Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2005-2014, 2018-2019, 2021, 2024 Intel Corporation
   4 */
   5#include <linux/types.h>
   6#include <linux/slab.h>
   7#include <linux/export.h>
   8
   9#include "iwl-drv.h"
  10#include "iwl-debug.h"
  11#include "iwl-io.h"
  12#include "iwl-prph.h"
  13#include "iwl-csr.h"
  14#include "agn.h"
  15
  16/* EEPROM offset definitions */
  17
  18/* indirect access definitions */
  19#define ADDRESS_MSK                 0x0000FFFF
  20#define INDIRECT_TYPE_MSK           0x000F0000
  21#define INDIRECT_HOST               0x00010000
  22#define INDIRECT_GENERAL            0x00020000
  23#define INDIRECT_REGULATORY         0x00030000
  24#define INDIRECT_CALIBRATION        0x00040000
  25#define INDIRECT_PROCESS_ADJST      0x00050000
  26#define INDIRECT_OTHERS             0x00060000
  27#define INDIRECT_TXP_LIMIT          0x00070000
  28#define INDIRECT_TXP_LIMIT_SIZE     0x00080000
  29#define INDIRECT_ADDRESS            0x00100000
  30
  31/* corresponding link offsets in EEPROM */
  32#define EEPROM_LINK_HOST             (2*0x64)
  33#define EEPROM_LINK_GENERAL          (2*0x65)
  34#define EEPROM_LINK_REGULATORY       (2*0x66)
  35#define EEPROM_LINK_CALIBRATION      (2*0x67)
  36#define EEPROM_LINK_PROCESS_ADJST    (2*0x68)
  37#define EEPROM_LINK_OTHERS           (2*0x69)
  38#define EEPROM_LINK_TXP_LIMIT        (2*0x6a)
  39#define EEPROM_LINK_TXP_LIMIT_SIZE   (2*0x6b)
  40
  41/* General */
  42#define EEPROM_DEVICE_ID                    (2*0x08)	/* 2 bytes */
  43#define EEPROM_SUBSYSTEM_ID		    (2*0x0A)	/* 2 bytes */
  44#define EEPROM_MAC_ADDRESS                  (2*0x15)	/* 6  bytes */
  45#define EEPROM_BOARD_REVISION               (2*0x35)	/* 2  bytes */
  46#define EEPROM_BOARD_PBA_NUMBER             (2*0x3B+1)	/* 9  bytes */
  47#define EEPROM_VERSION                      (2*0x44)	/* 2  bytes */
  48#define EEPROM_SKU_CAP                      (2*0x45)	/* 2  bytes */
  49#define EEPROM_OEM_MODE                     (2*0x46)	/* 2  bytes */
  50#define EEPROM_RADIO_CONFIG                 (2*0x48)	/* 2  bytes */
  51#define EEPROM_NUM_MAC_ADDRESS              (2*0x4C)	/* 2  bytes */
  52
  53/* calibration */
  54struct iwl_eeprom_calib_hdr {
  55	u8 version;
  56	u8 pa_type;
  57	__le16 voltage;
  58} __packed;
  59
  60#define EEPROM_CALIB_ALL	(INDIRECT_ADDRESS | INDIRECT_CALIBRATION)
  61#define EEPROM_XTAL		((2*0x128) | EEPROM_CALIB_ALL)
  62
  63/* temperature */
  64#define EEPROM_KELVIN_TEMPERATURE	((2*0x12A) | EEPROM_CALIB_ALL)
  65#define EEPROM_RAW_TEMPERATURE		((2*0x12B) | EEPROM_CALIB_ALL)
  66
  67/* SKU Capabilities (actual values from EEPROM definition) */
  68enum eeprom_sku_bits {
  69	EEPROM_SKU_CAP_BAND_24GHZ	= BIT(4),
  70	EEPROM_SKU_CAP_BAND_52GHZ	= BIT(5),
  71	EEPROM_SKU_CAP_11N_ENABLE	= BIT(6),
  72	EEPROM_SKU_CAP_AMT_ENABLE	= BIT(7),
  73	EEPROM_SKU_CAP_IPAN_ENABLE	= BIT(8)
  74};
  75
  76/* radio config bits (actual values from EEPROM definition) */
  77#define EEPROM_RF_CFG_TYPE_MSK(x)   (x & 0x3)         /* bits 0-1   */
  78#define EEPROM_RF_CFG_STEP_MSK(x)   ((x >> 2)  & 0x3) /* bits 2-3   */
  79#define EEPROM_RF_CFG_DASH_MSK(x)   ((x >> 4)  & 0x3) /* bits 4-5   */
  80#define EEPROM_RF_CFG_PNUM_MSK(x)   ((x >> 6)  & 0x3) /* bits 6-7   */
  81#define EEPROM_RF_CFG_TX_ANT_MSK(x) ((x >> 8)  & 0xF) /* bits 8-11  */
  82#define EEPROM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */
  83
  84/*
  85 * EEPROM bands
  86 * These are the channel numbers from each band in the order
  87 * that they are stored in the EEPROM band information. Note
  88 * that EEPROM bands aren't the same as mac80211 bands, and
  89 * there are even special "ht40 bands" in the EEPROM.
  90 */
  91static const u8 iwl_eeprom_band_1[14] = { /* 2.4 GHz */
  92	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
  93};
  94
  95static const u8 iwl_eeprom_band_2[] = {	/* 4915-5080MHz */
  96	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
  97};
  98
  99static const u8 iwl_eeprom_band_3[] = {	/* 5170-5320MHz */
 100	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
 101};
 102
 103static const u8 iwl_eeprom_band_4[] = {	/* 5500-5700MHz */
 104	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
 105};
 106
 107static const u8 iwl_eeprom_band_5[] = {	/* 5725-5825MHz */
 108	145, 149, 153, 157, 161, 165
 109};
 110
 111static const u8 iwl_eeprom_band_6[] = {	/* 2.4 ht40 channel */
 112	1, 2, 3, 4, 5, 6, 7
 113};
 114
 115static const u8 iwl_eeprom_band_7[] = {	/* 5.2 ht40 channel */
 116	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
 117};
 118
 119#define IWL_NUM_CHANNELS	(ARRAY_SIZE(iwl_eeprom_band_1) + \
 120				 ARRAY_SIZE(iwl_eeprom_band_2) + \
 121				 ARRAY_SIZE(iwl_eeprom_band_3) + \
 122				 ARRAY_SIZE(iwl_eeprom_band_4) + \
 123				 ARRAY_SIZE(iwl_eeprom_band_5))
 124
 125/* rate data (static) */
 126static struct ieee80211_rate iwl_cfg80211_rates[] = {
 127	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
 128	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
 129	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 130	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
 131	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 132	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
 133	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
 134	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
 135	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
 136	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
 137	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
 138	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
 139	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
 140	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
 141	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
 142};
 143#define RATES_24_OFFS	0
 144#define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
 145#define RATES_52_OFFS	4
 146#define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
 147
 148/* EEPROM reading functions */
 149
 150static u16 iwl_eeprom_query16(const u8 *eeprom, size_t eeprom_size, int offset)
 151{
 152	if (WARN_ON(offset + sizeof(u16) > eeprom_size))
 153		return 0;
 154	return le16_to_cpup((__le16 *)(eeprom + offset));
 155}
 156
 157static u32 eeprom_indirect_address(const u8 *eeprom, size_t eeprom_size,
 158				   u32 address)
 159{
 160	u16 offset = 0;
 161
 162	if ((address & INDIRECT_ADDRESS) == 0)
 163		return address;
 164
 165	switch (address & INDIRECT_TYPE_MSK) {
 166	case INDIRECT_HOST:
 167		offset = iwl_eeprom_query16(eeprom, eeprom_size,
 168					    EEPROM_LINK_HOST);
 169		break;
 170	case INDIRECT_GENERAL:
 171		offset = iwl_eeprom_query16(eeprom, eeprom_size,
 172					    EEPROM_LINK_GENERAL);
 173		break;
 174	case INDIRECT_REGULATORY:
 175		offset = iwl_eeprom_query16(eeprom, eeprom_size,
 176					    EEPROM_LINK_REGULATORY);
 177		break;
 178	case INDIRECT_TXP_LIMIT:
 179		offset = iwl_eeprom_query16(eeprom, eeprom_size,
 180					    EEPROM_LINK_TXP_LIMIT);
 181		break;
 182	case INDIRECT_TXP_LIMIT_SIZE:
 183		offset = iwl_eeprom_query16(eeprom, eeprom_size,
 184					    EEPROM_LINK_TXP_LIMIT_SIZE);
 185		break;
 186	case INDIRECT_CALIBRATION:
 187		offset = iwl_eeprom_query16(eeprom, eeprom_size,
 188					    EEPROM_LINK_CALIBRATION);
 189		break;
 190	case INDIRECT_PROCESS_ADJST:
 191		offset = iwl_eeprom_query16(eeprom, eeprom_size,
 192					    EEPROM_LINK_PROCESS_ADJST);
 193		break;
 194	case INDIRECT_OTHERS:
 195		offset = iwl_eeprom_query16(eeprom, eeprom_size,
 196					    EEPROM_LINK_OTHERS);
 197		break;
 198	default:
 199		WARN_ON(1);
 200		break;
 201	}
 202
 203	/* translate the offset from words to byte */
 204	return (address & ADDRESS_MSK) + (offset << 1);
 205}
 206
 207static const u8 *iwl_eeprom_query_addr(const u8 *eeprom, size_t eeprom_size,
 208				       u32 offset)
 209{
 210	u32 address = eeprom_indirect_address(eeprom, eeprom_size, offset);
 211
 212	if (WARN_ON(address >= eeprom_size))
 213		return NULL;
 214
 215	return &eeprom[address];
 216}
 217
 218static int iwl_eeprom_read_calib(const u8 *eeprom, size_t eeprom_size,
 219				 struct iwl_nvm_data *data)
 220{
 221	struct iwl_eeprom_calib_hdr *hdr;
 222
 223	hdr = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
 224					    EEPROM_CALIB_ALL);
 225	if (!hdr)
 226		return -ENODATA;
 227	data->calib_version = hdr->version;
 228	data->calib_voltage = hdr->voltage;
 229
 230	return 0;
 231}
 232
 233/**
 234 * enum iwl_eeprom_channel_flags - channel flags in EEPROM
 235 * @EEPROM_CHANNEL_VALID: channel is usable for this SKU/geo
 236 * @EEPROM_CHANNEL_IBSS: usable as an IBSS channel
 237 * @EEPROM_CHANNEL_ACTIVE: active scanning allowed
 238 * @EEPROM_CHANNEL_RADAR: radar detection required
 239 * @EEPROM_CHANNEL_WIDE: 20 MHz channel okay (?)
 240 * @EEPROM_CHANNEL_DFS: dynamic freq selection candidate
 241 */
 242enum iwl_eeprom_channel_flags {
 243	EEPROM_CHANNEL_VALID = BIT(0),
 244	EEPROM_CHANNEL_IBSS = BIT(1),
 245	EEPROM_CHANNEL_ACTIVE = BIT(3),
 246	EEPROM_CHANNEL_RADAR = BIT(4),
 247	EEPROM_CHANNEL_WIDE = BIT(5),
 248	EEPROM_CHANNEL_DFS = BIT(7),
 249};
 250
 251/**
 252 * struct iwl_eeprom_channel - EEPROM channel data
 253 * @flags: %EEPROM_CHANNEL_* flags
 254 * @max_power_avg: max power (in dBm) on this channel, at most 31 dBm
 255 */
 256struct iwl_eeprom_channel {
 257	u8 flags;
 258	s8 max_power_avg;
 259} __packed;
 260
 261enum iwl_eeprom_enhanced_txpwr_flags {
 262	IWL_EEPROM_ENH_TXP_FL_VALID = BIT(0),
 263	IWL_EEPROM_ENH_TXP_FL_BAND_52G = BIT(1),
 264	IWL_EEPROM_ENH_TXP_FL_OFDM = BIT(2),
 265	IWL_EEPROM_ENH_TXP_FL_40MHZ = BIT(3),
 266	IWL_EEPROM_ENH_TXP_FL_HT_AP = BIT(4),
 267	IWL_EEPROM_ENH_TXP_FL_RES1 = BIT(5),
 268	IWL_EEPROM_ENH_TXP_FL_RES2 = BIT(6),
 269	IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE = BIT(7),
 270};
 271
 272/**
 273 * struct iwl_eeprom_enhanced_txpwr - enhanced regulatory TX power limits
 274 * @flags: entry flags
 275 * @channel: channel number
 276 * @chain_a_max: chain a max power in 1/2 dBm
 277 * @chain_b_max: chain b max power in 1/2 dBm
 278 * @chain_c_max: chain c max power in 1/2 dBm
 279 * @delta_20_in_40: 20-in-40 deltas (hi/lo)
 280 * @mimo2_max: mimo2 max power in 1/2 dBm
 281 * @mimo3_max: mimo3 max power in 1/2 dBm
 282 *
 283 * This structure presents the enhanced regulatory tx power limit layout
 284 * in an EEPROM image.
 285 */
 286struct iwl_eeprom_enhanced_txpwr {
 287	u8 flags;
 288	u8 channel;
 289	s8 chain_a_max;
 290	s8 chain_b_max;
 291	s8 chain_c_max;
 292	u8 delta_20_in_40;
 293	s8 mimo2_max;
 294	s8 mimo3_max;
 295} __packed;
 296
 297static s8 iwl_get_max_txpwr_half_dbm(const struct iwl_nvm_data *data,
 298				     struct iwl_eeprom_enhanced_txpwr *txp)
 299{
 300	s8 result = 0; /* (.5 dBm) */
 301
 302	/* Take the highest tx power from any valid chains */
 303	if (data->valid_tx_ant & ANT_A && txp->chain_a_max > result)
 304		result = txp->chain_a_max;
 305
 306	if (data->valid_tx_ant & ANT_B && txp->chain_b_max > result)
 307		result = txp->chain_b_max;
 308
 309	if (data->valid_tx_ant & ANT_C && txp->chain_c_max > result)
 310		result = txp->chain_c_max;
 311
 312	if ((data->valid_tx_ant == ANT_AB ||
 313	     data->valid_tx_ant == ANT_BC ||
 314	     data->valid_tx_ant == ANT_AC) && txp->mimo2_max > result)
 315		result = txp->mimo2_max;
 316
 317	if (data->valid_tx_ant == ANT_ABC && txp->mimo3_max > result)
 318		result = txp->mimo3_max;
 319
 320	return result;
 321}
 322
 323#define EEPROM_TXP_OFFS	(0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
 324#define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
 325#define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
 326
 327#define TXP_CHECK_AND_PRINT(x) \
 328	((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) ? # x " " : "")
 329
 330static void
 331iwl_eeprom_enh_txp_read_element(struct iwl_nvm_data *data,
 332				struct iwl_eeprom_enhanced_txpwr *txp,
 333				int n_channels, s8 max_txpower_avg)
 334{
 335	int ch_idx;
 336	enum nl80211_band band;
 337
 338	band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
 339		NL80211_BAND_5GHZ : NL80211_BAND_2GHZ;
 340
 341	for (ch_idx = 0; ch_idx < n_channels; ch_idx++) {
 342		struct ieee80211_channel *chan = &data->channels[ch_idx];
 343
 344		/* update matching channel or from common data only */
 345		if (txp->channel != 0 && chan->hw_value != txp->channel)
 346			continue;
 347
 348		/* update matching band only */
 349		if (band != chan->band)
 350			continue;
 351
 352		if (chan->max_power < max_txpower_avg &&
 353		    !(txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ))
 354			chan->max_power = max_txpower_avg;
 355	}
 356}
 357
 358static void iwl_eeprom_enhanced_txpower(struct device *dev,
 359					struct iwl_nvm_data *data,
 360					const u8 *eeprom, size_t eeprom_size,
 361					int n_channels)
 362{
 363	struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
 364	int idx, entries;
 365	__le16 *txp_len;
 366	s8 max_txp_avg_halfdbm;
 367
 368	BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
 369
 370	/* the length is in 16-bit words, but we want entries */
 371	txp_len = (__le16 *)iwl_eeprom_query_addr(eeprom, eeprom_size,
 372						  EEPROM_TXP_SZ_OFFS);
 373	entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
 374
 375	txp_array = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size,
 376						  EEPROM_TXP_OFFS);
 377
 378	for (idx = 0; idx < entries; idx++) {
 379		txp = &txp_array[idx];
 380		/* skip invalid entries */
 381		if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
 382			continue;
 383
 384		IWL_DEBUG_EEPROM(dev, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
 385				 (txp->channel && (txp->flags &
 386					IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
 387					"Common " : (txp->channel) ?
 388					"Channel" : "Common",
 389				 (txp->channel),
 390				 TXP_CHECK_AND_PRINT(VALID),
 391				 TXP_CHECK_AND_PRINT(BAND_52G),
 392				 TXP_CHECK_AND_PRINT(OFDM),
 393				 TXP_CHECK_AND_PRINT(40MHZ),
 394				 TXP_CHECK_AND_PRINT(HT_AP),
 395				 TXP_CHECK_AND_PRINT(RES1),
 396				 TXP_CHECK_AND_PRINT(RES2),
 397				 TXP_CHECK_AND_PRINT(COMMON_TYPE),
 398				 txp->flags);
 399		IWL_DEBUG_EEPROM(dev,
 400				 "\t\t chain_A: %d chain_B: %d chain_C: %d\n",
 401				 txp->chain_a_max, txp->chain_b_max,
 402				 txp->chain_c_max);
 403		IWL_DEBUG_EEPROM(dev,
 404				 "\t\t MIMO2: %d MIMO3: %d High 20_on_40: 0x%02x Low 20_on_40: 0x%02x\n",
 405				 txp->mimo2_max, txp->mimo3_max,
 406				 ((txp->delta_20_in_40 & 0xf0) >> 4),
 407				 (txp->delta_20_in_40 & 0x0f));
 408
 409		max_txp_avg_halfdbm = iwl_get_max_txpwr_half_dbm(data, txp);
 410
 411		iwl_eeprom_enh_txp_read_element(data, txp, n_channels,
 412				DIV_ROUND_UP(max_txp_avg_halfdbm, 2));
 413
 414		if (max_txp_avg_halfdbm > data->max_tx_pwr_half_dbm)
 415			data->max_tx_pwr_half_dbm = max_txp_avg_halfdbm;
 416	}
 417}
 418
 419static void iwl_init_band_reference(const struct iwl_cfg *cfg,
 420				    const u8 *eeprom, size_t eeprom_size,
 421				    int eeprom_band, int *eeprom_ch_count,
 422				    const struct iwl_eeprom_channel **ch_info,
 423				    const u8 **eeprom_ch_array)
 424{
 425	u32 offset = cfg->eeprom_params->regulatory_bands[eeprom_band - 1];
 426
 427	offset |= INDIRECT_ADDRESS | INDIRECT_REGULATORY;
 428
 429	*ch_info = (void *)iwl_eeprom_query_addr(eeprom, eeprom_size, offset);
 430
 431	switch (eeprom_band) {
 432	case 1:		/* 2.4GHz band */
 433		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
 434		*eeprom_ch_array = iwl_eeprom_band_1;
 435		break;
 436	case 2:		/* 4.9GHz band */
 437		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
 438		*eeprom_ch_array = iwl_eeprom_band_2;
 439		break;
 440	case 3:		/* 5.2GHz band */
 441		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
 442		*eeprom_ch_array = iwl_eeprom_band_3;
 443		break;
 444	case 4:		/* 5.5GHz band */
 445		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
 446		*eeprom_ch_array = iwl_eeprom_band_4;
 447		break;
 448	case 5:		/* 5.7GHz band */
 449		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
 450		*eeprom_ch_array = iwl_eeprom_band_5;
 451		break;
 452	case 6:		/* 2.4GHz ht40 channels */
 453		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
 454		*eeprom_ch_array = iwl_eeprom_band_6;
 455		break;
 456	case 7:		/* 5 GHz ht40 channels */
 457		*eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
 458		*eeprom_ch_array = iwl_eeprom_band_7;
 459		break;
 460	default:
 461		*eeprom_ch_count = 0;
 462		*eeprom_ch_array = NULL;
 463		WARN_ON(1);
 464	}
 465}
 466
 467#define CHECK_AND_PRINT(x) \
 468	((eeprom_ch->flags & EEPROM_CHANNEL_##x) ? # x " " : "")
 469
 470static void iwl_mod_ht40_chan_info(struct device *dev,
 471				   struct iwl_nvm_data *data, int n_channels,
 472				   enum nl80211_band band, u16 channel,
 473				   const struct iwl_eeprom_channel *eeprom_ch,
 474				   u8 clear_ht40_extension_channel)
 475{
 476	struct ieee80211_channel *chan = NULL;
 477	int i;
 478
 479	for (i = 0; i < n_channels; i++) {
 480		if (data->channels[i].band != band)
 481			continue;
 482		if (data->channels[i].hw_value != channel)
 483			continue;
 484		chan = &data->channels[i];
 485		break;
 486	}
 487
 488	if (!chan)
 489		return;
 490
 491	IWL_DEBUG_EEPROM(dev,
 492			 "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
 493			 channel,
 494			 band == NL80211_BAND_5GHZ ? "5.2" : "2.4",
 495			 CHECK_AND_PRINT(IBSS),
 496			 CHECK_AND_PRINT(ACTIVE),
 497			 CHECK_AND_PRINT(RADAR),
 498			 CHECK_AND_PRINT(WIDE),
 499			 CHECK_AND_PRINT(DFS),
 500			 eeprom_ch->flags,
 501			 eeprom_ch->max_power_avg,
 502			 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
 503			  !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? ""
 504								      : "not ");
 505
 506	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
 507		chan->flags &= ~clear_ht40_extension_channel;
 508}
 509
 510#define CHECK_AND_PRINT_I(x)	\
 511	((eeprom_ch_info[ch_idx].flags & EEPROM_CHANNEL_##x) ? # x " " : "")
 512
 513static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
 514				struct iwl_nvm_data *data,
 515				const u8 *eeprom, size_t eeprom_size)
 516{
 517	int band, ch_idx;
 518	const struct iwl_eeprom_channel *eeprom_ch_info;
 519	const u8 *eeprom_ch_array;
 520	int eeprom_ch_count;
 521	int n_channels = 0;
 522
 523	/*
 524	 * Loop through the 5 EEPROM bands and add them to the parse list
 525	 */
 526	for (band = 1; band <= 5; band++) {
 527		struct ieee80211_channel *channel;
 528
 529		iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
 530					&eeprom_ch_count, &eeprom_ch_info,
 531					&eeprom_ch_array);
 532
 533		/* Loop through each band adding each of the channels */
 534		for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
 535			const struct iwl_eeprom_channel *eeprom_ch;
 536
 537			eeprom_ch = &eeprom_ch_info[ch_idx];
 538
 539			if (!(eeprom_ch->flags & EEPROM_CHANNEL_VALID)) {
 540				IWL_DEBUG_EEPROM(dev,
 541						 "Ch. %d Flags %x [%sGHz] - No traffic\n",
 542						 eeprom_ch_array[ch_idx],
 543						 eeprom_ch_info[ch_idx].flags,
 544						 (band != 1) ? "5.2" : "2.4");
 545				continue;
 546			}
 547
 548			channel = &data->channels[n_channels];
 549			n_channels++;
 550
 551			channel->hw_value = eeprom_ch_array[ch_idx];
 552			channel->band = (band == 1) ? NL80211_BAND_2GHZ
 553						    : NL80211_BAND_5GHZ;
 554			channel->center_freq =
 555				ieee80211_channel_to_frequency(
 556					channel->hw_value, channel->band);
 557
 558			/* set no-HT40, will enable as appropriate later */
 559			channel->flags = IEEE80211_CHAN_NO_HT40;
 560
 561			if (!(eeprom_ch->flags & EEPROM_CHANNEL_IBSS))
 562				channel->flags |= IEEE80211_CHAN_NO_IR;
 563
 564			if (!(eeprom_ch->flags & EEPROM_CHANNEL_ACTIVE))
 565				channel->flags |= IEEE80211_CHAN_NO_IR;
 566
 567			if (eeprom_ch->flags & EEPROM_CHANNEL_RADAR)
 568				channel->flags |= IEEE80211_CHAN_RADAR;
 569
 570			/* Initialize regulatory-based run-time data */
 571			channel->max_power =
 572				eeprom_ch_info[ch_idx].max_power_avg;
 573			IWL_DEBUG_EEPROM(dev,
 574					 "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
 575					 channel->hw_value,
 576					 (band != 1) ? "5.2" : "2.4",
 577					 CHECK_AND_PRINT_I(VALID),
 578					 CHECK_AND_PRINT_I(IBSS),
 579					 CHECK_AND_PRINT_I(ACTIVE),
 580					 CHECK_AND_PRINT_I(RADAR),
 581					 CHECK_AND_PRINT_I(WIDE),
 582					 CHECK_AND_PRINT_I(DFS),
 583					 eeprom_ch_info[ch_idx].flags,
 584					 eeprom_ch_info[ch_idx].max_power_avg,
 585					 ((eeprom_ch_info[ch_idx].flags &
 586							EEPROM_CHANNEL_IBSS) &&
 587					  !(eeprom_ch_info[ch_idx].flags &
 588							EEPROM_CHANNEL_RADAR))
 589						? "" : "not ");
 590		}
 591	}
 592
 593	if (cfg->eeprom_params->enhanced_txpower) {
 594		/*
 595		 * for newer device (6000 series and up)
 596		 * EEPROM contain enhanced tx power information
 597		 * driver need to process addition information
 598		 * to determine the max channel tx power limits
 599		 */
 600		iwl_eeprom_enhanced_txpower(dev, data, eeprom, eeprom_size,
 601					    n_channels);
 602	} else {
 603		/* All others use data from channel map */
 604		int i;
 605
 606		data->max_tx_pwr_half_dbm = -128;
 607
 608		for (i = 0; i < n_channels; i++)
 609			data->max_tx_pwr_half_dbm =
 610				max_t(s8, data->max_tx_pwr_half_dbm,
 611				      data->channels[i].max_power * 2);
 612	}
 613
 614	/* Check if we do have HT40 channels */
 615	if (cfg->eeprom_params->regulatory_bands[5] ==
 616				EEPROM_REGULATORY_BAND_NO_HT40 &&
 617	    cfg->eeprom_params->regulatory_bands[6] ==
 618				EEPROM_REGULATORY_BAND_NO_HT40)
 619		return n_channels;
 620
 621	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
 622	for (band = 6; band <= 7; band++) {
 623		enum nl80211_band ieeeband;
 624
 625		iwl_init_band_reference(cfg, eeprom, eeprom_size, band,
 626					&eeprom_ch_count, &eeprom_ch_info,
 627					&eeprom_ch_array);
 628
 629		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
 630		ieeeband = (band == 6) ? NL80211_BAND_2GHZ
 631				       : NL80211_BAND_5GHZ;
 632
 633		/* Loop through each band adding each of the channels */
 634		for (ch_idx = 0; ch_idx < eeprom_ch_count; ch_idx++) {
 635			/* Set up driver's info for lower half */
 636			iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
 637					       eeprom_ch_array[ch_idx],
 638					       &eeprom_ch_info[ch_idx],
 639					       IEEE80211_CHAN_NO_HT40PLUS);
 640
 641			/* Set up driver's info for upper half */
 642			iwl_mod_ht40_chan_info(dev, data, n_channels, ieeeband,
 643					       eeprom_ch_array[ch_idx] + 4,
 644					       &eeprom_ch_info[ch_idx],
 645					       IEEE80211_CHAN_NO_HT40MINUS);
 646		}
 647	}
 648
 649	return n_channels;
 650}
 651/*
 652 * EEPROM access time values:
 653 *
 654 * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG.
 655 * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1).
 656 * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec.
 657 * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG.
 658 */
 659#define IWL_EEPROM_ACCESS_TIMEOUT	5000 /* uSec */
 660
 661/*
 662 * The device's EEPROM semaphore prevents conflicts between driver and uCode
 663 * when accessing the EEPROM; each access is a series of pulses to/from the
 664 * EEPROM chip, not a single event, so even reads could conflict if they
 665 * weren't arbitrated by the semaphore.
 666 */
 667#define IWL_EEPROM_SEM_TIMEOUT		10   /* microseconds */
 668#define IWL_EEPROM_SEM_RETRY_LIMIT	1000 /* number of attempts (not time) */
 669
 670
 671static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
 672{
 673	u16 count;
 674	int ret;
 675
 676	for (count = 0; count < IWL_EEPROM_SEM_RETRY_LIMIT; count++) {
 677		/* Request semaphore */
 678		iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
 679			    CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
 680
 681		/* See if we got it */
 682		ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
 683				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
 684				CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
 685				IWL_EEPROM_SEM_TIMEOUT);
 686		if (ret >= 0) {
 687			IWL_DEBUG_EEPROM(trans->dev,
 688					 "Acquired semaphore after %d tries.\n",
 689					 count+1);
 690			return ret;
 691		}
 692	}
 693
 694	return ret;
 695}
 696
 697static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
 698{
 699	iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
 700		      CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
 701}
 702
 703static int iwl_eeprom_verify_signature(struct iwl_trans *trans, bool nvm_is_otp)
 704{
 705	u32 gp = iwl_read32(trans, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
 706
 707	IWL_DEBUG_EEPROM(trans->dev, "EEPROM signature=0x%08x\n", gp);
 708
 709	switch (gp) {
 710	case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
 711		if (!nvm_is_otp) {
 712			IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
 713				gp);
 714			return -ENOENT;
 715		}
 716		return 0;
 717	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
 718	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
 719		if (nvm_is_otp) {
 720			IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
 721			return -ENOENT;
 722		}
 723		return 0;
 724	case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
 725	default:
 726		IWL_ERR(trans,
 727			"bad EEPROM/OTP signature, type=%s, EEPROM_GP=0x%08x\n",
 728			nvm_is_otp ? "OTP" : "EEPROM", gp);
 729		return -ENOENT;
 730	}
 731}
 732
 733/******************************************************************************
 734 *
 735 * OTP related functions
 736 *
 737******************************************************************************/
 738
 739static void iwl_set_otp_access_absolute(struct iwl_trans *trans)
 740{
 741	iwl_read32(trans, CSR_OTP_GP_REG);
 742
 743	iwl_clear_bit(trans, CSR_OTP_GP_REG,
 744		      CSR_OTP_GP_REG_OTP_ACCESS_MODE);
 745}
 746
 747static int iwl_nvm_is_otp(struct iwl_trans *trans)
 748{
 749	u32 otpgp;
 750
 751	/* OTP only valid for CP/PP and after */
 752	switch (trans->hw_rev & CSR_HW_REV_TYPE_MSK) {
 753	case CSR_HW_REV_TYPE_NONE:
 754		IWL_ERR(trans, "Unknown hardware type\n");
 755		return -EIO;
 756	case CSR_HW_REV_TYPE_5300:
 757	case CSR_HW_REV_TYPE_5350:
 758	case CSR_HW_REV_TYPE_5100:
 759	case CSR_HW_REV_TYPE_5150:
 760		return 0;
 761	default:
 762		otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
 763		if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
 764			return 1;
 765		return 0;
 766	}
 767}
 768
 769static int iwl_init_otp_access(struct iwl_trans *trans)
 770{
 771	int ret;
 772
 773	ret = iwl_finish_nic_init(trans);
 774	if (ret)
 775		return ret;
 776
 777	iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
 778			  APMG_PS_CTRL_VAL_RESET_REQ);
 779	udelay(5);
 780	iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
 781			    APMG_PS_CTRL_VAL_RESET_REQ);
 782
 783	/*
 784	 * CSR auto clock gate disable bit -
 785	 * this is only applicable for HW with OTP shadow RAM
 786	 */
 787	if (trans->trans_cfg->base_params->shadow_ram_support)
 788		iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
 789			    CSR_RESET_LINK_PWR_MGMT_DISABLED);
 790
 791	return 0;
 792}
 793
 794static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
 795			     __le16 *eeprom_data)
 796{
 797	int ret = 0;
 798	u32 r;
 799	u32 otpgp;
 800
 801	iwl_write32(trans, CSR_EEPROM_REG,
 802		    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
 803	ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
 804				 CSR_EEPROM_REG_READ_VALID_MSK,
 805				 CSR_EEPROM_REG_READ_VALID_MSK,
 806				 IWL_EEPROM_ACCESS_TIMEOUT);
 807	if (ret < 0) {
 808		IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
 809		return ret;
 810	}
 811	r = iwl_read32(trans, CSR_EEPROM_REG);
 812	/* check for ECC errors: */
 813	otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
 814	if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
 815		/* stop in this case */
 816		/* set the uncorrectable OTP ECC bit for acknowledgment */
 817		iwl_set_bit(trans, CSR_OTP_GP_REG,
 818			    CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
 819		IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
 820		return -EINVAL;
 821	}
 822	if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
 823		/* continue in this case */
 824		/* set the correctable OTP ECC bit for acknowledgment */
 825		iwl_set_bit(trans, CSR_OTP_GP_REG,
 826			    CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
 827		IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
 828	}
 829	*eeprom_data = cpu_to_le16(r >> 16);
 830	return 0;
 831}
 832
 833/*
 834 * iwl_is_otp_empty: check for empty OTP
 835 */
 836static bool iwl_is_otp_empty(struct iwl_trans *trans)
 837{
 838	u16 next_link_addr = 0;
 839	__le16 link_value;
 840	bool is_empty = false;
 841
 842	/* locate the beginning of OTP link list */
 843	if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
 844		if (!link_value) {
 845			IWL_ERR(trans, "OTP is empty\n");
 846			is_empty = true;
 847		}
 848	} else {
 849		IWL_ERR(trans, "Unable to read first block of OTP list.\n");
 850		is_empty = true;
 851	}
 852
 853	return is_empty;
 854}
 855
 856
 857/*
 858 * iwl_find_otp_image: find EEPROM image in OTP
 859 *   finding the OTP block that contains the EEPROM image.
 860 *   the last valid block on the link list (the block _before_ the last block)
 861 *   is the block we should read and used to configure the device.
 862 *   If all the available OTP blocks are full, the last block will be the block
 863 *   we should read and used to configure the device.
 864 *   only perform this operation if shadow RAM is disabled
 865 */
 866static int iwl_find_otp_image(struct iwl_trans *trans,
 867					u16 *validblockaddr)
 868{
 869	u16 next_link_addr = 0, valid_addr;
 870	__le16 link_value = 0;
 871	int usedblocks = 0;
 872
 873	/* set addressing mode to absolute to traverse the link list */
 874	iwl_set_otp_access_absolute(trans);
 875
 876	/* checking for empty OTP or error */
 877	if (iwl_is_otp_empty(trans))
 878		return -EINVAL;
 879
 880	/*
 881	 * start traverse link list
 882	 * until reach the max number of OTP blocks
 883	 * different devices have different number of OTP blocks
 884	 */
 885	do {
 886		/* save current valid block address
 887		 * check for more block on the link list
 888		 */
 889		valid_addr = next_link_addr;
 890		next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
 891		IWL_DEBUG_EEPROM(trans->dev, "OTP blocks %d addr 0x%x\n",
 892				 usedblocks, next_link_addr);
 893		if (iwl_read_otp_word(trans, next_link_addr, &link_value))
 894			return -EINVAL;
 895		if (!link_value) {
 896			/*
 897			 * reach the end of link list, return success and
 898			 * set address point to the starting address
 899			 * of the image
 900			 */
 901			*validblockaddr = valid_addr;
 902			/* skip first 2 bytes (link list pointer) */
 903			*validblockaddr += 2;
 904			return 0;
 905		}
 906		/* more in the link list, continue */
 907		usedblocks++;
 908	} while (usedblocks <= trans->trans_cfg->base_params->max_ll_items);
 909
 910	/* OTP has no valid blocks */
 911	IWL_DEBUG_EEPROM(trans->dev, "OTP has no valid blocks\n");
 912	return -EINVAL;
 913}
 914
 915/*
 916 * iwl_read_eeprom - read EEPROM contents
 917 *
 918 * Load the EEPROM contents from adapter and return it
 919 * and its size.
 920 *
 921 * NOTE:  This routine uses the non-debug IO access functions.
 922 */
 923int iwl_read_eeprom(struct iwl_trans *trans, u8 **eeprom, size_t *eeprom_size)
 924{
 925	__le16 *e;
 926	u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
 927	int sz;
 928	int ret;
 929	u16 addr;
 930	u16 validblockaddr = 0;
 931	u16 cache_addr = 0;
 932	int nvm_is_otp;
 933
 934	if (!eeprom || !eeprom_size)
 935		return -EINVAL;
 936
 937	nvm_is_otp = iwl_nvm_is_otp(trans);
 938	if (nvm_is_otp < 0)
 939		return nvm_is_otp;
 940
 941	sz = trans->trans_cfg->base_params->eeprom_size;
 942	IWL_DEBUG_EEPROM(trans->dev, "NVM size = %d\n", sz);
 943
 944	e = kmalloc(sz, GFP_KERNEL);
 945	if (!e)
 946		return -ENOMEM;
 947
 948	ret = iwl_eeprom_verify_signature(trans, nvm_is_otp);
 949	if (ret < 0) {
 950		IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
 951		goto err_free;
 952	}
 953
 954	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
 955	ret = iwl_eeprom_acquire_semaphore(trans);
 956	if (ret < 0) {
 957		IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
 958		goto err_free;
 959	}
 960
 961	if (nvm_is_otp) {
 962		ret = iwl_init_otp_access(trans);
 963		if (ret) {
 964			IWL_ERR(trans, "Failed to initialize OTP access.\n");
 965			goto err_unlock;
 966		}
 967
 968		iwl_write32(trans, CSR_EEPROM_GP,
 969			    iwl_read32(trans, CSR_EEPROM_GP) &
 970			    ~CSR_EEPROM_GP_IF_OWNER_MSK);
 971
 972		iwl_set_bit(trans, CSR_OTP_GP_REG,
 973			    CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
 974			    CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
 975		/* traversing the linked list if no shadow ram supported */
 976		if (!trans->trans_cfg->base_params->shadow_ram_support) {
 977			ret = iwl_find_otp_image(trans, &validblockaddr);
 978			if (ret)
 979				goto err_unlock;
 980		}
 981		for (addr = validblockaddr; addr < validblockaddr + sz;
 982		     addr += sizeof(u16)) {
 983			__le16 eeprom_data;
 984
 985			ret = iwl_read_otp_word(trans, addr, &eeprom_data);
 986			if (ret)
 987				goto err_unlock;
 988			e[cache_addr / 2] = eeprom_data;
 989			cache_addr += sizeof(u16);
 990		}
 991	} else {
 992		/* eeprom is an array of 16bit values */
 993		for (addr = 0; addr < sz; addr += sizeof(u16)) {
 994			u32 r;
 995
 996			iwl_write32(trans, CSR_EEPROM_REG,
 997				    CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
 998
 999			ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
1000					   CSR_EEPROM_REG_READ_VALID_MSK,
1001					   CSR_EEPROM_REG_READ_VALID_MSK,
1002					   IWL_EEPROM_ACCESS_TIMEOUT);
1003			if (ret < 0) {
1004				IWL_ERR(trans,
1005					"Time out reading EEPROM[%d]\n", addr);
1006				goto err_unlock;
1007			}
1008			r = iwl_read32(trans, CSR_EEPROM_REG);
1009			e[addr / 2] = cpu_to_le16(r >> 16);
1010		}
1011	}
1012
1013	IWL_DEBUG_EEPROM(trans->dev, "NVM Type: %s\n",
1014			 nvm_is_otp ? "OTP" : "EEPROM");
1015
1016	iwl_eeprom_release_semaphore(trans);
1017
1018	*eeprom_size = sz;
1019	*eeprom = (u8 *)e;
1020	return 0;
1021
1022 err_unlock:
1023	iwl_eeprom_release_semaphore(trans);
1024 err_free:
1025	kfree(e);
1026
1027	return ret;
1028}
1029
1030static void iwl_init_sbands(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1031			    struct iwl_nvm_data *data,
1032			    const u8 *eeprom, size_t eeprom_size)
1033{
1034	struct device *dev = trans->dev;
1035	int n_channels = iwl_init_channel_map(dev, cfg, data,
1036					      eeprom, eeprom_size);
1037	int n_used = 0;
1038	struct ieee80211_supported_band *sband;
1039
1040	sband = &data->bands[NL80211_BAND_2GHZ];
1041	sband->band = NL80211_BAND_2GHZ;
1042	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1043	sband->n_bitrates = N_RATES_24;
1044	n_used += iwl_init_sband_channels(data, sband, n_channels,
1045					  NL80211_BAND_2GHZ);
1046	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1047			     data->valid_tx_ant, data->valid_rx_ant);
1048
1049	sband = &data->bands[NL80211_BAND_5GHZ];
1050	sband->band = NL80211_BAND_5GHZ;
1051	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1052	sband->n_bitrates = N_RATES_52;
1053	n_used += iwl_init_sband_channels(data, sband, n_channels,
1054					  NL80211_BAND_5GHZ);
1055	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1056			     data->valid_tx_ant, data->valid_rx_ant);
1057
1058	if (n_channels != n_used)
1059		IWL_ERR_DEV(dev, "EEPROM: used only %d of %d channels\n",
1060			    n_used, n_channels);
1061}
1062
1063/* EEPROM data functions */
1064struct iwl_nvm_data *
1065iwl_parse_eeprom_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1066		      const u8 *eeprom, size_t eeprom_size)
1067{
1068	struct iwl_nvm_data *data;
1069	struct device *dev = trans->dev;
1070	const void *tmp;
1071	u16 radio_cfg, sku;
1072
1073	if (WARN_ON(!cfg || !cfg->eeprom_params))
1074		return NULL;
1075
1076	data = kzalloc(struct_size(data, channels, IWL_NUM_CHANNELS),
1077		       GFP_KERNEL);
1078	if (!data)
1079		return NULL;
1080
1081	/* get MAC address(es) */
1082	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_MAC_ADDRESS);
1083	if (!tmp)
1084		goto err_free;
1085	memcpy(data->hw_addr, tmp, ETH_ALEN);
1086	data->n_hw_addrs = iwl_eeprom_query16(eeprom, eeprom_size,
1087					      EEPROM_NUM_MAC_ADDRESS);
1088
1089	if (iwl_eeprom_read_calib(eeprom, eeprom_size, data))
1090		goto err_free;
1091
1092	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size, EEPROM_XTAL);
1093	if (!tmp)
1094		goto err_free;
1095	memcpy(data->xtal_calib, tmp, sizeof(data->xtal_calib));
1096
1097	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1098				    EEPROM_RAW_TEMPERATURE);
1099	if (!tmp)
1100		goto err_free;
1101	data->raw_temperature = *(__le16 *)tmp;
1102
1103	tmp = iwl_eeprom_query_addr(eeprom, eeprom_size,
1104				    EEPROM_KELVIN_TEMPERATURE);
1105	if (!tmp)
1106		goto err_free;
1107	data->kelvin_temperature = *(__le16 *)tmp;
1108	data->kelvin_voltage = *((__le16 *)tmp + 1);
1109
1110	radio_cfg =
1111		iwl_eeprom_query16(eeprom, eeprom_size, EEPROM_RADIO_CONFIG);
1112	data->radio_cfg_dash = EEPROM_RF_CFG_DASH_MSK(radio_cfg);
1113	data->radio_cfg_pnum = EEPROM_RF_CFG_PNUM_MSK(radio_cfg);
1114	data->radio_cfg_step = EEPROM_RF_CFG_STEP_MSK(radio_cfg);
1115	data->radio_cfg_type = EEPROM_RF_CFG_TYPE_MSK(radio_cfg);
1116	data->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
1117	data->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
1118
1119	sku = iwl_eeprom_query16(eeprom, eeprom_size,
1120				 EEPROM_SKU_CAP);
1121	data->sku_cap_11n_enable = sku & EEPROM_SKU_CAP_11N_ENABLE;
1122	data->sku_cap_amt_enable = sku & EEPROM_SKU_CAP_AMT_ENABLE;
1123	data->sku_cap_band_24ghz_enable = sku & EEPROM_SKU_CAP_BAND_24GHZ;
1124	data->sku_cap_band_52ghz_enable = sku & EEPROM_SKU_CAP_BAND_52GHZ;
1125	data->sku_cap_ipan_enable = sku & EEPROM_SKU_CAP_IPAN_ENABLE;
1126	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1127		data->sku_cap_11n_enable = false;
1128
1129	data->nvm_version = iwl_eeprom_query16(eeprom, eeprom_size,
1130					       EEPROM_VERSION);
1131
1132	/* check overrides (some devices have wrong EEPROM) */
1133	if (cfg->valid_tx_ant)
1134		data->valid_tx_ant = cfg->valid_tx_ant;
1135	if (cfg->valid_rx_ant)
1136		data->valid_rx_ant = cfg->valid_rx_ant;
1137
1138	if (!data->valid_tx_ant || !data->valid_rx_ant) {
1139		IWL_ERR_DEV(dev, "invalid antennas (0x%x, 0x%x)\n",
1140			    data->valid_tx_ant, data->valid_rx_ant);
1141		goto err_free;
1142	}
1143
1144	iwl_init_sbands(trans, cfg, data, eeprom, eeprom_size);
1145
1146	return data;
1147 err_free:
1148	kfree(data);
1149	return NULL;
1150}