Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "qgroup.h"
  22#include "print-tree.h"
  23#include "delalloc-space.h"
  24#include "block-group.h"
  25#include "backref.h"
  26#include "misc.h"
  27#include "subpage.h"
  28#include "zoned.h"
  29#include "inode-item.h"
  30#include "space-info.h"
  31#include "fs.h"
  32#include "accessors.h"
  33#include "extent-tree.h"
  34#include "root-tree.h"
  35#include "file-item.h"
  36#include "relocation.h"
  37#include "super.h"
  38#include "tree-checker.h"
  39#include "raid-stripe-tree.h"
  40
  41/*
  42 * Relocation overview
  43 *
  44 * [What does relocation do]
  45 *
  46 * The objective of relocation is to relocate all extents of the target block
  47 * group to other block groups.
  48 * This is utilized by resize (shrink only), profile converting, compacting
  49 * space, or balance routine to spread chunks over devices.
  50 *
  51 * 		Before		|		After
  52 * ------------------------------------------------------------------
  53 *  BG A: 10 data extents	| BG A: deleted
  54 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  55 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  56 *
  57 * [How does relocation work]
  58 *
  59 * 1.   Mark the target block group read-only
  60 *      New extents won't be allocated from the target block group.
  61 *
  62 * 2.1  Record each extent in the target block group
  63 *      To build a proper map of extents to be relocated.
  64 *
  65 * 2.2  Build data reloc tree and reloc trees
  66 *      Data reloc tree will contain an inode, recording all newly relocated
  67 *      data extents.
  68 *      There will be only one data reloc tree for one data block group.
  69 *
  70 *      Reloc tree will be a special snapshot of its source tree, containing
  71 *      relocated tree blocks.
  72 *      Each tree referring to a tree block in target block group will get its
  73 *      reloc tree built.
  74 *
  75 * 2.3  Swap source tree with its corresponding reloc tree
  76 *      Each involved tree only refers to new extents after swap.
  77 *
  78 * 3.   Cleanup reloc trees and data reloc tree.
  79 *      As old extents in the target block group are still referenced by reloc
  80 *      trees, we need to clean them up before really freeing the target block
  81 *      group.
  82 *
  83 * The main complexity is in steps 2.2 and 2.3.
  84 *
  85 * The entry point of relocation is relocate_block_group() function.
 
 
 
 
 
 
 
 
 
  86 */
 
 
 
 
  87
 
 
  88#define RELOCATION_RESERVED_NODES	256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89/*
  90 * map address of tree root to tree
  91 */
  92struct mapping_node {
  93	struct {
  94		struct rb_node rb_node;
  95		u64 bytenr;
  96	}; /* Use rb_simle_node for search/insert */
  97	void *data;
  98};
  99
 100struct mapping_tree {
 101	struct rb_root rb_root;
 102	spinlock_t lock;
 103};
 104
 105/*
 106 * present a tree block to process
 107 */
 108struct tree_block {
 109	struct {
 110		struct rb_node rb_node;
 111		u64 bytenr;
 112	}; /* Use rb_simple_node for search/insert */
 113	u64 owner;
 114	struct btrfs_key key;
 115	u8 level;
 116	bool key_ready;
 117};
 118
 119#define MAX_EXTENTS 128
 120
 121struct file_extent_cluster {
 122	u64 start;
 123	u64 end;
 124	u64 boundary[MAX_EXTENTS];
 125	unsigned int nr;
 126	u64 owning_root;
 127};
 128
 129/* Stages of data relocation. */
 130enum reloc_stage {
 131	MOVE_DATA_EXTENTS,
 132	UPDATE_DATA_PTRS
 133};
 134
 135struct reloc_control {
 136	/* block group to relocate */
 137	struct btrfs_block_group *block_group;
 138	/* extent tree */
 139	struct btrfs_root *extent_root;
 140	/* inode for moving data */
 141	struct inode *data_inode;
 142
 143	struct btrfs_block_rsv *block_rsv;
 144
 145	struct btrfs_backref_cache backref_cache;
 146
 147	struct file_extent_cluster cluster;
 148	/* tree blocks have been processed */
 149	struct extent_io_tree processed_blocks;
 150	/* map start of tree root to corresponding reloc tree */
 151	struct mapping_tree reloc_root_tree;
 152	/* list of reloc trees */
 153	struct list_head reloc_roots;
 154	/* list of subvolume trees that get relocated */
 155	struct list_head dirty_subvol_roots;
 156	/* size of metadata reservation for merging reloc trees */
 157	u64 merging_rsv_size;
 158	/* size of relocated tree nodes */
 159	u64 nodes_relocated;
 160	/* reserved size for block group relocation*/
 161	u64 reserved_bytes;
 162
 163	u64 search_start;
 164	u64 extents_found;
 165
 166	enum reloc_stage stage;
 167	bool create_reloc_tree;
 168	bool merge_reloc_tree;
 169	bool found_file_extent;
 170};
 171
 172static void mark_block_processed(struct reloc_control *rc,
 173				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 174{
 175	u32 blocksize;
 
 
 176
 177	if (node->level == 0 ||
 178	    in_range(node->bytenr, rc->block_group->start,
 179		     rc->block_group->length)) {
 180		blocksize = rc->extent_root->fs_info->nodesize;
 181		set_extent_bit(&rc->processed_blocks, node->bytenr,
 182			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 183	}
 184	node->processed = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187/*
 188 * walk up backref nodes until reach node presents tree root
 189 */
 190static struct btrfs_backref_node *walk_up_backref(
 191		struct btrfs_backref_node *node,
 192		struct btrfs_backref_edge *edges[], int *index)
 193{
 194	struct btrfs_backref_edge *edge;
 195	int idx = *index;
 196
 197	while (!list_empty(&node->upper)) {
 198		edge = list_entry(node->upper.next,
 199				  struct btrfs_backref_edge, list[LOWER]);
 200		edges[idx++] = edge;
 201		node = edge->node[UPPER];
 202	}
 203	BUG_ON(node->detached);
 204	*index = idx;
 205	return node;
 206}
 207
 208/*
 209 * walk down backref nodes to find start of next reference path
 210 */
 211static struct btrfs_backref_node *walk_down_backref(
 212		struct btrfs_backref_edge *edges[], int *index)
 213{
 214	struct btrfs_backref_edge *edge;
 215	struct btrfs_backref_node *lower;
 216	int idx = *index;
 217
 218	while (idx > 0) {
 219		edge = edges[idx - 1];
 220		lower = edge->node[LOWER];
 221		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 222			idx--;
 223			continue;
 224		}
 225		edge = list_entry(edge->list[LOWER].next,
 226				  struct btrfs_backref_edge, list[LOWER]);
 227		edges[idx - 1] = edge;
 228		*index = idx;
 229		return edge->node[UPPER];
 230	}
 231	*index = 0;
 232	return NULL;
 233}
 234
 235static bool reloc_root_is_dead(const struct btrfs_root *root)
 236{
 237	/*
 238	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 239	 * btrfs_update_reloc_root. We need to see the updated bit before
 240	 * trying to access reloc_root
 241	 */
 242	smp_rmb();
 243	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 244		return true;
 245	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246}
 247
 248/*
 249 * Check if this subvolume tree has valid reloc tree.
 250 *
 251 * Reloc tree after swap is considered dead, thus not considered as valid.
 252 * This is enough for most callers, as they don't distinguish dead reloc root
 253 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 254 * special case.
 255 */
 256static bool have_reloc_root(const struct btrfs_root *root)
 
 257{
 258	if (reloc_root_is_dead(root))
 259		return false;
 260	if (!root->reloc_root)
 261		return false;
 262	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263}
 264
 265bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
 
 266{
 267	struct btrfs_root *reloc_root;
 
 
 
 
 
 
 268
 269	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 270		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 271
 272	/* This root has been merged with its reloc tree, we can ignore it */
 273	if (reloc_root_is_dead(root))
 274		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275
 276	reloc_root = root->reloc_root;
 277	if (!reloc_root)
 278		return false;
 279
 280	if (btrfs_header_generation(reloc_root->commit_root) ==
 281	    root->fs_info->running_transaction->transid)
 282		return false;
 283	/*
 284	 * If there is reloc tree and it was created in previous transaction
 285	 * backref lookup can find the reloc tree, so backref node for the fs
 286	 * tree root is useless for relocation.
 
 287	 */
 288	return true;
 289}
 290
 291/*
 292 * find reloc tree by address of tree root
 293 */
 294struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 295{
 296	struct reloc_control *rc = fs_info->reloc_ctl;
 297	struct rb_node *rb_node;
 298	struct mapping_node *node;
 299	struct btrfs_root *root = NULL;
 300
 301	ASSERT(rc);
 302	spin_lock(&rc->reloc_root_tree.lock);
 303	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 304	if (rb_node) {
 305		node = rb_entry(rb_node, struct mapping_node, rb_node);
 306		root = node->data;
 307	}
 308	spin_unlock(&rc->reloc_root_tree.lock);
 309	return btrfs_grab_root(root);
 310}
 311
 312/*
 313 * For useless nodes, do two major clean ups:
 314 *
 315 * - Cleanup the children edges and nodes
 316 *   If child node is also orphan (no parent) during cleanup, then the child
 317 *   node will also be cleaned up.
 318 *
 319 * - Freeing up leaves (level 0), keeps nodes detached
 320 *   For nodes, the node is still cached as "detached"
 321 *
 322 * Return false if @node is not in the @useless_nodes list.
 323 * Return true if @node is in the @useless_nodes list.
 324 */
 325static bool handle_useless_nodes(struct reloc_control *rc,
 326				 struct btrfs_backref_node *node)
 327{
 328	struct btrfs_backref_cache *cache = &rc->backref_cache;
 329	struct list_head *useless_node = &cache->useless_node;
 330	bool ret = false;
 
 
 
 
 
 
 
 
 331
 332	while (!list_empty(useless_node)) {
 333		struct btrfs_backref_node *cur;
 
 
 334
 335		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 336				 list);
 337		list_del_init(&cur->list);
 
 
 
 338
 339		/* Only tree root nodes can be added to @useless_nodes */
 340		ASSERT(list_empty(&cur->upper));
 341
 342		if (cur == node)
 343			ret = true;
 
 
 
 
 
 
 
 344
 345		/* The node is the lowest node */
 346		if (cur->lowest) {
 347			list_del_init(&cur->lower);
 348			cur->lowest = 0;
 349		}
 350
 351		/* Cleanup the lower edges */
 352		while (!list_empty(&cur->lower)) {
 353			struct btrfs_backref_edge *edge;
 354			struct btrfs_backref_node *lower;
 355
 356			edge = list_entry(cur->lower.next,
 357					struct btrfs_backref_edge, list[UPPER]);
 358			list_del(&edge->list[UPPER]);
 359			list_del(&edge->list[LOWER]);
 360			lower = edge->node[LOWER];
 361			btrfs_backref_free_edge(cache, edge);
 362
 363			/* Child node is also orphan, queue for cleanup */
 364			if (list_empty(&lower->upper))
 365				list_add(&lower->list, useless_node);
 366		}
 367		/* Mark this block processed for relocation */
 368		mark_block_processed(rc, cur);
 369
 370		/*
 371		 * Backref nodes for tree leaves are deleted from the cache.
 372		 * Backref nodes for upper level tree blocks are left in the
 373		 * cache to avoid unnecessary backref lookup.
 374		 */
 375		if (cur->level > 0) {
 376			list_add(&cur->list, &cache->detached);
 377			cur->detached = 1;
 378		} else {
 379			rb_erase(&cur->rb_node, &cache->rb_root);
 380			btrfs_backref_free_node(cache, cur);
 381		}
 
 
 
 
 382	}
 383	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384}
 385
 386/*
 387 * Build backref tree for a given tree block. Root of the backref tree
 388 * corresponds the tree block, leaves of the backref tree correspond roots of
 389 * b-trees that reference the tree block.
 390 *
 391 * The basic idea of this function is check backrefs of a given block to find
 392 * upper level blocks that reference the block, and then check backrefs of
 393 * these upper level blocks recursively. The recursion stops when tree root is
 394 * reached or backrefs for the block is cached.
 395 *
 396 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 397 * all upper level blocks that directly/indirectly reference the block are also
 398 * cached.
 399 */
 400static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 401			struct btrfs_trans_handle *trans,
 402			struct reloc_control *rc, struct btrfs_key *node_key,
 403			int level, u64 bytenr)
 404{
 405	struct btrfs_backref_iter *iter;
 406	struct btrfs_backref_cache *cache = &rc->backref_cache;
 407	/* For searching parent of TREE_BLOCK_REF */
 408	struct btrfs_path *path;
 409	struct btrfs_backref_node *cur;
 410	struct btrfs_backref_node *node = NULL;
 411	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 412	int ret;
 
 
 413
 414	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
 415	if (!iter)
 416		return ERR_PTR(-ENOMEM);
 417	path = btrfs_alloc_path();
 418	if (!path) {
 419		ret = -ENOMEM;
 420		goto out;
 421	}
 
 
 422
 423	node = btrfs_backref_alloc_node(cache, bytenr, level);
 424	if (!node) {
 425		ret = -ENOMEM;
 426		goto out;
 427	}
 428
 
 
 429	node->lowest = 1;
 430	cur = node;
 
 
 
 
 
 
 431
 432	/* Breadth-first search to build backref cache */
 433	do {
 434		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
 435						  node_key, cur);
 436		if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 438
 439		edge = list_first_entry_or_null(&cache->pending_edge,
 440				struct btrfs_backref_edge, list[UPPER]);
 441		/*
 442		 * The pending list isn't empty, take the first block to
 443		 * process
 444		 */
 445		if (edge) {
 446			list_del_init(&edge->list[UPPER]);
 447			cur = edge->node[UPPER];
 
 
 
 
 
 448		}
 449	} while (edge);
 
 450
 451	/* Finish the upper linkage of newly added edges/nodes */
 452	ret = btrfs_backref_finish_upper_links(cache, node);
 453	if (ret < 0)
 454		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455
 456	if (handle_useless_nodes(rc, node))
 457		node = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458out:
 459	btrfs_free_path(iter->path);
 460	kfree(iter);
 461	btrfs_free_path(path);
 462	if (ret) {
 463		btrfs_backref_error_cleanup(cache, node);
 464		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465	}
 466	ASSERT(!node || !node->detached);
 467	ASSERT(list_empty(&cache->useless_node) &&
 468	       list_empty(&cache->pending_edge));
 469	return node;
 470}
 471
 472/*
 473 * helper to add backref node for the newly created snapshot.
 474 * the backref node is created by cloning backref node that
 475 * corresponds to root of source tree
 476 */
 477static int clone_backref_node(struct btrfs_trans_handle *trans,
 478			      struct reloc_control *rc,
 479			      const struct btrfs_root *src,
 480			      struct btrfs_root *dest)
 481{
 482	struct btrfs_root *reloc_root = src->reloc_root;
 483	struct btrfs_backref_cache *cache = &rc->backref_cache;
 484	struct btrfs_backref_node *node = NULL;
 485	struct btrfs_backref_node *new_node;
 486	struct btrfs_backref_edge *edge;
 487	struct btrfs_backref_edge *new_edge;
 488	struct rb_node *rb_node;
 489
 490	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 
 
 
 491	if (rb_node) {
 492		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 493		if (node->detached)
 494			node = NULL;
 495		else
 496			BUG_ON(node->new_bytenr != reloc_root->node->start);
 497	}
 498
 499	if (!node) {
 500		rb_node = rb_simple_search(&cache->rb_root,
 501					   reloc_root->commit_root->start);
 502		if (rb_node) {
 503			node = rb_entry(rb_node, struct btrfs_backref_node,
 504					rb_node);
 505			BUG_ON(node->detached);
 506		}
 507	}
 508
 509	if (!node)
 510		return 0;
 511
 512	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 513					    node->level);
 514	if (!new_node)
 515		return -ENOMEM;
 516
 
 
 517	new_node->lowest = node->lowest;
 518	new_node->checked = 1;
 519	new_node->root = btrfs_grab_root(dest);
 520	ASSERT(new_node->root);
 521
 522	if (!node->lowest) {
 523		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 524			new_edge = btrfs_backref_alloc_edge(cache);
 525			if (!new_edge)
 526				goto fail;
 527
 528			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 529						new_node, LINK_UPPER);
 
 
 530		}
 531	} else {
 532		list_add_tail(&new_node->lower, &cache->leaves);
 533	}
 534
 535	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 536				   &new_node->rb_node);
 537	if (rb_node)
 538		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 539
 540	if (!new_node->lowest) {
 541		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 542			list_add_tail(&new_edge->list[LOWER],
 543				      &new_edge->node[LOWER]->upper);
 544		}
 545	}
 546	return 0;
 547fail:
 548	while (!list_empty(&new_node->lower)) {
 549		new_edge = list_entry(new_node->lower.next,
 550				      struct btrfs_backref_edge, list[UPPER]);
 551		list_del(&new_edge->list[UPPER]);
 552		btrfs_backref_free_edge(cache, new_edge);
 553	}
 554	btrfs_backref_free_node(cache, new_node);
 555	return -ENOMEM;
 556}
 557
 558/*
 559 * helper to add 'address of tree root -> reloc tree' mapping
 560 */
 561static int __add_reloc_root(struct btrfs_root *root)
 562{
 563	struct btrfs_fs_info *fs_info = root->fs_info;
 564	struct rb_node *rb_node;
 565	struct mapping_node *node;
 566	struct reloc_control *rc = fs_info->reloc_ctl;
 567
 568	node = kmalloc(sizeof(*node), GFP_NOFS);
 569	if (!node)
 570		return -ENOMEM;
 571
 572	node->bytenr = root->commit_root->start;
 573	node->data = root;
 574
 575	spin_lock(&rc->reloc_root_tree.lock);
 576	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 577				   node->bytenr, &node->rb_node);
 578	spin_unlock(&rc->reloc_root_tree.lock);
 579	if (rb_node) {
 580		btrfs_err(fs_info,
 581			    "Duplicate root found for start=%llu while inserting into relocation tree",
 582			    node->bytenr);
 
 583		return -EEXIST;
 584	}
 585
 586	list_add_tail(&root->root_list, &rc->reloc_roots);
 587	return 0;
 588}
 589
 590/*
 591 * helper to delete the 'address of tree root -> reloc tree'
 592 * mapping
 593 */
 594static void __del_reloc_root(struct btrfs_root *root)
 595{
 596	struct btrfs_fs_info *fs_info = root->fs_info;
 597	struct rb_node *rb_node;
 598	struct mapping_node *node = NULL;
 599	struct reloc_control *rc = fs_info->reloc_ctl;
 600	bool put_ref = false;
 601
 602	if (rc && root->node) {
 603		spin_lock(&rc->reloc_root_tree.lock);
 604		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 605					   root->commit_root->start);
 606		if (rb_node) {
 607			node = rb_entry(rb_node, struct mapping_node, rb_node);
 608			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 609			RB_CLEAR_NODE(&node->rb_node);
 610		}
 611		spin_unlock(&rc->reloc_root_tree.lock);
 612		ASSERT(!node || (struct btrfs_root *)node->data == root);
 613	}
 
 614
 615	/*
 616	 * We only put the reloc root here if it's on the list.  There's a lot
 617	 * of places where the pattern is to splice the rc->reloc_roots, process
 618	 * the reloc roots, and then add the reloc root back onto
 619	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 620	 * list we don't want the reference being dropped, because the guy
 621	 * messing with the list is in charge of the reference.
 622	 */
 623	spin_lock(&fs_info->trans_lock);
 624	if (!list_empty(&root->root_list)) {
 625		put_ref = true;
 626		list_del_init(&root->root_list);
 627	}
 628	spin_unlock(&fs_info->trans_lock);
 629	if (put_ref)
 630		btrfs_put_root(root);
 631	kfree(node);
 632}
 633
 634/*
 635 * helper to update the 'address of tree root -> reloc tree'
 636 * mapping
 637 */
 638static int __update_reloc_root(struct btrfs_root *root)
 639{
 640	struct btrfs_fs_info *fs_info = root->fs_info;
 641	struct rb_node *rb_node;
 642	struct mapping_node *node = NULL;
 643	struct reloc_control *rc = fs_info->reloc_ctl;
 644
 645	spin_lock(&rc->reloc_root_tree.lock);
 646	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 647				   root->commit_root->start);
 648	if (rb_node) {
 649		node = rb_entry(rb_node, struct mapping_node, rb_node);
 650		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 651	}
 652	spin_unlock(&rc->reloc_root_tree.lock);
 653
 654	if (!node)
 655		return 0;
 656	BUG_ON((struct btrfs_root *)node->data != root);
 657
 658	spin_lock(&rc->reloc_root_tree.lock);
 659	node->bytenr = root->node->start;
 660	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 661				   node->bytenr, &node->rb_node);
 662	spin_unlock(&rc->reloc_root_tree.lock);
 663	if (rb_node)
 664		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 665	return 0;
 666}
 667
 668static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 669					struct btrfs_root *root, u64 objectid)
 670{
 671	struct btrfs_fs_info *fs_info = root->fs_info;
 672	struct btrfs_root *reloc_root;
 673	struct extent_buffer *eb;
 674	struct btrfs_root_item *root_item;
 675	struct btrfs_key root_key;
 676	int ret = 0;
 677	bool must_abort = false;
 678
 679	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 680	if (!root_item)
 681		return ERR_PTR(-ENOMEM);
 682
 683	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 684	root_key.type = BTRFS_ROOT_ITEM_KEY;
 685	root_key.offset = objectid;
 686
 687	if (btrfs_root_id(root) == objectid) {
 688		u64 commit_root_gen;
 689
 690		/* called by btrfs_init_reloc_root */
 691		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 692				      BTRFS_TREE_RELOC_OBJECTID);
 693		if (ret)
 694			goto fail;
 695
 696		/*
 697		 * Set the last_snapshot field to the generation of the commit
 698		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 699		 * correctly (returns true) when the relocation root is created
 700		 * either inside the critical section of a transaction commit
 701		 * (through transaction.c:qgroup_account_snapshot()) and when
 702		 * it's created before the transaction commit is started.
 703		 */
 704		commit_root_gen = btrfs_header_generation(root->commit_root);
 705		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 706	} else {
 707		/*
 708		 * called by btrfs_reloc_post_snapshot_hook.
 709		 * the source tree is a reloc tree, all tree blocks
 710		 * modified after it was created have RELOC flag
 711		 * set in their headers. so it's OK to not update
 712		 * the 'last_snapshot'.
 713		 */
 714		ret = btrfs_copy_root(trans, root, root->node, &eb,
 715				      BTRFS_TREE_RELOC_OBJECTID);
 716		if (ret)
 717			goto fail;
 718	}
 719
 720	/*
 721	 * We have changed references at this point, we must abort the
 722	 * transaction if anything fails.
 723	 */
 724	must_abort = true;
 725
 726	memcpy(root_item, &root->root_item, sizeof(*root_item));
 727	btrfs_set_root_bytenr(root_item, eb->start);
 728	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 729	btrfs_set_root_generation(root_item, trans->transid);
 730
 731	if (btrfs_root_id(root) == objectid) {
 732		btrfs_set_root_refs(root_item, 0);
 733		memset(&root_item->drop_progress, 0,
 734		       sizeof(struct btrfs_disk_key));
 735		btrfs_set_root_drop_level(root_item, 0);
 
 
 
 
 
 
 736	}
 737
 738	btrfs_tree_unlock(eb);
 739	free_extent_buffer(eb);
 740
 741	ret = btrfs_insert_root(trans, fs_info->tree_root,
 742				&root_key, root_item);
 743	if (ret)
 744		goto fail;
 745
 746	kfree(root_item);
 747
 748	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 749	if (IS_ERR(reloc_root)) {
 750		ret = PTR_ERR(reloc_root);
 751		goto abort;
 752	}
 753	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 754	btrfs_set_root_last_trans(reloc_root, trans->transid);
 755	return reloc_root;
 756fail:
 757	kfree(root_item);
 758abort:
 759	if (must_abort)
 760		btrfs_abort_transaction(trans, ret);
 761	return ERR_PTR(ret);
 762}
 763
 764/*
 765 * create reloc tree for a given fs tree. reloc tree is just a
 766 * snapshot of the fs tree with special root objectid.
 767 *
 768 * The reloc_root comes out of here with two references, one for
 769 * root->reloc_root, and another for being on the rc->reloc_roots list.
 770 */
 771int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 772			  struct btrfs_root *root)
 773{
 774	struct btrfs_fs_info *fs_info = root->fs_info;
 775	struct btrfs_root *reloc_root;
 776	struct reloc_control *rc = fs_info->reloc_ctl;
 777	struct btrfs_block_rsv *rsv;
 778	int clear_rsv = 0;
 779	int ret;
 780
 781	if (!rc)
 782		return 0;
 783
 784	/*
 785	 * The subvolume has reloc tree but the swap is finished, no need to
 786	 * create/update the dead reloc tree
 787	 */
 788	if (reloc_root_is_dead(root))
 789		return 0;
 790
 791	/*
 792	 * This is subtle but important.  We do not do
 793	 * record_root_in_transaction for reloc roots, instead we record their
 794	 * corresponding fs root, and then here we update the last trans for the
 795	 * reloc root.  This means that we have to do this for the entire life
 796	 * of the reloc root, regardless of which stage of the relocation we are
 797	 * in.
 798	 */
 799	if (root->reloc_root) {
 800		reloc_root = root->reloc_root;
 801		btrfs_set_root_last_trans(reloc_root, trans->transid);
 802		return 0;
 803	}
 804
 805	/*
 806	 * We are merging reloc roots, we do not need new reloc trees.  Also
 807	 * reloc trees never need their own reloc tree.
 808	 */
 809	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 810		return 0;
 811
 812	if (!trans->reloc_reserved) {
 813		rsv = trans->block_rsv;
 814		trans->block_rsv = rc->block_rsv;
 815		clear_rsv = 1;
 816	}
 817	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
 818	if (clear_rsv)
 819		trans->block_rsv = rsv;
 820	if (IS_ERR(reloc_root))
 821		return PTR_ERR(reloc_root);
 822
 823	ret = __add_reloc_root(reloc_root);
 824	ASSERT(ret != -EEXIST);
 825	if (ret) {
 826		/* Pairs with create_reloc_root */
 827		btrfs_put_root(reloc_root);
 828		return ret;
 829	}
 830	root->reloc_root = btrfs_grab_root(reloc_root);
 831	return 0;
 832}
 833
 834/*
 835 * update root item of reloc tree
 836 */
 837int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 838			    struct btrfs_root *root)
 839{
 840	struct btrfs_fs_info *fs_info = root->fs_info;
 841	struct btrfs_root *reloc_root;
 842	struct btrfs_root_item *root_item;
 843	int ret;
 844
 845	if (!have_reloc_root(root))
 846		return 0;
 847
 848	reloc_root = root->reloc_root;
 849	root_item = &reloc_root->root_item;
 850
 851	/*
 852	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 853	 * the root.  We have the ref for root->reloc_root, but just in case
 854	 * hold it while we update the reloc root.
 855	 */
 856	btrfs_grab_root(reloc_root);
 857
 858	/* root->reloc_root will stay until current relocation finished */
 859	if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
 860	    btrfs_root_refs(root_item) == 0) {
 861		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 862		/*
 863		 * Mark the tree as dead before we change reloc_root so
 864		 * have_reloc_root will not touch it from now on.
 865		 */
 866		smp_wmb();
 867		__del_reloc_root(reloc_root);
 868	}
 869
 870	if (reloc_root->commit_root != reloc_root->node) {
 871		__update_reloc_root(reloc_root);
 872		btrfs_set_root_node(root_item, reloc_root->node);
 873		free_extent_buffer(reloc_root->commit_root);
 874		reloc_root->commit_root = btrfs_root_node(reloc_root);
 875	}
 876
 877	ret = btrfs_update_root(trans, fs_info->tree_root,
 878				&reloc_root->root_key, root_item);
 879	btrfs_put_root(reloc_root);
 880	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881}
 882
 883/*
 884 * get new location of data
 885 */
 886static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
 887			    u64 bytenr, u64 num_bytes)
 888{
 889	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
 890	struct btrfs_path *path;
 891	struct btrfs_file_extent_item *fi;
 892	struct extent_buffer *leaf;
 893	int ret;
 894
 895	path = btrfs_alloc_path();
 896	if (!path)
 897		return -ENOMEM;
 898
 899	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
 900	ret = btrfs_lookup_file_extent(NULL, root, path,
 901			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
 902	if (ret < 0)
 903		goto out;
 904	if (ret > 0) {
 905		ret = -ENOENT;
 906		goto out;
 907	}
 908
 909	leaf = path->nodes[0];
 910	fi = btrfs_item_ptr(leaf, path->slots[0],
 911			    struct btrfs_file_extent_item);
 912
 913	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
 914	       btrfs_file_extent_compression(leaf, fi) ||
 915	       btrfs_file_extent_encryption(leaf, fi) ||
 916	       btrfs_file_extent_other_encoding(leaf, fi));
 917
 918	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
 919		ret = -EINVAL;
 920		goto out;
 921	}
 922
 923	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 924	ret = 0;
 925out:
 926	btrfs_free_path(path);
 927	return ret;
 928}
 929
 930/*
 931 * update file extent items in the tree leaf to point to
 932 * the new locations.
 933 */
 934static noinline_for_stack
 935int replace_file_extents(struct btrfs_trans_handle *trans,
 936			 struct reloc_control *rc,
 937			 struct btrfs_root *root,
 938			 struct extent_buffer *leaf)
 939{
 940	struct btrfs_fs_info *fs_info = root->fs_info;
 941	struct btrfs_key key;
 942	struct btrfs_file_extent_item *fi;
 943	struct btrfs_inode *inode = NULL;
 944	u64 parent;
 945	u64 bytenr;
 946	u64 new_bytenr = 0;
 947	u64 num_bytes;
 948	u64 end;
 949	u32 nritems;
 950	u32 i;
 951	int ret = 0;
 952	int first = 1;
 953	int dirty = 0;
 954
 955	if (rc->stage != UPDATE_DATA_PTRS)
 956		return 0;
 957
 958	/* reloc trees always use full backref */
 959	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
 960		parent = leaf->start;
 961	else
 962		parent = 0;
 963
 964	nritems = btrfs_header_nritems(leaf);
 965	for (i = 0; i < nritems; i++) {
 966		struct btrfs_ref ref = { 0 };
 967
 968		cond_resched();
 969		btrfs_item_key_to_cpu(leaf, &key, i);
 970		if (key.type != BTRFS_EXTENT_DATA_KEY)
 971			continue;
 972		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
 973		if (btrfs_file_extent_type(leaf, fi) ==
 974		    BTRFS_FILE_EXTENT_INLINE)
 975			continue;
 976		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
 977		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
 978		if (bytenr == 0)
 979			continue;
 980		if (!in_range(bytenr, rc->block_group->start,
 981			      rc->block_group->length))
 982			continue;
 983
 984		/*
 985		 * if we are modifying block in fs tree, wait for read_folio
 986		 * to complete and drop the extent cache
 987		 */
 988		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
 989			if (first) {
 990				inode = btrfs_find_first_inode(root, key.objectid);
 991				first = 0;
 992			} else if (inode && btrfs_ino(inode) < key.objectid) {
 993				btrfs_add_delayed_iput(inode);
 994				inode = btrfs_find_first_inode(root, key.objectid);
 995			}
 996			if (inode && btrfs_ino(inode) == key.objectid) {
 997				struct extent_state *cached_state = NULL;
 998
 999				end = key.offset +
1000				      btrfs_file_extent_num_bytes(leaf, fi);
1001				WARN_ON(!IS_ALIGNED(key.offset,
1002						    fs_info->sectorsize));
1003				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1004				end--;
1005				/* Take mmap lock to serialize with reflinks. */
1006				if (!down_read_trylock(&inode->i_mmap_lock))
1007					continue;
1008				ret = try_lock_extent(&inode->io_tree, key.offset,
1009						      end, &cached_state);
1010				if (!ret) {
1011					up_read(&inode->i_mmap_lock);
1012					continue;
1013				}
1014
1015				btrfs_drop_extent_map_range(inode, key.offset, end, true);
1016				unlock_extent(&inode->io_tree, key.offset, end,
1017					      &cached_state);
1018				up_read(&inode->i_mmap_lock);
1019			}
1020		}
1021
1022		ret = get_new_location(rc->data_inode, &new_bytenr,
1023				       bytenr, num_bytes);
1024		if (ret) {
1025			/*
1026			 * Don't have to abort since we've not changed anything
1027			 * in the file extent yet.
1028			 */
1029			break;
1030		}
1031
1032		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1033		dirty = 1;
1034
1035		key.offset -= btrfs_file_extent_offset(leaf, fi);
1036		ref.action = BTRFS_ADD_DELAYED_REF;
1037		ref.bytenr = new_bytenr;
1038		ref.num_bytes = num_bytes;
1039		ref.parent = parent;
1040		ref.owning_root = btrfs_root_id(root);
1041		ref.ref_root = btrfs_header_owner(leaf);
1042		btrfs_init_data_ref(&ref, key.objectid, key.offset,
1043				    btrfs_root_id(root), false);
1044		ret = btrfs_inc_extent_ref(trans, &ref);
1045		if (ret) {
1046			btrfs_abort_transaction(trans, ret);
1047			break;
1048		}
1049
1050		ref.action = BTRFS_DROP_DELAYED_REF;
1051		ref.bytenr = bytenr;
1052		ref.num_bytes = num_bytes;
1053		ref.parent = parent;
1054		ref.owning_root = btrfs_root_id(root);
1055		ref.ref_root = btrfs_header_owner(leaf);
1056		btrfs_init_data_ref(&ref, key.objectid, key.offset,
1057				    btrfs_root_id(root), false);
1058		ret = btrfs_free_extent(trans, &ref);
1059		if (ret) {
1060			btrfs_abort_transaction(trans, ret);
1061			break;
1062		}
1063	}
1064	if (dirty)
1065		btrfs_mark_buffer_dirty(trans, leaf);
1066	if (inode)
1067		btrfs_add_delayed_iput(inode);
1068	return ret;
1069}
1070
1071static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1072					       int slot, const struct btrfs_path *path,
1073					       int level)
1074{
1075	struct btrfs_disk_key key1;
1076	struct btrfs_disk_key key2;
1077	btrfs_node_key(eb, &key1, slot);
1078	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1079	return memcmp(&key1, &key2, sizeof(key1));
1080}
1081
1082/*
1083 * try to replace tree blocks in fs tree with the new blocks
1084 * in reloc tree. tree blocks haven't been modified since the
1085 * reloc tree was create can be replaced.
1086 *
1087 * if a block was replaced, level of the block + 1 is returned.
1088 * if no block got replaced, 0 is returned. if there are other
1089 * errors, a negative error number is returned.
1090 */
1091static noinline_for_stack
1092int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1093		 struct btrfs_root *dest, struct btrfs_root *src,
1094		 struct btrfs_path *path, struct btrfs_key *next_key,
1095		 int lowest_level, int max_level)
1096{
1097	struct btrfs_fs_info *fs_info = dest->fs_info;
1098	struct extent_buffer *eb;
1099	struct extent_buffer *parent;
1100	struct btrfs_ref ref = { 0 };
1101	struct btrfs_key key;
1102	u64 old_bytenr;
1103	u64 new_bytenr;
1104	u64 old_ptr_gen;
1105	u64 new_ptr_gen;
1106	u64 last_snapshot;
1107	u32 blocksize;
1108	int cow = 0;
1109	int level;
1110	int ret;
1111	int slot;
1112
1113	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1114	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1115
1116	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1117again:
1118	slot = path->slots[lowest_level];
1119	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1120
1121	eb = btrfs_lock_root_node(dest);
 
1122	level = btrfs_header_level(eb);
1123
1124	if (level < lowest_level) {
1125		btrfs_tree_unlock(eb);
1126		free_extent_buffer(eb);
1127		return 0;
1128	}
1129
1130	if (cow) {
1131		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1132				      BTRFS_NESTING_COW);
1133		if (ret) {
1134			btrfs_tree_unlock(eb);
1135			free_extent_buffer(eb);
1136			return ret;
1137		}
1138	}
 
1139
1140	if (next_key) {
1141		next_key->objectid = (u64)-1;
1142		next_key->type = (u8)-1;
1143		next_key->offset = (u64)-1;
1144	}
1145
1146	parent = eb;
1147	while (1) {
1148		level = btrfs_header_level(parent);
1149		ASSERT(level >= lowest_level);
1150
1151		ret = btrfs_bin_search(parent, 0, &key, &slot);
1152		if (ret < 0)
1153			break;
1154		if (ret && slot > 0)
1155			slot--;
1156
1157		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1158			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1159
1160		old_bytenr = btrfs_node_blockptr(parent, slot);
1161		blocksize = fs_info->nodesize;
1162		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1163
1164		if (level <= max_level) {
1165			eb = path->nodes[level];
1166			new_bytenr = btrfs_node_blockptr(eb,
1167							path->slots[level]);
1168			new_ptr_gen = btrfs_node_ptr_generation(eb,
1169							path->slots[level]);
1170		} else {
1171			new_bytenr = 0;
1172			new_ptr_gen = 0;
1173		}
1174
1175		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1176			ret = level;
1177			break;
1178		}
1179
1180		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1181		    memcmp_node_keys(parent, slot, path, level)) {
1182			if (level <= lowest_level) {
1183				ret = 0;
1184				break;
1185			}
1186
1187			eb = btrfs_read_node_slot(parent, slot);
1188			if (IS_ERR(eb)) {
1189				ret = PTR_ERR(eb);
 
 
1190				break;
1191			}
1192			btrfs_tree_lock(eb);
1193			if (cow) {
1194				ret = btrfs_cow_block(trans, dest, eb, parent,
1195						      slot, &eb,
1196						      BTRFS_NESTING_COW);
1197				if (ret) {
1198					btrfs_tree_unlock(eb);
1199					free_extent_buffer(eb);
1200					break;
1201				}
1202			}
 
1203
1204			btrfs_tree_unlock(parent);
1205			free_extent_buffer(parent);
1206
1207			parent = eb;
1208			continue;
1209		}
1210
1211		if (!cow) {
1212			btrfs_tree_unlock(parent);
1213			free_extent_buffer(parent);
1214			cow = 1;
1215			goto again;
1216		}
1217
1218		btrfs_node_key_to_cpu(path->nodes[level], &key,
1219				      path->slots[level]);
1220		btrfs_release_path(path);
1221
1222		path->lowest_level = level;
1223		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1224		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1225		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1226		path->lowest_level = 0;
1227		if (ret) {
1228			if (ret > 0)
1229				ret = -ENOENT;
1230			break;
1231		}
1232
1233		/*
1234		 * Info qgroup to trace both subtrees.
1235		 *
1236		 * We must trace both trees.
1237		 * 1) Tree reloc subtree
1238		 *    If not traced, we will leak data numbers
1239		 * 2) Fs subtree
1240		 *    If not traced, we will double count old data
1241		 *
1242		 * We don't scan the subtree right now, but only record
1243		 * the swapped tree blocks.
1244		 * The real subtree rescan is delayed until we have new
1245		 * CoW on the subtree root node before transaction commit.
1246		 */
1247		ret = btrfs_qgroup_add_swapped_blocks(dest,
1248				rc->block_group, parent, slot,
1249				path->nodes[level], path->slots[level],
1250				last_snapshot);
1251		if (ret < 0)
1252			break;
1253		/*
1254		 * swap blocks in fs tree and reloc tree.
1255		 */
1256		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1257		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1258		btrfs_mark_buffer_dirty(trans, parent);
1259
1260		btrfs_set_node_blockptr(path->nodes[level],
1261					path->slots[level], old_bytenr);
1262		btrfs_set_node_ptr_generation(path->nodes[level],
1263					      path->slots[level], old_ptr_gen);
1264		btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1265
1266		ref.action = BTRFS_ADD_DELAYED_REF;
1267		ref.bytenr = old_bytenr;
1268		ref.num_bytes = blocksize;
1269		ref.parent = path->nodes[level]->start;
1270		ref.owning_root = btrfs_root_id(src);
1271		ref.ref_root = btrfs_root_id(src);
1272		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1273		ret = btrfs_inc_extent_ref(trans, &ref);
1274		if (ret) {
1275			btrfs_abort_transaction(trans, ret);
1276			break;
1277		}
1278
1279		ref.action = BTRFS_ADD_DELAYED_REF;
1280		ref.bytenr = new_bytenr;
1281		ref.num_bytes = blocksize;
1282		ref.parent = 0;
1283		ref.owning_root = btrfs_root_id(dest);
1284		ref.ref_root = btrfs_root_id(dest);
1285		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1286		ret = btrfs_inc_extent_ref(trans, &ref);
1287		if (ret) {
1288			btrfs_abort_transaction(trans, ret);
1289			break;
1290		}
1291
1292		/* We don't know the real owning_root, use 0. */
1293		ref.action = BTRFS_DROP_DELAYED_REF;
1294		ref.bytenr = new_bytenr;
1295		ref.num_bytes = blocksize;
1296		ref.parent = path->nodes[level]->start;
1297		ref.owning_root = 0;
1298		ref.ref_root = btrfs_root_id(src);
1299		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1300		ret = btrfs_free_extent(trans, &ref);
1301		if (ret) {
1302			btrfs_abort_transaction(trans, ret);
1303			break;
1304		}
1305
1306		/* We don't know the real owning_root, use 0. */
1307		ref.action = BTRFS_DROP_DELAYED_REF;
1308		ref.bytenr = old_bytenr;
1309		ref.num_bytes = blocksize;
1310		ref.parent = 0;
1311		ref.owning_root = 0;
1312		ref.ref_root = btrfs_root_id(dest);
1313		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1314		ret = btrfs_free_extent(trans, &ref);
1315		if (ret) {
1316			btrfs_abort_transaction(trans, ret);
1317			break;
1318		}
1319
1320		btrfs_unlock_up_safe(path, 0);
1321
1322		ret = level;
1323		break;
1324	}
1325	btrfs_tree_unlock(parent);
1326	free_extent_buffer(parent);
1327	return ret;
1328}
1329
1330/*
1331 * helper to find next relocated block in reloc tree
1332 */
1333static noinline_for_stack
1334int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1335		       int *level)
1336{
1337	struct extent_buffer *eb;
1338	int i;
1339	u64 last_snapshot;
1340	u32 nritems;
1341
1342	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1343
1344	for (i = 0; i < *level; i++) {
1345		free_extent_buffer(path->nodes[i]);
1346		path->nodes[i] = NULL;
1347	}
1348
1349	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1350		eb = path->nodes[i];
1351		nritems = btrfs_header_nritems(eb);
1352		while (path->slots[i] + 1 < nritems) {
1353			path->slots[i]++;
1354			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1355			    last_snapshot)
1356				continue;
1357
1358			*level = i;
1359			return 0;
1360		}
1361		free_extent_buffer(path->nodes[i]);
1362		path->nodes[i] = NULL;
1363	}
1364	return 1;
1365}
1366
1367/*
1368 * walk down reloc tree to find relocated block of lowest level
1369 */
1370static noinline_for_stack
1371int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1372			 int *level)
1373{
1374	struct extent_buffer *eb = NULL;
1375	int i;
 
1376	u64 ptr_gen = 0;
1377	u64 last_snapshot;
 
1378	u32 nritems;
1379
1380	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1381
1382	for (i = *level; i > 0; i--) {
1383		eb = path->nodes[i];
1384		nritems = btrfs_header_nritems(eb);
1385		while (path->slots[i] < nritems) {
1386			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1387			if (ptr_gen > last_snapshot)
1388				break;
1389			path->slots[i]++;
1390		}
1391		if (path->slots[i] >= nritems) {
1392			if (i == *level)
1393				break;
1394			*level = i + 1;
1395			return 0;
1396		}
1397		if (i == 1) {
1398			*level = i;
1399			return 0;
1400		}
1401
1402		eb = btrfs_read_node_slot(eb, path->slots[i]);
1403		if (IS_ERR(eb))
1404			return PTR_ERR(eb);
 
 
 
 
1405		BUG_ON(btrfs_header_level(eb) != i - 1);
1406		path->nodes[i - 1] = eb;
1407		path->slots[i - 1] = 0;
1408	}
1409	return 1;
1410}
1411
1412/*
1413 * invalidate extent cache for file extents whose key in range of
1414 * [min_key, max_key)
1415 */
1416static int invalidate_extent_cache(struct btrfs_root *root,
1417				   const struct btrfs_key *min_key,
1418				   const struct btrfs_key *max_key)
1419{
1420	struct btrfs_fs_info *fs_info = root->fs_info;
1421	struct btrfs_inode *inode = NULL;
1422	u64 objectid;
1423	u64 start, end;
1424	u64 ino;
1425
1426	objectid = min_key->objectid;
1427	while (1) {
1428		struct extent_state *cached_state = NULL;
1429
1430		cond_resched();
1431		if (inode)
1432			iput(&inode->vfs_inode);
1433
1434		if (objectid > max_key->objectid)
1435			break;
1436
1437		inode = btrfs_find_first_inode(root, objectid);
1438		if (!inode)
1439			break;
1440		ino = btrfs_ino(inode);
1441
1442		if (ino > max_key->objectid) {
1443			iput(&inode->vfs_inode);
1444			break;
1445		}
1446
1447		objectid = ino + 1;
1448		if (!S_ISREG(inode->vfs_inode.i_mode))
1449			continue;
1450
1451		if (unlikely(min_key->objectid == ino)) {
1452			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1453				continue;
1454			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1455				start = 0;
1456			else {
1457				start = min_key->offset;
1458				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1459			}
1460		} else {
1461			start = 0;
1462		}
1463
1464		if (unlikely(max_key->objectid == ino)) {
1465			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1466				continue;
1467			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1468				end = (u64)-1;
1469			} else {
1470				if (max_key->offset == 0)
1471					continue;
1472				end = max_key->offset;
1473				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1474				end--;
1475			}
1476		} else {
1477			end = (u64)-1;
1478		}
1479
1480		/* the lock_extent waits for read_folio to complete */
1481		lock_extent(&inode->io_tree, start, end, &cached_state);
1482		btrfs_drop_extent_map_range(inode, start, end, true);
1483		unlock_extent(&inode->io_tree, start, end, &cached_state);
1484	}
1485	return 0;
1486}
1487
1488static int find_next_key(struct btrfs_path *path, int level,
1489			 struct btrfs_key *key)
1490
1491{
1492	while (level < BTRFS_MAX_LEVEL) {
1493		if (!path->nodes[level])
1494			break;
1495		if (path->slots[level] + 1 <
1496		    btrfs_header_nritems(path->nodes[level])) {
1497			btrfs_node_key_to_cpu(path->nodes[level], key,
1498					      path->slots[level] + 1);
1499			return 0;
1500		}
1501		level++;
1502	}
1503	return 1;
1504}
1505
1506/*
1507 * Insert current subvolume into reloc_control::dirty_subvol_roots
1508 */
1509static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1510			       struct reloc_control *rc,
1511			       struct btrfs_root *root)
1512{
1513	struct btrfs_root *reloc_root = root->reloc_root;
1514	struct btrfs_root_item *reloc_root_item;
1515	int ret;
1516
1517	/* @root must be a subvolume tree root with a valid reloc tree */
1518	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1519	ASSERT(reloc_root);
1520
1521	reloc_root_item = &reloc_root->root_item;
1522	memset(&reloc_root_item->drop_progress, 0,
1523		sizeof(reloc_root_item->drop_progress));
1524	btrfs_set_root_drop_level(reloc_root_item, 0);
1525	btrfs_set_root_refs(reloc_root_item, 0);
1526	ret = btrfs_update_reloc_root(trans, root);
1527	if (ret)
1528		return ret;
1529
1530	if (list_empty(&root->reloc_dirty_list)) {
1531		btrfs_grab_root(root);
1532		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1533	}
1534
1535	return 0;
1536}
1537
1538static int clean_dirty_subvols(struct reloc_control *rc)
1539{
1540	struct btrfs_root *root;
1541	struct btrfs_root *next;
1542	int ret = 0;
1543	int ret2;
1544
1545	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1546				 reloc_dirty_list) {
1547		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1548			/* Merged subvolume, cleanup its reloc root */
1549			struct btrfs_root *reloc_root = root->reloc_root;
1550
1551			list_del_init(&root->reloc_dirty_list);
1552			root->reloc_root = NULL;
1553			/*
1554			 * Need barrier to ensure clear_bit() only happens after
1555			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1556			 */
1557			smp_wmb();
1558			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1559			if (reloc_root) {
1560				/*
1561				 * btrfs_drop_snapshot drops our ref we hold for
1562				 * ->reloc_root.  If it fails however we must
1563				 * drop the ref ourselves.
1564				 */
1565				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1566				if (ret2 < 0) {
1567					btrfs_put_root(reloc_root);
1568					if (!ret)
1569						ret = ret2;
1570				}
1571			}
1572			btrfs_put_root(root);
1573		} else {
1574			/* Orphan reloc tree, just clean it up */
1575			ret2 = btrfs_drop_snapshot(root, 0, 1);
1576			if (ret2 < 0) {
1577				btrfs_put_root(root);
1578				if (!ret)
1579					ret = ret2;
1580			}
1581		}
1582	}
1583	return ret;
1584}
1585
1586/*
1587 * merge the relocated tree blocks in reloc tree with corresponding
1588 * fs tree.
1589 */
1590static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1591					       struct btrfs_root *root)
1592{
1593	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1594	struct btrfs_key key;
1595	struct btrfs_key next_key;
1596	struct btrfs_trans_handle *trans = NULL;
1597	struct btrfs_root *reloc_root;
1598	struct btrfs_root_item *root_item;
1599	struct btrfs_path *path;
1600	struct extent_buffer *leaf;
1601	int reserve_level;
1602	int level;
1603	int max_level;
1604	int replaced = 0;
1605	int ret = 0;
 
1606	u32 min_reserved;
1607
1608	path = btrfs_alloc_path();
1609	if (!path)
1610		return -ENOMEM;
1611	path->reada = READA_FORWARD;
1612
1613	reloc_root = root->reloc_root;
1614	root_item = &reloc_root->root_item;
1615
1616	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1617		level = btrfs_root_level(root_item);
1618		atomic_inc(&reloc_root->node->refs);
1619		path->nodes[level] = reloc_root->node;
1620		path->slots[level] = 0;
1621	} else {
1622		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1623
1624		level = btrfs_root_drop_level(root_item);
1625		BUG_ON(level == 0);
1626		path->lowest_level = level;
1627		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1628		path->lowest_level = 0;
1629		if (ret < 0) {
1630			btrfs_free_path(path);
1631			return ret;
1632		}
1633
1634		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1635				      path->slots[level]);
1636		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1637
1638		btrfs_unlock_up_safe(path, 0);
1639	}
1640
1641	/*
1642	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1643	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1644	 * block COW, we COW at most from level 1 to root level for each tree.
1645	 *
1646	 * Thus the needed metadata size is at most root_level * nodesize,
1647	 * and * 2 since we have two trees to COW.
1648	 */
1649	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1650	min_reserved = fs_info->nodesize * reserve_level * 2;
1651	memset(&next_key, 0, sizeof(next_key));
1652
1653	while (1) {
1654		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1655					     min_reserved,
1656					     BTRFS_RESERVE_FLUSH_LIMIT);
1657		if (ret)
1658			goto out;
 
1659		trans = btrfs_start_transaction(root, 0);
1660		if (IS_ERR(trans)) {
1661			ret = PTR_ERR(trans);
1662			trans = NULL;
1663			goto out;
1664		}
1665
1666		/*
1667		 * At this point we no longer have a reloc_control, so we can't
1668		 * depend on btrfs_init_reloc_root to update our last_trans.
1669		 *
1670		 * But that's ok, we started the trans handle on our
1671		 * corresponding fs_root, which means it's been added to the
1672		 * dirty list.  At commit time we'll still call
1673		 * btrfs_update_reloc_root() and update our root item
1674		 * appropriately.
1675		 */
1676		btrfs_set_root_last_trans(reloc_root, trans->transid);
1677		trans->block_rsv = rc->block_rsv;
1678
1679		replaced = 0;
1680		max_level = level;
1681
1682		ret = walk_down_reloc_tree(reloc_root, path, &level);
1683		if (ret < 0)
 
1684			goto out;
 
1685		if (ret > 0)
1686			break;
1687
1688		if (!find_next_key(path, level, &key) &&
1689		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1690			ret = 0;
1691		} else {
1692			ret = replace_path(trans, rc, root, reloc_root, path,
1693					   &next_key, level, max_level);
1694		}
1695		if (ret < 0)
 
1696			goto out;
 
 
1697		if (ret > 0) {
1698			level = ret;
1699			btrfs_node_key_to_cpu(path->nodes[level], &key,
1700					      path->slots[level]);
1701			replaced = 1;
1702		}
1703
1704		ret = walk_up_reloc_tree(reloc_root, path, &level);
1705		if (ret > 0)
1706			break;
1707
1708		BUG_ON(level == 0);
1709		/*
1710		 * save the merging progress in the drop_progress.
1711		 * this is OK since root refs == 1 in this case.
1712		 */
1713		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1714			       path->slots[level]);
1715		btrfs_set_root_drop_level(root_item, level);
1716
1717		btrfs_end_transaction_throttle(trans);
1718		trans = NULL;
1719
1720		btrfs_btree_balance_dirty(fs_info);
1721
1722		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1723			invalidate_extent_cache(root, &key, &next_key);
1724	}
1725
1726	/*
1727	 * handle the case only one block in the fs tree need to be
1728	 * relocated and the block is tree root.
1729	 */
1730	leaf = btrfs_lock_root_node(root);
1731	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1732			      BTRFS_NESTING_COW);
1733	btrfs_tree_unlock(leaf);
1734	free_extent_buffer(leaf);
 
 
1735out:
1736	btrfs_free_path(path);
1737
1738	if (ret == 0) {
1739		ret = insert_dirty_subvol(trans, rc, root);
1740		if (ret)
1741			btrfs_abort_transaction(trans, ret);
 
 
1742	}
1743
1744	if (trans)
1745		btrfs_end_transaction_throttle(trans);
1746
1747	btrfs_btree_balance_dirty(fs_info);
1748
1749	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1750		invalidate_extent_cache(root, &key, &next_key);
1751
1752	return ret;
1753}
1754
1755static noinline_for_stack
1756int prepare_to_merge(struct reloc_control *rc, int err)
1757{
1758	struct btrfs_root *root = rc->extent_root;
1759	struct btrfs_fs_info *fs_info = root->fs_info;
1760	struct btrfs_root *reloc_root;
1761	struct btrfs_trans_handle *trans;
1762	LIST_HEAD(reloc_roots);
1763	u64 num_bytes = 0;
1764	int ret;
1765
1766	mutex_lock(&fs_info->reloc_mutex);
1767	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1768	rc->merging_rsv_size += rc->nodes_relocated * 2;
1769	mutex_unlock(&fs_info->reloc_mutex);
1770
1771again:
1772	if (!err) {
1773		num_bytes = rc->merging_rsv_size;
1774		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1775					  BTRFS_RESERVE_FLUSH_ALL);
1776		if (ret)
1777			err = ret;
1778	}
1779
1780	trans = btrfs_join_transaction(rc->extent_root);
1781	if (IS_ERR(trans)) {
1782		if (!err)
1783			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1784						num_bytes, NULL);
1785		return PTR_ERR(trans);
1786	}
1787
1788	if (!err) {
1789		if (num_bytes != rc->merging_rsv_size) {
1790			btrfs_end_transaction(trans);
1791			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1792						num_bytes, NULL);
1793			goto again;
1794		}
1795	}
1796
1797	rc->merge_reloc_tree = true;
1798
1799	while (!list_empty(&rc->reloc_roots)) {
1800		reloc_root = list_entry(rc->reloc_roots.next,
1801					struct btrfs_root, root_list);
1802		list_del_init(&reloc_root->root_list);
1803
1804		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1805				false);
1806		if (IS_ERR(root)) {
1807			/*
1808			 * Even if we have an error we need this reloc root
1809			 * back on our list so we can clean up properly.
1810			 */
1811			list_add(&reloc_root->root_list, &reloc_roots);
1812			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1813			if (!err)
1814				err = PTR_ERR(root);
1815			break;
1816		}
1817
1818		if (unlikely(root->reloc_root != reloc_root)) {
1819			if (root->reloc_root) {
1820				btrfs_err(fs_info,
1821"reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1822					  btrfs_root_id(root),
1823					  btrfs_root_id(root->reloc_root),
1824					  root->reloc_root->root_key.type,
1825					  root->reloc_root->root_key.offset,
1826					  btrfs_root_generation(
1827						  &root->reloc_root->root_item),
1828					  btrfs_root_id(reloc_root),
1829					  reloc_root->root_key.type,
1830					  reloc_root->root_key.offset,
1831					  btrfs_root_generation(
1832						  &reloc_root->root_item));
1833			} else {
1834				btrfs_err(fs_info,
1835"reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1836					  btrfs_root_id(root),
1837					  btrfs_root_id(reloc_root),
1838					  reloc_root->root_key.type,
1839					  reloc_root->root_key.offset,
1840					  btrfs_root_generation(
1841						  &reloc_root->root_item));
1842			}
1843			list_add(&reloc_root->root_list, &reloc_roots);
1844			btrfs_put_root(root);
1845			btrfs_abort_transaction(trans, -EUCLEAN);
1846			if (!err)
1847				err = -EUCLEAN;
1848			break;
1849		}
1850
1851		/*
1852		 * set reference count to 1, so btrfs_recover_relocation
1853		 * knows it should resumes merging
1854		 */
1855		if (!err)
1856			btrfs_set_root_refs(&reloc_root->root_item, 1);
1857		ret = btrfs_update_reloc_root(trans, root);
1858
1859		/*
1860		 * Even if we have an error we need this reloc root back on our
1861		 * list so we can clean up properly.
1862		 */
1863		list_add(&reloc_root->root_list, &reloc_roots);
1864		btrfs_put_root(root);
1865
1866		if (ret) {
1867			btrfs_abort_transaction(trans, ret);
1868			if (!err)
1869				err = ret;
1870			break;
1871		}
1872	}
1873
1874	list_splice(&reloc_roots, &rc->reloc_roots);
1875
1876	if (!err)
1877		err = btrfs_commit_transaction(trans);
1878	else
1879		btrfs_end_transaction(trans);
1880	return err;
1881}
1882
1883static noinline_for_stack
1884void free_reloc_roots(struct list_head *list)
1885{
1886	struct btrfs_root *reloc_root, *tmp;
1887
1888	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
 
 
1889		__del_reloc_root(reloc_root);
 
1890}
1891
1892static noinline_for_stack
1893void merge_reloc_roots(struct reloc_control *rc)
1894{
1895	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1896	struct btrfs_root *root;
1897	struct btrfs_root *reloc_root;
 
 
 
1898	LIST_HEAD(reloc_roots);
1899	int found = 0;
1900	int ret = 0;
1901again:
1902	root = rc->extent_root;
1903
1904	/*
1905	 * this serializes us with btrfs_record_root_in_transaction,
1906	 * we have to make sure nobody is in the middle of
1907	 * adding their roots to the list while we are
1908	 * doing this splice
1909	 */
1910	mutex_lock(&fs_info->reloc_mutex);
1911	list_splice_init(&rc->reloc_roots, &reloc_roots);
1912	mutex_unlock(&fs_info->reloc_mutex);
1913
1914	while (!list_empty(&reloc_roots)) {
1915		found = 1;
1916		reloc_root = list_entry(reloc_roots.next,
1917					struct btrfs_root, root_list);
1918
1919		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1920					 false);
1921		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1922			if (WARN_ON(IS_ERR(root))) {
1923				/*
1924				 * For recovery we read the fs roots on mount,
1925				 * and if we didn't find the root then we marked
1926				 * the reloc root as a garbage root.  For normal
1927				 * relocation obviously the root should exist in
1928				 * memory.  However there's no reason we can't
1929				 * handle the error properly here just in case.
1930				 */
1931				ret = PTR_ERR(root);
1932				goto out;
1933			}
1934			if (WARN_ON(root->reloc_root != reloc_root)) {
1935				/*
1936				 * This can happen if on-disk metadata has some
1937				 * corruption, e.g. bad reloc tree key offset.
1938				 */
1939				ret = -EINVAL;
1940				goto out;
1941			}
1942			ret = merge_reloc_root(rc, root);
1943			btrfs_put_root(root);
1944			if (ret) {
1945				if (list_empty(&reloc_root->root_list))
1946					list_add_tail(&reloc_root->root_list,
1947						      &reloc_roots);
1948				goto out;
1949			}
1950		} else {
1951			if (!IS_ERR(root)) {
1952				if (root->reloc_root == reloc_root) {
1953					root->reloc_root = NULL;
1954					btrfs_put_root(reloc_root);
1955				}
1956				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1957					  &root->state);
1958				btrfs_put_root(root);
1959			}
1960
1961			list_del_init(&reloc_root->root_list);
1962			/* Don't forget to queue this reloc root for cleanup */
1963			list_add_tail(&reloc_root->reloc_dirty_list,
1964				      &rc->dirty_subvol_roots);
 
 
 
 
 
 
 
 
 
 
 
 
 
1965		}
1966	}
1967
1968	if (found) {
1969		found = 0;
1970		goto again;
1971	}
1972out:
1973	if (ret) {
1974		btrfs_handle_fs_error(fs_info, ret, NULL);
1975		free_reloc_roots(&reloc_roots);
 
1976
1977		/* new reloc root may be added */
1978		mutex_lock(&fs_info->reloc_mutex);
1979		list_splice_init(&rc->reloc_roots, &reloc_roots);
1980		mutex_unlock(&fs_info->reloc_mutex);
1981		free_reloc_roots(&reloc_roots);
 
1982	}
1983
1984	/*
1985	 * We used to have
1986	 *
1987	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1988	 *
1989	 * here, but it's wrong.  If we fail to start the transaction in
1990	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1991	 * have actually been removed from the reloc_root_tree rb tree.  This is
1992	 * fine because we're bailing here, and we hold a reference on the root
1993	 * for the list that holds it, so these roots will be cleaned up when we
1994	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1995	 * will be cleaned up on unmount.
1996	 *
1997	 * The remaining nodes will be cleaned up by free_reloc_control.
1998	 */
1999}
2000
2001static void free_block_list(struct rb_root *blocks)
2002{
2003	struct tree_block *block;
2004	struct rb_node *rb_node;
2005	while ((rb_node = rb_first(blocks))) {
2006		block = rb_entry(rb_node, struct tree_block, rb_node);
2007		rb_erase(rb_node, blocks);
2008		kfree(block);
2009	}
2010}
2011
2012static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2013				      struct btrfs_root *reloc_root)
2014{
2015	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2016	struct btrfs_root *root;
2017	int ret;
2018
2019	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
2020		return 0;
2021
2022	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2023
2024	/*
2025	 * This should succeed, since we can't have a reloc root without having
2026	 * already looked up the actual root and created the reloc root for this
2027	 * root.
2028	 *
2029	 * However if there's some sort of corruption where we have a ref to a
2030	 * reloc root without a corresponding root this could return ENOENT.
2031	 */
2032	if (IS_ERR(root)) {
2033		ASSERT(0);
2034		return PTR_ERR(root);
2035	}
2036	if (root->reloc_root != reloc_root) {
2037		ASSERT(0);
2038		btrfs_err(fs_info,
2039			  "root %llu has two reloc roots associated with it",
2040			  reloc_root->root_key.offset);
2041		btrfs_put_root(root);
2042		return -EUCLEAN;
2043	}
2044	ret = btrfs_record_root_in_trans(trans, root);
2045	btrfs_put_root(root);
2046
2047	return ret;
2048}
2049
2050static noinline_for_stack
2051struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2052				     struct reloc_control *rc,
2053				     struct btrfs_backref_node *node,
2054				     struct btrfs_backref_edge *edges[])
2055{
2056	struct btrfs_backref_node *next;
2057	struct btrfs_root *root;
2058	int index = 0;
2059	int ret;
2060
2061	next = node;
2062	while (1) {
2063		cond_resched();
2064		next = walk_up_backref(next, edges, &index);
2065		root = next->root;
 
 
2066
2067		/*
2068		 * If there is no root, then our references for this block are
2069		 * incomplete, as we should be able to walk all the way up to a
2070		 * block that is owned by a root.
2071		 *
2072		 * This path is only for SHAREABLE roots, so if we come upon a
2073		 * non-SHAREABLE root then we have backrefs that resolve
2074		 * improperly.
2075		 *
2076		 * Both of these cases indicate file system corruption, or a bug
2077		 * in the backref walking code.
2078		 */
2079		if (!root) {
2080			ASSERT(0);
2081			btrfs_err(trans->fs_info,
2082		"bytenr %llu doesn't have a backref path ending in a root",
2083				  node->bytenr);
2084			return ERR_PTR(-EUCLEAN);
2085		}
2086		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2087			ASSERT(0);
2088			btrfs_err(trans->fs_info,
2089	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2090				  node->bytenr);
2091			return ERR_PTR(-EUCLEAN);
2092		}
2093
2094		if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
2095			ret = record_reloc_root_in_trans(trans, root);
2096			if (ret)
2097				return ERR_PTR(ret);
2098			break;
2099		}
2100
2101		ret = btrfs_record_root_in_trans(trans, root);
2102		if (ret)
2103			return ERR_PTR(ret);
2104		root = root->reloc_root;
2105
2106		/*
2107		 * We could have raced with another thread which failed, so
2108		 * root->reloc_root may not be set, return ENOENT in this case.
2109		 */
2110		if (!root)
2111			return ERR_PTR(-ENOENT);
2112
2113		if (next->new_bytenr != root->node->start) {
2114			/*
2115			 * We just created the reloc root, so we shouldn't have
2116			 * ->new_bytenr set and this shouldn't be in the changed
2117			 *  list.  If it is then we have multiple roots pointing
2118			 *  at the same bytenr which indicates corruption, or
2119			 *  we've made a mistake in the backref walking code.
2120			 */
2121			ASSERT(next->new_bytenr == 0);
2122			ASSERT(list_empty(&next->list));
2123			if (next->new_bytenr || !list_empty(&next->list)) {
2124				btrfs_err(trans->fs_info,
2125	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2126					  node->bytenr, next->bytenr);
2127				return ERR_PTR(-EUCLEAN);
2128			}
2129
2130			next->new_bytenr = root->node->start;
2131			btrfs_put_root(next->root);
2132			next->root = btrfs_grab_root(root);
2133			ASSERT(next->root);
2134			list_add_tail(&next->list,
2135				      &rc->backref_cache.changed);
2136			mark_block_processed(rc, next);
2137			break;
2138		}
2139
2140		WARN_ON(1);
2141		root = NULL;
2142		next = walk_down_backref(edges, &index);
2143		if (!next || next->level <= node->level)
2144			break;
2145	}
2146	if (!root) {
2147		/*
2148		 * This can happen if there's fs corruption or if there's a bug
2149		 * in the backref lookup code.
2150		 */
2151		ASSERT(0);
2152		return ERR_PTR(-ENOENT);
2153	}
2154
2155	next = node;
2156	/* setup backref node path for btrfs_reloc_cow_block */
2157	while (1) {
2158		rc->backref_cache.path[next->level] = next;
2159		if (--index < 0)
2160			break;
2161		next = edges[index]->node[UPPER];
2162	}
2163	return root;
2164}
2165
2166/*
2167 * Select a tree root for relocation.
2168 *
2169 * Return NULL if the block is not shareable. We should use do_relocation() in
2170 * this case.
2171 *
2172 * Return a tree root pointer if the block is shareable.
2173 * Return -ENOENT if the block is root of reloc tree.
2174 */
2175static noinline_for_stack
2176struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
 
2177{
2178	struct btrfs_backref_node *next;
2179	struct btrfs_root *root;
2180	struct btrfs_root *fs_root = NULL;
2181	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2182	int index = 0;
2183
2184	next = node;
2185	while (1) {
2186		cond_resched();
2187		next = walk_up_backref(next, edges, &index);
2188		root = next->root;
 
2189
2190		/*
2191		 * This can occur if we have incomplete extent refs leading all
2192		 * the way up a particular path, in this case return -EUCLEAN.
2193		 */
2194		if (!root)
2195			return ERR_PTR(-EUCLEAN);
2196
2197		/* No other choice for non-shareable tree */
2198		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2199			return root;
2200
2201		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2202			fs_root = root;
2203
2204		if (next != node)
2205			return NULL;
2206
2207		next = walk_down_backref(edges, &index);
2208		if (!next || next->level <= node->level)
2209			break;
2210	}
2211
2212	if (!fs_root)
2213		return ERR_PTR(-ENOENT);
2214	return fs_root;
2215}
2216
2217static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2218						  struct btrfs_backref_node *node)
 
2219{
2220	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2221	struct btrfs_backref_node *next = node;
2222	struct btrfs_backref_edge *edge;
2223	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2224	u64 num_bytes = 0;
2225	int index = 0;
2226
2227	BUG_ON(node->processed);
2228
2229	while (next) {
2230		cond_resched();
2231		while (1) {
2232			if (next->processed)
2233				break;
2234
2235			num_bytes += fs_info->nodesize;
 
2236
2237			if (list_empty(&next->upper))
2238				break;
2239
2240			edge = list_entry(next->upper.next,
2241					struct btrfs_backref_edge, list[LOWER]);
2242			edges[index++] = edge;
2243			next = edge->node[UPPER];
2244		}
2245		next = walk_down_backref(edges, &index);
2246	}
2247	return num_bytes;
2248}
2249
2250static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2251				  struct reloc_control *rc,
2252				  struct btrfs_backref_node *node)
2253{
2254	struct btrfs_root *root = rc->extent_root;
2255	struct btrfs_fs_info *fs_info = root->fs_info;
2256	u64 num_bytes;
2257	int ret;
2258	u64 tmp;
2259
2260	num_bytes = calcu_metadata_size(rc, node) * 2;
2261
2262	trans->block_rsv = rc->block_rsv;
2263	rc->reserved_bytes += num_bytes;
2264
2265	/*
2266	 * We are under a transaction here so we can only do limited flushing.
2267	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2268	 * transaction and try to refill when we can flush all the things.
2269	 */
2270	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2271				     BTRFS_RESERVE_FLUSH_LIMIT);
2272	if (ret) {
2273		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2274		while (tmp <= rc->reserved_bytes)
2275			tmp <<= 1;
2276		/*
2277		 * only one thread can access block_rsv at this point,
2278		 * so we don't need hold lock to protect block_rsv.
2279		 * we expand more reservation size here to allow enough
2280		 * space for relocation and we will return earlier in
2281		 * enospc case.
2282		 */
2283		rc->block_rsv->size = tmp + fs_info->nodesize *
2284				      RELOCATION_RESERVED_NODES;
2285		return -EAGAIN;
 
 
 
2286	}
2287
2288	return 0;
2289}
2290
2291/*
2292 * relocate a block tree, and then update pointers in upper level
2293 * blocks that reference the block to point to the new location.
2294 *
2295 * if called by link_to_upper, the block has already been relocated.
2296 * in that case this function just updates pointers.
2297 */
2298static int do_relocation(struct btrfs_trans_handle *trans,
2299			 struct reloc_control *rc,
2300			 struct btrfs_backref_node *node,
2301			 struct btrfs_key *key,
2302			 struct btrfs_path *path, int lowest)
2303{
2304	struct btrfs_backref_node *upper;
2305	struct btrfs_backref_edge *edge;
2306	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2307	struct btrfs_root *root;
2308	struct extent_buffer *eb;
2309	u32 blocksize;
2310	u64 bytenr;
 
2311	int slot;
2312	int ret = 0;
 
2313
2314	/*
2315	 * If we are lowest then this is the first time we're processing this
2316	 * block, and thus shouldn't have an eb associated with it yet.
2317	 */
2318	ASSERT(!lowest || !node->eb);
2319
2320	path->lowest_level = node->level + 1;
2321	rc->backref_cache.path[node->level] = node;
2322	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2323		cond_resched();
2324
2325		upper = edge->node[UPPER];
2326		root = select_reloc_root(trans, rc, upper, edges);
2327		if (IS_ERR(root)) {
2328			ret = PTR_ERR(root);
2329			goto next;
2330		}
2331
2332		if (upper->eb && !upper->locked) {
2333			if (!lowest) {
2334				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2335				if (ret < 0)
2336					goto next;
2337				BUG_ON(ret);
2338				bytenr = btrfs_node_blockptr(upper->eb, slot);
2339				if (node->eb->start == bytenr)
2340					goto next;
2341			}
2342			btrfs_backref_drop_node_buffer(upper);
2343		}
2344
2345		if (!upper->eb) {
2346			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2347			if (ret) {
2348				if (ret > 0)
2349					ret = -ENOENT;
2350
2351				btrfs_release_path(path);
2352				break;
2353			}
 
2354
2355			if (!upper->eb) {
2356				upper->eb = path->nodes[upper->level];
2357				path->nodes[upper->level] = NULL;
2358			} else {
2359				BUG_ON(upper->eb != path->nodes[upper->level]);
2360			}
2361
2362			upper->locked = 1;
2363			path->locks[upper->level] = 0;
2364
2365			slot = path->slots[upper->level];
2366			btrfs_release_path(path);
2367		} else {
2368			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2369			if (ret < 0)
2370				goto next;
2371			BUG_ON(ret);
2372		}
2373
2374		bytenr = btrfs_node_blockptr(upper->eb, slot);
2375		if (lowest) {
2376			if (bytenr != node->bytenr) {
2377				btrfs_err(root->fs_info,
2378		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2379					  bytenr, node->bytenr, slot,
2380					  upper->eb->start);
2381				ret = -EIO;
2382				goto next;
2383			}
2384		} else {
2385			if (node->eb->start == bytenr)
2386				goto next;
2387		}
2388
2389		blocksize = root->fs_info->nodesize;
2390		eb = btrfs_read_node_slot(upper->eb, slot);
2391		if (IS_ERR(eb)) {
2392			ret = PTR_ERR(eb);
 
 
2393			goto next;
2394		}
2395		btrfs_tree_lock(eb);
 
2396
2397		if (!node->eb) {
2398			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2399					      slot, &eb, BTRFS_NESTING_COW);
2400			btrfs_tree_unlock(eb);
2401			free_extent_buffer(eb);
2402			if (ret < 0)
 
2403				goto next;
2404			/*
2405			 * We've just COWed this block, it should have updated
2406			 * the correct backref node entry.
2407			 */
2408			ASSERT(node->eb == eb);
2409		} else {
2410			struct btrfs_ref ref = {
2411				.action = BTRFS_ADD_DELAYED_REF,
2412				.bytenr = node->eb->start,
2413				.num_bytes = blocksize,
2414				.parent = upper->eb->start,
2415				.owning_root = btrfs_header_owner(upper->eb),
2416				.ref_root = btrfs_header_owner(upper->eb),
2417			};
2418
2419			btrfs_set_node_blockptr(upper->eb, slot,
2420						node->eb->start);
2421			btrfs_set_node_ptr_generation(upper->eb, slot,
2422						      trans->transid);
2423			btrfs_mark_buffer_dirty(trans, upper->eb);
 
 
 
 
 
 
 
2424
2425			btrfs_init_tree_ref(&ref, node->level,
2426					    btrfs_root_id(root), false);
2427			ret = btrfs_inc_extent_ref(trans, &ref);
2428			if (!ret)
2429				ret = btrfs_drop_subtree(trans, root, eb,
2430							 upper->eb);
2431			if (ret)
2432				btrfs_abort_transaction(trans, ret);
2433		}
2434next:
2435		if (!upper->pending)
2436			btrfs_backref_drop_node_buffer(upper);
2437		else
2438			btrfs_backref_unlock_node_buffer(upper);
2439		if (ret)
2440			break;
2441	}
2442
2443	if (!ret && node->pending) {
2444		btrfs_backref_drop_node_buffer(node);
2445		list_move_tail(&node->list, &rc->backref_cache.changed);
2446		node->pending = 0;
2447	}
2448
2449	path->lowest_level = 0;
2450
2451	/*
2452	 * We should have allocated all of our space in the block rsv and thus
2453	 * shouldn't ENOSPC.
2454	 */
2455	ASSERT(ret != -ENOSPC);
2456	return ret;
2457}
2458
2459static int link_to_upper(struct btrfs_trans_handle *trans,
2460			 struct reloc_control *rc,
2461			 struct btrfs_backref_node *node,
2462			 struct btrfs_path *path)
2463{
2464	struct btrfs_key key;
2465
2466	btrfs_node_key_to_cpu(node->eb, &key, 0);
2467	return do_relocation(trans, rc, node, &key, path, 0);
2468}
2469
2470static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2471				struct reloc_control *rc,
2472				struct btrfs_path *path, int err)
2473{
2474	LIST_HEAD(list);
2475	struct btrfs_backref_cache *cache = &rc->backref_cache;
2476	struct btrfs_backref_node *node;
2477	int level;
2478	int ret;
2479
2480	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2481		while (!list_empty(&cache->pending[level])) {
2482			node = list_entry(cache->pending[level].next,
2483					  struct btrfs_backref_node, list);
2484			list_move_tail(&node->list, &list);
2485			BUG_ON(!node->pending);
2486
2487			if (!err) {
2488				ret = link_to_upper(trans, rc, node, path);
2489				if (ret < 0)
2490					err = ret;
2491			}
2492		}
2493		list_splice_init(&list, &cache->pending[level]);
2494	}
2495	return err;
2496}
2497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498/*
2499 * mark a block and all blocks directly/indirectly reference the block
2500 * as processed.
2501 */
2502static void update_processed_blocks(struct reloc_control *rc,
2503				    struct btrfs_backref_node *node)
2504{
2505	struct btrfs_backref_node *next = node;
2506	struct btrfs_backref_edge *edge;
2507	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2508	int index = 0;
2509
2510	while (next) {
2511		cond_resched();
2512		while (1) {
2513			if (next->processed)
2514				break;
2515
2516			mark_block_processed(rc, next);
2517
2518			if (list_empty(&next->upper))
2519				break;
2520
2521			edge = list_entry(next->upper.next,
2522					struct btrfs_backref_edge, list[LOWER]);
2523			edges[index++] = edge;
2524			next = edge->node[UPPER];
2525		}
2526		next = walk_down_backref(edges, &index);
2527	}
2528}
2529
2530static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2531{
2532	u32 blocksize = rc->extent_root->fs_info->nodesize;
2533
2534	if (test_range_bit(&rc->processed_blocks, bytenr,
2535			   bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2536		return 1;
2537	return 0;
2538}
2539
2540static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2541			      struct tree_block *block)
2542{
2543	struct btrfs_tree_parent_check check = {
2544		.level = block->level,
2545		.owner_root = block->owner,
2546		.transid = block->key.offset
2547	};
2548	struct extent_buffer *eb;
2549
2550	eb = read_tree_block(fs_info, block->bytenr, &check);
2551	if (IS_ERR(eb))
2552		return PTR_ERR(eb);
2553	if (!extent_buffer_uptodate(eb)) {
2554		free_extent_buffer(eb);
2555		return -EIO;
2556	}
 
2557	if (block->level == 0)
2558		btrfs_item_key_to_cpu(eb, &block->key, 0);
2559	else
2560		btrfs_node_key_to_cpu(eb, &block->key, 0);
2561	free_extent_buffer(eb);
2562	block->key_ready = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2563	return 0;
2564}
2565
2566/*
2567 * helper function to relocate a tree block
2568 */
2569static int relocate_tree_block(struct btrfs_trans_handle *trans,
2570				struct reloc_control *rc,
2571				struct btrfs_backref_node *node,
2572				struct btrfs_key *key,
2573				struct btrfs_path *path)
2574{
2575	struct btrfs_root *root;
2576	int ret = 0;
2577
2578	if (!node)
2579		return 0;
2580
2581	/*
2582	 * If we fail here we want to drop our backref_node because we are going
2583	 * to start over and regenerate the tree for it.
2584	 */
2585	ret = reserve_metadata_space(trans, rc, node);
2586	if (ret)
2587		goto out;
2588
2589	BUG_ON(node->processed);
2590	root = select_one_root(node);
2591	if (IS_ERR(root)) {
2592		ret = PTR_ERR(root);
2593
2594		/* See explanation in select_one_root for the -EUCLEAN case. */
2595		ASSERT(ret == -ENOENT);
2596		if (ret == -ENOENT) {
2597			ret = 0;
2598			update_processed_blocks(rc, node);
2599		}
2600		goto out;
2601	}
2602
 
 
 
 
 
 
2603	if (root) {
2604		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2605			/*
2606			 * This block was the root block of a root, and this is
2607			 * the first time we're processing the block and thus it
2608			 * should not have had the ->new_bytenr modified and
2609			 * should have not been included on the changed list.
2610			 *
2611			 * However in the case of corruption we could have
2612			 * multiple refs pointing to the same block improperly,
2613			 * and thus we would trip over these checks.  ASSERT()
2614			 * for the developer case, because it could indicate a
2615			 * bug in the backref code, however error out for a
2616			 * normal user in the case of corruption.
2617			 */
2618			ASSERT(node->new_bytenr == 0);
2619			ASSERT(list_empty(&node->list));
2620			if (node->new_bytenr || !list_empty(&node->list)) {
2621				btrfs_err(root->fs_info,
2622				  "bytenr %llu has improper references to it",
2623					  node->bytenr);
2624				ret = -EUCLEAN;
2625				goto out;
2626			}
2627			ret = btrfs_record_root_in_trans(trans, root);
2628			if (ret)
2629				goto out;
2630			/*
2631			 * Another thread could have failed, need to check if we
2632			 * have reloc_root actually set.
2633			 */
2634			if (!root->reloc_root) {
2635				ret = -ENOENT;
2636				goto out;
2637			}
2638			root = root->reloc_root;
2639			node->new_bytenr = root->node->start;
2640			btrfs_put_root(node->root);
2641			node->root = btrfs_grab_root(root);
2642			ASSERT(node->root);
2643			list_add_tail(&node->list, &rc->backref_cache.changed);
2644		} else {
2645			path->lowest_level = node->level;
2646			if (root == root->fs_info->chunk_root)
2647				btrfs_reserve_chunk_metadata(trans, false);
2648			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2649			btrfs_release_path(path);
2650			if (root == root->fs_info->chunk_root)
2651				btrfs_trans_release_chunk_metadata(trans);
2652			if (ret > 0)
2653				ret = 0;
2654		}
2655		if (!ret)
2656			update_processed_blocks(rc, node);
2657	} else {
2658		ret = do_relocation(trans, rc, node, key, path, 1);
2659	}
2660out:
2661	if (ret || node->level == 0 || node->cowonly)
2662		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2663	return ret;
2664}
2665
2666/*
2667 * relocate a list of blocks
2668 */
2669static noinline_for_stack
2670int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2671			 struct reloc_control *rc, struct rb_root *blocks)
2672{
2673	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2674	struct btrfs_backref_node *node;
2675	struct btrfs_path *path;
2676	struct tree_block *block;
2677	struct tree_block *next;
2678	int ret = 0;
 
2679
2680	path = btrfs_alloc_path();
2681	if (!path) {
2682		ret = -ENOMEM;
2683		goto out_free_blocks;
2684	}
2685
2686	/* Kick in readahead for tree blocks with missing keys */
2687	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2688		if (!block->key_ready)
2689			btrfs_readahead_tree_block(fs_info, block->bytenr,
2690						   block->owner, 0,
2691						   block->level);
2692	}
2693
2694	/* Get first keys */
2695	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2696		if (!block->key_ready) {
2697			ret = get_tree_block_key(fs_info, block);
2698			if (ret)
2699				goto out_free_path;
2700		}
 
2701	}
2702
2703	/* Do tree relocation */
2704	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2705		node = build_backref_tree(trans, rc, &block->key,
 
 
2706					  block->level, block->bytenr);
2707		if (IS_ERR(node)) {
2708			ret = PTR_ERR(node);
2709			goto out;
2710		}
2711
2712		ret = relocate_tree_block(trans, rc, node, &block->key,
2713					  path);
2714		if (ret < 0)
2715			break;
 
 
 
 
2716	}
2717out:
2718	ret = finish_pending_nodes(trans, rc, path, ret);
2719
2720out_free_path:
2721	btrfs_free_path(path);
2722out_free_blocks:
2723	free_block_list(blocks);
2724	return ret;
2725}
2726
2727static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
 
 
2728{
2729	const struct file_extent_cluster *cluster = &rc->cluster;
2730	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2731	u64 alloc_hint = 0;
2732	u64 start;
2733	u64 end;
2734	u64 offset = inode->reloc_block_group_start;
2735	u64 num_bytes;
2736	int nr;
2737	int ret = 0;
2738	u64 i_size = i_size_read(&inode->vfs_inode);
2739	u64 prealloc_start = cluster->start - offset;
2740	u64 prealloc_end = cluster->end - offset;
2741	u64 cur_offset = prealloc_start;
2742
2743	/*
2744	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2745	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2746	 * btrfs_do_readpage() call of previously relocated file cluster.
2747	 *
2748	 * If the current cluster starts in the above range, btrfs_do_readpage()
2749	 * will skip the read, and relocate_one_folio() will later writeback
2750	 * the padding zeros as new data, causing data corruption.
2751	 *
2752	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2753	 */
2754	if (!PAGE_ALIGNED(i_size)) {
2755		struct address_space *mapping = inode->vfs_inode.i_mapping;
2756		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2757		const u32 sectorsize = fs_info->sectorsize;
2758		struct folio *folio;
2759
2760		ASSERT(sectorsize < PAGE_SIZE);
2761		ASSERT(IS_ALIGNED(i_size, sectorsize));
2762
2763		/*
2764		 * Subpage can't handle page with DIRTY but without UPTODATE
2765		 * bit as it can lead to the following deadlock:
2766		 *
2767		 * btrfs_read_folio()
2768		 * | Page already *locked*
2769		 * |- btrfs_lock_and_flush_ordered_range()
2770		 *    |- btrfs_start_ordered_extent()
2771		 *       |- extent_write_cache_pages()
2772		 *          |- lock_page()
2773		 *             We try to lock the page we already hold.
2774		 *
2775		 * Here we just writeback the whole data reloc inode, so that
2776		 * we will be ensured to have no dirty range in the page, and
2777		 * are safe to clear the uptodate bits.
2778		 *
2779		 * This shouldn't cause too much overhead, as we need to write
2780		 * the data back anyway.
2781		 */
2782		ret = filemap_write_and_wait(mapping);
2783		if (ret < 0)
2784			return ret;
2785
2786		clear_extent_bits(&inode->io_tree, i_size,
2787				  round_up(i_size, PAGE_SIZE) - 1,
2788				  EXTENT_UPTODATE);
2789		folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2790		/*
2791		 * If page is freed we don't need to do anything then, as we
2792		 * will re-read the whole page anyway.
2793		 */
2794		if (!IS_ERR(folio)) {
2795			btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2796					round_up(i_size, PAGE_SIZE) - i_size);
2797			folio_unlock(folio);
2798			folio_put(folio);
2799		}
2800	}
2801
2802	BUG_ON(cluster->start != cluster->boundary[0]);
2803	ret = btrfs_alloc_data_chunk_ondemand(inode,
2804					      prealloc_end + 1 - prealloc_start);
2805	if (ret)
2806		return ret;
2807
2808	btrfs_inode_lock(inode, 0);
2809	for (nr = 0; nr < cluster->nr; nr++) {
2810		struct extent_state *cached_state = NULL;
 
2811
 
2812		start = cluster->boundary[nr] - offset;
2813		if (nr + 1 < cluster->nr)
2814			end = cluster->boundary[nr + 1] - 1 - offset;
2815		else
2816			end = cluster->end - offset;
2817
2818		lock_extent(&inode->io_tree, start, end, &cached_state);
2819		num_bytes = end + 1 - start;
2820		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2821						num_bytes, num_bytes,
2822						end + 1, &alloc_hint);
2823		cur_offset = end + 1;
2824		unlock_extent(&inode->io_tree, start, end, &cached_state);
2825		if (ret)
2826			break;
 
2827	}
2828	btrfs_inode_unlock(inode, 0);
2829
2830	if (cur_offset < prealloc_end)
2831		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2832					       prealloc_end + 1 - cur_offset);
2833	return ret;
2834}
2835
2836static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
 
 
2837{
2838	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
 
2839	struct extent_map *em;
2840	struct extent_state *cached_state = NULL;
2841	u64 offset = inode->reloc_block_group_start;
2842	u64 start = rc->cluster.start - offset;
2843	u64 end = rc->cluster.end - offset;
2844	int ret = 0;
2845
2846	em = alloc_extent_map();
2847	if (!em)
2848		return -ENOMEM;
2849
2850	em->start = start;
2851	em->len = end + 1 - start;
2852	em->disk_bytenr = rc->cluster.start;
2853	em->disk_num_bytes = em->len;
2854	em->ram_bytes = em->len;
2855	em->flags |= EXTENT_FLAG_PINNED;
2856
2857	lock_extent(&inode->io_tree, start, end, &cached_state);
2858	ret = btrfs_replace_extent_map_range(inode, em, false);
2859	unlock_extent(&inode->io_tree, start, end, &cached_state);
2860	free_extent_map(em);
2861
2862	return ret;
2863}
2864
2865/*
2866 * Allow error injection to test balance/relocation cancellation
2867 */
2868noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2869{
2870	return atomic_read(&fs_info->balance_cancel_req) ||
2871		atomic_read(&fs_info->reloc_cancel_req) ||
2872		fatal_signal_pending(current);
2873}
2874ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2875
2876static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2877				    int cluster_nr)
2878{
2879	/* Last extent, use cluster end directly */
2880	if (cluster_nr >= cluster->nr - 1)
2881		return cluster->end;
2882
2883	/* Use next boundary start*/
2884	return cluster->boundary[cluster_nr + 1] - 1;
2885}
2886
2887static int relocate_one_folio(struct reloc_control *rc,
2888			      struct file_ra_state *ra,
2889			      int *cluster_nr, unsigned long index)
2890{
2891	const struct file_extent_cluster *cluster = &rc->cluster;
2892	struct inode *inode = rc->data_inode;
2893	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2894	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2895	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2896	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2897	struct folio *folio;
2898	u64 folio_start;
2899	u64 folio_end;
2900	u64 cur;
2901	int ret;
2902	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2903
2904	ASSERT(index <= last_index);
2905again:
2906	folio = filemap_lock_folio(inode->i_mapping, index);
2907	if (IS_ERR(folio)) {
2908
2909		/*
2910		 * On relocation we're doing readahead on the relocation inode,
2911		 * but if the filesystem is backed by a RAID stripe tree we can
2912		 * get ENOENT (e.g. due to preallocated extents not being
2913		 * mapped in the RST) from the lookup.
2914		 *
2915		 * But readahead doesn't handle the error and submits invalid
2916		 * reads to the device, causing a assertion failures.
2917		 */
2918		if (!use_rst)
2919			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2920						  index, last_index + 1 - index);
2921		folio = __filemap_get_folio(inode->i_mapping, index,
2922					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2923					    mask);
2924		if (IS_ERR(folio))
2925			return PTR_ERR(folio);
2926	}
2927
2928	WARN_ON(folio_order(folio));
2929
2930	if (folio_test_readahead(folio) && !use_rst)
2931		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2932					   folio, last_index + 1 - index);
2933
2934	if (!folio_test_uptodate(folio)) {
2935		btrfs_read_folio(NULL, folio);
2936		folio_lock(folio);
2937		if (!folio_test_uptodate(folio)) {
2938			ret = -EIO;
2939			goto release_folio;
2940		}
2941		if (folio->mapping != inode->i_mapping) {
2942			folio_unlock(folio);
2943			folio_put(folio);
2944			goto again;
2945		}
2946	}
2947
2948	/*
2949	 * We could have lost folio private when we dropped the lock to read the
2950	 * folio above, make sure we set_page_extent_mapped here so we have any
2951	 * of the subpage blocksize stuff we need in place.
2952	 */
2953	ret = set_folio_extent_mapped(folio);
2954	if (ret < 0)
2955		goto release_folio;
2956
2957	folio_start = folio_pos(folio);
2958	folio_end = folio_start + PAGE_SIZE - 1;
2959
2960	/*
2961	 * Start from the cluster, as for subpage case, the cluster can start
2962	 * inside the folio.
2963	 */
2964	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2965	while (cur <= folio_end) {
2966		struct extent_state *cached_state = NULL;
2967		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2968		u64 extent_end = get_cluster_boundary_end(cluster,
2969						*cluster_nr) - offset;
2970		u64 clamped_start = max(folio_start, extent_start);
2971		u64 clamped_end = min(folio_end, extent_end);
2972		u32 clamped_len = clamped_end + 1 - clamped_start;
2973
2974		/* Reserve metadata for this range */
2975		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2976						      clamped_len, clamped_len,
2977						      false);
2978		if (ret)
2979			goto release_folio;
2980
2981		/* Mark the range delalloc and dirty for later writeback */
2982		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2983			    &cached_state);
2984		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2985						clamped_end, 0, &cached_state);
2986		if (ret) {
2987			clear_extent_bit(&BTRFS_I(inode)->io_tree,
2988					 clamped_start, clamped_end,
2989					 EXTENT_LOCKED | EXTENT_BOUNDARY,
2990					 &cached_state);
2991			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2992							clamped_len, true);
2993			btrfs_delalloc_release_extents(BTRFS_I(inode),
2994						       clamped_len);
2995			goto release_folio;
2996		}
2997		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2998
2999		/*
3000		 * Set the boundary if it's inside the folio.
3001		 * Data relocation requires the destination extents to have the
3002		 * same size as the source.
3003		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3004		 * with previous extent.
3005		 */
3006		if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
3007			u64 boundary_start = cluster->boundary[*cluster_nr] -
3008						offset;
3009			u64 boundary_end = boundary_start +
3010					   fs_info->sectorsize - 1;
3011
3012			set_extent_bit(&BTRFS_I(inode)->io_tree,
3013				       boundary_start, boundary_end,
3014				       EXTENT_BOUNDARY, NULL);
3015		}
3016		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3017			      &cached_state);
3018		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3019		cur += clamped_len;
3020
3021		/* Crossed extent end, go to next extent */
3022		if (cur >= extent_end) {
3023			(*cluster_nr)++;
3024			/* Just finished the last extent of the cluster, exit. */
3025			if (*cluster_nr >= cluster->nr)
3026				break;
3027		}
 
3028	}
3029	folio_unlock(folio);
3030	folio_put(folio);
3031
3032	balance_dirty_pages_ratelimited(inode->i_mapping);
3033	btrfs_throttle(fs_info);
3034	if (btrfs_should_cancel_balance(fs_info))
3035		ret = -ECANCELED;
3036	return ret;
3037
3038release_folio:
3039	folio_unlock(folio);
3040	folio_put(folio);
3041	return ret;
3042}
3043
3044static int relocate_file_extent_cluster(struct reloc_control *rc)
 
3045{
3046	struct inode *inode = rc->data_inode;
3047	const struct file_extent_cluster *cluster = &rc->cluster;
3048	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
3049	unsigned long index;
3050	unsigned long last_index;
 
3051	struct file_ra_state *ra;
3052	int cluster_nr = 0;
 
3053	int ret = 0;
3054
3055	if (!cluster->nr)
3056		return 0;
3057
3058	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3059	if (!ra)
3060		return -ENOMEM;
3061
3062	ret = prealloc_file_extent_cluster(rc);
3063	if (ret)
3064		goto out;
3065
3066	file_ra_state_init(ra, inode->i_mapping);
3067
3068	ret = setup_relocation_extent_mapping(rc);
 
3069	if (ret)
3070		goto out;
3071
3072	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3073	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3074	     index <= last_index && !ret; index++)
3075		ret = relocate_one_folio(rc, ra, &cluster_nr, index);
3076	if (ret == 0)
3077		WARN_ON(cluster_nr != cluster->nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3078out:
3079	kfree(ra);
3080	return ret;
3081}
3082
3083static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3084					   const struct btrfs_key *extent_key)
 
3085{
3086	struct inode *inode = rc->data_inode;
3087	struct file_extent_cluster *cluster = &rc->cluster;
3088	int ret;
3089	struct btrfs_root *root = BTRFS_I(inode)->root;
3090
3091	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3092		ret = relocate_file_extent_cluster(rc);
3093		if (ret)
3094			return ret;
3095		cluster->nr = 0;
3096	}
3097
3098	/*
3099	 * Under simple quotas, we set root->relocation_src_root when we find
3100	 * the extent. If adjacent extents have different owners, we can't merge
3101	 * them while relocating. Handle this by storing the owning root that
3102	 * started a cluster and if we see an extent from a different root break
3103	 * cluster formation (just like the above case of non-adjacent extents).
3104	 *
3105	 * Without simple quotas, relocation_src_root is always 0, so we should
3106	 * never see a mismatch, and it should have no effect on relocation
3107	 * clusters.
3108	 */
3109	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3110		u64 tmp = root->relocation_src_root;
3111
3112		/*
3113		 * root->relocation_src_root is the state that actually affects
3114		 * the preallocation we do here, so set it to the root owning
3115		 * the cluster we need to relocate.
3116		 */
3117		root->relocation_src_root = cluster->owning_root;
3118		ret = relocate_file_extent_cluster(rc);
3119		if (ret)
3120			return ret;
3121		cluster->nr = 0;
3122		/* And reset it back for the current extent's owning root. */
3123		root->relocation_src_root = tmp;
3124	}
3125
3126	if (!cluster->nr) {
3127		cluster->start = extent_key->objectid;
3128		cluster->owning_root = root->relocation_src_root;
3129	}
3130	else
3131		BUG_ON(cluster->nr >= MAX_EXTENTS);
3132	cluster->end = extent_key->objectid + extent_key->offset - 1;
3133	cluster->boundary[cluster->nr] = extent_key->objectid;
3134	cluster->nr++;
3135
3136	if (cluster->nr >= MAX_EXTENTS) {
3137		ret = relocate_file_extent_cluster(rc);
3138		if (ret)
3139			return ret;
3140		cluster->nr = 0;
3141	}
3142	return 0;
3143}
3144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3145/*
3146 * helper to add a tree block to the list.
3147 * the major work is getting the generation and level of the block
3148 */
3149static int add_tree_block(struct reloc_control *rc,
3150			  const struct btrfs_key *extent_key,
3151			  struct btrfs_path *path,
3152			  struct rb_root *blocks)
3153{
3154	struct extent_buffer *eb;
3155	struct btrfs_extent_item *ei;
3156	struct btrfs_tree_block_info *bi;
3157	struct tree_block *block;
3158	struct rb_node *rb_node;
3159	u32 item_size;
3160	int level = -1;
3161	u64 generation;
3162	u64 owner = 0;
3163
3164	eb =  path->nodes[0];
3165	item_size = btrfs_item_size(eb, path->slots[0]);
3166
3167	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3168	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3169		unsigned long ptr = 0, end;
3170
3171		ei = btrfs_item_ptr(eb, path->slots[0],
3172				struct btrfs_extent_item);
3173		end = (unsigned long)ei + item_size;
3174		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3175			bi = (struct btrfs_tree_block_info *)(ei + 1);
3176			level = btrfs_tree_block_level(eb, bi);
3177			ptr = (unsigned long)(bi + 1);
3178		} else {
3179			level = (int)extent_key->offset;
3180			ptr = (unsigned long)(ei + 1);
3181		}
3182		generation = btrfs_extent_generation(eb, ei);
3183
3184		/*
3185		 * We're reading random blocks without knowing their owner ahead
3186		 * of time.  This is ok most of the time, as all reloc roots and
3187		 * fs roots have the same lock type.  However normal trees do
3188		 * not, and the only way to know ahead of time is to read the
3189		 * inline ref offset.  We know it's an fs root if
3190		 *
3191		 * 1. There's more than one ref.
3192		 * 2. There's a SHARED_DATA_REF_KEY set.
3193		 * 3. FULL_BACKREF is set on the flags.
3194		 *
3195		 * Otherwise it's safe to assume that the ref offset == the
3196		 * owner of this block, so we can use that when calling
3197		 * read_tree_block.
3198		 */
3199		if (btrfs_extent_refs(eb, ei) == 1 &&
3200		    !(btrfs_extent_flags(eb, ei) &
3201		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3202		    ptr < end) {
3203			struct btrfs_extent_inline_ref *iref;
3204			int type;
3205
3206			iref = (struct btrfs_extent_inline_ref *)ptr;
3207			type = btrfs_get_extent_inline_ref_type(eb, iref,
3208							BTRFS_REF_TYPE_BLOCK);
3209			if (type == BTRFS_REF_TYPE_INVALID)
3210				return -EINVAL;
3211			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3212				owner = btrfs_extent_inline_ref_offset(eb, iref);
3213		}
3214	} else {
3215		btrfs_print_leaf(eb);
3216		btrfs_err(rc->block_group->fs_info,
3217			  "unrecognized tree backref at tree block %llu slot %u",
3218			  eb->start, path->slots[0]);
3219		btrfs_release_path(path);
3220		return -EUCLEAN;
 
 
 
 
 
 
 
 
 
 
3221	}
3222
3223	btrfs_release_path(path);
3224
3225	BUG_ON(level == -1);
3226
3227	block = kmalloc(sizeof(*block), GFP_NOFS);
3228	if (!block)
3229		return -ENOMEM;
3230
3231	block->bytenr = extent_key->objectid;
3232	block->key.objectid = rc->extent_root->fs_info->nodesize;
3233	block->key.offset = generation;
3234	block->level = level;
3235	block->key_ready = false;
3236	block->owner = owner;
3237
3238	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3239	if (rb_node)
3240		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3241				    -EEXIST);
3242
3243	return 0;
3244}
3245
3246/*
3247 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3248 */
3249static int __add_tree_block(struct reloc_control *rc,
3250			    u64 bytenr, u32 blocksize,
3251			    struct rb_root *blocks)
3252{
3253	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3254	struct btrfs_path *path;
3255	struct btrfs_key key;
3256	int ret;
3257	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
 
3258
3259	if (tree_block_processed(bytenr, rc))
3260		return 0;
3261
3262	if (rb_simple_search(blocks, bytenr))
3263		return 0;
3264
3265	path = btrfs_alloc_path();
3266	if (!path)
3267		return -ENOMEM;
3268again:
3269	key.objectid = bytenr;
3270	if (skinny) {
3271		key.type = BTRFS_METADATA_ITEM_KEY;
3272		key.offset = (u64)-1;
3273	} else {
3274		key.type = BTRFS_EXTENT_ITEM_KEY;
3275		key.offset = blocksize;
3276	}
3277
3278	path->search_commit_root = 1;
3279	path->skip_locking = 1;
3280	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3281	if (ret < 0)
3282		goto out;
3283
3284	if (ret > 0 && skinny) {
3285		if (path->slots[0]) {
3286			path->slots[0]--;
3287			btrfs_item_key_to_cpu(path->nodes[0], &key,
3288					      path->slots[0]);
3289			if (key.objectid == bytenr &&
3290			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3291			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3292			      key.offset == blocksize)))
3293				ret = 0;
3294		}
3295
3296		if (ret) {
3297			skinny = false;
3298			btrfs_release_path(path);
3299			goto again;
3300		}
3301	}
3302	if (ret) {
3303		ASSERT(ret == 1);
3304		btrfs_print_leaf(path->nodes[0]);
3305		btrfs_err(fs_info,
3306	     "tree block extent item (%llu) is not found in extent tree",
3307		     bytenr);
3308		WARN_ON(1);
3309		ret = -EINVAL;
3310		goto out;
3311	}
3312
3313	ret = add_tree_block(rc, &key, path, blocks);
3314out:
3315	btrfs_free_path(path);
3316	return ret;
3317}
3318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3319static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3320				    struct btrfs_block_group *block_group,
3321				    struct inode *inode,
3322				    u64 ino)
3323{
 
3324	struct btrfs_root *root = fs_info->tree_root;
3325	struct btrfs_trans_handle *trans;
3326	int ret = 0;
3327
3328	if (inode)
3329		goto truncate;
3330
3331	inode = btrfs_iget(ino, root);
3332	if (IS_ERR(inode))
 
 
 
 
 
 
3333		return -ENOENT;
 
3334
3335truncate:
3336	ret = btrfs_check_trunc_cache_free_space(fs_info,
3337						 &fs_info->global_block_rsv);
3338	if (ret)
3339		goto out;
3340
3341	trans = btrfs_join_transaction(root);
3342	if (IS_ERR(trans)) {
3343		ret = PTR_ERR(trans);
3344		goto out;
3345	}
3346
3347	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3348
3349	btrfs_end_transaction(trans);
3350	btrfs_btree_balance_dirty(fs_info);
3351out:
3352	iput(inode);
3353	return ret;
3354}
3355
3356/*
3357 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3358 * cache inode, to avoid free space cache data extent blocking data relocation.
3359 */
3360static int delete_v1_space_cache(struct extent_buffer *leaf,
3361				 struct btrfs_block_group *block_group,
3362				 u64 data_bytenr)
 
 
3363{
3364	u64 space_cache_ino;
3365	struct btrfs_file_extent_item *ei;
 
 
 
3366	struct btrfs_key key;
3367	bool found = false;
3368	int i;
 
 
 
 
 
 
3369	int ret;
3370
3371	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3372		return 0;
 
 
3373
3374	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3375		u8 type;
 
 
 
 
 
 
 
 
 
3376
3377		btrfs_item_key_to_cpu(leaf, &key, i);
3378		if (key.type != BTRFS_EXTENT_DATA_KEY)
3379			continue;
3380		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3381		type = btrfs_file_extent_type(leaf, ei);
3382
3383		if ((type == BTRFS_FILE_EXTENT_REG ||
3384		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3385		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3386			found = true;
3387			space_cache_ino = key.objectid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3389		}
 
 
 
 
 
 
 
3390	}
3391	if (!found)
3392		return -ENOENT;
3393	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3394					space_cache_ino);
3395	return ret;
3396}
3397
3398/*
3399 * helper to find all tree blocks that reference a given data extent
3400 */
3401static noinline_for_stack int add_data_references(struct reloc_control *rc,
3402						  const struct btrfs_key *extent_key,
3403						  struct btrfs_path *path,
3404						  struct rb_root *blocks)
3405{
3406	struct btrfs_backref_walk_ctx ctx = { 0 };
3407	struct ulist_iterator leaf_uiter;
3408	struct ulist_node *ref_node = NULL;
3409	const u32 blocksize = rc->extent_root->fs_info->nodesize;
 
 
 
 
3410	int ret = 0;
 
3411
3412	btrfs_release_path(path);
 
 
 
 
 
 
 
 
3413
3414	ctx.bytenr = extent_key->objectid;
3415	ctx.skip_inode_ref_list = true;
3416	ctx.fs_info = rc->extent_root->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417
3418	ret = btrfs_find_all_leafs(&ctx);
3419	if (ret < 0)
3420		return ret;
 
 
 
 
 
 
 
 
 
 
3421
3422	ULIST_ITER_INIT(&leaf_uiter);
3423	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3424		struct btrfs_tree_parent_check check = { 0 };
3425		struct extent_buffer *eb;
3426
3427		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3428		if (IS_ERR(eb)) {
3429			ret = PTR_ERR(eb);
3430			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3431		}
3432		ret = delete_v1_space_cache(eb, rc->block_group,
3433					    extent_key->objectid);
3434		free_extent_buffer(eb);
3435		if (ret < 0)
3436			break;
3437		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3438		if (ret < 0)
3439			break;
 
 
3440	}
3441	if (ret < 0)
 
 
3442		free_block_list(blocks);
3443	ulist_free(ctx.refs);
3444	return ret;
3445}
3446
3447/*
3448 * helper to find next unprocessed extent
3449 */
3450static noinline_for_stack
3451int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3452		     struct btrfs_key *extent_key)
3453{
3454	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3455	struct btrfs_key key;
3456	struct extent_buffer *leaf;
3457	u64 start, end, last;
3458	int ret;
3459
3460	last = rc->block_group->start + rc->block_group->length;
3461	while (1) {
3462		bool block_found;
3463
3464		cond_resched();
3465		if (rc->search_start >= last) {
3466			ret = 1;
3467			break;
3468		}
3469
3470		key.objectid = rc->search_start;
3471		key.type = BTRFS_EXTENT_ITEM_KEY;
3472		key.offset = 0;
3473
3474		path->search_commit_root = 1;
3475		path->skip_locking = 1;
3476		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3477					0, 0);
3478		if (ret < 0)
3479			break;
3480next:
3481		leaf = path->nodes[0];
3482		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3483			ret = btrfs_next_leaf(rc->extent_root, path);
3484			if (ret != 0)
3485				break;
3486			leaf = path->nodes[0];
3487		}
3488
3489		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3490		if (key.objectid >= last) {
3491			ret = 1;
3492			break;
3493		}
3494
3495		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3496		    key.type != BTRFS_METADATA_ITEM_KEY) {
3497			path->slots[0]++;
3498			goto next;
3499		}
3500
3501		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3502		    key.objectid + key.offset <= rc->search_start) {
3503			path->slots[0]++;
3504			goto next;
3505		}
3506
3507		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3508		    key.objectid + fs_info->nodesize <=
3509		    rc->search_start) {
3510			path->slots[0]++;
3511			goto next;
3512		}
3513
3514		block_found = find_first_extent_bit(&rc->processed_blocks,
3515						    key.objectid, &start, &end,
3516						    EXTENT_DIRTY, NULL);
3517
3518		if (block_found && start <= key.objectid) {
3519			btrfs_release_path(path);
3520			rc->search_start = end + 1;
3521		} else {
3522			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3523				rc->search_start = key.objectid + key.offset;
3524			else
3525				rc->search_start = key.objectid +
3526					fs_info->nodesize;
3527			memcpy(extent_key, &key, sizeof(key));
3528			return 0;
3529		}
3530	}
3531	btrfs_release_path(path);
3532	return ret;
3533}
3534
3535static void set_reloc_control(struct reloc_control *rc)
3536{
3537	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3538
3539	mutex_lock(&fs_info->reloc_mutex);
3540	fs_info->reloc_ctl = rc;
3541	mutex_unlock(&fs_info->reloc_mutex);
3542}
3543
3544static void unset_reloc_control(struct reloc_control *rc)
3545{
3546	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3547
3548	mutex_lock(&fs_info->reloc_mutex);
3549	fs_info->reloc_ctl = NULL;
3550	mutex_unlock(&fs_info->reloc_mutex);
3551}
3552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553static noinline_for_stack
3554int prepare_to_relocate(struct reloc_control *rc)
3555{
3556	struct btrfs_trans_handle *trans;
3557	int ret;
3558
3559	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3560					      BTRFS_BLOCK_RSV_TEMP);
3561	if (!rc->block_rsv)
3562		return -ENOMEM;
3563
3564	memset(&rc->cluster, 0, sizeof(rc->cluster));
3565	rc->search_start = rc->block_group->start;
3566	rc->extents_found = 0;
3567	rc->nodes_relocated = 0;
3568	rc->merging_rsv_size = 0;
3569	rc->reserved_bytes = 0;
3570	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3571			      RELOCATION_RESERVED_NODES;
3572	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3573				     rc->block_rsv, rc->block_rsv->size,
3574				     BTRFS_RESERVE_FLUSH_ALL);
3575	if (ret)
3576		return ret;
3577
3578	rc->create_reloc_tree = true;
3579	set_reloc_control(rc);
3580
3581	trans = btrfs_join_transaction(rc->extent_root);
3582	if (IS_ERR(trans)) {
3583		unset_reloc_control(rc);
3584		/*
3585		 * extent tree is not a ref_cow tree and has no reloc_root to
3586		 * cleanup.  And callers are responsible to free the above
3587		 * block rsv.
3588		 */
3589		return PTR_ERR(trans);
3590	}
3591
3592	ret = btrfs_commit_transaction(trans);
3593	if (ret)
3594		unset_reloc_control(rc);
3595
3596	return ret;
3597}
3598
3599static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3600{
3601	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3602	struct rb_root blocks = RB_ROOT;
3603	struct btrfs_key key;
3604	struct btrfs_trans_handle *trans = NULL;
3605	struct btrfs_path *path;
3606	struct btrfs_extent_item *ei;
3607	u64 flags;
 
3608	int ret;
3609	int err = 0;
3610	int progress = 0;
3611
3612	path = btrfs_alloc_path();
3613	if (!path)
3614		return -ENOMEM;
3615	path->reada = READA_FORWARD;
3616
3617	ret = prepare_to_relocate(rc);
3618	if (ret) {
3619		err = ret;
3620		goto out_free;
3621	}
3622
3623	while (1) {
3624		rc->reserved_bytes = 0;
3625		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3626					     rc->block_rsv->size,
3627					     BTRFS_RESERVE_FLUSH_ALL);
3628		if (ret) {
3629			err = ret;
3630			break;
3631		}
3632		progress++;
3633		trans = btrfs_start_transaction(rc->extent_root, 0);
3634		if (IS_ERR(trans)) {
3635			err = PTR_ERR(trans);
3636			trans = NULL;
3637			break;
3638		}
3639restart:
3640		if (rc->backref_cache.last_trans != trans->transid)
3641			btrfs_backref_release_cache(&rc->backref_cache);
3642		rc->backref_cache.last_trans = trans->transid;
 
3643
3644		ret = find_next_extent(rc, path, &key);
3645		if (ret < 0)
3646			err = ret;
3647		if (ret != 0)
3648			break;
3649
3650		rc->extents_found++;
3651
3652		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3653				    struct btrfs_extent_item);
3654		flags = btrfs_extent_flags(path->nodes[0], ei);
 
 
 
 
3655
3656		/*
3657		 * If we are relocating a simple quota owned extent item, we
3658		 * need to note the owner on the reloc data root so that when
3659		 * we allocate the replacement item, we can attribute it to the
3660		 * correct eventual owner (rather than the reloc data root).
3661		 */
3662		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3663			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3664			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3665								 path->nodes[0],
3666								 path->slots[0]);
 
 
3667
3668			root->relocation_src_root = owning_root_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3669		}
3670
3671		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3672			ret = add_tree_block(rc, &key, path, &blocks);
3673		} else if (rc->stage == UPDATE_DATA_PTRS &&
3674			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3675			ret = add_data_references(rc, &key, path, &blocks);
3676		} else {
3677			btrfs_release_path(path);
3678			ret = 0;
3679		}
3680		if (ret < 0) {
3681			err = ret;
3682			break;
3683		}
3684
3685		if (!RB_EMPTY_ROOT(&blocks)) {
3686			ret = relocate_tree_blocks(trans, rc, &blocks);
3687			if (ret < 0) {
 
 
 
 
 
 
3688				if (ret != -EAGAIN) {
3689					err = ret;
3690					break;
3691				}
3692				rc->extents_found--;
3693				rc->search_start = key.objectid;
3694			}
3695		}
3696
3697		btrfs_end_transaction_throttle(trans);
3698		btrfs_btree_balance_dirty(fs_info);
3699		trans = NULL;
3700
3701		if (rc->stage == MOVE_DATA_EXTENTS &&
3702		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3703			rc->found_file_extent = true;
3704			ret = relocate_data_extent(rc, &key);
 
3705			if (ret < 0) {
3706				err = ret;
3707				break;
3708			}
3709		}
3710		if (btrfs_should_cancel_balance(fs_info)) {
3711			err = -ECANCELED;
3712			break;
3713		}
3714	}
3715	if (trans && progress && err == -ENOSPC) {
3716		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3717		if (ret == 1) {
 
3718			err = 0;
3719			progress = 0;
3720			goto restart;
3721		}
3722	}
3723
3724	btrfs_release_path(path);
3725	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
3726
3727	if (trans) {
3728		btrfs_end_transaction_throttle(trans);
3729		btrfs_btree_balance_dirty(fs_info);
3730	}
3731
3732	if (!err) {
3733		ret = relocate_file_extent_cluster(rc);
 
3734		if (ret < 0)
3735			err = ret;
3736	}
3737
3738	rc->create_reloc_tree = false;
3739	set_reloc_control(rc);
3740
3741	btrfs_backref_release_cache(&rc->backref_cache);
3742	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3743
3744	/*
3745	 * Even in the case when the relocation is cancelled, we should all go
3746	 * through prepare_to_merge() and merge_reloc_roots().
3747	 *
3748	 * For error (including cancelled balance), prepare_to_merge() will
3749	 * mark all reloc trees orphan, then queue them for cleanup in
3750	 * merge_reloc_roots()
3751	 */
3752	err = prepare_to_merge(rc, err);
3753
3754	merge_reloc_roots(rc);
3755
3756	rc->merge_reloc_tree = false;
3757	unset_reloc_control(rc);
3758	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3759
3760	/* get rid of pinned extents */
3761	trans = btrfs_join_transaction(rc->extent_root);
3762	if (IS_ERR(trans)) {
3763		err = PTR_ERR(trans);
3764		goto out_free;
3765	}
3766	ret = btrfs_commit_transaction(trans);
3767	if (ret && !err)
3768		err = ret;
3769out_free:
3770	ret = clean_dirty_subvols(rc);
3771	if (ret < 0 && !err)
3772		err = ret;
3773	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3774	btrfs_free_path(path);
3775	return err;
3776}
3777
3778static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3779				 struct btrfs_root *root, u64 objectid)
3780{
3781	struct btrfs_path *path;
3782	struct btrfs_inode_item *item;
3783	struct extent_buffer *leaf;
3784	int ret;
3785
3786	path = btrfs_alloc_path();
3787	if (!path)
3788		return -ENOMEM;
3789
3790	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3791	if (ret)
3792		goto out;
3793
3794	leaf = path->nodes[0];
3795	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3796	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3797	btrfs_set_inode_generation(leaf, item, 1);
3798	btrfs_set_inode_size(leaf, item, 0);
3799	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3800	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3801					  BTRFS_INODE_PREALLOC);
3802	btrfs_mark_buffer_dirty(trans, leaf);
 
3803out:
3804	btrfs_free_path(path);
3805	return ret;
3806}
3807
3808static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3809				struct btrfs_root *root, u64 objectid)
3810{
3811	struct btrfs_path *path;
3812	struct btrfs_key key;
3813	int ret = 0;
3814
3815	path = btrfs_alloc_path();
3816	if (!path) {
3817		ret = -ENOMEM;
3818		goto out;
3819	}
3820
3821	key.objectid = objectid;
3822	key.type = BTRFS_INODE_ITEM_KEY;
3823	key.offset = 0;
3824	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3825	if (ret) {
3826		if (ret > 0)
3827			ret = -ENOENT;
3828		goto out;
3829	}
3830	ret = btrfs_del_item(trans, root, path);
3831out:
3832	if (ret)
3833		btrfs_abort_transaction(trans, ret);
3834	btrfs_free_path(path);
3835}
3836
3837/*
3838 * helper to create inode for data relocation.
3839 * the inode is in data relocation tree and its link count is 0
3840 */
3841static noinline_for_stack struct inode *create_reloc_inode(
3842					struct btrfs_fs_info *fs_info,
3843					const struct btrfs_block_group *group)
3844{
3845	struct inode *inode = NULL;
3846	struct btrfs_trans_handle *trans;
3847	struct btrfs_root *root;
3848	u64 objectid;
3849	int ret = 0;
 
 
 
 
 
3850
3851	root = btrfs_grab_root(fs_info->data_reloc_root);
3852	trans = btrfs_start_transaction(root, 6);
3853	if (IS_ERR(trans)) {
3854		btrfs_put_root(root);
3855		return ERR_CAST(trans);
3856	}
3857
3858	ret = btrfs_get_free_objectid(root, &objectid);
3859	if (ret)
3860		goto out;
3861
3862	ret = __insert_orphan_inode(trans, root, objectid);
3863	if (ret)
3864		goto out;
3865
3866	inode = btrfs_iget(objectid, root);
3867	if (IS_ERR(inode)) {
3868		delete_orphan_inode(trans, root, objectid);
3869		ret = PTR_ERR(inode);
3870		inode = NULL;
3871		goto out;
3872	}
3873	BTRFS_I(inode)->reloc_block_group_start = group->start;
3874
3875	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3876out:
3877	btrfs_put_root(root);
3878	btrfs_end_transaction(trans);
3879	btrfs_btree_balance_dirty(fs_info);
3880	if (ret) {
3881		iput(inode);
3882		inode = ERR_PTR(ret);
3883	}
3884	return inode;
3885}
3886
3887/*
3888 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3889 * has been requested meanwhile and don't start in that case.
3890 *
3891 * Return:
3892 *   0             success
3893 *   -EINPROGRESS  operation is already in progress, that's probably a bug
3894 *   -ECANCELED    cancellation request was set before the operation started
3895 */
3896static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3897{
3898	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3899		/* This should not happen */
3900		btrfs_err(fs_info, "reloc already running, cannot start");
3901		return -EINPROGRESS;
3902	}
3903
3904	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3905		btrfs_info(fs_info, "chunk relocation canceled on start");
3906		/*
3907		 * On cancel, clear all requests but let the caller mark
3908		 * the end after cleanup operations.
3909		 */
3910		atomic_set(&fs_info->reloc_cancel_req, 0);
3911		return -ECANCELED;
3912	}
3913	return 0;
3914}
3915
3916/*
3917 * Mark end of chunk relocation that is cancellable and wake any waiters.
3918 */
3919static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3920{
3921	/* Requested after start, clear bit first so any waiters can continue */
3922	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3923		btrfs_info(fs_info, "chunk relocation canceled during operation");
3924	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3925	atomic_set(&fs_info->reloc_cancel_req, 0);
3926}
3927
3928static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3929{
3930	struct reloc_control *rc;
3931
3932	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3933	if (!rc)
3934		return NULL;
3935
3936	INIT_LIST_HEAD(&rc->reloc_roots);
3937	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3938	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3939	rc->reloc_root_tree.rb_root = RB_ROOT;
3940	spin_lock_init(&rc->reloc_root_tree.lock);
3941	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3942	return rc;
3943}
3944
3945static void free_reloc_control(struct reloc_control *rc)
3946{
3947	struct mapping_node *node, *tmp;
3948
3949	free_reloc_roots(&rc->reloc_roots);
3950	rbtree_postorder_for_each_entry_safe(node, tmp,
3951			&rc->reloc_root_tree.rb_root, rb_node)
3952		kfree(node);
3953
3954	kfree(rc);
3955}
3956
3957/*
3958 * Print the block group being relocated
3959 */
3960static void describe_relocation(struct btrfs_block_group *block_group)
3961{
3962	char buf[128] = {'\0'};
3963
3964	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3965
3966	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3967		   block_group->start, buf);
3968}
3969
3970static const char *stage_to_string(enum reloc_stage stage)
3971{
3972	if (stage == MOVE_DATA_EXTENTS)
3973		return "move data extents";
3974	if (stage == UPDATE_DATA_PTRS)
3975		return "update data pointers";
3976	return "unknown";
3977}
3978
3979/*
3980 * function to relocate all extents in a block group.
3981 */
3982int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3983{
3984	struct btrfs_block_group *bg;
3985	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3986	struct reloc_control *rc;
3987	struct inode *inode;
3988	struct btrfs_path *path;
3989	int ret;
3990	int rw = 0;
3991	int err = 0;
3992
3993	/*
3994	 * This only gets set if we had a half-deleted snapshot on mount.  We
3995	 * cannot allow relocation to start while we're still trying to clean up
3996	 * these pending deletions.
3997	 */
3998	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3999	if (ret)
4000		return ret;
4001
4002	/* We may have been woken up by close_ctree, so bail if we're closing. */
4003	if (btrfs_fs_closing(fs_info))
4004		return -EINTR;
4005
4006	bg = btrfs_lookup_block_group(fs_info, group_start);
4007	if (!bg)
4008		return -ENOENT;
4009
4010	/*
4011	 * Relocation of a data block group creates ordered extents.  Without
4012	 * sb_start_write(), we can freeze the filesystem while unfinished
4013	 * ordered extents are left. Such ordered extents can cause a deadlock
4014	 * e.g. when syncfs() is waiting for their completion but they can't
4015	 * finish because they block when joining a transaction, due to the
4016	 * fact that the freeze locks are being held in write mode.
4017	 */
4018	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4019		ASSERT(sb_write_started(fs_info->sb));
4020
4021	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4022		btrfs_put_block_group(bg);
4023		return -ETXTBSY;
4024	}
4025
4026	rc = alloc_reloc_control(fs_info);
4027	if (!rc) {
4028		btrfs_put_block_group(bg);
4029		return -ENOMEM;
4030	}
4031
4032	ret = reloc_chunk_start(fs_info);
4033	if (ret < 0) {
4034		err = ret;
4035		goto out_put_bg;
4036	}
4037
4038	rc->extent_root = extent_root;
4039	rc->block_group = bg;
4040
4041	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4042	if (ret) {
4043		err = ret;
4044		goto out;
 
 
 
 
 
 
4045	}
4046	rw = 1;
4047
4048	path = btrfs_alloc_path();
4049	if (!path) {
4050		err = -ENOMEM;
4051		goto out;
4052	}
4053
4054	inode = lookup_free_space_inode(rc->block_group, path);
 
4055	btrfs_free_path(path);
4056
4057	if (!IS_ERR(inode))
4058		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4059	else
4060		ret = PTR_ERR(inode);
4061
4062	if (ret && ret != -ENOENT) {
4063		err = ret;
4064		goto out;
4065	}
4066
4067	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4068	if (IS_ERR(rc->data_inode)) {
4069		err = PTR_ERR(rc->data_inode);
4070		rc->data_inode = NULL;
4071		goto out;
4072	}
4073
4074	describe_relocation(rc->block_group);
4075
4076	btrfs_wait_block_group_reservations(rc->block_group);
4077	btrfs_wait_nocow_writers(rc->block_group);
4078	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4079
4080	ret = btrfs_zone_finish(rc->block_group);
4081	WARN_ON(ret && ret != -EAGAIN);
 
 
 
 
4082
4083	while (1) {
4084		enum reloc_stage finishes_stage;
4085
4086		mutex_lock(&fs_info->cleaner_mutex);
4087		ret = relocate_block_group(rc);
4088		mutex_unlock(&fs_info->cleaner_mutex);
4089		if (ret < 0)
4090			err = ret;
 
 
 
 
 
 
 
 
4091
4092		finishes_stage = rc->stage;
4093		/*
4094		 * We may have gotten ENOSPC after we already dirtied some
4095		 * extents.  If writeout happens while we're relocating a
4096		 * different block group we could end up hitting the
4097		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4098		 * btrfs_reloc_cow_block.  Make sure we write everything out
4099		 * properly so we don't trip over this problem, and then break
4100		 * out of the loop if we hit an error.
4101		 */
4102		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4103			ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4104						       (u64)-1);
4105			if (ret)
4106				err = ret;
 
 
4107			invalidate_mapping_pages(rc->data_inode->i_mapping,
4108						 0, -1);
4109			rc->stage = UPDATE_DATA_PTRS;
4110		}
4111
4112		if (err < 0)
4113			goto out;
4114
4115		if (rc->extents_found == 0)
4116			break;
4117
4118		btrfs_info(fs_info, "found %llu extents, stage: %s",
4119			   rc->extents_found, stage_to_string(finishes_stage));
4120	}
4121
4122	WARN_ON(rc->block_group->pinned > 0);
4123	WARN_ON(rc->block_group->reserved > 0);
4124	WARN_ON(rc->block_group->used > 0);
4125out:
4126	if (err && rw)
4127		btrfs_dec_block_group_ro(rc->block_group);
4128	iput(rc->data_inode);
4129out_put_bg:
4130	btrfs_put_block_group(bg);
4131	reloc_chunk_end(fs_info);
4132	free_reloc_control(rc);
4133	return err;
4134}
4135
4136static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4137{
4138	struct btrfs_fs_info *fs_info = root->fs_info;
4139	struct btrfs_trans_handle *trans;
4140	int ret, err;
4141
4142	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4143	if (IS_ERR(trans))
4144		return PTR_ERR(trans);
4145
4146	memset(&root->root_item.drop_progress, 0,
4147		sizeof(root->root_item.drop_progress));
4148	btrfs_set_root_drop_level(&root->root_item, 0);
4149	btrfs_set_root_refs(&root->root_item, 0);
4150	ret = btrfs_update_root(trans, fs_info->tree_root,
4151				&root->root_key, &root->root_item);
4152
4153	err = btrfs_end_transaction(trans);
4154	if (err)
4155		return err;
4156	return ret;
4157}
4158
4159/*
4160 * recover relocation interrupted by system crash.
4161 *
4162 * this function resumes merging reloc trees with corresponding fs trees.
4163 * this is important for keeping the sharing of tree blocks
4164 */
4165int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4166{
4167	LIST_HEAD(reloc_roots);
4168	struct btrfs_key key;
4169	struct btrfs_root *fs_root;
4170	struct btrfs_root *reloc_root;
4171	struct btrfs_path *path;
4172	struct extent_buffer *leaf;
4173	struct reloc_control *rc = NULL;
4174	struct btrfs_trans_handle *trans;
4175	int ret2;
4176	int ret = 0;
4177
4178	path = btrfs_alloc_path();
4179	if (!path)
4180		return -ENOMEM;
4181	path->reada = READA_BACK;
4182
4183	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4184	key.type = BTRFS_ROOT_ITEM_KEY;
4185	key.offset = (u64)-1;
4186
4187	while (1) {
4188		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4189					path, 0, 0);
4190		if (ret < 0)
 
4191			goto out;
 
4192		if (ret > 0) {
4193			if (path->slots[0] == 0)
4194				break;
4195			path->slots[0]--;
4196		}
4197		ret = 0;
4198		leaf = path->nodes[0];
4199		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4200		btrfs_release_path(path);
4201
4202		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4203		    key.type != BTRFS_ROOT_ITEM_KEY)
4204			break;
4205
4206		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4207		if (IS_ERR(reloc_root)) {
4208			ret = PTR_ERR(reloc_root);
4209			goto out;
4210		}
4211
4212		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4213		list_add(&reloc_root->root_list, &reloc_roots);
4214
4215		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4216			fs_root = btrfs_get_fs_root(fs_info,
4217					reloc_root->root_key.offset, false);
4218			if (IS_ERR(fs_root)) {
4219				ret = PTR_ERR(fs_root);
4220				if (ret != -ENOENT)
 
4221					goto out;
 
4222				ret = mark_garbage_root(reloc_root);
4223				if (ret < 0)
 
4224					goto out;
4225				ret = 0;
4226			} else {
4227				btrfs_put_root(fs_root);
4228			}
4229		}
4230
4231		if (key.offset == 0)
4232			break;
4233
4234		key.offset--;
4235	}
4236	btrfs_release_path(path);
4237
4238	if (list_empty(&reloc_roots))
4239		goto out;
4240
4241	rc = alloc_reloc_control(fs_info);
4242	if (!rc) {
4243		ret = -ENOMEM;
4244		goto out;
4245	}
4246
4247	ret = reloc_chunk_start(fs_info);
4248	if (ret < 0)
4249		goto out_end;
4250
4251	rc->extent_root = btrfs_extent_root(fs_info, 0);
4252
4253	set_reloc_control(rc);
4254
4255	trans = btrfs_join_transaction(rc->extent_root);
4256	if (IS_ERR(trans)) {
4257		ret = PTR_ERR(trans);
4258		goto out_unset;
 
4259	}
4260
4261	rc->merge_reloc_tree = true;
4262
4263	while (!list_empty(&reloc_roots)) {
4264		reloc_root = list_entry(reloc_roots.next,
4265					struct btrfs_root, root_list);
4266		list_del(&reloc_root->root_list);
4267
4268		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4269			list_add_tail(&reloc_root->root_list,
4270				      &rc->reloc_roots);
4271			continue;
4272		}
4273
4274		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4275					    false);
4276		if (IS_ERR(fs_root)) {
4277			ret = PTR_ERR(fs_root);
4278			list_add_tail(&reloc_root->root_list, &reloc_roots);
4279			btrfs_end_transaction(trans);
4280			goto out_unset;
4281		}
4282
4283		ret = __add_reloc_root(reloc_root);
4284		ASSERT(ret != -EEXIST);
4285		if (ret) {
4286			list_add_tail(&reloc_root->root_list, &reloc_roots);
4287			btrfs_put_root(fs_root);
4288			btrfs_end_transaction(trans);
4289			goto out_unset;
4290		}
4291		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4292		btrfs_put_root(fs_root);
4293	}
4294
4295	ret = btrfs_commit_transaction(trans);
4296	if (ret)
4297		goto out_unset;
4298
4299	merge_reloc_roots(rc);
4300
4301	unset_reloc_control(rc);
4302
4303	trans = btrfs_join_transaction(rc->extent_root);
4304	if (IS_ERR(trans)) {
4305		ret = PTR_ERR(trans);
4306		goto out_clean;
4307	}
4308	ret = btrfs_commit_transaction(trans);
4309out_clean:
4310	ret2 = clean_dirty_subvols(rc);
4311	if (ret2 < 0 && !ret)
4312		ret = ret2;
4313out_unset:
4314	unset_reloc_control(rc);
4315out_end:
4316	reloc_chunk_end(fs_info);
4317	free_reloc_control(rc);
4318out:
4319	free_reloc_roots(&reloc_roots);
 
4320
4321	btrfs_free_path(path);
4322
4323	if (ret == 0) {
4324		/* cleanup orphan inode in data relocation tree */
4325		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4326		ASSERT(fs_root);
4327		ret = btrfs_orphan_cleanup(fs_root);
4328		btrfs_put_root(fs_root);
 
 
4329	}
4330	return ret;
4331}
4332
4333/*
4334 * helper to add ordered checksum for data relocation.
4335 *
4336 * cloning checksum properly handles the nodatasum extents.
4337 * it also saves CPU time to re-calculate the checksum.
4338 */
4339int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4340{
4341	struct btrfs_inode *inode = ordered->inode;
4342	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4343	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4344	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4345	LIST_HEAD(list);
4346	int ret;
 
 
 
4347
4348	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4349				      disk_bytenr + ordered->num_bytes - 1,
4350				      &list, false);
4351	if (ret < 0) {
4352		btrfs_mark_ordered_extent_error(ordered);
4353		return ret;
4354	}
4355
4356	while (!list_empty(&list)) {
4357		struct btrfs_ordered_sum *sums =
4358			list_entry(list.next, struct btrfs_ordered_sum, list);
 
 
4359
 
 
4360		list_del_init(&sums->list);
4361
4362		/*
4363		 * We need to offset the new_bytenr based on where the csum is.
4364		 * We need to do this because we will read in entire prealloc
4365		 * extents but we may have written to say the middle of the
4366		 * prealloc extent, so we need to make sure the csum goes with
4367		 * the right disk offset.
4368		 *
4369		 * We can do this because the data reloc inode refers strictly
4370		 * to the on disk bytes, so we don't have to worry about
4371		 * disk_len vs real len like with real inodes since it's all
4372		 * disk length.
4373		 */
4374		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4375		btrfs_add_ordered_sum(ordered, sums);
4376	}
4377
4378	return 0;
 
 
 
 
4379}
4380
4381int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4382			  struct btrfs_root *root,
4383			  const struct extent_buffer *buf,
4384			  struct extent_buffer *cow)
4385{
4386	struct btrfs_fs_info *fs_info = root->fs_info;
4387	struct reloc_control *rc;
4388	struct btrfs_backref_node *node;
4389	int first_cow = 0;
4390	int level;
4391	int ret = 0;
4392
4393	rc = fs_info->reloc_ctl;
4394	if (!rc)
4395		return 0;
4396
4397	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
 
 
 
 
 
 
4398
4399	level = btrfs_header_level(buf);
4400	if (btrfs_header_generation(buf) <=
4401	    btrfs_root_last_snapshot(&root->root_item))
4402		first_cow = 1;
4403
4404	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
 
4405		WARN_ON(!first_cow && level == 0);
4406
4407		node = rc->backref_cache.path[level];
 
 
4408
4409		/*
4410		 * If node->bytenr != buf->start and node->new_bytenr !=
4411		 * buf->start then we've got the wrong backref node for what we
4412		 * expected to see here and the cache is incorrect.
4413		 */
4414		if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4415			btrfs_err(fs_info,
4416"bytenr %llu was found but our backref cache was expecting %llu or %llu",
4417				  buf->start, node->bytenr, node->new_bytenr);
4418			return -EUCLEAN;
4419		}
4420
4421		btrfs_backref_drop_node_buffer(node);
4422		atomic_inc(&cow->refs);
4423		node->eb = cow;
4424		node->new_bytenr = cow->start;
4425
4426		if (!node->pending) {
4427			list_move_tail(&node->list,
4428				       &rc->backref_cache.pending[level]);
4429			node->pending = 1;
4430		}
4431
4432		if (first_cow)
4433			mark_block_processed(rc, node);
4434
4435		if (first_cow && level > 0)
4436			rc->nodes_relocated += buf->len;
4437	}
4438
4439	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4440		ret = replace_file_extents(trans, rc, root, cow);
4441	return ret;
4442}
4443
4444/*
4445 * called before creating snapshot. it calculates metadata reservation
4446 * required for relocating tree blocks in the snapshot
4447 */
4448void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
4449			      u64 *bytes_to_reserve)
4450{
4451	struct btrfs_root *root = pending->root;
4452	struct reloc_control *rc = root->fs_info->reloc_ctl;
4453
4454	if (!rc || !have_reloc_root(root))
 
4455		return;
4456
 
4457	if (!rc->merge_reloc_tree)
4458		return;
4459
4460	root = root->reloc_root;
4461	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4462	/*
4463	 * relocation is in the stage of merging trees. the space
4464	 * used by merging a reloc tree is twice the size of
4465	 * relocated tree nodes in the worst case. half for cowing
4466	 * the reloc tree, half for cowing the fs tree. the space
4467	 * used by cowing the reloc tree will be freed after the
4468	 * tree is dropped. if we create snapshot, cowing the fs
4469	 * tree may use more space than it frees. so we need
4470	 * reserve extra space.
4471	 */
4472	*bytes_to_reserve += rc->nodes_relocated;
4473}
4474
4475/*
4476 * called after snapshot is created. migrate block reservation
4477 * and create reloc root for the newly created snapshot
4478 *
4479 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4480 * references held on the reloc_root, one for root->reloc_root and one for
4481 * rc->reloc_roots.
4482 */
4483int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4484			       struct btrfs_pending_snapshot *pending)
4485{
4486	struct btrfs_root *root = pending->root;
4487	struct btrfs_root *reloc_root;
4488	struct btrfs_root *new_root;
4489	struct reloc_control *rc = root->fs_info->reloc_ctl;
4490	int ret;
4491
4492	if (!rc || !have_reloc_root(root))
4493		return 0;
4494
4495	rc = root->fs_info->reloc_ctl;
4496	rc->merging_rsv_size += rc->nodes_relocated;
4497
4498	if (rc->merge_reloc_tree) {
4499		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4500					      rc->block_rsv,
4501					      rc->nodes_relocated, true);
4502		if (ret)
4503			return ret;
4504	}
4505
4506	new_root = pending->snap;
4507	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
 
4508	if (IS_ERR(reloc_root))
4509		return PTR_ERR(reloc_root);
4510
4511	ret = __add_reloc_root(reloc_root);
4512	ASSERT(ret != -EEXIST);
4513	if (ret) {
4514		/* Pairs with create_reloc_root */
4515		btrfs_put_root(reloc_root);
4516		return ret;
4517	}
4518	new_root->reloc_root = btrfs_grab_root(reloc_root);
4519
4520	if (rc->create_reloc_tree)
4521		ret = clone_backref_node(trans, rc, root, reloc_root);
4522	return ret;
4523}
4524
4525/*
4526 * Get the current bytenr for the block group which is being relocated.
4527 *
4528 * Return U64_MAX if no running relocation.
4529 */
4530u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4531{
4532	u64 logical = U64_MAX;
4533
4534	lockdep_assert_held(&fs_info->reloc_mutex);
4535
4536	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4537		logical = fs_info->reloc_ctl->block_group->start;
4538	return logical;
4539}
v3.15
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97#define RELOCATION_RESERVED_NODES	256
  98
  99struct backref_cache {
 100	/* red black tree of all backref nodes in the cache */
 101	struct rb_root rb_root;
 102	/* for passing backref nodes to btrfs_reloc_cow_block */
 103	struct backref_node *path[BTRFS_MAX_LEVEL];
 104	/*
 105	 * list of blocks that have been cowed but some block
 106	 * pointers in upper level blocks may not reflect the
 107	 * new location
 108	 */
 109	struct list_head pending[BTRFS_MAX_LEVEL];
 110	/* list of backref nodes with no child node */
 111	struct list_head leaves;
 112	/* list of blocks that have been cowed in current transaction */
 113	struct list_head changed;
 114	/* list of detached backref node. */
 115	struct list_head detached;
 116
 117	u64 last_trans;
 118
 119	int nr_nodes;
 120	int nr_edges;
 121};
 122
 123/*
 124 * map address of tree root to tree
 125 */
 126struct mapping_node {
 127	struct rb_node rb_node;
 128	u64 bytenr;
 
 
 129	void *data;
 130};
 131
 132struct mapping_tree {
 133	struct rb_root rb_root;
 134	spinlock_t lock;
 135};
 136
 137/*
 138 * present a tree block to process
 139 */
 140struct tree_block {
 141	struct rb_node rb_node;
 142	u64 bytenr;
 
 
 
 143	struct btrfs_key key;
 144	unsigned int level:8;
 145	unsigned int key_ready:1;
 146};
 147
 148#define MAX_EXTENTS 128
 149
 150struct file_extent_cluster {
 151	u64 start;
 152	u64 end;
 153	u64 boundary[MAX_EXTENTS];
 154	unsigned int nr;
 
 
 
 
 
 
 
 155};
 156
 157struct reloc_control {
 158	/* block group to relocate */
 159	struct btrfs_block_group_cache *block_group;
 160	/* extent tree */
 161	struct btrfs_root *extent_root;
 162	/* inode for moving data */
 163	struct inode *data_inode;
 164
 165	struct btrfs_block_rsv *block_rsv;
 166
 167	struct backref_cache backref_cache;
 168
 169	struct file_extent_cluster cluster;
 170	/* tree blocks have been processed */
 171	struct extent_io_tree processed_blocks;
 172	/* map start of tree root to corresponding reloc tree */
 173	struct mapping_tree reloc_root_tree;
 174	/* list of reloc trees */
 175	struct list_head reloc_roots;
 
 
 176	/* size of metadata reservation for merging reloc trees */
 177	u64 merging_rsv_size;
 178	/* size of relocated tree nodes */
 179	u64 nodes_relocated;
 180	/* reserved size for block group relocation*/
 181	u64 reserved_bytes;
 182
 183	u64 search_start;
 184	u64 extents_found;
 185
 186	unsigned int stage:8;
 187	unsigned int create_reloc_tree:1;
 188	unsigned int merge_reloc_tree:1;
 189	unsigned int found_file_extent:1;
 190};
 191
 192/* stages of data relocation */
 193#define MOVE_DATA_EXTENTS	0
 194#define UPDATE_DATA_PTRS	1
 195
 196static void remove_backref_node(struct backref_cache *cache,
 197				struct backref_node *node);
 198static void __mark_block_processed(struct reloc_control *rc,
 199				   struct backref_node *node);
 200
 201static void mapping_tree_init(struct mapping_tree *tree)
 202{
 203	tree->rb_root = RB_ROOT;
 204	spin_lock_init(&tree->lock);
 205}
 206
 207static void backref_cache_init(struct backref_cache *cache)
 208{
 209	int i;
 210	cache->rb_root = RB_ROOT;
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 212		INIT_LIST_HEAD(&cache->pending[i]);
 213	INIT_LIST_HEAD(&cache->changed);
 214	INIT_LIST_HEAD(&cache->detached);
 215	INIT_LIST_HEAD(&cache->leaves);
 216}
 217
 218static void backref_cache_cleanup(struct backref_cache *cache)
 219{
 220	struct backref_node *node;
 221	int i;
 222
 223	while (!list_empty(&cache->detached)) {
 224		node = list_entry(cache->detached.next,
 225				  struct backref_node, list);
 226		remove_backref_node(cache, node);
 227	}
 228
 229	while (!list_empty(&cache->leaves)) {
 230		node = list_entry(cache->leaves.next,
 231				  struct backref_node, lower);
 232		remove_backref_node(cache, node);
 233	}
 234
 235	cache->last_trans = 0;
 236
 237	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 238		BUG_ON(!list_empty(&cache->pending[i]));
 239	BUG_ON(!list_empty(&cache->changed));
 240	BUG_ON(!list_empty(&cache->detached));
 241	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 242	BUG_ON(cache->nr_nodes);
 243	BUG_ON(cache->nr_edges);
 244}
 245
 246static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 247{
 248	struct backref_node *node;
 249
 250	node = kzalloc(sizeof(*node), GFP_NOFS);
 251	if (node) {
 252		INIT_LIST_HEAD(&node->list);
 253		INIT_LIST_HEAD(&node->upper);
 254		INIT_LIST_HEAD(&node->lower);
 255		RB_CLEAR_NODE(&node->rb_node);
 256		cache->nr_nodes++;
 257	}
 258	return node;
 259}
 260
 261static void free_backref_node(struct backref_cache *cache,
 262			      struct backref_node *node)
 263{
 264	if (node) {
 265		cache->nr_nodes--;
 266		kfree(node);
 267	}
 268}
 269
 270static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 271{
 272	struct backref_edge *edge;
 273
 274	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 275	if (edge)
 276		cache->nr_edges++;
 277	return edge;
 278}
 279
 280static void free_backref_edge(struct backref_cache *cache,
 281			      struct backref_edge *edge)
 282{
 283	if (edge) {
 284		cache->nr_edges--;
 285		kfree(edge);
 286	}
 287}
 288
 289static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 290				   struct rb_node *node)
 291{
 292	struct rb_node **p = &root->rb_node;
 293	struct rb_node *parent = NULL;
 294	struct tree_entry *entry;
 295
 296	while (*p) {
 297		parent = *p;
 298		entry = rb_entry(parent, struct tree_entry, rb_node);
 299
 300		if (bytenr < entry->bytenr)
 301			p = &(*p)->rb_left;
 302		else if (bytenr > entry->bytenr)
 303			p = &(*p)->rb_right;
 304		else
 305			return parent;
 306	}
 307
 308	rb_link_node(node, parent, p);
 309	rb_insert_color(node, root);
 310	return NULL;
 311}
 312
 313static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 314{
 315	struct rb_node *n = root->rb_node;
 316	struct tree_entry *entry;
 317
 318	while (n) {
 319		entry = rb_entry(n, struct tree_entry, rb_node);
 320
 321		if (bytenr < entry->bytenr)
 322			n = n->rb_left;
 323		else if (bytenr > entry->bytenr)
 324			n = n->rb_right;
 325		else
 326			return n;
 327	}
 328	return NULL;
 329}
 330
 331static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 332{
 333
 334	struct btrfs_fs_info *fs_info = NULL;
 335	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 336					      rb_node);
 337	if (bnode->root)
 338		fs_info = bnode->root->fs_info;
 339	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
 340		    "found at offset %llu\n", bytenr);
 341}
 342
 343/*
 344 * walk up backref nodes until reach node presents tree root
 345 */
 346static struct backref_node *walk_up_backref(struct backref_node *node,
 347					    struct backref_edge *edges[],
 348					    int *index)
 349{
 350	struct backref_edge *edge;
 351	int idx = *index;
 352
 353	while (!list_empty(&node->upper)) {
 354		edge = list_entry(node->upper.next,
 355				  struct backref_edge, list[LOWER]);
 356		edges[idx++] = edge;
 357		node = edge->node[UPPER];
 358	}
 359	BUG_ON(node->detached);
 360	*index = idx;
 361	return node;
 362}
 363
 364/*
 365 * walk down backref nodes to find start of next reference path
 366 */
 367static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 368					      int *index)
 369{
 370	struct backref_edge *edge;
 371	struct backref_node *lower;
 372	int idx = *index;
 373
 374	while (idx > 0) {
 375		edge = edges[idx - 1];
 376		lower = edge->node[LOWER];
 377		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 378			idx--;
 379			continue;
 380		}
 381		edge = list_entry(edge->list[LOWER].next,
 382				  struct backref_edge, list[LOWER]);
 383		edges[idx - 1] = edge;
 384		*index = idx;
 385		return edge->node[UPPER];
 386	}
 387	*index = 0;
 388	return NULL;
 389}
 390
 391static void unlock_node_buffer(struct backref_node *node)
 392{
 393	if (node->locked) {
 394		btrfs_tree_unlock(node->eb);
 395		node->locked = 0;
 396	}
 397}
 398
 399static void drop_node_buffer(struct backref_node *node)
 400{
 401	if (node->eb) {
 402		unlock_node_buffer(node);
 403		free_extent_buffer(node->eb);
 404		node->eb = NULL;
 405	}
 406}
 407
 408static void drop_backref_node(struct backref_cache *tree,
 409			      struct backref_node *node)
 410{
 411	BUG_ON(!list_empty(&node->upper));
 412
 413	drop_node_buffer(node);
 414	list_del(&node->list);
 415	list_del(&node->lower);
 416	if (!RB_EMPTY_NODE(&node->rb_node))
 417		rb_erase(&node->rb_node, &tree->rb_root);
 418	free_backref_node(tree, node);
 419}
 420
 421/*
 422 * remove a backref node from the backref cache
 
 
 
 
 
 423 */
 424static void remove_backref_node(struct backref_cache *cache,
 425				struct backref_node *node)
 426{
 427	struct backref_node *upper;
 428	struct backref_edge *edge;
 429
 430	if (!node)
 431		return;
 432
 433	BUG_ON(!node->lowest && !node->detached);
 434	while (!list_empty(&node->upper)) {
 435		edge = list_entry(node->upper.next, struct backref_edge,
 436				  list[LOWER]);
 437		upper = edge->node[UPPER];
 438		list_del(&edge->list[LOWER]);
 439		list_del(&edge->list[UPPER]);
 440		free_backref_edge(cache, edge);
 441
 442		if (RB_EMPTY_NODE(&upper->rb_node)) {
 443			BUG_ON(!list_empty(&node->upper));
 444			drop_backref_node(cache, node);
 445			node = upper;
 446			node->lowest = 1;
 447			continue;
 448		}
 449		/*
 450		 * add the node to leaf node list if no other
 451		 * child block cached.
 452		 */
 453		if (list_empty(&upper->lower)) {
 454			list_add_tail(&upper->lower, &cache->leaves);
 455			upper->lowest = 1;
 456		}
 457	}
 458
 459	drop_backref_node(cache, node);
 460}
 461
 462static void update_backref_node(struct backref_cache *cache,
 463				struct backref_node *node, u64 bytenr)
 464{
 465	struct rb_node *rb_node;
 466	rb_erase(&node->rb_node, &cache->rb_root);
 467	node->bytenr = bytenr;
 468	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 469	if (rb_node)
 470		backref_tree_panic(rb_node, -EEXIST, bytenr);
 471}
 472
 473/*
 474 * update backref cache after a transaction commit
 475 */
 476static int update_backref_cache(struct btrfs_trans_handle *trans,
 477				struct backref_cache *cache)
 478{
 479	struct backref_node *node;
 480	int level = 0;
 481
 482	if (cache->last_trans == 0) {
 483		cache->last_trans = trans->transid;
 484		return 0;
 485	}
 486
 487	if (cache->last_trans == trans->transid)
 488		return 0;
 489
 490	/*
 491	 * detached nodes are used to avoid unnecessary backref
 492	 * lookup. transaction commit changes the extent tree.
 493	 * so the detached nodes are no longer useful.
 494	 */
 495	while (!list_empty(&cache->detached)) {
 496		node = list_entry(cache->detached.next,
 497				  struct backref_node, list);
 498		remove_backref_node(cache, node);
 499	}
 500
 501	while (!list_empty(&cache->changed)) {
 502		node = list_entry(cache->changed.next,
 503				  struct backref_node, list);
 504		list_del_init(&node->list);
 505		BUG_ON(node->pending);
 506		update_backref_node(cache, node, node->new_bytenr);
 507	}
 508
 509	/*
 510	 * some nodes can be left in the pending list if there were
 511	 * errors during processing the pending nodes.
 512	 */
 513	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 514		list_for_each_entry(node, &cache->pending[level], list) {
 515			BUG_ON(!node->pending);
 516			if (node->bytenr == node->new_bytenr)
 517				continue;
 518			update_backref_node(cache, node, node->new_bytenr);
 519		}
 520	}
 521
 522	cache->last_trans = 0;
 523	return 1;
 524}
 525
 526
 527static int should_ignore_root(struct btrfs_root *root)
 528{
 529	struct btrfs_root *reloc_root;
 530
 531	if (!root->ref_cows)
 532		return 0;
 533
 534	reloc_root = root->reloc_root;
 535	if (!reloc_root)
 536		return 0;
 537
 538	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 539	    root->fs_info->running_transaction->transid - 1)
 540		return 0;
 541	/*
 542	 * if there is reloc tree and it was created in previous
 543	 * transaction backref lookup can find the reloc tree,
 544	 * so backref node for the fs tree root is useless for
 545	 * relocation.
 546	 */
 547	return 1;
 548}
 
 549/*
 550 * find reloc tree by address of tree root
 551 */
 552static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 553					  u64 bytenr)
 554{
 
 555	struct rb_node *rb_node;
 556	struct mapping_node *node;
 557	struct btrfs_root *root = NULL;
 558
 
 559	spin_lock(&rc->reloc_root_tree.lock);
 560	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 561	if (rb_node) {
 562		node = rb_entry(rb_node, struct mapping_node, rb_node);
 563		root = (struct btrfs_root *)node->data;
 564	}
 565	spin_unlock(&rc->reloc_root_tree.lock);
 566	return root;
 567}
 568
 569static int is_cowonly_root(u64 root_objectid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570{
 571	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 576	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 578	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
 579		return 1;
 580	return 0;
 581}
 582
 583static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 584					u64 root_objectid)
 585{
 586	struct btrfs_key key;
 587
 588	key.objectid = root_objectid;
 589	key.type = BTRFS_ROOT_ITEM_KEY;
 590	if (is_cowonly_root(root_objectid))
 591		key.offset = 0;
 592	else
 593		key.offset = (u64)-1;
 594
 595	return btrfs_get_fs_root(fs_info, &key, false);
 596}
 597
 598#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 599static noinline_for_stack
 600struct btrfs_root *find_tree_root(struct reloc_control *rc,
 601				  struct extent_buffer *leaf,
 602				  struct btrfs_extent_ref_v0 *ref0)
 603{
 604	struct btrfs_root *root;
 605	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 606	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 607
 608	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 
 
 
 
 609
 610	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 611	BUG_ON(IS_ERR(root));
 
 
 612
 613	if (root->ref_cows &&
 614	    generation != btrfs_root_generation(&root->root_item))
 615		return NULL;
 
 
 
 616
 617	return root;
 618}
 619#endif
 
 
 
 620
 621static noinline_for_stack
 622int find_inline_backref(struct extent_buffer *leaf, int slot,
 623			unsigned long *ptr, unsigned long *end)
 624{
 625	struct btrfs_key key;
 626	struct btrfs_extent_item *ei;
 627	struct btrfs_tree_block_info *bi;
 628	u32 item_size;
 629
 630	btrfs_item_key_to_cpu(leaf, &key, slot);
 631
 632	item_size = btrfs_item_size_nr(leaf, slot);
 633#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 634	if (item_size < sizeof(*ei)) {
 635		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 636		return 1;
 637	}
 638#endif
 639	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 640	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 641		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 642
 643	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 644	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 645		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 646		return 1;
 647	}
 648	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 649	    item_size <= sizeof(*ei)) {
 650		WARN_ON(item_size < sizeof(*ei));
 651		return 1;
 652	}
 653
 654	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 655		bi = (struct btrfs_tree_block_info *)(ei + 1);
 656		*ptr = (unsigned long)(bi + 1);
 657	} else {
 658		*ptr = (unsigned long)(ei + 1);
 659	}
 660	*end = (unsigned long)ei + item_size;
 661	return 0;
 662}
 663
 664/*
 665 * build backref tree for a given tree block. root of the backref tree
 666 * corresponds the tree block, leaves of the backref tree correspond
 667 * roots of b-trees that reference the tree block.
 668 *
 669 * the basic idea of this function is check backrefs of a given block
 670 * to find upper level blocks that refernece the block, and then check
 671 * bakcrefs of these upper level blocks recursively. the recursion stop
 672 * when tree root is reached or backrefs for the block is cached.
 673 *
 674 * NOTE: if we find backrefs for a block are cached, we know backrefs
 675 * for all upper level blocks that directly/indirectly reference the
 676 * block are also cached.
 677 */
 678static noinline_for_stack
 679struct backref_node *build_backref_tree(struct reloc_control *rc,
 680					struct btrfs_key *node_key,
 681					int level, u64 bytenr)
 682{
 683	struct backref_cache *cache = &rc->backref_cache;
 684	struct btrfs_path *path1;
 685	struct btrfs_path *path2;
 686	struct extent_buffer *eb;
 687	struct btrfs_root *root;
 688	struct backref_node *cur;
 689	struct backref_node *upper;
 690	struct backref_node *lower;
 691	struct backref_node *node = NULL;
 692	struct backref_node *exist = NULL;
 693	struct backref_edge *edge;
 694	struct rb_node *rb_node;
 695	struct btrfs_key key;
 696	unsigned long end;
 697	unsigned long ptr;
 698	LIST_HEAD(list);
 699	LIST_HEAD(useless);
 700	int cowonly;
 701	int ret;
 702	int err = 0;
 703	bool need_check = true;
 704
 705	path1 = btrfs_alloc_path();
 706	path2 = btrfs_alloc_path();
 707	if (!path1 || !path2) {
 708		err = -ENOMEM;
 
 
 709		goto out;
 710	}
 711	path1->reada = 1;
 712	path2->reada = 2;
 713
 714	node = alloc_backref_node(cache);
 715	if (!node) {
 716		err = -ENOMEM;
 717		goto out;
 718	}
 719
 720	node->bytenr = bytenr;
 721	node->level = level;
 722	node->lowest = 1;
 723	cur = node;
 724again:
 725	end = 0;
 726	ptr = 0;
 727	key.objectid = cur->bytenr;
 728	key.type = BTRFS_METADATA_ITEM_KEY;
 729	key.offset = (u64)-1;
 730
 731	path1->search_commit_root = 1;
 732	path1->skip_locking = 1;
 733	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 734				0, 0);
 735	if (ret < 0) {
 736		err = ret;
 737		goto out;
 738	}
 739	BUG_ON(!ret || !path1->slots[0]);
 740
 741	path1->slots[0]--;
 742
 743	WARN_ON(cur->checked);
 744	if (!list_empty(&cur->upper)) {
 745		/*
 746		 * the backref was added previously when processing
 747		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 748		 */
 749		BUG_ON(!list_is_singular(&cur->upper));
 750		edge = list_entry(cur->upper.next, struct backref_edge,
 751				  list[LOWER]);
 752		BUG_ON(!list_empty(&edge->list[UPPER]));
 753		exist = edge->node[UPPER];
 754		/*
 755		 * add the upper level block to pending list if we need
 756		 * check its backrefs
 757		 */
 758		if (!exist->checked)
 759			list_add_tail(&edge->list[UPPER], &list);
 760	} else {
 761		exist = NULL;
 762	}
 763
 764	while (1) {
 765		cond_resched();
 766		eb = path1->nodes[0];
 767
 768		if (ptr >= end) {
 769			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 770				ret = btrfs_next_leaf(rc->extent_root, path1);
 771				if (ret < 0) {
 772					err = ret;
 773					goto out;
 774				}
 775				if (ret > 0)
 776					break;
 777				eb = path1->nodes[0];
 778			}
 779
 780			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 781			if (key.objectid != cur->bytenr) {
 782				WARN_ON(exist);
 783				break;
 784			}
 785
 786			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 787			    key.type == BTRFS_METADATA_ITEM_KEY) {
 788				ret = find_inline_backref(eb, path1->slots[0],
 789							  &ptr, &end);
 790				if (ret)
 791					goto next;
 792			}
 793		}
 794
 795		if (ptr < end) {
 796			/* update key for inline back ref */
 797			struct btrfs_extent_inline_ref *iref;
 798			iref = (struct btrfs_extent_inline_ref *)ptr;
 799			key.type = btrfs_extent_inline_ref_type(eb, iref);
 800			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 801			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 802				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 803		}
 804
 805		if (exist &&
 806		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 807		      exist->owner == key.offset) ||
 808		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 809		      exist->bytenr == key.offset))) {
 810			exist = NULL;
 811			goto next;
 812		}
 813
 814#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 815		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 816		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 817			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 818				struct btrfs_extent_ref_v0 *ref0;
 819				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 820						struct btrfs_extent_ref_v0);
 821				if (key.objectid == key.offset) {
 822					root = find_tree_root(rc, eb, ref0);
 823					if (root && !should_ignore_root(root))
 824						cur->root = root;
 825					else
 826						list_add(&cur->list, &useless);
 827					break;
 828				}
 829				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 830								      ref0)))
 831					cur->cowonly = 1;
 832			}
 833#else
 834		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 835		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 836#endif
 837			if (key.objectid == key.offset) {
 838				/*
 839				 * only root blocks of reloc trees use
 840				 * backref of this type.
 841				 */
 842				root = find_reloc_root(rc, cur->bytenr);
 843				BUG_ON(!root);
 844				cur->root = root;
 845				break;
 846			}
 847
 848			edge = alloc_backref_edge(cache);
 849			if (!edge) {
 850				err = -ENOMEM;
 851				goto out;
 852			}
 853			rb_node = tree_search(&cache->rb_root, key.offset);
 854			if (!rb_node) {
 855				upper = alloc_backref_node(cache);
 856				if (!upper) {
 857					free_backref_edge(cache, edge);
 858					err = -ENOMEM;
 859					goto out;
 860				}
 861				upper->bytenr = key.offset;
 862				upper->level = cur->level + 1;
 863				/*
 864				 *  backrefs for the upper level block isn't
 865				 *  cached, add the block to pending list
 866				 */
 867				list_add_tail(&edge->list[UPPER], &list);
 868			} else {
 869				upper = rb_entry(rb_node, struct backref_node,
 870						 rb_node);
 871				BUG_ON(!upper->checked);
 872				INIT_LIST_HEAD(&edge->list[UPPER]);
 873			}
 874			list_add_tail(&edge->list[LOWER], &cur->upper);
 875			edge->node[LOWER] = cur;
 876			edge->node[UPPER] = upper;
 877
 878			goto next;
 879		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 880			goto next;
 881		}
 882
 883		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 884		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 885		if (IS_ERR(root)) {
 886			err = PTR_ERR(root);
 887			goto out;
 888		}
 889
 890		if (!root->ref_cows)
 891			cur->cowonly = 1;
 892
 893		if (btrfs_root_level(&root->root_item) == cur->level) {
 894			/* tree root */
 895			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 896			       cur->bytenr);
 897			if (should_ignore_root(root))
 898				list_add(&cur->list, &useless);
 899			else
 900				cur->root = root;
 901			break;
 902		}
 903
 904		level = cur->level + 1;
 905
 
 
 906		/*
 907		 * searching the tree to find upper level blocks
 908		 * reference the block.
 909		 */
 910		path2->search_commit_root = 1;
 911		path2->skip_locking = 1;
 912		path2->lowest_level = level;
 913		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 914		path2->lowest_level = 0;
 915		if (ret < 0) {
 916			err = ret;
 917			goto out;
 918		}
 919		if (ret > 0 && path2->slots[level] > 0)
 920			path2->slots[level]--;
 921
 922		eb = path2->nodes[level];
 923		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 924			cur->bytenr);
 925
 926		lower = cur;
 927		need_check = true;
 928		for (; level < BTRFS_MAX_LEVEL; level++) {
 929			if (!path2->nodes[level]) {
 930				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 931				       lower->bytenr);
 932				if (should_ignore_root(root))
 933					list_add(&lower->list, &useless);
 934				else
 935					lower->root = root;
 936				break;
 937			}
 938
 939			edge = alloc_backref_edge(cache);
 940			if (!edge) {
 941				err = -ENOMEM;
 942				goto out;
 943			}
 944
 945			eb = path2->nodes[level];
 946			rb_node = tree_search(&cache->rb_root, eb->start);
 947			if (!rb_node) {
 948				upper = alloc_backref_node(cache);
 949				if (!upper) {
 950					free_backref_edge(cache, edge);
 951					err = -ENOMEM;
 952					goto out;
 953				}
 954				upper->bytenr = eb->start;
 955				upper->owner = btrfs_header_owner(eb);
 956				upper->level = lower->level + 1;
 957				if (!root->ref_cows)
 958					upper->cowonly = 1;
 959
 960				/*
 961				 * if we know the block isn't shared
 962				 * we can void checking its backrefs.
 963				 */
 964				if (btrfs_block_can_be_shared(root, eb))
 965					upper->checked = 0;
 966				else
 967					upper->checked = 1;
 968
 969				/*
 970				 * add the block to pending list if we
 971				 * need check its backrefs, we only do this once
 972				 * while walking up a tree as we will catch
 973				 * anything else later on.
 974				 */
 975				if (!upper->checked && need_check) {
 976					need_check = false;
 977					list_add_tail(&edge->list[UPPER],
 978						      &list);
 979				} else
 980					INIT_LIST_HEAD(&edge->list[UPPER]);
 981			} else {
 982				upper = rb_entry(rb_node, struct backref_node,
 983						 rb_node);
 984				BUG_ON(!upper->checked);
 985				INIT_LIST_HEAD(&edge->list[UPPER]);
 986				if (!upper->owner)
 987					upper->owner = btrfs_header_owner(eb);
 988			}
 989			list_add_tail(&edge->list[LOWER], &lower->upper);
 990			edge->node[LOWER] = lower;
 991			edge->node[UPPER] = upper;
 992
 993			if (rb_node)
 994				break;
 995			lower = upper;
 996			upper = NULL;
 997		}
 998		btrfs_release_path(path2);
 999next:
1000		if (ptr < end) {
1001			ptr += btrfs_extent_inline_ref_size(key.type);
1002			if (ptr >= end) {
1003				WARN_ON(ptr > end);
1004				ptr = 0;
1005				end = 0;
1006			}
1007		}
1008		if (ptr >= end)
1009			path1->slots[0]++;
1010	}
1011	btrfs_release_path(path1);
1012
1013	cur->checked = 1;
1014	WARN_ON(exist);
1015
1016	/* the pending list isn't empty, take the first block to process */
1017	if (!list_empty(&list)) {
1018		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1019		list_del_init(&edge->list[UPPER]);
1020		cur = edge->node[UPPER];
1021		goto again;
1022	}
1023
1024	/*
1025	 * everything goes well, connect backref nodes and insert backref nodes
1026	 * into the cache.
1027	 */
1028	BUG_ON(!node->checked);
1029	cowonly = node->cowonly;
1030	if (!cowonly) {
1031		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1032				      &node->rb_node);
1033		if (rb_node)
1034			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1035		list_add_tail(&node->lower, &cache->leaves);
1036	}
1037
1038	list_for_each_entry(edge, &node->upper, list[LOWER])
1039		list_add_tail(&edge->list[UPPER], &list);
1040
1041	while (!list_empty(&list)) {
1042		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1043		list_del_init(&edge->list[UPPER]);
1044		upper = edge->node[UPPER];
1045		if (upper->detached) {
1046			list_del(&edge->list[LOWER]);
1047			lower = edge->node[LOWER];
1048			free_backref_edge(cache, edge);
1049			if (list_empty(&lower->upper))
1050				list_add(&lower->list, &useless);
1051			continue;
1052		}
1053
1054		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1055			if (upper->lowest) {
1056				list_del_init(&upper->lower);
1057				upper->lowest = 0;
1058			}
1059
1060			list_add_tail(&edge->list[UPPER], &upper->lower);
1061			continue;
1062		}
1063
1064		BUG_ON(!upper->checked);
1065		BUG_ON(cowonly != upper->cowonly);
1066		if (!cowonly) {
1067			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1068					      &upper->rb_node);
1069			if (rb_node)
1070				backref_tree_panic(rb_node, -EEXIST,
1071						   upper->bytenr);
1072		}
1073
1074		list_add_tail(&edge->list[UPPER], &upper->lower);
1075
1076		list_for_each_entry(edge, &upper->upper, list[LOWER])
1077			list_add_tail(&edge->list[UPPER], &list);
1078	}
1079	/*
1080	 * process useless backref nodes. backref nodes for tree leaves
1081	 * are deleted from the cache. backref nodes for upper level
1082	 * tree blocks are left in the cache to avoid unnecessary backref
1083	 * lookup.
1084	 */
1085	while (!list_empty(&useless)) {
1086		upper = list_entry(useless.next, struct backref_node, list);
1087		list_del_init(&upper->list);
1088		BUG_ON(!list_empty(&upper->upper));
1089		if (upper == node)
1090			node = NULL;
1091		if (upper->lowest) {
1092			list_del_init(&upper->lower);
1093			upper->lowest = 0;
1094		}
1095		while (!list_empty(&upper->lower)) {
1096			edge = list_entry(upper->lower.next,
1097					  struct backref_edge, list[UPPER]);
1098			list_del(&edge->list[UPPER]);
1099			list_del(&edge->list[LOWER]);
1100			lower = edge->node[LOWER];
1101			free_backref_edge(cache, edge);
1102
1103			if (list_empty(&lower->upper))
1104				list_add(&lower->list, &useless);
1105		}
1106		__mark_block_processed(rc, upper);
1107		if (upper->level > 0) {
1108			list_add(&upper->list, &cache->detached);
1109			upper->detached = 1;
1110		} else {
1111			rb_erase(&upper->rb_node, &cache->rb_root);
1112			free_backref_node(cache, upper);
1113		}
1114	}
1115out:
1116	btrfs_free_path(path1);
1117	btrfs_free_path(path2);
1118	if (err) {
1119		while (!list_empty(&useless)) {
1120			lower = list_entry(useless.next,
1121					   struct backref_node, upper);
1122			list_del_init(&lower->upper);
1123		}
1124		upper = node;
1125		INIT_LIST_HEAD(&list);
1126		while (upper) {
1127			if (RB_EMPTY_NODE(&upper->rb_node)) {
1128				list_splice_tail(&upper->upper, &list);
1129				free_backref_node(cache, upper);
1130			}
1131
1132			if (list_empty(&list))
1133				break;
1134
1135			edge = list_entry(list.next, struct backref_edge,
1136					  list[LOWER]);
1137			list_del(&edge->list[LOWER]);
1138			upper = edge->node[UPPER];
1139			free_backref_edge(cache, edge);
1140		}
1141		return ERR_PTR(err);
1142	}
1143	BUG_ON(node && node->detached);
 
 
1144	return node;
1145}
1146
1147/*
1148 * helper to add backref node for the newly created snapshot.
1149 * the backref node is created by cloning backref node that
1150 * corresponds to root of source tree
1151 */
1152static int clone_backref_node(struct btrfs_trans_handle *trans,
1153			      struct reloc_control *rc,
1154			      struct btrfs_root *src,
1155			      struct btrfs_root *dest)
1156{
1157	struct btrfs_root *reloc_root = src->reloc_root;
1158	struct backref_cache *cache = &rc->backref_cache;
1159	struct backref_node *node = NULL;
1160	struct backref_node *new_node;
1161	struct backref_edge *edge;
1162	struct backref_edge *new_edge;
1163	struct rb_node *rb_node;
1164
1165	if (cache->last_trans > 0)
1166		update_backref_cache(trans, cache);
1167
1168	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1169	if (rb_node) {
1170		node = rb_entry(rb_node, struct backref_node, rb_node);
1171		if (node->detached)
1172			node = NULL;
1173		else
1174			BUG_ON(node->new_bytenr != reloc_root->node->start);
1175	}
1176
1177	if (!node) {
1178		rb_node = tree_search(&cache->rb_root,
1179				      reloc_root->commit_root->start);
1180		if (rb_node) {
1181			node = rb_entry(rb_node, struct backref_node,
1182					rb_node);
1183			BUG_ON(node->detached);
1184		}
1185	}
1186
1187	if (!node)
1188		return 0;
1189
1190	new_node = alloc_backref_node(cache);
 
1191	if (!new_node)
1192		return -ENOMEM;
1193
1194	new_node->bytenr = dest->node->start;
1195	new_node->level = node->level;
1196	new_node->lowest = node->lowest;
1197	new_node->checked = 1;
1198	new_node->root = dest;
 
1199
1200	if (!node->lowest) {
1201		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1202			new_edge = alloc_backref_edge(cache);
1203			if (!new_edge)
1204				goto fail;
1205
1206			new_edge->node[UPPER] = new_node;
1207			new_edge->node[LOWER] = edge->node[LOWER];
1208			list_add_tail(&new_edge->list[UPPER],
1209				      &new_node->lower);
1210		}
1211	} else {
1212		list_add_tail(&new_node->lower, &cache->leaves);
1213	}
1214
1215	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1216			      &new_node->rb_node);
1217	if (rb_node)
1218		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1219
1220	if (!new_node->lowest) {
1221		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1222			list_add_tail(&new_edge->list[LOWER],
1223				      &new_edge->node[LOWER]->upper);
1224		}
1225	}
1226	return 0;
1227fail:
1228	while (!list_empty(&new_node->lower)) {
1229		new_edge = list_entry(new_node->lower.next,
1230				      struct backref_edge, list[UPPER]);
1231		list_del(&new_edge->list[UPPER]);
1232		free_backref_edge(cache, new_edge);
1233	}
1234	free_backref_node(cache, new_node);
1235	return -ENOMEM;
1236}
1237
1238/*
1239 * helper to add 'address of tree root -> reloc tree' mapping
1240 */
1241static int __must_check __add_reloc_root(struct btrfs_root *root)
1242{
 
1243	struct rb_node *rb_node;
1244	struct mapping_node *node;
1245	struct reloc_control *rc = root->fs_info->reloc_ctl;
1246
1247	node = kmalloc(sizeof(*node), GFP_NOFS);
1248	if (!node)
1249		return -ENOMEM;
1250
1251	node->bytenr = root->node->start;
1252	node->data = root;
1253
1254	spin_lock(&rc->reloc_root_tree.lock);
1255	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1256			      node->bytenr, &node->rb_node);
1257	spin_unlock(&rc->reloc_root_tree.lock);
1258	if (rb_node) {
1259		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1260			    "for start=%llu while inserting into relocation "
1261			    "tree\n", node->bytenr);
1262		kfree(node);
1263		return -EEXIST;
1264	}
1265
1266	list_add_tail(&root->root_list, &rc->reloc_roots);
1267	return 0;
1268}
1269
1270/*
1271 * helper to delete the 'address of tree root -> reloc tree'
1272 * mapping
1273 */
1274static void __del_reloc_root(struct btrfs_root *root)
1275{
 
1276	struct rb_node *rb_node;
1277	struct mapping_node *node = NULL;
1278	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1279
1280	spin_lock(&rc->reloc_root_tree.lock);
1281	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1282			      root->node->start);
1283	if (rb_node) {
1284		node = rb_entry(rb_node, struct mapping_node, rb_node);
1285		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 
 
 
 
 
1286	}
1287	spin_unlock(&rc->reloc_root_tree.lock);
1288
1289	if (!node)
1290		return;
1291	BUG_ON((struct btrfs_root *)node->data != root);
1292
1293	spin_lock(&root->fs_info->trans_lock);
1294	list_del_init(&root->root_list);
1295	spin_unlock(&root->fs_info->trans_lock);
 
 
 
 
 
 
 
 
 
1296	kfree(node);
1297}
1298
1299/*
1300 * helper to update the 'address of tree root -> reloc tree'
1301 * mapping
1302 */
1303static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1304{
 
1305	struct rb_node *rb_node;
1306	struct mapping_node *node = NULL;
1307	struct reloc_control *rc = root->fs_info->reloc_ctl;
1308
1309	spin_lock(&rc->reloc_root_tree.lock);
1310	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1311			      root->node->start);
1312	if (rb_node) {
1313		node = rb_entry(rb_node, struct mapping_node, rb_node);
1314		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1315	}
1316	spin_unlock(&rc->reloc_root_tree.lock);
1317
1318	if (!node)
1319		return 0;
1320	BUG_ON((struct btrfs_root *)node->data != root);
1321
1322	spin_lock(&rc->reloc_root_tree.lock);
1323	node->bytenr = new_bytenr;
1324	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1325			      node->bytenr, &node->rb_node);
1326	spin_unlock(&rc->reloc_root_tree.lock);
1327	if (rb_node)
1328		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1329	return 0;
1330}
1331
1332static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1333					struct btrfs_root *root, u64 objectid)
1334{
 
1335	struct btrfs_root *reloc_root;
1336	struct extent_buffer *eb;
1337	struct btrfs_root_item *root_item;
1338	struct btrfs_key root_key;
1339	u64 last_snap = 0;
1340	int ret;
1341
1342	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1343	BUG_ON(!root_item);
 
1344
1345	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1346	root_key.type = BTRFS_ROOT_ITEM_KEY;
1347	root_key.offset = objectid;
1348
1349	if (root->root_key.objectid == objectid) {
 
 
1350		/* called by btrfs_init_reloc_root */
1351		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1352				      BTRFS_TREE_RELOC_OBJECTID);
1353		BUG_ON(ret);
 
1354
1355		last_snap = btrfs_root_last_snapshot(&root->root_item);
1356		btrfs_set_root_last_snapshot(&root->root_item,
1357					     trans->transid - 1);
 
 
 
 
 
 
 
1358	} else {
1359		/*
1360		 * called by btrfs_reloc_post_snapshot_hook.
1361		 * the source tree is a reloc tree, all tree blocks
1362		 * modified after it was created have RELOC flag
1363		 * set in their headers. so it's OK to not update
1364		 * the 'last_snapshot'.
1365		 */
1366		ret = btrfs_copy_root(trans, root, root->node, &eb,
1367				      BTRFS_TREE_RELOC_OBJECTID);
1368		BUG_ON(ret);
 
1369	}
1370
 
 
 
 
 
 
1371	memcpy(root_item, &root->root_item, sizeof(*root_item));
1372	btrfs_set_root_bytenr(root_item, eb->start);
1373	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1374	btrfs_set_root_generation(root_item, trans->transid);
1375
1376	if (root->root_key.objectid == objectid) {
1377		btrfs_set_root_refs(root_item, 0);
1378		memset(&root_item->drop_progress, 0,
1379		       sizeof(struct btrfs_disk_key));
1380		root_item->drop_level = 0;
1381		/*
1382		 * abuse rtransid, it is safe because it is impossible to
1383		 * receive data into a relocation tree.
1384		 */
1385		btrfs_set_root_rtransid(root_item, last_snap);
1386		btrfs_set_root_otransid(root_item, trans->transid);
1387	}
1388
1389	btrfs_tree_unlock(eb);
1390	free_extent_buffer(eb);
1391
1392	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1393				&root_key, root_item);
1394	BUG_ON(ret);
 
 
1395	kfree(root_item);
1396
1397	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1398	BUG_ON(IS_ERR(reloc_root));
1399	reloc_root->last_trans = trans->transid;
 
 
 
 
1400	return reloc_root;
 
 
 
 
 
 
1401}
1402
1403/*
1404 * create reloc tree for a given fs tree. reloc tree is just a
1405 * snapshot of the fs tree with special root objectid.
 
 
 
1406 */
1407int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1408			  struct btrfs_root *root)
1409{
 
1410	struct btrfs_root *reloc_root;
1411	struct reloc_control *rc = root->fs_info->reloc_ctl;
1412	struct btrfs_block_rsv *rsv;
1413	int clear_rsv = 0;
1414	int ret;
1415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1416	if (root->reloc_root) {
1417		reloc_root = root->reloc_root;
1418		reloc_root->last_trans = trans->transid;
1419		return 0;
1420	}
1421
1422	if (!rc || !rc->create_reloc_tree ||
1423	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 
 
 
1424		return 0;
1425
1426	if (!trans->reloc_reserved) {
1427		rsv = trans->block_rsv;
1428		trans->block_rsv = rc->block_rsv;
1429		clear_rsv = 1;
1430	}
1431	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1432	if (clear_rsv)
1433		trans->block_rsv = rsv;
 
 
1434
1435	ret = __add_reloc_root(reloc_root);
1436	BUG_ON(ret < 0);
1437	root->reloc_root = reloc_root;
 
 
 
 
 
1438	return 0;
1439}
1440
1441/*
1442 * update root item of reloc tree
1443 */
1444int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1445			    struct btrfs_root *root)
1446{
 
1447	struct btrfs_root *reloc_root;
1448	struct btrfs_root_item *root_item;
1449	int ret;
1450
1451	if (!root->reloc_root)
1452		goto out;
1453
1454	reloc_root = root->reloc_root;
1455	root_item = &reloc_root->root_item;
1456
1457	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
 
 
 
 
 
 
 
 
1458	    btrfs_root_refs(root_item) == 0) {
1459		root->reloc_root = NULL;
 
 
 
 
 
1460		__del_reloc_root(reloc_root);
1461	}
1462
1463	if (reloc_root->commit_root != reloc_root->node) {
 
1464		btrfs_set_root_node(root_item, reloc_root->node);
1465		free_extent_buffer(reloc_root->commit_root);
1466		reloc_root->commit_root = btrfs_root_node(reloc_root);
1467	}
1468
1469	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1470				&reloc_root->root_key, root_item);
1471	BUG_ON(ret);
1472
1473out:
1474	return 0;
1475}
1476
1477/*
1478 * helper to find first cached inode with inode number >= objectid
1479 * in a subvolume
1480 */
1481static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1482{
1483	struct rb_node *node;
1484	struct rb_node *prev;
1485	struct btrfs_inode *entry;
1486	struct inode *inode;
1487
1488	spin_lock(&root->inode_lock);
1489again:
1490	node = root->inode_tree.rb_node;
1491	prev = NULL;
1492	while (node) {
1493		prev = node;
1494		entry = rb_entry(node, struct btrfs_inode, rb_node);
1495
1496		if (objectid < btrfs_ino(&entry->vfs_inode))
1497			node = node->rb_left;
1498		else if (objectid > btrfs_ino(&entry->vfs_inode))
1499			node = node->rb_right;
1500		else
1501			break;
1502	}
1503	if (!node) {
1504		while (prev) {
1505			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1506			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1507				node = prev;
1508				break;
1509			}
1510			prev = rb_next(prev);
1511		}
1512	}
1513	while (node) {
1514		entry = rb_entry(node, struct btrfs_inode, rb_node);
1515		inode = igrab(&entry->vfs_inode);
1516		if (inode) {
1517			spin_unlock(&root->inode_lock);
1518			return inode;
1519		}
1520
1521		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1522		if (cond_resched_lock(&root->inode_lock))
1523			goto again;
1524
1525		node = rb_next(node);
1526	}
1527	spin_unlock(&root->inode_lock);
1528	return NULL;
1529}
1530
1531static int in_block_group(u64 bytenr,
1532			  struct btrfs_block_group_cache *block_group)
1533{
1534	if (bytenr >= block_group->key.objectid &&
1535	    bytenr < block_group->key.objectid + block_group->key.offset)
1536		return 1;
1537	return 0;
1538}
1539
1540/*
1541 * get new location of data
1542 */
1543static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1544			    u64 bytenr, u64 num_bytes)
1545{
1546	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1547	struct btrfs_path *path;
1548	struct btrfs_file_extent_item *fi;
1549	struct extent_buffer *leaf;
1550	int ret;
1551
1552	path = btrfs_alloc_path();
1553	if (!path)
1554		return -ENOMEM;
1555
1556	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1557	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1558				       bytenr, 0);
1559	if (ret < 0)
1560		goto out;
1561	if (ret > 0) {
1562		ret = -ENOENT;
1563		goto out;
1564	}
1565
1566	leaf = path->nodes[0];
1567	fi = btrfs_item_ptr(leaf, path->slots[0],
1568			    struct btrfs_file_extent_item);
1569
1570	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1571	       btrfs_file_extent_compression(leaf, fi) ||
1572	       btrfs_file_extent_encryption(leaf, fi) ||
1573	       btrfs_file_extent_other_encoding(leaf, fi));
1574
1575	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1576		ret = -EINVAL;
1577		goto out;
1578	}
1579
1580	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1581	ret = 0;
1582out:
1583	btrfs_free_path(path);
1584	return ret;
1585}
1586
1587/*
1588 * update file extent items in the tree leaf to point to
1589 * the new locations.
1590 */
1591static noinline_for_stack
1592int replace_file_extents(struct btrfs_trans_handle *trans,
1593			 struct reloc_control *rc,
1594			 struct btrfs_root *root,
1595			 struct extent_buffer *leaf)
1596{
 
1597	struct btrfs_key key;
1598	struct btrfs_file_extent_item *fi;
1599	struct inode *inode = NULL;
1600	u64 parent;
1601	u64 bytenr;
1602	u64 new_bytenr = 0;
1603	u64 num_bytes;
1604	u64 end;
1605	u32 nritems;
1606	u32 i;
1607	int ret = 0;
1608	int first = 1;
1609	int dirty = 0;
1610
1611	if (rc->stage != UPDATE_DATA_PTRS)
1612		return 0;
1613
1614	/* reloc trees always use full backref */
1615	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1616		parent = leaf->start;
1617	else
1618		parent = 0;
1619
1620	nritems = btrfs_header_nritems(leaf);
1621	for (i = 0; i < nritems; i++) {
 
 
1622		cond_resched();
1623		btrfs_item_key_to_cpu(leaf, &key, i);
1624		if (key.type != BTRFS_EXTENT_DATA_KEY)
1625			continue;
1626		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1627		if (btrfs_file_extent_type(leaf, fi) ==
1628		    BTRFS_FILE_EXTENT_INLINE)
1629			continue;
1630		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1631		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1632		if (bytenr == 0)
1633			continue;
1634		if (!in_block_group(bytenr, rc->block_group))
 
1635			continue;
1636
1637		/*
1638		 * if we are modifying block in fs tree, wait for readpage
1639		 * to complete and drop the extent cache
1640		 */
1641		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1642			if (first) {
1643				inode = find_next_inode(root, key.objectid);
1644				first = 0;
1645			} else if (inode && btrfs_ino(inode) < key.objectid) {
1646				btrfs_add_delayed_iput(inode);
1647				inode = find_next_inode(root, key.objectid);
1648			}
1649			if (inode && btrfs_ino(inode) == key.objectid) {
 
 
1650				end = key.offset +
1651				      btrfs_file_extent_num_bytes(leaf, fi);
1652				WARN_ON(!IS_ALIGNED(key.offset,
1653						    root->sectorsize));
1654				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1655				end--;
1656				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1657						      key.offset, end);
1658				if (!ret)
 
 
 
 
1659					continue;
 
1660
1661				btrfs_drop_extent_cache(inode, key.offset, end,
1662							1);
1663				unlock_extent(&BTRFS_I(inode)->io_tree,
1664					      key.offset, end);
1665			}
1666		}
1667
1668		ret = get_new_location(rc->data_inode, &new_bytenr,
1669				       bytenr, num_bytes);
1670		if (ret) {
1671			/*
1672			 * Don't have to abort since we've not changed anything
1673			 * in the file extent yet.
1674			 */
1675			break;
1676		}
1677
1678		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1679		dirty = 1;
1680
1681		key.offset -= btrfs_file_extent_offset(leaf, fi);
1682		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1683					   num_bytes, parent,
1684					   btrfs_header_owner(leaf),
1685					   key.objectid, key.offset, 1);
 
 
 
 
 
1686		if (ret) {
1687			btrfs_abort_transaction(trans, root, ret);
1688			break;
1689		}
1690
1691		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1692					parent, btrfs_header_owner(leaf),
1693					key.objectid, key.offset, 1);
 
 
 
 
 
 
1694		if (ret) {
1695			btrfs_abort_transaction(trans, root, ret);
1696			break;
1697		}
1698	}
1699	if (dirty)
1700		btrfs_mark_buffer_dirty(leaf);
1701	if (inode)
1702		btrfs_add_delayed_iput(inode);
1703	return ret;
1704}
1705
1706static noinline_for_stack
1707int memcmp_node_keys(struct extent_buffer *eb, int slot,
1708		     struct btrfs_path *path, int level)
1709{
1710	struct btrfs_disk_key key1;
1711	struct btrfs_disk_key key2;
1712	btrfs_node_key(eb, &key1, slot);
1713	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1714	return memcmp(&key1, &key2, sizeof(key1));
1715}
1716
1717/*
1718 * try to replace tree blocks in fs tree with the new blocks
1719 * in reloc tree. tree blocks haven't been modified since the
1720 * reloc tree was create can be replaced.
1721 *
1722 * if a block was replaced, level of the block + 1 is returned.
1723 * if no block got replaced, 0 is returned. if there are other
1724 * errors, a negative error number is returned.
1725 */
1726static noinline_for_stack
1727int replace_path(struct btrfs_trans_handle *trans,
1728		 struct btrfs_root *dest, struct btrfs_root *src,
1729		 struct btrfs_path *path, struct btrfs_key *next_key,
1730		 int lowest_level, int max_level)
1731{
 
1732	struct extent_buffer *eb;
1733	struct extent_buffer *parent;
 
1734	struct btrfs_key key;
1735	u64 old_bytenr;
1736	u64 new_bytenr;
1737	u64 old_ptr_gen;
1738	u64 new_ptr_gen;
1739	u64 last_snapshot;
1740	u32 blocksize;
1741	int cow = 0;
1742	int level;
1743	int ret;
1744	int slot;
1745
1746	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1747	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1748
1749	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1750again:
1751	slot = path->slots[lowest_level];
1752	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1753
1754	eb = btrfs_lock_root_node(dest);
1755	btrfs_set_lock_blocking(eb);
1756	level = btrfs_header_level(eb);
1757
1758	if (level < lowest_level) {
1759		btrfs_tree_unlock(eb);
1760		free_extent_buffer(eb);
1761		return 0;
1762	}
1763
1764	if (cow) {
1765		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1766		BUG_ON(ret);
 
 
 
 
 
1767	}
1768	btrfs_set_lock_blocking(eb);
1769
1770	if (next_key) {
1771		next_key->objectid = (u64)-1;
1772		next_key->type = (u8)-1;
1773		next_key->offset = (u64)-1;
1774	}
1775
1776	parent = eb;
1777	while (1) {
1778		level = btrfs_header_level(parent);
1779		BUG_ON(level < lowest_level);
1780
1781		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1782		if (ret && slot > 0)
1783			slot--;
1784
1785		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1786			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1787
1788		old_bytenr = btrfs_node_blockptr(parent, slot);
1789		blocksize = btrfs_level_size(dest, level - 1);
1790		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1791
1792		if (level <= max_level) {
1793			eb = path->nodes[level];
1794			new_bytenr = btrfs_node_blockptr(eb,
1795							path->slots[level]);
1796			new_ptr_gen = btrfs_node_ptr_generation(eb,
1797							path->slots[level]);
1798		} else {
1799			new_bytenr = 0;
1800			new_ptr_gen = 0;
1801		}
1802
1803		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1804			ret = level;
1805			break;
1806		}
1807
1808		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1809		    memcmp_node_keys(parent, slot, path, level)) {
1810			if (level <= lowest_level) {
1811				ret = 0;
1812				break;
1813			}
1814
1815			eb = read_tree_block(dest, old_bytenr, blocksize,
1816					     old_ptr_gen);
1817			if (!eb || !extent_buffer_uptodate(eb)) {
1818				ret = (!eb) ? -ENOMEM : -EIO;
1819				free_extent_buffer(eb);
1820				break;
1821			}
1822			btrfs_tree_lock(eb);
1823			if (cow) {
1824				ret = btrfs_cow_block(trans, dest, eb, parent,
1825						      slot, &eb);
1826				BUG_ON(ret);
 
 
 
 
 
1827			}
1828			btrfs_set_lock_blocking(eb);
1829
1830			btrfs_tree_unlock(parent);
1831			free_extent_buffer(parent);
1832
1833			parent = eb;
1834			continue;
1835		}
1836
1837		if (!cow) {
1838			btrfs_tree_unlock(parent);
1839			free_extent_buffer(parent);
1840			cow = 1;
1841			goto again;
1842		}
1843
1844		btrfs_node_key_to_cpu(path->nodes[level], &key,
1845				      path->slots[level]);
1846		btrfs_release_path(path);
1847
1848		path->lowest_level = level;
 
1849		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
 
1850		path->lowest_level = 0;
1851		BUG_ON(ret);
 
 
 
 
1852
1853		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1854		 * swap blocks in fs tree and reloc tree.
1855		 */
1856		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1857		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1858		btrfs_mark_buffer_dirty(parent);
1859
1860		btrfs_set_node_blockptr(path->nodes[level],
1861					path->slots[level], old_bytenr);
1862		btrfs_set_node_ptr_generation(path->nodes[level],
1863					      path->slots[level], old_ptr_gen);
1864		btrfs_mark_buffer_dirty(path->nodes[level]);
1865
1866		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1867					path->nodes[level]->start,
1868					src->root_key.objectid, level - 1, 0,
1869					1);
1870		BUG_ON(ret);
1871		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1872					0, dest->root_key.objectid, level - 1,
1873					0, 1);
1874		BUG_ON(ret);
1875
1876		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1877					path->nodes[level]->start,
1878					src->root_key.objectid, level - 1, 0,
1879					1);
1880		BUG_ON(ret);
1881
1882		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1883					0, dest->root_key.objectid, level - 1,
1884					0, 1);
1885		BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1886
1887		btrfs_unlock_up_safe(path, 0);
1888
1889		ret = level;
1890		break;
1891	}
1892	btrfs_tree_unlock(parent);
1893	free_extent_buffer(parent);
1894	return ret;
1895}
1896
1897/*
1898 * helper to find next relocated block in reloc tree
1899 */
1900static noinline_for_stack
1901int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1902		       int *level)
1903{
1904	struct extent_buffer *eb;
1905	int i;
1906	u64 last_snapshot;
1907	u32 nritems;
1908
1909	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1910
1911	for (i = 0; i < *level; i++) {
1912		free_extent_buffer(path->nodes[i]);
1913		path->nodes[i] = NULL;
1914	}
1915
1916	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1917		eb = path->nodes[i];
1918		nritems = btrfs_header_nritems(eb);
1919		while (path->slots[i] + 1 < nritems) {
1920			path->slots[i]++;
1921			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1922			    last_snapshot)
1923				continue;
1924
1925			*level = i;
1926			return 0;
1927		}
1928		free_extent_buffer(path->nodes[i]);
1929		path->nodes[i] = NULL;
1930	}
1931	return 1;
1932}
1933
1934/*
1935 * walk down reloc tree to find relocated block of lowest level
1936 */
1937static noinline_for_stack
1938int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1939			 int *level)
1940{
1941	struct extent_buffer *eb = NULL;
1942	int i;
1943	u64 bytenr;
1944	u64 ptr_gen = 0;
1945	u64 last_snapshot;
1946	u32 blocksize;
1947	u32 nritems;
1948
1949	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1950
1951	for (i = *level; i > 0; i--) {
1952		eb = path->nodes[i];
1953		nritems = btrfs_header_nritems(eb);
1954		while (path->slots[i] < nritems) {
1955			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1956			if (ptr_gen > last_snapshot)
1957				break;
1958			path->slots[i]++;
1959		}
1960		if (path->slots[i] >= nritems) {
1961			if (i == *level)
1962				break;
1963			*level = i + 1;
1964			return 0;
1965		}
1966		if (i == 1) {
1967			*level = i;
1968			return 0;
1969		}
1970
1971		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1972		blocksize = btrfs_level_size(root, i - 1);
1973		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1974		if (!eb || !extent_buffer_uptodate(eb)) {
1975			free_extent_buffer(eb);
1976			return -EIO;
1977		}
1978		BUG_ON(btrfs_header_level(eb) != i - 1);
1979		path->nodes[i - 1] = eb;
1980		path->slots[i - 1] = 0;
1981	}
1982	return 1;
1983}
1984
1985/*
1986 * invalidate extent cache for file extents whose key in range of
1987 * [min_key, max_key)
1988 */
1989static int invalidate_extent_cache(struct btrfs_root *root,
1990				   struct btrfs_key *min_key,
1991				   struct btrfs_key *max_key)
1992{
1993	struct inode *inode = NULL;
 
1994	u64 objectid;
1995	u64 start, end;
1996	u64 ino;
1997
1998	objectid = min_key->objectid;
1999	while (1) {
 
 
2000		cond_resched();
2001		iput(inode);
 
2002
2003		if (objectid > max_key->objectid)
2004			break;
2005
2006		inode = find_next_inode(root, objectid);
2007		if (!inode)
2008			break;
2009		ino = btrfs_ino(inode);
2010
2011		if (ino > max_key->objectid) {
2012			iput(inode);
2013			break;
2014		}
2015
2016		objectid = ino + 1;
2017		if (!S_ISREG(inode->i_mode))
2018			continue;
2019
2020		if (unlikely(min_key->objectid == ino)) {
2021			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2022				continue;
2023			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2024				start = 0;
2025			else {
2026				start = min_key->offset;
2027				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2028			}
2029		} else {
2030			start = 0;
2031		}
2032
2033		if (unlikely(max_key->objectid == ino)) {
2034			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2035				continue;
2036			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2037				end = (u64)-1;
2038			} else {
2039				if (max_key->offset == 0)
2040					continue;
2041				end = max_key->offset;
2042				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2043				end--;
2044			}
2045		} else {
2046			end = (u64)-1;
2047		}
2048
2049		/* the lock_extent waits for readpage to complete */
2050		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2051		btrfs_drop_extent_cache(inode, start, end, 1);
2052		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2053	}
2054	return 0;
2055}
2056
2057static int find_next_key(struct btrfs_path *path, int level,
2058			 struct btrfs_key *key)
2059
2060{
2061	while (level < BTRFS_MAX_LEVEL) {
2062		if (!path->nodes[level])
2063			break;
2064		if (path->slots[level] + 1 <
2065		    btrfs_header_nritems(path->nodes[level])) {
2066			btrfs_node_key_to_cpu(path->nodes[level], key,
2067					      path->slots[level] + 1);
2068			return 0;
2069		}
2070		level++;
2071	}
2072	return 1;
2073}
2074
2075/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2076 * merge the relocated tree blocks in reloc tree with corresponding
2077 * fs tree.
2078 */
2079static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2080					       struct btrfs_root *root)
2081{
2082	LIST_HEAD(inode_list);
2083	struct btrfs_key key;
2084	struct btrfs_key next_key;
2085	struct btrfs_trans_handle *trans = NULL;
2086	struct btrfs_root *reloc_root;
2087	struct btrfs_root_item *root_item;
2088	struct btrfs_path *path;
2089	struct extent_buffer *leaf;
 
2090	int level;
2091	int max_level;
2092	int replaced = 0;
2093	int ret;
2094	int err = 0;
2095	u32 min_reserved;
2096
2097	path = btrfs_alloc_path();
2098	if (!path)
2099		return -ENOMEM;
2100	path->reada = 1;
2101
2102	reloc_root = root->reloc_root;
2103	root_item = &reloc_root->root_item;
2104
2105	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2106		level = btrfs_root_level(root_item);
2107		extent_buffer_get(reloc_root->node);
2108		path->nodes[level] = reloc_root->node;
2109		path->slots[level] = 0;
2110	} else {
2111		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2112
2113		level = root_item->drop_level;
2114		BUG_ON(level == 0);
2115		path->lowest_level = level;
2116		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2117		path->lowest_level = 0;
2118		if (ret < 0) {
2119			btrfs_free_path(path);
2120			return ret;
2121		}
2122
2123		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2124				      path->slots[level]);
2125		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2126
2127		btrfs_unlock_up_safe(path, 0);
2128	}
2129
2130	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
 
2131	memset(&next_key, 0, sizeof(next_key));
2132
2133	while (1) {
2134		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2135					     BTRFS_RESERVE_FLUSH_ALL);
2136		if (ret) {
2137			err = ret;
2138			goto out;
2139		}
2140		trans = btrfs_start_transaction(root, 0);
2141		if (IS_ERR(trans)) {
2142			err = PTR_ERR(trans);
2143			trans = NULL;
2144			goto out;
2145		}
 
 
 
 
 
 
 
 
 
 
 
 
2146		trans->block_rsv = rc->block_rsv;
2147
2148		replaced = 0;
2149		max_level = level;
2150
2151		ret = walk_down_reloc_tree(reloc_root, path, &level);
2152		if (ret < 0) {
2153			err = ret;
2154			goto out;
2155		}
2156		if (ret > 0)
2157			break;
2158
2159		if (!find_next_key(path, level, &key) &&
2160		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2161			ret = 0;
2162		} else {
2163			ret = replace_path(trans, root, reloc_root, path,
2164					   &next_key, level, max_level);
2165		}
2166		if (ret < 0) {
2167			err = ret;
2168			goto out;
2169		}
2170
2171		if (ret > 0) {
2172			level = ret;
2173			btrfs_node_key_to_cpu(path->nodes[level], &key,
2174					      path->slots[level]);
2175			replaced = 1;
2176		}
2177
2178		ret = walk_up_reloc_tree(reloc_root, path, &level);
2179		if (ret > 0)
2180			break;
2181
2182		BUG_ON(level == 0);
2183		/*
2184		 * save the merging progress in the drop_progress.
2185		 * this is OK since root refs == 1 in this case.
2186		 */
2187		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2188			       path->slots[level]);
2189		root_item->drop_level = level;
2190
2191		btrfs_end_transaction_throttle(trans, root);
2192		trans = NULL;
2193
2194		btrfs_btree_balance_dirty(root);
2195
2196		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2197			invalidate_extent_cache(root, &key, &next_key);
2198	}
2199
2200	/*
2201	 * handle the case only one block in the fs tree need to be
2202	 * relocated and the block is tree root.
2203	 */
2204	leaf = btrfs_lock_root_node(root);
2205	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
 
2206	btrfs_tree_unlock(leaf);
2207	free_extent_buffer(leaf);
2208	if (ret < 0)
2209		err = ret;
2210out:
2211	btrfs_free_path(path);
2212
2213	if (err == 0) {
2214		memset(&root_item->drop_progress, 0,
2215		       sizeof(root_item->drop_progress));
2216		root_item->drop_level = 0;
2217		btrfs_set_root_refs(root_item, 0);
2218		btrfs_update_reloc_root(trans, root);
2219	}
2220
2221	if (trans)
2222		btrfs_end_transaction_throttle(trans, root);
2223
2224	btrfs_btree_balance_dirty(root);
2225
2226	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2227		invalidate_extent_cache(root, &key, &next_key);
2228
2229	return err;
2230}
2231
2232static noinline_for_stack
2233int prepare_to_merge(struct reloc_control *rc, int err)
2234{
2235	struct btrfs_root *root = rc->extent_root;
 
2236	struct btrfs_root *reloc_root;
2237	struct btrfs_trans_handle *trans;
2238	LIST_HEAD(reloc_roots);
2239	u64 num_bytes = 0;
2240	int ret;
2241
2242	mutex_lock(&root->fs_info->reloc_mutex);
2243	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2244	rc->merging_rsv_size += rc->nodes_relocated * 2;
2245	mutex_unlock(&root->fs_info->reloc_mutex);
2246
2247again:
2248	if (!err) {
2249		num_bytes = rc->merging_rsv_size;
2250		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2251					  BTRFS_RESERVE_FLUSH_ALL);
2252		if (ret)
2253			err = ret;
2254	}
2255
2256	trans = btrfs_join_transaction(rc->extent_root);
2257	if (IS_ERR(trans)) {
2258		if (!err)
2259			btrfs_block_rsv_release(rc->extent_root,
2260						rc->block_rsv, num_bytes);
2261		return PTR_ERR(trans);
2262	}
2263
2264	if (!err) {
2265		if (num_bytes != rc->merging_rsv_size) {
2266			btrfs_end_transaction(trans, rc->extent_root);
2267			btrfs_block_rsv_release(rc->extent_root,
2268						rc->block_rsv, num_bytes);
2269			goto again;
2270		}
2271	}
2272
2273	rc->merge_reloc_tree = 1;
2274
2275	while (!list_empty(&rc->reloc_roots)) {
2276		reloc_root = list_entry(rc->reloc_roots.next,
2277					struct btrfs_root, root_list);
2278		list_del_init(&reloc_root->root_list);
2279
2280		root = read_fs_root(reloc_root->fs_info,
2281				    reloc_root->root_key.offset);
2282		BUG_ON(IS_ERR(root));
2283		BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284
2285		/*
2286		 * set reference count to 1, so btrfs_recover_relocation
2287		 * knows it should resumes merging
2288		 */
2289		if (!err)
2290			btrfs_set_root_refs(&reloc_root->root_item, 1);
2291		btrfs_update_reloc_root(trans, root);
2292
 
 
 
 
2293		list_add(&reloc_root->root_list, &reloc_roots);
 
 
 
 
 
 
 
 
2294	}
2295
2296	list_splice(&reloc_roots, &rc->reloc_roots);
2297
2298	if (!err)
2299		btrfs_commit_transaction(trans, rc->extent_root);
2300	else
2301		btrfs_end_transaction(trans, rc->extent_root);
2302	return err;
2303}
2304
2305static noinline_for_stack
2306void free_reloc_roots(struct list_head *list)
2307{
2308	struct btrfs_root *reloc_root;
2309
2310	while (!list_empty(list)) {
2311		reloc_root = list_entry(list->next, struct btrfs_root,
2312					root_list);
2313		__del_reloc_root(reloc_root);
2314	}
2315}
2316
2317static noinline_for_stack
2318int merge_reloc_roots(struct reloc_control *rc)
2319{
 
2320	struct btrfs_root *root;
2321	struct btrfs_root *reloc_root;
2322	u64 last_snap;
2323	u64 otransid;
2324	u64 objectid;
2325	LIST_HEAD(reloc_roots);
2326	int found = 0;
2327	int ret = 0;
2328again:
2329	root = rc->extent_root;
2330
2331	/*
2332	 * this serializes us with btrfs_record_root_in_transaction,
2333	 * we have to make sure nobody is in the middle of
2334	 * adding their roots to the list while we are
2335	 * doing this splice
2336	 */
2337	mutex_lock(&root->fs_info->reloc_mutex);
2338	list_splice_init(&rc->reloc_roots, &reloc_roots);
2339	mutex_unlock(&root->fs_info->reloc_mutex);
2340
2341	while (!list_empty(&reloc_roots)) {
2342		found = 1;
2343		reloc_root = list_entry(reloc_roots.next,
2344					struct btrfs_root, root_list);
2345
 
 
2346		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2347			root = read_fs_root(reloc_root->fs_info,
2348					    reloc_root->root_key.offset);
2349			BUG_ON(IS_ERR(root));
2350			BUG_ON(root->reloc_root != reloc_root);
2351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2352			ret = merge_reloc_root(rc, root);
 
2353			if (ret) {
2354				if (list_empty(&reloc_root->root_list))
2355					list_add_tail(&reloc_root->root_list,
2356						      &reloc_roots);
2357				goto out;
2358			}
2359		} else {
 
 
 
 
 
 
 
 
 
 
2360			list_del_init(&reloc_root->root_list);
2361		}
2362
2363		/*
2364		 * we keep the old last snapshod transid in rtranid when we
2365		 * created the relocation tree.
2366		 */
2367		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2368		otransid = btrfs_root_otransid(&reloc_root->root_item);
2369		objectid = reloc_root->root_key.offset;
2370
2371		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2372		if (ret < 0) {
2373			if (list_empty(&reloc_root->root_list))
2374				list_add_tail(&reloc_root->root_list,
2375					      &reloc_roots);
2376			goto out;
2377		}
2378	}
2379
2380	if (found) {
2381		found = 0;
2382		goto again;
2383	}
2384out:
2385	if (ret) {
2386		btrfs_std_error(root->fs_info, ret);
2387		if (!list_empty(&reloc_roots))
2388			free_reloc_roots(&reloc_roots);
2389
2390		/* new reloc root may be added */
2391		mutex_lock(&root->fs_info->reloc_mutex);
2392		list_splice_init(&rc->reloc_roots, &reloc_roots);
2393		mutex_unlock(&root->fs_info->reloc_mutex);
2394		if (!list_empty(&reloc_roots))
2395			free_reloc_roots(&reloc_roots);
2396	}
2397
2398	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2399	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
2400}
2401
2402static void free_block_list(struct rb_root *blocks)
2403{
2404	struct tree_block *block;
2405	struct rb_node *rb_node;
2406	while ((rb_node = rb_first(blocks))) {
2407		block = rb_entry(rb_node, struct tree_block, rb_node);
2408		rb_erase(rb_node, blocks);
2409		kfree(block);
2410	}
2411}
2412
2413static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2414				      struct btrfs_root *reloc_root)
2415{
 
2416	struct btrfs_root *root;
 
2417
2418	if (reloc_root->last_trans == trans->transid)
2419		return 0;
2420
2421	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2422	BUG_ON(IS_ERR(root));
2423	BUG_ON(root->reloc_root != reloc_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424
2425	return btrfs_record_root_in_trans(trans, root);
2426}
2427
2428static noinline_for_stack
2429struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2430				     struct reloc_control *rc,
2431				     struct backref_node *node,
2432				     struct backref_edge *edges[])
2433{
2434	struct backref_node *next;
2435	struct btrfs_root *root;
2436	int index = 0;
 
2437
2438	next = node;
2439	while (1) {
2440		cond_resched();
2441		next = walk_up_backref(next, edges, &index);
2442		root = next->root;
2443		BUG_ON(!root);
2444		BUG_ON(!root->ref_cows);
2445
2446		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2447			record_reloc_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448			break;
2449		}
2450
2451		btrfs_record_root_in_trans(trans, root);
 
 
2452		root = root->reloc_root;
2453
 
 
 
 
 
 
 
2454		if (next->new_bytenr != root->node->start) {
2455			BUG_ON(next->new_bytenr);
2456			BUG_ON(!list_empty(&next->list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457			next->new_bytenr = root->node->start;
2458			next->root = root;
 
 
2459			list_add_tail(&next->list,
2460				      &rc->backref_cache.changed);
2461			__mark_block_processed(rc, next);
2462			break;
2463		}
2464
2465		WARN_ON(1);
2466		root = NULL;
2467		next = walk_down_backref(edges, &index);
2468		if (!next || next->level <= node->level)
2469			break;
2470	}
2471	if (!root)
2472		return NULL;
 
 
 
 
 
 
2473
2474	next = node;
2475	/* setup backref node path for btrfs_reloc_cow_block */
2476	while (1) {
2477		rc->backref_cache.path[next->level] = next;
2478		if (--index < 0)
2479			break;
2480		next = edges[index]->node[UPPER];
2481	}
2482	return root;
2483}
2484
2485/*
2486 * select a tree root for relocation. return NULL if the block
2487 * is reference counted. we should use do_relocation() in this
2488 * case. return a tree root pointer if the block isn't reference
2489 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2490 */
2491static noinline_for_stack
2492struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2493				   struct backref_node *node)
2494{
2495	struct backref_node *next;
2496	struct btrfs_root *root;
2497	struct btrfs_root *fs_root = NULL;
2498	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2499	int index = 0;
2500
2501	next = node;
2502	while (1) {
2503		cond_resched();
2504		next = walk_up_backref(next, edges, &index);
2505		root = next->root;
2506		BUG_ON(!root);
2507
2508		/* no other choice for non-references counted tree */
2509		if (!root->ref_cows)
 
 
 
 
 
 
 
2510			return root;
2511
2512		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2513			fs_root = root;
2514
2515		if (next != node)
2516			return NULL;
2517
2518		next = walk_down_backref(edges, &index);
2519		if (!next || next->level <= node->level)
2520			break;
2521	}
2522
2523	if (!fs_root)
2524		return ERR_PTR(-ENOENT);
2525	return fs_root;
2526}
2527
2528static noinline_for_stack
2529u64 calcu_metadata_size(struct reloc_control *rc,
2530			struct backref_node *node, int reserve)
2531{
2532	struct backref_node *next = node;
2533	struct backref_edge *edge;
2534	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2535	u64 num_bytes = 0;
2536	int index = 0;
2537
2538	BUG_ON(reserve && node->processed);
2539
2540	while (next) {
2541		cond_resched();
2542		while (1) {
2543			if (next->processed && (reserve || next != node))
2544				break;
2545
2546			num_bytes += btrfs_level_size(rc->extent_root,
2547						      next->level);
2548
2549			if (list_empty(&next->upper))
2550				break;
2551
2552			edge = list_entry(next->upper.next,
2553					  struct backref_edge, list[LOWER]);
2554			edges[index++] = edge;
2555			next = edge->node[UPPER];
2556		}
2557		next = walk_down_backref(edges, &index);
2558	}
2559	return num_bytes;
2560}
2561
2562static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2563				  struct reloc_control *rc,
2564				  struct backref_node *node)
2565{
2566	struct btrfs_root *root = rc->extent_root;
 
2567	u64 num_bytes;
2568	int ret;
2569	u64 tmp;
2570
2571	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2572
2573	trans->block_rsv = rc->block_rsv;
2574	rc->reserved_bytes += num_bytes;
2575	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2576				BTRFS_RESERVE_FLUSH_ALL);
 
 
 
 
 
 
2577	if (ret) {
2578		if (ret == -EAGAIN) {
2579			tmp = rc->extent_root->nodesize *
2580				RELOCATION_RESERVED_NODES;
2581			while (tmp <= rc->reserved_bytes)
2582				tmp <<= 1;
2583			/*
2584			 * only one thread can access block_rsv at this point,
2585			 * so we don't need hold lock to protect block_rsv.
2586			 * we expand more reservation size here to allow enough
2587			 * space for relocation and we will return eailer in
2588			 * enospc case.
2589			 */
2590			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2591					      RELOCATION_RESERVED_NODES;
2592		}
2593		return ret;
2594	}
2595
2596	return 0;
2597}
2598
2599/*
2600 * relocate a block tree, and then update pointers in upper level
2601 * blocks that reference the block to point to the new location.
2602 *
2603 * if called by link_to_upper, the block has already been relocated.
2604 * in that case this function just updates pointers.
2605 */
2606static int do_relocation(struct btrfs_trans_handle *trans,
2607			 struct reloc_control *rc,
2608			 struct backref_node *node,
2609			 struct btrfs_key *key,
2610			 struct btrfs_path *path, int lowest)
2611{
2612	struct backref_node *upper;
2613	struct backref_edge *edge;
2614	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2615	struct btrfs_root *root;
2616	struct extent_buffer *eb;
2617	u32 blocksize;
2618	u64 bytenr;
2619	u64 generation;
2620	int slot;
2621	int ret;
2622	int err = 0;
2623
2624	BUG_ON(lowest && node->eb);
 
 
 
 
2625
2626	path->lowest_level = node->level + 1;
2627	rc->backref_cache.path[node->level] = node;
2628	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2629		cond_resched();
2630
2631		upper = edge->node[UPPER];
2632		root = select_reloc_root(trans, rc, upper, edges);
2633		BUG_ON(!root);
 
 
 
2634
2635		if (upper->eb && !upper->locked) {
2636			if (!lowest) {
2637				ret = btrfs_bin_search(upper->eb, key,
2638						       upper->level, &slot);
 
2639				BUG_ON(ret);
2640				bytenr = btrfs_node_blockptr(upper->eb, slot);
2641				if (node->eb->start == bytenr)
2642					goto next;
2643			}
2644			drop_node_buffer(upper);
2645		}
2646
2647		if (!upper->eb) {
2648			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2649			if (ret < 0) {
2650				err = ret;
 
 
 
2651				break;
2652			}
2653			BUG_ON(ret > 0);
2654
2655			if (!upper->eb) {
2656				upper->eb = path->nodes[upper->level];
2657				path->nodes[upper->level] = NULL;
2658			} else {
2659				BUG_ON(upper->eb != path->nodes[upper->level]);
2660			}
2661
2662			upper->locked = 1;
2663			path->locks[upper->level] = 0;
2664
2665			slot = path->slots[upper->level];
2666			btrfs_release_path(path);
2667		} else {
2668			ret = btrfs_bin_search(upper->eb, key, upper->level,
2669					       &slot);
 
2670			BUG_ON(ret);
2671		}
2672
2673		bytenr = btrfs_node_blockptr(upper->eb, slot);
2674		if (lowest) {
2675			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2676		} else {
2677			if (node->eb->start == bytenr)
2678				goto next;
2679		}
2680
2681		blocksize = btrfs_level_size(root, node->level);
2682		generation = btrfs_node_ptr_generation(upper->eb, slot);
2683		eb = read_tree_block(root, bytenr, blocksize, generation);
2684		if (!eb || !extent_buffer_uptodate(eb)) {
2685			free_extent_buffer(eb);
2686			err = -EIO;
2687			goto next;
2688		}
2689		btrfs_tree_lock(eb);
2690		btrfs_set_lock_blocking(eb);
2691
2692		if (!node->eb) {
2693			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2694					      slot, &eb);
2695			btrfs_tree_unlock(eb);
2696			free_extent_buffer(eb);
2697			if (ret < 0) {
2698				err = ret;
2699				goto next;
2700			}
2701			BUG_ON(node->eb != eb);
 
 
 
2702		} else {
 
 
 
 
 
 
 
 
 
2703			btrfs_set_node_blockptr(upper->eb, slot,
2704						node->eb->start);
2705			btrfs_set_node_ptr_generation(upper->eb, slot,
2706						      trans->transid);
2707			btrfs_mark_buffer_dirty(upper->eb);
2708
2709			ret = btrfs_inc_extent_ref(trans, root,
2710						node->eb->start, blocksize,
2711						upper->eb->start,
2712						btrfs_header_owner(upper->eb),
2713						node->level, 0, 1);
2714			BUG_ON(ret);
2715
2716			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2717			BUG_ON(ret);
 
 
 
 
 
 
2718		}
2719next:
2720		if (!upper->pending)
2721			drop_node_buffer(upper);
2722		else
2723			unlock_node_buffer(upper);
2724		if (err)
2725			break;
2726	}
2727
2728	if (!err && node->pending) {
2729		drop_node_buffer(node);
2730		list_move_tail(&node->list, &rc->backref_cache.changed);
2731		node->pending = 0;
2732	}
2733
2734	path->lowest_level = 0;
2735	BUG_ON(err == -ENOSPC);
2736	return err;
 
 
 
 
 
2737}
2738
2739static int link_to_upper(struct btrfs_trans_handle *trans,
2740			 struct reloc_control *rc,
2741			 struct backref_node *node,
2742			 struct btrfs_path *path)
2743{
2744	struct btrfs_key key;
2745
2746	btrfs_node_key_to_cpu(node->eb, &key, 0);
2747	return do_relocation(trans, rc, node, &key, path, 0);
2748}
2749
2750static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2751				struct reloc_control *rc,
2752				struct btrfs_path *path, int err)
2753{
2754	LIST_HEAD(list);
2755	struct backref_cache *cache = &rc->backref_cache;
2756	struct backref_node *node;
2757	int level;
2758	int ret;
2759
2760	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2761		while (!list_empty(&cache->pending[level])) {
2762			node = list_entry(cache->pending[level].next,
2763					  struct backref_node, list);
2764			list_move_tail(&node->list, &list);
2765			BUG_ON(!node->pending);
2766
2767			if (!err) {
2768				ret = link_to_upper(trans, rc, node, path);
2769				if (ret < 0)
2770					err = ret;
2771			}
2772		}
2773		list_splice_init(&list, &cache->pending[level]);
2774	}
2775	return err;
2776}
2777
2778static void mark_block_processed(struct reloc_control *rc,
2779				 u64 bytenr, u32 blocksize)
2780{
2781	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2782			EXTENT_DIRTY, GFP_NOFS);
2783}
2784
2785static void __mark_block_processed(struct reloc_control *rc,
2786				   struct backref_node *node)
2787{
2788	u32 blocksize;
2789	if (node->level == 0 ||
2790	    in_block_group(node->bytenr, rc->block_group)) {
2791		blocksize = btrfs_level_size(rc->extent_root, node->level);
2792		mark_block_processed(rc, node->bytenr, blocksize);
2793	}
2794	node->processed = 1;
2795}
2796
2797/*
2798 * mark a block and all blocks directly/indirectly reference the block
2799 * as processed.
2800 */
2801static void update_processed_blocks(struct reloc_control *rc,
2802				    struct backref_node *node)
2803{
2804	struct backref_node *next = node;
2805	struct backref_edge *edge;
2806	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2807	int index = 0;
2808
2809	while (next) {
2810		cond_resched();
2811		while (1) {
2812			if (next->processed)
2813				break;
2814
2815			__mark_block_processed(rc, next);
2816
2817			if (list_empty(&next->upper))
2818				break;
2819
2820			edge = list_entry(next->upper.next,
2821					  struct backref_edge, list[LOWER]);
2822			edges[index++] = edge;
2823			next = edge->node[UPPER];
2824		}
2825		next = walk_down_backref(edges, &index);
2826	}
2827}
2828
2829static int tree_block_processed(u64 bytenr, u32 blocksize,
2830				struct reloc_control *rc)
2831{
 
 
2832	if (test_range_bit(&rc->processed_blocks, bytenr,
2833			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2834		return 1;
2835	return 0;
2836}
2837
2838static int get_tree_block_key(struct reloc_control *rc,
2839			      struct tree_block *block)
2840{
 
 
 
 
 
2841	struct extent_buffer *eb;
2842
2843	BUG_ON(block->key_ready);
2844	eb = read_tree_block(rc->extent_root, block->bytenr,
2845			     block->key.objectid, block->key.offset);
2846	if (!eb || !extent_buffer_uptodate(eb)) {
2847		free_extent_buffer(eb);
2848		return -EIO;
2849	}
2850	WARN_ON(btrfs_header_level(eb) != block->level);
2851	if (block->level == 0)
2852		btrfs_item_key_to_cpu(eb, &block->key, 0);
2853	else
2854		btrfs_node_key_to_cpu(eb, &block->key, 0);
2855	free_extent_buffer(eb);
2856	block->key_ready = 1;
2857	return 0;
2858}
2859
2860static int reada_tree_block(struct reloc_control *rc,
2861			    struct tree_block *block)
2862{
2863	BUG_ON(block->key_ready);
2864	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2865		readahead_tree_block(rc->extent_root, block->bytenr,
2866				     block->key.objectid,
2867				     rc->extent_root->leafsize);
2868	else
2869		readahead_tree_block(rc->extent_root, block->bytenr,
2870				     block->key.objectid, block->key.offset);
2871	return 0;
2872}
2873
2874/*
2875 * helper function to relocate a tree block
2876 */
2877static int relocate_tree_block(struct btrfs_trans_handle *trans,
2878				struct reloc_control *rc,
2879				struct backref_node *node,
2880				struct btrfs_key *key,
2881				struct btrfs_path *path)
2882{
2883	struct btrfs_root *root;
2884	int ret = 0;
2885
2886	if (!node)
2887		return 0;
2888
 
 
 
 
 
 
 
 
2889	BUG_ON(node->processed);
2890	root = select_one_root(trans, node);
2891	if (root == ERR_PTR(-ENOENT)) {
2892		update_processed_blocks(rc, node);
 
 
 
 
 
 
 
2893		goto out;
2894	}
2895
2896	if (!root || root->ref_cows) {
2897		ret = reserve_metadata_space(trans, rc, node);
2898		if (ret)
2899			goto out;
2900	}
2901
2902	if (root) {
2903		if (root->ref_cows) {
2904			BUG_ON(node->new_bytenr);
2905			BUG_ON(!list_empty(&node->list));
2906			btrfs_record_root_in_trans(trans, root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2907			root = root->reloc_root;
2908			node->new_bytenr = root->node->start;
2909			node->root = root;
 
 
2910			list_add_tail(&node->list, &rc->backref_cache.changed);
2911		} else {
2912			path->lowest_level = node->level;
 
 
2913			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2914			btrfs_release_path(path);
 
 
2915			if (ret > 0)
2916				ret = 0;
2917		}
2918		if (!ret)
2919			update_processed_blocks(rc, node);
2920	} else {
2921		ret = do_relocation(trans, rc, node, key, path, 1);
2922	}
2923out:
2924	if (ret || node->level == 0 || node->cowonly)
2925		remove_backref_node(&rc->backref_cache, node);
2926	return ret;
2927}
2928
2929/*
2930 * relocate a list of blocks
2931 */
2932static noinline_for_stack
2933int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2934			 struct reloc_control *rc, struct rb_root *blocks)
2935{
2936	struct backref_node *node;
 
2937	struct btrfs_path *path;
2938	struct tree_block *block;
2939	struct rb_node *rb_node;
2940	int ret;
2941	int err = 0;
2942
2943	path = btrfs_alloc_path();
2944	if (!path) {
2945		err = -ENOMEM;
2946		goto out_free_blocks;
2947	}
2948
2949	rb_node = rb_first(blocks);
2950	while (rb_node) {
2951		block = rb_entry(rb_node, struct tree_block, rb_node);
2952		if (!block->key_ready)
2953			reada_tree_block(rc, block);
2954		rb_node = rb_next(rb_node);
 
2955	}
2956
2957	rb_node = rb_first(blocks);
2958	while (rb_node) {
2959		block = rb_entry(rb_node, struct tree_block, rb_node);
2960		if (!block->key_ready) {
2961			err = get_tree_block_key(rc, block);
2962			if (err)
2963				goto out_free_path;
2964		}
2965		rb_node = rb_next(rb_node);
2966	}
2967
2968	rb_node = rb_first(blocks);
2969	while (rb_node) {
2970		block = rb_entry(rb_node, struct tree_block, rb_node);
2971
2972		node = build_backref_tree(rc, &block->key,
2973					  block->level, block->bytenr);
2974		if (IS_ERR(node)) {
2975			err = PTR_ERR(node);
2976			goto out;
2977		}
2978
2979		ret = relocate_tree_block(trans, rc, node, &block->key,
2980					  path);
2981		if (ret < 0) {
2982			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2983				err = ret;
2984			goto out;
2985		}
2986		rb_node = rb_next(rb_node);
2987	}
2988out:
2989	err = finish_pending_nodes(trans, rc, path, err);
2990
2991out_free_path:
2992	btrfs_free_path(path);
2993out_free_blocks:
2994	free_block_list(blocks);
2995	return err;
2996}
2997
2998static noinline_for_stack
2999int prealloc_file_extent_cluster(struct inode *inode,
3000				 struct file_extent_cluster *cluster)
3001{
 
 
3002	u64 alloc_hint = 0;
3003	u64 start;
3004	u64 end;
3005	u64 offset = BTRFS_I(inode)->index_cnt;
3006	u64 num_bytes;
3007	int nr = 0;
3008	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009
3010	BUG_ON(cluster->start != cluster->boundary[0]);
3011	mutex_lock(&inode->i_mutex);
 
 
 
3012
3013	ret = btrfs_check_data_free_space(inode, cluster->end +
3014					  1 - cluster->start);
3015	if (ret)
3016		goto out;
3017
3018	while (nr < cluster->nr) {
3019		start = cluster->boundary[nr] - offset;
3020		if (nr + 1 < cluster->nr)
3021			end = cluster->boundary[nr + 1] - 1 - offset;
3022		else
3023			end = cluster->end - offset;
3024
3025		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3026		num_bytes = end + 1 - start;
3027		ret = btrfs_prealloc_file_range(inode, 0, start,
3028						num_bytes, num_bytes,
3029						end + 1, &alloc_hint);
3030		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
 
3031		if (ret)
3032			break;
3033		nr++;
3034	}
3035	btrfs_free_reserved_data_space(inode, cluster->end +
3036				       1 - cluster->start);
3037out:
3038	mutex_unlock(&inode->i_mutex);
 
3039	return ret;
3040}
3041
3042static noinline_for_stack
3043int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3044			 u64 block_start)
3045{
3046	struct btrfs_root *root = BTRFS_I(inode)->root;
3047	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3048	struct extent_map *em;
 
 
 
 
3049	int ret = 0;
3050
3051	em = alloc_extent_map();
3052	if (!em)
3053		return -ENOMEM;
3054
3055	em->start = start;
3056	em->len = end + 1 - start;
3057	em->block_len = em->len;
3058	em->block_start = block_start;
3059	em->bdev = root->fs_info->fs_devices->latest_bdev;
3060	set_bit(EXTENT_FLAG_PINNED, &em->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061
3062	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3063	while (1) {
3064		write_lock(&em_tree->lock);
3065		ret = add_extent_mapping(em_tree, em, 0);
3066		write_unlock(&em_tree->lock);
3067		if (ret != -EEXIST) {
3068			free_extent_map(em);
3069			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3070		}
3071		btrfs_drop_extent_cache(inode, start, end, 0);
3072	}
3073	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
 
 
 
 
 
 
 
 
 
 
 
3074	return ret;
3075}
3076
3077static int relocate_file_extent_cluster(struct inode *inode,
3078					struct file_extent_cluster *cluster)
3079{
3080	u64 page_start;
3081	u64 page_end;
3082	u64 offset = BTRFS_I(inode)->index_cnt;
3083	unsigned long index;
3084	unsigned long last_index;
3085	struct page *page;
3086	struct file_ra_state *ra;
3087	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3088	int nr = 0;
3089	int ret = 0;
3090
3091	if (!cluster->nr)
3092		return 0;
3093
3094	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3095	if (!ra)
3096		return -ENOMEM;
3097
3098	ret = prealloc_file_extent_cluster(inode, cluster);
3099	if (ret)
3100		goto out;
3101
3102	file_ra_state_init(ra, inode->i_mapping);
3103
3104	ret = setup_extent_mapping(inode, cluster->start - offset,
3105				   cluster->end - offset, cluster->start);
3106	if (ret)
3107		goto out;
3108
3109	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3110	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3111	while (index <= last_index) {
3112		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3113		if (ret)
3114			goto out;
3115
3116		page = find_lock_page(inode->i_mapping, index);
3117		if (!page) {
3118			page_cache_sync_readahead(inode->i_mapping,
3119						  ra, NULL, index,
3120						  last_index + 1 - index);
3121			page = find_or_create_page(inode->i_mapping, index,
3122						   mask);
3123			if (!page) {
3124				btrfs_delalloc_release_metadata(inode,
3125							PAGE_CACHE_SIZE);
3126				ret = -ENOMEM;
3127				goto out;
3128			}
3129		}
3130
3131		if (PageReadahead(page)) {
3132			page_cache_async_readahead(inode->i_mapping,
3133						   ra, NULL, page, index,
3134						   last_index + 1 - index);
3135		}
3136
3137		if (!PageUptodate(page)) {
3138			btrfs_readpage(NULL, page);
3139			lock_page(page);
3140			if (!PageUptodate(page)) {
3141				unlock_page(page);
3142				page_cache_release(page);
3143				btrfs_delalloc_release_metadata(inode,
3144							PAGE_CACHE_SIZE);
3145				ret = -EIO;
3146				goto out;
3147			}
3148		}
3149
3150		page_start = page_offset(page);
3151		page_end = page_start + PAGE_CACHE_SIZE - 1;
3152
3153		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3154
3155		set_page_extent_mapped(page);
3156
3157		if (nr < cluster->nr &&
3158		    page_start + offset == cluster->boundary[nr]) {
3159			set_extent_bits(&BTRFS_I(inode)->io_tree,
3160					page_start, page_end,
3161					EXTENT_BOUNDARY, GFP_NOFS);
3162			nr++;
3163		}
3164
3165		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3166		set_page_dirty(page);
3167
3168		unlock_extent(&BTRFS_I(inode)->io_tree,
3169			      page_start, page_end);
3170		unlock_page(page);
3171		page_cache_release(page);
3172
3173		index++;
3174		balance_dirty_pages_ratelimited(inode->i_mapping);
3175		btrfs_throttle(BTRFS_I(inode)->root);
3176	}
3177	WARN_ON(nr != cluster->nr);
3178out:
3179	kfree(ra);
3180	return ret;
3181}
3182
3183static noinline_for_stack
3184int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3185			 struct file_extent_cluster *cluster)
3186{
 
 
3187	int ret;
 
3188
3189	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3190		ret = relocate_file_extent_cluster(inode, cluster);
3191		if (ret)
3192			return ret;
3193		cluster->nr = 0;
3194	}
3195
3196	if (!cluster->nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197		cluster->start = extent_key->objectid;
 
 
3198	else
3199		BUG_ON(cluster->nr >= MAX_EXTENTS);
3200	cluster->end = extent_key->objectid + extent_key->offset - 1;
3201	cluster->boundary[cluster->nr] = extent_key->objectid;
3202	cluster->nr++;
3203
3204	if (cluster->nr >= MAX_EXTENTS) {
3205		ret = relocate_file_extent_cluster(inode, cluster);
3206		if (ret)
3207			return ret;
3208		cluster->nr = 0;
3209	}
3210	return 0;
3211}
3212
3213#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3214static int get_ref_objectid_v0(struct reloc_control *rc,
3215			       struct btrfs_path *path,
3216			       struct btrfs_key *extent_key,
3217			       u64 *ref_objectid, int *path_change)
3218{
3219	struct btrfs_key key;
3220	struct extent_buffer *leaf;
3221	struct btrfs_extent_ref_v0 *ref0;
3222	int ret;
3223	int slot;
3224
3225	leaf = path->nodes[0];
3226	slot = path->slots[0];
3227	while (1) {
3228		if (slot >= btrfs_header_nritems(leaf)) {
3229			ret = btrfs_next_leaf(rc->extent_root, path);
3230			if (ret < 0)
3231				return ret;
3232			BUG_ON(ret > 0);
3233			leaf = path->nodes[0];
3234			slot = path->slots[0];
3235			if (path_change)
3236				*path_change = 1;
3237		}
3238		btrfs_item_key_to_cpu(leaf, &key, slot);
3239		if (key.objectid != extent_key->objectid)
3240			return -ENOENT;
3241
3242		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3243			slot++;
3244			continue;
3245		}
3246		ref0 = btrfs_item_ptr(leaf, slot,
3247				struct btrfs_extent_ref_v0);
3248		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3249		break;
3250	}
3251	return 0;
3252}
3253#endif
3254
3255/*
3256 * helper to add a tree block to the list.
3257 * the major work is getting the generation and level of the block
3258 */
3259static int add_tree_block(struct reloc_control *rc,
3260			  struct btrfs_key *extent_key,
3261			  struct btrfs_path *path,
3262			  struct rb_root *blocks)
3263{
3264	struct extent_buffer *eb;
3265	struct btrfs_extent_item *ei;
3266	struct btrfs_tree_block_info *bi;
3267	struct tree_block *block;
3268	struct rb_node *rb_node;
3269	u32 item_size;
3270	int level = -1;
3271	u64 generation;
 
3272
3273	eb =  path->nodes[0];
3274	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3275
3276	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3277	    item_size >= sizeof(*ei) + sizeof(*bi)) {
 
 
3278		ei = btrfs_item_ptr(eb, path->slots[0],
3279				struct btrfs_extent_item);
 
3280		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3281			bi = (struct btrfs_tree_block_info *)(ei + 1);
3282			level = btrfs_tree_block_level(eb, bi);
 
3283		} else {
3284			level = (int)extent_key->offset;
 
3285		}
3286		generation = btrfs_extent_generation(eb, ei);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287	} else {
3288#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3289		u64 ref_owner;
3290		int ret;
3291
3292		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3293		ret = get_ref_objectid_v0(rc, path, extent_key,
3294					  &ref_owner, NULL);
3295		if (ret < 0)
3296			return ret;
3297		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3298		level = (int)ref_owner;
3299		/* FIXME: get real generation */
3300		generation = 0;
3301#else
3302		BUG();
3303#endif
3304	}
3305
3306	btrfs_release_path(path);
3307
3308	BUG_ON(level == -1);
3309
3310	block = kmalloc(sizeof(*block), GFP_NOFS);
3311	if (!block)
3312		return -ENOMEM;
3313
3314	block->bytenr = extent_key->objectid;
3315	block->key.objectid = rc->extent_root->leafsize;
3316	block->key.offset = generation;
3317	block->level = level;
3318	block->key_ready = 0;
 
3319
3320	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3321	if (rb_node)
3322		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
 
3323
3324	return 0;
3325}
3326
3327/*
3328 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3329 */
3330static int __add_tree_block(struct reloc_control *rc,
3331			    u64 bytenr, u32 blocksize,
3332			    struct rb_root *blocks)
3333{
 
3334	struct btrfs_path *path;
3335	struct btrfs_key key;
3336	int ret;
3337	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3338					SKINNY_METADATA);
3339
3340	if (tree_block_processed(bytenr, blocksize, rc))
3341		return 0;
3342
3343	if (tree_search(blocks, bytenr))
3344		return 0;
3345
3346	path = btrfs_alloc_path();
3347	if (!path)
3348		return -ENOMEM;
3349again:
3350	key.objectid = bytenr;
3351	if (skinny) {
3352		key.type = BTRFS_METADATA_ITEM_KEY;
3353		key.offset = (u64)-1;
3354	} else {
3355		key.type = BTRFS_EXTENT_ITEM_KEY;
3356		key.offset = blocksize;
3357	}
3358
3359	path->search_commit_root = 1;
3360	path->skip_locking = 1;
3361	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3362	if (ret < 0)
3363		goto out;
3364
3365	if (ret > 0 && skinny) {
3366		if (path->slots[0]) {
3367			path->slots[0]--;
3368			btrfs_item_key_to_cpu(path->nodes[0], &key,
3369					      path->slots[0]);
3370			if (key.objectid == bytenr &&
3371			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3372			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3373			      key.offset == blocksize)))
3374				ret = 0;
3375		}
3376
3377		if (ret) {
3378			skinny = false;
3379			btrfs_release_path(path);
3380			goto again;
3381		}
3382	}
3383	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
3384
3385	ret = add_tree_block(rc, &key, path, blocks);
3386out:
3387	btrfs_free_path(path);
3388	return ret;
3389}
3390
3391/*
3392 * helper to check if the block use full backrefs for pointers in it
3393 */
3394static int block_use_full_backref(struct reloc_control *rc,
3395				  struct extent_buffer *eb)
3396{
3397	u64 flags;
3398	int ret;
3399
3400	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3401	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3402		return 1;
3403
3404	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3405				       eb->start, btrfs_header_level(eb), 1,
3406				       NULL, &flags);
3407	BUG_ON(ret);
3408
3409	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3410		ret = 1;
3411	else
3412		ret = 0;
3413	return ret;
3414}
3415
3416static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3417				    struct inode *inode, u64 ino)
 
 
3418{
3419	struct btrfs_key key;
3420	struct btrfs_root *root = fs_info->tree_root;
3421	struct btrfs_trans_handle *trans;
3422	int ret = 0;
3423
3424	if (inode)
3425		goto truncate;
3426
3427	key.objectid = ino;
3428	key.type = BTRFS_INODE_ITEM_KEY;
3429	key.offset = 0;
3430
3431	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3432	if (IS_ERR(inode) || is_bad_inode(inode)) {
3433		if (!IS_ERR(inode))
3434			iput(inode);
3435		return -ENOENT;
3436	}
3437
3438truncate:
3439	ret = btrfs_check_trunc_cache_free_space(root,
3440						 &fs_info->global_block_rsv);
3441	if (ret)
3442		goto out;
3443
3444	trans = btrfs_join_transaction(root);
3445	if (IS_ERR(trans)) {
3446		ret = PTR_ERR(trans);
3447		goto out;
3448	}
3449
3450	ret = btrfs_truncate_free_space_cache(root, trans, inode);
3451
3452	btrfs_end_transaction(trans, root);
3453	btrfs_btree_balance_dirty(root);
3454out:
3455	iput(inode);
3456	return ret;
3457}
3458
3459/*
3460 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3461 * this function scans fs tree to find blocks reference the data extent
3462 */
3463static int find_data_references(struct reloc_control *rc,
3464				struct btrfs_key *extent_key,
3465				struct extent_buffer *leaf,
3466				struct btrfs_extent_data_ref *ref,
3467				struct rb_root *blocks)
3468{
3469	struct btrfs_path *path;
3470	struct tree_block *block;
3471	struct btrfs_root *root;
3472	struct btrfs_file_extent_item *fi;
3473	struct rb_node *rb_node;
3474	struct btrfs_key key;
3475	u64 ref_root;
3476	u64 ref_objectid;
3477	u64 ref_offset;
3478	u32 ref_count;
3479	u32 nritems;
3480	int err = 0;
3481	int added = 0;
3482	int counted;
3483	int ret;
3484
3485	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3486	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3487	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3488	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3489
3490	/*
3491	 * This is an extent belonging to the free space cache, lets just delete
3492	 * it and redo the search.
3493	 */
3494	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3495		ret = delete_block_group_cache(rc->extent_root->fs_info,
3496					       NULL, ref_objectid);
3497		if (ret != -ENOENT)
3498			return ret;
3499		ret = 0;
3500	}
3501
3502	path = btrfs_alloc_path();
3503	if (!path)
3504		return -ENOMEM;
3505	path->reada = 1;
 
3506
3507	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3508	if (IS_ERR(root)) {
3509		err = PTR_ERR(root);
3510		goto out;
3511	}
3512
3513	key.objectid = ref_objectid;
3514	key.type = BTRFS_EXTENT_DATA_KEY;
3515	if (ref_offset > ((u64)-1 << 32))
3516		key.offset = 0;
3517	else
3518		key.offset = ref_offset;
3519
3520	path->search_commit_root = 1;
3521	path->skip_locking = 1;
3522	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3523	if (ret < 0) {
3524		err = ret;
3525		goto out;
3526	}
3527
3528	leaf = path->nodes[0];
3529	nritems = btrfs_header_nritems(leaf);
3530	/*
3531	 * the references in tree blocks that use full backrefs
3532	 * are not counted in
3533	 */
3534	if (block_use_full_backref(rc, leaf))
3535		counted = 0;
3536	else
3537		counted = 1;
3538	rb_node = tree_search(blocks, leaf->start);
3539	if (rb_node) {
3540		if (counted)
3541			added = 1;
3542		else
3543			path->slots[0] = nritems;
3544	}
3545
3546	while (ref_count > 0) {
3547		while (path->slots[0] >= nritems) {
3548			ret = btrfs_next_leaf(root, path);
3549			if (ret < 0) {
3550				err = ret;
3551				goto out;
3552			}
3553			if (WARN_ON(ret > 0))
3554				goto out;
3555
3556			leaf = path->nodes[0];
3557			nritems = btrfs_header_nritems(leaf);
3558			added = 0;
3559
3560			if (block_use_full_backref(rc, leaf))
3561				counted = 0;
3562			else
3563				counted = 1;
3564			rb_node = tree_search(blocks, leaf->start);
3565			if (rb_node) {
3566				if (counted)
3567					added = 1;
3568				else
3569					path->slots[0] = nritems;
3570			}
3571		}
3572
3573		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3574		if (WARN_ON(key.objectid != ref_objectid ||
3575		    key.type != BTRFS_EXTENT_DATA_KEY))
3576			break;
3577
3578		fi = btrfs_item_ptr(leaf, path->slots[0],
3579				    struct btrfs_file_extent_item);
3580
3581		if (btrfs_file_extent_type(leaf, fi) ==
3582		    BTRFS_FILE_EXTENT_INLINE)
3583			goto next;
3584
3585		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3586		    extent_key->objectid)
3587			goto next;
3588
3589		key.offset -= btrfs_file_extent_offset(leaf, fi);
3590		if (key.offset != ref_offset)
3591			goto next;
3592
3593		if (counted)
3594			ref_count--;
3595		if (added)
3596			goto next;
3597
3598		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3599			block = kmalloc(sizeof(*block), GFP_NOFS);
3600			if (!block) {
3601				err = -ENOMEM;
3602				break;
3603			}
3604			block->bytenr = leaf->start;
3605			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3606			block->level = 0;
3607			block->key_ready = 1;
3608			rb_node = tree_insert(blocks, block->bytenr,
3609					      &block->rb_node);
3610			if (rb_node)
3611				backref_tree_panic(rb_node, -EEXIST,
3612						   block->bytenr);
3613		}
3614		if (counted)
3615			added = 1;
3616		else
3617			path->slots[0] = nritems;
3618next:
3619		path->slots[0]++;
3620
3621	}
3622out:
3623	btrfs_free_path(path);
3624	return err;
 
 
3625}
3626
3627/*
3628 * helper to find all tree blocks that reference a given data extent
3629 */
3630static noinline_for_stack
3631int add_data_references(struct reloc_control *rc,
3632			struct btrfs_key *extent_key,
3633			struct btrfs_path *path,
3634			struct rb_root *blocks)
3635{
3636	struct btrfs_key key;
3637	struct extent_buffer *eb;
3638	struct btrfs_extent_data_ref *dref;
3639	struct btrfs_extent_inline_ref *iref;
3640	unsigned long ptr;
3641	unsigned long end;
3642	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3643	int ret = 0;
3644	int err = 0;
3645
3646	eb = path->nodes[0];
3647	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3648	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3649#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3650	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3651		ptr = end;
3652	else
3653#endif
3654		ptr += sizeof(struct btrfs_extent_item);
3655
3656	while (ptr < end) {
3657		iref = (struct btrfs_extent_inline_ref *)ptr;
3658		key.type = btrfs_extent_inline_ref_type(eb, iref);
3659		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3660			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3661			ret = __add_tree_block(rc, key.offset, blocksize,
3662					       blocks);
3663		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3664			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3665			ret = find_data_references(rc, extent_key,
3666						   eb, dref, blocks);
3667		} else {
3668			BUG();
3669		}
3670		if (ret) {
3671			err = ret;
3672			goto out;
3673		}
3674		ptr += btrfs_extent_inline_ref_size(key.type);
3675	}
3676	WARN_ON(ptr > end);
3677
3678	while (1) {
3679		cond_resched();
3680		eb = path->nodes[0];
3681		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3682			ret = btrfs_next_leaf(rc->extent_root, path);
3683			if (ret < 0) {
3684				err = ret;
3685				break;
3686			}
3687			if (ret > 0)
3688				break;
3689			eb = path->nodes[0];
3690		}
3691
3692		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3693		if (key.objectid != extent_key->objectid)
 
 
 
 
 
 
3694			break;
3695
3696#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3697		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3698		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3699#else
3700		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3701		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3702#endif
3703			ret = __add_tree_block(rc, key.offset, blocksize,
3704					       blocks);
3705		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3706			dref = btrfs_item_ptr(eb, path->slots[0],
3707					      struct btrfs_extent_data_ref);
3708			ret = find_data_references(rc, extent_key,
3709						   eb, dref, blocks);
3710		} else {
3711			ret = 0;
3712		}
3713		if (ret) {
3714			err = ret;
 
 
 
 
 
3715			break;
3716		}
3717		path->slots[0]++;
3718	}
3719out:
3720	btrfs_release_path(path);
3721	if (err)
3722		free_block_list(blocks);
3723	return err;
 
3724}
3725
3726/*
3727 * helper to find next unprocessed extent
3728 */
3729static noinline_for_stack
3730int find_next_extent(struct btrfs_trans_handle *trans,
3731		     struct reloc_control *rc, struct btrfs_path *path,
3732		     struct btrfs_key *extent_key)
3733{
 
3734	struct btrfs_key key;
3735	struct extent_buffer *leaf;
3736	u64 start, end, last;
3737	int ret;
3738
3739	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3740	while (1) {
 
 
3741		cond_resched();
3742		if (rc->search_start >= last) {
3743			ret = 1;
3744			break;
3745		}
3746
3747		key.objectid = rc->search_start;
3748		key.type = BTRFS_EXTENT_ITEM_KEY;
3749		key.offset = 0;
3750
3751		path->search_commit_root = 1;
3752		path->skip_locking = 1;
3753		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3754					0, 0);
3755		if (ret < 0)
3756			break;
3757next:
3758		leaf = path->nodes[0];
3759		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3760			ret = btrfs_next_leaf(rc->extent_root, path);
3761			if (ret != 0)
3762				break;
3763			leaf = path->nodes[0];
3764		}
3765
3766		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3767		if (key.objectid >= last) {
3768			ret = 1;
3769			break;
3770		}
3771
3772		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3773		    key.type != BTRFS_METADATA_ITEM_KEY) {
3774			path->slots[0]++;
3775			goto next;
3776		}
3777
3778		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3779		    key.objectid + key.offset <= rc->search_start) {
3780			path->slots[0]++;
3781			goto next;
3782		}
3783
3784		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3785		    key.objectid + rc->extent_root->leafsize <=
3786		    rc->search_start) {
3787			path->slots[0]++;
3788			goto next;
3789		}
3790
3791		ret = find_first_extent_bit(&rc->processed_blocks,
3792					    key.objectid, &start, &end,
3793					    EXTENT_DIRTY, NULL);
3794
3795		if (ret == 0 && start <= key.objectid) {
3796			btrfs_release_path(path);
3797			rc->search_start = end + 1;
3798		} else {
3799			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3800				rc->search_start = key.objectid + key.offset;
3801			else
3802				rc->search_start = key.objectid +
3803					rc->extent_root->leafsize;
3804			memcpy(extent_key, &key, sizeof(key));
3805			return 0;
3806		}
3807	}
3808	btrfs_release_path(path);
3809	return ret;
3810}
3811
3812static void set_reloc_control(struct reloc_control *rc)
3813{
3814	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3815
3816	mutex_lock(&fs_info->reloc_mutex);
3817	fs_info->reloc_ctl = rc;
3818	mutex_unlock(&fs_info->reloc_mutex);
3819}
3820
3821static void unset_reloc_control(struct reloc_control *rc)
3822{
3823	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3824
3825	mutex_lock(&fs_info->reloc_mutex);
3826	fs_info->reloc_ctl = NULL;
3827	mutex_unlock(&fs_info->reloc_mutex);
3828}
3829
3830static int check_extent_flags(u64 flags)
3831{
3832	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3833	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3834		return 1;
3835	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3836	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3837		return 1;
3838	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3839	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3840		return 1;
3841	return 0;
3842}
3843
3844static noinline_for_stack
3845int prepare_to_relocate(struct reloc_control *rc)
3846{
3847	struct btrfs_trans_handle *trans;
 
3848
3849	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3850					      BTRFS_BLOCK_RSV_TEMP);
3851	if (!rc->block_rsv)
3852		return -ENOMEM;
3853
3854	memset(&rc->cluster, 0, sizeof(rc->cluster));
3855	rc->search_start = rc->block_group->key.objectid;
3856	rc->extents_found = 0;
3857	rc->nodes_relocated = 0;
3858	rc->merging_rsv_size = 0;
3859	rc->reserved_bytes = 0;
3860	rc->block_rsv->size = rc->extent_root->nodesize *
3861			      RELOCATION_RESERVED_NODES;
 
 
 
 
 
3862
3863	rc->create_reloc_tree = 1;
3864	set_reloc_control(rc);
3865
3866	trans = btrfs_join_transaction(rc->extent_root);
3867	if (IS_ERR(trans)) {
3868		unset_reloc_control(rc);
3869		/*
3870		 * extent tree is not a ref_cow tree and has no reloc_root to
3871		 * cleanup.  And callers are responsible to free the above
3872		 * block rsv.
3873		 */
3874		return PTR_ERR(trans);
3875	}
3876	btrfs_commit_transaction(trans, rc->extent_root);
3877	return 0;
 
 
 
 
3878}
3879
3880static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3881{
 
3882	struct rb_root blocks = RB_ROOT;
3883	struct btrfs_key key;
3884	struct btrfs_trans_handle *trans = NULL;
3885	struct btrfs_path *path;
3886	struct btrfs_extent_item *ei;
3887	u64 flags;
3888	u32 item_size;
3889	int ret;
3890	int err = 0;
3891	int progress = 0;
3892
3893	path = btrfs_alloc_path();
3894	if (!path)
3895		return -ENOMEM;
3896	path->reada = 1;
3897
3898	ret = prepare_to_relocate(rc);
3899	if (ret) {
3900		err = ret;
3901		goto out_free;
3902	}
3903
3904	while (1) {
3905		rc->reserved_bytes = 0;
3906		ret = btrfs_block_rsv_refill(rc->extent_root,
3907					rc->block_rsv, rc->block_rsv->size,
3908					BTRFS_RESERVE_FLUSH_ALL);
3909		if (ret) {
3910			err = ret;
3911			break;
3912		}
3913		progress++;
3914		trans = btrfs_start_transaction(rc->extent_root, 0);
3915		if (IS_ERR(trans)) {
3916			err = PTR_ERR(trans);
3917			trans = NULL;
3918			break;
3919		}
3920restart:
3921		if (update_backref_cache(trans, &rc->backref_cache)) {
3922			btrfs_end_transaction(trans, rc->extent_root);
3923			continue;
3924		}
3925
3926		ret = find_next_extent(trans, rc, path, &key);
3927		if (ret < 0)
3928			err = ret;
3929		if (ret != 0)
3930			break;
3931
3932		rc->extents_found++;
3933
3934		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3935				    struct btrfs_extent_item);
3936		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3937		if (item_size >= sizeof(*ei)) {
3938			flags = btrfs_extent_flags(path->nodes[0], ei);
3939			ret = check_extent_flags(flags);
3940			BUG_ON(ret);
3941
3942		} else {
3943#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3944			u64 ref_owner;
3945			int path_change = 0;
3946
3947			BUG_ON(item_size !=
3948			       sizeof(struct btrfs_extent_item_v0));
3949			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3950						  &path_change);
3951			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3952				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3953			else
3954				flags = BTRFS_EXTENT_FLAG_DATA;
3955
3956			if (path_change) {
3957				btrfs_release_path(path);
3958
3959				path->search_commit_root = 1;
3960				path->skip_locking = 1;
3961				ret = btrfs_search_slot(NULL, rc->extent_root,
3962							&key, path, 0, 0);
3963				if (ret < 0) {
3964					err = ret;
3965					break;
3966				}
3967				BUG_ON(ret > 0);
3968			}
3969#else
3970			BUG();
3971#endif
3972		}
3973
3974		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3975			ret = add_tree_block(rc, &key, path, &blocks);
3976		} else if (rc->stage == UPDATE_DATA_PTRS &&
3977			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3978			ret = add_data_references(rc, &key, path, &blocks);
3979		} else {
3980			btrfs_release_path(path);
3981			ret = 0;
3982		}
3983		if (ret < 0) {
3984			err = ret;
3985			break;
3986		}
3987
3988		if (!RB_EMPTY_ROOT(&blocks)) {
3989			ret = relocate_tree_blocks(trans, rc, &blocks);
3990			if (ret < 0) {
3991				/*
3992				 * if we fail to relocate tree blocks, force to update
3993				 * backref cache when committing transaction.
3994				 */
3995				rc->backref_cache.last_trans = trans->transid - 1;
3996
3997				if (ret != -EAGAIN) {
3998					err = ret;
3999					break;
4000				}
4001				rc->extents_found--;
4002				rc->search_start = key.objectid;
4003			}
4004		}
4005
4006		btrfs_end_transaction_throttle(trans, rc->extent_root);
4007		btrfs_btree_balance_dirty(rc->extent_root);
4008		trans = NULL;
4009
4010		if (rc->stage == MOVE_DATA_EXTENTS &&
4011		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4012			rc->found_file_extent = 1;
4013			ret = relocate_data_extent(rc->data_inode,
4014						   &key, &rc->cluster);
4015			if (ret < 0) {
4016				err = ret;
4017				break;
4018			}
4019		}
 
 
 
 
4020	}
4021	if (trans && progress && err == -ENOSPC) {
4022		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4023					      rc->block_group->flags);
4024		if (ret == 0) {
4025			err = 0;
4026			progress = 0;
4027			goto restart;
4028		}
4029	}
4030
4031	btrfs_release_path(path);
4032	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4033			  GFP_NOFS);
4034
4035	if (trans) {
4036		btrfs_end_transaction_throttle(trans, rc->extent_root);
4037		btrfs_btree_balance_dirty(rc->extent_root);
4038	}
4039
4040	if (!err) {
4041		ret = relocate_file_extent_cluster(rc->data_inode,
4042						   &rc->cluster);
4043		if (ret < 0)
4044			err = ret;
4045	}
4046
4047	rc->create_reloc_tree = 0;
4048	set_reloc_control(rc);
4049
4050	backref_cache_cleanup(&rc->backref_cache);
4051	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4052
 
 
 
 
 
 
 
 
4053	err = prepare_to_merge(rc, err);
4054
4055	merge_reloc_roots(rc);
4056
4057	rc->merge_reloc_tree = 0;
4058	unset_reloc_control(rc);
4059	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4060
4061	/* get rid of pinned extents */
4062	trans = btrfs_join_transaction(rc->extent_root);
4063	if (IS_ERR(trans))
4064		err = PTR_ERR(trans);
4065	else
4066		btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
4067out_free:
4068	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
 
 
 
4069	btrfs_free_path(path);
4070	return err;
4071}
4072
4073static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4074				 struct btrfs_root *root, u64 objectid)
4075{
4076	struct btrfs_path *path;
4077	struct btrfs_inode_item *item;
4078	struct extent_buffer *leaf;
4079	int ret;
4080
4081	path = btrfs_alloc_path();
4082	if (!path)
4083		return -ENOMEM;
4084
4085	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4086	if (ret)
4087		goto out;
4088
4089	leaf = path->nodes[0];
4090	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4091	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4092	btrfs_set_inode_generation(leaf, item, 1);
4093	btrfs_set_inode_size(leaf, item, 0);
4094	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4095	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4096					  BTRFS_INODE_PREALLOC);
4097	btrfs_mark_buffer_dirty(leaf);
4098	btrfs_release_path(path);
4099out:
4100	btrfs_free_path(path);
4101	return ret;
4102}
4103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4104/*
4105 * helper to create inode for data relocation.
4106 * the inode is in data relocation tree and its link count is 0
4107 */
4108static noinline_for_stack
4109struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4110				 struct btrfs_block_group_cache *group)
4111{
4112	struct inode *inode = NULL;
4113	struct btrfs_trans_handle *trans;
4114	struct btrfs_root *root;
4115	struct btrfs_key key;
4116	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4117	int err = 0;
4118
4119	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4120	if (IS_ERR(root))
4121		return ERR_CAST(root);
4122
 
4123	trans = btrfs_start_transaction(root, 6);
4124	if (IS_ERR(trans))
 
4125		return ERR_CAST(trans);
 
4126
4127	err = btrfs_find_free_objectid(root, &objectid);
4128	if (err)
4129		goto out;
4130
4131	err = __insert_orphan_inode(trans, root, objectid);
4132	BUG_ON(err);
 
4133
4134	key.objectid = objectid;
4135	key.type = BTRFS_INODE_ITEM_KEY;
4136	key.offset = 0;
4137	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4138	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4139	BTRFS_I(inode)->index_cnt = group->key.objectid;
 
 
4140
4141	err = btrfs_orphan_add(trans, inode);
4142out:
4143	btrfs_end_transaction(trans, root);
4144	btrfs_btree_balance_dirty(root);
4145	if (err) {
4146		if (inode)
4147			iput(inode);
4148		inode = ERR_PTR(err);
4149	}
4150	return inode;
4151}
4152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4153static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4154{
4155	struct reloc_control *rc;
4156
4157	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4158	if (!rc)
4159		return NULL;
4160
4161	INIT_LIST_HEAD(&rc->reloc_roots);
4162	backref_cache_init(&rc->backref_cache);
4163	mapping_tree_init(&rc->reloc_root_tree);
4164	extent_io_tree_init(&rc->processed_blocks,
4165			    fs_info->btree_inode->i_mapping);
 
4166	return rc;
4167}
4168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4169/*
4170 * function to relocate all extents in a block group.
4171 */
4172int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4173{
4174	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 
4175	struct reloc_control *rc;
4176	struct inode *inode;
4177	struct btrfs_path *path;
4178	int ret;
4179	int rw = 0;
4180	int err = 0;
4181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4182	rc = alloc_reloc_control(fs_info);
4183	if (!rc)
 
4184		return -ENOMEM;
 
 
 
 
 
 
 
4185
4186	rc->extent_root = extent_root;
 
4187
4188	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4189	BUG_ON(!rc->block_group);
4190
4191	if (!rc->block_group->ro) {
4192		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4193		if (ret) {
4194			err = ret;
4195			goto out;
4196		}
4197		rw = 1;
4198	}
 
4199
4200	path = btrfs_alloc_path();
4201	if (!path) {
4202		err = -ENOMEM;
4203		goto out;
4204	}
4205
4206	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4207					path);
4208	btrfs_free_path(path);
4209
4210	if (!IS_ERR(inode))
4211		ret = delete_block_group_cache(fs_info, inode, 0);
4212	else
4213		ret = PTR_ERR(inode);
4214
4215	if (ret && ret != -ENOENT) {
4216		err = ret;
4217		goto out;
4218	}
4219
4220	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4221	if (IS_ERR(rc->data_inode)) {
4222		err = PTR_ERR(rc->data_inode);
4223		rc->data_inode = NULL;
4224		goto out;
4225	}
4226
4227	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4228	       rc->block_group->key.objectid, rc->block_group->flags);
 
 
 
4229
4230	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4231	if (ret < 0) {
4232		err = ret;
4233		goto out;
4234	}
4235	btrfs_wait_ordered_roots(fs_info, -1);
4236
4237	while (1) {
 
 
4238		mutex_lock(&fs_info->cleaner_mutex);
4239		ret = relocate_block_group(rc);
4240		mutex_unlock(&fs_info->cleaner_mutex);
4241		if (ret < 0) {
4242			err = ret;
4243			goto out;
4244		}
4245
4246		if (rc->extents_found == 0)
4247			break;
4248
4249		btrfs_info(extent_root->fs_info, "found %llu extents",
4250			rc->extents_found);
4251
 
 
 
 
 
 
 
 
 
 
4252		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4253			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4254						       (u64)-1);
4255			if (ret) {
4256				err = ret;
4257				goto out;
4258			}
4259			invalidate_mapping_pages(rc->data_inode->i_mapping,
4260						 0, -1);
4261			rc->stage = UPDATE_DATA_PTRS;
4262		}
 
 
 
 
 
 
 
 
 
4263	}
4264
4265	WARN_ON(rc->block_group->pinned > 0);
4266	WARN_ON(rc->block_group->reserved > 0);
4267	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4268out:
4269	if (err && rw)
4270		btrfs_set_block_group_rw(extent_root, rc->block_group);
4271	iput(rc->data_inode);
4272	btrfs_put_block_group(rc->block_group);
4273	kfree(rc);
 
 
4274	return err;
4275}
4276
4277static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4278{
 
4279	struct btrfs_trans_handle *trans;
4280	int ret, err;
4281
4282	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4283	if (IS_ERR(trans))
4284		return PTR_ERR(trans);
4285
4286	memset(&root->root_item.drop_progress, 0,
4287		sizeof(root->root_item.drop_progress));
4288	root->root_item.drop_level = 0;
4289	btrfs_set_root_refs(&root->root_item, 0);
4290	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4291				&root->root_key, &root->root_item);
4292
4293	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4294	if (err)
4295		return err;
4296	return ret;
4297}
4298
4299/*
4300 * recover relocation interrupted by system crash.
4301 *
4302 * this function resumes merging reloc trees with corresponding fs trees.
4303 * this is important for keeping the sharing of tree blocks
4304 */
4305int btrfs_recover_relocation(struct btrfs_root *root)
4306{
4307	LIST_HEAD(reloc_roots);
4308	struct btrfs_key key;
4309	struct btrfs_root *fs_root;
4310	struct btrfs_root *reloc_root;
4311	struct btrfs_path *path;
4312	struct extent_buffer *leaf;
4313	struct reloc_control *rc = NULL;
4314	struct btrfs_trans_handle *trans;
4315	int ret;
4316	int err = 0;
4317
4318	path = btrfs_alloc_path();
4319	if (!path)
4320		return -ENOMEM;
4321	path->reada = -1;
4322
4323	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4324	key.type = BTRFS_ROOT_ITEM_KEY;
4325	key.offset = (u64)-1;
4326
4327	while (1) {
4328		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4329					path, 0, 0);
4330		if (ret < 0) {
4331			err = ret;
4332			goto out;
4333		}
4334		if (ret > 0) {
4335			if (path->slots[0] == 0)
4336				break;
4337			path->slots[0]--;
4338		}
 
4339		leaf = path->nodes[0];
4340		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4341		btrfs_release_path(path);
4342
4343		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4344		    key.type != BTRFS_ROOT_ITEM_KEY)
4345			break;
4346
4347		reloc_root = btrfs_read_fs_root(root, &key);
4348		if (IS_ERR(reloc_root)) {
4349			err = PTR_ERR(reloc_root);
4350			goto out;
4351		}
4352
 
4353		list_add(&reloc_root->root_list, &reloc_roots);
4354
4355		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4356			fs_root = read_fs_root(root->fs_info,
4357					       reloc_root->root_key.offset);
4358			if (IS_ERR(fs_root)) {
4359				ret = PTR_ERR(fs_root);
4360				if (ret != -ENOENT) {
4361					err = ret;
4362					goto out;
4363				}
4364				ret = mark_garbage_root(reloc_root);
4365				if (ret < 0) {
4366					err = ret;
4367					goto out;
4368				}
 
 
4369			}
4370		}
4371
4372		if (key.offset == 0)
4373			break;
4374
4375		key.offset--;
4376	}
4377	btrfs_release_path(path);
4378
4379	if (list_empty(&reloc_roots))
4380		goto out;
4381
4382	rc = alloc_reloc_control(root->fs_info);
4383	if (!rc) {
4384		err = -ENOMEM;
4385		goto out;
4386	}
4387
4388	rc->extent_root = root->fs_info->extent_root;
 
 
 
 
4389
4390	set_reloc_control(rc);
4391
4392	trans = btrfs_join_transaction(rc->extent_root);
4393	if (IS_ERR(trans)) {
4394		unset_reloc_control(rc);
4395		err = PTR_ERR(trans);
4396		goto out_free;
4397	}
4398
4399	rc->merge_reloc_tree = 1;
4400
4401	while (!list_empty(&reloc_roots)) {
4402		reloc_root = list_entry(reloc_roots.next,
4403					struct btrfs_root, root_list);
4404		list_del(&reloc_root->root_list);
4405
4406		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4407			list_add_tail(&reloc_root->root_list,
4408				      &rc->reloc_roots);
4409			continue;
4410		}
4411
4412		fs_root = read_fs_root(root->fs_info,
4413				       reloc_root->root_key.offset);
4414		if (IS_ERR(fs_root)) {
4415			err = PTR_ERR(fs_root);
4416			goto out_free;
 
 
4417		}
4418
4419		err = __add_reloc_root(reloc_root);
4420		BUG_ON(err < 0); /* -ENOMEM or logic error */
4421		fs_root->reloc_root = reloc_root;
 
 
 
 
 
 
 
4422	}
4423
4424	err = btrfs_commit_transaction(trans, rc->extent_root);
4425	if (err)
4426		goto out_free;
4427
4428	merge_reloc_roots(rc);
4429
4430	unset_reloc_control(rc);
4431
4432	trans = btrfs_join_transaction(rc->extent_root);
4433	if (IS_ERR(trans))
4434		err = PTR_ERR(trans);
4435	else
4436		err = btrfs_commit_transaction(trans, rc->extent_root);
4437out_free:
4438	kfree(rc);
 
 
 
 
 
 
 
 
4439out:
4440	if (!list_empty(&reloc_roots))
4441		free_reloc_roots(&reloc_roots);
4442
4443	btrfs_free_path(path);
4444
4445	if (err == 0) {
4446		/* cleanup orphan inode in data relocation tree */
4447		fs_root = read_fs_root(root->fs_info,
4448				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4449		if (IS_ERR(fs_root))
4450			err = PTR_ERR(fs_root);
4451		else
4452			err = btrfs_orphan_cleanup(fs_root);
4453	}
4454	return err;
4455}
4456
4457/*
4458 * helper to add ordered checksum for data relocation.
4459 *
4460 * cloning checksum properly handles the nodatasum extents.
4461 * it also saves CPU time to re-calculate the checksum.
4462 */
4463int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4464{
4465	struct btrfs_ordered_sum *sums;
4466	struct btrfs_ordered_extent *ordered;
4467	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 
4468	int ret;
4469	u64 disk_bytenr;
4470	u64 new_bytenr;
4471	LIST_HEAD(list);
4472
4473	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4474	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
 
 
 
 
 
4475
4476	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4477	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4478				       disk_bytenr + len - 1, &list, 0);
4479	if (ret)
4480		goto out;
4481
4482	while (!list_empty(&list)) {
4483		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4484		list_del_init(&sums->list);
4485
4486		/*
4487		 * We need to offset the new_bytenr based on where the csum is.
4488		 * We need to do this because we will read in entire prealloc
4489		 * extents but we may have written to say the middle of the
4490		 * prealloc extent, so we need to make sure the csum goes with
4491		 * the right disk offset.
4492		 *
4493		 * We can do this because the data reloc inode refers strictly
4494		 * to the on disk bytes, so we don't have to worry about
4495		 * disk_len vs real len like with real inodes since it's all
4496		 * disk length.
4497		 */
4498		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4499		sums->bytenr = new_bytenr;
 
4500
4501		btrfs_add_ordered_sum(inode, ordered, sums);
4502	}
4503out:
4504	btrfs_put_ordered_extent(ordered);
4505	return ret;
4506}
4507
4508int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4509			  struct btrfs_root *root, struct extent_buffer *buf,
 
4510			  struct extent_buffer *cow)
4511{
 
4512	struct reloc_control *rc;
4513	struct backref_node *node;
4514	int first_cow = 0;
4515	int level;
4516	int ret = 0;
4517
4518	rc = root->fs_info->reloc_ctl;
4519	if (!rc)
4520		return 0;
4521
4522	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4523	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4524
4525	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4526		if (buf == root->node)
4527			__update_reloc_root(root, cow->start);
4528	}
4529
4530	level = btrfs_header_level(buf);
4531	if (btrfs_header_generation(buf) <=
4532	    btrfs_root_last_snapshot(&root->root_item))
4533		first_cow = 1;
4534
4535	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4536	    rc->create_reloc_tree) {
4537		WARN_ON(!first_cow && level == 0);
4538
4539		node = rc->backref_cache.path[level];
4540		BUG_ON(node->bytenr != buf->start &&
4541		       node->new_bytenr != buf->start);
4542
4543		drop_node_buffer(node);
4544		extent_buffer_get(cow);
 
 
 
 
 
 
 
 
 
 
 
 
4545		node->eb = cow;
4546		node->new_bytenr = cow->start;
4547
4548		if (!node->pending) {
4549			list_move_tail(&node->list,
4550				       &rc->backref_cache.pending[level]);
4551			node->pending = 1;
4552		}
4553
4554		if (first_cow)
4555			__mark_block_processed(rc, node);
4556
4557		if (first_cow && level > 0)
4558			rc->nodes_relocated += buf->len;
4559	}
4560
4561	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4562		ret = replace_file_extents(trans, rc, root, cow);
4563	return ret;
4564}
4565
4566/*
4567 * called before creating snapshot. it calculates metadata reservation
4568 * requried for relocating tree blocks in the snapshot
4569 */
4570void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4571			      struct btrfs_pending_snapshot *pending,
4572			      u64 *bytes_to_reserve)
4573{
4574	struct btrfs_root *root;
4575	struct reloc_control *rc;
4576
4577	root = pending->root;
4578	if (!root->reloc_root)
4579		return;
4580
4581	rc = root->fs_info->reloc_ctl;
4582	if (!rc->merge_reloc_tree)
4583		return;
4584
4585	root = root->reloc_root;
4586	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4587	/*
4588	 * relocation is in the stage of merging trees. the space
4589	 * used by merging a reloc tree is twice the size of
4590	 * relocated tree nodes in the worst case. half for cowing
4591	 * the reloc tree, half for cowing the fs tree. the space
4592	 * used by cowing the reloc tree will be freed after the
4593	 * tree is dropped. if we create snapshot, cowing the fs
4594	 * tree may use more space than it frees. so we need
4595	 * reserve extra space.
4596	 */
4597	*bytes_to_reserve += rc->nodes_relocated;
4598}
4599
4600/*
4601 * called after snapshot is created. migrate block reservation
4602 * and create reloc root for the newly created snapshot
 
 
 
 
4603 */
4604int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4605			       struct btrfs_pending_snapshot *pending)
4606{
4607	struct btrfs_root *root = pending->root;
4608	struct btrfs_root *reloc_root;
4609	struct btrfs_root *new_root;
4610	struct reloc_control *rc;
4611	int ret;
4612
4613	if (!root->reloc_root)
4614		return 0;
4615
4616	rc = root->fs_info->reloc_ctl;
4617	rc->merging_rsv_size += rc->nodes_relocated;
4618
4619	if (rc->merge_reloc_tree) {
4620		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4621					      rc->block_rsv,
4622					      rc->nodes_relocated);
4623		if (ret)
4624			return ret;
4625	}
4626
4627	new_root = pending->snap;
4628	reloc_root = create_reloc_root(trans, root->reloc_root,
4629				       new_root->root_key.objectid);
4630	if (IS_ERR(reloc_root))
4631		return PTR_ERR(reloc_root);
4632
4633	ret = __add_reloc_root(reloc_root);
4634	BUG_ON(ret < 0);
4635	new_root->reloc_root = reloc_root;
 
 
 
 
 
4636
4637	if (rc->create_reloc_tree)
4638		ret = clone_backref_node(trans, rc, root, reloc_root);
4639	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4640}