Loading...
1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/* af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43#include <linux/module.h>
44#include <linux/stddef.h>
45#include <linux/init.h>
46#include <linux/kmod.h>
47#include <linux/slab.h>
48#include <linux/list.h>
49#include <linux/spinlock.h>
50#include <linux/rcupdate.h>
51#include <linux/uaccess.h>
52#include <linux/net.h>
53#include <linux/netdevice.h>
54#include <linux/socket.h>
55#include <linux/if_ether.h>
56#include <linux/if_arp.h>
57#include <linux/skbuff.h>
58#include <linux/can.h>
59#include <linux/can/core.h>
60#include <linux/can/skb.h>
61#include <linux/can/can-ml.h>
62#include <linux/ratelimit.h>
63#include <net/net_namespace.h>
64#include <net/sock.h>
65
66#include "af_can.h"
67
68MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69MODULE_LICENSE("Dual BSD/GPL");
70MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72
73MODULE_ALIAS_NETPROTO(PF_CAN);
74
75static int stats_timer __read_mostly = 1;
76module_param(stats_timer, int, 0444);
77MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79static struct kmem_cache *rcv_cache __read_mostly;
80
81/* table of registered CAN protocols */
82static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83static DEFINE_MUTEX(proto_tab_lock);
84
85static atomic_t skbcounter = ATOMIC_INIT(0);
86
87/* af_can socket functions */
88
89void can_sock_destruct(struct sock *sk)
90{
91 skb_queue_purge(&sk->sk_receive_queue);
92 skb_queue_purge(&sk->sk_error_queue);
93}
94EXPORT_SYMBOL(can_sock_destruct);
95
96static const struct can_proto *can_get_proto(int protocol)
97{
98 const struct can_proto *cp;
99
100 rcu_read_lock();
101 cp = rcu_dereference(proto_tab[protocol]);
102 if (cp && !try_module_get(cp->prot->owner))
103 cp = NULL;
104 rcu_read_unlock();
105
106 return cp;
107}
108
109static inline void can_put_proto(const struct can_proto *cp)
110{
111 module_put(cp->prot->owner);
112}
113
114static int can_create(struct net *net, struct socket *sock, int protocol,
115 int kern)
116{
117 struct sock *sk;
118 const struct can_proto *cp;
119 int err = 0;
120
121 sock->state = SS_UNCONNECTED;
122
123 if (protocol < 0 || protocol >= CAN_NPROTO)
124 return -EINVAL;
125
126 cp = can_get_proto(protocol);
127
128#ifdef CONFIG_MODULES
129 if (!cp) {
130 /* try to load protocol module if kernel is modular */
131
132 err = request_module("can-proto-%d", protocol);
133
134 /* In case of error we only print a message but don't
135 * return the error code immediately. Below we will
136 * return -EPROTONOSUPPORT
137 */
138 if (err)
139 pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140 protocol);
141
142 cp = can_get_proto(protocol);
143 }
144#endif
145
146 /* check for available protocol and correct usage */
147
148 if (!cp)
149 return -EPROTONOSUPPORT;
150
151 if (cp->type != sock->type) {
152 err = -EPROTOTYPE;
153 goto errout;
154 }
155
156 sock->ops = cp->ops;
157
158 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
159 if (!sk) {
160 err = -ENOMEM;
161 goto errout;
162 }
163
164 sock_init_data(sock, sk);
165 sk->sk_destruct = can_sock_destruct;
166
167 if (sk->sk_prot->init)
168 err = sk->sk_prot->init(sk);
169
170 if (err) {
171 /* release sk on errors */
172 sock_orphan(sk);
173 sock_put(sk);
174 sock->sk = NULL;
175 }
176
177 errout:
178 can_put_proto(cp);
179 return err;
180}
181
182/* af_can tx path */
183
184/**
185 * can_send - transmit a CAN frame (optional with local loopback)
186 * @skb: pointer to socket buffer with CAN frame in data section
187 * @loop: loopback for listeners on local CAN sockets (recommended default!)
188 *
189 * Due to the loopback this routine must not be called from hardirq context.
190 *
191 * Return:
192 * 0 on success
193 * -ENETDOWN when the selected interface is down
194 * -ENOBUFS on full driver queue (see net_xmit_errno())
195 * -ENOMEM when local loopback failed at calling skb_clone()
196 * -EPERM when trying to send on a non-CAN interface
197 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
198 * -EINVAL when the skb->data does not contain a valid CAN frame
199 */
200int can_send(struct sk_buff *skb, int loop)
201{
202 struct sk_buff *newskb = NULL;
203 struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
204 int err = -EINVAL;
205
206 if (can_is_canxl_skb(skb)) {
207 skb->protocol = htons(ETH_P_CANXL);
208 } else if (can_is_can_skb(skb)) {
209 skb->protocol = htons(ETH_P_CAN);
210 } else if (can_is_canfd_skb(skb)) {
211 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
212
213 skb->protocol = htons(ETH_P_CANFD);
214
215 /* set CAN FD flag for CAN FD frames by default */
216 cfd->flags |= CANFD_FDF;
217 } else {
218 goto inval_skb;
219 }
220
221 /* Make sure the CAN frame can pass the selected CAN netdevice. */
222 if (unlikely(skb->len > skb->dev->mtu)) {
223 err = -EMSGSIZE;
224 goto inval_skb;
225 }
226
227 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
228 err = -EPERM;
229 goto inval_skb;
230 }
231
232 if (unlikely(!(skb->dev->flags & IFF_UP))) {
233 err = -ENETDOWN;
234 goto inval_skb;
235 }
236
237 skb->ip_summed = CHECKSUM_UNNECESSARY;
238
239 skb_reset_mac_header(skb);
240 skb_reset_network_header(skb);
241 skb_reset_transport_header(skb);
242
243 if (loop) {
244 /* local loopback of sent CAN frames */
245
246 /* indication for the CAN driver: do loopback */
247 skb->pkt_type = PACKET_LOOPBACK;
248
249 /* The reference to the originating sock may be required
250 * by the receiving socket to check whether the frame is
251 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
252 * Therefore we have to ensure that skb->sk remains the
253 * reference to the originating sock by restoring skb->sk
254 * after each skb_clone() or skb_orphan() usage.
255 */
256
257 if (!(skb->dev->flags & IFF_ECHO)) {
258 /* If the interface is not capable to do loopback
259 * itself, we do it here.
260 */
261 newskb = skb_clone(skb, GFP_ATOMIC);
262 if (!newskb) {
263 kfree_skb(skb);
264 return -ENOMEM;
265 }
266
267 can_skb_set_owner(newskb, skb->sk);
268 newskb->ip_summed = CHECKSUM_UNNECESSARY;
269 newskb->pkt_type = PACKET_BROADCAST;
270 }
271 } else {
272 /* indication for the CAN driver: no loopback required */
273 skb->pkt_type = PACKET_HOST;
274 }
275
276 /* send to netdevice */
277 err = dev_queue_xmit(skb);
278 if (err > 0)
279 err = net_xmit_errno(err);
280
281 if (err) {
282 kfree_skb(newskb);
283 return err;
284 }
285
286 if (newskb)
287 netif_rx(newskb);
288
289 /* update statistics */
290 pkg_stats->tx_frames++;
291 pkg_stats->tx_frames_delta++;
292
293 return 0;
294
295inval_skb:
296 kfree_skb(skb);
297 return err;
298}
299EXPORT_SYMBOL(can_send);
300
301/* af_can rx path */
302
303static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
304 struct net_device *dev)
305{
306 if (dev) {
307 struct can_ml_priv *can_ml = can_get_ml_priv(dev);
308 return &can_ml->dev_rcv_lists;
309 } else {
310 return net->can.rx_alldev_list;
311 }
312}
313
314/**
315 * effhash - hash function for 29 bit CAN identifier reduction
316 * @can_id: 29 bit CAN identifier
317 *
318 * Description:
319 * To reduce the linear traversal in one linked list of _single_ EFF CAN
320 * frame subscriptions the 29 bit identifier is mapped to 10 bits.
321 * (see CAN_EFF_RCV_HASH_BITS definition)
322 *
323 * Return:
324 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
325 */
326static unsigned int effhash(canid_t can_id)
327{
328 unsigned int hash;
329
330 hash = can_id;
331 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
332 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
333
334 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
335}
336
337/**
338 * can_rcv_list_find - determine optimal filterlist inside device filter struct
339 * @can_id: pointer to CAN identifier of a given can_filter
340 * @mask: pointer to CAN mask of a given can_filter
341 * @dev_rcv_lists: pointer to the device filter struct
342 *
343 * Description:
344 * Returns the optimal filterlist to reduce the filter handling in the
345 * receive path. This function is called by service functions that need
346 * to register or unregister a can_filter in the filter lists.
347 *
348 * A filter matches in general, when
349 *
350 * <received_can_id> & mask == can_id & mask
351 *
352 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
353 * relevant bits for the filter.
354 *
355 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
356 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
357 * frames there is a special filterlist and a special rx path filter handling.
358 *
359 * Return:
360 * Pointer to optimal filterlist for the given can_id/mask pair.
361 * Consistency checked mask.
362 * Reduced can_id to have a preprocessed filter compare value.
363 */
364static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
365 struct can_dev_rcv_lists *dev_rcv_lists)
366{
367 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
368
369 /* filter for error message frames in extra filterlist */
370 if (*mask & CAN_ERR_FLAG) {
371 /* clear CAN_ERR_FLAG in filter entry */
372 *mask &= CAN_ERR_MASK;
373 return &dev_rcv_lists->rx[RX_ERR];
374 }
375
376 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
377
378#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
379
380 /* ensure valid values in can_mask for 'SFF only' frame filtering */
381 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
382 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
383
384 /* reduce condition testing at receive time */
385 *can_id &= *mask;
386
387 /* inverse can_id/can_mask filter */
388 if (inv)
389 return &dev_rcv_lists->rx[RX_INV];
390
391 /* mask == 0 => no condition testing at receive time */
392 if (!(*mask))
393 return &dev_rcv_lists->rx[RX_ALL];
394
395 /* extra filterlists for the subscription of a single non-RTR can_id */
396 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
397 !(*can_id & CAN_RTR_FLAG)) {
398 if (*can_id & CAN_EFF_FLAG) {
399 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
400 return &dev_rcv_lists->rx_eff[effhash(*can_id)];
401 } else {
402 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
403 return &dev_rcv_lists->rx_sff[*can_id];
404 }
405 }
406
407 /* default: filter via can_id/can_mask */
408 return &dev_rcv_lists->rx[RX_FIL];
409}
410
411/**
412 * can_rx_register - subscribe CAN frames from a specific interface
413 * @net: the applicable net namespace
414 * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list)
415 * @can_id: CAN identifier (see description)
416 * @mask: CAN mask (see description)
417 * @func: callback function on filter match
418 * @data: returned parameter for callback function
419 * @ident: string for calling module identification
420 * @sk: socket pointer (might be NULL)
421 *
422 * Description:
423 * Invokes the callback function with the received sk_buff and the given
424 * parameter 'data' on a matching receive filter. A filter matches, when
425 *
426 * <received_can_id> & mask == can_id & mask
427 *
428 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
429 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
430 *
431 * The provided pointer to the sk_buff is guaranteed to be valid as long as
432 * the callback function is running. The callback function must *not* free
433 * the given sk_buff while processing it's task. When the given sk_buff is
434 * needed after the end of the callback function it must be cloned inside
435 * the callback function with skb_clone().
436 *
437 * Return:
438 * 0 on success
439 * -ENOMEM on missing cache mem to create subscription entry
440 * -ENODEV unknown device
441 */
442int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
443 canid_t mask, void (*func)(struct sk_buff *, void *),
444 void *data, char *ident, struct sock *sk)
445{
446 struct receiver *rcv;
447 struct hlist_head *rcv_list;
448 struct can_dev_rcv_lists *dev_rcv_lists;
449 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
450
451 /* insert new receiver (dev,canid,mask) -> (func,data) */
452
453 if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev)))
454 return -ENODEV;
455
456 if (dev && !net_eq(net, dev_net(dev)))
457 return -ENODEV;
458
459 rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
460 if (!rcv)
461 return -ENOMEM;
462
463 spin_lock_bh(&net->can.rcvlists_lock);
464
465 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
466 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
467
468 rcv->can_id = can_id;
469 rcv->mask = mask;
470 rcv->matches = 0;
471 rcv->func = func;
472 rcv->data = data;
473 rcv->ident = ident;
474 rcv->sk = sk;
475
476 hlist_add_head_rcu(&rcv->list, rcv_list);
477 dev_rcv_lists->entries++;
478
479 rcv_lists_stats->rcv_entries++;
480 rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
481 rcv_lists_stats->rcv_entries);
482 spin_unlock_bh(&net->can.rcvlists_lock);
483
484 return 0;
485}
486EXPORT_SYMBOL(can_rx_register);
487
488/* can_rx_delete_receiver - rcu callback for single receiver entry removal */
489static void can_rx_delete_receiver(struct rcu_head *rp)
490{
491 struct receiver *rcv = container_of(rp, struct receiver, rcu);
492 struct sock *sk = rcv->sk;
493
494 kmem_cache_free(rcv_cache, rcv);
495 if (sk)
496 sock_put(sk);
497}
498
499/**
500 * can_rx_unregister - unsubscribe CAN frames from a specific interface
501 * @net: the applicable net namespace
502 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
503 * @can_id: CAN identifier
504 * @mask: CAN mask
505 * @func: callback function on filter match
506 * @data: returned parameter for callback function
507 *
508 * Description:
509 * Removes subscription entry depending on given (subscription) values.
510 */
511void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
512 canid_t mask, void (*func)(struct sk_buff *, void *),
513 void *data)
514{
515 struct receiver *rcv = NULL;
516 struct hlist_head *rcv_list;
517 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
518 struct can_dev_rcv_lists *dev_rcv_lists;
519
520 if (dev && dev->type != ARPHRD_CAN)
521 return;
522
523 if (dev && !net_eq(net, dev_net(dev)))
524 return;
525
526 spin_lock_bh(&net->can.rcvlists_lock);
527
528 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
529 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
530
531 /* Search the receiver list for the item to delete. This should
532 * exist, since no receiver may be unregistered that hasn't
533 * been registered before.
534 */
535 hlist_for_each_entry_rcu(rcv, rcv_list, list) {
536 if (rcv->can_id == can_id && rcv->mask == mask &&
537 rcv->func == func && rcv->data == data)
538 break;
539 }
540
541 /* Check for bugs in CAN protocol implementations using af_can.c:
542 * 'rcv' will be NULL if no matching list item was found for removal.
543 * As this case may potentially happen when closing a socket while
544 * the notifier for removing the CAN netdev is running we just print
545 * a warning here.
546 */
547 if (!rcv) {
548 pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
549 DNAME(dev), can_id, mask);
550 goto out;
551 }
552
553 hlist_del_rcu(&rcv->list);
554 dev_rcv_lists->entries--;
555
556 if (rcv_lists_stats->rcv_entries > 0)
557 rcv_lists_stats->rcv_entries--;
558
559 out:
560 spin_unlock_bh(&net->can.rcvlists_lock);
561
562 /* schedule the receiver item for deletion */
563 if (rcv) {
564 if (rcv->sk)
565 sock_hold(rcv->sk);
566 call_rcu(&rcv->rcu, can_rx_delete_receiver);
567 }
568}
569EXPORT_SYMBOL(can_rx_unregister);
570
571static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
572{
573 rcv->func(skb, rcv->data);
574 rcv->matches++;
575}
576
577static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
578{
579 struct receiver *rcv;
580 int matches = 0;
581 struct can_frame *cf = (struct can_frame *)skb->data;
582 canid_t can_id = cf->can_id;
583
584 if (dev_rcv_lists->entries == 0)
585 return 0;
586
587 if (can_id & CAN_ERR_FLAG) {
588 /* check for error message frame entries only */
589 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
590 if (can_id & rcv->mask) {
591 deliver(skb, rcv);
592 matches++;
593 }
594 }
595 return matches;
596 }
597
598 /* check for unfiltered entries */
599 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
600 deliver(skb, rcv);
601 matches++;
602 }
603
604 /* check for can_id/mask entries */
605 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
606 if ((can_id & rcv->mask) == rcv->can_id) {
607 deliver(skb, rcv);
608 matches++;
609 }
610 }
611
612 /* check for inverted can_id/mask entries */
613 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
614 if ((can_id & rcv->mask) != rcv->can_id) {
615 deliver(skb, rcv);
616 matches++;
617 }
618 }
619
620 /* check filterlists for single non-RTR can_ids */
621 if (can_id & CAN_RTR_FLAG)
622 return matches;
623
624 if (can_id & CAN_EFF_FLAG) {
625 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
626 if (rcv->can_id == can_id) {
627 deliver(skb, rcv);
628 matches++;
629 }
630 }
631 } else {
632 can_id &= CAN_SFF_MASK;
633 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
634 deliver(skb, rcv);
635 matches++;
636 }
637 }
638
639 return matches;
640}
641
642static void can_receive(struct sk_buff *skb, struct net_device *dev)
643{
644 struct can_dev_rcv_lists *dev_rcv_lists;
645 struct net *net = dev_net(dev);
646 struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
647 int matches;
648
649 /* update statistics */
650 pkg_stats->rx_frames++;
651 pkg_stats->rx_frames_delta++;
652
653 /* create non-zero unique skb identifier together with *skb */
654 while (!(can_skb_prv(skb)->skbcnt))
655 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
656
657 rcu_read_lock();
658
659 /* deliver the packet to sockets listening on all devices */
660 matches = can_rcv_filter(net->can.rx_alldev_list, skb);
661
662 /* find receive list for this device */
663 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
664 matches += can_rcv_filter(dev_rcv_lists, skb);
665
666 rcu_read_unlock();
667
668 /* consume the skbuff allocated by the netdevice driver */
669 consume_skb(skb);
670
671 if (matches > 0) {
672 pkg_stats->matches++;
673 pkg_stats->matches_delta++;
674 }
675}
676
677static int can_rcv(struct sk_buff *skb, struct net_device *dev,
678 struct packet_type *pt, struct net_device *orig_dev)
679{
680 if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_can_skb(skb))) {
681 pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
682 dev->type, skb->len);
683
684 kfree_skb(skb);
685 return NET_RX_DROP;
686 }
687
688 can_receive(skb, dev);
689 return NET_RX_SUCCESS;
690}
691
692static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
693 struct packet_type *pt, struct net_device *orig_dev)
694{
695 if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canfd_skb(skb))) {
696 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
697 dev->type, skb->len);
698
699 kfree_skb(skb);
700 return NET_RX_DROP;
701 }
702
703 can_receive(skb, dev);
704 return NET_RX_SUCCESS;
705}
706
707static int canxl_rcv(struct sk_buff *skb, struct net_device *dev,
708 struct packet_type *pt, struct net_device *orig_dev)
709{
710 if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canxl_skb(skb))) {
711 pr_warn_once("PF_CAN: dropped non conform CAN XL skbuff: dev type %d, len %d\n",
712 dev->type, skb->len);
713
714 kfree_skb(skb);
715 return NET_RX_DROP;
716 }
717
718 can_receive(skb, dev);
719 return NET_RX_SUCCESS;
720}
721
722/* af_can protocol functions */
723
724/**
725 * can_proto_register - register CAN transport protocol
726 * @cp: pointer to CAN protocol structure
727 *
728 * Return:
729 * 0 on success
730 * -EINVAL invalid (out of range) protocol number
731 * -EBUSY protocol already in use
732 * -ENOBUF if proto_register() fails
733 */
734int can_proto_register(const struct can_proto *cp)
735{
736 int proto = cp->protocol;
737 int err = 0;
738
739 if (proto < 0 || proto >= CAN_NPROTO) {
740 pr_err("can: protocol number %d out of range\n", proto);
741 return -EINVAL;
742 }
743
744 err = proto_register(cp->prot, 0);
745 if (err < 0)
746 return err;
747
748 mutex_lock(&proto_tab_lock);
749
750 if (rcu_access_pointer(proto_tab[proto])) {
751 pr_err("can: protocol %d already registered\n", proto);
752 err = -EBUSY;
753 } else {
754 RCU_INIT_POINTER(proto_tab[proto], cp);
755 }
756
757 mutex_unlock(&proto_tab_lock);
758
759 if (err < 0)
760 proto_unregister(cp->prot);
761
762 return err;
763}
764EXPORT_SYMBOL(can_proto_register);
765
766/**
767 * can_proto_unregister - unregister CAN transport protocol
768 * @cp: pointer to CAN protocol structure
769 */
770void can_proto_unregister(const struct can_proto *cp)
771{
772 int proto = cp->protocol;
773
774 mutex_lock(&proto_tab_lock);
775 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
776 RCU_INIT_POINTER(proto_tab[proto], NULL);
777 mutex_unlock(&proto_tab_lock);
778
779 synchronize_rcu();
780
781 proto_unregister(cp->prot);
782}
783EXPORT_SYMBOL(can_proto_unregister);
784
785static int can_pernet_init(struct net *net)
786{
787 spin_lock_init(&net->can.rcvlists_lock);
788 net->can.rx_alldev_list =
789 kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
790 if (!net->can.rx_alldev_list)
791 goto out;
792 net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
793 if (!net->can.pkg_stats)
794 goto out_free_rx_alldev_list;
795 net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
796 if (!net->can.rcv_lists_stats)
797 goto out_free_pkg_stats;
798
799 if (IS_ENABLED(CONFIG_PROC_FS)) {
800 /* the statistics are updated every second (timer triggered) */
801 if (stats_timer) {
802 timer_setup(&net->can.stattimer, can_stat_update,
803 0);
804 mod_timer(&net->can.stattimer,
805 round_jiffies(jiffies + HZ));
806 }
807 net->can.pkg_stats->jiffies_init = jiffies;
808 can_init_proc(net);
809 }
810
811 return 0;
812
813 out_free_pkg_stats:
814 kfree(net->can.pkg_stats);
815 out_free_rx_alldev_list:
816 kfree(net->can.rx_alldev_list);
817 out:
818 return -ENOMEM;
819}
820
821static void can_pernet_exit(struct net *net)
822{
823 if (IS_ENABLED(CONFIG_PROC_FS)) {
824 can_remove_proc(net);
825 if (stats_timer)
826 del_timer_sync(&net->can.stattimer);
827 }
828
829 kfree(net->can.rx_alldev_list);
830 kfree(net->can.pkg_stats);
831 kfree(net->can.rcv_lists_stats);
832}
833
834/* af_can module init/exit functions */
835
836static struct packet_type can_packet __read_mostly = {
837 .type = cpu_to_be16(ETH_P_CAN),
838 .func = can_rcv,
839};
840
841static struct packet_type canfd_packet __read_mostly = {
842 .type = cpu_to_be16(ETH_P_CANFD),
843 .func = canfd_rcv,
844};
845
846static struct packet_type canxl_packet __read_mostly = {
847 .type = cpu_to_be16(ETH_P_CANXL),
848 .func = canxl_rcv,
849};
850
851static const struct net_proto_family can_family_ops = {
852 .family = PF_CAN,
853 .create = can_create,
854 .owner = THIS_MODULE,
855};
856
857static struct pernet_operations can_pernet_ops __read_mostly = {
858 .init = can_pernet_init,
859 .exit = can_pernet_exit,
860};
861
862static __init int can_init(void)
863{
864 int err;
865
866 /* check for correct padding to be able to use the structs similarly */
867 BUILD_BUG_ON(offsetof(struct can_frame, len) !=
868 offsetof(struct canfd_frame, len) ||
869 offsetof(struct can_frame, len) !=
870 offsetof(struct canxl_frame, flags) ||
871 offsetof(struct can_frame, data) !=
872 offsetof(struct canfd_frame, data));
873
874 pr_info("can: controller area network core\n");
875
876 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
877 0, 0, NULL);
878 if (!rcv_cache)
879 return -ENOMEM;
880
881 err = register_pernet_subsys(&can_pernet_ops);
882 if (err)
883 goto out_pernet;
884
885 /* protocol register */
886 err = sock_register(&can_family_ops);
887 if (err)
888 goto out_sock;
889
890 dev_add_pack(&can_packet);
891 dev_add_pack(&canfd_packet);
892 dev_add_pack(&canxl_packet);
893
894 return 0;
895
896out_sock:
897 unregister_pernet_subsys(&can_pernet_ops);
898out_pernet:
899 kmem_cache_destroy(rcv_cache);
900
901 return err;
902}
903
904static __exit void can_exit(void)
905{
906 /* protocol unregister */
907 dev_remove_pack(&canxl_packet);
908 dev_remove_pack(&canfd_packet);
909 dev_remove_pack(&can_packet);
910 sock_unregister(PF_CAN);
911
912 unregister_pernet_subsys(&can_pernet_ops);
913
914 rcu_barrier(); /* Wait for completion of call_rcu()'s */
915
916 kmem_cache_destroy(rcv_cache);
917}
918
919module_init(can_init);
920module_exit(can_exit);
1/*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43#include <linux/module.h>
44#include <linux/stddef.h>
45#include <linux/init.h>
46#include <linux/kmod.h>
47#include <linux/slab.h>
48#include <linux/list.h>
49#include <linux/spinlock.h>
50#include <linux/rcupdate.h>
51#include <linux/uaccess.h>
52#include <linux/net.h>
53#include <linux/netdevice.h>
54#include <linux/socket.h>
55#include <linux/if_ether.h>
56#include <linux/if_arp.h>
57#include <linux/skbuff.h>
58#include <linux/can.h>
59#include <linux/can/core.h>
60#include <linux/can/skb.h>
61#include <linux/ratelimit.h>
62#include <net/net_namespace.h>
63#include <net/sock.h>
64
65#include "af_can.h"
66
67static __initconst const char banner[] = KERN_INFO
68 "can: controller area network core (" CAN_VERSION_STRING ")\n";
69
70MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71MODULE_LICENSE("Dual BSD/GPL");
72MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74
75MODULE_ALIAS_NETPROTO(PF_CAN);
76
77static int stats_timer __read_mostly = 1;
78module_param(stats_timer, int, S_IRUGO);
79MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80
81/* receive filters subscribed for 'all' CAN devices */
82struct dev_rcv_lists can_rx_alldev_list;
83static DEFINE_SPINLOCK(can_rcvlists_lock);
84
85static struct kmem_cache *rcv_cache __read_mostly;
86
87/* table of registered CAN protocols */
88static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89static DEFINE_MUTEX(proto_tab_lock);
90
91struct timer_list can_stattimer; /* timer for statistics update */
92struct s_stats can_stats; /* packet statistics */
93struct s_pstats can_pstats; /* receive list statistics */
94
95/*
96 * af_can socket functions
97 */
98
99int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100{
101 struct sock *sk = sock->sk;
102
103 switch (cmd) {
104
105 case SIOCGSTAMP:
106 return sock_get_timestamp(sk, (struct timeval __user *)arg);
107
108 default:
109 return -ENOIOCTLCMD;
110 }
111}
112EXPORT_SYMBOL(can_ioctl);
113
114static void can_sock_destruct(struct sock *sk)
115{
116 skb_queue_purge(&sk->sk_receive_queue);
117}
118
119static const struct can_proto *can_get_proto(int protocol)
120{
121 const struct can_proto *cp;
122
123 rcu_read_lock();
124 cp = rcu_dereference(proto_tab[protocol]);
125 if (cp && !try_module_get(cp->prot->owner))
126 cp = NULL;
127 rcu_read_unlock();
128
129 return cp;
130}
131
132static inline void can_put_proto(const struct can_proto *cp)
133{
134 module_put(cp->prot->owner);
135}
136
137static int can_create(struct net *net, struct socket *sock, int protocol,
138 int kern)
139{
140 struct sock *sk;
141 const struct can_proto *cp;
142 int err = 0;
143
144 sock->state = SS_UNCONNECTED;
145
146 if (protocol < 0 || protocol >= CAN_NPROTO)
147 return -EINVAL;
148
149 if (!net_eq(net, &init_net))
150 return -EAFNOSUPPORT;
151
152 cp = can_get_proto(protocol);
153
154#ifdef CONFIG_MODULES
155 if (!cp) {
156 /* try to load protocol module if kernel is modular */
157
158 err = request_module("can-proto-%d", protocol);
159
160 /*
161 * In case of error we only print a message but don't
162 * return the error code immediately. Below we will
163 * return -EPROTONOSUPPORT
164 */
165 if (err)
166 printk_ratelimited(KERN_ERR "can: request_module "
167 "(can-proto-%d) failed.\n", protocol);
168
169 cp = can_get_proto(protocol);
170 }
171#endif
172
173 /* check for available protocol and correct usage */
174
175 if (!cp)
176 return -EPROTONOSUPPORT;
177
178 if (cp->type != sock->type) {
179 err = -EPROTOTYPE;
180 goto errout;
181 }
182
183 sock->ops = cp->ops;
184
185 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 if (!sk) {
187 err = -ENOMEM;
188 goto errout;
189 }
190
191 sock_init_data(sock, sk);
192 sk->sk_destruct = can_sock_destruct;
193
194 if (sk->sk_prot->init)
195 err = sk->sk_prot->init(sk);
196
197 if (err) {
198 /* release sk on errors */
199 sock_orphan(sk);
200 sock_put(sk);
201 }
202
203 errout:
204 can_put_proto(cp);
205 return err;
206}
207
208/*
209 * af_can tx path
210 */
211
212/**
213 * can_send - transmit a CAN frame (optional with local loopback)
214 * @skb: pointer to socket buffer with CAN frame in data section
215 * @loop: loopback for listeners on local CAN sockets (recommended default!)
216 *
217 * Due to the loopback this routine must not be called from hardirq context.
218 *
219 * Return:
220 * 0 on success
221 * -ENETDOWN when the selected interface is down
222 * -ENOBUFS on full driver queue (see net_xmit_errno())
223 * -ENOMEM when local loopback failed at calling skb_clone()
224 * -EPERM when trying to send on a non-CAN interface
225 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
226 * -EINVAL when the skb->data does not contain a valid CAN frame
227 */
228int can_send(struct sk_buff *skb, int loop)
229{
230 struct sk_buff *newskb = NULL;
231 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
232 int err = -EINVAL;
233
234 if (skb->len == CAN_MTU) {
235 skb->protocol = htons(ETH_P_CAN);
236 if (unlikely(cfd->len > CAN_MAX_DLEN))
237 goto inval_skb;
238 } else if (skb->len == CANFD_MTU) {
239 skb->protocol = htons(ETH_P_CANFD);
240 if (unlikely(cfd->len > CANFD_MAX_DLEN))
241 goto inval_skb;
242 } else
243 goto inval_skb;
244
245 /*
246 * Make sure the CAN frame can pass the selected CAN netdevice.
247 * As structs can_frame and canfd_frame are similar, we can provide
248 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
249 */
250 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
251 err = -EMSGSIZE;
252 goto inval_skb;
253 }
254
255 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
256 err = -EPERM;
257 goto inval_skb;
258 }
259
260 if (unlikely(!(skb->dev->flags & IFF_UP))) {
261 err = -ENETDOWN;
262 goto inval_skb;
263 }
264
265 skb_reset_network_header(skb);
266 skb_reset_transport_header(skb);
267
268 if (loop) {
269 /* local loopback of sent CAN frames */
270
271 /* indication for the CAN driver: do loopback */
272 skb->pkt_type = PACKET_LOOPBACK;
273
274 /*
275 * The reference to the originating sock may be required
276 * by the receiving socket to check whether the frame is
277 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
278 * Therefore we have to ensure that skb->sk remains the
279 * reference to the originating sock by restoring skb->sk
280 * after each skb_clone() or skb_orphan() usage.
281 */
282
283 if (!(skb->dev->flags & IFF_ECHO)) {
284 /*
285 * If the interface is not capable to do loopback
286 * itself, we do it here.
287 */
288 newskb = skb_clone(skb, GFP_ATOMIC);
289 if (!newskb) {
290 kfree_skb(skb);
291 return -ENOMEM;
292 }
293
294 can_skb_set_owner(newskb, skb->sk);
295 newskb->ip_summed = CHECKSUM_UNNECESSARY;
296 newskb->pkt_type = PACKET_BROADCAST;
297 }
298 } else {
299 /* indication for the CAN driver: no loopback required */
300 skb->pkt_type = PACKET_HOST;
301 }
302
303 /* send to netdevice */
304 err = dev_queue_xmit(skb);
305 if (err > 0)
306 err = net_xmit_errno(err);
307
308 if (err) {
309 kfree_skb(newskb);
310 return err;
311 }
312
313 if (newskb)
314 netif_rx_ni(newskb);
315
316 /* update statistics */
317 can_stats.tx_frames++;
318 can_stats.tx_frames_delta++;
319
320 return 0;
321
322inval_skb:
323 kfree_skb(skb);
324 return err;
325}
326EXPORT_SYMBOL(can_send);
327
328/*
329 * af_can rx path
330 */
331
332static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
333{
334 if (!dev)
335 return &can_rx_alldev_list;
336 else
337 return (struct dev_rcv_lists *)dev->ml_priv;
338}
339
340/**
341 * find_rcv_list - determine optimal filterlist inside device filter struct
342 * @can_id: pointer to CAN identifier of a given can_filter
343 * @mask: pointer to CAN mask of a given can_filter
344 * @d: pointer to the device filter struct
345 *
346 * Description:
347 * Returns the optimal filterlist to reduce the filter handling in the
348 * receive path. This function is called by service functions that need
349 * to register or unregister a can_filter in the filter lists.
350 *
351 * A filter matches in general, when
352 *
353 * <received_can_id> & mask == can_id & mask
354 *
355 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
356 * relevant bits for the filter.
357 *
358 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
359 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
360 * frames there is a special filterlist and a special rx path filter handling.
361 *
362 * Return:
363 * Pointer to optimal filterlist for the given can_id/mask pair.
364 * Constistency checked mask.
365 * Reduced can_id to have a preprocessed filter compare value.
366 */
367static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
368 struct dev_rcv_lists *d)
369{
370 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
371
372 /* filter for error message frames in extra filterlist */
373 if (*mask & CAN_ERR_FLAG) {
374 /* clear CAN_ERR_FLAG in filter entry */
375 *mask &= CAN_ERR_MASK;
376 return &d->rx[RX_ERR];
377 }
378
379 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
380
381#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
382
383 /* ensure valid values in can_mask for 'SFF only' frame filtering */
384 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
385 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
386
387 /* reduce condition testing at receive time */
388 *can_id &= *mask;
389
390 /* inverse can_id/can_mask filter */
391 if (inv)
392 return &d->rx[RX_INV];
393
394 /* mask == 0 => no condition testing at receive time */
395 if (!(*mask))
396 return &d->rx[RX_ALL];
397
398 /* extra filterlists for the subscription of a single non-RTR can_id */
399 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
400 !(*can_id & CAN_RTR_FLAG)) {
401
402 if (*can_id & CAN_EFF_FLAG) {
403 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
404 /* RFC: a future use-case for hash-tables? */
405 return &d->rx[RX_EFF];
406 }
407 } else {
408 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
409 return &d->rx_sff[*can_id];
410 }
411 }
412
413 /* default: filter via can_id/can_mask */
414 return &d->rx[RX_FIL];
415}
416
417/**
418 * can_rx_register - subscribe CAN frames from a specific interface
419 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
420 * @can_id: CAN identifier (see description)
421 * @mask: CAN mask (see description)
422 * @func: callback function on filter match
423 * @data: returned parameter for callback function
424 * @ident: string for calling module identification
425 *
426 * Description:
427 * Invokes the callback function with the received sk_buff and the given
428 * parameter 'data' on a matching receive filter. A filter matches, when
429 *
430 * <received_can_id> & mask == can_id & mask
431 *
432 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
433 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
434 *
435 * The provided pointer to the sk_buff is guaranteed to be valid as long as
436 * the callback function is running. The callback function must *not* free
437 * the given sk_buff while processing it's task. When the given sk_buff is
438 * needed after the end of the callback function it must be cloned inside
439 * the callback function with skb_clone().
440 *
441 * Return:
442 * 0 on success
443 * -ENOMEM on missing cache mem to create subscription entry
444 * -ENODEV unknown device
445 */
446int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
447 void (*func)(struct sk_buff *, void *), void *data,
448 char *ident)
449{
450 struct receiver *r;
451 struct hlist_head *rl;
452 struct dev_rcv_lists *d;
453 int err = 0;
454
455 /* insert new receiver (dev,canid,mask) -> (func,data) */
456
457 if (dev && dev->type != ARPHRD_CAN)
458 return -ENODEV;
459
460 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
461 if (!r)
462 return -ENOMEM;
463
464 spin_lock(&can_rcvlists_lock);
465
466 d = find_dev_rcv_lists(dev);
467 if (d) {
468 rl = find_rcv_list(&can_id, &mask, d);
469
470 r->can_id = can_id;
471 r->mask = mask;
472 r->matches = 0;
473 r->func = func;
474 r->data = data;
475 r->ident = ident;
476
477 hlist_add_head_rcu(&r->list, rl);
478 d->entries++;
479
480 can_pstats.rcv_entries++;
481 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
482 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
483 } else {
484 kmem_cache_free(rcv_cache, r);
485 err = -ENODEV;
486 }
487
488 spin_unlock(&can_rcvlists_lock);
489
490 return err;
491}
492EXPORT_SYMBOL(can_rx_register);
493
494/*
495 * can_rx_delete_receiver - rcu callback for single receiver entry removal
496 */
497static void can_rx_delete_receiver(struct rcu_head *rp)
498{
499 struct receiver *r = container_of(rp, struct receiver, rcu);
500
501 kmem_cache_free(rcv_cache, r);
502}
503
504/**
505 * can_rx_unregister - unsubscribe CAN frames from a specific interface
506 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
507 * @can_id: CAN identifier
508 * @mask: CAN mask
509 * @func: callback function on filter match
510 * @data: returned parameter for callback function
511 *
512 * Description:
513 * Removes subscription entry depending on given (subscription) values.
514 */
515void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
516 void (*func)(struct sk_buff *, void *), void *data)
517{
518 struct receiver *r = NULL;
519 struct hlist_head *rl;
520 struct dev_rcv_lists *d;
521
522 if (dev && dev->type != ARPHRD_CAN)
523 return;
524
525 spin_lock(&can_rcvlists_lock);
526
527 d = find_dev_rcv_lists(dev);
528 if (!d) {
529 pr_err("BUG: receive list not found for "
530 "dev %s, id %03X, mask %03X\n",
531 DNAME(dev), can_id, mask);
532 goto out;
533 }
534
535 rl = find_rcv_list(&can_id, &mask, d);
536
537 /*
538 * Search the receiver list for the item to delete. This should
539 * exist, since no receiver may be unregistered that hasn't
540 * been registered before.
541 */
542
543 hlist_for_each_entry_rcu(r, rl, list) {
544 if (r->can_id == can_id && r->mask == mask &&
545 r->func == func && r->data == data)
546 break;
547 }
548
549 /*
550 * Check for bugs in CAN protocol implementations using af_can.c:
551 * 'r' will be NULL if no matching list item was found for removal.
552 */
553
554 if (!r) {
555 WARN(1, "BUG: receive list entry not found for dev %s, "
556 "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
557 goto out;
558 }
559
560 hlist_del_rcu(&r->list);
561 d->entries--;
562
563 if (can_pstats.rcv_entries > 0)
564 can_pstats.rcv_entries--;
565
566 /* remove device structure requested by NETDEV_UNREGISTER */
567 if (d->remove_on_zero_entries && !d->entries) {
568 kfree(d);
569 dev->ml_priv = NULL;
570 }
571
572 out:
573 spin_unlock(&can_rcvlists_lock);
574
575 /* schedule the receiver item for deletion */
576 if (r)
577 call_rcu(&r->rcu, can_rx_delete_receiver);
578}
579EXPORT_SYMBOL(can_rx_unregister);
580
581static inline void deliver(struct sk_buff *skb, struct receiver *r)
582{
583 r->func(skb, r->data);
584 r->matches++;
585}
586
587static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
588{
589 struct receiver *r;
590 int matches = 0;
591 struct can_frame *cf = (struct can_frame *)skb->data;
592 canid_t can_id = cf->can_id;
593
594 if (d->entries == 0)
595 return 0;
596
597 if (can_id & CAN_ERR_FLAG) {
598 /* check for error message frame entries only */
599 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
600 if (can_id & r->mask) {
601 deliver(skb, r);
602 matches++;
603 }
604 }
605 return matches;
606 }
607
608 /* check for unfiltered entries */
609 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
610 deliver(skb, r);
611 matches++;
612 }
613
614 /* check for can_id/mask entries */
615 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
616 if ((can_id & r->mask) == r->can_id) {
617 deliver(skb, r);
618 matches++;
619 }
620 }
621
622 /* check for inverted can_id/mask entries */
623 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
624 if ((can_id & r->mask) != r->can_id) {
625 deliver(skb, r);
626 matches++;
627 }
628 }
629
630 /* check filterlists for single non-RTR can_ids */
631 if (can_id & CAN_RTR_FLAG)
632 return matches;
633
634 if (can_id & CAN_EFF_FLAG) {
635 hlist_for_each_entry_rcu(r, &d->rx[RX_EFF], list) {
636 if (r->can_id == can_id) {
637 deliver(skb, r);
638 matches++;
639 }
640 }
641 } else {
642 can_id &= CAN_SFF_MASK;
643 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
644 deliver(skb, r);
645 matches++;
646 }
647 }
648
649 return matches;
650}
651
652static void can_receive(struct sk_buff *skb, struct net_device *dev)
653{
654 struct dev_rcv_lists *d;
655 int matches;
656
657 /* update statistics */
658 can_stats.rx_frames++;
659 can_stats.rx_frames_delta++;
660
661 rcu_read_lock();
662
663 /* deliver the packet to sockets listening on all devices */
664 matches = can_rcv_filter(&can_rx_alldev_list, skb);
665
666 /* find receive list for this device */
667 d = find_dev_rcv_lists(dev);
668 if (d)
669 matches += can_rcv_filter(d, skb);
670
671 rcu_read_unlock();
672
673 /* consume the skbuff allocated by the netdevice driver */
674 consume_skb(skb);
675
676 if (matches > 0) {
677 can_stats.matches++;
678 can_stats.matches_delta++;
679 }
680}
681
682static int can_rcv(struct sk_buff *skb, struct net_device *dev,
683 struct packet_type *pt, struct net_device *orig_dev)
684{
685 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
686
687 if (unlikely(!net_eq(dev_net(dev), &init_net)))
688 goto drop;
689
690 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
691 skb->len != CAN_MTU ||
692 cfd->len > CAN_MAX_DLEN,
693 "PF_CAN: dropped non conform CAN skbuf: "
694 "dev type %d, len %d, datalen %d\n",
695 dev->type, skb->len, cfd->len))
696 goto drop;
697
698 can_receive(skb, dev);
699 return NET_RX_SUCCESS;
700
701drop:
702 kfree_skb(skb);
703 return NET_RX_DROP;
704}
705
706static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
707 struct packet_type *pt, struct net_device *orig_dev)
708{
709 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
710
711 if (unlikely(!net_eq(dev_net(dev), &init_net)))
712 goto drop;
713
714 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
715 skb->len != CANFD_MTU ||
716 cfd->len > CANFD_MAX_DLEN,
717 "PF_CAN: dropped non conform CAN FD skbuf: "
718 "dev type %d, len %d, datalen %d\n",
719 dev->type, skb->len, cfd->len))
720 goto drop;
721
722 can_receive(skb, dev);
723 return NET_RX_SUCCESS;
724
725drop:
726 kfree_skb(skb);
727 return NET_RX_DROP;
728}
729
730/*
731 * af_can protocol functions
732 */
733
734/**
735 * can_proto_register - register CAN transport protocol
736 * @cp: pointer to CAN protocol structure
737 *
738 * Return:
739 * 0 on success
740 * -EINVAL invalid (out of range) protocol number
741 * -EBUSY protocol already in use
742 * -ENOBUF if proto_register() fails
743 */
744int can_proto_register(const struct can_proto *cp)
745{
746 int proto = cp->protocol;
747 int err = 0;
748
749 if (proto < 0 || proto >= CAN_NPROTO) {
750 pr_err("can: protocol number %d out of range\n", proto);
751 return -EINVAL;
752 }
753
754 err = proto_register(cp->prot, 0);
755 if (err < 0)
756 return err;
757
758 mutex_lock(&proto_tab_lock);
759
760 if (proto_tab[proto]) {
761 pr_err("can: protocol %d already registered\n", proto);
762 err = -EBUSY;
763 } else
764 RCU_INIT_POINTER(proto_tab[proto], cp);
765
766 mutex_unlock(&proto_tab_lock);
767
768 if (err < 0)
769 proto_unregister(cp->prot);
770
771 return err;
772}
773EXPORT_SYMBOL(can_proto_register);
774
775/**
776 * can_proto_unregister - unregister CAN transport protocol
777 * @cp: pointer to CAN protocol structure
778 */
779void can_proto_unregister(const struct can_proto *cp)
780{
781 int proto = cp->protocol;
782
783 mutex_lock(&proto_tab_lock);
784 BUG_ON(proto_tab[proto] != cp);
785 RCU_INIT_POINTER(proto_tab[proto], NULL);
786 mutex_unlock(&proto_tab_lock);
787
788 synchronize_rcu();
789
790 proto_unregister(cp->prot);
791}
792EXPORT_SYMBOL(can_proto_unregister);
793
794/*
795 * af_can notifier to create/remove CAN netdevice specific structs
796 */
797static int can_notifier(struct notifier_block *nb, unsigned long msg,
798 void *ptr)
799{
800 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
801 struct dev_rcv_lists *d;
802
803 if (!net_eq(dev_net(dev), &init_net))
804 return NOTIFY_DONE;
805
806 if (dev->type != ARPHRD_CAN)
807 return NOTIFY_DONE;
808
809 switch (msg) {
810
811 case NETDEV_REGISTER:
812
813 /* create new dev_rcv_lists for this device */
814 d = kzalloc(sizeof(*d), GFP_KERNEL);
815 if (!d)
816 return NOTIFY_DONE;
817 BUG_ON(dev->ml_priv);
818 dev->ml_priv = d;
819
820 break;
821
822 case NETDEV_UNREGISTER:
823 spin_lock(&can_rcvlists_lock);
824
825 d = dev->ml_priv;
826 if (d) {
827 if (d->entries)
828 d->remove_on_zero_entries = 1;
829 else {
830 kfree(d);
831 dev->ml_priv = NULL;
832 }
833 } else
834 pr_err("can: notifier: receive list not found for dev "
835 "%s\n", dev->name);
836
837 spin_unlock(&can_rcvlists_lock);
838
839 break;
840 }
841
842 return NOTIFY_DONE;
843}
844
845/*
846 * af_can module init/exit functions
847 */
848
849static struct packet_type can_packet __read_mostly = {
850 .type = cpu_to_be16(ETH_P_CAN),
851 .func = can_rcv,
852};
853
854static struct packet_type canfd_packet __read_mostly = {
855 .type = cpu_to_be16(ETH_P_CANFD),
856 .func = canfd_rcv,
857};
858
859static const struct net_proto_family can_family_ops = {
860 .family = PF_CAN,
861 .create = can_create,
862 .owner = THIS_MODULE,
863};
864
865/* notifier block for netdevice event */
866static struct notifier_block can_netdev_notifier __read_mostly = {
867 .notifier_call = can_notifier,
868};
869
870static __init int can_init(void)
871{
872 /* check for correct padding to be able to use the structs similarly */
873 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
874 offsetof(struct canfd_frame, len) ||
875 offsetof(struct can_frame, data) !=
876 offsetof(struct canfd_frame, data));
877
878 printk(banner);
879
880 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
881
882 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
883 0, 0, NULL);
884 if (!rcv_cache)
885 return -ENOMEM;
886
887 if (stats_timer) {
888 /* the statistics are updated every second (timer triggered) */
889 setup_timer(&can_stattimer, can_stat_update, 0);
890 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
891 } else
892 can_stattimer.function = NULL;
893
894 can_init_proc();
895
896 /* protocol register */
897 sock_register(&can_family_ops);
898 register_netdevice_notifier(&can_netdev_notifier);
899 dev_add_pack(&can_packet);
900 dev_add_pack(&canfd_packet);
901
902 return 0;
903}
904
905static __exit void can_exit(void)
906{
907 struct net_device *dev;
908
909 if (stats_timer)
910 del_timer_sync(&can_stattimer);
911
912 can_remove_proc();
913
914 /* protocol unregister */
915 dev_remove_pack(&canfd_packet);
916 dev_remove_pack(&can_packet);
917 unregister_netdevice_notifier(&can_netdev_notifier);
918 sock_unregister(PF_CAN);
919
920 /* remove created dev_rcv_lists from still registered CAN devices */
921 rcu_read_lock();
922 for_each_netdev_rcu(&init_net, dev) {
923 if (dev->type == ARPHRD_CAN && dev->ml_priv) {
924
925 struct dev_rcv_lists *d = dev->ml_priv;
926
927 BUG_ON(d->entries);
928 kfree(d);
929 dev->ml_priv = NULL;
930 }
931 }
932 rcu_read_unlock();
933
934 rcu_barrier(); /* Wait for completion of call_rcu()'s */
935
936 kmem_cache_destroy(rcv_cache);
937}
938
939module_init(can_init);
940module_exit(can_exit);