx(ndev, budget - done);
1986		fec_enet_tx(ndev, budget);
1987	} while ((done < budget) && fec_enet_collect_events(fep));
1988
1989	if (done < budget) {
1990		napi_complete_done(napi, done);
1991		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1992	}
1993
1994	return done;
1995}
1996
1997/* ------------------------------------------------------------------------- */
1998static int fec_get_mac(struct net_device *ndev)
1999{
2000	struct fec_enet_private *fep = netdev_priv(ndev);
2001	unsigned char *iap, tmpaddr[ETH_ALEN];
2002	int ret;
2003
2004	/*
2005	 * try to get mac address in following order:
2006	 *
2007	 * 1) module parameter via kernel command line in form
2008	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
2009	 */
2010	iap = macaddr;
2011
2012	/*
2013	 * 2) from device tree data
2014	 */
2015	if (!is_valid_ether_addr(iap)) {
2016		struct device_node *np = fep->pdev->dev.of_node;
2017		if (np) {
2018			ret = of_get_mac_address(np, tmpaddr);
2019			if (!ret)
2020				iap = tmpaddr;
2021			else if (ret == -EPROBE_DEFER)
2022				return ret;
2023		}
2024	}
2025
2026	/*
2027	 * 3) from flash or fuse (via platform data)
2028	 */
2029	if (!is_valid_ether_addr(iap)) {
2030#ifdef CONFIG_M5272
2031		if (FEC_FLASHMAC)
2032			iap = (unsigned char *)FEC_FLASHMAC;
2033#else
2034		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
2035
2036		if (pdata)
2037			iap = (unsigned char *)&pdata->mac;
2038#endif
2039	}
2040
2041	/*
2042	 * 4) FEC mac registers set by bootloader
2043	 */
2044	if (!is_valid_ether_addr(iap)) {
2045		*((__be32 *) &tmpaddr[0]) =
2046			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
2047		*((__be16 *) &tmpaddr[4]) =
2048			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
2049		iap = &tmpaddr[0];
2050	}
2051
2052	/*
2053	 * 5) random mac address
2054	 */
2055	if (!is_valid_ether_addr(iap)) {
2056		/* Report it and use a random ethernet address instead */
2057		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2058		eth_hw_addr_random(ndev);
2059		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2060			 ndev->dev_addr);
2061		return 0;
2062	}
2063
2064	/* Adjust MAC if using macaddr */
2065	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2066
2067	return 0;
2068}
2069
2070/* ------------------------------------------------------------------------- */
2071
2072/*
2073 * Phy section
2074 */
2075
2076/* LPI Sleep Ts count base on tx clk (clk_ref).
2077 * The lpi sleep cnt value = X us / (cycle_ns).
2078 */
2079static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2080{
2081	struct fec_enet_private *fep = netdev_priv(ndev);
2082
2083	return us * (fep->clk_ref_rate / 1000) / 1000;
2084}
2085
2086static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2087{
2088	struct fec_enet_private *fep = netdev_priv(ndev);
2089	struct ethtool_keee *p = &fep->eee;
2090	unsigned int sleep_cycle, wake_cycle;
2091
2092	if (enable) {
2093		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2094		wake_cycle = sleep_cycle;
2095	} else {
2096		sleep_cycle = 0;
2097		wake_cycle = 0;
2098	}
2099
2100	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2101	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2102
2103	return 0;
2104}
2105
2106static void fec_enet_adjust_link(struct net_device *ndev)
2107{
2108	struct fec_enet_private *fep = netdev_priv(ndev);
2109	struct phy_device *phy_dev = ndev->phydev;
2110	int status_change = 0;
2111
2112	/*
2113	 * If the netdev is down, or is going down, we're not interested
2114	 * in link state events, so just mark our idea of the link as down
2115	 * and ignore the event.
2116	 */
2117	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2118		fep->link = 0;
2119	} else if (phy_dev->link) {
2120		if (!fep->link) {
2121			fep->link = phy_dev->link;
2122			status_change = 1;
2123		}
2124
2125		if (fep->full_duplex != phy_dev->duplex) {
2126			fep->full_duplex = phy_dev->duplex;
2127			status_change = 1;
2128		}
2129
2130		if (phy_dev->speed != fep->speed) {
2131			fep->speed = phy_dev->speed;
2132			status_change = 1;
2133		}
2134
2135		/* if any of the above changed restart the FEC */
2136		if (status_change) {
2137			netif_stop_queue(ndev);
2138			napi_disable(&fep->napi);
2139			netif_tx_lock_bh(ndev);
2140			fec_restart(ndev);
2141			netif_tx_wake_all_queues(ndev);
2142			netif_tx_unlock_bh(ndev);
2143			napi_enable(&fep->napi);
2144		}
2145		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2146			fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi);
2147	} else {
2148		if (fep->link) {
2149			netif_stop_queue(ndev);
2150			napi_disable(&fep->napi);
2151			netif_tx_lock_bh(ndev);
2152			fec_stop(ndev);
2153			netif_tx_unlock_bh(ndev);
2154			napi_enable(&fep->napi);
2155			fep->link = phy_dev->link;
2156			status_change = 1;
2157		}
2158	}
2159
2160	if (status_change)
2161		phy_print_status(phy_dev);
2162}
2163
2164static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2165{
2166	uint ievent;
2167	int ret;
2168
2169	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2170					ievent & FEC_ENET_MII, 2, 30000);
2171
2172	if (!ret)
2173		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2174
2175	return ret;
2176}
2177
2178static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2179{
2180	struct fec_enet_private *fep = bus->priv;
2181	struct device *dev = &fep->pdev->dev;
2182	int ret = 0, frame_start, frame_addr, frame_op;
2183
2184	ret = pm_runtime_resume_and_get(dev);
2185	if (ret < 0)
2186		return ret;
2187
2188	/* C22 read */
2189	frame_op = FEC_MMFR_OP_READ;
2190	frame_start = FEC_MMFR_ST;
2191	frame_addr = regnum;
2192
2193	/* start a read op */
2194	writel(frame_start | frame_op |
2195	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2196	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2197
2198	/* wait for end of transfer */
2199	ret = fec_enet_mdio_wait(fep);
2200	if (ret) {
2201		netdev_err(fep->netdev, "MDIO read timeout\n");
2202		goto out;
2203	}
2204
2205	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2206
2207out:
2208	pm_runtime_mark_last_busy(dev);
2209	pm_runtime_put_autosuspend(dev);
2210
2211	return ret;
2212}
2213
2214static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2215				  int devad, int regnum)
2216{
2217	struct fec_enet_private *fep = bus->priv;
2218	struct device *dev = &fep->pdev->dev;
2219	int ret = 0, frame_start, frame_op;
2220
2221	ret = pm_runtime_resume_and_get(dev);
2222	if (ret < 0)
2223		return ret;
2224
2225	frame_start = FEC_MMFR_ST_C45;
2226
2227	/* write address */
2228	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2229	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2230	       FEC_MMFR_TA | (regnum & 0xFFFF),
2231	       fep->hwp + FEC_MII_DATA);
2232
2233	/* wait for end of transfer */
2234	ret = fec_enet_mdio_wait(fep);
2235	if (ret) {
2236		netdev_err(fep->netdev, "MDIO address write timeout\n");
2237		goto out;
2238	}
2239
2240	frame_op = FEC_MMFR_OP_READ_C45;
2241
2242	/* start a read op */
2243	writel(frame_start | frame_op |
2244	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2245	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2246
2247	/* wait for end of transfer */
2248	ret = fec_enet_mdio_wait(fep);
2249	if (ret) {
2250		netdev_err(fep->netdev, "MDIO read timeout\n");
2251		goto out;
2252	}
2253
2254	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2255
2256out:
2257	pm_runtime_mark_last_busy(dev);
2258	pm_runtime_put_autosuspend(dev);
2259
2260	return ret;
2261}
2262
2263static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2264				   u16 value)
2265{
2266	struct fec_enet_private *fep = bus->priv;
2267	struct device *dev = &fep->pdev->dev;
2268	int ret, frame_start, frame_addr;
2269
2270	ret = pm_runtime_resume_and_get(dev);
2271	if (ret < 0)
2272		return ret;
2273
2274	/* C22 write */
2275	frame_start = FEC_MMFR_ST;
2276	frame_addr = regnum;
2277
2278	/* start a write op */
2279	writel(frame_start | FEC_MMFR_OP_WRITE |
2280	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2281	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2282	       fep->hwp + FEC_MII_DATA);
2283
2284	/* wait for end of transfer */
2285	ret = fec_enet_mdio_wait(fep);
2286	if (ret)
2287		netdev_err(fep->netdev, "MDIO write timeout\n");
2288
2289	pm_runtime_mark_last_busy(dev);
2290	pm_runtime_put_autosuspend(dev);
2291
2292	return ret;
2293}
2294
2295static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2296				   int devad, int regnum, u16 value)
2297{
2298	struct fec_enet_private *fep = bus->priv;
2299	struct device *dev = &fep->pdev->dev;
2300	int ret, frame_start;
2301
2302	ret = pm_runtime_resume_and_get(dev);
2303	if (ret < 0)
2304		return ret;
2305
2306	frame_start = FEC_MMFR_ST_C45;
2307
2308	/* write address */
2309	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2310	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2311	       FEC_MMFR_TA | (regnum & 0xFFFF),
2312	       fep->hwp + FEC_MII_DATA);
2313
2314	/* wait for end of transfer */
2315	ret = fec_enet_mdio_wait(fep);
2316	if (ret) {
2317		netdev_err(fep->netdev, "MDIO address write timeout\n");
2318		goto out;
2319	}
2320
2321	/* start a write op */
2322	writel(frame_start | FEC_MMFR_OP_WRITE |
2323	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2324	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2325	       fep->hwp + FEC_MII_DATA);
2326
2327	/* wait for end of transfer */
2328	ret = fec_enet_mdio_wait(fep);
2329	if (ret)
2330		netdev_err(fep->netdev, "MDIO write timeout\n");
2331
2332out:
2333	pm_runtime_mark_last_busy(dev);
2334	pm_runtime_put_autosuspend(dev);
2335
2336	return ret;
2337}
2338
2339static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2340{
2341	struct fec_enet_private *fep = netdev_priv(ndev);
2342	struct phy_device *phy_dev = ndev->phydev;
2343
2344	if (phy_dev) {
2345		phy_reset_after_clk_enable(phy_dev);
2346	} else if (fep->phy_node) {
2347		/*
2348		 * If the PHY still is not bound to the MAC, but there is
2349		 * OF PHY node and a matching PHY device instance already,
2350		 * use the OF PHY node to obtain the PHY device instance,
2351		 * and then use that PHY device instance when triggering
2352		 * the PHY reset.
2353		 */
2354		phy_dev = of_phy_find_device(fep->phy_node);
2355		phy_reset_after_clk_enable(phy_dev);
2356		put_device(&phy_dev->mdio.dev);
2357	}
2358}
2359
2360static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2361{
2362	struct fec_enet_private *fep = netdev_priv(ndev);
2363	int ret;
2364
2365	if (enable) {
2366		ret = clk_prepare_enable(fep->clk_enet_out);
2367		if (ret)
2368			return ret;
2369
2370		if (fep->clk_ptp) {
2371			mutex_lock(&fep->ptp_clk_mutex);
2372			ret = clk_prepare_enable(fep->clk_ptp);
2373			if (ret) {
2374				mutex_unlock(&fep->ptp_clk_mutex);
2375				goto failed_clk_ptp;
2376			} else {
2377				fep->ptp_clk_on = true;
2378			}
2379			mutex_unlock(&fep->ptp_clk_mutex);
2380		}
2381
2382		ret = clk_prepare_enable(fep->clk_ref);
2383		if (ret)
2384			goto failed_clk_ref;
2385
2386		ret = clk_prepare_enable(fep->clk_2x_txclk);
2387		if (ret)
2388			goto failed_clk_2x_txclk;
2389
2390		fec_enet_phy_reset_after_clk_enable(ndev);
2391	} else {
2392		clk_disable_unprepare(fep->clk_enet_out);
2393		if (fep->clk_ptp) {
2394			mutex_lock(&fep->ptp_clk_mutex);
2395			clk_disable_unprepare(fep->clk_ptp);
2396			fep->ptp_clk_on = false;
2397			mutex_unlock(&fep->ptp_clk_mutex);
2398		}
2399		clk_disable_unprepare(fep->clk_ref);
2400		clk_disable_unprepare(fep->clk_2x_txclk);
2401	}
2402
2403	return 0;
2404
2405failed_clk_2x_txclk:
2406	if (fep->clk_ref)
2407		clk_disable_unprepare(fep->clk_ref);
2408failed_clk_ref:
2409	if (fep->clk_ptp) {
2410		mutex_lock(&fep->ptp_clk_mutex);
2411		clk_disable_unprepare(fep->clk_ptp);
2412		fep->ptp_clk_on = false;
2413		mutex_unlock(&fep->ptp_clk_mutex);
2414	}
2415failed_clk_ptp:
2416	clk_disable_unprepare(fep->clk_enet_out);
2417
2418	return ret;
2419}
2420
2421static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2422				      struct device_node *np)
2423{
2424	u32 rgmii_tx_delay, rgmii_rx_delay;
2425
2426	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2427	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2428		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2429			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2430			return -EINVAL;
2431		} else if (rgmii_tx_delay == 2000) {
2432			fep->rgmii_txc_dly = true;
2433		}
2434	}
2435
2436	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2437	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2438		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2439			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2440			return -EINVAL;
2441		} else if (rgmii_rx_delay == 2000) {
2442			fep->rgmii_rxc_dly = true;
2443		}
2444	}
2445
2446	return 0;
2447}
2448
2449static int fec_enet_mii_probe(struct net_device *ndev)
2450{
2451	struct fec_enet_private *fep = netdev_priv(ndev);
2452	struct phy_device *phy_dev = NULL;
2453	char mdio_bus_id[MII_BUS_ID_SIZE];
2454	char phy_name[MII_BUS_ID_SIZE + 3];
2455	int phy_id;
2456	int dev_id = fep->dev_id;
2457
2458	if (fep->phy_node) {
2459		phy_dev = of_phy_connect(ndev, fep->phy_node,
2460					 &fec_enet_adjust_link, 0,
2461					 fep->phy_interface);
2462		if (!phy_dev) {
2463			netdev_err(ndev, "Unable to connect to phy\n");
2464			return -ENODEV;
2465		}
2466	} else {
2467		/* check for attached phy */
2468		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2469			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2470				continue;
2471			if (dev_id--)
2472				continue;
2473			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2474			break;
2475		}
2476
2477		if (phy_id >= PHY_MAX_ADDR) {
2478			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2479			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2480			phy_id = 0;
2481		}
2482
2483		snprintf(phy_name, sizeof(phy_name),
2484			 PHY_ID_FMT, mdio_bus_id, phy_id);
2485		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2486				      fep->phy_interface);
2487	}
2488
2489	if (IS_ERR(phy_dev)) {
2490		netdev_err(ndev, "could not attach to PHY\n");
2491		return PTR_ERR(phy_dev);
2492	}
2493
2494	/* mask with MAC supported features */
2495	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2496		phy_set_max_speed(phy_dev, 1000);
2497		phy_remove_link_mode(phy_dev,
2498				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2499#if !defined(CONFIG_M5272)
2500		phy_support_sym_pause(phy_dev);
2501#endif
2502	}
2503	else
2504		phy_set_max_speed(phy_dev, 100);
2505
2506	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2507		phy_support_eee(phy_dev);
2508
2509	fep->link = 0;
2510	fep->full_duplex = 0;
2511
2512	phy_attached_info(phy_dev);
2513
2514	return 0;
2515}
2516
2517static int fec_enet_mii_init(struct platform_device *pdev)
2518{
2519	static struct mii_bus *fec0_mii_bus;
2520	struct net_device *ndev = platform_get_drvdata(pdev);
2521	struct fec_enet_private *fep = netdev_priv(ndev);
2522	bool suppress_preamble = false;
2523	struct phy_device *phydev;
2524	struct device_node *node;
2525	int err = -ENXIO;
2526	u32 mii_speed, holdtime;
2527	u32 bus_freq;
2528	int addr;
2529
2530	/*
2531	 * The i.MX28 dual fec interfaces are not equal.
2532	 * Here are the differences:
2533	 *
2534	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2535	 *  - fec0 acts as the 1588 time master while fec1 is slave
2536	 *  - external phys can only be configured by fec0
2537	 *
2538	 * That is to say fec1 can not work independently. It only works
2539	 * when fec0 is working. The reason behind this design is that the
2540	 * second interface is added primarily for Switch mode.
2541	 *
2542	 * Because of the last point above, both phys are attached on fec0
2543	 * mdio interface in board design, and need to be configured by
2544	 * fec0 mii_bus.
2545	 */
2546	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2547		/* fec1 uses fec0 mii_bus */
2548		if (mii_cnt && fec0_mii_bus) {
2549			fep->mii_bus = fec0_mii_bus;
2550			mii_cnt++;
2551			return 0;
2552		}
2553		return -ENOENT;
2554	}
2555
2556	bus_freq = 2500000; /* 2.5MHz by default */
2557	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2558	if (node) {
2559		of_property_read_u32(node, "clock-frequency", &bus_freq);
2560		suppress_preamble = of_property_read_bool(node,
2561							  "suppress-preamble");
2562	}
2563
2564	/*
2565	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2566	 *
2567	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2568	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2569	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2570	 * document.
2571	 */
2572	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2573	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2574		mii_speed--;
2575	if (mii_speed > 63) {
2576		dev_err(&pdev->dev,
2577			"fec clock (%lu) too fast to get right mii speed\n",
2578			clk_get_rate(fep->clk_ipg));
2579		err = -EINVAL;
2580		goto err_out;
2581	}
2582
2583	/*
2584	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2585	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2586	 * versions are RAZ there, so just ignore the difference and write the
2587	 * register always.
2588	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2589	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2590	 * output.
2591	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2592	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2593	 * holdtime cannot result in a value greater than 3.
2594	 */
2595	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2596
2597	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2598
2599	if (suppress_preamble)
2600		fep->phy_speed |= BIT(7);
2601
2602	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2603		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2604		 * MII event generation condition:
2605		 * - writing MSCR:
2606		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2607		 *	  mscr_reg_data_in[7:0] != 0
2608		 * - writing MMFR:
2609		 *	- mscr[7:0]_not_zero
2610		 */
2611		writel(0, fep->hwp + FEC_MII_DATA);
2612	}
2613
2614	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2615
2616	/* Clear any pending transaction complete indication */
2617	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2618
2619	fep->mii_bus = mdiobus_alloc();
2620	if (fep->mii_bus == NULL) {
2621		err = -ENOMEM;
2622		goto err_out;
2623	}
2624
2625	fep->mii_bus->name = "fec_enet_mii_bus";
2626	fep->mii_bus->read = fec_enet_mdio_read_c22;
2627	fep->mii_bus->write = fec_enet_mdio_write_c22;
2628	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2629		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2630		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2631	}
2632	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2633		pdev->name, fep->dev_id + 1);
2634	fep->mii_bus->priv = fep;
2635	fep->mii_bus->parent = &pdev->dev;
2636
2637	err = of_mdiobus_register(fep->mii_bus, node);
2638	if (err)
2639		goto err_out_free_mdiobus;
2640	of_node_put(node);
2641
2642	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2643	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2644		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2645		if (phydev)
2646			phydev->mac_managed_pm = true;
2647	}
2648
2649	mii_cnt++;
2650
2651	/* save fec0 mii_bus */
2652	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2653		fec0_mii_bus = fep->mii_bus;
2654
2655	return 0;
2656
2657err_out_free_mdiobus:
2658	mdiobus_free(fep->mii_bus);
2659err_out:
2660	of_node_put(node);
2661	return err;
2662}
2663
2664static void fec_enet_mii_remove(struct fec_enet_private *fep)
2665{
2666	if (--mii_cnt == 0) {
2667		mdiobus_unregister(fep->mii_bus);
2668		mdiobus_free(fep->mii_bus);
2669	}
2670}
2671
2672static void fec_enet_get_drvinfo(struct net_device *ndev,
2673				 struct ethtool_drvinfo *info)
2674{
2675	struct fec_enet_private *fep = netdev_priv(ndev);
2676
2677	strscpy(info->driver, fep->pdev->dev.driver->name,
2678		sizeof(info->driver));
2679	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2680}
2681
2682static int fec_enet_get_regs_len(struct net_device *ndev)
2683{
2684	struct fec_enet_private *fep = netdev_priv(ndev);
2685	struct resource *r;
2686	int s = 0;
2687
2688	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2689	if (r)
2690		s = resource_size(r);
2691
2692	return s;
2693}
2694
2695/* List of registers that can be safety be read to dump them with ethtool */
2696#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2697	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2698	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2699static __u32 fec_enet_register_version = 2;
2700static u32 fec_enet_register_offset[] = {
2701	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2702	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2703	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2704	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2705	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2706	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2707	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2708	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2709	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2710	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2711	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2712	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2713	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2714	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2715	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2716	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2717	RMON_T_P_GTE2048, RMON_T_OCTETS,
2718	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2719	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2720	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2721	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2722	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2723	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2724	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2725	RMON_R_P_GTE2048, RMON_R_OCTETS,
2726	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2727	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2728};
2729/* for i.MX6ul */
2730static u32 fec_enet_register_offset_6ul[] = {
2731	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2732	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2733	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2734	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2735	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2736	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2737	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2738	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2739	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2740	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2741	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2742	RMON_T_P_GTE2048, RMON_T_OCTETS,
2743	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2744	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2745	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2746	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2747	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2748	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2749	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2750	RMON_R_P_GTE2048, RMON_R_OCTETS,
2751	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2752	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2753};
2754#else
2755static __u32 fec_enet_register_version = 1;
2756static u32 fec_enet_register_offset[] = {
2757	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2758	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2759	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2760	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2761	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2762	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2763	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2764	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2765	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2766};
2767#endif
2768
2769static void fec_enet_get_regs(struct net_device *ndev,
2770			      struct ethtool_regs *regs, void *regbuf)
2771{
2772	struct fec_enet_private *fep = netdev_priv(ndev);
2773	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2774	struct device *dev = &fep->pdev->dev;
2775	u32 *buf = (u32 *)regbuf;
2776	u32 i, off;
2777	int ret;
2778#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2779	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2780	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2781	u32 *reg_list;
2782	u32 reg_cnt;
2783
2784	if (!of_machine_is_compatible("fsl,imx6ul")) {
2785		reg_list = fec_enet_register_offset;
2786		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2787	} else {
2788		reg_list = fec_enet_register_offset_6ul;
2789		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2790	}
2791#else
2792	/* coldfire */
2793	static u32 *reg_list = fec_enet_register_offset;
2794	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2795#endif
2796	ret = pm_runtime_resume_and_get(dev);
2797	if (ret < 0)
2798		return;
2799
2800	regs->version = fec_enet_register_version;
2801
2802	memset(buf, 0, regs->len);
2803
2804	for (i = 0; i < reg_cnt; i++) {
2805		off = reg_list[i];
2806
2807		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2808		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2809			continue;
2810
2811		off >>= 2;
2812		buf[off] = readl(&theregs[off]);
2813	}
2814
2815	pm_runtime_mark_last_busy(dev);
2816	pm_runtime_put_autosuspend(dev);
2817}
2818
2819static int fec_enet_get_ts_info(struct net_device *ndev,
2820				struct kernel_ethtool_ts_info *info)
2821{
2822	struct fec_enet_private *fep = netdev_priv(ndev);
2823
2824	if (fep->bufdesc_ex) {
2825
2826		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2827					SOF_TIMESTAMPING_TX_HARDWARE |
2828					SOF_TIMESTAMPING_RX_HARDWARE |
2829					SOF_TIMESTAMPING_RAW_HARDWARE;
2830		if (fep->ptp_clock)
2831			info->phc_index = ptp_clock_index(fep->ptp_clock);
2832
2833		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2834				 (1 << HWTSTAMP_TX_ON);
2835
2836		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2837				   (1 << HWTSTAMP_FILTER_ALL);
2838		return 0;
2839	} else {
2840		return ethtool_op_get_ts_info(ndev, info);
2841	}
2842}
2843
2844#if !defined(CONFIG_M5272)
2845
2846static void fec_enet_get_pauseparam(struct net_device *ndev,
2847				    struct ethtool_pauseparam *pause)
2848{
2849	struct fec_enet_private *fep = netdev_priv(ndev);
2850
2851	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2852	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2853	pause->rx_pause = pause->tx_pause;
2854}
2855
2856static int fec_enet_set_pauseparam(struct net_device *ndev,
2857				   struct ethtool_pauseparam *pause)
2858{
2859	struct fec_enet_private *fep = netdev_priv(ndev);
2860
2861	if (!ndev->phydev)
2862		return -ENODEV;
2863
2864	if (pause->tx_pause != pause->rx_pause) {
2865		netdev_info(ndev,
2866			"hardware only support enable/disable both tx and rx");
2867		return -EINVAL;
2868	}
2869
2870	fep->pause_flag = 0;
2871
2872	/* tx pause must be same as rx pause */
2873	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2874	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2875
2876	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2877			  pause->autoneg);
2878
2879	if (pause->autoneg) {
2880		if (netif_running(ndev))
2881			fec_stop(ndev);
2882		phy_start_aneg(ndev->phydev);
2883	}
2884	if (netif_running(ndev)) {
2885		napi_disable(&fep->napi);
2886		netif_tx_lock_bh(ndev);
2887		fec_restart(ndev);
2888		netif_tx_wake_all_queues(ndev);
2889		netif_tx_unlock_bh(ndev);
2890		napi_enable(&fep->napi);
2891	}
2892
2893	return 0;
2894}
2895
2896static const struct fec_stat {
2897	char name[ETH_GSTRING_LEN];
2898	u16 offset;
2899} fec_stats[] = {
2900	/* RMON TX */
2901	{ "tx_dropped", RMON_T_DROP },
2902	{ "tx_packets", RMON_T_PACKETS },
2903	{ "tx_broadcast", RMON_T_BC_PKT },
2904	{ "tx_multicast", RMON_T_MC_PKT },
2905	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2906	{ "tx_undersize", RMON_T_UNDERSIZE },
2907	{ "tx_oversize", RMON_T_OVERSIZE },
2908	{ "tx_fragment", RMON_T_FRAG },
2909	{ "tx_jabber", RMON_T_JAB },
2910	{ "tx_collision", RMON_T_COL },
2911	{ "tx_64byte", RMON_T_P64 },
2912	{ "tx_65to127byte", RMON_T_P65TO127 },
2913	{ "tx_128to255byte", RMON_T_P128TO255 },
2914	{ "tx_256to511byte", RMON_T_P256TO511 },
2915	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2916	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2917	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2918	{ "tx_octets", RMON_T_OCTETS },
2919
2920	/* IEEE TX */
2921	{ "IEEE_tx_drop", IEEE_T_DROP },
2922	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2923	{ "IEEE_tx_1col", IEEE_T_1COL },
2924	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2925	{ "IEEE_tx_def", IEEE_T_DEF },
2926	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2927	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2928	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2929	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2930	{ "IEEE_tx_sqe", IEEE_T_SQE },
2931	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2932	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2933
2934	/* RMON RX */
2935	{ "rx_packets", RMON_R_PACKETS },
2936	{ "rx_broadcast", RMON_R_BC_PKT },
2937	{ "rx_multicast", RMON_R_MC_PKT },
2938	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2939	{ "rx_undersize", RMON_R_UNDERSIZE },
2940	{ "rx_oversize", RMON_R_OVERSIZE },
2941	{ "rx_fragment", RMON_R_FRAG },
2942	{ "rx_jabber", RMON_R_JAB },
2943	{ "rx_64byte", RMON_R_P64 },
2944	{ "rx_65to127byte", RMON_R_P65TO127 },
2945	{ "rx_128to255byte", RMON_R_P128TO255 },
2946	{ "rx_256to511byte", RMON_R_P256TO511 },
2947	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2948	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2949	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2950	{ "rx_octets", RMON_R_OCTETS },
2951
2952	/* IEEE RX */
2953	{ "IEEE_rx_drop", IEEE_R_DROP },
2954	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2955	{ "IEEE_rx_crc", IEEE_R_CRC },
2956	{ "IEEE_rx_align", IEEE_R_ALIGN },
2957	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2958	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2959	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2960};
2961
2962#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2963
2964static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2965	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2966	"rx_xdp_pass",               /* RX_XDP_PASS, */
2967	"rx_xdp_drop",               /* RX_XDP_DROP, */
2968	"rx_xdp_tx",                 /* RX_XDP_TX, */
2969	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2970	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2971	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2972};
2973
2974static void fec_enet_update_ethtool_stats(struct net_device *dev)
2975{
2976	struct fec_enet_private *fep = netdev_priv(dev);
2977	int i;
2978
2979	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2980		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2981}
2982
2983static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2984{
2985	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2986	struct fec_enet_priv_rx_q *rxq;
2987	int i, j;
2988
2989	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2990		rxq = fep->rx_queue[i];
2991
2992		for (j = 0; j < XDP_STATS_TOTAL; j++)
2993			xdp_stats[j] += rxq->stats[j];
2994	}
2995
2996	memcpy(data, xdp_stats, sizeof(xdp_stats));
2997}
2998
2999static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
3000{
3001#ifdef CONFIG_PAGE_POOL_STATS
3002	struct page_pool_stats stats = {};
3003	struct fec_enet_priv_rx_q *rxq;
3004	int i;
3005
3006	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3007		rxq = fep->rx_queue[i];
3008
3009		if (!rxq->page_pool)
3010			continue;
3011
3012		page_pool_get_stats(rxq->page_pool, &stats);
3013	}
3014
3015	page_pool_ethtool_stats_get(data, &stats);
3016#endif
3017}
3018
3019static void fec_enet_get_ethtool_stats(struct net_device *dev,
3020				       struct ethtool_stats *stats, u64 *data)
3021{
3022	struct fec_enet_private *fep = netdev_priv(dev);
3023
3024	if (netif_running(dev))
3025		fec_enet_update_ethtool_stats(dev);
3026
3027	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
3028	data += FEC_STATS_SIZE / sizeof(u64);
3029
3030	fec_enet_get_xdp_stats(fep, data);
3031	data += XDP_STATS_TOTAL;
3032
3033	fec_enet_page_pool_stats(fep, data);
3034}
3035
3036static void fec_enet_get_strings(struct net_device *netdev,
3037	u32 stringset, u8 *data)
3038{
3039	int i;
3040	switch (stringset) {
3041	case ETH_SS_STATS:
3042		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
3043			ethtool_puts(&data, fec_stats[i].name);
3044		}
3045		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
3046			ethtool_puts(&data, fec_xdp_stat_strs[i]);
3047		}
3048		page_pool_ethtool_stats_get_strings(data);
3049
3050		break;
3051	case ETH_SS_TEST:
3052		net_selftest_get_strings(data);
3053		break;
3054	}
3055}
3056
3057static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3058{
3059	int count;
3060
3061	switch (sset) {
3062	case ETH_SS_STATS:
3063		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3064		count += page_pool_ethtool_stats_get_count();
3065		return count;
3066
3067	case ETH_SS_TEST:
3068		return net_selftest_get_count();
3069	default:
3070		return -EOPNOTSUPP;
3071	}
3072}
3073
3074static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3075{
3076	struct fec_enet_private *fep = netdev_priv(dev);
3077	struct fec_enet_priv_rx_q *rxq;
3078	int i, j;
3079
3080	/* Disable MIB statistics counters */
3081	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3082
3083	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3084		writel(0, fep->hwp + fec_stats[i].offset);
3085
3086	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3087		rxq = fep->rx_queue[i];
3088		for (j = 0; j < XDP_STATS_TOTAL; j++)
3089			rxq->stats[j] = 0;
3090	}
3091
3092	/* Don't disable MIB statistics counters */
3093	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3094}
3095
3096#else	/* !defined(CONFIG_M5272) */
3097#define FEC_STATS_SIZE	0
3098static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3099{
3100}
3101
3102static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3103{
3104}
3105#endif /* !defined(CONFIG_M5272) */
3106
3107/* ITR clock source is enet system clock (clk_ahb).
3108 * TCTT unit is cycle_ns * 64 cycle
3109 * So, the ICTT value = X us / (cycle_ns * 64)
3110 */
3111static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3112{
3113	struct fec_enet_private *fep = netdev_priv(ndev);
3114
3115	return us * (fep->itr_clk_rate / 64000) / 1000;
3116}
3117
3118/* Set threshold for interrupt coalescing */
3119static void fec_enet_itr_coal_set(struct net_device *ndev)
3120{
3121	struct fec_enet_private *fep = netdev_priv(ndev);
3122	int rx_itr, tx_itr;
3123
3124	/* Must be greater than zero to avoid unpredictable behavior */
3125	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3126	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3127		return;
3128
3129	/* Select enet system clock as Interrupt Coalescing
3130	 * timer Clock Source
3131	 */
3132	rx_itr = FEC_ITR_CLK_SEL;
3133	tx_itr = FEC_ITR_CLK_SEL;
3134
3135	/* set ICFT and ICTT */
3136	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3137	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3138	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3139	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3140
3141	rx_itr |= FEC_ITR_EN;
3142	tx_itr |= FEC_ITR_EN;
3143
3144	writel(tx_itr, fep->hwp + FEC_TXIC0);
3145	writel(rx_itr, fep->hwp + FEC_RXIC0);
3146	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3147		writel(tx_itr, fep->hwp + FEC_TXIC1);
3148		writel(rx_itr, fep->hwp + FEC_RXIC1);
3149		writel(tx_itr, fep->hwp + FEC_TXIC2);
3150		writel(rx_itr, fep->hwp + FEC_RXIC2);
3151	}
3152}
3153
3154static int fec_enet_get_coalesce(struct net_device *ndev,
3155				 struct ethtool_coalesce *ec,
3156				 struct kernel_ethtool_coalesce *kernel_coal,
3157				 struct netlink_ext_ack *extack)
3158{
3159	struct fec_enet_private *fep = netdev_priv(ndev);
3160
3161	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3162		return -EOPNOTSUPP;
3163
3164	ec->rx_coalesce_usecs = fep->rx_time_itr;
3165	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3166
3167	ec->tx_coalesce_usecs = fep->tx_time_itr;
3168	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3169
3170	return 0;
3171}
3172
3173static int fec_enet_set_coalesce(struct net_device *ndev,
3174				 struct ethtool_coalesce *ec,
3175				 struct kernel_ethtool_coalesce *kernel_coal,
3176				 struct netlink_ext_ack *extack)
3177{
3178	struct fec_enet_private *fep = netdev_priv(ndev);
3179	struct device *dev = &fep->pdev->dev;
3180	unsigned int cycle;
3181
3182	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3183		return -EOPNOTSUPP;
3184
3185	if (ec->rx_max_coalesced_frames > 255) {
3186		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3187		return -EINVAL;
3188	}
3189
3190	if (ec->tx_max_coalesced_frames > 255) {
3191		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3192		return -EINVAL;
3193	}
3194
3195	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3196	if (cycle > 0xFFFF) {
3197		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3198		return -EINVAL;
3199	}
3200
3201	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3202	if (cycle > 0xFFFF) {
3203		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3204		return -EINVAL;
3205	}
3206
3207	fep->rx_time_itr = ec->rx_coalesce_usecs;
3208	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3209
3210	fep->tx_time_itr = ec->tx_coalesce_usecs;
3211	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3212
3213	fec_enet_itr_coal_set(ndev);
3214
3215	return 0;
3216}
3217
3218static int
3219fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3220{
3221	struct fec_enet_private *fep = netdev_priv(ndev);
3222	struct ethtool_keee *p = &fep->eee;
3223
3224	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3225		return -EOPNOTSUPP;
3226
3227	if (!netif_running(ndev))
3228		return -ENETDOWN;
3229
3230	edata->tx_lpi_timer = p->tx_lpi_timer;
3231
3232	return phy_ethtool_get_eee(ndev->phydev, edata);
3233}
3234
3235static int
3236fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3237{
3238	struct fec_enet_private *fep = netdev_priv(ndev);
3239	struct ethtool_keee *p = &fep->eee;
3240
3241	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3242		return -EOPNOTSUPP;
3243
3244	if (!netif_running(ndev))
3245		return -ENETDOWN;
3246
3247	p->tx_lpi_timer = edata->tx_lpi_timer;
3248
3249	return phy_ethtool_set_eee(ndev->phydev, edata);
3250}
3251
3252static void
3253fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3254{
3255	struct fec_enet_private *fep = netdev_priv(ndev);
3256
3257	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3258		wol->supported = WAKE_MAGIC;
3259		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3260	} else {
3261		wol->supported = wol->wolopts = 0;
3262	}
3263}
3264
3265static int
3266fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3267{
3268	struct fec_enet_private *fep = netdev_priv(ndev);
3269
3270	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3271		return -EINVAL;
3272
3273	if (wol->wolopts & ~WAKE_MAGIC)
3274		return -EINVAL;
3275
3276	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3277	if (device_may_wakeup(&ndev->dev))
3278		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3279	else
3280		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3281
3282	return 0;
3283}
3284
3285static const struct ethtool_ops fec_enet_ethtool_ops = {
3286	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3287				     ETHTOOL_COALESCE_MAX_FRAMES,
3288	.get_drvinfo		= fec_enet_get_drvinfo,
3289	.get_regs_len		= fec_enet_get_regs_len,
3290	.get_regs		= fec_enet_get_regs,
3291	.nway_reset		= phy_ethtool_nway_reset,
3292	.get_link		= ethtool_op_get_link,
3293	.get_coalesce		= fec_enet_get_coalesce,
3294	.set_coalesce		= fec_enet_set_coalesce,
3295#ifndef CONFIG_M5272
3296	.get_pauseparam		= fec_enet_get_pauseparam,
3297	.set_pauseparam		= fec_enet_set_pauseparam,
3298	.get_strings		= fec_enet_get_strings,
3299	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3300	.get_sset_count		= fec_enet_get_sset_count,
3301#endif
3302	.get_ts_info		= fec_enet_get_ts_info,
3303	.get_wol		= fec_enet_get_wol,
3304	.set_wol		= fec_enet_set_wol,
3305	.get_eee		= fec_enet_get_eee,
3306	.set_eee		= fec_enet_set_eee,
3307	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3308	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3309	.self_test		= net_selftest,
3310};
3311
3312static void fec_enet_free_buffers(struct net_device *ndev)
3313{
3314	struct fec_enet_private *fep = netdev_priv(ndev);
3315	unsigned int i;
3316	struct fec_enet_priv_tx_q *txq;
3317	struct fec_enet_priv_rx_q *rxq;
3318	unsigned int q;
3319
3320	for (q = 0; q < fep->num_rx_queues; q++) {
3321		rxq = fep->rx_queue[q];
3322		for (i = 0; i < rxq->bd.ring_size; i++)
3323			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3324
3325		for (i = 0; i < XDP_STATS_TOTAL; i++)
3326			rxq->stats[i] = 0;
3327
3328		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3329			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3330		page_pool_destroy(rxq->page_pool);
3331		rxq->page_pool = NULL;
3332	}
3333
3334	for (q = 0; q < fep->num_tx_queues; q++) {
3335		txq = fep->tx_queue[q];
3336		for (i = 0; i < txq->bd.ring_size; i++) {
3337			kfree(txq->tx_bounce[i]);
3338			txq->tx_bounce[i] = NULL;
3339
3340			if (!txq->tx_buf[i].buf_p) {
3341				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3342				continue;
3343			}
3344
3345			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3346				dev_kfree_skb(txq->tx_buf[i].buf_p);
3347			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3348				xdp_return_frame(txq->tx_buf[i].buf_p);
3349			} else {
3350				struct page *page = txq->tx_buf[i].buf_p;
3351
3352				page_pool_put_page(page->pp, page, 0, false);
3353			}
3354
3355			txq->tx_buf[i].buf_p = NULL;
3356			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3357		}
3358	}
3359}
3360
3361static void fec_enet_free_queue(struct net_device *ndev)
3362{
3363	struct fec_enet_private *fep = netdev_priv(ndev);
3364	int i;
3365	struct fec_enet_priv_tx_q *txq;
3366
3367	for (i = 0; i < fep->num_tx_queues; i++)
3368		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3369			txq = fep->tx_queue[i];
3370			fec_dma_free(&fep->pdev->dev,
3371				     txq->bd.ring_size * TSO_HEADER_SIZE,
3372				     txq->tso_hdrs, txq->tso_hdrs_dma);
3373		}
3374
3375	for (i = 0; i < fep->num_rx_queues; i++)
3376		kfree(fep->rx_queue[i]);
3377	for (i = 0; i < fep->num_tx_queues; i++)
3378		kfree(fep->tx_queue[i]);
3379}
3380
3381static int fec_enet_alloc_queue(struct net_device *ndev)
3382{
3383	struct fec_enet_private *fep = netdev_priv(ndev);
3384	int i;
3385	int ret = 0;
3386	struct fec_enet_priv_tx_q *txq;
3387
3388	for (i = 0; i < fep->num_tx_queues; i++) {
3389		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3390		if (!txq) {
3391			ret = -ENOMEM;
3392			goto alloc_failed;
3393		}
3394
3395		fep->tx_queue[i] = txq;
3396		txq->bd.ring_size = TX_RING_SIZE;
3397		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3398
3399		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3400		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3401
3402		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3403					txq->bd.ring_size * TSO_HEADER_SIZE,
3404					&txq->tso_hdrs_dma, GFP_KERNEL);
3405		if (!txq->tso_hdrs) {
3406			ret = -ENOMEM;
3407			goto alloc_failed;
3408		}
3409	}
3410
3411	for (i = 0; i < fep->num_rx_queues; i++) {
3412		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3413					   GFP_KERNEL);
3414		if (!fep->rx_queue[i]) {
3415			ret = -ENOMEM;
3416			goto alloc_failed;
3417		}
3418
3419		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3420		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3421	}
3422	return ret;
3423
3424alloc_failed:
3425	fec_enet_free_queue(ndev);
3426	return ret;
3427}
3428
3429static int
3430fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3431{
3432	struct fec_enet_private *fep = netdev_priv(ndev);
3433	struct fec_enet_priv_rx_q *rxq;
3434	dma_addr_t phys_addr;
3435	struct bufdesc	*bdp;
3436	struct page *page;
3437	int i, err;
3438
3439	rxq = fep->rx_queue[queue];
3440	bdp = rxq->bd.base;
3441
3442	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3443	if (err < 0) {
3444		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3445		return err;
3446	}
3447
3448	for (i = 0; i < rxq->bd.ring_size; i++) {
3449		page = page_pool_dev_alloc_pages(rxq->page_pool);
3450		if (!page)
3451			goto err_alloc;
3452
3453		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3454		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3455
3456		rxq->rx_skb_info[i].page = page;
3457		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3458		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3459
3460		if (fep->bufdesc_ex) {
3461			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3462			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3463		}
3464
3465		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3466	}
3467
3468	/* Set the last buffer to wrap. */
3469	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3470	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3471	return 0;
3472
3473 err_alloc:
3474	fec_enet_free_buffers(ndev);
3475	return -ENOMEM;
3476}
3477
3478static int
3479fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3480{
3481	struct fec_enet_private *fep = netdev_priv(ndev);
3482	unsigned int i;
3483	struct bufdesc  *bdp;
3484	struct fec_enet_priv_tx_q *txq;
3485
3486	txq = fep->tx_queue[queue];
3487	bdp = txq->bd.base;
3488	for (i = 0; i < txq->bd.ring_size; i++) {
3489		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3490		if (!txq->tx_bounce[i])
3491			goto err_alloc;
3492
3493		bdp->cbd_sc = cpu_to_fec16(0);
3494		bdp->cbd_bufaddr = cpu_to_fec32(0);
3495
3496		if (fep->bufdesc_ex) {
3497			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3498			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3499		}
3500
3501		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3502	}
3503
3504	/* Set the last buffer to wrap. */
3505	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3506	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3507
3508	return 0;
3509
3510 err_alloc:
3511	fec_enet_free_buffers(ndev);
3512	return -ENOMEM;
3513}
3514
3515static int fec_enet_alloc_buffers(struct net_device *ndev)
3516{
3517	struct fec_enet_private *fep = netdev_priv(ndev);
3518	unsigned int i;
3519
3520	for (i = 0; i < fep->num_rx_queues; i++)
3521		if (fec_enet_alloc_rxq_buffers(ndev, i))
3522			return -ENOMEM;
3523
3524	for (i = 0; i < fep->num_tx_queues; i++)
3525		if (fec_enet_alloc_txq_buffers(ndev, i))
3526			return -ENOMEM;
3527	return 0;
3528}
3529
3530static int
3531fec_enet_open(struct net_device *ndev)
3532{
3533	struct fec_enet_private *fep = netdev_priv(ndev);
3534	int ret;
3535	bool reset_again;
3536
3537	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3538	if (ret < 0)
3539		return ret;
3540
3541	pinctrl_pm_select_default_state(&fep->pdev->dev);
3542	ret = fec_enet_clk_enable(ndev, true);
3543	if (ret)
3544		goto clk_enable;
3545
3546	/* During the first fec_enet_open call the PHY isn't probed at this
3547	 * point. Therefore the phy_reset_after_clk_enable() call within
3548	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3549	 * sure the PHY is working correctly we check if we need to reset again
3550	 * later when the PHY is probed
3551	 */
3552	if (ndev->phydev && ndev->phydev->drv)
3553		reset_again = false;
3554	else
3555		reset_again = true;
3556
3557	/* I should reset the ring buffers here, but I don't yet know
3558	 * a simple way to do that.
3559	 */
3560
3561	ret = fec_enet_alloc_buffers(ndev);
3562	if (ret)
3563		goto err_enet_alloc;
3564
3565	/* Init MAC prior to mii bus probe */
3566	fec_restart(ndev);
3567
3568	/* Call phy_reset_after_clk_enable() again if it failed during
3569	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3570	 */
3571	if (reset_again)
3572		fec_enet_phy_reset_after_clk_enable(ndev);
3573
3574	/* Probe and connect to PHY when open the interface */
3575	ret = fec_enet_mii_probe(ndev);
3576	if (ret)
3577		goto err_enet_mii_probe;
3578
3579	if (fep->quirks & FEC_QUIRK_ERR006687)
3580		imx6q_cpuidle_fec_irqs_used();
3581
3582	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3583		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3584
3585	napi_enable(&fep->napi);
3586	phy_start(ndev->phydev);
3587	netif_tx_start_all_queues(ndev);
3588
3589	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3590				 FEC_WOL_FLAG_ENABLE);
3591
3592	return 0;
3593
3594err_enet_mii_probe:
3595	fec_enet_free_buffers(ndev);
3596err_enet_alloc:
3597	fec_enet_clk_enable(ndev, false);
3598clk_enable:
3599	pm_runtime_mark_last_busy(&fep->pdev->dev);
3600	pm_runtime_put_autosuspend(&fep->pdev->dev);
3601	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3602	return ret;
3603}
3604
3605static int
3606fec_enet_close(struct net_device *ndev)
3607{
3608	struct fec_enet_private *fep = netdev_priv(ndev);
3609
3610	phy_stop(ndev->phydev);
3611
3612	if (netif_device_present(ndev)) {
3613		napi_disable(&fep->napi);
3614		netif_tx_disable(ndev);
3615		fec_stop(ndev);
3616	}
3617
3618	phy_disconnect(ndev->phydev);
3619
3620	if (fep->quirks & FEC_QUIRK_ERR006687)
3621		imx6q_cpuidle_fec_irqs_unused();
3622
3623	fec_enet_update_ethtool_stats(ndev);
3624
3625	fec_enet_clk_enable(ndev, false);
3626	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3627		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3628
3629	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3630	pm_runtime_mark_last_busy(&fep->pdev->dev);
3631	pm_runtime_put_autosuspend(&fep->pdev->dev);
3632
3633	fec_enet_free_buffers(ndev);
3634
3635	return 0;
3636}
3637
3638/* Set or clear the multicast filter for this adaptor.
3639 * Skeleton taken from sunlance driver.
3640 * The CPM Ethernet implementation allows Multicast as well as individual
3641 * MAC address filtering.  Some of the drivers check to make sure it is
3642 * a group multicast address, and discard those that are not.  I guess I
3643 * will do the same for now, but just remove the test if you want
3644 * individual filtering as well (do the upper net layers want or support
3645 * this kind of feature?).
3646 */
3647
3648#define FEC_HASH_BITS	6		/* #bits in hash */
3649
3650static void set_multicast_list(struct net_device *ndev)
3651{
3652	struct fec_enet_private *fep = netdev_priv(ndev);
3653	struct netdev_hw_addr *ha;
3654	unsigned int crc, tmp;
3655	unsigned char hash;
3656	unsigned int hash_high = 0, hash_low = 0;
3657
3658	if (ndev->flags & IFF_PROMISC) {
3659		tmp = readl(fep->hwp + FEC_R_CNTRL);
3660		tmp |= 0x8;
3661		writel(tmp, fep->hwp + FEC_R_CNTRL);
3662		return;
3663	}
3664
3665	tmp = readl(fep->hwp + FEC_R_CNTRL);
3666	tmp &= ~0x8;
3667	writel(tmp, fep->hwp + FEC_R_CNTRL);
3668
3669	if (ndev->flags & IFF_ALLMULTI) {
3670		/* Catch all multicast addresses, so set the
3671		 * filter to all 1's
3672		 */
3673		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3674		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3675
3676		return;
3677	}
3678
3679	/* Add the addresses in hash register */
3680	netdev_for_each_mc_addr(ha, ndev) {
3681		/* calculate crc32 value of mac address */
3682		crc = ether_crc_le(ndev->addr_len, ha->addr);
3683
3684		/* only upper 6 bits (FEC_HASH_BITS) are used
3685		 * which point to specific bit in the hash registers
3686		 */
3687		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3688
3689		if (hash > 31)
3690			hash_high |= 1 << (hash - 32);
3691		else
3692			hash_low |= 1 << hash;
3693	}
3694
3695	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3696	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3697}
3698
3699/* Set a MAC change in hardware. */
3700static int
3701fec_set_mac_address(struct net_device *ndev, void *p)
3702{
3703	struct fec_enet_private *fep = netdev_priv(ndev);
3704	struct sockaddr *addr = p;
3705
3706	if (addr) {
3707		if (!is_valid_ether_addr(addr->sa_data))
3708			return -EADDRNOTAVAIL;
3709		eth_hw_addr_set(ndev, addr->sa_data);
3710	}
3711
3712	/* Add netif status check here to avoid system hang in below case:
3713	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3714	 * After ethx down, fec all clocks are gated off and then register
3715	 * access causes system hang.
3716	 */
3717	if (!netif_running(ndev))
3718		return 0;
3719
3720	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3721		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3722		fep->hwp + FEC_ADDR_LOW);
3723	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3724		fep->hwp + FEC_ADDR_HIGH);
3725	return 0;
3726}
3727
3728static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3729	netdev_features_t features)
3730{
3731	struct fec_enet_private *fep = netdev_priv(netdev);
3732	netdev_features_t changed = features ^ netdev->features;
3733
3734	netdev->features = features;
3735
3736	/* Receive checksum has been changed */
3737	if (changed & NETIF_F_RXCSUM) {
3738		if (features & NETIF_F_RXCSUM)
3739			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3740		else
3741			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3742	}
3743}
3744
3745static int fec_set_features(struct net_device *netdev,
3746	netdev_features_t features)
3747{
3748	struct fec_enet_private *fep = netdev_priv(netdev);
3749	netdev_features_t changed = features ^ netdev->features;
3750
3751	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3752		napi_disable(&fep->napi);
3753		netif_tx_lock_bh(netdev);
3754		fec_stop(netdev);
3755		fec_enet_set_netdev_features(netdev, features);
3756		fec_restart(netdev);
3757		netif_tx_wake_all_queues(netdev);
3758		netif_tx_unlock_bh(netdev);
3759		napi_enable(&fep->napi);
3760	} else {
3761		fec_enet_set_netdev_features(netdev, features);
3762	}
3763
3764	return 0;
3765}
3766
3767static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3768				 struct net_device *sb_dev)
3769{
3770	struct fec_enet_private *fep = netdev_priv(ndev);
3771	u16 vlan_tag = 0;
3772
3773	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3774		return netdev_pick_tx(ndev, skb, NULL);
3775
3776	/* VLAN is present in the payload.*/
3777	if (eth_type_vlan(skb->protocol)) {
3778		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3779
3780		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3781	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3782	} else if (skb_vlan_tag_present(skb)) {
3783		vlan_tag = skb->vlan_tci;
3784	} else {
3785		return vlan_tag;
3786	}
3787
3788	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3789}
3790
3791static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3792{
3793	struct fec_enet_private *fep = netdev_priv(dev);
3794	bool is_run = netif_running(dev);
3795	struct bpf_prog *old_prog;
3796
3797	switch (bpf->command) {
3798	case XDP_SETUP_PROG:
3799		/* No need to support the SoCs that require to
3800		 * do the frame swap because the performance wouldn't be
3801		 * better than the skb mode.
3802		 */
3803		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3804			return -EOPNOTSUPP;
3805
3806		if (!bpf->prog)
3807			xdp_features_clear_redirect_target(dev);
3808
3809		if (is_run) {
3810			napi_disable(&fep->napi);
3811			netif_tx_disable(dev);
3812		}
3813
3814		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3815		if (old_prog)
3816			bpf_prog_put(old_prog);
3817
3818		fec_restart(dev);
3819
3820		if (is_run) {
3821			napi_enable(&fep->napi);
3822			netif_tx_start_all_queues(dev);
3823		}
3824
3825		if (bpf->prog)
3826			xdp_features_set_redirect_target(dev, false);
3827
3828		return 0;
3829
3830	case XDP_SETUP_XSK_POOL:
3831		return -EOPNOTSUPP;
3832
3833	default:
3834		return -EOPNOTSUPP;
3835	}
3836}
3837
3838static int
3839fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3840{
3841	if (unlikely(index < 0))
3842		return 0;
3843
3844	return (index % fep->num_tx_queues);
3845}
3846
3847static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3848				   struct fec_enet_priv_tx_q *txq,
3849				   void *frame, u32 dma_sync_len,
3850				   bool ndo_xmit)
3851{
3852	unsigned int index, status, estatus;
3853	struct bufdesc *bdp;
3854	dma_addr_t dma_addr;
3855	int entries_free;
3856	u16 frame_len;
3857
3858	entries_free = fec_enet_get_free_txdesc_num(txq);
3859	if (entries_free < MAX_SKB_FRAGS + 1) {
3860		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3861		return -EBUSY;
3862	}
3863
3864	/* Fill in a Tx ring entry */
3865	bdp = txq->bd.cur;
3866	status = fec16_to_cpu(bdp->cbd_sc);
3867	status &= ~BD_ENET_TX_STATS;
3868
3869	index = fec_enet_get_bd_index(bdp, &txq->bd);
3870
3871	if (ndo_xmit) {
3872		struct xdp_frame *xdpf = frame;
3873
3874		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3875					  xdpf->len, DMA_TO_DEVICE);
3876		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3877			return -ENOMEM;
3878
3879		frame_len = xdpf->len;
3880		txq->tx_buf[index].buf_p = xdpf;
3881		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3882	} else {
3883		struct xdp_buff *xdpb = frame;
3884		struct page *page;
3885
3886		page = virt_to_page(xdpb->data);
3887		dma_addr = page_pool_get_dma_addr(page) +
3888			   (xdpb->data - xdpb->data_hard_start);
3889		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3890					   dma_sync_len, DMA_BIDIRECTIONAL);
3891		frame_len = xdpb->data_end - xdpb->data;
3892		txq->tx_buf[index].buf_p = page;
3893		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3894	}
3895
3896	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3897	if (fep->bufdesc_ex)
3898		estatus = BD_ENET_TX_INT;
3899
3900	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3901	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3902
3903	if (fep->bufdesc_ex) {
3904		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3905
3906		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3907			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3908
3909		ebdp->cbd_bdu = 0;
3910		ebdp->cbd_esc = cpu_to_fec32(estatus);
3911	}
3912
3913	/* Make sure the updates to rest of the descriptor are performed before
3914	 * transferring ownership.
3915	 */
3916	dma_wmb();
3917
3918	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3919	 * it's the last BD of the frame, and to put the CRC on the end.
3920	 */
3921	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3922	bdp->cbd_sc = cpu_to_fec16(status);
3923
3924	/* If this was the last BD in the ring, start at the beginning again. */
3925	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3926
3927	/* Make sure the update to bdp are performed before txq->bd.cur. */
3928	dma_wmb();
3929
3930	txq->bd.cur = bdp;
3931
3932	/* Trigger transmission start */
3933	writel(0, txq->bd.reg_desc_active);
3934
3935	return 0;
3936}
3937
3938static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3939				int cpu, struct xdp_buff *xdp,
3940				u32 dma_sync_len)
3941{
3942	struct fec_enet_priv_tx_q *txq;
3943	struct netdev_queue *nq;
3944	int queue, ret;
3945
3946	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3947	txq = fep->tx_queue[queue];
3948	nq = netdev_get_tx_queue(fep->netdev, queue);
3949
3950	__netif_tx_lock(nq, cpu);
3951
3952	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3953	txq_trans_cond_update(nq);
3954	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3955
3956	__netif_tx_unlock(nq);
3957
3958	return ret;
3959}
3960
3961static int fec_enet_xdp_xmit(struct net_device *dev,
3962			     int num_frames,
3963			     struct xdp_frame **frames,
3964			     u32 flags)
3965{
3966	struct fec_enet_private *fep = netdev_priv(dev);
3967	struct fec_enet_priv_tx_q *txq;
3968	int cpu = smp_processor_id();
3969	unsigned int sent_frames = 0;
3970	struct netdev_queue *nq;
3971	unsigned int queue;
3972	int i;
3973
3974	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3975	txq = fep->tx_queue[queue];
3976	nq = netdev_get_tx_queue(fep->netdev, queue);
3977
3978	__netif_tx_lock(nq, cpu);
3979
3980	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3981	txq_trans_cond_update(nq);
3982	for (i = 0; i < num_frames; i++) {
3983		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3984			break;
3985		sent_frames++;
3986	}
3987
3988	__netif_tx_unlock(nq);
3989
3990	return sent_frames;
3991}
3992
3993static int fec_hwtstamp_get(struct net_device *ndev,
3994			    struct kernel_hwtstamp_config *config)
3995{
3996	struct fec_enet_private *fep = netdev_priv(ndev);
3997
3998	if (!netif_running(ndev))
3999		return -EINVAL;
4000
4001	if (!fep->bufdesc_ex)
4002		return -EOPNOTSUPP;
4003
4004	fec_ptp_get(ndev, config);
4005
4006	return 0;
4007}
4008
4009static int fec_hwtstamp_set(struct net_device *ndev,
4010			    struct kernel_hwtstamp_config *config,
4011			    struct netlink_ext_ack *extack)
4012{
4013	struct fec_enet_private *fep = netdev_priv(ndev);
4014
4015	if (!netif_running(ndev))
4016		return -EINVAL;
4017
4018	if (!fep->bufdesc_ex)
4019		return -EOPNOTSUPP;
4020
4021	return fec_ptp_set(ndev, config, extack);
4022}
4023
4024static const struct net_device_ops fec_netdev_ops = {
4025	.ndo_open		= fec_enet_open,
4026	.ndo_stop		= fec_enet_close,
4027	.ndo_start_xmit		= fec_enet_start_xmit,
4028	.ndo_select_queue       = fec_enet_select_queue,
4029	.ndo_set_rx_mode	= set_multicast_list,
4030	.ndo_validate_addr	= eth_validate_addr,
4031	.ndo_tx_timeout		= fec_timeout,
4032	.ndo_set_mac_address	= fec_set_mac_address,
4033	.ndo_eth_ioctl		= phy_do_ioctl_running,
4034	.ndo_set_features	= fec_set_features,
4035	.ndo_bpf		= fec_enet_bpf,
4036	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4037	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4038	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4039};
4040
4041static const unsigned short offset_des_active_rxq[] = {
4042	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4043};
4044
4045static const unsigned short offset_des_active_txq[] = {
4046	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4047};
4048
4049 /*
4050  * XXX:  We need to clean up on failure exits here.
4051  *
4052  */
4053static int fec_enet_init(struct net_device *ndev)
4054{
4055	struct fec_enet_private *fep = netdev_priv(ndev);
4056	struct bufdesc *cbd_base;
4057	dma_addr_t bd_dma;
4058	int bd_size;
4059	unsigned int i;
4060	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4061			sizeof(struct bufdesc);
4062	unsigned dsize_log2 = __fls(dsize);
4063	int ret;
4064
4065	WARN_ON(dsize != (1 << dsize_log2));
4066#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4067	fep->rx_align = 0xf;
4068	fep->tx_align = 0xf;
4069#else
4070	fep->rx_align = 0x3;
4071	fep->tx_align = 0x3;
4072#endif
4073	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4074	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4075	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4076	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4077
4078	/* Check mask of the streaming and coherent API */
4079	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4080	if (ret < 0) {
4081		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4082		return ret;
4083	}
4084
4085	ret = fec_enet_alloc_queue(ndev);
4086	if (ret)
4087		return ret;
4088
4089	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4090
4091	/* Allocate memory for buffer descriptors. */
4092	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4093				  GFP_KERNEL);
4094	if (!cbd_base) {
4095		ret = -ENOMEM;
4096		goto free_queue_mem;
4097	}
4098
4099	/* Get the Ethernet address */
4100	ret = fec_get_mac(ndev);
4101	if (ret)
4102		goto free_queue_mem;
4103
4104	/* Set receive and transmit descriptor base. */
4105	for (i = 0; i < fep->num_rx_queues; i++) {
4106		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4107		unsigned size = dsize * rxq->bd.ring_size;
4108
4109		rxq->bd.qid = i;
4110		rxq->bd.base = cbd_base;
4111		rxq->bd.cur = cbd_base;
4112		rxq->bd.dma = bd_dma;
4113		rxq->bd.dsize = dsize;
4114		rxq->bd.dsize_log2 = dsize_log2;
4115		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4116		bd_dma += size;
4117		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4118		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4119	}
4120
4121	for (i = 0; i < fep->num_tx_queues; i++) {
4122		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4123		unsigned size = dsize * txq->bd.ring_size;
4124
4125		txq->bd.qid = i;
4126		txq->bd.base = cbd_base;
4127		txq->bd.cur = cbd_base;
4128		txq->bd.dma = bd_dma;
4129		txq->bd.dsize = dsize;
4130		txq->bd.dsize_log2 = dsize_log2;
4131		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4132		bd_dma += size;
4133		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4134		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4135	}
4136
4137
4138	/* The FEC Ethernet specific entries in the device structure */
4139	ndev->watchdog_timeo = TX_TIMEOUT;
4140	ndev->netdev_ops = &fec_netdev_ops;
4141	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4142
4143	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4144	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4145
4146	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4147		/* enable hw VLAN support */
4148		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4149
4150	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4151		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4152
4153		/* enable hw accelerator */
4154		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4155				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4156		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4157	}
4158
4159	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4160		fep->tx_align = 0;
4161		fep->rx_align = 0x3f;
4162	}
4163
4164	ndev->hw_features = ndev->features;
4165
4166	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4167		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4168				     NETDEV_XDP_ACT_REDIRECT;
4169
4170	fec_restart(ndev);
4171
4172	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4173		fec_enet_clear_ethtool_stats(ndev);
4174	else
4175		fec_enet_update_ethtool_stats(ndev);
4176
4177	return 0;
4178
4179free_queue_mem:
4180	fec_enet_free_queue(ndev);
4181	return ret;
4182}
4183
4184static void fec_enet_deinit(struct net_device *ndev)
4185{
4186	struct fec_enet_private *fep = netdev_priv(ndev);
4187
4188	netif_napi_del(&fep->napi);
4189	fec_enet_free_queue(ndev);
4190}
4191
4192#ifdef CONFIG_OF
4193static int fec_reset_phy(struct platform_device *pdev)
4194{
4195	struct gpio_desc *phy_reset;
4196	int msec = 1, phy_post_delay = 0;
4197	struct device_node *np = pdev->dev.of_node;
4198	int err;
4199
4200	if (!np)
4201		return 0;
4202
4203	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4204	/* A sane reset duration should not be longer than 1s */
4205	if (!err && msec > 1000)
4206		msec = 1;
4207
4208	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4209	/* valid reset duration should be less than 1s */
4210	if (!err && phy_post_delay > 1000)
4211		return -EINVAL;
4212
4213	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4214					    GPIOD_OUT_HIGH);
4215	if (IS_ERR(phy_reset))
4216		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4217				     "failed to get phy-reset-gpios\n");
4218
4219	if (!phy_reset)
4220		return 0;
4221
4222	if (msec > 20)
4223		msleep(msec);
4224	else
4225		usleep_range(msec * 1000, msec * 1000 + 1000);
4226
4227	gpiod_set_value_cansleep(phy_reset, 0);
4228
4229	if (!phy_post_delay)
4230		return 0;
4231
4232	if (phy_post_delay > 20)
4233		msleep(phy_post_delay);
4234	else
4235		usleep_range(phy_post_delay * 1000,
4236			     phy_post_delay * 1000 + 1000);
4237
4238	return 0;
4239}
4240#else /* CONFIG_OF */
4241static int fec_reset_phy(struct platform_device *pdev)
4242{
4243	/*
4244	 * In case of platform probe, the reset has been done
4245	 * by machine code.
4246	 */
4247	return 0;
4248}
4249#endif /* CONFIG_OF */
4250
4251static void
4252fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4253{
4254	struct device_node *np = pdev->dev.of_node;
4255
4256	*num_tx = *num_rx = 1;
4257
4258	if (!np || !of_device_is_available(np))
4259		return;
4260
4261	/* parse the num of tx and rx queues */
4262	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4263
4264	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4265
4266	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4267		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4268			 *num_tx);
4269		*num_tx = 1;
4270		return;
4271	}
4272
4273	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4274		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4275			 *num_rx);
4276		*num_rx = 1;
4277		return;
4278	}
4279
4280}
4281
4282static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4283{
4284	int irq_cnt = platform_irq_count(pdev);
4285
4286	if (irq_cnt > FEC_IRQ_NUM)
4287		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4288	else if (irq_cnt == 2)
4289		irq_cnt = 1;	/* last for pps */
4290	else if (irq_cnt <= 0)
4291		irq_cnt = 1;	/* At least 1 irq is needed */
4292	return irq_cnt;
4293}
4294
4295static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4296{
4297	struct net_device *ndev = platform_get_drvdata(pdev);
4298	struct fec_enet_private *fep = netdev_priv(ndev);
4299
4300	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4301		fep->wake_irq = fep->irq[2];
4302	else
4303		fep->wake_irq = fep->irq[0];
4304}
4305
4306static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4307				   struct device_node *np)
4308{
4309	struct device_node *gpr_np;
4310	u32 out_val[3];
4311	int ret = 0;
4312
4313	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4314	if (!gpr_np)
4315		return 0;
4316
4317	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4318					 ARRAY_SIZE(out_val));
4319	if (ret) {
4320		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4321		goto out;
4322	}
4323
4324	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4325	if (IS_ERR(fep->stop_gpr.gpr)) {
4326		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4327		ret = PTR_ERR(fep->stop_gpr.gpr);
4328		fep->stop_gpr.gpr = NULL;
4329		goto out;
4330	}
4331
4332	fep->stop_gpr.reg = out_val[1];
4333	fep->stop_gpr.bit = out_val[2];
4334
4335out:
4336	of_node_put(gpr_np);
4337
4338	return ret;
4339}
4340
4341static int
4342fec_probe(struct platform_device *pdev)
4343{
4344	struct fec_enet_private *fep;
4345	struct fec_platform_data *pdata;
4346	phy_interface_t interface;
4347	struct net_device *ndev;
4348	int i, irq, ret = 0;
4349	static int dev_id;
4350	struct device_node *np = pdev->dev.of_node, *phy_node;
4351	int num_tx_qs;
4352	int num_rx_qs;
4353	char irq_name[8];
4354	int irq_cnt;
4355	const struct fec_devinfo *dev_info;
4356
4357	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4358
4359	/* Init network device */
4360	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4361				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4362	if (!ndev)
4363		return -ENOMEM;
4364
4365	SET_NETDEV_DEV(ndev, &pdev->dev);
4366
4367	/* setup board info structure */
4368	fep = netdev_priv(ndev);
4369
4370	dev_info = device_get_match_data(&pdev->dev);
4371	if (!dev_info)
4372		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4373	if (dev_info)
4374		fep->quirks = dev_info->quirks;
4375
4376	fep->netdev = ndev;
4377	fep->num_rx_queues = num_rx_qs;
4378	fep->num_tx_queues = num_tx_qs;
4379
4380#if !defined(CONFIG_M5272)
4381	/* default enable pause frame auto negotiation */
4382	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4383		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4384#endif
4385
4386	/* Select default pin state */
4387	pinctrl_pm_select_default_state(&pdev->dev);
4388
4389	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4390	if (IS_ERR(fep->hwp)) {
4391		ret = PTR_ERR(fep->hwp);
4392		goto failed_ioremap;
4393	}
4394
4395	fep->pdev = pdev;
4396	fep->dev_id = dev_id++;
4397
4398	platform_set_drvdata(pdev, ndev);
4399
4400	if ((of_machine_is_compatible("fsl,imx6q") ||
4401	     of_machine_is_compatible("fsl,imx6dl")) &&
4402	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4403		fep->quirks |= FEC_QUIRK_ERR006687;
4404
4405	ret = fec_enet_ipc_handle_init(fep);
4406	if (ret)
4407		goto failed_ipc_init;
4408
4409	if (of_property_read_bool(np, "fsl,magic-packet"))
4410		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4411
4412	ret = fec_enet_init_stop_mode(fep, np);
4413	if (ret)
4414		goto failed_stop_mode;
4415
4416	phy_node = of_parse_phandle(np, "phy-handle", 0);
4417	if (!phy_node && of_phy_is_fixed_link(np)) {
4418		ret = of_phy_register_fixed_link(np);
4419		if (ret < 0) {
4420			dev_err(&pdev->dev,
4421				"broken fixed-link specification\n");
4422			goto failed_phy;
4423		}
4424		phy_node = of_node_get(np);
4425	}
4426	fep->phy_node = phy_node;
4427
4428	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4429	if (ret) {
4430		pdata = dev_get_platdata(&pdev->dev);
4431		if (pdata)
4432			fep->phy_interface = pdata->phy;
4433		else
4434			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4435	} else {
4436		fep->phy_interface = interface;
4437	}
4438
4439	ret = fec_enet_parse_rgmii_delay(fep, np);
4440	if (ret)
4441		goto failed_rgmii_delay;
4442
4443	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4444	if (IS_ERR(fep->clk_ipg)) {
4445		ret = PTR_ERR(fep->clk_ipg);
4446		goto failed_clk;
4447	}
4448
4449	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4450	if (IS_ERR(fep->clk_ahb)) {
4451		ret = PTR_ERR(fep->clk_ahb);
4452		goto failed_clk;
4453	}
4454
4455	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4456
4457	/* enet_out is optional, depends on board */
4458	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4459	if (IS_ERR(fep->clk_enet_out)) {
4460		ret = PTR_ERR(fep->clk_enet_out);
4461		goto failed_clk;
4462	}
4463
4464	fep->ptp_clk_on = false;
4465	mutex_init(&fep->ptp_clk_mutex);
4466
4467	/* clk_ref is optional, depends on board */
4468	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4469	if (IS_ERR(fep->clk_ref)) {
4470		ret = PTR_ERR(fep->clk_ref);
4471		goto failed_clk;
4472	}
4473	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4474
4475	/* clk_2x_txclk is optional, depends on board */
4476	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4477		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4478		if (IS_ERR(fep->clk_2x_txclk))
4479			fep->clk_2x_txclk = NULL;
4480	}
4481
4482	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4483	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4484	if (IS_ERR(fep->clk_ptp)) {
4485		fep->clk_ptp = NULL;
4486		fep->bufdesc_ex = false;
4487	}
4488
4489	ret = fec_enet_clk_enable(ndev, true);
4490	if (ret)
4491		goto failed_clk;
4492
4493	ret = clk_prepare_enable(fep->clk_ipg);
4494	if (ret)
4495		goto failed_clk_ipg;
4496	ret = clk_prepare_enable(fep->clk_ahb);
4497	if (ret)
4498		goto failed_clk_ahb;
4499
4500	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4501	if (!IS_ERR(fep->reg_phy)) {
4502		ret = regulator_enable(fep->reg_phy);
4503		if (ret) {
4504			dev_err(&pdev->dev,
4505				"Failed to enable phy regulator: %d\n", ret);
4506			goto failed_regulator;
4507		}
4508	} else {
4509		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4510			ret = -EPROBE_DEFER;
4511			goto failed_regulator;
4512		}
4513		fep->reg_phy = NULL;
4514	}
4515
4516	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4517	pm_runtime_use_autosuspend(&pdev->dev);
4518	pm_runtime_get_noresume(&pdev->dev);
4519	pm_runtime_set_active(&pdev->dev);
4520	pm_runtime_enable(&pdev->dev);
4521
4522	ret = fec_reset_phy(pdev);
4523	if (ret)
4524		goto failed_reset;
4525
4526	irq_cnt = fec_enet_get_irq_cnt(pdev);
4527	if (fep->bufdesc_ex)
4528		fec_ptp_init(pdev, irq_cnt);
4529
4530	ret = fec_enet_init(ndev);
4531	if (ret)
4532		goto failed_init;
4533
4534	for (i = 0; i < irq_cnt; i++) {
4535		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4536		irq = platform_get_irq_byname_optional(pdev, irq_name);
4537		if (irq < 0)
4538			irq = platform_get_irq(pdev, i);
4539		if (irq < 0) {
4540			ret = irq;
4541			goto failed_irq;
4542		}
4543		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4544				       0, pdev->name, ndev);
4545		if (ret)
4546			goto failed_irq;
4547
4548		fep->irq[i] = irq;
4549	}
4550
4551	/* Decide which interrupt line is wakeup capable */
4552	fec_enet_get_wakeup_irq(pdev);
4553
4554	ret = fec_enet_mii_init(pdev);
4555	if (ret)
4556		goto failed_mii_init;
4557
4558	/* Carrier starts down, phylib will bring it up */
4559	netif_carrier_off(ndev);
4560	fec_enet_clk_enable(ndev, false);
4561	pinctrl_pm_select_sleep_state(&pdev->dev);
4562
4563	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4564
4565	ret = register_netdev(ndev);
4566	if (ret)
4567		goto failed_register;
4568
4569	device_init_wakeup(&ndev->dev, fep->wol_flag &
4570			   FEC_WOL_HAS_MAGIC_PACKET);
4571
4572	if (fep->bufdesc_ex && fep->ptp_clock)
4573		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4574
4575	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4576
4577	pm_runtime_mark_last_busy(&pdev->dev);
4578	pm_runtime_put_autosuspend(&pdev->dev);
4579
4580	return 0;
4581
4582failed_register:
4583	fec_enet_mii_remove(fep);
4584failed_mii_init:
4585failed_irq:
4586	fec_enet_deinit(ndev);
4587failed_init:
4588	fec_ptp_stop(pdev);
4589failed_reset:
4590	pm_runtime_put_noidle(&pdev->dev);
4591	pm_runtime_disable(&pdev->dev);
4592	if (fep->reg_phy)
4593		regulator_disable(fep->reg_phy);
4594failed_regulator:
4595	clk_disable_unprepare(fep->clk_ahb);
4596failed_clk_ahb:
4597	clk_disable_unprepare(fep->clk_ipg);
4598failed_clk_ipg:
4599	fec_enet_clk_enable(ndev, false);
4600failed_clk:
4601failed_rgmii_delay:
4602	if (of_phy_is_fixed_link(np))
4603		of_phy_deregister_fixed_link(np);
4604	of_node_put(phy_node);
4605failed_stop_mode:
4606failed_ipc_init:
4607failed_phy:
4608	dev_id--;
4609failed_ioremap:
4610	free_netdev(ndev);
4611
4612	return ret;
4613}
4614
4615static void
4616fec_drv_remove(struct platform_device *pdev)
4617{
4618	struct net_device *ndev = platform_get_drvdata(pdev);
4619	struct fec_enet_private *fep = netdev_priv(ndev);
4620	struct device_node *np = pdev->dev.of_node;
4621	int ret;
4622
4623	ret = pm_runtime_get_sync(&pdev->dev);
4624	if (ret < 0)
4625		dev_err(&pdev->dev,
4626			"Failed to resume device in remove callback (%pe)\n",
4627			ERR_PTR(ret));
4628
4629	cancel_work_sync(&fep->tx_timeout_work);
4630	fec_ptp_stop(pdev);
4631	unregister_netdev(ndev);
4632	fec_enet_mii_remove(fep);
4633	if (fep->reg_phy)
4634		regulator_disable(fep->reg_phy);
4635
4636	if (of_phy_is_fixed_link(np))
4637		of_phy_deregister_fixed_link(np);
4638	of_node_put(fep->phy_node);
4639
4640	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4641	 * disabling them again.
4642	 */
4643	if (ret >= 0) {
4644		clk_disable_unprepare(fep->clk_ahb);
4645		clk_disable_unprepare(fep->clk_ipg);
4646	}
4647	pm_runtime_put_noidle(&pdev->dev);
4648	pm_runtime_disable(&pdev->dev);
4649
4650	fec_enet_deinit(ndev);
4651	free_netdev(ndev);
4652}
4653
4654static int fec_suspend(struct device *dev)
4655{
4656	struct net_device *ndev = dev_get_drvdata(dev);
4657	struct fec_enet_private *fep = netdev_priv(ndev);
4658	int ret;
4659
4660	rtnl_lock();
4661	if (netif_running(ndev)) {
4662		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4663			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4664		phy_stop(ndev->phydev);
4665		napi_disable(&fep->napi);
4666		netif_tx_lock_bh(ndev);
4667		netif_device_detach(ndev);
4668		netif_tx_unlock_bh(ndev);
4669		fec_stop(ndev);
4670		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4671			fec_irqs_disable(ndev);
4672			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4673		} else {
4674			fec_irqs_disable_except_wakeup(ndev);
4675			if (fep->wake_irq > 0) {
4676				disable_irq(fep->wake_irq);
4677				enable_irq_wake(fep->wake_irq);
4678			}
4679			fec_enet_stop_mode(fep, true);
4680		}
4681		/* It's safe to disable clocks since interrupts are masked */
4682		fec_enet_clk_enable(ndev, false);
4683
4684		fep->rpm_active = !pm_runtime_status_suspended(dev);
4685		if (fep->rpm_active) {
4686			ret = pm_runtime_force_suspend(dev);
4687			if (ret < 0) {
4688				rtnl_unlock();
4689				return ret;
4690			}
4691		}
4692	}
4693	rtnl_unlock();
4694
4695	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4696		regulator_disable(fep->reg_phy);
4697
4698	/* SOC supply clock to phy, when clock is disabled, phy link down
4699	 * SOC control phy regulator, when regulator is disabled, phy link down
4700	 */
4701	if (fep->clk_enet_out || fep->reg_phy)
4702		fep->link = 0;
4703
4704	return 0;
4705}
4706
4707static int fec_resume(struct device *dev)
4708{
4709	struct net_device *ndev = dev_get_drvdata(dev);
4710	struct fec_enet_private *fep = netdev_priv(ndev);
4711	int ret;
4712	int val;
4713
4714	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4715		ret = regulator_enable(fep->reg_phy);
4716		if (ret)
4717			return ret;
4718	}
4719
4720	rtnl_lock();
4721	if (netif_running(ndev)) {
4722		if (fep->rpm_active)
4723			pm_runtime_force_resume(dev);
4724
4725		ret = fec_enet_clk_enable(ndev, true);
4726		if (ret) {
4727			rtnl_unlock();
4728			goto failed_clk;
4729		}
4730		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4731			fec_enet_stop_mode(fep, false);
4732			if (fep->wake_irq) {
4733				disable_irq_wake(fep->wake_irq);
4734				enable_irq(fep->wake_irq);
4735			}
4736
4737			val = readl(fep->hwp + FEC_ECNTRL);
4738			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4739			writel(val, fep->hwp + FEC_ECNTRL);
4740			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4741		} else {
4742			pinctrl_pm_select_default_state(&fep->pdev->dev);
4743		}
4744		fec_restart(ndev);
4745		netif_tx_lock_bh(ndev);
4746		netif_device_attach(ndev);
4747		netif_tx_unlock_bh(ndev);
4748		napi_enable(&fep->napi);
4749		phy_init_hw(ndev->phydev);
4750		phy_start(ndev->phydev);
4751	}
4752	rtnl_unlock();
4753
4754	return 0;
4755
4756failed_clk:
4757	if (fep->reg_phy)
4758		regulator_disable(fep->reg_phy);
4759	return ret;
4760}
4761
4762static int fec_runtime_suspend(struct device *dev)
4763{
4764	struct net_device *ndev = dev_get_drvdata(dev);
4765	struct fec_enet_private *fep = netdev_priv(ndev);
4766
4767	clk_disable_unprepare(fep->clk_ahb);
4768	clk_disable_unprepare(fep->clk_ipg);
4769
4770	return 0;
4771}
4772
4773static int fec_runtime_resume(struct device *dev)
4774{
4775	struct net_device *ndev = dev_get_drvdata(dev);
4776	struct fec_enet_private *fep = netdev_priv(ndev);
4777	int ret;
4778
4779	ret = clk_prepare_enable(fep->clk_ahb);
4780	if (ret)
4781		return ret;
4782	ret = clk_prepare_enable(fep->clk_ipg);
4783	if (ret)
4784		goto failed_clk_ipg;
4785
4786	return 0;
4787
4788failed_clk_ipg:
4789	clk_disable_unprepare(fep->clk_ahb);
4790	return ret;
4791}
4792
4793static const struct dev_pm_ops fec_pm_ops = {
4794	SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4795	RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4796};
4797
4798static struct platform_driver fec_driver = {
4799	.driver	= {
4800		.name	= DRIVER_NAME,
4801		.pm	= pm_ptr(&fec_pm_ops),
4802		.of_match_table = fec_dt_ids,
4803		.suppress_bind_attrs = true,
4804	},
4805	.id_table = fec_devtype,
4806	.probe	= fec_probe,
4807	.remove = fec_drv_remove,
4808};
4809
4810module_platform_driver(fec_driver);
4811
4812MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4813MODULE_LICENSE("GPL");