Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Device probing and sysfs code.
   4 *
   5 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/ctype.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/errno.h>
  13#include <linux/firewire.h>
  14#include <linux/firewire-constants.h>
 
  15#include <linux/jiffies.h>
  16#include <linux/kobject.h>
  17#include <linux/list.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/module.h>
  20#include <linux/mutex.h>
  21#include <linux/random.h>
  22#include <linux/rwsem.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/string.h>
  26#include <linux/workqueue.h>
  27
  28#include <linux/atomic.h>
  29#include <asm/byteorder.h>
  30
  31#include "core.h"
  32
  33#define ROOT_DIR_OFFSET	5
  34
  35void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  36{
  37	ci->p = p + 1;
  38	ci->end = ci->p + (p[0] >> 16);
  39}
  40EXPORT_SYMBOL(fw_csr_iterator_init);
  41
  42int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  43{
  44	*key = *ci->p >> 24;
  45	*value = *ci->p & 0xffffff;
  46
  47	return ci->p++ < ci->end;
  48}
  49EXPORT_SYMBOL(fw_csr_iterator_next);
  50
  51static const u32 *search_directory(const u32 *directory, int search_key)
  52{
  53	struct fw_csr_iterator ci;
  54	int key, value;
  55
  56	search_key |= CSR_DIRECTORY;
  57
  58	fw_csr_iterator_init(&ci, directory);
  59	while (fw_csr_iterator_next(&ci, &key, &value)) {
  60		if (key == search_key)
  61			return ci.p - 1 + value;
  62	}
  63
  64	return NULL;
  65}
  66
  67static const u32 *search_leaf(const u32 *directory, int search_key)
  68{
  69	struct fw_csr_iterator ci;
  70	int last_key = 0, key, value;
  71
  72	fw_csr_iterator_init(&ci, directory);
  73	while (fw_csr_iterator_next(&ci, &key, &value)) {
  74		if (last_key == search_key &&
  75		    key == (CSR_DESCRIPTOR | CSR_LEAF))
  76			return ci.p - 1 + value;
  77
  78		last_key = key;
  79	}
  80
  81	return NULL;
  82}
  83
  84static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  85{
  86	unsigned int quadlets, i;
  87	char c;
  88
  89	if (!size || !buf)
  90		return -EINVAL;
  91
  92	quadlets = min(block[0] >> 16, 256U);
  93	if (quadlets < 2)
  94		return -ENODATA;
  95
  96	if (block[1] != 0 || block[2] != 0)
  97		/* unknown language/character set */
  98		return -ENODATA;
  99
 100	block += 3;
 101	quadlets -= 2;
 102	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
 103		c = block[i / 4] >> (24 - 8 * (i % 4));
 104		if (c == '\0')
 105			break;
 106		buf[i] = c;
 107	}
 108	buf[i] = '\0';
 109
 110	return i;
 111}
 112
 113/**
 114 * fw_csr_string() - reads a string from the configuration ROM
 115 * @directory:	e.g. root directory or unit directory
 116 * @key:	the key of the preceding directory entry
 117 * @buf:	where to put the string
 118 * @size:	size of @buf, in bytes
 119 *
 120 * The string is taken from a minimal ASCII text descriptor leaf just after the entry with the
 121 * @key. The string is zero-terminated. An overlong string is silently truncated such that it
 122 * and the zero byte fit into @size.
 123 *
 124 * Returns strlen(buf) or a negative error code.
 125 */
 126int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
 127{
 128	const u32 *leaf = search_leaf(directory, key);
 129	if (!leaf)
 130		return -ENOENT;
 131
 132	return textual_leaf_to_string(leaf, buf, size);
 133}
 134EXPORT_SYMBOL(fw_csr_string);
 135
 136static void get_ids(const u32 *directory, int *id)
 137{
 138	struct fw_csr_iterator ci;
 139	int key, value;
 140
 141	fw_csr_iterator_init(&ci, directory);
 142	while (fw_csr_iterator_next(&ci, &key, &value)) {
 143		switch (key) {
 144		case CSR_VENDOR:	id[0] = value; break;
 145		case CSR_MODEL:		id[1] = value; break;
 146		case CSR_SPECIFIER_ID:	id[2] = value; break;
 147		case CSR_VERSION:	id[3] = value; break;
 148		}
 149	}
 150}
 151
 152static void get_modalias_ids(const struct fw_unit *unit, int *id)
 153{
 154	const u32 *root_directory = &fw_parent_device(unit)->config_rom[ROOT_DIR_OFFSET];
 155	const u32 *directories[] = {NULL, NULL, NULL};
 156	const u32 *vendor_directory;
 157	int i;
 158
 159	directories[0] = root_directory;
 160
 161	// Legacy layout of configuration ROM described in Annex 1 of 'Configuration ROM for AV/C
 162	// Devices 1.0 (December 12, 2000, 1394 Trading Association, TA Document 1999027)'.
 163	vendor_directory = search_directory(root_directory, CSR_VENDOR);
 164	if (!vendor_directory) {
 165		directories[1] = unit->directory;
 166	} else {
 167		directories[1] = vendor_directory;
 168		directories[2] = unit->directory;
 169	}
 170
 171	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i)
 172		get_ids(directories[i], id);
 173}
 174
 175static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
 176{
 177	int match = 0;
 178
 179	if (id[0] == id_table->vendor_id)
 180		match |= IEEE1394_MATCH_VENDOR_ID;
 181	if (id[1] == id_table->model_id)
 182		match |= IEEE1394_MATCH_MODEL_ID;
 183	if (id[2] == id_table->specifier_id)
 184		match |= IEEE1394_MATCH_SPECIFIER_ID;
 185	if (id[3] == id_table->version)
 186		match |= IEEE1394_MATCH_VERSION;
 187
 188	return (match & id_table->match_flags) == id_table->match_flags;
 189}
 190
 191static const struct ieee1394_device_id *unit_match(struct device *dev,
 192						   const struct device_driver *drv)
 
 193{
 194	const struct ieee1394_device_id *id_table =
 195			container_of_const(drv, struct fw_driver, driver)->id_table;
 196	int id[] = {0, 0, 0, 0};
 197
 
 
 
 
 198	get_modalias_ids(fw_unit(dev), id);
 199
 200	for (; id_table->match_flags != 0; id_table++)
 201		if (match_ids(id_table, id))
 202			return id_table;
 203
 204	return NULL;
 205}
 206
 207static bool is_fw_unit(const struct device *dev);
 208
 209static int fw_unit_match(struct device *dev, const struct device_driver *drv)
 210{
 211	/* We only allow binding to fw_units. */
 212	return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
 213}
 214
 215static int fw_unit_probe(struct device *dev)
 216{
 217	struct fw_driver *driver =
 218			container_of(dev->driver, struct fw_driver, driver);
 219
 220	return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
 221}
 222
 223static void fw_unit_remove(struct device *dev)
 224{
 225	struct fw_driver *driver =
 226			container_of(dev->driver, struct fw_driver, driver);
 227
 228	driver->remove(fw_unit(dev));
 229}
 230
 231static int get_modalias(const struct fw_unit *unit, char *buffer, size_t buffer_size)
 232{
 233	int id[] = {0, 0, 0, 0};
 234
 235	get_modalias_ids(unit, id);
 236
 237	return snprintf(buffer, buffer_size,
 238			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
 239			id[0], id[1], id[2], id[3]);
 240}
 241
 242static int fw_unit_uevent(const struct device *dev, struct kobj_uevent_env *env)
 243{
 244	const struct fw_unit *unit = fw_unit(dev);
 245	char modalias[64];
 246
 247	get_modalias(unit, modalias, sizeof(modalias));
 248
 249	if (add_uevent_var(env, "MODALIAS=%s", modalias))
 250		return -ENOMEM;
 251
 252	return 0;
 253}
 254
 255const struct bus_type fw_bus_type = {
 256	.name = "firewire",
 257	.match = fw_unit_match,
 258	.probe = fw_unit_probe,
 259	.remove = fw_unit_remove,
 260};
 261EXPORT_SYMBOL(fw_bus_type);
 262
 263int fw_device_enable_phys_dma(struct fw_device *device)
 264{
 265	int generation = device->generation;
 266
 267	/* device->node_id, accessed below, must not be older than generation */
 268	smp_rmb();
 269
 270	return device->card->driver->enable_phys_dma(device->card,
 271						     device->node_id,
 272						     generation);
 273}
 274EXPORT_SYMBOL(fw_device_enable_phys_dma);
 275
 276struct config_rom_attribute {
 277	struct device_attribute attr;
 278	u32 key;
 279};
 280
 281static ssize_t show_immediate(struct device *dev,
 282			      struct device_attribute *dattr, char *buf)
 283{
 284	struct config_rom_attribute *attr =
 285		container_of(dattr, struct config_rom_attribute, attr);
 286	struct fw_csr_iterator ci;
 287	const u32 *directories[] = {NULL, NULL};
 288	int i, value = -1;
 289
 290	guard(rwsem_read)(&fw_device_rwsem);
 291
 292	if (is_fw_unit(dev)) {
 293		directories[0] = fw_unit(dev)->directory;
 294	} else {
 295		const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
 296		const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
 297
 298		if (!vendor_directory) {
 299			directories[0] = root_directory;
 300		} else {
 301			// Legacy layout of configuration ROM described in Annex 1 of
 302			// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394 Trading
 303			// Association, TA Document 1999027)'.
 304			directories[0] = vendor_directory;
 305			directories[1] = root_directory;
 306		}
 307	}
 308
 309	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
 310		int key, val;
 311
 312		fw_csr_iterator_init(&ci, directories[i]);
 313		while (fw_csr_iterator_next(&ci, &key, &val)) {
 314			if (attr->key == key)
 315				value = val;
 
 
 
 
 
 
 
 316		}
 317	}
 318
 319	if (value < 0)
 320		return -ENOENT;
 321
 322	// Note that this function is also called by init_fw_attribute_group() with NULL pointer.
 323	return buf ? sysfs_emit(buf, "0x%06x\n", value) : 0;
 324}
 325
 326#define IMMEDIATE_ATTR(name, key)				\
 327	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
 328
 329static ssize_t show_text_leaf(struct device *dev,
 330			      struct device_attribute *dattr, char *buf)
 331{
 332	struct config_rom_attribute *attr =
 333		container_of(dattr, struct config_rom_attribute, attr);
 334	const u32 *directories[] = {NULL, NULL};
 335	size_t bufsize;
 336	char dummy_buf[2];
 337	int i, ret = -ENOENT;
 338
 339	guard(rwsem_read)(&fw_device_rwsem);
 340
 341	if (is_fw_unit(dev)) {
 342		directories[0] = fw_unit(dev)->directory;
 343	} else {
 344		const u32 *root_directory = fw_device(dev)->config_rom + ROOT_DIR_OFFSET;
 345		const u32 *vendor_directory = search_directory(root_directory, CSR_VENDOR);
 346
 347		if (!vendor_directory) {
 348			directories[0] = root_directory;
 349		} else {
 350			// Legacy layout of configuration ROM described in Annex 1 of
 351			// 'Configuration ROM for AV/C Devices 1.0 (December 12, 2000, 1394
 352			// Trading Association, TA Document 1999027)'.
 353			directories[0] = root_directory;
 354			directories[1] = vendor_directory;
 355		}
 356	}
 357
 358	// Note that this function is also called by init_fw_attribute_group() with NULL pointer.
 359	if (buf) {
 360		bufsize = PAGE_SIZE - 1;
 361	} else {
 362		buf = dummy_buf;
 363		bufsize = 1;
 364	}
 365
 366	for (i = 0; i < ARRAY_SIZE(directories) && !!directories[i]; ++i) {
 367		int result = fw_csr_string(directories[i], attr->key, buf, bufsize);
 368		// Detected.
 369		if (result >= 0) {
 370			ret = result;
 371		} else if (i == 0 && attr->key == CSR_VENDOR) {
 372			// Sony DVMC-DA1 has configuration ROM such that the descriptor leaf entry
 373			// in the root directory follows to the directory entry for vendor ID
 374			// instead of the immediate value for vendor ID.
 375			result = fw_csr_string(directories[i], CSR_DIRECTORY | attr->key, buf,
 376					       bufsize);
 377			if (result >= 0)
 378				ret = result;
 379		}
 380	}
 381
 382	if (ret < 0)
 383		return ret;
 
 
 
 
 
 384
 385	// Strip trailing whitespace and add newline.
 386	while (ret > 0 && isspace(buf[ret - 1]))
 387		ret--;
 388	strcpy(buf + ret, "\n");
 389	ret++;
 390
 391	return ret;
 392}
 393
 394#define TEXT_LEAF_ATTR(name, key)				\
 395	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
 396
 397static struct config_rom_attribute config_rom_attributes[] = {
 398	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
 399	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
 400	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
 401	IMMEDIATE_ATTR(version, CSR_VERSION),
 402	IMMEDIATE_ATTR(model, CSR_MODEL),
 403	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
 404	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
 405	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
 406};
 407
 408static void init_fw_attribute_group(struct device *dev,
 409				    struct device_attribute *attrs,
 410				    struct fw_attribute_group *group)
 411{
 412	struct device_attribute *attr;
 413	int i, j;
 414
 415	for (j = 0; attrs[j].attr.name != NULL; j++)
 416		group->attrs[j] = &attrs[j].attr;
 417
 418	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
 419		attr = &config_rom_attributes[i].attr;
 420		if (attr->show(dev, attr, NULL) < 0)
 421			continue;
 422		group->attrs[j++] = &attr->attr;
 423	}
 424
 425	group->attrs[j] = NULL;
 426	group->groups[0] = &group->group;
 427	group->groups[1] = NULL;
 428	group->group.attrs = group->attrs;
 429	dev->groups = (const struct attribute_group **) group->groups;
 430}
 431
 432static ssize_t modalias_show(struct device *dev,
 433			     struct device_attribute *attr, char *buf)
 434{
 435	struct fw_unit *unit = fw_unit(dev);
 436	int length;
 437
 438	length = get_modalias(unit, buf, PAGE_SIZE);
 439	strcpy(buf + length, "\n");
 440
 441	return length + 1;
 442}
 443
 444static ssize_t rom_index_show(struct device *dev,
 445			      struct device_attribute *attr, char *buf)
 446{
 447	struct fw_device *device = fw_device(dev->parent);
 448	struct fw_unit *unit = fw_unit(dev);
 449
 450	return sysfs_emit(buf, "%td\n", unit->directory - device->config_rom);
 
 451}
 452
 453static struct device_attribute fw_unit_attributes[] = {
 454	__ATTR_RO(modalias),
 455	__ATTR_RO(rom_index),
 456	__ATTR_NULL,
 457};
 458
 459static ssize_t config_rom_show(struct device *dev,
 460			       struct device_attribute *attr, char *buf)
 461{
 462	struct fw_device *device = fw_device(dev);
 463	size_t length;
 464
 465	guard(rwsem_read)(&fw_device_rwsem);
 466
 467	length = device->config_rom_length * 4;
 468	memcpy(buf, device->config_rom, length);
 
 469
 470	return length;
 471}
 472
 473static ssize_t guid_show(struct device *dev,
 474			 struct device_attribute *attr, char *buf)
 475{
 476	struct fw_device *device = fw_device(dev);
 
 477
 478	guard(rwsem_read)(&fw_device_rwsem);
 479
 480	return sysfs_emit(buf, "0x%08x%08x\n", device->config_rom[3], device->config_rom[4]);
 481}
 482
 483static ssize_t is_local_show(struct device *dev,
 484			     struct device_attribute *attr, char *buf)
 485{
 486	struct fw_device *device = fw_device(dev);
 487
 488	return sysfs_emit(buf, "%u\n", device->is_local);
 489}
 490
 491static int units_sprintf(char *buf, const u32 *directory)
 492{
 493	struct fw_csr_iterator ci;
 494	int key, value;
 495	int specifier_id = 0;
 496	int version = 0;
 497
 498	fw_csr_iterator_init(&ci, directory);
 499	while (fw_csr_iterator_next(&ci, &key, &value)) {
 500		switch (key) {
 501		case CSR_SPECIFIER_ID:
 502			specifier_id = value;
 503			break;
 504		case CSR_VERSION:
 505			version = value;
 506			break;
 507		}
 508	}
 509
 510	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
 511}
 512
 513static ssize_t units_show(struct device *dev,
 514			  struct device_attribute *attr, char *buf)
 515{
 516	struct fw_device *device = fw_device(dev);
 517	struct fw_csr_iterator ci;
 518	int key, value, i = 0;
 519
 520	guard(rwsem_read)(&fw_device_rwsem);
 521
 522	fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
 523	while (fw_csr_iterator_next(&ci, &key, &value)) {
 524		if (key != (CSR_UNIT | CSR_DIRECTORY))
 525			continue;
 526		i += units_sprintf(&buf[i], ci.p + value - 1);
 527		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
 528			break;
 529	}
 
 530
 531	if (i)
 532		buf[i - 1] = '\n';
 533
 534	return i;
 535}
 536
 537static struct device_attribute fw_device_attributes[] = {
 538	__ATTR_RO(config_rom),
 539	__ATTR_RO(guid),
 540	__ATTR_RO(is_local),
 541	__ATTR_RO(units),
 542	__ATTR_NULL,
 543};
 544
 545static int read_rom(struct fw_device *device,
 546		    int generation, int index, u32 *data)
 547{
 548	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
 549	int i, rcode;
 550
 551	/* device->node_id, accessed below, must not be older than generation */
 552	smp_rmb();
 553
 554	for (i = 10; i < 100; i += 10) {
 555		rcode = fw_run_transaction(device->card,
 556				TCODE_READ_QUADLET_REQUEST, device->node_id,
 557				generation, device->max_speed, offset, data, 4);
 558		if (rcode != RCODE_BUSY)
 559			break;
 560		msleep(i);
 561	}
 562	be32_to_cpus(data);
 563
 564	return rcode;
 565}
 566
 567// By quadlet unit.
 568#define MAX_CONFIG_ROM_SIZE	((CSR_CONFIG_ROM_END - CSR_CONFIG_ROM) / sizeof(u32))
 569
 570/*
 571 * Read the bus info block, perform a speed probe, and read all of the rest of
 572 * the config ROM.  We do all this with a cached bus generation.  If the bus
 573 * generation changes under us, read_config_rom will fail and get retried.
 574 * It's better to start all over in this case because the node from which we
 575 * are reading the ROM may have changed the ROM during the reset.
 576 * Returns either a result code or a negative error code.
 577 */
 578static int read_config_rom(struct fw_device *device, int generation)
 579{
 580	struct fw_card *card = device->card;
 581	const u32 *old_rom, *new_rom;
 582	u32 *rom, *stack;
 583	u32 sp, key;
 584	int i, end, length, ret;
 585
 586	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
 587		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
 588	if (rom == NULL)
 589		return -ENOMEM;
 590
 591	stack = &rom[MAX_CONFIG_ROM_SIZE];
 592	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
 593
 594	device->max_speed = SCODE_100;
 595
 596	/* First read the bus info block. */
 597	for (i = 0; i < 5; i++) {
 598		ret = read_rom(device, generation, i, &rom[i]);
 599		if (ret != RCODE_COMPLETE)
 600			goto out;
 601		/*
 602		 * As per IEEE1212 7.2, during initialization, devices can
 603		 * reply with a 0 for the first quadlet of the config
 604		 * rom to indicate that they are booting (for example,
 605		 * if the firmware is on the disk of a external
 606		 * harddisk).  In that case we just fail, and the
 607		 * retry mechanism will try again later.
 608		 */
 609		if (i == 0 && rom[i] == 0) {
 610			ret = RCODE_BUSY;
 611			goto out;
 612		}
 613	}
 614
 615	device->max_speed = device->node->max_speed;
 616
 617	/*
 618	 * Determine the speed of
 619	 *   - devices with link speed less than PHY speed,
 620	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
 621	 *   - all devices if there are 1394b repeaters.
 622	 * Note, we cannot use the bus info block's link_spd as starting point
 623	 * because some buggy firmwares set it lower than necessary and because
 624	 * 1394-1995 nodes do not have the field.
 625	 */
 626	if ((rom[2] & 0x7) < device->max_speed ||
 627	    device->max_speed == SCODE_BETA ||
 628	    card->beta_repeaters_present) {
 629		u32 dummy;
 630
 631		/* for S1600 and S3200 */
 632		if (device->max_speed == SCODE_BETA)
 633			device->max_speed = card->link_speed;
 634
 635		while (device->max_speed > SCODE_100) {
 636			if (read_rom(device, generation, 0, &dummy) ==
 637			    RCODE_COMPLETE)
 638				break;
 639			device->max_speed--;
 640		}
 641	}
 642
 643	/*
 644	 * Now parse the config rom.  The config rom is a recursive
 645	 * directory structure so we parse it using a stack of
 646	 * references to the blocks that make up the structure.  We
 647	 * push a reference to the root directory on the stack to
 648	 * start things off.
 649	 */
 650	length = i;
 651	sp = 0;
 652	stack[sp++] = 0xc0000005;
 653	while (sp > 0) {
 654		/*
 655		 * Pop the next block reference of the stack.  The
 656		 * lower 24 bits is the offset into the config rom,
 657		 * the upper 8 bits are the type of the reference the
 658		 * block.
 659		 */
 660		key = stack[--sp];
 661		i = key & 0xffffff;
 662		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
 663			ret = -ENXIO;
 664			goto out;
 665		}
 666
 667		/* Read header quadlet for the block to get the length. */
 668		ret = read_rom(device, generation, i, &rom[i]);
 669		if (ret != RCODE_COMPLETE)
 670			goto out;
 671		end = i + (rom[i] >> 16) + 1;
 672		if (end > MAX_CONFIG_ROM_SIZE) {
 673			/*
 674			 * This block extends outside the config ROM which is
 675			 * a firmware bug.  Ignore this whole block, i.e.
 676			 * simply set a fake block length of 0.
 677			 */
 678			fw_err(card, "skipped invalid ROM block %x at %llx\n",
 679			       rom[i],
 680			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 681			rom[i] = 0;
 682			end = i;
 683		}
 684		i++;
 685
 686		/*
 687		 * Now read in the block.  If this is a directory
 688		 * block, check the entries as we read them to see if
 689		 * it references another block, and push it in that case.
 690		 */
 691		for (; i < end; i++) {
 692			ret = read_rom(device, generation, i, &rom[i]);
 693			if (ret != RCODE_COMPLETE)
 694				goto out;
 695
 696			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
 697				continue;
 698			/*
 699			 * Offset points outside the ROM.  May be a firmware
 700			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
 701			 * 7.7.18).  Simply overwrite this pointer here by a
 702			 * fake immediate entry so that later iterators over
 703			 * the ROM don't have to check offsets all the time.
 704			 */
 705			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
 706				fw_err(card,
 707				       "skipped unsupported ROM entry %x at %llx\n",
 708				       rom[i],
 709				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 710				rom[i] = 0;
 711				continue;
 712			}
 713			stack[sp++] = i + rom[i];
 714		}
 715		if (length < i)
 716			length = i;
 717	}
 718
 719	old_rom = device->config_rom;
 720	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
 721	if (new_rom == NULL) {
 722		ret = -ENOMEM;
 723		goto out;
 724	}
 725
 726	scoped_guard(rwsem_write, &fw_device_rwsem) {
 727		device->config_rom = new_rom;
 728		device->config_rom_length = length;
 729	}
 730
 731	kfree(old_rom);
 732	ret = RCODE_COMPLETE;
 733	device->max_rec	= rom[2] >> 12 & 0xf;
 734	device->cmc	= rom[2] >> 30 & 1;
 735	device->irmc	= rom[2] >> 31 & 1;
 736 out:
 737	kfree(rom);
 738
 739	return ret;
 740}
 741
 742static void fw_unit_release(struct device *dev)
 743{
 744	struct fw_unit *unit = fw_unit(dev);
 745
 746	fw_device_put(fw_parent_device(unit));
 747	kfree(unit);
 748}
 749
 750static struct device_type fw_unit_type = {
 751	.uevent		= fw_unit_uevent,
 752	.release	= fw_unit_release,
 753};
 754
 755static bool is_fw_unit(const struct device *dev)
 756{
 757	return dev->type == &fw_unit_type;
 758}
 759
 760static void create_units(struct fw_device *device)
 761{
 762	struct fw_csr_iterator ci;
 763	struct fw_unit *unit;
 764	int key, value, i;
 765
 766	i = 0;
 767	fw_csr_iterator_init(&ci, &device->config_rom[ROOT_DIR_OFFSET]);
 768	while (fw_csr_iterator_next(&ci, &key, &value)) {
 769		if (key != (CSR_UNIT | CSR_DIRECTORY))
 770			continue;
 771
 772		/*
 773		 * Get the address of the unit directory and try to
 774		 * match the drivers id_tables against it.
 775		 */
 776		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
 777		if (unit == NULL)
 
 778			continue;
 
 779
 780		unit->directory = ci.p + value - 1;
 781		unit->device.bus = &fw_bus_type;
 782		unit->device.type = &fw_unit_type;
 783		unit->device.parent = &device->device;
 784		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
 785
 786		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
 787				ARRAY_SIZE(fw_unit_attributes) +
 788				ARRAY_SIZE(config_rom_attributes));
 789		init_fw_attribute_group(&unit->device,
 790					fw_unit_attributes,
 791					&unit->attribute_group);
 792
 
 
 
 793		fw_device_get(device);
 794		if (device_register(&unit->device) < 0) {
 795			put_device(&unit->device);
 796			continue;
 797		}
 798	}
 799}
 800
 801static int shutdown_unit(struct device *device, void *data)
 802{
 803	device_unregister(device);
 804
 805	return 0;
 806}
 807
 808/*
 809 * fw_device_rwsem acts as dual purpose mutex:
 
 810 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 811 *     fw_unit.directory, unless those accesses happen at safe occasions
 812 */
 813DECLARE_RWSEM(fw_device_rwsem);
 814
 815DEFINE_XARRAY_ALLOC(fw_device_xa);
 816int fw_cdev_major;
 817
 818struct fw_device *fw_device_get_by_devt(dev_t devt)
 819{
 820	struct fw_device *device;
 821
 822	device = xa_load(&fw_device_xa, MINOR(devt));
 
 823	if (device)
 824		fw_device_get(device);
 
 825
 826	return device;
 827}
 828
 829struct workqueue_struct *fw_workqueue;
 830EXPORT_SYMBOL(fw_workqueue);
 831
 832static void fw_schedule_device_work(struct fw_device *device,
 833				    unsigned long delay)
 834{
 835	queue_delayed_work(fw_workqueue, &device->work, delay);
 836}
 837
 838/*
 839 * These defines control the retry behavior for reading the config
 840 * rom.  It shouldn't be necessary to tweak these; if the device
 841 * doesn't respond to a config rom read within 10 seconds, it's not
 842 * going to respond at all.  As for the initial delay, a lot of
 843 * devices will be able to respond within half a second after bus
 844 * reset.  On the other hand, it's not really worth being more
 845 * aggressive than that, since it scales pretty well; if 10 devices
 846 * are plugged in, they're all getting read within one second.
 847 */
 848
 849#define MAX_RETRIES	10
 850#define RETRY_DELAY	(3 * HZ)
 851#define INITIAL_DELAY	(HZ / 2)
 852#define SHUTDOWN_DELAY	(2 * HZ)
 853
 854static void fw_device_shutdown(struct work_struct *work)
 855{
 856	struct fw_device *device =
 857		container_of(work, struct fw_device, work.work);
 
 858
 859	if (time_before64(get_jiffies_64(),
 860			  device->card->reset_jiffies + SHUTDOWN_DELAY)
 861	    && !list_empty(&device->card->link)) {
 862		fw_schedule_device_work(device, SHUTDOWN_DELAY);
 863		return;
 864	}
 865
 866	if (atomic_cmpxchg(&device->state,
 867			   FW_DEVICE_GONE,
 868			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
 869		return;
 870
 871	fw_device_cdev_remove(device);
 872	device_for_each_child(&device->device, NULL, shutdown_unit);
 873	device_unregister(&device->device);
 874
 875	xa_erase(&fw_device_xa, MINOR(device->device.devt));
 
 
 876
 877	fw_device_put(device);
 878}
 879
 880static void fw_device_release(struct device *dev)
 881{
 882	struct fw_device *device = fw_device(dev);
 883	struct fw_card *card = device->card;
 
 884
 885	/*
 886	 * Take the card lock so we don't set this to NULL while a
 887	 * FW_NODE_UPDATED callback is being handled or while the
 888	 * bus manager work looks at this node.
 889	 */
 890	scoped_guard(spinlock_irqsave, &card->lock)
 891		device->node->data = NULL;
 
 892
 893	fw_node_put(device->node);
 894	kfree(device->config_rom);
 895	kfree(device);
 896	fw_card_put(card);
 897}
 898
 899static struct device_type fw_device_type = {
 900	.release = fw_device_release,
 901};
 902
 903static bool is_fw_device(const struct device *dev)
 904{
 905	return dev->type == &fw_device_type;
 906}
 907
 908static int update_unit(struct device *dev, void *data)
 909{
 910	struct fw_unit *unit = fw_unit(dev);
 911	struct fw_driver *driver = (struct fw_driver *)dev->driver;
 912
 913	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
 914		device_lock(dev);
 915		driver->update(unit);
 916		device_unlock(dev);
 917	}
 918
 919	return 0;
 920}
 921
 922static void fw_device_update(struct work_struct *work)
 923{
 924	struct fw_device *device =
 925		container_of(work, struct fw_device, work.work);
 926
 927	fw_device_cdev_update(device);
 928	device_for_each_child(&device->device, NULL, update_unit);
 929}
 930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
 932
 933static void set_broadcast_channel(struct fw_device *device, int generation)
 934{
 935	struct fw_card *card = device->card;
 936	__be32 data;
 937	int rcode;
 938
 939	if (!card->broadcast_channel_allocated)
 940		return;
 941
 942	/*
 943	 * The Broadcast_Channel Valid bit is required by nodes which want to
 944	 * transmit on this channel.  Such transmissions are practically
 945	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
 946	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
 947	 * to narrow down to which nodes we send Broadcast_Channel updates.
 948	 */
 949	if (!device->irmc || device->max_rec < 8)
 950		return;
 951
 952	/*
 953	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
 954	 * Perform a read test first.
 955	 */
 956	if (device->bc_implemented == BC_UNKNOWN) {
 957		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
 958				device->node_id, generation, device->max_speed,
 959				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 960				&data, 4);
 961		switch (rcode) {
 962		case RCODE_COMPLETE:
 963			if (data & cpu_to_be32(1 << 31)) {
 964				device->bc_implemented = BC_IMPLEMENTED;
 965				break;
 966			}
 967			fallthrough;	/* to case address error */
 968		case RCODE_ADDRESS_ERROR:
 969			device->bc_implemented = BC_UNIMPLEMENTED;
 970		}
 971	}
 972
 973	if (device->bc_implemented == BC_IMPLEMENTED) {
 974		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
 975				   BROADCAST_CHANNEL_VALID);
 976		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 977				device->node_id, generation, device->max_speed,
 978				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 979				&data, 4);
 980	}
 981}
 982
 983int fw_device_set_broadcast_channel(struct device *dev, void *gen)
 984{
 985	if (is_fw_device(dev))
 986		set_broadcast_channel(fw_device(dev), (long)gen);
 987
 988	return 0;
 989}
 990
 991static int compare_configuration_rom(struct device *dev, void *data)
 992{
 993	const struct fw_device *old = fw_device(dev);
 994	const u32 *config_rom = data;
 995
 996	if (!is_fw_device(dev))
 997		return 0;
 998
 999	// Compare the bus information block and root_length/root_crc.
1000	return !memcmp(old->config_rom, config_rom, 6 * 4);
1001}
1002
1003static void fw_device_init(struct work_struct *work)
1004{
1005	struct fw_device *device =
1006		container_of(work, struct fw_device, work.work);
1007	struct fw_card *card = device->card;
1008	struct device *found;
1009	u32 minor;
1010	int ret;
1011
1012	/*
1013	 * All failure paths here set node->data to NULL, so that we
1014	 * don't try to do device_for_each_child() on a kfree()'d
1015	 * device.
1016	 */
1017
1018	ret = read_config_rom(device, device->generation);
1019	if (ret != RCODE_COMPLETE) {
1020		if (device->config_rom_retries < MAX_RETRIES &&
1021		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1022			device->config_rom_retries++;
1023			fw_schedule_device_work(device, RETRY_DELAY);
1024		} else {
1025			if (device->node->link_on)
1026				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1027					  device->node_id,
1028					  fw_rcode_string(ret));
1029			if (device->node == card->root_node)
1030				fw_schedule_bm_work(card, 0);
1031			fw_device_release(&device->device);
1032		}
1033		return;
1034	}
1035
1036	// If a device was pending for deletion because its node went away but its bus info block
1037	// and root directory header matches that of a newly discovered device, revive the
1038	// existing fw_device. The newly allocated fw_device becomes obsolete instead.
1039	//
1040	// serialize config_rom access.
1041	scoped_guard(rwsem_read, &fw_device_rwsem) {
1042		found = device_find_child(card->device, (void *)device->config_rom,
1043					  compare_configuration_rom);
1044	}
1045	if (found) {
1046		struct fw_device *reused = fw_device(found);
1047
1048		if (atomic_cmpxchg(&reused->state,
1049				   FW_DEVICE_GONE,
1050				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1051			// serialize node access
1052			scoped_guard(spinlock_irq, &card->lock) {
1053				struct fw_node *current_node = device->node;
1054				struct fw_node *obsolete_node = reused->node;
1055
1056				device->node = obsolete_node;
1057				device->node->data = device;
1058				reused->node = current_node;
1059				reused->node->data = reused;
1060
1061				reused->max_speed = device->max_speed;
1062				reused->node_id = current_node->node_id;
1063				smp_wmb();  /* update node_id before generation */
1064				reused->generation = card->generation;
1065				reused->config_rom_retries = 0;
1066				fw_notice(card, "rediscovered device %s\n",
1067					  dev_name(found));
1068
1069				reused->workfn = fw_device_update;
1070				fw_schedule_device_work(reused, 0);
1071
1072				if (current_node == card->root_node)
1073					fw_schedule_bm_work(card, 0);
1074			}
1075
1076			put_device(found);
1077			fw_device_release(&device->device);
1078
1079			return;
1080		}
1081
1082		put_device(found);
1083	}
1084
1085	device_initialize(&device->device);
1086
1087	fw_device_get(device);
 
 
 
 
 
1088
1089	// The index of allocated entry is used for minor identifier of device node.
1090	ret = xa_alloc(&fw_device_xa, &minor, device, XA_LIMIT(0, MINORMASK), GFP_KERNEL);
1091	if (ret < 0)
1092		goto error;
1093
1094	device->device.bus = &fw_bus_type;
1095	device->device.type = &fw_device_type;
1096	device->device.parent = card->device;
1097	device->device.devt = MKDEV(fw_cdev_major, minor);
1098	dev_set_name(&device->device, "fw%d", minor);
1099
1100	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1101			ARRAY_SIZE(fw_device_attributes) +
1102			ARRAY_SIZE(config_rom_attributes));
1103	init_fw_attribute_group(&device->device,
1104				fw_device_attributes,
1105				&device->attribute_group);
1106
1107	if (device_add(&device->device)) {
1108		fw_err(card, "failed to add device\n");
1109		goto error_with_cdev;
1110	}
1111
1112	create_units(device);
1113
1114	/*
1115	 * Transition the device to running state.  If it got pulled
1116	 * out from under us while we did the initialization work, we
1117	 * have to shut down the device again here.  Normally, though,
1118	 * fw_node_event will be responsible for shutting it down when
1119	 * necessary.  We have to use the atomic cmpxchg here to avoid
1120	 * racing with the FW_NODE_DESTROYED case in
1121	 * fw_node_event().
1122	 */
1123	if (atomic_cmpxchg(&device->state,
1124			   FW_DEVICE_INITIALIZING,
1125			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1126		device->workfn = fw_device_shutdown;
1127		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1128	} else {
1129		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1130			  dev_name(&device->device),
1131			  device->config_rom[3], device->config_rom[4],
1132			  1 << device->max_speed);
1133		device->config_rom_retries = 0;
1134
1135		set_broadcast_channel(device, device->generation);
1136
1137		add_device_randomness(&device->config_rom[3], 8);
1138	}
1139
1140	/*
1141	 * Reschedule the IRM work if we just finished reading the
1142	 * root node config rom.  If this races with a bus reset we
1143	 * just end up running the IRM work a couple of extra times -
1144	 * pretty harmless.
1145	 */
1146	if (device->node == card->root_node)
1147		fw_schedule_bm_work(card, 0);
1148
1149	return;
1150
1151 error_with_cdev:
1152	xa_erase(&fw_device_xa, minor);
 
 
1153 error:
1154	fw_device_put(device);		// fw_device_xa's reference.
1155
1156	put_device(&device->device);	/* our reference */
1157}
1158
1159/* Reread and compare bus info block and header of root directory */
1160static int reread_config_rom(struct fw_device *device, int generation,
1161			     bool *changed)
1162{
1163	u32 q;
1164	int i, rcode;
1165
1166	for (i = 0; i < 6; i++) {
1167		rcode = read_rom(device, generation, i, &q);
1168		if (rcode != RCODE_COMPLETE)
1169			return rcode;
1170
1171		if (i == 0 && q == 0)
1172			/* inaccessible (see read_config_rom); retry later */
1173			return RCODE_BUSY;
1174
1175		if (q != device->config_rom[i]) {
1176			*changed = true;
1177			return RCODE_COMPLETE;
1178		}
1179	}
1180
1181	*changed = false;
1182	return RCODE_COMPLETE;
1183}
1184
1185static void fw_device_refresh(struct work_struct *work)
1186{
1187	struct fw_device *device =
1188		container_of(work, struct fw_device, work.work);
1189	struct fw_card *card = device->card;
1190	int ret, node_id = device->node_id;
1191	bool changed;
1192
1193	ret = reread_config_rom(device, device->generation, &changed);
1194	if (ret != RCODE_COMPLETE)
1195		goto failed_config_rom;
1196
1197	if (!changed) {
1198		if (atomic_cmpxchg(&device->state,
1199				   FW_DEVICE_INITIALIZING,
1200				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1201			goto gone;
1202
1203		fw_device_update(work);
1204		device->config_rom_retries = 0;
1205		goto out;
1206	}
1207
1208	/*
1209	 * Something changed.  We keep things simple and don't investigate
1210	 * further.  We just destroy all previous units and create new ones.
1211	 */
1212	device_for_each_child(&device->device, NULL, shutdown_unit);
1213
1214	ret = read_config_rom(device, device->generation);
1215	if (ret != RCODE_COMPLETE)
1216		goto failed_config_rom;
1217
1218	fw_device_cdev_update(device);
1219	create_units(device);
1220
1221	/* Userspace may want to re-read attributes. */
1222	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1223
1224	if (atomic_cmpxchg(&device->state,
1225			   FW_DEVICE_INITIALIZING,
1226			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1227		goto gone;
1228
1229	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1230	device->config_rom_retries = 0;
1231	goto out;
1232
1233 failed_config_rom:
1234	if (device->config_rom_retries < MAX_RETRIES &&
1235	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1236		device->config_rom_retries++;
1237		fw_schedule_device_work(device, RETRY_DELAY);
1238		return;
1239	}
1240
1241	fw_notice(card, "giving up on refresh of device %s: %s\n",
1242		  dev_name(&device->device), fw_rcode_string(ret));
1243 gone:
1244	atomic_set(&device->state, FW_DEVICE_GONE);
1245	device->workfn = fw_device_shutdown;
1246	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1247 out:
1248	if (node_id == card->root_node->node_id)
1249		fw_schedule_bm_work(card, 0);
1250}
1251
1252static void fw_device_workfn(struct work_struct *work)
1253{
1254	struct fw_device *device = container_of(to_delayed_work(work),
1255						struct fw_device, work);
1256	device->workfn(work);
1257}
1258
1259void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1260{
1261	struct fw_device *device;
1262
1263	switch (event) {
1264	case FW_NODE_CREATED:
1265		/*
1266		 * Attempt to scan the node, regardless whether its self ID has
1267		 * the L (link active) flag set or not.  Some broken devices
1268		 * send L=0 but have an up-and-running link; others send L=1
1269		 * without actually having a link.
1270		 */
1271 create:
1272		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1273		if (device == NULL)
1274			break;
1275
1276		/*
1277		 * Do minimal initialization of the device here, the
1278		 * rest will happen in fw_device_init().
1279		 *
1280		 * Attention:  A lot of things, even fw_device_get(),
1281		 * cannot be done before fw_device_init() finished!
1282		 * You can basically just check device->state and
1283		 * schedule work until then, but only while holding
1284		 * card->lock.
1285		 */
1286		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1287		device->card = fw_card_get(card);
1288		device->node = fw_node_get(node);
1289		device->node_id = node->node_id;
1290		device->generation = card->generation;
1291		device->is_local = node == card->local_node;
1292		mutex_init(&device->client_list_mutex);
1293		INIT_LIST_HEAD(&device->client_list);
1294
1295		/*
1296		 * Set the node data to point back to this device so
1297		 * FW_NODE_UPDATED callbacks can update the node_id
1298		 * and generation for the device.
1299		 */
1300		node->data = device;
1301
1302		/*
1303		 * Many devices are slow to respond after bus resets,
1304		 * especially if they are bus powered and go through
1305		 * power-up after getting plugged in.  We schedule the
1306		 * first config rom scan half a second after bus reset.
1307		 */
1308		device->workfn = fw_device_init;
1309		INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1310		fw_schedule_device_work(device, INITIAL_DELAY);
1311		break;
1312
1313	case FW_NODE_INITIATED_RESET:
1314	case FW_NODE_LINK_ON:
1315		device = node->data;
1316		if (device == NULL)
1317			goto create;
1318
1319		device->node_id = node->node_id;
1320		smp_wmb();  /* update node_id before generation */
1321		device->generation = card->generation;
1322		if (atomic_cmpxchg(&device->state,
1323			    FW_DEVICE_RUNNING,
1324			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1325			device->workfn = fw_device_refresh;
1326			fw_schedule_device_work(device,
1327				device->is_local ? 0 : INITIAL_DELAY);
1328		}
1329		break;
1330
1331	case FW_NODE_UPDATED:
1332		device = node->data;
1333		if (device == NULL)
1334			break;
1335
1336		device->node_id = node->node_id;
1337		smp_wmb();  /* update node_id before generation */
1338		device->generation = card->generation;
1339		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1340			device->workfn = fw_device_update;
1341			fw_schedule_device_work(device, 0);
1342		}
1343		break;
1344
1345	case FW_NODE_DESTROYED:
1346	case FW_NODE_LINK_OFF:
1347		if (!node->data)
1348			break;
1349
1350		/*
1351		 * Destroy the device associated with the node.  There
1352		 * are two cases here: either the device is fully
1353		 * initialized (FW_DEVICE_RUNNING) or we're in the
1354		 * process of reading its config rom
1355		 * (FW_DEVICE_INITIALIZING).  If it is fully
1356		 * initialized we can reuse device->work to schedule a
1357		 * full fw_device_shutdown().  If not, there's work
1358		 * scheduled to read it's config rom, and we just put
1359		 * the device in shutdown state to have that code fail
1360		 * to create the device.
1361		 */
1362		device = node->data;
1363		if (atomic_xchg(&device->state,
1364				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1365			device->workfn = fw_device_shutdown;
1366			fw_schedule_device_work(device,
1367				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1368		}
1369		break;
1370	}
1371}
1372
1373#ifdef CONFIG_FIREWIRE_KUNIT_DEVICE_ATTRIBUTE_TEST
1374#include "device-attribute-test.c"
1375#endif
v3.5.6
 
   1/*
   2 * Device probing and sysfs code.
   3 *
   4 * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/ctype.h>
  23#include <linux/delay.h>
  24#include <linux/device.h>
  25#include <linux/errno.h>
  26#include <linux/firewire.h>
  27#include <linux/firewire-constants.h>
  28#include <linux/idr.h>
  29#include <linux/jiffies.h>
  30#include <linux/kobject.h>
  31#include <linux/list.h>
  32#include <linux/mod_devicetable.h>
  33#include <linux/module.h>
  34#include <linux/mutex.h>
 
  35#include <linux/rwsem.h>
  36#include <linux/slab.h>
  37#include <linux/spinlock.h>
  38#include <linux/string.h>
  39#include <linux/workqueue.h>
  40
  41#include <linux/atomic.h>
  42#include <asm/byteorder.h>
  43
  44#include "core.h"
  45
 
 
  46void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
  47{
  48	ci->p = p + 1;
  49	ci->end = ci->p + (p[0] >> 16);
  50}
  51EXPORT_SYMBOL(fw_csr_iterator_init);
  52
  53int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
  54{
  55	*key = *ci->p >> 24;
  56	*value = *ci->p & 0xffffff;
  57
  58	return ci->p++ < ci->end;
  59}
  60EXPORT_SYMBOL(fw_csr_iterator_next);
  61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62static const u32 *search_leaf(const u32 *directory, int search_key)
  63{
  64	struct fw_csr_iterator ci;
  65	int last_key = 0, key, value;
  66
  67	fw_csr_iterator_init(&ci, directory);
  68	while (fw_csr_iterator_next(&ci, &key, &value)) {
  69		if (last_key == search_key &&
  70		    key == (CSR_DESCRIPTOR | CSR_LEAF))
  71			return ci.p - 1 + value;
  72
  73		last_key = key;
  74	}
  75
  76	return NULL;
  77}
  78
  79static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
  80{
  81	unsigned int quadlets, i;
  82	char c;
  83
  84	if (!size || !buf)
  85		return -EINVAL;
  86
  87	quadlets = min(block[0] >> 16, 256U);
  88	if (quadlets < 2)
  89		return -ENODATA;
  90
  91	if (block[1] != 0 || block[2] != 0)
  92		/* unknown language/character set */
  93		return -ENODATA;
  94
  95	block += 3;
  96	quadlets -= 2;
  97	for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
  98		c = block[i / 4] >> (24 - 8 * (i % 4));
  99		if (c == '\0')
 100			break;
 101		buf[i] = c;
 102	}
 103	buf[i] = '\0';
 104
 105	return i;
 106}
 107
 108/**
 109 * fw_csr_string() - reads a string from the configuration ROM
 110 * @directory:	e.g. root directory or unit directory
 111 * @key:	the key of the preceding directory entry
 112 * @buf:	where to put the string
 113 * @size:	size of @buf, in bytes
 114 *
 115 * The string is taken from a minimal ASCII text descriptor leaf after
 116 * the immediate entry with @key.  The string is zero-terminated.
 
 
 117 * Returns strlen(buf) or a negative error code.
 118 */
 119int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
 120{
 121	const u32 *leaf = search_leaf(directory, key);
 122	if (!leaf)
 123		return -ENOENT;
 124
 125	return textual_leaf_to_string(leaf, buf, size);
 126}
 127EXPORT_SYMBOL(fw_csr_string);
 128
 129static void get_ids(const u32 *directory, int *id)
 130{
 131	struct fw_csr_iterator ci;
 132	int key, value;
 133
 134	fw_csr_iterator_init(&ci, directory);
 135	while (fw_csr_iterator_next(&ci, &key, &value)) {
 136		switch (key) {
 137		case CSR_VENDOR:	id[0] = value; break;
 138		case CSR_MODEL:		id[1] = value; break;
 139		case CSR_SPECIFIER_ID:	id[2] = value; break;
 140		case CSR_VERSION:	id[3] = value; break;
 141		}
 142	}
 143}
 144
 145static void get_modalias_ids(struct fw_unit *unit, int *id)
 146{
 147	get_ids(&fw_parent_device(unit)->config_rom[5], id);
 148	get_ids(unit->directory, id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149}
 150
 151static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
 152{
 153	int match = 0;
 154
 155	if (id[0] == id_table->vendor_id)
 156		match |= IEEE1394_MATCH_VENDOR_ID;
 157	if (id[1] == id_table->model_id)
 158		match |= IEEE1394_MATCH_MODEL_ID;
 159	if (id[2] == id_table->specifier_id)
 160		match |= IEEE1394_MATCH_SPECIFIER_ID;
 161	if (id[3] == id_table->version)
 162		match |= IEEE1394_MATCH_VERSION;
 163
 164	return (match & id_table->match_flags) == id_table->match_flags;
 165}
 166
 167static bool is_fw_unit(struct device *dev);
 168
 169static int fw_unit_match(struct device *dev, struct device_driver *drv)
 170{
 171	const struct ieee1394_device_id *id_table =
 172			container_of(drv, struct fw_driver, driver)->id_table;
 173	int id[] = {0, 0, 0, 0};
 174
 175	/* We only allow binding to fw_units. */
 176	if (!is_fw_unit(dev))
 177		return 0;
 178
 179	get_modalias_ids(fw_unit(dev), id);
 180
 181	for (; id_table->match_flags != 0; id_table++)
 182		if (match_ids(id_table, id))
 183			return 1;
 
 
 
 184
 185	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186}
 187
 188static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
 189{
 190	int id[] = {0, 0, 0, 0};
 191
 192	get_modalias_ids(unit, id);
 193
 194	return snprintf(buffer, buffer_size,
 195			"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
 196			id[0], id[1], id[2], id[3]);
 197}
 198
 199static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
 200{
 201	struct fw_unit *unit = fw_unit(dev);
 202	char modalias[64];
 203
 204	get_modalias(unit, modalias, sizeof(modalias));
 205
 206	if (add_uevent_var(env, "MODALIAS=%s", modalias))
 207		return -ENOMEM;
 208
 209	return 0;
 210}
 211
 212struct bus_type fw_bus_type = {
 213	.name = "firewire",
 214	.match = fw_unit_match,
 
 
 215};
 216EXPORT_SYMBOL(fw_bus_type);
 217
 218int fw_device_enable_phys_dma(struct fw_device *device)
 219{
 220	int generation = device->generation;
 221
 222	/* device->node_id, accessed below, must not be older than generation */
 223	smp_rmb();
 224
 225	return device->card->driver->enable_phys_dma(device->card,
 226						     device->node_id,
 227						     generation);
 228}
 229EXPORT_SYMBOL(fw_device_enable_phys_dma);
 230
 231struct config_rom_attribute {
 232	struct device_attribute attr;
 233	u32 key;
 234};
 235
 236static ssize_t show_immediate(struct device *dev,
 237			      struct device_attribute *dattr, char *buf)
 238{
 239	struct config_rom_attribute *attr =
 240		container_of(dattr, struct config_rom_attribute, attr);
 241	struct fw_csr_iterator ci;
 242	const u32 *dir;
 243	int key, value, ret = -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244
 245	down_read(&fw_device_rwsem);
 
 246
 247	if (is_fw_unit(dev))
 248		dir = fw_unit(dev)->directory;
 249	else
 250		dir = fw_device(dev)->config_rom + 5;
 251
 252	fw_csr_iterator_init(&ci, dir);
 253	while (fw_csr_iterator_next(&ci, &key, &value))
 254		if (attr->key == key) {
 255			ret = snprintf(buf, buf ? PAGE_SIZE : 0,
 256				       "0x%06x\n", value);
 257			break;
 258		}
 
 259
 260	up_read(&fw_device_rwsem);
 
 261
 262	return ret;
 
 263}
 264
 265#define IMMEDIATE_ATTR(name, key)				\
 266	{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
 267
 268static ssize_t show_text_leaf(struct device *dev,
 269			      struct device_attribute *dattr, char *buf)
 270{
 271	struct config_rom_attribute *attr =
 272		container_of(dattr, struct config_rom_attribute, attr);
 273	const u32 *dir;
 274	size_t bufsize;
 275	char dummy_buf[2];
 276	int ret;
 277
 278	down_read(&fw_device_rwsem);
 279
 280	if (is_fw_unit(dev))
 281		dir = fw_unit(dev)->directory;
 282	else
 283		dir = fw_device(dev)->config_rom + 5;
 
 284
 
 
 
 
 
 
 
 
 
 
 
 
 285	if (buf) {
 286		bufsize = PAGE_SIZE - 1;
 287	} else {
 288		buf = dummy_buf;
 289		bufsize = 1;
 290	}
 291
 292	ret = fw_csr_string(dir, attr->key, buf, bufsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293
 294	if (ret >= 0) {
 295		/* Strip trailing whitespace and add newline. */
 296		while (ret > 0 && isspace(buf[ret - 1]))
 297			ret--;
 298		strcpy(buf + ret, "\n");
 299		ret++;
 300	}
 301
 302	up_read(&fw_device_rwsem);
 
 
 
 
 303
 304	return ret;
 305}
 306
 307#define TEXT_LEAF_ATTR(name, key)				\
 308	{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
 309
 310static struct config_rom_attribute config_rom_attributes[] = {
 311	IMMEDIATE_ATTR(vendor, CSR_VENDOR),
 312	IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
 313	IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
 314	IMMEDIATE_ATTR(version, CSR_VERSION),
 315	IMMEDIATE_ATTR(model, CSR_MODEL),
 316	TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
 317	TEXT_LEAF_ATTR(model_name, CSR_MODEL),
 318	TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
 319};
 320
 321static void init_fw_attribute_group(struct device *dev,
 322				    struct device_attribute *attrs,
 323				    struct fw_attribute_group *group)
 324{
 325	struct device_attribute *attr;
 326	int i, j;
 327
 328	for (j = 0; attrs[j].attr.name != NULL; j++)
 329		group->attrs[j] = &attrs[j].attr;
 330
 331	for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
 332		attr = &config_rom_attributes[i].attr;
 333		if (attr->show(dev, attr, NULL) < 0)
 334			continue;
 335		group->attrs[j++] = &attr->attr;
 336	}
 337
 338	group->attrs[j] = NULL;
 339	group->groups[0] = &group->group;
 340	group->groups[1] = NULL;
 341	group->group.attrs = group->attrs;
 342	dev->groups = (const struct attribute_group **) group->groups;
 343}
 344
 345static ssize_t modalias_show(struct device *dev,
 346			     struct device_attribute *attr, char *buf)
 347{
 348	struct fw_unit *unit = fw_unit(dev);
 349	int length;
 350
 351	length = get_modalias(unit, buf, PAGE_SIZE);
 352	strcpy(buf + length, "\n");
 353
 354	return length + 1;
 355}
 356
 357static ssize_t rom_index_show(struct device *dev,
 358			      struct device_attribute *attr, char *buf)
 359{
 360	struct fw_device *device = fw_device(dev->parent);
 361	struct fw_unit *unit = fw_unit(dev);
 362
 363	return snprintf(buf, PAGE_SIZE, "%d\n",
 364			(int)(unit->directory - device->config_rom));
 365}
 366
 367static struct device_attribute fw_unit_attributes[] = {
 368	__ATTR_RO(modalias),
 369	__ATTR_RO(rom_index),
 370	__ATTR_NULL,
 371};
 372
 373static ssize_t config_rom_show(struct device *dev,
 374			       struct device_attribute *attr, char *buf)
 375{
 376	struct fw_device *device = fw_device(dev);
 377	size_t length;
 378
 379	down_read(&fw_device_rwsem);
 
 380	length = device->config_rom_length * 4;
 381	memcpy(buf, device->config_rom, length);
 382	up_read(&fw_device_rwsem);
 383
 384	return length;
 385}
 386
 387static ssize_t guid_show(struct device *dev,
 388			 struct device_attribute *attr, char *buf)
 389{
 390	struct fw_device *device = fw_device(dev);
 391	int ret;
 392
 393	down_read(&fw_device_rwsem);
 394	ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
 395		       device->config_rom[3], device->config_rom[4]);
 396	up_read(&fw_device_rwsem);
 397
 398	return ret;
 
 
 
 
 
 399}
 400
 401static int units_sprintf(char *buf, const u32 *directory)
 402{
 403	struct fw_csr_iterator ci;
 404	int key, value;
 405	int specifier_id = 0;
 406	int version = 0;
 407
 408	fw_csr_iterator_init(&ci, directory);
 409	while (fw_csr_iterator_next(&ci, &key, &value)) {
 410		switch (key) {
 411		case CSR_SPECIFIER_ID:
 412			specifier_id = value;
 413			break;
 414		case CSR_VERSION:
 415			version = value;
 416			break;
 417		}
 418	}
 419
 420	return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
 421}
 422
 423static ssize_t units_show(struct device *dev,
 424			  struct device_attribute *attr, char *buf)
 425{
 426	struct fw_device *device = fw_device(dev);
 427	struct fw_csr_iterator ci;
 428	int key, value, i = 0;
 429
 430	down_read(&fw_device_rwsem);
 431	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 
 432	while (fw_csr_iterator_next(&ci, &key, &value)) {
 433		if (key != (CSR_UNIT | CSR_DIRECTORY))
 434			continue;
 435		i += units_sprintf(&buf[i], ci.p + value - 1);
 436		if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
 437			break;
 438	}
 439	up_read(&fw_device_rwsem);
 440
 441	if (i)
 442		buf[i - 1] = '\n';
 443
 444	return i;
 445}
 446
 447static struct device_attribute fw_device_attributes[] = {
 448	__ATTR_RO(config_rom),
 449	__ATTR_RO(guid),
 
 450	__ATTR_RO(units),
 451	__ATTR_NULL,
 452};
 453
 454static int read_rom(struct fw_device *device,
 455		    int generation, int index, u32 *data)
 456{
 457	u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
 458	int i, rcode;
 459
 460	/* device->node_id, accessed below, must not be older than generation */
 461	smp_rmb();
 462
 463	for (i = 10; i < 100; i += 10) {
 464		rcode = fw_run_transaction(device->card,
 465				TCODE_READ_QUADLET_REQUEST, device->node_id,
 466				generation, device->max_speed, offset, data, 4);
 467		if (rcode != RCODE_BUSY)
 468			break;
 469		msleep(i);
 470	}
 471	be32_to_cpus(data);
 472
 473	return rcode;
 474}
 475
 476#define MAX_CONFIG_ROM_SIZE 256
 
 477
 478/*
 479 * Read the bus info block, perform a speed probe, and read all of the rest of
 480 * the config ROM.  We do all this with a cached bus generation.  If the bus
 481 * generation changes under us, read_config_rom will fail and get retried.
 482 * It's better to start all over in this case because the node from which we
 483 * are reading the ROM may have changed the ROM during the reset.
 484 * Returns either a result code or a negative error code.
 485 */
 486static int read_config_rom(struct fw_device *device, int generation)
 487{
 488	struct fw_card *card = device->card;
 489	const u32 *old_rom, *new_rom;
 490	u32 *rom, *stack;
 491	u32 sp, key;
 492	int i, end, length, ret;
 493
 494	rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
 495		      sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
 496	if (rom == NULL)
 497		return -ENOMEM;
 498
 499	stack = &rom[MAX_CONFIG_ROM_SIZE];
 500	memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
 501
 502	device->max_speed = SCODE_100;
 503
 504	/* First read the bus info block. */
 505	for (i = 0; i < 5; i++) {
 506		ret = read_rom(device, generation, i, &rom[i]);
 507		if (ret != RCODE_COMPLETE)
 508			goto out;
 509		/*
 510		 * As per IEEE1212 7.2, during initialization, devices can
 511		 * reply with a 0 for the first quadlet of the config
 512		 * rom to indicate that they are booting (for example,
 513		 * if the firmware is on the disk of a external
 514		 * harddisk).  In that case we just fail, and the
 515		 * retry mechanism will try again later.
 516		 */
 517		if (i == 0 && rom[i] == 0) {
 518			ret = RCODE_BUSY;
 519			goto out;
 520		}
 521	}
 522
 523	device->max_speed = device->node->max_speed;
 524
 525	/*
 526	 * Determine the speed of
 527	 *   - devices with link speed less than PHY speed,
 528	 *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
 529	 *   - all devices if there are 1394b repeaters.
 530	 * Note, we cannot use the bus info block's link_spd as starting point
 531	 * because some buggy firmwares set it lower than necessary and because
 532	 * 1394-1995 nodes do not have the field.
 533	 */
 534	if ((rom[2] & 0x7) < device->max_speed ||
 535	    device->max_speed == SCODE_BETA ||
 536	    card->beta_repeaters_present) {
 537		u32 dummy;
 538
 539		/* for S1600 and S3200 */
 540		if (device->max_speed == SCODE_BETA)
 541			device->max_speed = card->link_speed;
 542
 543		while (device->max_speed > SCODE_100) {
 544			if (read_rom(device, generation, 0, &dummy) ==
 545			    RCODE_COMPLETE)
 546				break;
 547			device->max_speed--;
 548		}
 549	}
 550
 551	/*
 552	 * Now parse the config rom.  The config rom is a recursive
 553	 * directory structure so we parse it using a stack of
 554	 * references to the blocks that make up the structure.  We
 555	 * push a reference to the root directory on the stack to
 556	 * start things off.
 557	 */
 558	length = i;
 559	sp = 0;
 560	stack[sp++] = 0xc0000005;
 561	while (sp > 0) {
 562		/*
 563		 * Pop the next block reference of the stack.  The
 564		 * lower 24 bits is the offset into the config rom,
 565		 * the upper 8 bits are the type of the reference the
 566		 * block.
 567		 */
 568		key = stack[--sp];
 569		i = key & 0xffffff;
 570		if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
 571			ret = -ENXIO;
 572			goto out;
 573		}
 574
 575		/* Read header quadlet for the block to get the length. */
 576		ret = read_rom(device, generation, i, &rom[i]);
 577		if (ret != RCODE_COMPLETE)
 578			goto out;
 579		end = i + (rom[i] >> 16) + 1;
 580		if (end > MAX_CONFIG_ROM_SIZE) {
 581			/*
 582			 * This block extends outside the config ROM which is
 583			 * a firmware bug.  Ignore this whole block, i.e.
 584			 * simply set a fake block length of 0.
 585			 */
 586			fw_err(card, "skipped invalid ROM block %x at %llx\n",
 587			       rom[i],
 588			       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 589			rom[i] = 0;
 590			end = i;
 591		}
 592		i++;
 593
 594		/*
 595		 * Now read in the block.  If this is a directory
 596		 * block, check the entries as we read them to see if
 597		 * it references another block, and push it in that case.
 598		 */
 599		for (; i < end; i++) {
 600			ret = read_rom(device, generation, i, &rom[i]);
 601			if (ret != RCODE_COMPLETE)
 602				goto out;
 603
 604			if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
 605				continue;
 606			/*
 607			 * Offset points outside the ROM.  May be a firmware
 608			 * bug or an Extended ROM entry (IEEE 1212-2001 clause
 609			 * 7.7.18).  Simply overwrite this pointer here by a
 610			 * fake immediate entry so that later iterators over
 611			 * the ROM don't have to check offsets all the time.
 612			 */
 613			if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
 614				fw_err(card,
 615				       "skipped unsupported ROM entry %x at %llx\n",
 616				       rom[i],
 617				       i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
 618				rom[i] = 0;
 619				continue;
 620			}
 621			stack[sp++] = i + rom[i];
 622		}
 623		if (length < i)
 624			length = i;
 625	}
 626
 627	old_rom = device->config_rom;
 628	new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
 629	if (new_rom == NULL) {
 630		ret = -ENOMEM;
 631		goto out;
 632	}
 633
 634	down_write(&fw_device_rwsem);
 635	device->config_rom = new_rom;
 636	device->config_rom_length = length;
 637	up_write(&fw_device_rwsem);
 638
 639	kfree(old_rom);
 640	ret = RCODE_COMPLETE;
 641	device->max_rec	= rom[2] >> 12 & 0xf;
 642	device->cmc	= rom[2] >> 30 & 1;
 643	device->irmc	= rom[2] >> 31 & 1;
 644 out:
 645	kfree(rom);
 646
 647	return ret;
 648}
 649
 650static void fw_unit_release(struct device *dev)
 651{
 652	struct fw_unit *unit = fw_unit(dev);
 653
 654	fw_device_put(fw_parent_device(unit));
 655	kfree(unit);
 656}
 657
 658static struct device_type fw_unit_type = {
 659	.uevent		= fw_unit_uevent,
 660	.release	= fw_unit_release,
 661};
 662
 663static bool is_fw_unit(struct device *dev)
 664{
 665	return dev->type == &fw_unit_type;
 666}
 667
 668static void create_units(struct fw_device *device)
 669{
 670	struct fw_csr_iterator ci;
 671	struct fw_unit *unit;
 672	int key, value, i;
 673
 674	i = 0;
 675	fw_csr_iterator_init(&ci, &device->config_rom[5]);
 676	while (fw_csr_iterator_next(&ci, &key, &value)) {
 677		if (key != (CSR_UNIT | CSR_DIRECTORY))
 678			continue;
 679
 680		/*
 681		 * Get the address of the unit directory and try to
 682		 * match the drivers id_tables against it.
 683		 */
 684		unit = kzalloc(sizeof(*unit), GFP_KERNEL);
 685		if (unit == NULL) {
 686			fw_err(device->card, "out of memory for unit\n");
 687			continue;
 688		}
 689
 690		unit->directory = ci.p + value - 1;
 691		unit->device.bus = &fw_bus_type;
 692		unit->device.type = &fw_unit_type;
 693		unit->device.parent = &device->device;
 694		dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
 695
 696		BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
 697				ARRAY_SIZE(fw_unit_attributes) +
 698				ARRAY_SIZE(config_rom_attributes));
 699		init_fw_attribute_group(&unit->device,
 700					fw_unit_attributes,
 701					&unit->attribute_group);
 702
 703		if (device_register(&unit->device) < 0)
 704			goto skip_unit;
 705
 706		fw_device_get(device);
 707		continue;
 708
 709	skip_unit:
 710		kfree(unit);
 711	}
 712}
 713
 714static int shutdown_unit(struct device *device, void *data)
 715{
 716	device_unregister(device);
 717
 718	return 0;
 719}
 720
 721/*
 722 * fw_device_rwsem acts as dual purpose mutex:
 723 *   - serializes accesses to fw_device_idr,
 724 *   - serializes accesses to fw_device.config_rom/.config_rom_length and
 725 *     fw_unit.directory, unless those accesses happen at safe occasions
 726 */
 727DECLARE_RWSEM(fw_device_rwsem);
 728
 729DEFINE_IDR(fw_device_idr);
 730int fw_cdev_major;
 731
 732struct fw_device *fw_device_get_by_devt(dev_t devt)
 733{
 734	struct fw_device *device;
 735
 736	down_read(&fw_device_rwsem);
 737	device = idr_find(&fw_device_idr, MINOR(devt));
 738	if (device)
 739		fw_device_get(device);
 740	up_read(&fw_device_rwsem);
 741
 742	return device;
 743}
 744
 745struct workqueue_struct *fw_workqueue;
 746EXPORT_SYMBOL(fw_workqueue);
 747
 748static void fw_schedule_device_work(struct fw_device *device,
 749				    unsigned long delay)
 750{
 751	queue_delayed_work(fw_workqueue, &device->work, delay);
 752}
 753
 754/*
 755 * These defines control the retry behavior for reading the config
 756 * rom.  It shouldn't be necessary to tweak these; if the device
 757 * doesn't respond to a config rom read within 10 seconds, it's not
 758 * going to respond at all.  As for the initial delay, a lot of
 759 * devices will be able to respond within half a second after bus
 760 * reset.  On the other hand, it's not really worth being more
 761 * aggressive than that, since it scales pretty well; if 10 devices
 762 * are plugged in, they're all getting read within one second.
 763 */
 764
 765#define MAX_RETRIES	10
 766#define RETRY_DELAY	(3 * HZ)
 767#define INITIAL_DELAY	(HZ / 2)
 768#define SHUTDOWN_DELAY	(2 * HZ)
 769
 770static void fw_device_shutdown(struct work_struct *work)
 771{
 772	struct fw_device *device =
 773		container_of(work, struct fw_device, work.work);
 774	int minor = MINOR(device->device.devt);
 775
 776	if (time_before64(get_jiffies_64(),
 777			  device->card->reset_jiffies + SHUTDOWN_DELAY)
 778	    && !list_empty(&device->card->link)) {
 779		fw_schedule_device_work(device, SHUTDOWN_DELAY);
 780		return;
 781	}
 782
 783	if (atomic_cmpxchg(&device->state,
 784			   FW_DEVICE_GONE,
 785			   FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
 786		return;
 787
 788	fw_device_cdev_remove(device);
 789	device_for_each_child(&device->device, NULL, shutdown_unit);
 790	device_unregister(&device->device);
 791
 792	down_write(&fw_device_rwsem);
 793	idr_remove(&fw_device_idr, minor);
 794	up_write(&fw_device_rwsem);
 795
 796	fw_device_put(device);
 797}
 798
 799static void fw_device_release(struct device *dev)
 800{
 801	struct fw_device *device = fw_device(dev);
 802	struct fw_card *card = device->card;
 803	unsigned long flags;
 804
 805	/*
 806	 * Take the card lock so we don't set this to NULL while a
 807	 * FW_NODE_UPDATED callback is being handled or while the
 808	 * bus manager work looks at this node.
 809	 */
 810	spin_lock_irqsave(&card->lock, flags);
 811	device->node->data = NULL;
 812	spin_unlock_irqrestore(&card->lock, flags);
 813
 814	fw_node_put(device->node);
 815	kfree(device->config_rom);
 816	kfree(device);
 817	fw_card_put(card);
 818}
 819
 820static struct device_type fw_device_type = {
 821	.release = fw_device_release,
 822};
 823
 824static bool is_fw_device(struct device *dev)
 825{
 826	return dev->type == &fw_device_type;
 827}
 828
 829static int update_unit(struct device *dev, void *data)
 830{
 831	struct fw_unit *unit = fw_unit(dev);
 832	struct fw_driver *driver = (struct fw_driver *)dev->driver;
 833
 834	if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
 835		device_lock(dev);
 836		driver->update(unit);
 837		device_unlock(dev);
 838	}
 839
 840	return 0;
 841}
 842
 843static void fw_device_update(struct work_struct *work)
 844{
 845	struct fw_device *device =
 846		container_of(work, struct fw_device, work.work);
 847
 848	fw_device_cdev_update(device);
 849	device_for_each_child(&device->device, NULL, update_unit);
 850}
 851
 852/*
 853 * If a device was pending for deletion because its node went away but its
 854 * bus info block and root directory header matches that of a newly discovered
 855 * device, revive the existing fw_device.
 856 * The newly allocated fw_device becomes obsolete instead.
 857 */
 858static int lookup_existing_device(struct device *dev, void *data)
 859{
 860	struct fw_device *old = fw_device(dev);
 861	struct fw_device *new = data;
 862	struct fw_card *card = new->card;
 863	int match = 0;
 864
 865	if (!is_fw_device(dev))
 866		return 0;
 867
 868	down_read(&fw_device_rwsem); /* serialize config_rom access */
 869	spin_lock_irq(&card->lock);  /* serialize node access */
 870
 871	if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
 872	    atomic_cmpxchg(&old->state,
 873			   FW_DEVICE_GONE,
 874			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
 875		struct fw_node *current_node = new->node;
 876		struct fw_node *obsolete_node = old->node;
 877
 878		new->node = obsolete_node;
 879		new->node->data = new;
 880		old->node = current_node;
 881		old->node->data = old;
 882
 883		old->max_speed = new->max_speed;
 884		old->node_id = current_node->node_id;
 885		smp_wmb();  /* update node_id before generation */
 886		old->generation = card->generation;
 887		old->config_rom_retries = 0;
 888		fw_notice(card, "rediscovered device %s\n", dev_name(dev));
 889
 890		PREPARE_DELAYED_WORK(&old->work, fw_device_update);
 891		fw_schedule_device_work(old, 0);
 892
 893		if (current_node == card->root_node)
 894			fw_schedule_bm_work(card, 0);
 895
 896		match = 1;
 897	}
 898
 899	spin_unlock_irq(&card->lock);
 900	up_read(&fw_device_rwsem);
 901
 902	return match;
 903}
 904
 905enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
 906
 907static void set_broadcast_channel(struct fw_device *device, int generation)
 908{
 909	struct fw_card *card = device->card;
 910	__be32 data;
 911	int rcode;
 912
 913	if (!card->broadcast_channel_allocated)
 914		return;
 915
 916	/*
 917	 * The Broadcast_Channel Valid bit is required by nodes which want to
 918	 * transmit on this channel.  Such transmissions are practically
 919	 * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
 920	 * to be IRM capable and have a max_rec of 8 or more.  We use this fact
 921	 * to narrow down to which nodes we send Broadcast_Channel updates.
 922	 */
 923	if (!device->irmc || device->max_rec < 8)
 924		return;
 925
 926	/*
 927	 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
 928	 * Perform a read test first.
 929	 */
 930	if (device->bc_implemented == BC_UNKNOWN) {
 931		rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
 932				device->node_id, generation, device->max_speed,
 933				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 934				&data, 4);
 935		switch (rcode) {
 936		case RCODE_COMPLETE:
 937			if (data & cpu_to_be32(1 << 31)) {
 938				device->bc_implemented = BC_IMPLEMENTED;
 939				break;
 940			}
 941			/* else fall through to case address error */
 942		case RCODE_ADDRESS_ERROR:
 943			device->bc_implemented = BC_UNIMPLEMENTED;
 944		}
 945	}
 946
 947	if (device->bc_implemented == BC_IMPLEMENTED) {
 948		data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
 949				   BROADCAST_CHANNEL_VALID);
 950		fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
 951				device->node_id, generation, device->max_speed,
 952				CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
 953				&data, 4);
 954	}
 955}
 956
 957int fw_device_set_broadcast_channel(struct device *dev, void *gen)
 958{
 959	if (is_fw_device(dev))
 960		set_broadcast_channel(fw_device(dev), (long)gen);
 961
 962	return 0;
 963}
 964
 
 
 
 
 
 
 
 
 
 
 
 
 965static void fw_device_init(struct work_struct *work)
 966{
 967	struct fw_device *device =
 968		container_of(work, struct fw_device, work.work);
 969	struct fw_card *card = device->card;
 970	struct device *revived_dev;
 971	int minor, ret;
 
 972
 973	/*
 974	 * All failure paths here set node->data to NULL, so that we
 975	 * don't try to do device_for_each_child() on a kfree()'d
 976	 * device.
 977	 */
 978
 979	ret = read_config_rom(device, device->generation);
 980	if (ret != RCODE_COMPLETE) {
 981		if (device->config_rom_retries < MAX_RETRIES &&
 982		    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
 983			device->config_rom_retries++;
 984			fw_schedule_device_work(device, RETRY_DELAY);
 985		} else {
 986			if (device->node->link_on)
 987				fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
 988					  device->node_id,
 989					  fw_rcode_string(ret));
 990			if (device->node == card->root_node)
 991				fw_schedule_bm_work(card, 0);
 992			fw_device_release(&device->device);
 993		}
 994		return;
 995	}
 996
 997	revived_dev = device_find_child(card->device,
 998					device, lookup_existing_device);
 999	if (revived_dev) {
1000		put_device(revived_dev);
1001		fw_device_release(&device->device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003		return;
 
 
 
1004	}
1005
1006	device_initialize(&device->device);
1007
1008	fw_device_get(device);
1009	down_write(&fw_device_rwsem);
1010	ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
1011	      idr_get_new(&fw_device_idr, device, &minor) :
1012	      -ENOMEM;
1013	up_write(&fw_device_rwsem);
1014
 
 
1015	if (ret < 0)
1016		goto error;
1017
1018	device->device.bus = &fw_bus_type;
1019	device->device.type = &fw_device_type;
1020	device->device.parent = card->device;
1021	device->device.devt = MKDEV(fw_cdev_major, minor);
1022	dev_set_name(&device->device, "fw%d", minor);
1023
1024	BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1025			ARRAY_SIZE(fw_device_attributes) +
1026			ARRAY_SIZE(config_rom_attributes));
1027	init_fw_attribute_group(&device->device,
1028				fw_device_attributes,
1029				&device->attribute_group);
1030
1031	if (device_add(&device->device)) {
1032		fw_err(card, "failed to add device\n");
1033		goto error_with_cdev;
1034	}
1035
1036	create_units(device);
1037
1038	/*
1039	 * Transition the device to running state.  If it got pulled
1040	 * out from under us while we did the intialization work, we
1041	 * have to shut down the device again here.  Normally, though,
1042	 * fw_node_event will be responsible for shutting it down when
1043	 * necessary.  We have to use the atomic cmpxchg here to avoid
1044	 * racing with the FW_NODE_DESTROYED case in
1045	 * fw_node_event().
1046	 */
1047	if (atomic_cmpxchg(&device->state,
1048			   FW_DEVICE_INITIALIZING,
1049			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1050		PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1051		fw_schedule_device_work(device, SHUTDOWN_DELAY);
1052	} else {
1053		fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1054			  dev_name(&device->device),
1055			  device->config_rom[3], device->config_rom[4],
1056			  1 << device->max_speed);
1057		device->config_rom_retries = 0;
1058
1059		set_broadcast_channel(device, device->generation);
 
 
1060	}
1061
1062	/*
1063	 * Reschedule the IRM work if we just finished reading the
1064	 * root node config rom.  If this races with a bus reset we
1065	 * just end up running the IRM work a couple of extra times -
1066	 * pretty harmless.
1067	 */
1068	if (device->node == card->root_node)
1069		fw_schedule_bm_work(card, 0);
1070
1071	return;
1072
1073 error_with_cdev:
1074	down_write(&fw_device_rwsem);
1075	idr_remove(&fw_device_idr, minor);
1076	up_write(&fw_device_rwsem);
1077 error:
1078	fw_device_put(device);		/* fw_device_idr's reference */
1079
1080	put_device(&device->device);	/* our reference */
1081}
1082
1083/* Reread and compare bus info block and header of root directory */
1084static int reread_config_rom(struct fw_device *device, int generation,
1085			     bool *changed)
1086{
1087	u32 q;
1088	int i, rcode;
1089
1090	for (i = 0; i < 6; i++) {
1091		rcode = read_rom(device, generation, i, &q);
1092		if (rcode != RCODE_COMPLETE)
1093			return rcode;
1094
1095		if (i == 0 && q == 0)
1096			/* inaccessible (see read_config_rom); retry later */
1097			return RCODE_BUSY;
1098
1099		if (q != device->config_rom[i]) {
1100			*changed = true;
1101			return RCODE_COMPLETE;
1102		}
1103	}
1104
1105	*changed = false;
1106	return RCODE_COMPLETE;
1107}
1108
1109static void fw_device_refresh(struct work_struct *work)
1110{
1111	struct fw_device *device =
1112		container_of(work, struct fw_device, work.work);
1113	struct fw_card *card = device->card;
1114	int ret, node_id = device->node_id;
1115	bool changed;
1116
1117	ret = reread_config_rom(device, device->generation, &changed);
1118	if (ret != RCODE_COMPLETE)
1119		goto failed_config_rom;
1120
1121	if (!changed) {
1122		if (atomic_cmpxchg(&device->state,
1123				   FW_DEVICE_INITIALIZING,
1124				   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1125			goto gone;
1126
1127		fw_device_update(work);
1128		device->config_rom_retries = 0;
1129		goto out;
1130	}
1131
1132	/*
1133	 * Something changed.  We keep things simple and don't investigate
1134	 * further.  We just destroy all previous units and create new ones.
1135	 */
1136	device_for_each_child(&device->device, NULL, shutdown_unit);
1137
1138	ret = read_config_rom(device, device->generation);
1139	if (ret != RCODE_COMPLETE)
1140		goto failed_config_rom;
1141
1142	fw_device_cdev_update(device);
1143	create_units(device);
1144
1145	/* Userspace may want to re-read attributes. */
1146	kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1147
1148	if (atomic_cmpxchg(&device->state,
1149			   FW_DEVICE_INITIALIZING,
1150			   FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1151		goto gone;
1152
1153	fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1154	device->config_rom_retries = 0;
1155	goto out;
1156
1157 failed_config_rom:
1158	if (device->config_rom_retries < MAX_RETRIES &&
1159	    atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1160		device->config_rom_retries++;
1161		fw_schedule_device_work(device, RETRY_DELAY);
1162		return;
1163	}
1164
1165	fw_notice(card, "giving up on refresh of device %s: %s\n",
1166		  dev_name(&device->device), fw_rcode_string(ret));
1167 gone:
1168	atomic_set(&device->state, FW_DEVICE_GONE);
1169	PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1170	fw_schedule_device_work(device, SHUTDOWN_DELAY);
1171 out:
1172	if (node_id == card->root_node->node_id)
1173		fw_schedule_bm_work(card, 0);
1174}
1175
 
 
 
 
 
 
 
1176void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1177{
1178	struct fw_device *device;
1179
1180	switch (event) {
1181	case FW_NODE_CREATED:
1182		/*
1183		 * Attempt to scan the node, regardless whether its self ID has
1184		 * the L (link active) flag set or not.  Some broken devices
1185		 * send L=0 but have an up-and-running link; others send L=1
1186		 * without actually having a link.
1187		 */
1188 create:
1189		device = kzalloc(sizeof(*device), GFP_ATOMIC);
1190		if (device == NULL)
1191			break;
1192
1193		/*
1194		 * Do minimal intialization of the device here, the
1195		 * rest will happen in fw_device_init().
1196		 *
1197		 * Attention:  A lot of things, even fw_device_get(),
1198		 * cannot be done before fw_device_init() finished!
1199		 * You can basically just check device->state and
1200		 * schedule work until then, but only while holding
1201		 * card->lock.
1202		 */
1203		atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1204		device->card = fw_card_get(card);
1205		device->node = fw_node_get(node);
1206		device->node_id = node->node_id;
1207		device->generation = card->generation;
1208		device->is_local = node == card->local_node;
1209		mutex_init(&device->client_list_mutex);
1210		INIT_LIST_HEAD(&device->client_list);
1211
1212		/*
1213		 * Set the node data to point back to this device so
1214		 * FW_NODE_UPDATED callbacks can update the node_id
1215		 * and generation for the device.
1216		 */
1217		node->data = device;
1218
1219		/*
1220		 * Many devices are slow to respond after bus resets,
1221		 * especially if they are bus powered and go through
1222		 * power-up after getting plugged in.  We schedule the
1223		 * first config rom scan half a second after bus reset.
1224		 */
1225		INIT_DELAYED_WORK(&device->work, fw_device_init);
 
1226		fw_schedule_device_work(device, INITIAL_DELAY);
1227		break;
1228
1229	case FW_NODE_INITIATED_RESET:
1230	case FW_NODE_LINK_ON:
1231		device = node->data;
1232		if (device == NULL)
1233			goto create;
1234
1235		device->node_id = node->node_id;
1236		smp_wmb();  /* update node_id before generation */
1237		device->generation = card->generation;
1238		if (atomic_cmpxchg(&device->state,
1239			    FW_DEVICE_RUNNING,
1240			    FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1241			PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1242			fw_schedule_device_work(device,
1243				device->is_local ? 0 : INITIAL_DELAY);
1244		}
1245		break;
1246
1247	case FW_NODE_UPDATED:
1248		device = node->data;
1249		if (device == NULL)
1250			break;
1251
1252		device->node_id = node->node_id;
1253		smp_wmb();  /* update node_id before generation */
1254		device->generation = card->generation;
1255		if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1256			PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1257			fw_schedule_device_work(device, 0);
1258		}
1259		break;
1260
1261	case FW_NODE_DESTROYED:
1262	case FW_NODE_LINK_OFF:
1263		if (!node->data)
1264			break;
1265
1266		/*
1267		 * Destroy the device associated with the node.  There
1268		 * are two cases here: either the device is fully
1269		 * initialized (FW_DEVICE_RUNNING) or we're in the
1270		 * process of reading its config rom
1271		 * (FW_DEVICE_INITIALIZING).  If it is fully
1272		 * initialized we can reuse device->work to schedule a
1273		 * full fw_device_shutdown().  If not, there's work
1274		 * scheduled to read it's config rom, and we just put
1275		 * the device in shutdown state to have that code fail
1276		 * to create the device.
1277		 */
1278		device = node->data;
1279		if (atomic_xchg(&device->state,
1280				FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1281			PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1282			fw_schedule_device_work(device,
1283				list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1284		}
1285		break;
1286	}
1287}