Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 */
7#include <linux/module.h>
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/init.h>
11#include <linux/mman.h>
12#include <linux/nodemask.h>
13#include <linux/memblock.h>
14#include <linux/fs.h>
15#include <linux/vmalloc.h>
16#include <linux/sizes.h>
17
18#include <asm/cp15.h>
19#include <asm/cputype.h>
20#include <asm/cachetype.h>
21#include <asm/sections.h>
22#include <asm/setup.h>
23#include <asm/smp_plat.h>
24#include <asm/tcm.h>
25#include <asm/tlb.h>
26#include <asm/highmem.h>
27#include <asm/system_info.h>
28#include <asm/traps.h>
29#include <asm/procinfo.h>
30#include <asm/page.h>
31#include <asm/pgalloc.h>
32#include <asm/kasan_def.h>
33
34#include <asm/mach/arch.h>
35#include <asm/mach/map.h>
36#include <asm/mach/pci.h>
37#include <asm/fixmap.h>
38
39#include "fault.h"
40#include "mm.h"
41
42extern unsigned long __atags_pointer;
43
44/*
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
47 */
48struct page *empty_zero_page;
49EXPORT_SYMBOL(empty_zero_page);
50
51/*
52 * The pmd table for the upper-most set of pages.
53 */
54pmd_t *top_pmd;
55
56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57
58#define CPOLICY_UNCACHED 0
59#define CPOLICY_BUFFERED 1
60#define CPOLICY_WRITETHROUGH 2
61#define CPOLICY_WRITEBACK 3
62#define CPOLICY_WRITEALLOC 4
63
64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65static unsigned int ecc_mask __initdata = 0;
66pgprot_t pgprot_user;
67pgprot_t pgprot_kernel;
68
69EXPORT_SYMBOL(pgprot_user);
70EXPORT_SYMBOL(pgprot_kernel);
71
72struct cachepolicy {
73 const char policy[16];
74 unsigned int cr_mask;
75 pmdval_t pmd;
76 pteval_t pte;
77};
78
79static struct cachepolicy cache_policies[] __initdata = {
80 {
81 .policy = "uncached",
82 .cr_mask = CR_W|CR_C,
83 .pmd = PMD_SECT_UNCACHED,
84 .pte = L_PTE_MT_UNCACHED,
85 }, {
86 .policy = "buffered",
87 .cr_mask = CR_C,
88 .pmd = PMD_SECT_BUFFERED,
89 .pte = L_PTE_MT_BUFFERABLE,
90 }, {
91 .policy = "writethrough",
92 .cr_mask = 0,
93 .pmd = PMD_SECT_WT,
94 .pte = L_PTE_MT_WRITETHROUGH,
95 }, {
96 .policy = "writeback",
97 .cr_mask = 0,
98 .pmd = PMD_SECT_WB,
99 .pte = L_PTE_MT_WRITEBACK,
100 }, {
101 .policy = "writealloc",
102 .cr_mask = 0,
103 .pmd = PMD_SECT_WBWA,
104 .pte = L_PTE_MT_WRITEALLOC,
105 }
106};
107
108#ifdef CONFIG_CPU_CP15
109static unsigned long initial_pmd_value __initdata = 0;
110
111/*
112 * Initialise the cache_policy variable with the initial state specified
113 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
114 * the C code sets the page tables up with the same policy as the head
115 * assembly code, which avoids an illegal state where the TLBs can get
116 * confused. See comments in early_cachepolicy() for more information.
117 */
118void __init init_default_cache_policy(unsigned long pmd)
119{
120 int i;
121
122 initial_pmd_value = pmd;
123
124 pmd &= PMD_SECT_CACHE_MASK;
125
126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 if (cache_policies[i].pmd == pmd) {
128 cachepolicy = i;
129 break;
130 }
131
132 if (i == ARRAY_SIZE(cache_policies))
133 pr_err("ERROR: could not find cache policy\n");
134}
135
136/*
137 * These are useful for identifying cache coherency problems by allowing
138 * the cache or the cache and writebuffer to be turned off. (Note: the
139 * write buffer should not be on and the cache off).
140 */
141static int __init early_cachepolicy(char *p)
142{
143 int i, selected = -1;
144
145 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 int len = strlen(cache_policies[i].policy);
147
148 if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 selected = i;
150 break;
151 }
152 }
153
154 if (selected == -1)
155 pr_err("ERROR: unknown or unsupported cache policy\n");
156
157 /*
158 * This restriction is partly to do with the way we boot; it is
159 * unpredictable to have memory mapped using two different sets of
160 * memory attributes (shared, type, and cache attribs). We can not
161 * change these attributes once the initial assembly has setup the
162 * page tables.
163 */
164 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 cache_policies[cachepolicy].policy);
167 return 0;
168 }
169
170 if (selected != cachepolicy) {
171 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 cachepolicy = selected;
173 flush_cache_all();
174 set_cr(cr);
175 }
176 return 0;
177}
178early_param("cachepolicy", early_cachepolicy);
179
180static int __init early_nocache(char *__unused)
181{
182 char *p = "buffered";
183 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 early_cachepolicy(p);
185 return 0;
186}
187early_param("nocache", early_nocache);
188
189static int __init early_nowrite(char *__unused)
190{
191 char *p = "uncached";
192 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 early_cachepolicy(p);
194 return 0;
195}
196early_param("nowb", early_nowrite);
197
198#ifndef CONFIG_ARM_LPAE
199static int __init early_ecc(char *p)
200{
201 if (memcmp(p, "on", 2) == 0)
202 ecc_mask = PMD_PROTECTION;
203 else if (memcmp(p, "off", 3) == 0)
204 ecc_mask = 0;
205 return 0;
206}
207early_param("ecc", early_ecc);
208#endif
209
210#else /* ifdef CONFIG_CPU_CP15 */
211
212static int __init early_cachepolicy(char *p)
213{
214 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 return 0;
216}
217early_param("cachepolicy", early_cachepolicy);
218
219static int __init noalign_setup(char *__unused)
220{
221 pr_warn("noalign kernel parameter not supported without cp15\n");
222 return 1;
223}
224__setup("noalign", noalign_setup);
225
226#endif /* ifdef CONFIG_CPU_CP15 / else */
227
228#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
230#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231
232static struct mem_type mem_types[] __ro_after_init = {
233 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
234 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 L_PTE_SHARED,
236 .prot_l1 = PMD_TYPE_TABLE,
237 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
238 .domain = DOMAIN_IO,
239 },
240 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 .prot_l1 = PMD_TYPE_TABLE,
243 .prot_sect = PROT_SECT_DEVICE,
244 .domain = DOMAIN_IO,
245 },
246 [MT_DEVICE_CACHED] = { /* ioremap_cache */
247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 .prot_l1 = PMD_TYPE_TABLE,
249 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
250 .domain = DOMAIN_IO,
251 },
252 [MT_DEVICE_WC] = { /* ioremap_wc */
253 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 .prot_l1 = PMD_TYPE_TABLE,
255 .prot_sect = PROT_SECT_DEVICE,
256 .domain = DOMAIN_IO,
257 },
258 [MT_UNCACHED] = {
259 .prot_pte = PROT_PTE_DEVICE,
260 .prot_l1 = PMD_TYPE_TABLE,
261 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
262 .domain = DOMAIN_IO,
263 },
264 [MT_CACHECLEAN] = {
265 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 .domain = DOMAIN_KERNEL,
267 },
268#ifndef CONFIG_ARM_LPAE
269 [MT_MINICLEAN] = {
270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 .domain = DOMAIN_KERNEL,
272 },
273#endif
274 [MT_LOW_VECTORS] = {
275 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 L_PTE_RDONLY,
277 .prot_l1 = PMD_TYPE_TABLE,
278 .domain = DOMAIN_VECTORS,
279 },
280 [MT_HIGH_VECTORS] = {
281 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 L_PTE_USER | L_PTE_RDONLY,
283 .prot_l1 = PMD_TYPE_TABLE,
284 .domain = DOMAIN_VECTORS,
285 },
286 [MT_MEMORY_RWX] = {
287 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 .prot_l1 = PMD_TYPE_TABLE,
289 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 .domain = DOMAIN_KERNEL,
291 },
292 [MT_MEMORY_RW] = {
293 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 L_PTE_XN,
295 .prot_l1 = PMD_TYPE_TABLE,
296 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 .domain = DOMAIN_KERNEL,
298 },
299 [MT_MEMORY_RO] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 L_PTE_XN | L_PTE_RDONLY,
302 .prot_l1 = PMD_TYPE_TABLE,
303#ifdef CONFIG_ARM_LPAE
304 .prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
305#else
306 .prot_sect = PMD_TYPE_SECT,
307#endif
308 .domain = DOMAIN_KERNEL,
309 },
310 [MT_ROM] = {
311 .prot_sect = PMD_TYPE_SECT,
312 .domain = DOMAIN_KERNEL,
313 },
314 [MT_MEMORY_RWX_NONCACHED] = {
315 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
316 L_PTE_MT_BUFFERABLE,
317 .prot_l1 = PMD_TYPE_TABLE,
318 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
319 .domain = DOMAIN_KERNEL,
320 },
321 [MT_MEMORY_RW_DTCM] = {
322 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
323 L_PTE_XN,
324 .prot_l1 = PMD_TYPE_TABLE,
325 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
326 .domain = DOMAIN_KERNEL,
327 },
328 [MT_MEMORY_RWX_ITCM] = {
329 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
330 .prot_l1 = PMD_TYPE_TABLE,
331 .domain = DOMAIN_KERNEL,
332 },
333 [MT_MEMORY_RW_SO] = {
334 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
335 L_PTE_MT_UNCACHED | L_PTE_XN,
336 .prot_l1 = PMD_TYPE_TABLE,
337 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
338 PMD_SECT_UNCACHED | PMD_SECT_XN,
339 .domain = DOMAIN_KERNEL,
340 },
341 [MT_MEMORY_DMA_READY] = {
342 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
343 L_PTE_XN,
344 .prot_l1 = PMD_TYPE_TABLE,
345 .domain = DOMAIN_KERNEL,
346 },
347};
348
349const struct mem_type *get_mem_type(unsigned int type)
350{
351 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
352}
353EXPORT_SYMBOL(get_mem_type);
354
355static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
356
357static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
358 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
359
360static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
361{
362 return &bm_pte[pte_index(addr)];
363}
364
365static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
366{
367 return pte_offset_kernel(dir, addr);
368}
369
370static inline pmd_t * __init fixmap_pmd(unsigned long addr)
371{
372 return pmd_off_k(addr);
373}
374
375void __init early_fixmap_init(void)
376{
377 pmd_t *pmd;
378
379 /*
380 * The early fixmap range spans multiple pmds, for which
381 * we are not prepared:
382 */
383 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
384 != FIXADDR_TOP >> PMD_SHIFT);
385
386 pmd = fixmap_pmd(FIXADDR_TOP);
387 pmd_populate_kernel(&init_mm, pmd, bm_pte);
388
389 pte_offset_fixmap = pte_offset_early_fixmap;
390}
391
392/*
393 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
394 * As a result, this can only be called with preemption disabled, as under
395 * stop_machine().
396 */
397void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
398{
399 unsigned long vaddr = __fix_to_virt(idx);
400 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
401
402 /* Make sure fixmap region does not exceed available allocation. */
403 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
404 BUG_ON(idx >= __end_of_fixed_addresses);
405
406 /* We support only device mappings before pgprot_kernel is set. */
407 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
408 pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
409 return;
410
411 if (pgprot_val(prot))
412 set_pte_at(NULL, vaddr, pte,
413 pfn_pte(phys >> PAGE_SHIFT, prot));
414 else
415 pte_clear(NULL, vaddr, pte);
416 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
417}
418
419static pgprot_t protection_map[16] __ro_after_init = {
420 [VM_NONE] = __PAGE_NONE,
421 [VM_READ] = __PAGE_READONLY,
422 [VM_WRITE] = __PAGE_COPY,
423 [VM_WRITE | VM_READ] = __PAGE_COPY,
424 [VM_EXEC] = __PAGE_READONLY_EXEC,
425 [VM_EXEC | VM_READ] = __PAGE_READONLY_EXEC,
426 [VM_EXEC | VM_WRITE] = __PAGE_COPY_EXEC,
427 [VM_EXEC | VM_WRITE | VM_READ] = __PAGE_COPY_EXEC,
428 [VM_SHARED] = __PAGE_NONE,
429 [VM_SHARED | VM_READ] = __PAGE_READONLY,
430 [VM_SHARED | VM_WRITE] = __PAGE_SHARED,
431 [VM_SHARED | VM_WRITE | VM_READ] = __PAGE_SHARED,
432 [VM_SHARED | VM_EXEC] = __PAGE_READONLY_EXEC,
433 [VM_SHARED | VM_EXEC | VM_READ] = __PAGE_READONLY_EXEC,
434 [VM_SHARED | VM_EXEC | VM_WRITE] = __PAGE_SHARED_EXEC,
435 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __PAGE_SHARED_EXEC
436};
437DECLARE_VM_GET_PAGE_PROT
438
439/*
440 * Adjust the PMD section entries according to the CPU in use.
441 */
442static void __init build_mem_type_table(void)
443{
444 struct cachepolicy *cp;
445 unsigned int cr = get_cr();
446 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
447 int cpu_arch = cpu_architecture();
448 int i;
449
450 if (cpu_arch < CPU_ARCH_ARMv6) {
451#if defined(CONFIG_CPU_DCACHE_DISABLE)
452 if (cachepolicy > CPOLICY_BUFFERED)
453 cachepolicy = CPOLICY_BUFFERED;
454#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
455 if (cachepolicy > CPOLICY_WRITETHROUGH)
456 cachepolicy = CPOLICY_WRITETHROUGH;
457#endif
458 }
459 if (cpu_arch < CPU_ARCH_ARMv5) {
460 if (cachepolicy >= CPOLICY_WRITEALLOC)
461 cachepolicy = CPOLICY_WRITEBACK;
462 ecc_mask = 0;
463 }
464
465 if (is_smp()) {
466 if (cachepolicy != CPOLICY_WRITEALLOC) {
467 pr_warn("Forcing write-allocate cache policy for SMP\n");
468 cachepolicy = CPOLICY_WRITEALLOC;
469 }
470 if (!(initial_pmd_value & PMD_SECT_S)) {
471 pr_warn("Forcing shared mappings for SMP\n");
472 initial_pmd_value |= PMD_SECT_S;
473 }
474 }
475
476 /*
477 * Strip out features not present on earlier architectures.
478 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
479 * without extended page tables don't have the 'Shared' bit.
480 */
481 if (cpu_arch < CPU_ARCH_ARMv5)
482 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
483 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
484 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
485 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
486 mem_types[i].prot_sect &= ~PMD_SECT_S;
487
488 /*
489 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
490 * "update-able on write" bit on ARM610). However, Xscale and
491 * Xscale3 require this bit to be cleared.
492 */
493 if (cpu_is_xscale_family()) {
494 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
495 mem_types[i].prot_sect &= ~PMD_BIT4;
496 mem_types[i].prot_l1 &= ~PMD_BIT4;
497 }
498 } else if (cpu_arch < CPU_ARCH_ARMv6) {
499 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
500 if (mem_types[i].prot_l1)
501 mem_types[i].prot_l1 |= PMD_BIT4;
502 if (mem_types[i].prot_sect)
503 mem_types[i].prot_sect |= PMD_BIT4;
504 }
505 }
506
507 /*
508 * Mark the device areas according to the CPU/architecture.
509 */
510 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
511 if (!cpu_is_xsc3()) {
512 /*
513 * Mark device regions on ARMv6+ as execute-never
514 * to prevent speculative instruction fetches.
515 */
516 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
517 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
518 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
519 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
520
521 /* Also setup NX memory mapping */
522 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
523 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
524 }
525 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
526 /*
527 * For ARMv7 with TEX remapping,
528 * - shared device is SXCB=1100
529 * - nonshared device is SXCB=0100
530 * - write combine device mem is SXCB=0001
531 * (Uncached Normal memory)
532 */
533 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
534 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
535 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
536 } else if (cpu_is_xsc3()) {
537 /*
538 * For Xscale3,
539 * - shared device is TEXCB=00101
540 * - nonshared device is TEXCB=01000
541 * - write combine device mem is TEXCB=00100
542 * (Inner/Outer Uncacheable in xsc3 parlance)
543 */
544 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
545 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
546 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
547 } else {
548 /*
549 * For ARMv6 and ARMv7 without TEX remapping,
550 * - shared device is TEXCB=00001
551 * - nonshared device is TEXCB=01000
552 * - write combine device mem is TEXCB=00100
553 * (Uncached Normal in ARMv6 parlance).
554 */
555 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
556 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
557 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
558 }
559 } else {
560 /*
561 * On others, write combining is "Uncached/Buffered"
562 */
563 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
564 }
565
566 /*
567 * Now deal with the memory-type mappings
568 */
569 cp = &cache_policies[cachepolicy];
570 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
571
572#ifndef CONFIG_ARM_LPAE
573 /*
574 * We don't use domains on ARMv6 (since this causes problems with
575 * v6/v7 kernels), so we must use a separate memory type for user
576 * r/o, kernel r/w to map the vectors page.
577 */
578 if (cpu_arch == CPU_ARCH_ARMv6)
579 vecs_pgprot |= L_PTE_MT_VECTORS;
580
581 /*
582 * Check is it with support for the PXN bit
583 * in the Short-descriptor translation table format descriptors.
584 */
585 if (cpu_arch == CPU_ARCH_ARMv7 &&
586 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
587 user_pmd_table |= PMD_PXNTABLE;
588 }
589#endif
590
591 /*
592 * ARMv6 and above have extended page tables.
593 */
594 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
595#ifndef CONFIG_ARM_LPAE
596 /*
597 * Mark cache clean areas and XIP ROM read only
598 * from SVC mode and no access from userspace.
599 */
600 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
601 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
602 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
603 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
604#endif
605
606 /*
607 * If the initial page tables were created with the S bit
608 * set, then we need to do the same here for the same
609 * reasons given in early_cachepolicy().
610 */
611 if (initial_pmd_value & PMD_SECT_S) {
612 user_pgprot |= L_PTE_SHARED;
613 kern_pgprot |= L_PTE_SHARED;
614 vecs_pgprot |= L_PTE_SHARED;
615 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
616 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
617 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
618 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
619 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
620 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
621 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
622 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
623 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
624 mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
625 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
626 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
627 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
628 }
629 }
630
631 /*
632 * Non-cacheable Normal - intended for memory areas that must
633 * not cause dirty cache line writebacks when used
634 */
635 if (cpu_arch >= CPU_ARCH_ARMv6) {
636 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
637 /* Non-cacheable Normal is XCB = 001 */
638 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
639 PMD_SECT_BUFFERED;
640 } else {
641 /* For both ARMv6 and non-TEX-remapping ARMv7 */
642 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
643 PMD_SECT_TEX(1);
644 }
645 } else {
646 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
647 }
648
649#ifdef CONFIG_ARM_LPAE
650 /*
651 * Do not generate access flag faults for the kernel mappings.
652 */
653 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
654 mem_types[i].prot_pte |= PTE_EXT_AF;
655 if (mem_types[i].prot_sect)
656 mem_types[i].prot_sect |= PMD_SECT_AF;
657 }
658 kern_pgprot |= PTE_EXT_AF;
659 vecs_pgprot |= PTE_EXT_AF;
660
661 /*
662 * Set PXN for user mappings
663 */
664 user_pgprot |= PTE_EXT_PXN;
665#endif
666
667 for (i = 0; i < 16; i++) {
668 pteval_t v = pgprot_val(protection_map[i]);
669 protection_map[i] = __pgprot(v | user_pgprot);
670 }
671
672 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
673 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
674
675 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
676 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
677 L_PTE_DIRTY | kern_pgprot);
678
679 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
680 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
681 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
682 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
683 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
684 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
685 mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
686 mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
687 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
688 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
689 mem_types[MT_ROM].prot_sect |= cp->pmd;
690
691 switch (cp->pmd) {
692 case PMD_SECT_WT:
693 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
694 break;
695 case PMD_SECT_WB:
696 case PMD_SECT_WBWA:
697 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
698 break;
699 }
700 pr_info("Memory policy: %sData cache %s\n",
701 ecc_mask ? "ECC enabled, " : "", cp->policy);
702
703 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
704 struct mem_type *t = &mem_types[i];
705 if (t->prot_l1)
706 t->prot_l1 |= PMD_DOMAIN(t->domain);
707 if (t->prot_sect)
708 t->prot_sect |= PMD_DOMAIN(t->domain);
709 }
710}
711
712#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
713pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
714 unsigned long size, pgprot_t vma_prot)
715{
716 if (!pfn_valid(pfn))
717 return pgprot_noncached(vma_prot);
718 else if (file->f_flags & O_SYNC)
719 return pgprot_writecombine(vma_prot);
720 return vma_prot;
721}
722EXPORT_SYMBOL(phys_mem_access_prot);
723#endif
724
725#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
726
727static void __init *early_alloc(unsigned long sz)
728{
729 void *ptr = memblock_alloc(sz, sz);
730
731 if (!ptr)
732 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
733 __func__, sz, sz);
734
735 return ptr;
736}
737
738static void *__init late_alloc(unsigned long sz)
739{
740 void *ptdesc = pagetable_alloc(GFP_PGTABLE_KERNEL & ~__GFP_HIGHMEM,
741 get_order(sz));
742
743 if (!ptdesc || !pagetable_pte_ctor(ptdesc))
744 BUG();
745 return ptdesc_to_virt(ptdesc);
746}
747
748static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
749 unsigned long prot,
750 void *(*alloc)(unsigned long sz))
751{
752 if (pmd_none(*pmd)) {
753 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
754 __pmd_populate(pmd, __pa(pte), prot);
755 }
756 BUG_ON(pmd_bad(*pmd));
757 return pte_offset_kernel(pmd, addr);
758}
759
760static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
761 unsigned long prot)
762{
763 return arm_pte_alloc(pmd, addr, prot, early_alloc);
764}
765
766static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
767 unsigned long end, unsigned long pfn,
768 const struct mem_type *type,
769 void *(*alloc)(unsigned long sz),
770 bool ng)
771{
772 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
773 do {
774 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
775 ng ? PTE_EXT_NG : 0);
776 pfn++;
777 } while (pte++, addr += PAGE_SIZE, addr != end);
778}
779
780static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
781 unsigned long end, phys_addr_t phys,
782 const struct mem_type *type, bool ng)
783{
784 pmd_t *p = pmd;
785
786#ifndef CONFIG_ARM_LPAE
787 /*
788 * In classic MMU format, puds and pmds are folded in to
789 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
790 * group of L1 entries making up one logical pointer to
791 * an L2 table (2MB), where as PMDs refer to the individual
792 * L1 entries (1MB). Hence increment to get the correct
793 * offset for odd 1MB sections.
794 * (See arch/arm/include/asm/pgtable-2level.h)
795 */
796 if (addr & SECTION_SIZE)
797 pmd++;
798#endif
799 do {
800 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
801 phys += SECTION_SIZE;
802 } while (pmd++, addr += SECTION_SIZE, addr != end);
803
804 flush_pmd_entry(p);
805}
806
807static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
808 unsigned long end, phys_addr_t phys,
809 const struct mem_type *type,
810 void *(*alloc)(unsigned long sz), bool ng)
811{
812 pmd_t *pmd = pmd_offset(pud, addr);
813 unsigned long next;
814
815 do {
816 /*
817 * With LPAE, we must loop over to map
818 * all the pmds for the given range.
819 */
820 next = pmd_addr_end(addr, end);
821
822 /*
823 * Try a section mapping - addr, next and phys must all be
824 * aligned to a section boundary.
825 */
826 if (type->prot_sect &&
827 ((addr | next | phys) & ~SECTION_MASK) == 0) {
828 __map_init_section(pmd, addr, next, phys, type, ng);
829 } else {
830 alloc_init_pte(pmd, addr, next,
831 __phys_to_pfn(phys), type, alloc, ng);
832 }
833
834 phys += next - addr;
835
836 } while (pmd++, addr = next, addr != end);
837}
838
839static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
840 unsigned long end, phys_addr_t phys,
841 const struct mem_type *type,
842 void *(*alloc)(unsigned long sz), bool ng)
843{
844 pud_t *pud = pud_offset(p4d, addr);
845 unsigned long next;
846
847 do {
848 next = pud_addr_end(addr, end);
849 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
850 phys += next - addr;
851 } while (pud++, addr = next, addr != end);
852}
853
854static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
855 unsigned long end, phys_addr_t phys,
856 const struct mem_type *type,
857 void *(*alloc)(unsigned long sz), bool ng)
858{
859 p4d_t *p4d = p4d_offset(pgd, addr);
860 unsigned long next;
861
862 do {
863 next = p4d_addr_end(addr, end);
864 alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
865 phys += next - addr;
866 } while (p4d++, addr = next, addr != end);
867}
868
869#ifndef CONFIG_ARM_LPAE
870static void __init create_36bit_mapping(struct mm_struct *mm,
871 struct map_desc *md,
872 const struct mem_type *type,
873 bool ng)
874{
875 unsigned long addr, length, end;
876 phys_addr_t phys;
877 pgd_t *pgd;
878
879 addr = md->virtual;
880 phys = __pfn_to_phys(md->pfn);
881 length = PAGE_ALIGN(md->length);
882
883 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
884 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
885 (long long)__pfn_to_phys((u64)md->pfn), addr);
886 return;
887 }
888
889 /* N.B. ARMv6 supersections are only defined to work with domain 0.
890 * Since domain assignments can in fact be arbitrary, the
891 * 'domain == 0' check below is required to insure that ARMv6
892 * supersections are only allocated for domain 0 regardless
893 * of the actual domain assignments in use.
894 */
895 if (type->domain) {
896 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
897 (long long)__pfn_to_phys((u64)md->pfn), addr);
898 return;
899 }
900
901 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
902 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
903 (long long)__pfn_to_phys((u64)md->pfn), addr);
904 return;
905 }
906
907 /*
908 * Shift bits [35:32] of address into bits [23:20] of PMD
909 * (See ARMv6 spec).
910 */
911 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
912
913 pgd = pgd_offset(mm, addr);
914 end = addr + length;
915 do {
916 p4d_t *p4d = p4d_offset(pgd, addr);
917 pud_t *pud = pud_offset(p4d, addr);
918 pmd_t *pmd = pmd_offset(pud, addr);
919 int i;
920
921 for (i = 0; i < 16; i++)
922 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
923 (ng ? PMD_SECT_nG : 0));
924
925 addr += SUPERSECTION_SIZE;
926 phys += SUPERSECTION_SIZE;
927 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
928 } while (addr != end);
929}
930#endif /* !CONFIG_ARM_LPAE */
931
932static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
933 void *(*alloc)(unsigned long sz),
934 bool ng)
935{
936 unsigned long addr, length, end;
937 phys_addr_t phys;
938 const struct mem_type *type;
939 pgd_t *pgd;
940
941 type = &mem_types[md->type];
942
943#ifndef CONFIG_ARM_LPAE
944 /*
945 * Catch 36-bit addresses
946 */
947 if (md->pfn >= 0x100000) {
948 create_36bit_mapping(mm, md, type, ng);
949 return;
950 }
951#endif
952
953 addr = md->virtual & PAGE_MASK;
954 phys = __pfn_to_phys(md->pfn);
955 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
956
957 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
958 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
959 (long long)__pfn_to_phys(md->pfn), addr);
960 return;
961 }
962
963 pgd = pgd_offset(mm, addr);
964 end = addr + length;
965 do {
966 unsigned long next = pgd_addr_end(addr, end);
967
968 alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
969
970 phys += next - addr;
971 addr = next;
972 } while (pgd++, addr != end);
973}
974
975/*
976 * Create the page directory entries and any necessary
977 * page tables for the mapping specified by `md'. We
978 * are able to cope here with varying sizes and address
979 * offsets, and we take full advantage of sections and
980 * supersections.
981 */
982static void __init create_mapping(struct map_desc *md)
983{
984 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
985 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
986 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
987 return;
988 }
989
990 if (md->type == MT_DEVICE &&
991 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
992 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
993 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
994 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
995 }
996
997 __create_mapping(&init_mm, md, early_alloc, false);
998}
999
1000void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
1001 bool ng)
1002{
1003#ifdef CONFIG_ARM_LPAE
1004 p4d_t *p4d;
1005 pud_t *pud;
1006
1007 p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
1008 if (WARN_ON(!p4d))
1009 return;
1010 pud = pud_alloc(mm, p4d, md->virtual);
1011 if (WARN_ON(!pud))
1012 return;
1013 pmd_alloc(mm, pud, 0);
1014#endif
1015 __create_mapping(mm, md, late_alloc, ng);
1016}
1017
1018/*
1019 * Create the architecture specific mappings
1020 */
1021void __init iotable_init(struct map_desc *io_desc, int nr)
1022{
1023 struct map_desc *md;
1024 struct vm_struct *vm;
1025 struct static_vm *svm;
1026
1027 if (!nr)
1028 return;
1029
1030 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1031 if (!svm)
1032 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1033 __func__, sizeof(*svm) * nr, __alignof__(*svm));
1034
1035 for (md = io_desc; nr; md++, nr--) {
1036 create_mapping(md);
1037
1038 vm = &svm->vm;
1039 vm->addr = (void *)(md->virtual & PAGE_MASK);
1040 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1041 vm->phys_addr = __pfn_to_phys(md->pfn);
1042 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1043 vm->flags |= VM_ARM_MTYPE(md->type);
1044 vm->caller = iotable_init;
1045 add_static_vm_early(svm++);
1046 }
1047}
1048
1049void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1050 void *caller)
1051{
1052 struct vm_struct *vm;
1053 struct static_vm *svm;
1054
1055 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1056 if (!svm)
1057 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1058 __func__, sizeof(*svm), __alignof__(*svm));
1059
1060 vm = &svm->vm;
1061 vm->addr = (void *)addr;
1062 vm->size = size;
1063 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1064 vm->caller = caller;
1065 add_static_vm_early(svm);
1066}
1067
1068#ifndef CONFIG_ARM_LPAE
1069
1070/*
1071 * The Linux PMD is made of two consecutive section entries covering 2MB
1072 * (see definition in include/asm/pgtable-2level.h). However a call to
1073 * create_mapping() may optimize static mappings by using individual
1074 * 1MB section mappings. This leaves the actual PMD potentially half
1075 * initialized if the top or bottom section entry isn't used, leaving it
1076 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1077 * the virtual space left free by that unused section entry.
1078 *
1079 * Let's avoid the issue by inserting dummy vm entries covering the unused
1080 * PMD halves once the static mappings are in place.
1081 */
1082
1083static void __init pmd_empty_section_gap(unsigned long addr)
1084{
1085 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1086}
1087
1088static void __init fill_pmd_gaps(void)
1089{
1090 struct static_vm *svm;
1091 struct vm_struct *vm;
1092 unsigned long addr, next = 0;
1093 pmd_t *pmd;
1094
1095 list_for_each_entry(svm, &static_vmlist, list) {
1096 vm = &svm->vm;
1097 addr = (unsigned long)vm->addr;
1098 if (addr < next)
1099 continue;
1100
1101 /*
1102 * Check if this vm starts on an odd section boundary.
1103 * If so and the first section entry for this PMD is free
1104 * then we block the corresponding virtual address.
1105 */
1106 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1107 pmd = pmd_off_k(addr);
1108 if (pmd_none(*pmd))
1109 pmd_empty_section_gap(addr & PMD_MASK);
1110 }
1111
1112 /*
1113 * Then check if this vm ends on an odd section boundary.
1114 * If so and the second section entry for this PMD is empty
1115 * then we block the corresponding virtual address.
1116 */
1117 addr += vm->size;
1118 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1119 pmd = pmd_off_k(addr) + 1;
1120 if (pmd_none(*pmd))
1121 pmd_empty_section_gap(addr);
1122 }
1123
1124 /* no need to look at any vm entry until we hit the next PMD */
1125 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1126 }
1127}
1128
1129#else
1130#define fill_pmd_gaps() do { } while (0)
1131#endif
1132
1133#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1134static void __init pci_reserve_io(void)
1135{
1136 struct static_vm *svm;
1137
1138 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1139 if (svm)
1140 return;
1141
1142 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1143}
1144#else
1145#define pci_reserve_io() do { } while (0)
1146#endif
1147
1148#ifdef CONFIG_DEBUG_LL
1149void __init debug_ll_io_init(void)
1150{
1151 struct map_desc map;
1152
1153 debug_ll_addr(&map.pfn, &map.virtual);
1154 if (!map.pfn || !map.virtual)
1155 return;
1156 map.pfn = __phys_to_pfn(map.pfn);
1157 map.virtual &= PAGE_MASK;
1158 map.length = PAGE_SIZE;
1159 map.type = MT_DEVICE;
1160 iotable_init(&map, 1);
1161}
1162#endif
1163
1164static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1165
1166/*
1167 * vmalloc=size forces the vmalloc area to be exactly 'size'
1168 * bytes. This can be used to increase (or decrease) the vmalloc
1169 * area - the default is 240MiB.
1170 */
1171static int __init early_vmalloc(char *arg)
1172{
1173 unsigned long vmalloc_reserve = memparse(arg, NULL);
1174 unsigned long vmalloc_max;
1175
1176 if (vmalloc_reserve < SZ_16M) {
1177 vmalloc_reserve = SZ_16M;
1178 pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1179 vmalloc_reserve >> 20);
1180 }
1181
1182 vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1183 if (vmalloc_reserve > vmalloc_max) {
1184 vmalloc_reserve = vmalloc_max;
1185 pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1186 vmalloc_reserve >> 20);
1187 }
1188
1189 vmalloc_size = vmalloc_reserve;
1190 return 0;
1191}
1192early_param("vmalloc", early_vmalloc);
1193
1194phys_addr_t arm_lowmem_limit __initdata = 0;
1195
1196void __init adjust_lowmem_bounds(void)
1197{
1198 phys_addr_t block_start, block_end, memblock_limit = 0;
1199 u64 vmalloc_limit, i;
1200 phys_addr_t lowmem_limit = 0;
1201
1202 /*
1203 * Let's use our own (unoptimized) equivalent of __pa() that is
1204 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1205 * The result is used as the upper bound on physical memory address
1206 * and may itself be outside the valid range for which phys_addr_t
1207 * and therefore __pa() is defined.
1208 */
1209 vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1210 PAGE_OFFSET + PHYS_OFFSET;
1211
1212 /*
1213 * The first usable region must be PMD aligned. Mark its start
1214 * as MEMBLOCK_NOMAP if it isn't
1215 */
1216 for_each_mem_range(i, &block_start, &block_end) {
1217 if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1218 phys_addr_t len;
1219
1220 len = round_up(block_start, PMD_SIZE) - block_start;
1221 memblock_mark_nomap(block_start, len);
1222 }
1223 break;
1224 }
1225
1226 for_each_mem_range(i, &block_start, &block_end) {
1227 if (block_start < vmalloc_limit) {
1228 if (block_end > lowmem_limit)
1229 /*
1230 * Compare as u64 to ensure vmalloc_limit does
1231 * not get truncated. block_end should always
1232 * fit in phys_addr_t so there should be no
1233 * issue with assignment.
1234 */
1235 lowmem_limit = min_t(u64,
1236 vmalloc_limit,
1237 block_end);
1238
1239 /*
1240 * Find the first non-pmd-aligned page, and point
1241 * memblock_limit at it. This relies on rounding the
1242 * limit down to be pmd-aligned, which happens at the
1243 * end of this function.
1244 *
1245 * With this algorithm, the start or end of almost any
1246 * bank can be non-pmd-aligned. The only exception is
1247 * that the start of the bank 0 must be section-
1248 * aligned, since otherwise memory would need to be
1249 * allocated when mapping the start of bank 0, which
1250 * occurs before any free memory is mapped.
1251 */
1252 if (!memblock_limit) {
1253 if (!IS_ALIGNED(block_start, PMD_SIZE))
1254 memblock_limit = block_start;
1255 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1256 memblock_limit = lowmem_limit;
1257 }
1258
1259 }
1260 }
1261
1262 arm_lowmem_limit = lowmem_limit;
1263
1264 high_memory = __va(arm_lowmem_limit - 1) + 1;
1265
1266 if (!memblock_limit)
1267 memblock_limit = arm_lowmem_limit;
1268
1269 /*
1270 * Round the memblock limit down to a pmd size. This
1271 * helps to ensure that we will allocate memory from the
1272 * last full pmd, which should be mapped.
1273 */
1274 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1275
1276 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1277 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1278 phys_addr_t end = memblock_end_of_DRAM();
1279
1280 pr_notice("Ignoring RAM at %pa-%pa\n",
1281 &memblock_limit, &end);
1282 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1283
1284 memblock_remove(memblock_limit, end - memblock_limit);
1285 }
1286 }
1287
1288 memblock_set_current_limit(memblock_limit);
1289}
1290
1291static __init void prepare_page_table(void)
1292{
1293 unsigned long addr;
1294 phys_addr_t end;
1295
1296 /*
1297 * Clear out all the mappings below the kernel image.
1298 */
1299#ifdef CONFIG_KASAN
1300 /*
1301 * KASan's shadow memory inserts itself between the TASK_SIZE
1302 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1303 */
1304 for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1305 pmd_clear(pmd_off_k(addr));
1306 /*
1307 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1308 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1309 * are using a thumb-compiled kernel, there there will be 8MB more
1310 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1311 */
1312 for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1313 pmd_clear(pmd_off_k(addr));
1314#else
1315 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1316 pmd_clear(pmd_off_k(addr));
1317#endif
1318
1319#ifdef CONFIG_XIP_KERNEL
1320 /* The XIP kernel is mapped in the module area -- skip over it */
1321 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1322#endif
1323 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1324 pmd_clear(pmd_off_k(addr));
1325
1326 /*
1327 * Find the end of the first block of lowmem.
1328 */
1329 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1330 if (end >= arm_lowmem_limit)
1331 end = arm_lowmem_limit;
1332
1333 /*
1334 * Clear out all the kernel space mappings, except for the first
1335 * memory bank, up to the vmalloc region.
1336 */
1337 for (addr = __phys_to_virt(end);
1338 addr < VMALLOC_START; addr += PMD_SIZE)
1339 pmd_clear(pmd_off_k(addr));
1340}
1341
1342#ifdef CONFIG_ARM_LPAE
1343/* the first page is reserved for pgd */
1344#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1345 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1346#else
1347#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1348#endif
1349
1350/*
1351 * Reserve the special regions of memory
1352 */
1353void __init arm_mm_memblock_reserve(void)
1354{
1355 /*
1356 * Reserve the page tables. These are already in use,
1357 * and can only be in node 0.
1358 */
1359 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1360
1361#ifdef CONFIG_SA1111
1362 /*
1363 * Because of the SA1111 DMA bug, we want to preserve our
1364 * precious DMA-able memory...
1365 */
1366 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1367#endif
1368}
1369
1370/*
1371 * Set up the device mappings. Since we clear out the page tables for all
1372 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1373 * device mappings. This means earlycon can be used to debug this function
1374 * Any other function or debugging method which may touch any device _will_
1375 * crash the kernel.
1376 */
1377static void __init devicemaps_init(const struct machine_desc *mdesc)
1378{
1379 struct map_desc map;
1380 unsigned long addr;
1381 void *vectors;
1382
1383 /*
1384 * Allocate the vector page early.
1385 */
1386 vectors = early_alloc(PAGE_SIZE * 2);
1387
1388 early_trap_init(vectors);
1389
1390 /*
1391 * Clear page table except top pmd used by early fixmaps
1392 */
1393 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1394 pmd_clear(pmd_off_k(addr));
1395
1396 if (__atags_pointer) {
1397 /* create a read-only mapping of the device tree */
1398 map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1399 map.virtual = FDT_FIXED_BASE;
1400 map.length = FDT_FIXED_SIZE;
1401 map.type = MT_MEMORY_RO;
1402 create_mapping(&map);
1403 }
1404
1405 /*
1406 * Map the cache flushing regions.
1407 */
1408#ifdef FLUSH_BASE
1409 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1410 map.virtual = FLUSH_BASE;
1411 map.length = SZ_1M;
1412 map.type = MT_CACHECLEAN;
1413 create_mapping(&map);
1414#endif
1415#ifdef FLUSH_BASE_MINICACHE
1416 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1417 map.virtual = FLUSH_BASE_MINICACHE;
1418 map.length = SZ_1M;
1419 map.type = MT_MINICLEAN;
1420 create_mapping(&map);
1421#endif
1422
1423 /*
1424 * Create a mapping for the machine vectors at the high-vectors
1425 * location (0xffff0000). If we aren't using high-vectors, also
1426 * create a mapping at the low-vectors virtual address.
1427 */
1428 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1429 map.virtual = 0xffff0000;
1430 map.length = PAGE_SIZE;
1431#ifdef CONFIG_KUSER_HELPERS
1432 map.type = MT_HIGH_VECTORS;
1433#else
1434 map.type = MT_LOW_VECTORS;
1435#endif
1436 create_mapping(&map);
1437
1438 if (!vectors_high()) {
1439 map.virtual = 0;
1440 map.length = PAGE_SIZE * 2;
1441 map.type = MT_LOW_VECTORS;
1442 create_mapping(&map);
1443 }
1444
1445 /* Now create a kernel read-only mapping */
1446 map.pfn += 1;
1447 map.virtual = 0xffff0000 + PAGE_SIZE;
1448 map.length = PAGE_SIZE;
1449 map.type = MT_LOW_VECTORS;
1450 create_mapping(&map);
1451
1452 /*
1453 * Ask the machine support to map in the statically mapped devices.
1454 */
1455 if (mdesc->map_io)
1456 mdesc->map_io();
1457 else
1458 debug_ll_io_init();
1459 fill_pmd_gaps();
1460
1461 /* Reserve fixed i/o space in VMALLOC region */
1462 pci_reserve_io();
1463
1464 /*
1465 * Finally flush the caches and tlb to ensure that we're in a
1466 * consistent state wrt the writebuffer. This also ensures that
1467 * any write-allocated cache lines in the vector page are written
1468 * back. After this point, we can start to touch devices again.
1469 */
1470 local_flush_tlb_all();
1471 flush_cache_all();
1472
1473 /* Enable asynchronous aborts */
1474 early_abt_enable();
1475}
1476
1477static void __init kmap_init(void)
1478{
1479#ifdef CONFIG_HIGHMEM
1480 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1481 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1482#endif
1483
1484 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1485 _PAGE_KERNEL_TABLE);
1486}
1487
1488static void __init map_lowmem(void)
1489{
1490 phys_addr_t start, end;
1491 u64 i;
1492
1493 /* Map all the lowmem memory banks. */
1494 for_each_mem_range(i, &start, &end) {
1495 struct map_desc map;
1496
1497 pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1498 (long long)start, (long long)end);
1499 if (end > arm_lowmem_limit)
1500 end = arm_lowmem_limit;
1501 if (start >= end)
1502 break;
1503
1504 /*
1505 * If our kernel image is in the VMALLOC area we need to remove
1506 * the kernel physical memory from lowmem since the kernel will
1507 * be mapped separately.
1508 *
1509 * The kernel will typically be at the very start of lowmem,
1510 * but any placement relative to memory ranges is possible.
1511 *
1512 * If the memblock contains the kernel, we have to chisel out
1513 * the kernel memory from it and map each part separately. We
1514 * get 6 different theoretical cases:
1515 *
1516 * +--------+ +--------+
1517 * +-- start --+ +--------+ | Kernel | | Kernel |
1518 * | | | Kernel | | case 2 | | case 5 |
1519 * | | | case 1 | +--------+ | | +--------+
1520 * | Memory | +--------+ | | | Kernel |
1521 * | range | +--------+ | | | case 6 |
1522 * | | | Kernel | +--------+ | | +--------+
1523 * | | | case 3 | | Kernel | | |
1524 * +-- end ----+ +--------+ | case 4 | | |
1525 * +--------+ +--------+
1526 */
1527
1528 /* Case 5: kernel covers range, don't map anything, should be rare */
1529 if ((start > kernel_sec_start) && (end < kernel_sec_end))
1530 break;
1531
1532 /* Cases where the kernel is starting inside the range */
1533 if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1534 /* Case 6: kernel is embedded in the range, we need two mappings */
1535 if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1536 /* Map memory below the kernel */
1537 map.pfn = __phys_to_pfn(start);
1538 map.virtual = __phys_to_virt(start);
1539 map.length = kernel_sec_start - start;
1540 map.type = MT_MEMORY_RW;
1541 create_mapping(&map);
1542 /* Map memory above the kernel */
1543 map.pfn = __phys_to_pfn(kernel_sec_end);
1544 map.virtual = __phys_to_virt(kernel_sec_end);
1545 map.length = end - kernel_sec_end;
1546 map.type = MT_MEMORY_RW;
1547 create_mapping(&map);
1548 break;
1549 }
1550 /* Case 1: kernel and range start at the same address, should be common */
1551 if (kernel_sec_start == start)
1552 start = kernel_sec_end;
1553 /* Case 3: kernel and range end at the same address, should be rare */
1554 if (kernel_sec_end == end)
1555 end = kernel_sec_start;
1556 } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1557 /* Case 2: kernel ends inside range, starts below it */
1558 start = kernel_sec_end;
1559 } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1560 /* Case 4: kernel starts inside range, ends above it */
1561 end = kernel_sec_start;
1562 }
1563 map.pfn = __phys_to_pfn(start);
1564 map.virtual = __phys_to_virt(start);
1565 map.length = end - start;
1566 map.type = MT_MEMORY_RW;
1567 create_mapping(&map);
1568 }
1569}
1570
1571static void __init map_kernel(void)
1572{
1573 /*
1574 * We use the well known kernel section start and end and split the area in the
1575 * middle like this:
1576 * . .
1577 * | RW memory |
1578 * +----------------+ kernel_x_start
1579 * | Executable |
1580 * | kernel memory |
1581 * +----------------+ kernel_x_end / kernel_nx_start
1582 * | Non-executable |
1583 * | kernel memory |
1584 * +----------------+ kernel_nx_end
1585 * | RW memory |
1586 * . .
1587 *
1588 * Notice that we are dealing with section sized mappings here so all of this
1589 * will be bumped to the closest section boundary. This means that some of the
1590 * non-executable part of the kernel memory is actually mapped as executable.
1591 * This will only persist until we turn on proper memory management later on
1592 * and we remap the whole kernel with page granularity.
1593 */
1594#ifdef CONFIG_XIP_KERNEL
1595 phys_addr_t kernel_nx_start = kernel_sec_start;
1596#else
1597 phys_addr_t kernel_x_start = kernel_sec_start;
1598 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1599 phys_addr_t kernel_nx_start = kernel_x_end;
1600#endif
1601 phys_addr_t kernel_nx_end = kernel_sec_end;
1602 struct map_desc map;
1603
1604 /*
1605 * Map the kernel if it is XIP.
1606 * It is always first in the modulearea.
1607 */
1608#ifdef CONFIG_XIP_KERNEL
1609 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1610 map.virtual = MODULES_VADDR;
1611 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1612 map.type = MT_ROM;
1613 create_mapping(&map);
1614#else
1615 map.pfn = __phys_to_pfn(kernel_x_start);
1616 map.virtual = __phys_to_virt(kernel_x_start);
1617 map.length = kernel_x_end - kernel_x_start;
1618 map.type = MT_MEMORY_RWX;
1619 create_mapping(&map);
1620
1621 /* If the nx part is small it may end up covered by the tail of the RWX section */
1622 if (kernel_x_end == kernel_nx_end)
1623 return;
1624#endif
1625 map.pfn = __phys_to_pfn(kernel_nx_start);
1626 map.virtual = __phys_to_virt(kernel_nx_start);
1627 map.length = kernel_nx_end - kernel_nx_start;
1628 map.type = MT_MEMORY_RW;
1629 create_mapping(&map);
1630}
1631
1632#ifdef CONFIG_ARM_PV_FIXUP
1633typedef void pgtables_remap(long long offset, unsigned long pgd);
1634pgtables_remap lpae_pgtables_remap_asm;
1635
1636/*
1637 * early_paging_init() recreates boot time page table setup, allowing machines
1638 * to switch over to a high (>4G) address space on LPAE systems
1639 */
1640static void __init early_paging_init(const struct machine_desc *mdesc)
1641{
1642 pgtables_remap *lpae_pgtables_remap;
1643 unsigned long pa_pgd;
1644 u32 cr, ttbcr, tmp;
1645 long long offset;
1646
1647 if (!mdesc->pv_fixup)
1648 return;
1649
1650 offset = mdesc->pv_fixup();
1651 if (offset == 0)
1652 return;
1653
1654 /*
1655 * Offset the kernel section physical offsets so that the kernel
1656 * mapping will work out later on.
1657 */
1658 kernel_sec_start += offset;
1659 kernel_sec_end += offset;
1660
1661 /*
1662 * Get the address of the remap function in the 1:1 identity
1663 * mapping setup by the early page table assembly code. We
1664 * must get this prior to the pv update. The following barrier
1665 * ensures that this is complete before we fixup any P:V offsets.
1666 */
1667 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1668 pa_pgd = __pa(swapper_pg_dir);
1669 barrier();
1670
1671 pr_info("Switching physical address space to 0x%08llx\n",
1672 (u64)PHYS_OFFSET + offset);
1673
1674 /* Re-set the phys pfn offset, and the pv offset */
1675 __pv_offset += offset;
1676 __pv_phys_pfn_offset += PFN_DOWN(offset);
1677
1678 /* Run the patch stub to update the constants */
1679 fixup_pv_table(&__pv_table_begin,
1680 (&__pv_table_end - &__pv_table_begin) << 2);
1681
1682 /*
1683 * We changing not only the virtual to physical mapping, but also
1684 * the physical addresses used to access memory. We need to flush
1685 * all levels of cache in the system with caching disabled to
1686 * ensure that all data is written back, and nothing is prefetched
1687 * into the caches. We also need to prevent the TLB walkers
1688 * allocating into the caches too. Note that this is ARMv7 LPAE
1689 * specific.
1690 */
1691 cr = get_cr();
1692 set_cr(cr & ~(CR_I | CR_C));
1693 ttbcr = cpu_get_ttbcr();
1694 /* Disable all kind of caching of the translation table */
1695 tmp = ttbcr & ~(TTBCR_ORGN0_MASK | TTBCR_IRGN0_MASK);
1696 cpu_set_ttbcr(tmp);
1697 flush_cache_all();
1698
1699 /*
1700 * Fixup the page tables - this must be in the idmap region as
1701 * we need to disable the MMU to do this safely, and hence it
1702 * needs to be assembly. It's fairly simple, as we're using the
1703 * temporary tables setup by the initial assembly code.
1704 */
1705 lpae_pgtables_remap(offset, pa_pgd);
1706
1707 /* Re-enable the caches and cacheable TLB walks */
1708 cpu_set_ttbcr(ttbcr);
1709 set_cr(cr);
1710}
1711
1712#else
1713
1714static void __init early_paging_init(const struct machine_desc *mdesc)
1715{
1716 long long offset;
1717
1718 if (!mdesc->pv_fixup)
1719 return;
1720
1721 offset = mdesc->pv_fixup();
1722 if (offset == 0)
1723 return;
1724
1725 pr_crit("Physical address space modification is only to support Keystone2.\n");
1726 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1727 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1728 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1729}
1730
1731#endif
1732
1733static void __init early_fixmap_shutdown(void)
1734{
1735 int i;
1736 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1737
1738 pte_offset_fixmap = pte_offset_late_fixmap;
1739 pmd_clear(fixmap_pmd(va));
1740 local_flush_tlb_kernel_page(va);
1741
1742 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1743 pte_t *pte;
1744 struct map_desc map;
1745
1746 map.virtual = fix_to_virt(i);
1747 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1748
1749 /* Only i/o device mappings are supported ATM */
1750 if (pte_none(*pte) ||
1751 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1752 continue;
1753
1754 map.pfn = pte_pfn(*pte);
1755 map.type = MT_DEVICE;
1756 map.length = PAGE_SIZE;
1757
1758 create_mapping(&map);
1759 }
1760}
1761
1762/*
1763 * paging_init() sets up the page tables, initialises the zone memory
1764 * maps, and sets up the zero page, bad page and bad page tables.
1765 */
1766void __init paging_init(const struct machine_desc *mdesc)
1767{
1768 void *zero_page;
1769
1770#ifdef CONFIG_XIP_KERNEL
1771 /* Store the kernel RW RAM region start/end in these variables */
1772 kernel_sec_start = CONFIG_PHYS_OFFSET & SECTION_MASK;
1773 kernel_sec_end = round_up(__pa(_end), SECTION_SIZE);
1774#endif
1775 pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1776 kernel_sec_start, kernel_sec_end);
1777
1778 prepare_page_table();
1779 map_lowmem();
1780 memblock_set_current_limit(arm_lowmem_limit);
1781 pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1782 /*
1783 * After this point early_alloc(), i.e. the memblock allocator, can
1784 * be used
1785 */
1786 map_kernel();
1787 dma_contiguous_remap();
1788 early_fixmap_shutdown();
1789 devicemaps_init(mdesc);
1790 kmap_init();
1791 tcm_init();
1792
1793 top_pmd = pmd_off_k(0xffff0000);
1794
1795 /* allocate the zero page. */
1796 zero_page = early_alloc(PAGE_SIZE);
1797
1798 bootmem_init();
1799
1800 empty_zero_page = virt_to_page(zero_page);
1801 __flush_dcache_folio(NULL, page_folio(empty_zero_page));
1802}
1803
1804void __init early_mm_init(const struct machine_desc *mdesc)
1805{
1806 build_mem_type_table();
1807 early_paging_init(mdesc);
1808}
1809
1810void set_ptes(struct mm_struct *mm, unsigned long addr,
1811 pte_t *ptep, pte_t pteval, unsigned int nr)
1812{
1813 unsigned long ext = 0;
1814
1815 if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1816 if (!pte_special(pteval))
1817 __sync_icache_dcache(pteval);
1818 ext |= PTE_EXT_NG;
1819 }
1820
1821 for (;;) {
1822 set_pte_ext(ptep, pteval, ext);
1823 if (--nr == 0)
1824 break;
1825 ptep++;
1826 pteval = pte_next_pfn(pteval);
1827 }
1828}
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/mman.h>
15#include <linux/nodemask.h>
16#include <linux/memblock.h>
17#include <linux/fs.h>
18#include <linux/vmalloc.h>
19
20#include <asm/cp15.h>
21#include <asm/cputype.h>
22#include <asm/sections.h>
23#include <asm/cachetype.h>
24#include <asm/setup.h>
25#include <asm/sizes.h>
26#include <asm/smp_plat.h>
27#include <asm/tlb.h>
28#include <asm/highmem.h>
29#include <asm/system_info.h>
30#include <asm/traps.h>
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
34
35#include "mm.h"
36
37/*
38 * empty_zero_page is a special page that is used for
39 * zero-initialized data and COW.
40 */
41struct page *empty_zero_page;
42EXPORT_SYMBOL(empty_zero_page);
43
44/*
45 * The pmd table for the upper-most set of pages.
46 */
47pmd_t *top_pmd;
48
49#define CPOLICY_UNCACHED 0
50#define CPOLICY_BUFFERED 1
51#define CPOLICY_WRITETHROUGH 2
52#define CPOLICY_WRITEBACK 3
53#define CPOLICY_WRITEALLOC 4
54
55static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56static unsigned int ecc_mask __initdata = 0;
57pgprot_t pgprot_user;
58pgprot_t pgprot_kernel;
59
60EXPORT_SYMBOL(pgprot_user);
61EXPORT_SYMBOL(pgprot_kernel);
62
63struct cachepolicy {
64 const char policy[16];
65 unsigned int cr_mask;
66 pmdval_t pmd;
67 pteval_t pte;
68};
69
70static struct cachepolicy cache_policies[] __initdata = {
71 {
72 .policy = "uncached",
73 .cr_mask = CR_W|CR_C,
74 .pmd = PMD_SECT_UNCACHED,
75 .pte = L_PTE_MT_UNCACHED,
76 }, {
77 .policy = "buffered",
78 .cr_mask = CR_C,
79 .pmd = PMD_SECT_BUFFERED,
80 .pte = L_PTE_MT_BUFFERABLE,
81 }, {
82 .policy = "writethrough",
83 .cr_mask = 0,
84 .pmd = PMD_SECT_WT,
85 .pte = L_PTE_MT_WRITETHROUGH,
86 }, {
87 .policy = "writeback",
88 .cr_mask = 0,
89 .pmd = PMD_SECT_WB,
90 .pte = L_PTE_MT_WRITEBACK,
91 }, {
92 .policy = "writealloc",
93 .cr_mask = 0,
94 .pmd = PMD_SECT_WBWA,
95 .pte = L_PTE_MT_WRITEALLOC,
96 }
97};
98
99/*
100 * These are useful for identifying cache coherency
101 * problems by allowing the cache or the cache and
102 * writebuffer to be turned off. (Note: the write
103 * buffer should not be on and the cache off).
104 */
105static int __init early_cachepolicy(char *p)
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 int len = strlen(cache_policies[i].policy);
111
112 if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 cachepolicy = i;
114 cr_alignment &= ~cache_policies[i].cr_mask;
115 cr_no_alignment &= ~cache_policies[i].cr_mask;
116 break;
117 }
118 }
119 if (i == ARRAY_SIZE(cache_policies))
120 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 /*
122 * This restriction is partly to do with the way we boot; it is
123 * unpredictable to have memory mapped using two different sets of
124 * memory attributes (shared, type, and cache attribs). We can not
125 * change these attributes once the initial assembly has setup the
126 * page tables.
127 */
128 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 cachepolicy = CPOLICY_WRITEBACK;
131 }
132 flush_cache_all();
133 set_cr(cr_alignment);
134 return 0;
135}
136early_param("cachepolicy", early_cachepolicy);
137
138static int __init early_nocache(char *__unused)
139{
140 char *p = "buffered";
141 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 early_cachepolicy(p);
143 return 0;
144}
145early_param("nocache", early_nocache);
146
147static int __init early_nowrite(char *__unused)
148{
149 char *p = "uncached";
150 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 early_cachepolicy(p);
152 return 0;
153}
154early_param("nowb", early_nowrite);
155
156#ifndef CONFIG_ARM_LPAE
157static int __init early_ecc(char *p)
158{
159 if (memcmp(p, "on", 2) == 0)
160 ecc_mask = PMD_PROTECTION;
161 else if (memcmp(p, "off", 3) == 0)
162 ecc_mask = 0;
163 return 0;
164}
165early_param("ecc", early_ecc);
166#endif
167
168static int __init noalign_setup(char *__unused)
169{
170 cr_alignment &= ~CR_A;
171 cr_no_alignment &= ~CR_A;
172 set_cr(cr_alignment);
173 return 1;
174}
175__setup("noalign", noalign_setup);
176
177#ifndef CONFIG_SMP
178void adjust_cr(unsigned long mask, unsigned long set)
179{
180 unsigned long flags;
181
182 mask &= ~CR_A;
183
184 set &= mask;
185
186 local_irq_save(flags);
187
188 cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 cr_alignment = (cr_alignment & ~mask) | set;
190
191 set_cr((get_cr() & ~mask) | set);
192
193 local_irq_restore(flags);
194}
195#endif
196
197#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199
200static struct mem_type mem_types[] = {
201 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 L_PTE_SHARED,
204 .prot_l1 = PMD_TYPE_TABLE,
205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
206 .domain = DOMAIN_IO,
207 },
208 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210 .prot_l1 = PMD_TYPE_TABLE,
211 .prot_sect = PROT_SECT_DEVICE,
212 .domain = DOMAIN_IO,
213 },
214 [MT_DEVICE_CACHED] = { /* ioremap_cached */
215 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
218 .domain = DOMAIN_IO,
219 },
220 [MT_DEVICE_WC] = { /* ioremap_wc */
221 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222 .prot_l1 = PMD_TYPE_TABLE,
223 .prot_sect = PROT_SECT_DEVICE,
224 .domain = DOMAIN_IO,
225 },
226 [MT_UNCACHED] = {
227 .prot_pte = PROT_PTE_DEVICE,
228 .prot_l1 = PMD_TYPE_TABLE,
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_IO,
231 },
232 [MT_CACHECLEAN] = {
233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 .domain = DOMAIN_KERNEL,
235 },
236#ifndef CONFIG_ARM_LPAE
237 [MT_MINICLEAN] = {
238 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 .domain = DOMAIN_KERNEL,
240 },
241#endif
242 [MT_LOW_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_RDONLY,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_HIGH_VECTORS] = {
249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250 L_PTE_USER | L_PTE_RDONLY,
251 .prot_l1 = PMD_TYPE_TABLE,
252 .domain = DOMAIN_USER,
253 },
254 [MT_MEMORY] = {
255 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256 .prot_l1 = PMD_TYPE_TABLE,
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
259 },
260 [MT_ROM] = {
261 .prot_sect = PMD_TYPE_SECT,
262 .domain = DOMAIN_KERNEL,
263 },
264 [MT_MEMORY_NONCACHED] = {
265 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 L_PTE_MT_BUFFERABLE,
267 .prot_l1 = PMD_TYPE_TABLE,
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 .domain = DOMAIN_KERNEL,
270 },
271 [MT_MEMORY_DTCM] = {
272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273 L_PTE_XN,
274 .prot_l1 = PMD_TYPE_TABLE,
275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 .domain = DOMAIN_KERNEL,
277 },
278 [MT_MEMORY_ITCM] = {
279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280 .prot_l1 = PMD_TYPE_TABLE,
281 .domain = DOMAIN_KERNEL,
282 },
283 [MT_MEMORY_SO] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_MT_UNCACHED,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 PMD_SECT_UNCACHED | PMD_SECT_XN,
289 .domain = DOMAIN_KERNEL,
290 },
291 [MT_MEMORY_DMA_READY] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .domain = DOMAIN_KERNEL,
295 },
296};
297
298const struct mem_type *get_mem_type(unsigned int type)
299{
300 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
301}
302EXPORT_SYMBOL(get_mem_type);
303
304/*
305 * Adjust the PMD section entries according to the CPU in use.
306 */
307static void __init build_mem_type_table(void)
308{
309 struct cachepolicy *cp;
310 unsigned int cr = get_cr();
311 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
312 int cpu_arch = cpu_architecture();
313 int i;
314
315 if (cpu_arch < CPU_ARCH_ARMv6) {
316#if defined(CONFIG_CPU_DCACHE_DISABLE)
317 if (cachepolicy > CPOLICY_BUFFERED)
318 cachepolicy = CPOLICY_BUFFERED;
319#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
320 if (cachepolicy > CPOLICY_WRITETHROUGH)
321 cachepolicy = CPOLICY_WRITETHROUGH;
322#endif
323 }
324 if (cpu_arch < CPU_ARCH_ARMv5) {
325 if (cachepolicy >= CPOLICY_WRITEALLOC)
326 cachepolicy = CPOLICY_WRITEBACK;
327 ecc_mask = 0;
328 }
329 if (is_smp())
330 cachepolicy = CPOLICY_WRITEALLOC;
331
332 /*
333 * Strip out features not present on earlier architectures.
334 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
335 * without extended page tables don't have the 'Shared' bit.
336 */
337 if (cpu_arch < CPU_ARCH_ARMv5)
338 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
339 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
340 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
341 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
342 mem_types[i].prot_sect &= ~PMD_SECT_S;
343
344 /*
345 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
346 * "update-able on write" bit on ARM610). However, Xscale and
347 * Xscale3 require this bit to be cleared.
348 */
349 if (cpu_is_xscale() || cpu_is_xsc3()) {
350 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351 mem_types[i].prot_sect &= ~PMD_BIT4;
352 mem_types[i].prot_l1 &= ~PMD_BIT4;
353 }
354 } else if (cpu_arch < CPU_ARCH_ARMv6) {
355 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
356 if (mem_types[i].prot_l1)
357 mem_types[i].prot_l1 |= PMD_BIT4;
358 if (mem_types[i].prot_sect)
359 mem_types[i].prot_sect |= PMD_BIT4;
360 }
361 }
362
363 /*
364 * Mark the device areas according to the CPU/architecture.
365 */
366 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
367 if (!cpu_is_xsc3()) {
368 /*
369 * Mark device regions on ARMv6+ as execute-never
370 * to prevent speculative instruction fetches.
371 */
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
374 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
375 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
376 }
377 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
378 /*
379 * For ARMv7 with TEX remapping,
380 * - shared device is SXCB=1100
381 * - nonshared device is SXCB=0100
382 * - write combine device mem is SXCB=0001
383 * (Uncached Normal memory)
384 */
385 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
386 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
387 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
388 } else if (cpu_is_xsc3()) {
389 /*
390 * For Xscale3,
391 * - shared device is TEXCB=00101
392 * - nonshared device is TEXCB=01000
393 * - write combine device mem is TEXCB=00100
394 * (Inner/Outer Uncacheable in xsc3 parlance)
395 */
396 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
397 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399 } else {
400 /*
401 * For ARMv6 and ARMv7 without TEX remapping,
402 * - shared device is TEXCB=00001
403 * - nonshared device is TEXCB=01000
404 * - write combine device mem is TEXCB=00100
405 * (Uncached Normal in ARMv6 parlance).
406 */
407 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
408 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
409 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
410 }
411 } else {
412 /*
413 * On others, write combining is "Uncached/Buffered"
414 */
415 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
416 }
417
418 /*
419 * Now deal with the memory-type mappings
420 */
421 cp = &cache_policies[cachepolicy];
422 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
423
424 /*
425 * Only use write-through for non-SMP systems
426 */
427 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
428 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
429
430 /*
431 * Enable CPU-specific coherency if supported.
432 * (Only available on XSC3 at the moment.)
433 */
434 if (arch_is_coherent() && cpu_is_xsc3()) {
435 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
436 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
437 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
438 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
439 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
440 }
441 /*
442 * ARMv6 and above have extended page tables.
443 */
444 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
445#ifndef CONFIG_ARM_LPAE
446 /*
447 * Mark cache clean areas and XIP ROM read only
448 * from SVC mode and no access from userspace.
449 */
450 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
451 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
452 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
453#endif
454
455 if (is_smp()) {
456 /*
457 * Mark memory with the "shared" attribute
458 * for SMP systems
459 */
460 user_pgprot |= L_PTE_SHARED;
461 kern_pgprot |= L_PTE_SHARED;
462 vecs_pgprot |= L_PTE_SHARED;
463 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
464 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
465 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
466 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
467 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
468 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
469 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
470 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
471 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
472 }
473 }
474
475 /*
476 * Non-cacheable Normal - intended for memory areas that must
477 * not cause dirty cache line writebacks when used
478 */
479 if (cpu_arch >= CPU_ARCH_ARMv6) {
480 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
481 /* Non-cacheable Normal is XCB = 001 */
482 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
483 PMD_SECT_BUFFERED;
484 } else {
485 /* For both ARMv6 and non-TEX-remapping ARMv7 */
486 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
487 PMD_SECT_TEX(1);
488 }
489 } else {
490 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
491 }
492
493#ifdef CONFIG_ARM_LPAE
494 /*
495 * Do not generate access flag faults for the kernel mappings.
496 */
497 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
498 mem_types[i].prot_pte |= PTE_EXT_AF;
499 if (mem_types[i].prot_sect)
500 mem_types[i].prot_sect |= PMD_SECT_AF;
501 }
502 kern_pgprot |= PTE_EXT_AF;
503 vecs_pgprot |= PTE_EXT_AF;
504#endif
505
506 for (i = 0; i < 16; i++) {
507 unsigned long v = pgprot_val(protection_map[i]);
508 protection_map[i] = __pgprot(v | user_pgprot);
509 }
510
511 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
512 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
513
514 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
515 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
516 L_PTE_DIRTY | kern_pgprot);
517
518 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
519 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
520 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
521 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
522 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
523 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
524 mem_types[MT_ROM].prot_sect |= cp->pmd;
525
526 switch (cp->pmd) {
527 case PMD_SECT_WT:
528 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
529 break;
530 case PMD_SECT_WB:
531 case PMD_SECT_WBWA:
532 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
533 break;
534 }
535 printk("Memory policy: ECC %sabled, Data cache %s\n",
536 ecc_mask ? "en" : "dis", cp->policy);
537
538 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
539 struct mem_type *t = &mem_types[i];
540 if (t->prot_l1)
541 t->prot_l1 |= PMD_DOMAIN(t->domain);
542 if (t->prot_sect)
543 t->prot_sect |= PMD_DOMAIN(t->domain);
544 }
545}
546
547#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
548pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
549 unsigned long size, pgprot_t vma_prot)
550{
551 if (!pfn_valid(pfn))
552 return pgprot_noncached(vma_prot);
553 else if (file->f_flags & O_SYNC)
554 return pgprot_writecombine(vma_prot);
555 return vma_prot;
556}
557EXPORT_SYMBOL(phys_mem_access_prot);
558#endif
559
560#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
561
562static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
563{
564 void *ptr = __va(memblock_alloc(sz, align));
565 memset(ptr, 0, sz);
566 return ptr;
567}
568
569static void __init *early_alloc(unsigned long sz)
570{
571 return early_alloc_aligned(sz, sz);
572}
573
574static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
575{
576 if (pmd_none(*pmd)) {
577 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
578 __pmd_populate(pmd, __pa(pte), prot);
579 }
580 BUG_ON(pmd_bad(*pmd));
581 return pte_offset_kernel(pmd, addr);
582}
583
584static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
585 unsigned long end, unsigned long pfn,
586 const struct mem_type *type)
587{
588 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
589 do {
590 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
591 pfn++;
592 } while (pte++, addr += PAGE_SIZE, addr != end);
593}
594
595static void __init alloc_init_section(pud_t *pud, unsigned long addr,
596 unsigned long end, phys_addr_t phys,
597 const struct mem_type *type)
598{
599 pmd_t *pmd = pmd_offset(pud, addr);
600
601 /*
602 * Try a section mapping - end, addr and phys must all be aligned
603 * to a section boundary. Note that PMDs refer to the individual
604 * L1 entries, whereas PGDs refer to a group of L1 entries making
605 * up one logical pointer to an L2 table.
606 */
607 if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
608 pmd_t *p = pmd;
609
610#ifndef CONFIG_ARM_LPAE
611 if (addr & SECTION_SIZE)
612 pmd++;
613#endif
614
615 do {
616 *pmd = __pmd(phys | type->prot_sect);
617 phys += SECTION_SIZE;
618 } while (pmd++, addr += SECTION_SIZE, addr != end);
619
620 flush_pmd_entry(p);
621 } else {
622 /*
623 * No need to loop; pte's aren't interested in the
624 * individual L1 entries.
625 */
626 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
627 }
628}
629
630static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
631 unsigned long end, unsigned long phys, const struct mem_type *type)
632{
633 pud_t *pud = pud_offset(pgd, addr);
634 unsigned long next;
635
636 do {
637 next = pud_addr_end(addr, end);
638 alloc_init_section(pud, addr, next, phys, type);
639 phys += next - addr;
640 } while (pud++, addr = next, addr != end);
641}
642
643#ifndef CONFIG_ARM_LPAE
644static void __init create_36bit_mapping(struct map_desc *md,
645 const struct mem_type *type)
646{
647 unsigned long addr, length, end;
648 phys_addr_t phys;
649 pgd_t *pgd;
650
651 addr = md->virtual;
652 phys = __pfn_to_phys(md->pfn);
653 length = PAGE_ALIGN(md->length);
654
655 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
656 printk(KERN_ERR "MM: CPU does not support supersection "
657 "mapping for 0x%08llx at 0x%08lx\n",
658 (long long)__pfn_to_phys((u64)md->pfn), addr);
659 return;
660 }
661
662 /* N.B. ARMv6 supersections are only defined to work with domain 0.
663 * Since domain assignments can in fact be arbitrary, the
664 * 'domain == 0' check below is required to insure that ARMv6
665 * supersections are only allocated for domain 0 regardless
666 * of the actual domain assignments in use.
667 */
668 if (type->domain) {
669 printk(KERN_ERR "MM: invalid domain in supersection "
670 "mapping for 0x%08llx at 0x%08lx\n",
671 (long long)__pfn_to_phys((u64)md->pfn), addr);
672 return;
673 }
674
675 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
676 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
677 " at 0x%08lx invalid alignment\n",
678 (long long)__pfn_to_phys((u64)md->pfn), addr);
679 return;
680 }
681
682 /*
683 * Shift bits [35:32] of address into bits [23:20] of PMD
684 * (See ARMv6 spec).
685 */
686 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
687
688 pgd = pgd_offset_k(addr);
689 end = addr + length;
690 do {
691 pud_t *pud = pud_offset(pgd, addr);
692 pmd_t *pmd = pmd_offset(pud, addr);
693 int i;
694
695 for (i = 0; i < 16; i++)
696 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
697
698 addr += SUPERSECTION_SIZE;
699 phys += SUPERSECTION_SIZE;
700 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
701 } while (addr != end);
702}
703#endif /* !CONFIG_ARM_LPAE */
704
705/*
706 * Create the page directory entries and any necessary
707 * page tables for the mapping specified by `md'. We
708 * are able to cope here with varying sizes and address
709 * offsets, and we take full advantage of sections and
710 * supersections.
711 */
712static void __init create_mapping(struct map_desc *md)
713{
714 unsigned long addr, length, end;
715 phys_addr_t phys;
716 const struct mem_type *type;
717 pgd_t *pgd;
718
719 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
720 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
721 " at 0x%08lx in user region\n",
722 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
723 return;
724 }
725
726 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
727 md->virtual >= PAGE_OFFSET &&
728 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
729 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
730 " at 0x%08lx out of vmalloc space\n",
731 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
732 }
733
734 type = &mem_types[md->type];
735
736#ifndef CONFIG_ARM_LPAE
737 /*
738 * Catch 36-bit addresses
739 */
740 if (md->pfn >= 0x100000) {
741 create_36bit_mapping(md, type);
742 return;
743 }
744#endif
745
746 addr = md->virtual & PAGE_MASK;
747 phys = __pfn_to_phys(md->pfn);
748 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
749
750 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
751 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
752 "be mapped using pages, ignoring.\n",
753 (long long)__pfn_to_phys(md->pfn), addr);
754 return;
755 }
756
757 pgd = pgd_offset_k(addr);
758 end = addr + length;
759 do {
760 unsigned long next = pgd_addr_end(addr, end);
761
762 alloc_init_pud(pgd, addr, next, phys, type);
763
764 phys += next - addr;
765 addr = next;
766 } while (pgd++, addr != end);
767}
768
769/*
770 * Create the architecture specific mappings
771 */
772void __init iotable_init(struct map_desc *io_desc, int nr)
773{
774 struct map_desc *md;
775 struct vm_struct *vm;
776
777 if (!nr)
778 return;
779
780 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
781
782 for (md = io_desc; nr; md++, nr--) {
783 create_mapping(md);
784 vm->addr = (void *)(md->virtual & PAGE_MASK);
785 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
786 vm->phys_addr = __pfn_to_phys(md->pfn);
787 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
788 vm->flags |= VM_ARM_MTYPE(md->type);
789 vm->caller = iotable_init;
790 vm_area_add_early(vm++);
791 }
792}
793
794#ifndef CONFIG_ARM_LPAE
795
796/*
797 * The Linux PMD is made of two consecutive section entries covering 2MB
798 * (see definition in include/asm/pgtable-2level.h). However a call to
799 * create_mapping() may optimize static mappings by using individual
800 * 1MB section mappings. This leaves the actual PMD potentially half
801 * initialized if the top or bottom section entry isn't used, leaving it
802 * open to problems if a subsequent ioremap() or vmalloc() tries to use
803 * the virtual space left free by that unused section entry.
804 *
805 * Let's avoid the issue by inserting dummy vm entries covering the unused
806 * PMD halves once the static mappings are in place.
807 */
808
809static void __init pmd_empty_section_gap(unsigned long addr)
810{
811 struct vm_struct *vm;
812
813 vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
814 vm->addr = (void *)addr;
815 vm->size = SECTION_SIZE;
816 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
817 vm->caller = pmd_empty_section_gap;
818 vm_area_add_early(vm);
819}
820
821static void __init fill_pmd_gaps(void)
822{
823 struct vm_struct *vm;
824 unsigned long addr, next = 0;
825 pmd_t *pmd;
826
827 /* we're still single threaded hence no lock needed here */
828 for (vm = vmlist; vm; vm = vm->next) {
829 if (!(vm->flags & (VM_ARM_STATIC_MAPPING | VM_ARM_EMPTY_MAPPING)))
830 continue;
831 addr = (unsigned long)vm->addr;
832 if (addr < next)
833 continue;
834
835 /*
836 * Check if this vm starts on an odd section boundary.
837 * If so and the first section entry for this PMD is free
838 * then we block the corresponding virtual address.
839 */
840 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
841 pmd = pmd_off_k(addr);
842 if (pmd_none(*pmd))
843 pmd_empty_section_gap(addr & PMD_MASK);
844 }
845
846 /*
847 * Then check if this vm ends on an odd section boundary.
848 * If so and the second section entry for this PMD is empty
849 * then we block the corresponding virtual address.
850 */
851 addr += vm->size;
852 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
853 pmd = pmd_off_k(addr) + 1;
854 if (pmd_none(*pmd))
855 pmd_empty_section_gap(addr);
856 }
857
858 /* no need to look at any vm entry until we hit the next PMD */
859 next = (addr + PMD_SIZE - 1) & PMD_MASK;
860 }
861}
862
863#else
864#define fill_pmd_gaps() do { } while (0)
865#endif
866
867static void * __initdata vmalloc_min =
868 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
869
870/*
871 * vmalloc=size forces the vmalloc area to be exactly 'size'
872 * bytes. This can be used to increase (or decrease) the vmalloc
873 * area - the default is 240m.
874 */
875static int __init early_vmalloc(char *arg)
876{
877 unsigned long vmalloc_reserve = memparse(arg, NULL);
878
879 if (vmalloc_reserve < SZ_16M) {
880 vmalloc_reserve = SZ_16M;
881 printk(KERN_WARNING
882 "vmalloc area too small, limiting to %luMB\n",
883 vmalloc_reserve >> 20);
884 }
885
886 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
887 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
888 printk(KERN_WARNING
889 "vmalloc area is too big, limiting to %luMB\n",
890 vmalloc_reserve >> 20);
891 }
892
893 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
894 return 0;
895}
896early_param("vmalloc", early_vmalloc);
897
898phys_addr_t arm_lowmem_limit __initdata = 0;
899
900void __init sanity_check_meminfo(void)
901{
902 int i, j, highmem = 0;
903
904 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
905 struct membank *bank = &meminfo.bank[j];
906 *bank = meminfo.bank[i];
907
908 if (bank->start > ULONG_MAX)
909 highmem = 1;
910
911#ifdef CONFIG_HIGHMEM
912 if (__va(bank->start) >= vmalloc_min ||
913 __va(bank->start) < (void *)PAGE_OFFSET)
914 highmem = 1;
915
916 bank->highmem = highmem;
917
918 /*
919 * Split those memory banks which are partially overlapping
920 * the vmalloc area greatly simplifying things later.
921 */
922 if (!highmem && __va(bank->start) < vmalloc_min &&
923 bank->size > vmalloc_min - __va(bank->start)) {
924 if (meminfo.nr_banks >= NR_BANKS) {
925 printk(KERN_CRIT "NR_BANKS too low, "
926 "ignoring high memory\n");
927 } else {
928 memmove(bank + 1, bank,
929 (meminfo.nr_banks - i) * sizeof(*bank));
930 meminfo.nr_banks++;
931 i++;
932 bank[1].size -= vmalloc_min - __va(bank->start);
933 bank[1].start = __pa(vmalloc_min - 1) + 1;
934 bank[1].highmem = highmem = 1;
935 j++;
936 }
937 bank->size = vmalloc_min - __va(bank->start);
938 }
939#else
940 bank->highmem = highmem;
941
942 /*
943 * Highmem banks not allowed with !CONFIG_HIGHMEM.
944 */
945 if (highmem) {
946 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
947 "(!CONFIG_HIGHMEM).\n",
948 (unsigned long long)bank->start,
949 (unsigned long long)bank->start + bank->size - 1);
950 continue;
951 }
952
953 /*
954 * Check whether this memory bank would entirely overlap
955 * the vmalloc area.
956 */
957 if (__va(bank->start) >= vmalloc_min ||
958 __va(bank->start) < (void *)PAGE_OFFSET) {
959 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
960 "(vmalloc region overlap).\n",
961 (unsigned long long)bank->start,
962 (unsigned long long)bank->start + bank->size - 1);
963 continue;
964 }
965
966 /*
967 * Check whether this memory bank would partially overlap
968 * the vmalloc area.
969 */
970 if (__va(bank->start + bank->size) > vmalloc_min ||
971 __va(bank->start + bank->size) < __va(bank->start)) {
972 unsigned long newsize = vmalloc_min - __va(bank->start);
973 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
974 "to -%.8llx (vmalloc region overlap).\n",
975 (unsigned long long)bank->start,
976 (unsigned long long)bank->start + bank->size - 1,
977 (unsigned long long)bank->start + newsize - 1);
978 bank->size = newsize;
979 }
980#endif
981 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
982 arm_lowmem_limit = bank->start + bank->size;
983
984 j++;
985 }
986#ifdef CONFIG_HIGHMEM
987 if (highmem) {
988 const char *reason = NULL;
989
990 if (cache_is_vipt_aliasing()) {
991 /*
992 * Interactions between kmap and other mappings
993 * make highmem support with aliasing VIPT caches
994 * rather difficult.
995 */
996 reason = "with VIPT aliasing cache";
997 }
998 if (reason) {
999 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1000 reason);
1001 while (j > 0 && meminfo.bank[j - 1].highmem)
1002 j--;
1003 }
1004 }
1005#endif
1006 meminfo.nr_banks = j;
1007 high_memory = __va(arm_lowmem_limit - 1) + 1;
1008 memblock_set_current_limit(arm_lowmem_limit);
1009}
1010
1011static inline void prepare_page_table(void)
1012{
1013 unsigned long addr;
1014 phys_addr_t end;
1015
1016 /*
1017 * Clear out all the mappings below the kernel image.
1018 */
1019 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1020 pmd_clear(pmd_off_k(addr));
1021
1022#ifdef CONFIG_XIP_KERNEL
1023 /* The XIP kernel is mapped in the module area -- skip over it */
1024 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1025#endif
1026 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1027 pmd_clear(pmd_off_k(addr));
1028
1029 /*
1030 * Find the end of the first block of lowmem.
1031 */
1032 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1033 if (end >= arm_lowmem_limit)
1034 end = arm_lowmem_limit;
1035
1036 /*
1037 * Clear out all the kernel space mappings, except for the first
1038 * memory bank, up to the vmalloc region.
1039 */
1040 for (addr = __phys_to_virt(end);
1041 addr < VMALLOC_START; addr += PMD_SIZE)
1042 pmd_clear(pmd_off_k(addr));
1043}
1044
1045#ifdef CONFIG_ARM_LPAE
1046/* the first page is reserved for pgd */
1047#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1048 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1049#else
1050#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1051#endif
1052
1053/*
1054 * Reserve the special regions of memory
1055 */
1056void __init arm_mm_memblock_reserve(void)
1057{
1058 /*
1059 * Reserve the page tables. These are already in use,
1060 * and can only be in node 0.
1061 */
1062 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1063
1064#ifdef CONFIG_SA1111
1065 /*
1066 * Because of the SA1111 DMA bug, we want to preserve our
1067 * precious DMA-able memory...
1068 */
1069 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1070#endif
1071}
1072
1073/*
1074 * Set up the device mappings. Since we clear out the page tables for all
1075 * mappings above VMALLOC_START, we will remove any debug device mappings.
1076 * This means you have to be careful how you debug this function, or any
1077 * called function. This means you can't use any function or debugging
1078 * method which may touch any device, otherwise the kernel _will_ crash.
1079 */
1080static void __init devicemaps_init(struct machine_desc *mdesc)
1081{
1082 struct map_desc map;
1083 unsigned long addr;
1084 void *vectors;
1085
1086 /*
1087 * Allocate the vector page early.
1088 */
1089 vectors = early_alloc(PAGE_SIZE);
1090
1091 early_trap_init(vectors);
1092
1093 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1094 pmd_clear(pmd_off_k(addr));
1095
1096 /*
1097 * Map the kernel if it is XIP.
1098 * It is always first in the modulearea.
1099 */
1100#ifdef CONFIG_XIP_KERNEL
1101 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1102 map.virtual = MODULES_VADDR;
1103 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1104 map.type = MT_ROM;
1105 create_mapping(&map);
1106#endif
1107
1108 /*
1109 * Map the cache flushing regions.
1110 */
1111#ifdef FLUSH_BASE
1112 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1113 map.virtual = FLUSH_BASE;
1114 map.length = SZ_1M;
1115 map.type = MT_CACHECLEAN;
1116 create_mapping(&map);
1117#endif
1118#ifdef FLUSH_BASE_MINICACHE
1119 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1120 map.virtual = FLUSH_BASE_MINICACHE;
1121 map.length = SZ_1M;
1122 map.type = MT_MINICLEAN;
1123 create_mapping(&map);
1124#endif
1125
1126 /*
1127 * Create a mapping for the machine vectors at the high-vectors
1128 * location (0xffff0000). If we aren't using high-vectors, also
1129 * create a mapping at the low-vectors virtual address.
1130 */
1131 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1132 map.virtual = 0xffff0000;
1133 map.length = PAGE_SIZE;
1134 map.type = MT_HIGH_VECTORS;
1135 create_mapping(&map);
1136
1137 if (!vectors_high()) {
1138 map.virtual = 0;
1139 map.type = MT_LOW_VECTORS;
1140 create_mapping(&map);
1141 }
1142
1143 /*
1144 * Ask the machine support to map in the statically mapped devices.
1145 */
1146 if (mdesc->map_io)
1147 mdesc->map_io();
1148 fill_pmd_gaps();
1149
1150 /*
1151 * Finally flush the caches and tlb to ensure that we're in a
1152 * consistent state wrt the writebuffer. This also ensures that
1153 * any write-allocated cache lines in the vector page are written
1154 * back. After this point, we can start to touch devices again.
1155 */
1156 local_flush_tlb_all();
1157 flush_cache_all();
1158}
1159
1160static void __init kmap_init(void)
1161{
1162#ifdef CONFIG_HIGHMEM
1163 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1164 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1165#endif
1166}
1167
1168static void __init map_lowmem(void)
1169{
1170 struct memblock_region *reg;
1171
1172 /* Map all the lowmem memory banks. */
1173 for_each_memblock(memory, reg) {
1174 phys_addr_t start = reg->base;
1175 phys_addr_t end = start + reg->size;
1176 struct map_desc map;
1177
1178 if (end > arm_lowmem_limit)
1179 end = arm_lowmem_limit;
1180 if (start >= end)
1181 break;
1182
1183 map.pfn = __phys_to_pfn(start);
1184 map.virtual = __phys_to_virt(start);
1185 map.length = end - start;
1186 map.type = MT_MEMORY;
1187
1188 create_mapping(&map);
1189 }
1190}
1191
1192/*
1193 * paging_init() sets up the page tables, initialises the zone memory
1194 * maps, and sets up the zero page, bad page and bad page tables.
1195 */
1196void __init paging_init(struct machine_desc *mdesc)
1197{
1198 void *zero_page;
1199
1200 memblock_set_current_limit(arm_lowmem_limit);
1201
1202 build_mem_type_table();
1203 prepare_page_table();
1204 map_lowmem();
1205 dma_contiguous_remap();
1206 devicemaps_init(mdesc);
1207 kmap_init();
1208
1209 top_pmd = pmd_off_k(0xffff0000);
1210
1211 /* allocate the zero page. */
1212 zero_page = early_alloc(PAGE_SIZE);
1213
1214 bootmem_init();
1215
1216 empty_zero_page = virt_to_page(zero_page);
1217 __flush_dcache_page(NULL, empty_zero_page);
1218}