Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.13.7
  1/*
  2 *  linux/fs/hfs/super.c
  3 *
  4 * Copyright (C) 1995-1997  Paul H. Hargrove
  5 * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6 * This file may be distributed under the terms of the GNU General Public License.
  7 *
  8 * This file contains hfs_read_super(), some of the super_ops and
  9 * init_hfs_fs() and exit_hfs_fs().  The remaining super_ops are in
 10 * inode.c since they deal with inodes.
 11 *
 12 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/blkdev.h>
 17#include <linux/backing-dev.h>
 18#include <linux/fs_context.h>
 19#include <linux/fs_parser.h>
 20#include <linux/mount.h>
 21#include <linux/init.h>
 22#include <linux/nls.h>
 
 23#include <linux/seq_file.h>
 24#include <linux/slab.h>
 25#include <linux/vfs.h>
 26
 27#include "hfs_fs.h"
 28#include "btree.h"
 29
 30static struct kmem_cache *hfs_inode_cachep;
 31
 32MODULE_DESCRIPTION("Apple Macintosh file system support");
 33MODULE_LICENSE("GPL");
 34
 35static int hfs_sync_fs(struct super_block *sb, int wait)
 36{
 37	hfs_mdb_commit(sb);
 38	return 0;
 39}
 40
 41/*
 42 * hfs_put_super()
 43 *
 44 * This is the put_super() entry in the super_operations structure for
 45 * HFS filesystems.  The purpose is to release the resources
 46 * associated with the superblock sb.
 47 */
 48static void hfs_put_super(struct super_block *sb)
 49{
 50	cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work);
 51	hfs_mdb_close(sb);
 52	/* release the MDB's resources */
 53	hfs_mdb_put(sb);
 54}
 55
 56static void flush_mdb(struct work_struct *work)
 57{
 58	struct hfs_sb_info *sbi;
 59	struct super_block *sb;
 60
 61	sbi = container_of(work, struct hfs_sb_info, mdb_work.work);
 62	sb = sbi->sb;
 63
 64	spin_lock(&sbi->work_lock);
 65	sbi->work_queued = 0;
 66	spin_unlock(&sbi->work_lock);
 67
 68	hfs_mdb_commit(sb);
 69}
 70
 71void hfs_mark_mdb_dirty(struct super_block *sb)
 72{
 73	struct hfs_sb_info *sbi = HFS_SB(sb);
 74	unsigned long delay;
 75
 76	if (sb_rdonly(sb))
 77		return;
 78
 79	spin_lock(&sbi->work_lock);
 80	if (!sbi->work_queued) {
 81		delay = msecs_to_jiffies(dirty_writeback_interval * 10);
 82		queue_delayed_work(system_long_wq, &sbi->mdb_work, delay);
 83		sbi->work_queued = 1;
 84	}
 85	spin_unlock(&sbi->work_lock);
 86}
 87
 88/*
 89 * hfs_statfs()
 90 *
 91 * This is the statfs() entry in the super_operations structure for
 92 * HFS filesystems.  The purpose is to return various data about the
 93 * filesystem.
 94 *
 95 * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
 96 */
 97static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 98{
 99	struct super_block *sb = dentry->d_sb;
100	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
101
102	buf->f_type = HFS_SUPER_MAGIC;
103	buf->f_bsize = sb->s_blocksize;
104	buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
105	buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
106	buf->f_bavail = buf->f_bfree;
107	buf->f_files = HFS_SB(sb)->fs_ablocks;
108	buf->f_ffree = HFS_SB(sb)->free_ablocks;
109	buf->f_fsid = u64_to_fsid(id);
 
110	buf->f_namelen = HFS_NAMELEN;
111
112	return 0;
113}
114
115static int hfs_reconfigure(struct fs_context *fc)
116{
117	struct super_block *sb = fc->root->d_sb;
118
119	sync_filesystem(sb);
120	fc->sb_flags |= SB_NODIRATIME;
121	if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb))
122		return 0;
123
124	if (!(fc->sb_flags & SB_RDONLY)) {
125		if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
126			pr_warn("filesystem was not cleanly unmounted, running fsck.hfs is recommended.  leaving read-only.\n");
127			sb->s_flags |= SB_RDONLY;
128			fc->sb_flags |= SB_RDONLY;
129		} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
130			pr_warn("filesystem is marked locked, leaving read-only.\n");
131			sb->s_flags |= SB_RDONLY;
132			fc->sb_flags |= SB_RDONLY;
133		}
134	}
135	return 0;
136}
137
138static int hfs_show_options(struct seq_file *seq, struct dentry *root)
139{
140	struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
141
142	if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
143		seq_show_option_n(seq, "creator", (char *)&sbi->s_creator, 4);
144	if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
145		seq_show_option_n(seq, "type", (char *)&sbi->s_type, 4);
146	seq_printf(seq, ",uid=%u,gid=%u",
147			from_kuid_munged(&init_user_ns, sbi->s_uid),
148			from_kgid_munged(&init_user_ns, sbi->s_gid));
149	if (sbi->s_file_umask != 0133)
150		seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
151	if (sbi->s_dir_umask != 0022)
152		seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
153	if (sbi->part >= 0)
154		seq_printf(seq, ",part=%u", sbi->part);
155	if (sbi->session >= 0)
156		seq_printf(seq, ",session=%u", sbi->session);
157	if (sbi->nls_disk)
158		seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
159	if (sbi->nls_io)
160		seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
161	if (sbi->s_quiet)
162		seq_printf(seq, ",quiet");
163	return 0;
164}
165
166static struct inode *hfs_alloc_inode(struct super_block *sb)
167{
168	struct hfs_inode_info *i;
169
170	i = alloc_inode_sb(sb, hfs_inode_cachep, GFP_KERNEL);
171	return i ? &i->vfs_inode : NULL;
172}
173
174static void hfs_free_inode(struct inode *inode)
175{
 
176	kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
177}
178
 
 
 
 
 
179static const struct super_operations hfs_super_operations = {
180	.alloc_inode	= hfs_alloc_inode,
181	.free_inode	= hfs_free_inode,
182	.write_inode	= hfs_write_inode,
183	.evict_inode	= hfs_evict_inode,
184	.put_super	= hfs_put_super,
185	.sync_fs	= hfs_sync_fs,
186	.statfs		= hfs_statfs,
 
187	.show_options	= hfs_show_options,
188};
189
190enum {
191	opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
192	opt_part, opt_session, opt_type, opt_creator, opt_quiet,
193	opt_codepage, opt_iocharset,
 
194};
195
196static const struct fs_parameter_spec hfs_param_spec[] = {
197	fsparam_u32	("uid",		opt_uid),
198	fsparam_u32	("gid",		opt_gid),
199	fsparam_u32oct	("umask",	opt_umask),
200	fsparam_u32oct	("file_umask",	opt_file_umask),
201	fsparam_u32oct	("dir_umask",	opt_dir_umask),
202	fsparam_u32	("part",	opt_part),
203	fsparam_u32	("session",	opt_session),
204	fsparam_string	("type",	opt_type),
205	fsparam_string	("creator",	opt_creator),
206	fsparam_flag	("quiet",	opt_quiet),
207	fsparam_string	("codepage",	opt_codepage),
208	fsparam_string	("iocharset",	opt_iocharset),
209	{}
210};
211
 
 
 
 
 
 
 
 
212/*
213 * hfs_parse_param()
214 *
215 * This function is called by the vfs to parse the mount options.
 
216 */
217static int hfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
218{
219	struct hfs_sb_info *hsb = fc->s_fs_info;
220	struct fs_parse_result result;
221	int opt;
222
223	/* hfs does not honor any fs-specific options on remount */
224	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE)
225		return 0;
226
227	opt = fs_parse(fc, hfs_param_spec, param, &result);
228	if (opt < 0)
229		return opt;
230
231	switch (opt) {
232	case opt_uid:
233		hsb->s_uid = result.uid;
234		break;
235	case opt_gid:
236		hsb->s_gid = result.gid;
237		break;
238	case opt_umask:
239		hsb->s_file_umask = (umode_t)result.uint_32;
240		hsb->s_dir_umask = (umode_t)result.uint_32;
241		break;
242	case opt_file_umask:
243		hsb->s_file_umask = (umode_t)result.uint_32;
244		break;
245	case opt_dir_umask:
246		hsb->s_dir_umask = (umode_t)result.uint_32;
247		break;
248	case opt_part:
249		hsb->part = result.uint_32;
250		break;
251	case opt_session:
252		hsb->session = result.uint_32;
253		break;
254	case opt_type:
255		if (strlen(param->string) != 4) {
256			pr_err("type requires a 4 character value\n");
257			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258		}
259		memcpy(&hsb->s_type, param->string, 4);
260		break;
261	case opt_creator:
262		if (strlen(param->string) != 4) {
263			pr_err("creator requires a 4 character value\n");
264			return -EINVAL;
265		}
266		memcpy(&hsb->s_creator, param->string, 4);
267		break;
268	case opt_quiet:
269		hsb->s_quiet = 1;
270		break;
271	case opt_codepage:
272		if (hsb->nls_disk) {
273			pr_err("unable to change codepage\n");
274			return -EINVAL;
275		}
276		hsb->nls_disk = load_nls(param->string);
277		if (!hsb->nls_disk) {
278			pr_err("unable to load codepage \"%s\"\n",
279					param->string);
280			return -EINVAL;
281		}
282		break;
283	case opt_iocharset:
284		if (hsb->nls_io) {
285			pr_err("unable to change iocharset\n");
286			return -EINVAL;
287		}
288		hsb->nls_io = load_nls(param->string);
289		if (!hsb->nls_io) {
290			pr_err("unable to load iocharset \"%s\"\n",
291					param->string);
292			return -EINVAL;
293		}
294		break;
295	default:
296		return -EINVAL;
297	}
 
 
298
299	return 0;
300}
301
302/*
303 * hfs_read_super()
304 *
305 * This is the function that is responsible for mounting an HFS
306 * filesystem.	It performs all the tasks necessary to get enough data
307 * from the disk to read the root inode.  This includes parsing the
308 * mount options, dealing with Macintosh partitions, reading the
309 * superblock and the allocation bitmap blocks, calling
310 * hfs_btree_init() to get the necessary data about the extents and
311 * catalog B-trees and, finally, reading the root inode into memory.
312 */
313static int hfs_fill_super(struct super_block *sb, struct fs_context *fc)
314{
315	struct hfs_sb_info *sbi = HFS_SB(sb);
316	struct hfs_find_data fd;
317	hfs_cat_rec rec;
318	struct inode *root_inode;
319	int silent = fc->sb_flags & SB_SILENT;
320	int res;
321
322	/* load_nls_default does not fail */
323	if (sbi->nls_disk && !sbi->nls_io)
324		sbi->nls_io = load_nls_default();
325	sbi->s_dir_umask &= 0777;
326	sbi->s_file_umask &= 0577;
327
 
 
328	spin_lock_init(&sbi->work_lock);
329	INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb);
330
331	sbi->sb = sb;
 
 
 
 
 
332	sb->s_op = &hfs_super_operations;
333	sb->s_xattr = hfs_xattr_handlers;
334	sb->s_flags |= SB_NODIRATIME;
335	mutex_init(&sbi->bitmap_lock);
336
337	res = hfs_mdb_get(sb);
338	if (res) {
339		if (!silent)
340			pr_warn("can't find a HFS filesystem on dev %s\n",
341				hfs_mdb_name(sb));
342		res = -EINVAL;
343		goto bail;
344	}
345
346	/* try to get the root inode */
347	res = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
348	if (res)
349		goto bail_no_root;
350	res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
351	if (!res) {
352		if (fd.entrylength != sizeof(rec.dir)) {
353			res =  -EIO;
354			goto bail_hfs_find;
355		}
356		hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
357		if (rec.type != HFS_CDR_DIR)
358			res = -EIO;
359	}
360	if (res)
361		goto bail_hfs_find;
 
 
362	res = -EINVAL;
363	root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
364	hfs_find_exit(&fd);
365	if (!root_inode)
366		goto bail_no_root;
367
368	sb->s_d_op = &hfs_dentry_operations;
369	res = -ENOMEM;
370	sb->s_root = d_make_root(root_inode);
371	if (!sb->s_root)
372		goto bail_no_root;
373
374	/* everything's okay */
375	return 0;
376
377bail_hfs_find:
378	hfs_find_exit(&fd);
379bail_no_root:
380	pr_err("get root inode failed\n");
381bail:
382	hfs_mdb_put(sb);
383	return res;
384}
385
386static int hfs_get_tree(struct fs_context *fc)
387{
388	return get_tree_bdev(fc, hfs_fill_super);
389}
390
391static void hfs_free_fc(struct fs_context *fc)
392{
393	kfree(fc->s_fs_info);
394}
395
396static const struct fs_context_operations hfs_context_ops = {
397	.parse_param	= hfs_parse_param,
398	.get_tree	= hfs_get_tree,
399	.reconfigure	= hfs_reconfigure,
400	.free		= hfs_free_fc,
401};
402
403static int hfs_init_fs_context(struct fs_context *fc)
404{
405	struct hfs_sb_info *hsb;
406
407	hsb = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
408	if (!hsb)
409		return -ENOMEM;
410
411	fc->s_fs_info = hsb;
412	fc->ops = &hfs_context_ops;
413
414	if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE) {
415		/* initialize options with defaults */
416		hsb->s_uid = current_uid();
417		hsb->s_gid = current_gid();
418		hsb->s_file_umask = 0133;
419		hsb->s_dir_umask = 0022;
420		hsb->s_type = cpu_to_be32(0x3f3f3f3f); /* == '????' */
421		hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */
422		hsb->s_quiet = 0;
423		hsb->part = -1;
424		hsb->session = -1;
425	}
426
427	return 0;
428}
429
430static struct file_system_type hfs_fs_type = {
431	.owner		= THIS_MODULE,
432	.name		= "hfs",
 
433	.kill_sb	= kill_block_super,
434	.fs_flags	= FS_REQUIRES_DEV,
435	.init_fs_context = hfs_init_fs_context,
436};
437MODULE_ALIAS_FS("hfs");
438
439static void hfs_init_once(void *p)
440{
441	struct hfs_inode_info *i = p;
442
443	inode_init_once(&i->vfs_inode);
444}
445
446static int __init init_hfs_fs(void)
447{
448	int err;
449
450	hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
451		sizeof(struct hfs_inode_info), 0,
452		SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, hfs_init_once);
453	if (!hfs_inode_cachep)
454		return -ENOMEM;
455	err = register_filesystem(&hfs_fs_type);
456	if (err)
457		kmem_cache_destroy(hfs_inode_cachep);
458	return err;
459}
460
461static void __exit exit_hfs_fs(void)
462{
463	unregister_filesystem(&hfs_fs_type);
464
465	/*
466	 * Make sure all delayed rcu free inodes are flushed before we
467	 * destroy cache.
468	 */
469	rcu_barrier();
470	kmem_cache_destroy(hfs_inode_cachep);
471}
472
473module_init(init_hfs_fs)
474module_exit(exit_hfs_fs)
v3.15
  1/*
  2 *  linux/fs/hfs/super.c
  3 *
  4 * Copyright (C) 1995-1997  Paul H. Hargrove
  5 * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6 * This file may be distributed under the terms of the GNU General Public License.
  7 *
  8 * This file contains hfs_read_super(), some of the super_ops and
  9 * init_hfs_fs() and exit_hfs_fs().  The remaining super_ops are in
 10 * inode.c since they deal with inodes.
 11 *
 12 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/blkdev.h>
 
 
 
 17#include <linux/mount.h>
 18#include <linux/init.h>
 19#include <linux/nls.h>
 20#include <linux/parser.h>
 21#include <linux/seq_file.h>
 22#include <linux/slab.h>
 23#include <linux/vfs.h>
 24
 25#include "hfs_fs.h"
 26#include "btree.h"
 27
 28static struct kmem_cache *hfs_inode_cachep;
 29
 
 30MODULE_LICENSE("GPL");
 31
 32static int hfs_sync_fs(struct super_block *sb, int wait)
 33{
 34	hfs_mdb_commit(sb);
 35	return 0;
 36}
 37
 38/*
 39 * hfs_put_super()
 40 *
 41 * This is the put_super() entry in the super_operations structure for
 42 * HFS filesystems.  The purpose is to release the resources
 43 * associated with the superblock sb.
 44 */
 45static void hfs_put_super(struct super_block *sb)
 46{
 47	cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work);
 48	hfs_mdb_close(sb);
 49	/* release the MDB's resources */
 50	hfs_mdb_put(sb);
 51}
 52
 53static void flush_mdb(struct work_struct *work)
 54{
 55	struct hfs_sb_info *sbi;
 56	struct super_block *sb;
 57
 58	sbi = container_of(work, struct hfs_sb_info, mdb_work.work);
 59	sb = sbi->sb;
 60
 61	spin_lock(&sbi->work_lock);
 62	sbi->work_queued = 0;
 63	spin_unlock(&sbi->work_lock);
 64
 65	hfs_mdb_commit(sb);
 66}
 67
 68void hfs_mark_mdb_dirty(struct super_block *sb)
 69{
 70	struct hfs_sb_info *sbi = HFS_SB(sb);
 71	unsigned long delay;
 72
 73	if (sb->s_flags & MS_RDONLY)
 74		return;
 75
 76	spin_lock(&sbi->work_lock);
 77	if (!sbi->work_queued) {
 78		delay = msecs_to_jiffies(dirty_writeback_interval * 10);
 79		queue_delayed_work(system_long_wq, &sbi->mdb_work, delay);
 80		sbi->work_queued = 1;
 81	}
 82	spin_unlock(&sbi->work_lock);
 83}
 84
 85/*
 86 * hfs_statfs()
 87 *
 88 * This is the statfs() entry in the super_operations structure for
 89 * HFS filesystems.  The purpose is to return various data about the
 90 * filesystem.
 91 *
 92 * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
 93 */
 94static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 95{
 96	struct super_block *sb = dentry->d_sb;
 97	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 98
 99	buf->f_type = HFS_SUPER_MAGIC;
100	buf->f_bsize = sb->s_blocksize;
101	buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
102	buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
103	buf->f_bavail = buf->f_bfree;
104	buf->f_files = HFS_SB(sb)->fs_ablocks;
105	buf->f_ffree = HFS_SB(sb)->free_ablocks;
106	buf->f_fsid.val[0] = (u32)id;
107	buf->f_fsid.val[1] = (u32)(id >> 32);
108	buf->f_namelen = HFS_NAMELEN;
109
110	return 0;
111}
112
113static int hfs_remount(struct super_block *sb, int *flags, char *data)
114{
 
 
115	sync_filesystem(sb);
116	*flags |= MS_NODIRATIME;
117	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
118		return 0;
119	if (!(*flags & MS_RDONLY)) {
 
120		if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
121			pr_warn("filesystem was not cleanly unmounted, running fsck.hfs is recommended.  leaving read-only.\n");
122			sb->s_flags |= MS_RDONLY;
123			*flags |= MS_RDONLY;
124		} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
125			pr_warn("filesystem is marked locked, leaving read-only.\n");
126			sb->s_flags |= MS_RDONLY;
127			*flags |= MS_RDONLY;
128		}
129	}
130	return 0;
131}
132
133static int hfs_show_options(struct seq_file *seq, struct dentry *root)
134{
135	struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
136
137	if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
138		seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
139	if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
140		seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
141	seq_printf(seq, ",uid=%u,gid=%u",
142			from_kuid_munged(&init_user_ns, sbi->s_uid),
143			from_kgid_munged(&init_user_ns, sbi->s_gid));
144	if (sbi->s_file_umask != 0133)
145		seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
146	if (sbi->s_dir_umask != 0022)
147		seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
148	if (sbi->part >= 0)
149		seq_printf(seq, ",part=%u", sbi->part);
150	if (sbi->session >= 0)
151		seq_printf(seq, ",session=%u", sbi->session);
152	if (sbi->nls_disk)
153		seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
154	if (sbi->nls_io)
155		seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
156	if (sbi->s_quiet)
157		seq_printf(seq, ",quiet");
158	return 0;
159}
160
161static struct inode *hfs_alloc_inode(struct super_block *sb)
162{
163	struct hfs_inode_info *i;
164
165	i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
166	return i ? &i->vfs_inode : NULL;
167}
168
169static void hfs_i_callback(struct rcu_head *head)
170{
171	struct inode *inode = container_of(head, struct inode, i_rcu);
172	kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
173}
174
175static void hfs_destroy_inode(struct inode *inode)
176{
177	call_rcu(&inode->i_rcu, hfs_i_callback);
178}
179
180static const struct super_operations hfs_super_operations = {
181	.alloc_inode	= hfs_alloc_inode,
182	.destroy_inode	= hfs_destroy_inode,
183	.write_inode	= hfs_write_inode,
184	.evict_inode	= hfs_evict_inode,
185	.put_super	= hfs_put_super,
186	.sync_fs	= hfs_sync_fs,
187	.statfs		= hfs_statfs,
188	.remount_fs     = hfs_remount,
189	.show_options	= hfs_show_options,
190};
191
192enum {
193	opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
194	opt_part, opt_session, opt_type, opt_creator, opt_quiet,
195	opt_codepage, opt_iocharset,
196	opt_err
197};
198
199static const match_table_t tokens = {
200	{ opt_uid, "uid=%u" },
201	{ opt_gid, "gid=%u" },
202	{ opt_umask, "umask=%o" },
203	{ opt_file_umask, "file_umask=%o" },
204	{ opt_dir_umask, "dir_umask=%o" },
205	{ opt_part, "part=%u" },
206	{ opt_session, "session=%u" },
207	{ opt_type, "type=%s" },
208	{ opt_creator, "creator=%s" },
209	{ opt_quiet, "quiet" },
210	{ opt_codepage, "codepage=%s" },
211	{ opt_iocharset, "iocharset=%s" },
212	{ opt_err, NULL }
213};
214
215static inline int match_fourchar(substring_t *arg, u32 *result)
216{
217	if (arg->to - arg->from != 4)
218		return -EINVAL;
219	memcpy(result, arg->from, 4);
220	return 0;
221}
222
223/*
224 * parse_options()
225 *
226 * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
227 * This function is called by hfs_read_super() to parse the mount options.
228 */
229static int parse_options(char *options, struct hfs_sb_info *hsb)
230{
231	char *p;
232	substring_t args[MAX_OPT_ARGS];
233	int tmp, token;
234
235	/* initialize the sb with defaults */
236	hsb->s_uid = current_uid();
237	hsb->s_gid = current_gid();
238	hsb->s_file_umask = 0133;
239	hsb->s_dir_umask = 0022;
240	hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f);	/* == '????' */
241	hsb->s_quiet = 0;
242	hsb->part = -1;
243	hsb->session = -1;
244
245	if (!options)
246		return 1;
247
248	while ((p = strsep(&options, ",")) != NULL) {
249		if (!*p)
250			continue;
251
252		token = match_token(p, tokens, args);
253		switch (token) {
254		case opt_uid:
255			if (match_int(&args[0], &tmp)) {
256				pr_err("uid requires an argument\n");
257				return 0;
258			}
259			hsb->s_uid = make_kuid(current_user_ns(), (uid_t)tmp);
260			if (!uid_valid(hsb->s_uid)) {
261				pr_err("invalid uid %d\n", tmp);
262				return 0;
263			}
264			break;
265		case opt_gid:
266			if (match_int(&args[0], &tmp)) {
267				pr_err("gid requires an argument\n");
268				return 0;
269			}
270			hsb->s_gid = make_kgid(current_user_ns(), (gid_t)tmp);
271			if (!gid_valid(hsb->s_gid)) {
272				pr_err("invalid gid %d\n", tmp);
273				return 0;
274			}
275			break;
276		case opt_umask:
277			if (match_octal(&args[0], &tmp)) {
278				pr_err("umask requires a value\n");
279				return 0;
280			}
281			hsb->s_file_umask = (umode_t)tmp;
282			hsb->s_dir_umask = (umode_t)tmp;
283			break;
284		case opt_file_umask:
285			if (match_octal(&args[0], &tmp)) {
286				pr_err("file_umask requires a value\n");
287				return 0;
288			}
289			hsb->s_file_umask = (umode_t)tmp;
290			break;
291		case opt_dir_umask:
292			if (match_octal(&args[0], &tmp)) {
293				pr_err("dir_umask requires a value\n");
294				return 0;
295			}
296			hsb->s_dir_umask = (umode_t)tmp;
297			break;
298		case opt_part:
299			if (match_int(&args[0], &hsb->part)) {
300				pr_err("part requires an argument\n");
301				return 0;
302			}
303			break;
304		case opt_session:
305			if (match_int(&args[0], &hsb->session)) {
306				pr_err("session requires an argument\n");
307				return 0;
308			}
309			break;
310		case opt_type:
311			if (match_fourchar(&args[0], &hsb->s_type)) {
312				pr_err("type requires a 4 character value\n");
313				return 0;
314			}
315			break;
316		case opt_creator:
317			if (match_fourchar(&args[0], &hsb->s_creator)) {
318				pr_err("creator requires a 4 character value\n");
319				return 0;
320			}
321			break;
322		case opt_quiet:
323			hsb->s_quiet = 1;
324			break;
325		case opt_codepage:
326			if (hsb->nls_disk) {
327				pr_err("unable to change codepage\n");
328				return 0;
329			}
330			p = match_strdup(&args[0]);
331			if (p)
332				hsb->nls_disk = load_nls(p);
333			if (!hsb->nls_disk) {
334				pr_err("unable to load codepage \"%s\"\n", p);
335				kfree(p);
336				return 0;
337			}
338			kfree(p);
339			break;
340		case opt_iocharset:
341			if (hsb->nls_io) {
342				pr_err("unable to change iocharset\n");
343				return 0;
344			}
345			p = match_strdup(&args[0]);
346			if (p)
347				hsb->nls_io = load_nls(p);
348			if (!hsb->nls_io) {
349				pr_err("unable to load iocharset \"%s\"\n", p);
350				kfree(p);
351				return 0;
352			}
353			kfree(p);
354			break;
355		default:
356			return 0;
357		}
358	}
359
360	if (hsb->nls_disk && !hsb->nls_io) {
361		hsb->nls_io = load_nls_default();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
362		if (!hsb->nls_io) {
363			pr_err("unable to load default iocharset\n");
364			return 0;
 
365		}
 
 
 
366	}
367	hsb->s_dir_umask &= 0777;
368	hsb->s_file_umask &= 0577;
369
370	return 1;
371}
372
373/*
374 * hfs_read_super()
375 *
376 * This is the function that is responsible for mounting an HFS
377 * filesystem.	It performs all the tasks necessary to get enough data
378 * from the disk to read the root inode.  This includes parsing the
379 * mount options, dealing with Macintosh partitions, reading the
380 * superblock and the allocation bitmap blocks, calling
381 * hfs_btree_init() to get the necessary data about the extents and
382 * catalog B-trees and, finally, reading the root inode into memory.
383 */
384static int hfs_fill_super(struct super_block *sb, void *data, int silent)
385{
386	struct hfs_sb_info *sbi;
387	struct hfs_find_data fd;
388	hfs_cat_rec rec;
389	struct inode *root_inode;
 
390	int res;
391
392	sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
393	if (!sbi)
394		return -ENOMEM;
 
 
395
396	sbi->sb = sb;
397	sb->s_fs_info = sbi;
398	spin_lock_init(&sbi->work_lock);
399	INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb);
400
401	res = -EINVAL;
402	if (!parse_options((char *)data, sbi)) {
403		pr_err("unable to parse mount options\n");
404		goto bail;
405	}
406
407	sb->s_op = &hfs_super_operations;
408	sb->s_flags |= MS_NODIRATIME;
 
409	mutex_init(&sbi->bitmap_lock);
410
411	res = hfs_mdb_get(sb);
412	if (res) {
413		if (!silent)
414			pr_warn("can't find a HFS filesystem on dev %s\n",
415				hfs_mdb_name(sb));
416		res = -EINVAL;
417		goto bail;
418	}
419
420	/* try to get the root inode */
421	res = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
422	if (res)
423		goto bail_no_root;
424	res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
425	if (!res) {
426		if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
427			res =  -EIO;
428			goto bail;
429		}
430		hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
 
 
431	}
432	if (res) {
433		hfs_find_exit(&fd);
434		goto bail_no_root;
435	}
436	res = -EINVAL;
437	root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
438	hfs_find_exit(&fd);
439	if (!root_inode)
440		goto bail_no_root;
441
442	sb->s_d_op = &hfs_dentry_operations;
443	res = -ENOMEM;
444	sb->s_root = d_make_root(root_inode);
445	if (!sb->s_root)
446		goto bail_no_root;
447
448	/* everything's okay */
449	return 0;
450
 
 
451bail_no_root:
452	pr_err("get root inode failed\n");
453bail:
454	hfs_mdb_put(sb);
455	return res;
456}
457
458static struct dentry *hfs_mount(struct file_system_type *fs_type,
459		      int flags, const char *dev_name, void *data)
 
 
 
 
460{
461	return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462}
463
464static struct file_system_type hfs_fs_type = {
465	.owner		= THIS_MODULE,
466	.name		= "hfs",
467	.mount		= hfs_mount,
468	.kill_sb	= kill_block_super,
469	.fs_flags	= FS_REQUIRES_DEV,
 
470};
471MODULE_ALIAS_FS("hfs");
472
473static void hfs_init_once(void *p)
474{
475	struct hfs_inode_info *i = p;
476
477	inode_init_once(&i->vfs_inode);
478}
479
480static int __init init_hfs_fs(void)
481{
482	int err;
483
484	hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
485		sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
486		hfs_init_once);
487	if (!hfs_inode_cachep)
488		return -ENOMEM;
489	err = register_filesystem(&hfs_fs_type);
490	if (err)
491		kmem_cache_destroy(hfs_inode_cachep);
492	return err;
493}
494
495static void __exit exit_hfs_fs(void)
496{
497	unregister_filesystem(&hfs_fs_type);
498
499	/*
500	 * Make sure all delayed rcu free inodes are flushed before we
501	 * destroy cache.
502	 */
503	rcu_barrier();
504	kmem_cache_destroy(hfs_inode_cachep);
505}
506
507module_init(init_hfs_fs)
508module_exit(exit_hfs_fs)