Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2005-2011 Atheros Communications Inc.
   4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
   5 * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/pci.h>
   9#include <linux/module.h>
  10#include <linux/interrupt.h>
  11#include <linux/spinlock.h>
  12#include <linux/bitops.h>
  13
  14#include "core.h"
  15#include "debug.h"
  16#include "coredump.h"
  17
  18#include "targaddrs.h"
  19#include "bmi.h"
  20
  21#include "hif.h"
  22#include "htc.h"
  23
  24#include "ce.h"
  25#include "pci.h"
  26
  27enum ath10k_pci_reset_mode {
  28	ATH10K_PCI_RESET_AUTO = 0,
  29	ATH10K_PCI_RESET_WARM_ONLY = 1,
 
  30};
  31
 
  32static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
  33static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
 
 
  34
  35module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
  36MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
  37
  38module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
  39MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
  40
  41/* how long wait to wait for target to initialise, in ms */
  42#define ATH10K_PCI_TARGET_WAIT 3000
  43#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
  44
  45/* Maximum number of bytes that can be handled atomically by
  46 * diag read and write.
  47 */
  48#define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
  49
  50#define QCA99X0_PCIE_BAR0_START_REG    0x81030
  51#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
  52#define QCA99X0_CPU_MEM_DATA_REG       0x4d010
  53
  54static const struct pci_device_id ath10k_pci_id_table[] = {
  55	/* PCI-E QCA988X V2 (Ubiquiti branded) */
  56	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
  57
 
  58	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
  59	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
  60	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
  61	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
  62	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
  63	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
  64	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
  65	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
  66	{0}
  67};
  68
  69static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
  70	/* QCA988X pre 2.0 chips are not supported because they need some nasty
  71	 * hacks. ath10k doesn't have them and these devices crash horribly
  72	 * because of that.
  73	 */
  74	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
  75	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
  76
  77	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  78	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  79	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  80	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  81	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  82
  83	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  84	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  85	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  86	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  87	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  88
  89	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
  90
  91	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
  92
  93	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
  94
  95	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
  96	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
  97
  98	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
  99};
 100
 101static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
 102static int ath10k_pci_cold_reset(struct ath10k *ar);
 103static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
 
 104static int ath10k_pci_init_irq(struct ath10k *ar);
 105static int ath10k_pci_deinit_irq(struct ath10k *ar);
 106static int ath10k_pci_request_irq(struct ath10k *ar);
 107static void ath10k_pci_free_irq(struct ath10k *ar);
 108static int ath10k_pci_bmi_wait(struct ath10k *ar,
 109			       struct ath10k_ce_pipe *tx_pipe,
 110			       struct ath10k_ce_pipe *rx_pipe,
 111			       struct bmi_xfer *xfer);
 112static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
 113static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
 114static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 115static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
 116static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
 117static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 118static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
 119
 120static const struct ce_attr pci_host_ce_config_wlan[] = {
 121	/* CE0: host->target HTC control and raw streams */
 122	{
 123		.flags = CE_ATTR_FLAGS,
 124		.src_nentries = 16,
 125		.src_sz_max = 256,
 126		.dest_nentries = 0,
 127		.send_cb = ath10k_pci_htc_tx_cb,
 128	},
 129
 130	/* CE1: target->host HTT + HTC control */
 131	{
 132		.flags = CE_ATTR_FLAGS,
 133		.src_nentries = 0,
 134		.src_sz_max = 2048,
 135		.dest_nentries = 512,
 136		.recv_cb = ath10k_pci_htt_htc_rx_cb,
 137	},
 138
 139	/* CE2: target->host WMI */
 140	{
 141		.flags = CE_ATTR_FLAGS,
 142		.src_nentries = 0,
 143		.src_sz_max = 2048,
 144		.dest_nentries = 128,
 145		.recv_cb = ath10k_pci_htc_rx_cb,
 146	},
 147
 148	/* CE3: host->target WMI */
 149	{
 150		.flags = CE_ATTR_FLAGS,
 151		.src_nentries = 32,
 152		.src_sz_max = 2048,
 153		.dest_nentries = 0,
 154		.send_cb = ath10k_pci_htc_tx_cb,
 155	},
 156
 157	/* CE4: host->target HTT */
 158	{
 159		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
 160		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
 161		.src_sz_max = 256,
 162		.dest_nentries = 0,
 163		.send_cb = ath10k_pci_htt_tx_cb,
 164	},
 165
 166	/* CE5: target->host HTT (HIF->HTT) */
 167	{
 168		.flags = CE_ATTR_FLAGS,
 169		.src_nentries = 0,
 170		.src_sz_max = 512,
 171		.dest_nentries = 512,
 172		.recv_cb = ath10k_pci_htt_rx_cb,
 173	},
 174
 175	/* CE6: target autonomous hif_memcpy */
 176	{
 177		.flags = CE_ATTR_FLAGS,
 178		.src_nentries = 0,
 179		.src_sz_max = 0,
 180		.dest_nentries = 0,
 181	},
 182
 183	/* CE7: ce_diag, the Diagnostic Window */
 184	{
 185		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
 186		.src_nentries = 2,
 187		.src_sz_max = DIAG_TRANSFER_LIMIT,
 188		.dest_nentries = 2,
 189	},
 190
 191	/* CE8: target->host pktlog */
 192	{
 193		.flags = CE_ATTR_FLAGS,
 194		.src_nentries = 0,
 195		.src_sz_max = 2048,
 196		.dest_nentries = 128,
 197		.recv_cb = ath10k_pci_pktlog_rx_cb,
 198	},
 199
 200	/* CE9 target autonomous qcache memcpy */
 201	{
 202		.flags = CE_ATTR_FLAGS,
 203		.src_nentries = 0,
 204		.src_sz_max = 0,
 205		.dest_nentries = 0,
 206	},
 207
 208	/* CE10: target autonomous hif memcpy */
 209	{
 210		.flags = CE_ATTR_FLAGS,
 211		.src_nentries = 0,
 212		.src_sz_max = 0,
 213		.dest_nentries = 0,
 214	},
 215
 216	/* CE11: target autonomous hif memcpy */
 217	{
 218		.flags = CE_ATTR_FLAGS,
 219		.src_nentries = 0,
 220		.src_sz_max = 0,
 221		.dest_nentries = 0,
 222	},
 223};
 224
 225/* Target firmware's Copy Engine configuration. */
 226static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
 227	/* CE0: host->target HTC control and raw streams */
 228	{
 229		.pipenum = __cpu_to_le32(0),
 230		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 231		.nentries = __cpu_to_le32(32),
 232		.nbytes_max = __cpu_to_le32(256),
 233		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 234		.reserved = __cpu_to_le32(0),
 235	},
 236
 237	/* CE1: target->host HTT + HTC control */
 238	{
 239		.pipenum = __cpu_to_le32(1),
 240		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 241		.nentries = __cpu_to_le32(32),
 242		.nbytes_max = __cpu_to_le32(2048),
 243		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 244		.reserved = __cpu_to_le32(0),
 245	},
 246
 247	/* CE2: target->host WMI */
 248	{
 249		.pipenum = __cpu_to_le32(2),
 250		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 251		.nentries = __cpu_to_le32(64),
 252		.nbytes_max = __cpu_to_le32(2048),
 253		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 254		.reserved = __cpu_to_le32(0),
 255	},
 256
 257	/* CE3: host->target WMI */
 258	{
 259		.pipenum = __cpu_to_le32(3),
 260		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 261		.nentries = __cpu_to_le32(32),
 262		.nbytes_max = __cpu_to_le32(2048),
 263		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 264		.reserved = __cpu_to_le32(0),
 265	},
 266
 267	/* CE4: host->target HTT */
 268	{
 269		.pipenum = __cpu_to_le32(4),
 270		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 271		.nentries = __cpu_to_le32(256),
 272		.nbytes_max = __cpu_to_le32(256),
 273		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 274		.reserved = __cpu_to_le32(0),
 275	},
 276
 277	/* NB: 50% of src nentries, since tx has 2 frags */
 278
 279	/* CE5: target->host HTT (HIF->HTT) */
 280	{
 281		.pipenum = __cpu_to_le32(5),
 282		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 283		.nentries = __cpu_to_le32(32),
 284		.nbytes_max = __cpu_to_le32(512),
 285		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 286		.reserved = __cpu_to_le32(0),
 287	},
 288
 289	/* CE6: Reserved for target autonomous hif_memcpy */
 290	{
 291		.pipenum = __cpu_to_le32(6),
 292		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 293		.nentries = __cpu_to_le32(32),
 294		.nbytes_max = __cpu_to_le32(4096),
 295		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 296		.reserved = __cpu_to_le32(0),
 297	},
 298
 299	/* CE7 used only by Host */
 300	{
 301		.pipenum = __cpu_to_le32(7),
 302		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 303		.nentries = __cpu_to_le32(0),
 304		.nbytes_max = __cpu_to_le32(0),
 305		.flags = __cpu_to_le32(0),
 306		.reserved = __cpu_to_le32(0),
 307	},
 308
 309	/* CE8 target->host packtlog */
 310	{
 311		.pipenum = __cpu_to_le32(8),
 312		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 313		.nentries = __cpu_to_le32(64),
 314		.nbytes_max = __cpu_to_le32(2048),
 315		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 316		.reserved = __cpu_to_le32(0),
 317	},
 318
 319	/* CE9 target autonomous qcache memcpy */
 320	{
 321		.pipenum = __cpu_to_le32(9),
 322		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 323		.nentries = __cpu_to_le32(32),
 324		.nbytes_max = __cpu_to_le32(2048),
 325		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 326		.reserved = __cpu_to_le32(0),
 327	},
 328
 329	/* It not necessary to send target wlan configuration for CE10 & CE11
 330	 * as these CEs are not actively used in target.
 331	 */
 332};
 333
 334/*
 335 * Map from service/endpoint to Copy Engine.
 336 * This table is derived from the CE_PCI TABLE, above.
 337 * It is passed to the Target at startup for use by firmware.
 338 */
 339static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
 340	{
 341		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 342		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 343		__cpu_to_le32(3),
 344	},
 345	{
 346		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 347		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 348		__cpu_to_le32(2),
 349	},
 350	{
 351		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 352		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 353		__cpu_to_le32(3),
 354	},
 355	{
 356		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 357		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 358		__cpu_to_le32(2),
 359	},
 360	{
 361		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 362		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 363		__cpu_to_le32(3),
 364	},
 365	{
 366		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 367		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 368		__cpu_to_le32(2),
 369	},
 370	{
 371		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 372		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 373		__cpu_to_le32(3),
 374	},
 375	{
 376		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 377		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 378		__cpu_to_le32(2),
 379	},
 380	{
 381		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 382		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 383		__cpu_to_le32(3),
 384	},
 385	{
 386		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 387		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 388		__cpu_to_le32(2),
 389	},
 390	{
 391		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 392		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 393		__cpu_to_le32(0),
 394	},
 395	{
 396		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 397		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 398		__cpu_to_le32(1),
 399	},
 400	{ /* not used */
 401		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 402		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 403		__cpu_to_le32(0),
 404	},
 405	{ /* not used */
 406		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 407		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 408		__cpu_to_le32(1),
 409	},
 410	{
 411		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 412		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 413		__cpu_to_le32(4),
 414	},
 415	{
 416		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 417		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 418		__cpu_to_le32(5),
 419	},
 420
 421	/* (Additions here) */
 422
 423	{ /* must be last */
 424		__cpu_to_le32(0),
 425		__cpu_to_le32(0),
 426		__cpu_to_le32(0),
 427	},
 428};
 429
 430static bool ath10k_pci_is_awake(struct ath10k *ar)
 431{
 432	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 433	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 434			   RTC_STATE_ADDRESS);
 435
 436	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
 437}
 438
 439static void __ath10k_pci_wake(struct ath10k *ar)
 440{
 441	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 442
 443	lockdep_assert_held(&ar_pci->ps_lock);
 444
 445	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
 446		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 447
 448	iowrite32(PCIE_SOC_WAKE_V_MASK,
 449		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 450		  PCIE_SOC_WAKE_ADDRESS);
 451}
 452
 453static void __ath10k_pci_sleep(struct ath10k *ar)
 454{
 455	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 456
 457	lockdep_assert_held(&ar_pci->ps_lock);
 458
 459	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
 460		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 461
 462	iowrite32(PCIE_SOC_WAKE_RESET,
 463		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 464		  PCIE_SOC_WAKE_ADDRESS);
 465	ar_pci->ps_awake = false;
 466}
 467
 468static int ath10k_pci_wake_wait(struct ath10k *ar)
 469{
 470	int tot_delay = 0;
 471	int curr_delay = 5;
 472
 473	while (tot_delay < PCIE_WAKE_TIMEOUT) {
 474		if (ath10k_pci_is_awake(ar)) {
 475			if (tot_delay > PCIE_WAKE_LATE_US)
 476				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
 477					    tot_delay / 1000);
 478			return 0;
 479		}
 480
 481		udelay(curr_delay);
 482		tot_delay += curr_delay;
 483
 484		if (curr_delay < 50)
 485			curr_delay += 5;
 486	}
 487
 488	return -ETIMEDOUT;
 489}
 490
 491static int ath10k_pci_force_wake(struct ath10k *ar)
 492{
 493	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 494	unsigned long flags;
 495	int ret = 0;
 496
 497	if (ar_pci->pci_ps)
 498		return ret;
 499
 500	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 501
 502	if (!ar_pci->ps_awake) {
 503		iowrite32(PCIE_SOC_WAKE_V_MASK,
 504			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 505			  PCIE_SOC_WAKE_ADDRESS);
 506
 507		ret = ath10k_pci_wake_wait(ar);
 508		if (ret == 0)
 509			ar_pci->ps_awake = true;
 510	}
 511
 512	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 513
 514	return ret;
 515}
 516
 517static void ath10k_pci_force_sleep(struct ath10k *ar)
 518{
 519	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 520	unsigned long flags;
 521
 522	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 523
 524	iowrite32(PCIE_SOC_WAKE_RESET,
 525		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 526		  PCIE_SOC_WAKE_ADDRESS);
 527	ar_pci->ps_awake = false;
 528
 529	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 530}
 531
 532static int ath10k_pci_wake(struct ath10k *ar)
 533{
 534	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 535	unsigned long flags;
 536	int ret = 0;
 537
 538	if (ar_pci->pci_ps == 0)
 539		return ret;
 540
 541	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 542
 543	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
 544		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 545
 546	/* This function can be called very frequently. To avoid excessive
 547	 * CPU stalls for MMIO reads use a cache var to hold the device state.
 548	 */
 549	if (!ar_pci->ps_awake) {
 550		__ath10k_pci_wake(ar);
 551
 552		ret = ath10k_pci_wake_wait(ar);
 553		if (ret == 0)
 554			ar_pci->ps_awake = true;
 555	}
 556
 557	if (ret == 0) {
 558		ar_pci->ps_wake_refcount++;
 559		WARN_ON(ar_pci->ps_wake_refcount == 0);
 560	}
 561
 562	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 563
 564	return ret;
 565}
 566
 567static void ath10k_pci_sleep(struct ath10k *ar)
 568{
 569	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 570	unsigned long flags;
 571
 572	if (ar_pci->pci_ps == 0)
 573		return;
 574
 575	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 576
 577	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
 578		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 579
 580	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
 581		goto skip;
 582
 583	ar_pci->ps_wake_refcount--;
 584
 585	mod_timer(&ar_pci->ps_timer, jiffies +
 586		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
 587
 588skip:
 589	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 590}
 591
 592static void ath10k_pci_ps_timer(struct timer_list *t)
 593{
 594	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
 595	struct ath10k *ar = ar_pci->ar;
 596	unsigned long flags;
 597
 598	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 599
 600	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
 601		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 602
 603	if (ar_pci->ps_wake_refcount > 0)
 604		goto skip;
 605
 606	__ath10k_pci_sleep(ar);
 607
 608skip:
 609	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 610}
 611
 612static void ath10k_pci_sleep_sync(struct ath10k *ar)
 613{
 614	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 615	unsigned long flags;
 616
 617	if (ar_pci->pci_ps == 0) {
 618		ath10k_pci_force_sleep(ar);
 619		return;
 620	}
 621
 622	del_timer_sync(&ar_pci->ps_timer);
 623
 624	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 625	WARN_ON(ar_pci->ps_wake_refcount > 0);
 626	__ath10k_pci_sleep(ar);
 627	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 628}
 629
 630static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 631{
 632	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 633	int ret;
 634
 635	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
 636		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 637			    offset, offset + sizeof(value), ar_pci->mem_len);
 638		return;
 639	}
 640
 641	ret = ath10k_pci_wake(ar);
 642	if (ret) {
 643		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
 644			    value, offset, ret);
 645		return;
 646	}
 647
 648	iowrite32(value, ar_pci->mem + offset);
 649	ath10k_pci_sleep(ar);
 650}
 651
 652static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
 653{
 654	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 655	u32 val;
 656	int ret;
 657
 658	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
 659		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 660			    offset, offset + sizeof(val), ar_pci->mem_len);
 661		return 0;
 662	}
 663
 664	ret = ath10k_pci_wake(ar);
 665	if (ret) {
 666		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
 667			    offset, ret);
 668		return 0xffffffff;
 669	}
 670
 671	val = ioread32(ar_pci->mem + offset);
 672	ath10k_pci_sleep(ar);
 673
 674	return val;
 675}
 676
 677inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 678{
 679	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 680
 681	ce->bus_ops->write32(ar, offset, value);
 682}
 683
 684inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
 685{
 686	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 687
 688	return ce->bus_ops->read32(ar, offset);
 689}
 690
 691u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
 692{
 693	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
 694}
 695
 696void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
 697{
 698	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
 699}
 700
 701u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
 702{
 703	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
 704}
 705
 706void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
 707{
 708	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
 709}
 710
 711bool ath10k_pci_irq_pending(struct ath10k *ar)
 712{
 713	u32 cause;
 714
 715	/* Check if the shared legacy irq is for us */
 716	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 717				  PCIE_INTR_CAUSE_ADDRESS);
 718	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
 719		return true;
 720
 721	return false;
 722}
 723
 724void ath10k_pci_disable_and_clear_intx_irq(struct ath10k *ar)
 725{
 726	/* IMPORTANT: INTR_CLR register has to be set after
 727	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
 728	 * really cleared.
 729	 */
 730	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
 731			   0);
 732	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
 733			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 734
 735	/* IMPORTANT: this extra read transaction is required to
 736	 * flush the posted write buffer.
 737	 */
 738	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 739				PCIE_INTR_ENABLE_ADDRESS);
 740}
 741
 742void ath10k_pci_enable_intx_irq(struct ath10k *ar)
 743{
 744	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
 745			   PCIE_INTR_ENABLE_ADDRESS,
 746			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 747
 748	/* IMPORTANT: this extra read transaction is required to
 749	 * flush the posted write buffer.
 750	 */
 751	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 752				PCIE_INTR_ENABLE_ADDRESS);
 753}
 754
 755static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
 756{
 
 757	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 758
 759	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
 760		return "msi";
 
 761
 762	return "legacy";
 763}
 764
 765static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
 766{
 767	struct ath10k *ar = pipe->hif_ce_state;
 768	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 769	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 770	struct sk_buff *skb;
 771	dma_addr_t paddr;
 772	int ret;
 773
 774	skb = dev_alloc_skb(pipe->buf_sz);
 775	if (!skb)
 776		return -ENOMEM;
 777
 778	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
 779
 780	paddr = dma_map_single(ar->dev, skb->data,
 781			       skb->len + skb_tailroom(skb),
 782			       DMA_FROM_DEVICE);
 783	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
 784		ath10k_warn(ar, "failed to dma map pci rx buf\n");
 785		dev_kfree_skb_any(skb);
 786		return -EIO;
 787	}
 788
 789	ATH10K_SKB_RXCB(skb)->paddr = paddr;
 790
 791	spin_lock_bh(&ce->ce_lock);
 792	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
 793	spin_unlock_bh(&ce->ce_lock);
 794	if (ret) {
 795		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
 796				 DMA_FROM_DEVICE);
 797		dev_kfree_skb_any(skb);
 798		return ret;
 799	}
 800
 801	return 0;
 802}
 803
 804static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
 805{
 806	struct ath10k *ar = pipe->hif_ce_state;
 807	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 808	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 809	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 810	int ret, num;
 811
 812	if (pipe->buf_sz == 0)
 813		return;
 814
 815	if (!ce_pipe->dest_ring)
 816		return;
 817
 818	spin_lock_bh(&ce->ce_lock);
 819	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
 820	spin_unlock_bh(&ce->ce_lock);
 821
 822	while (num >= 0) {
 823		ret = __ath10k_pci_rx_post_buf(pipe);
 824		if (ret) {
 825			if (ret == -ENOSPC)
 826				break;
 827			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
 828			mod_timer(&ar_pci->rx_post_retry, jiffies +
 829				  ATH10K_PCI_RX_POST_RETRY_MS);
 830			break;
 831		}
 832		num--;
 833	}
 834}
 835
 836void ath10k_pci_rx_post(struct ath10k *ar)
 837{
 838	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 839	int i;
 840
 841	for (i = 0; i < CE_COUNT; i++)
 842		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
 843}
 844
 845void ath10k_pci_rx_replenish_retry(struct timer_list *t)
 846{
 847	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
 848	struct ath10k *ar = ar_pci->ar;
 849
 850	ath10k_pci_rx_post(ar);
 851}
 852
 853static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 854{
 855	u32 val = 0, region = addr & 0xfffff;
 856
 857	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 858				 & 0x7ff) << 21;
 859	val |= 0x100000 | region;
 860	return val;
 861}
 862
 863/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
 864 * Support to access target space below 1M for qca6174 and qca9377.
 865 * If target space is below 1M, the bit[20] of converted CE addr is 0.
 866 * Otherwise bit[20] of converted CE addr is 1.
 867 */
 868static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 869{
 870	u32 val = 0, region = addr & 0xfffff;
 871
 872	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 873				 & 0x7ff) << 21;
 874	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
 875	return val;
 876}
 877
 878static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 879{
 880	u32 val = 0, region = addr & 0xfffff;
 881
 882	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
 883	val |= 0x100000 | region;
 884	return val;
 885}
 886
 887static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 888{
 889	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 890
 891	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
 892		return -EOPNOTSUPP;
 893
 894	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
 895}
 896
 897/*
 898 * Diagnostic read/write access is provided for startup/config/debug usage.
 899 * Caller must guarantee proper alignment, when applicable, and single user
 900 * at any moment.
 901 */
 902static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
 903				    int nbytes)
 904{
 905	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 906	int ret = 0;
 907	u32 *buf;
 908	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
 
 
 909	struct ath10k_ce_pipe *ce_diag;
 910	/* Host buffer address in CE space */
 911	u32 ce_data;
 912	dma_addr_t ce_data_base = 0;
 913	void *data_buf;
 914	int i;
 915
 916	mutex_lock(&ar_pci->ce_diag_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 917	ce_diag = ar_pci->ce_diag;
 918
 919	/*
 920	 * Allocate a temporary bounce buffer to hold caller's data
 921	 * to be DMA'ed from Target. This guarantees
 922	 *   1) 4-byte alignment
 923	 *   2) Buffer in DMA-able space
 924	 */
 925	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
 
 
 
 926
 927	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
 928				      GFP_ATOMIC);
 929	if (!data_buf) {
 930		ret = -ENOMEM;
 931		goto done;
 932	}
 
 933
 934	/* The address supplied by the caller is in the
 935	 * Target CPU virtual address space.
 936	 *
 937	 * In order to use this address with the diagnostic CE,
 938	 * convert it from Target CPU virtual address space
 939	 * to CE address space
 940	 */
 941	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
 942
 943	remaining_bytes = nbytes;
 944	ce_data = ce_data_base;
 945	while (remaining_bytes) {
 946		nbytes = min_t(unsigned int, remaining_bytes,
 947			       DIAG_TRANSFER_LIMIT);
 948
 949		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
 950		if (ret != 0)
 951			goto done;
 952
 953		/* Request CE to send from Target(!) address to Host buffer */
 954		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955		if (ret)
 956			goto done;
 957
 958		i = 0;
 959		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
 960			udelay(DIAG_ACCESS_CE_WAIT_US);
 961			i += DIAG_ACCESS_CE_WAIT_US;
 962
 963			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 964				ret = -EBUSY;
 965				goto done;
 966			}
 967		}
 968
 
 
 
 
 
 
 
 
 
 
 969		i = 0;
 970		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
 971						     &completed_nbytes) != 0) {
 972			udelay(DIAG_ACCESS_CE_WAIT_US);
 973			i += DIAG_ACCESS_CE_WAIT_US;
 974
 975			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 976				ret = -EBUSY;
 977				goto done;
 978			}
 979		}
 980
 981		if (nbytes != completed_nbytes) {
 982			ret = -EIO;
 983			goto done;
 984		}
 985
 986		if (*buf != ce_data) {
 987			ret = -EIO;
 988			goto done;
 989		}
 990
 991		remaining_bytes -= nbytes;
 992		memcpy(data, data_buf, nbytes);
 993
 994		address += nbytes;
 995		data += nbytes;
 996	}
 997
 998done:
 
 
 
 
 
 
 
 
 
 
 999
1000	if (data_buf)
1001		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1002				  ce_data_base);
1003
1004	mutex_unlock(&ar_pci->ce_diag_mutex);
1005
1006	return ret;
1007}
1008
1009static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1010{
1011	__le32 val = 0;
1012	int ret;
1013
1014	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1015	*value = __le32_to_cpu(val);
1016
1017	return ret;
1018}
1019
1020static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1021				     u32 src, u32 len)
1022{
1023	u32 host_addr, addr;
1024	int ret;
1025
1026	host_addr = host_interest_item_address(src);
1027
1028	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1029	if (ret != 0) {
1030		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1031			    src, ret);
1032		return ret;
1033	}
1034
1035	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1036	if (ret != 0) {
1037		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1038			    addr, len, ret);
1039		return ret;
1040	}
1041
 
 
 
1042	return 0;
1043}
1044
1045#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1046	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1047
1048int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1049			      const void *data, int nbytes)
1050{
1051	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1052	int ret = 0;
1053	u32 *buf;
1054	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
 
 
1055	struct ath10k_ce_pipe *ce_diag;
1056	void *data_buf;
 
1057	dma_addr_t ce_data_base = 0;
1058	int i;
1059
1060	mutex_lock(&ar_pci->ce_diag_mutex);
1061	ce_diag = ar_pci->ce_diag;
1062
1063	/*
1064	 * Allocate a temporary bounce buffer to hold caller's data
1065	 * to be DMA'ed to Target. This guarantees
1066	 *   1) 4-byte alignment
1067	 *   2) Buffer in DMA-able space
1068	 */
1069	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1070
1071	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1072				      GFP_ATOMIC);
1073	if (!data_buf) {
1074		ret = -ENOMEM;
1075		goto done;
1076	}
1077
 
 
 
 
 
1078	/*
1079	 * The address supplied by the caller is in the
1080	 * Target CPU virtual address space.
1081	 *
1082	 * In order to use this address with the diagnostic CE,
1083	 * convert it from
1084	 *    Target CPU virtual address space
1085	 * to
1086	 *    CE address space
1087	 */
1088	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
 
 
1089
1090	remaining_bytes = nbytes;
 
1091	while (remaining_bytes) {
1092		/* FIXME: check cast */
1093		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1094
1095		/* Copy caller's data to allocated DMA buf */
1096		memcpy(data_buf, data, nbytes);
1097
1098		/* Set up to receive directly into Target(!) address */
1099		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1100		if (ret != 0)
1101			goto done;
1102
1103		/*
1104		 * Request CE to send caller-supplied data that
1105		 * was copied to bounce buffer to Target(!) address.
1106		 */
1107		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
 
1108		if (ret != 0)
1109			goto done;
1110
1111		i = 0;
1112		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1113			udelay(DIAG_ACCESS_CE_WAIT_US);
1114			i += DIAG_ACCESS_CE_WAIT_US;
 
1115
1116			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1117				ret = -EBUSY;
1118				goto done;
1119			}
1120		}
1121
 
 
 
 
 
 
 
 
 
 
1122		i = 0;
1123		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1124						     &completed_nbytes) != 0) {
1125			udelay(DIAG_ACCESS_CE_WAIT_US);
1126			i += DIAG_ACCESS_CE_WAIT_US;
1127
1128			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1129				ret = -EBUSY;
1130				goto done;
1131			}
1132		}
1133
1134		if (nbytes != completed_nbytes) {
1135			ret = -EIO;
1136			goto done;
1137		}
1138
1139		if (*buf != address) {
1140			ret = -EIO;
1141			goto done;
1142		}
1143
1144		remaining_bytes -= nbytes;
1145		address += nbytes;
1146		data += nbytes;
1147	}
1148
1149done:
1150	if (data_buf) {
1151		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1152				  ce_data_base);
1153	}
1154
1155	if (ret != 0)
1156		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1157			    address, ret);
1158
1159	mutex_unlock(&ar_pci->ce_diag_mutex);
1160
1161	return ret;
1162}
1163
1164static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1165{
1166	__le32 val = __cpu_to_le32(value);
 
 
 
 
 
1167
1168	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
 
 
 
1169}
1170
1171/* Called by lower (CE) layer when a send to Target completes. */
1172static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1173{
1174	struct ath10k *ar = ce_state->ar;
1175	struct sk_buff_head list;
1176	struct sk_buff *skb;
1177
1178	__skb_queue_head_init(&list);
1179	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1180		/* no need to call tx completion for NULL pointers */
1181		if (skb == NULL)
1182			continue;
1183
1184		__skb_queue_tail(&list, skb);
1185	}
1186
1187	while ((skb = __skb_dequeue(&list)))
1188		ath10k_htc_tx_completion_handler(ar, skb);
1189}
1190
1191static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1192				     void (*callback)(struct ath10k *ar,
1193						      struct sk_buff *skb))
1194{
1195	struct ath10k *ar = ce_state->ar;
1196	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1197	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1198	struct sk_buff *skb;
1199	struct sk_buff_head list;
1200	void *transfer_context;
1201	unsigned int nbytes, max_nbytes;
1202
1203	__skb_queue_head_init(&list);
1204	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1205					     &nbytes) == 0) {
1206		skb = transfer_context;
1207		max_nbytes = skb->len + skb_tailroom(skb);
1208		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1209				 max_nbytes, DMA_FROM_DEVICE);
1210
1211		if (unlikely(max_nbytes < nbytes)) {
1212			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1213				    nbytes, max_nbytes);
1214			dev_kfree_skb_any(skb);
1215			continue;
 
 
1216		}
1217
1218		skb_put(skb, nbytes);
1219		__skb_queue_tail(&list, skb);
1220	}
 
 
 
1221
1222	while ((skb = __skb_dequeue(&list))) {
1223		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1224			   ce_state->id, skb->len);
1225		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1226				skb->data, skb->len);
1227
1228		callback(ar, skb);
 
1229	}
 
1230
1231	ath10k_pci_rx_post_pipe(pipe_info);
 
 
 
 
 
 
 
 
 
 
 
1232}
1233
1234static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1235					 void (*callback)(struct ath10k *ar,
1236							  struct sk_buff *skb))
1237{
1238	struct ath10k *ar = ce_state->ar;
1239	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1240	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1241	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1242	struct sk_buff *skb;
1243	struct sk_buff_head list;
1244	void *transfer_context;
1245	unsigned int nbytes, max_nbytes, nentries;
1246	int orig_len;
1247
1248	/* No need to acquire ce_lock for CE5, since this is the only place CE5
1249	 * is processed other than init and deinit. Before releasing CE5
1250	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1251	 */
1252	__skb_queue_head_init(&list);
1253	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1254						    &nbytes) == 0) {
1255		skb = transfer_context;
1256		max_nbytes = skb->len + skb_tailroom(skb);
1257
1258		if (unlikely(max_nbytes < nbytes)) {
1259			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1260				    nbytes, max_nbytes);
 
 
1261			continue;
1262		}
1263
1264		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1265					max_nbytes, DMA_FROM_DEVICE);
1266		skb_put(skb, nbytes);
1267		__skb_queue_tail(&list, skb);
1268	}
1269
1270	nentries = skb_queue_len(&list);
1271	while ((skb = __skb_dequeue(&list))) {
1272		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1273			   ce_state->id, skb->len);
1274		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1275				skb->data, skb->len);
1276
1277		orig_len = skb->len;
1278		callback(ar, skb);
1279		skb_push(skb, orig_len - skb->len);
1280		skb_reset_tail_pointer(skb);
1281		skb_trim(skb, 0);
1282
1283		/*let device gain the buffer again*/
1284		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1285					   skb->len + skb_tailroom(skb),
1286					   DMA_FROM_DEVICE);
1287	}
1288	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1289}
1290
1291/* Called by lower (CE) layer when data is received from the Target. */
1292static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1293{
1294	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1295}
1296
1297static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1298{
1299	/* CE4 polling needs to be done whenever CE pipe which transports
1300	 * HTT Rx (target->host) is processed.
1301	 */
1302	ath10k_ce_per_engine_service(ce_state->ar, 4);
1303
1304	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1305}
1306
1307/* Called by lower (CE) layer when data is received from the Target.
1308 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1309 */
1310static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1311{
1312	ath10k_pci_process_rx_cb(ce_state,
1313				 ath10k_htt_rx_pktlog_completion_handler);
1314}
1315
1316/* Called by lower (CE) layer when a send to HTT Target completes. */
1317static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1318{
1319	struct ath10k *ar = ce_state->ar;
 
 
 
1320	struct sk_buff *skb;
 
 
 
 
 
 
1321
1322	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1323		/* no need to call tx completion for NULL pointers */
1324		if (!skb)
1325			continue;
 
 
 
 
 
1326
 
 
1327		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1328				 skb->len, DMA_TO_DEVICE);
1329		ath10k_htt_hif_tx_complete(ar, skb);
1330	}
1331}
1332
1333static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1334{
1335	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1336	ath10k_htt_t2h_msg_handler(ar, skb);
1337}
1338
1339/* Called by lower (CE) layer when HTT data is received from the Target. */
1340static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1341{
1342	/* CE4 polling needs to be done whenever CE pipe which transports
1343	 * HTT Rx (target->host) is processed.
1344	 */
1345	ath10k_ce_per_engine_service(ce_state->ar, 4);
1346
1347	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
 
 
1348}
1349
1350int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1351			 struct ath10k_hif_sg_item *items, int n_items)
1352{
1353	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1354	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1355	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1356	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1357	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1358	unsigned int nentries_mask;
1359	unsigned int sw_index;
1360	unsigned int write_index;
1361	int err, i = 0;
1362
1363	spin_lock_bh(&ce->ce_lock);
1364
1365	nentries_mask = src_ring->nentries_mask;
1366	sw_index = src_ring->sw_index;
1367	write_index = src_ring->write_index;
1368
1369	if (unlikely(CE_RING_DELTA(nentries_mask,
1370				   write_index, sw_index - 1) < n_items)) {
1371		err = -ENOBUFS;
1372		goto err;
1373	}
1374
1375	for (i = 0; i < n_items - 1; i++) {
1376		ath10k_dbg(ar, ATH10K_DBG_PCI,
1377			   "pci tx item %d paddr %pad len %d n_items %d\n",
1378			   i, &items[i].paddr, items[i].len, n_items);
1379		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1380				items[i].vaddr, items[i].len);
1381
1382		err = ath10k_ce_send_nolock(ce_pipe,
1383					    items[i].transfer_context,
1384					    items[i].paddr,
1385					    items[i].len,
1386					    items[i].transfer_id,
1387					    CE_SEND_FLAG_GATHER);
1388		if (err)
1389			goto err;
1390	}
1391
1392	/* `i` is equal to `n_items -1` after for() */
1393
1394	ath10k_dbg(ar, ATH10K_DBG_PCI,
1395		   "pci tx item %d paddr %pad len %d n_items %d\n",
1396		   i, &items[i].paddr, items[i].len, n_items);
1397	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1398			items[i].vaddr, items[i].len);
1399
1400	err = ath10k_ce_send_nolock(ce_pipe,
1401				    items[i].transfer_context,
1402				    items[i].paddr,
1403				    items[i].len,
1404				    items[i].transfer_id,
1405				    0);
1406	if (err)
1407		goto err;
1408
1409	spin_unlock_bh(&ce->ce_lock);
1410	return 0;
1411
1412err:
1413	for (; i > 0; i--)
1414		__ath10k_ce_send_revert(ce_pipe);
1415
1416	spin_unlock_bh(&ce->ce_lock);
 
 
1417	return err;
1418}
1419
1420int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1421			     size_t buf_len)
1422{
1423	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1424}
1425
1426u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1427{
1428	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1429
1430	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1431
1432	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1433}
1434
1435static void ath10k_pci_dump_registers(struct ath10k *ar,
1436				      struct ath10k_fw_crash_data *crash_data)
1437{
1438	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1439	int i, ret;
1440
1441	lockdep_assert_held(&ar->dump_mutex);
 
1442
1443	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1444				      hi_failure_state,
1445				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
 
 
 
 
 
1446	if (ret) {
1447		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1448		return;
1449	}
1450
1451	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1452
1453	ath10k_err(ar, "firmware register dump:\n");
1454	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1455		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1456			   i,
1457			   __le32_to_cpu(reg_dump_values[i]),
1458			   __le32_to_cpu(reg_dump_values[i + 1]),
1459			   __le32_to_cpu(reg_dump_values[i + 2]),
1460			   __le32_to_cpu(reg_dump_values[i + 3]));
1461
1462	if (!crash_data)
1463		return;
1464
1465	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1466		crash_data->registers[i] = reg_dump_values[i];
1467}
1468
1469static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1470					  const struct ath10k_mem_region *mem_region,
1471					  u8 *buf, size_t buf_len)
1472{
1473	const struct ath10k_mem_section *cur_section, *next_section;
1474	unsigned int count, section_size, skip_size;
1475	int ret, i, j;
1476
1477	if (!mem_region || !buf)
1478		return 0;
1479
1480	cur_section = &mem_region->section_table.sections[0];
1481
1482	if (mem_region->start > cur_section->start) {
1483		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1484			    mem_region->start, cur_section->start);
1485		return 0;
1486	}
1487
1488	skip_size = cur_section->start - mem_region->start;
1489
1490	/* fill the gap between the first register section and register
1491	 * start address
1492	 */
1493	for (i = 0; i < skip_size; i++) {
1494		*buf = ATH10K_MAGIC_NOT_COPIED;
1495		buf++;
1496	}
1497
1498	count = 0;
1499
1500	for (i = 0; cur_section != NULL; i++) {
1501		section_size = cur_section->end - cur_section->start;
1502
1503		if (section_size <= 0) {
1504			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1505				    cur_section->start,
1506				    cur_section->end);
1507			break;
1508		}
1509
1510		if ((i + 1) == mem_region->section_table.size) {
1511			/* last section */
1512			next_section = NULL;
1513			skip_size = 0;
1514		} else {
1515			next_section = cur_section + 1;
1516
1517			if (cur_section->end > next_section->start) {
1518				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1519					    next_section->start,
1520					    cur_section->end);
1521				break;
1522			}
1523
1524			skip_size = next_section->start - cur_section->end;
1525		}
1526
1527		if (buf_len < (skip_size + section_size)) {
1528			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1529			break;
1530		}
1531
1532		buf_len -= skip_size + section_size;
1533
1534		/* read section to dest memory */
1535		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1536					       buf, section_size);
1537		if (ret) {
1538			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1539				    cur_section->start, ret);
1540			break;
1541		}
1542
1543		buf += section_size;
1544		count += section_size;
1545
1546		/* fill in the gap between this section and the next */
1547		for (j = 0; j < skip_size; j++) {
1548			*buf = ATH10K_MAGIC_NOT_COPIED;
1549			buf++;
1550		}
1551
1552		count += skip_size;
1553
1554		if (!next_section)
1555			/* this was the last section */
1556			break;
1557
1558		cur_section = next_section;
1559	}
 
 
 
 
 
 
1560
1561	return count;
1562}
1563
1564static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
 
1565{
1566	u32 val;
1567
1568	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1569			   FW_RAM_CONFIG_ADDRESS, config);
 
 
 
 
 
 
1570
1571	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1572				FW_RAM_CONFIG_ADDRESS);
1573	if (val != config) {
1574		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1575			    val, config);
1576		return -EIO;
1577	}
1578
1579	return 0;
1580}
1581
1582/* Always returns the length */
1583static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1584				       const struct ath10k_mem_region *region,
1585				       u8 *buf)
1586{
1587	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1588	u32 base_addr, i;
1589
1590	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1591	base_addr += region->start;
1592
1593	for (i = 0; i < region->len; i += 4) {
1594		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1595		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1596	}
1597
1598	return region->len;
 
1599}
1600
1601/* if an error happened returns < 0, otherwise the length */
1602static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1603				      const struct ath10k_mem_region *region,
1604				      u8 *buf)
1605{
1606	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1607	u32 i;
1608	int ret;
1609
1610	mutex_lock(&ar->conf_mutex);
1611	if (ar->state != ATH10K_STATE_ON) {
1612		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1613		ret = -EIO;
1614		goto done;
1615	}
1616
1617	for (i = 0; i < region->len; i += 4)
1618		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1619
1620	ret = region->len;
1621done:
1622	mutex_unlock(&ar->conf_mutex);
1623	return ret;
1624}
1625
1626/* if an error happened returns < 0, otherwise the length */
1627static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1628					  const struct ath10k_mem_region *current_region,
1629					  u8 *buf)
1630{
1631	int ret;
1632
1633	if (current_region->section_table.size > 0)
1634		/* Copy each section individually. */
1635		return ath10k_pci_dump_memory_section(ar,
1636						      current_region,
1637						      buf,
1638						      current_region->len);
1639
1640	/* No individual memory sections defined so we can
1641	 * copy the entire memory region.
1642	 */
1643	ret = ath10k_pci_diag_read_mem(ar,
1644				       current_region->start,
1645				       buf,
1646				       current_region->len);
1647	if (ret) {
1648		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1649			    current_region->name, ret);
1650		return ret;
1651	}
1652
1653	return current_region->len;
1654}
1655
1656static void ath10k_pci_dump_memory(struct ath10k *ar,
1657				   struct ath10k_fw_crash_data *crash_data)
1658{
1659	const struct ath10k_hw_mem_layout *mem_layout;
1660	const struct ath10k_mem_region *current_region;
1661	struct ath10k_dump_ram_data_hdr *hdr;
1662	u32 count, shift;
1663	size_t buf_len;
1664	int ret, i;
1665	u8 *buf;
1666
1667	lockdep_assert_held(&ar->dump_mutex);
1668
1669	if (!crash_data)
1670		return;
1671
1672	mem_layout = ath10k_coredump_get_mem_layout(ar);
1673	if (!mem_layout)
1674		return;
1675
1676	current_region = &mem_layout->region_table.regions[0];
1677
1678	buf = crash_data->ramdump_buf;
1679	buf_len = crash_data->ramdump_buf_len;
1680
1681	memset(buf, 0, buf_len);
1682
1683	for (i = 0; i < mem_layout->region_table.size; i++) {
1684		count = 0;
1685
1686		if (current_region->len > buf_len) {
1687			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1688				    current_region->name,
1689				    current_region->len,
1690				    buf_len);
1691			break;
1692		}
1693
1694		/* To get IRAM dump, the host driver needs to switch target
1695		 * ram config from DRAM to IRAM.
1696		 */
1697		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1698		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1699			shift = current_region->start >> 20;
1700
1701			ret = ath10k_pci_set_ram_config(ar, shift);
1702			if (ret) {
1703				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1704					    current_region->name, ret);
1705				break;
1706			}
1707		}
1708
1709		/* Reserve space for the header. */
1710		hdr = (void *)buf;
1711		buf += sizeof(*hdr);
1712		buf_len -= sizeof(*hdr);
1713
1714		switch (current_region->type) {
1715		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1716			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1717			break;
1718		case ATH10K_MEM_REGION_TYPE_IOREG:
1719			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1720			if (ret < 0)
1721				break;
1722
1723			count = ret;
1724			break;
1725		default:
1726			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1727			if (ret < 0)
1728				break;
1729
1730			count = ret;
1731			break;
1732		}
1733
1734		hdr->region_type = cpu_to_le32(current_region->type);
1735		hdr->start = cpu_to_le32(current_region->start);
1736		hdr->length = cpu_to_le32(count);
1737
1738		if (count == 0)
1739			/* Note: the header remains, just with zero length. */
1740			break;
1741
1742		buf += count;
1743		buf_len -= count;
 
1744
1745		current_region++;
1746	}
1747}
1748
1749static void ath10k_pci_fw_dump_work(struct work_struct *work)
 
 
 
 
1750{
1751	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1752						 dump_work);
1753	struct ath10k_fw_crash_data *crash_data;
1754	struct ath10k *ar = ar_pci->ar;
1755	char guid[UUID_STRING_LEN + 1];
1756
1757	mutex_lock(&ar->dump_mutex);
 
1758
1759	spin_lock_bh(&ar->data_lock);
1760	ar->stats.fw_crash_counter++;
1761	spin_unlock_bh(&ar->data_lock);
 
 
 
 
 
 
 
 
 
 
1762
1763	crash_data = ath10k_coredump_new(ar);
 
 
 
 
 
 
 
 
 
 
 
1764
1765	if (crash_data)
1766		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1767	else
1768		scnprintf(guid, sizeof(guid), "n/a");
 
 
 
 
 
1769
1770	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1771	ath10k_print_driver_info(ar);
1772	ath10k_pci_dump_registers(ar, crash_data);
1773	ath10k_ce_dump_registers(ar, crash_data);
1774	ath10k_pci_dump_memory(ar, crash_data);
1775
1776	mutex_unlock(&ar->dump_mutex);
 
 
 
 
 
1777
1778	ath10k_core_start_recovery(ar);
1779}
1780
1781static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
 
1782{
1783	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1784
1785	queue_work(ar->workqueue, &ar_pci->dump_work);
 
 
 
 
 
1786}
1787
1788void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1789					int force)
1790{
 
1791	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 
 
 
1792
1793	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1794
1795	if (!force) {
1796		int resources;
1797		/*
1798		 * Decide whether to actually poll for completions, or just
1799		 * wait for a later chance.
1800		 * If there seem to be plenty of resources left, then just wait
1801		 * since checking involves reading a CE register, which is a
1802		 * relatively expensive operation.
1803		 */
1804		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1805
1806		/*
1807		 * If at least 50% of the total resources are still available,
1808		 * don't bother checking again yet.
1809		 */
1810		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1811			return;
1812	}
1813	ath10k_ce_per_engine_service(ar, pipe);
1814}
1815
1816static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1817{
1818	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 
 
 
 
1819
1820	del_timer_sync(&ar_pci->rx_post_retry);
1821}
1822
1823int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1824				       u8 *ul_pipe, u8 *dl_pipe)
1825{
1826	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1827	const struct ce_service_to_pipe *entry;
1828	bool ul_set = false, dl_set = false;
1829	int i;
1830
1831	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
 
 
 
 
 
1832
1833	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1834		entry = &ar_pci->serv_to_pipe[i];
1835
1836		if (__le32_to_cpu(entry->service_id) != service_id)
1837			continue;
 
1838
1839		switch (__le32_to_cpu(entry->pipedir)) {
1840		case PIPEDIR_NONE:
1841			break;
1842		case PIPEDIR_IN:
1843			WARN_ON(dl_set);
1844			*dl_pipe = __le32_to_cpu(entry->pipenum);
1845			dl_set = true;
1846			break;
1847		case PIPEDIR_OUT:
1848			WARN_ON(ul_set);
1849			*ul_pipe = __le32_to_cpu(entry->pipenum);
1850			ul_set = true;
1851			break;
1852		case PIPEDIR_INOUT:
1853			WARN_ON(dl_set);
1854			WARN_ON(ul_set);
1855			*dl_pipe = __le32_to_cpu(entry->pipenum);
1856			*ul_pipe = __le32_to_cpu(entry->pipenum);
1857			dl_set = true;
1858			ul_set = true;
1859			break;
1860		}
1861	}
1862
1863	if (!ul_set || !dl_set)
1864		return -ENOENT;
1865
1866	return 0;
 
 
1867}
1868
1869void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1870				     u8 *ul_pipe, u8 *dl_pipe)
1871{
1872	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1873
1874	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1875						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1876						 ul_pipe, dl_pipe);
1877}
1878
1879void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1880{
1881	u32 val;
1882
1883	switch (ar->hw_rev) {
1884	case ATH10K_HW_QCA988X:
1885	case ATH10K_HW_QCA9887:
1886	case ATH10K_HW_QCA6174:
1887	case ATH10K_HW_QCA9377:
1888		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1889					CORE_CTRL_ADDRESS);
1890		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1891		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1892				   CORE_CTRL_ADDRESS, val);
1893		break;
1894	case ATH10K_HW_QCA99X0:
1895	case ATH10K_HW_QCA9984:
1896	case ATH10K_HW_QCA9888:
1897	case ATH10K_HW_QCA4019:
1898		/* TODO: Find appropriate register configuration for QCA99X0
1899		 *  to mask irq/MSI.
1900		 */
1901		break;
1902	case ATH10K_HW_WCN3990:
1903		break;
1904	}
1905}
1906
1907static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1908{
1909	u32 val;
 
 
1910
1911	switch (ar->hw_rev) {
1912	case ATH10K_HW_QCA988X:
1913	case ATH10K_HW_QCA9887:
1914	case ATH10K_HW_QCA6174:
1915	case ATH10K_HW_QCA9377:
1916		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1917					CORE_CTRL_ADDRESS);
1918		val |= CORE_CTRL_PCIE_REG_31_MASK;
1919		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1920				   CORE_CTRL_ADDRESS, val);
1921		break;
1922	case ATH10K_HW_QCA99X0:
1923	case ATH10K_HW_QCA9984:
1924	case ATH10K_HW_QCA9888:
1925	case ATH10K_HW_QCA4019:
1926		/* TODO: Find appropriate register configuration for QCA99X0
1927		 *  to unmask irq/MSI.
1928		 */
1929		break;
1930	case ATH10K_HW_WCN3990:
1931		break;
1932	}
1933}
1934
1935static void ath10k_pci_irq_disable(struct ath10k *ar)
1936{
1937	ath10k_ce_disable_interrupts(ar);
1938	ath10k_pci_disable_and_clear_intx_irq(ar);
1939	ath10k_pci_irq_msi_fw_mask(ar);
1940}
1941
1942static void ath10k_pci_irq_sync(struct ath10k *ar)
1943{
1944	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1945
1946	synchronize_irq(ar_pci->pdev->irq);
1947}
1948
1949static void ath10k_pci_irq_enable(struct ath10k *ar)
1950{
1951	ath10k_ce_enable_interrupts(ar);
1952	ath10k_pci_enable_intx_irq(ar);
1953	ath10k_pci_irq_msi_fw_unmask(ar);
1954}
1955
1956static int ath10k_pci_hif_start(struct ath10k *ar)
1957{
1958	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
1959
1960	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
 
1961
1962	ath10k_core_napi_enable(ar);
 
 
 
 
 
1963
1964	ath10k_pci_irq_enable(ar);
1965	ath10k_pci_rx_post(ar);
 
 
 
1966
1967	pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1968					   PCI_EXP_LNKCTL_ASPMC,
1969					   ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
 
 
 
 
1970
 
1971	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972}
1973
1974static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1975{
1976	struct ath10k *ar;
1977	struct ath10k_ce_pipe *ce_pipe;
1978	struct ath10k_ce_ring *ce_ring;
1979	struct sk_buff *skb;
1980	int i;
 
1981
1982	ar = pci_pipe->hif_ce_state;
1983	ce_pipe = pci_pipe->ce_hdl;
1984	ce_ring = ce_pipe->dest_ring;
1985
1986	if (!ce_ring)
 
1987		return;
1988
1989	if (!pci_pipe->buf_sz)
1990		return;
1991
1992	for (i = 0; i < ce_ring->nentries; i++) {
1993		skb = ce_ring->per_transfer_context[i];
1994		if (!skb)
1995			continue;
1996
1997		ce_ring->per_transfer_context[i] = NULL;
1998
1999		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2000				 skb->len + skb_tailroom(skb),
 
 
2001				 DMA_FROM_DEVICE);
2002		dev_kfree_skb_any(skb);
2003	}
2004}
2005
2006static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2007{
2008	struct ath10k *ar;
2009	struct ath10k_ce_pipe *ce_pipe;
2010	struct ath10k_ce_ring *ce_ring;
2011	struct sk_buff *skb;
2012	int i;
 
 
 
2013
2014	ar = pci_pipe->hif_ce_state;
2015	ce_pipe = pci_pipe->ce_hdl;
2016	ce_ring = ce_pipe->src_ring;
2017
2018	if (!ce_ring)
 
2019		return;
2020
2021	if (!pci_pipe->buf_sz)
 
 
 
2022		return;
2023
2024	for (i = 0; i < ce_ring->nentries; i++) {
2025		skb = ce_ring->per_transfer_context[i];
2026		if (!skb)
2027			continue;
2028
2029		ce_ring->per_transfer_context[i] = NULL;
 
 
 
 
2030
2031		ath10k_htc_tx_completion_handler(ar, skb);
 
 
2032	}
2033}
2034
2035/*
2036 * Cleanup residual buffers for device shutdown:
2037 *    buffers that were enqueued for receive
2038 *    buffers that were to be sent
2039 * Note: Buffers that had completed but which were
2040 * not yet processed are on a completion queue. They
2041 * are handled when the completion thread shuts down.
2042 */
2043static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2044{
2045	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2046	int pipe_num;
2047
2048	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2049		struct ath10k_pci_pipe *pipe_info;
2050
2051		pipe_info = &ar_pci->pipe_info[pipe_num];
2052		ath10k_pci_rx_pipe_cleanup(pipe_info);
2053		ath10k_pci_tx_pipe_cleanup(pipe_info);
2054	}
2055}
2056
2057void ath10k_pci_ce_deinit(struct ath10k *ar)
2058{
2059	int i;
2060
2061	for (i = 0; i < CE_COUNT; i++)
2062		ath10k_ce_deinit_pipe(ar, i);
2063}
2064
2065void ath10k_pci_flush(struct ath10k *ar)
2066{
2067	ath10k_pci_rx_retry_sync(ar);
2068	ath10k_pci_buffer_cleanup(ar);
 
 
 
 
2069}
2070
2071static void ath10k_pci_hif_stop(struct ath10k *ar)
2072{
2073	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2074	unsigned long flags;
2075
2076	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2077
2078	ath10k_pci_irq_disable(ar);
2079	ath10k_pci_irq_sync(ar);
 
2080
2081	ath10k_core_napi_sync_disable(ar);
 
2082
2083	cancel_work_sync(&ar_pci->dump_work);
 
 
2084
2085	/* Most likely the device has HTT Rx ring configured. The only way to
2086	 * prevent the device from accessing (and possible corrupting) host
2087	 * memory is to reset the chip now.
2088	 *
2089	 * There's also no known way of masking MSI interrupts on the device.
2090	 * For ranged MSI the CE-related interrupts can be masked. However
2091	 * regardless how many MSI interrupts are assigned the first one
2092	 * is always used for firmware indications (crashes) and cannot be
2093	 * masked. To prevent the device from asserting the interrupt reset it
2094	 * before proceeding with cleanup.
2095	 */
2096	ath10k_pci_safe_chip_reset(ar);
2097
2098	ath10k_pci_flush(ar);
2099
2100	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2101	WARN_ON(ar_pci->ps_wake_refcount > 0);
2102	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 
 
 
 
 
2103}
2104
2105int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2106				    void *req, u32 req_len,
2107				    void *resp, u32 *resp_len)
2108{
2109	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2110	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2111	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2112	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2113	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2114	dma_addr_t req_paddr = 0;
2115	dma_addr_t resp_paddr = 0;
2116	struct bmi_xfer xfer = {};
2117	void *treq, *tresp = NULL;
2118	int ret = 0;
2119
2120	might_sleep();
2121
2122	if (resp && !resp_len)
2123		return -EINVAL;
2124
2125	if (resp && resp_len && *resp_len == 0)
2126		return -EINVAL;
2127
2128	treq = kmemdup(req, req_len, GFP_KERNEL);
2129	if (!treq)
2130		return -ENOMEM;
2131
2132	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2133	ret = dma_mapping_error(ar->dev, req_paddr);
2134	if (ret) {
2135		ret = -EIO;
2136		goto err_dma;
2137	}
2138
2139	if (resp && resp_len) {
2140		tresp = kzalloc(*resp_len, GFP_KERNEL);
2141		if (!tresp) {
2142			ret = -ENOMEM;
2143			goto err_req;
2144		}
2145
2146		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2147					    DMA_FROM_DEVICE);
2148		ret = dma_mapping_error(ar->dev, resp_paddr);
2149		if (ret) {
2150			ret = -EIO;
2151			goto err_req;
2152		}
2153
2154		xfer.wait_for_resp = true;
2155		xfer.resp_len = 0;
2156
2157		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2158	}
2159
 
 
2160	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2161	if (ret)
2162		goto err_resp;
2163
2164	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2165	if (ret) {
2166		dma_addr_t unused_buffer;
2167		unsigned int unused_nbytes;
2168		unsigned int unused_id;
2169
2170		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2171					   &unused_nbytes, &unused_id);
2172	} else {
2173		/* non-zero means we did not time out */
2174		ret = 0;
2175	}
2176
2177err_resp:
2178	if (resp) {
2179		dma_addr_t unused_buffer;
2180
2181		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2182		dma_unmap_single(ar->dev, resp_paddr,
2183				 *resp_len, DMA_FROM_DEVICE);
2184	}
2185err_req:
2186	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2187
2188	if (ret == 0 && resp_len) {
2189		*resp_len = min(*resp_len, xfer.resp_len);
2190		memcpy(resp, tresp, *resp_len);
2191	}
2192err_dma:
2193	kfree(treq);
2194	kfree(tresp);
2195
2196	return ret;
2197}
2198
2199static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2200{
2201	struct bmi_xfer *xfer;
 
 
 
 
 
 
 
2202
2203	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2204		return;
2205
2206	xfer->tx_done = true;
2207}
2208
2209static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2210{
2211	struct ath10k *ar = ce_state->ar;
2212	struct bmi_xfer *xfer;
 
2213	unsigned int nbytes;
 
 
2214
2215	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2216					  &nbytes))
2217		return;
2218
2219	if (WARN_ON_ONCE(!xfer))
2220		return;
2221
2222	if (!xfer->wait_for_resp) {
2223		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2224		return;
2225	}
2226
2227	xfer->resp_len = nbytes;
2228	xfer->rx_done = true;
2229}
2230
2231static int ath10k_pci_bmi_wait(struct ath10k *ar,
2232			       struct ath10k_ce_pipe *tx_pipe,
2233			       struct ath10k_ce_pipe *rx_pipe,
2234			       struct bmi_xfer *xfer)
2235{
2236	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2237	unsigned long started = jiffies;
2238	unsigned long dur;
2239	int ret;
2240
2241	while (time_before_eq(jiffies, timeout)) {
2242		ath10k_pci_bmi_send_done(tx_pipe);
2243		ath10k_pci_bmi_recv_data(rx_pipe);
2244
2245		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2246			ret = 0;
2247			goto out;
2248		}
2249
2250		schedule();
2251	}
2252
2253	ret = -ETIMEDOUT;
2254
2255out:
2256	dur = jiffies - started;
2257	if (dur > HZ)
2258		ath10k_dbg(ar, ATH10K_DBG_BMI,
2259			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2260			   dur, HZ, ret);
2261	return ret;
2262}
2263
2264/*
2265 * Send an interrupt to the device to wake up the Target CPU
2266 * so it has an opportunity to notice any changed state.
 
2267 */
2268static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2269{
2270	u32 addr, val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271
2272	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2273	val = ath10k_pci_read32(ar, addr);
2274	val |= CORE_CTRL_CPU_INTR_MASK;
2275	ath10k_pci_write32(ar, addr, val);
2276
2277	return 0;
2278}
 
 
 
 
2279
2280static int ath10k_pci_get_num_banks(struct ath10k *ar)
 
 
 
 
2281{
2282	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
2283
2284	switch (ar_pci->pdev->device) {
2285	case QCA988X_2_0_DEVICE_ID_UBNT:
2286	case QCA988X_2_0_DEVICE_ID:
2287	case QCA99X0_2_0_DEVICE_ID:
2288	case QCA9888_2_0_DEVICE_ID:
2289	case QCA9984_1_0_DEVICE_ID:
2290	case QCA9887_1_0_DEVICE_ID:
2291		return 1;
2292	case QCA6164_2_1_DEVICE_ID:
2293	case QCA6174_2_1_DEVICE_ID:
2294		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2295		case QCA6174_HW_1_0_CHIP_ID_REV:
2296		case QCA6174_HW_1_1_CHIP_ID_REV:
2297		case QCA6174_HW_2_1_CHIP_ID_REV:
2298		case QCA6174_HW_2_2_CHIP_ID_REV:
2299			return 3;
2300		case QCA6174_HW_1_3_CHIP_ID_REV:
2301			return 2;
2302		case QCA6174_HW_3_0_CHIP_ID_REV:
2303		case QCA6174_HW_3_1_CHIP_ID_REV:
2304		case QCA6174_HW_3_2_CHIP_ID_REV:
2305			return 9;
2306		}
2307		break;
2308	case QCA9377_1_0_DEVICE_ID:
2309		return 9;
2310	}
2311
2312	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2313	return 1;
2314}
2315
2316static int ath10k_bus_get_num_banks(struct ath10k *ar)
2317{
2318	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 
 
 
 
 
2319
2320	return ce->bus_ops->get_num_banks(ar);
2321}
2322
2323int ath10k_pci_init_config(struct ath10k *ar)
2324{
2325	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2326	u32 interconnect_targ_addr;
2327	u32 pcie_state_targ_addr = 0;
2328	u32 pipe_cfg_targ_addr = 0;
2329	u32 svc_to_pipe_map = 0;
2330	u32 pcie_config_flags = 0;
2331	u32 ealloc_value;
2332	u32 ealloc_targ_addr;
2333	u32 flag2_value;
2334	u32 flag2_targ_addr;
2335	int ret = 0;
2336
2337	/* Download to Target the CE Config and the service-to-CE map */
2338	interconnect_targ_addr =
2339		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2340
2341	/* Supply Target-side CE configuration */
2342	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2343				     &pcie_state_targ_addr);
2344	if (ret != 0) {
2345		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2346		return ret;
2347	}
2348
2349	if (pcie_state_targ_addr == 0) {
2350		ret = -EIO;
2351		ath10k_err(ar, "Invalid pcie state addr\n");
2352		return ret;
2353	}
2354
2355	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2356					  offsetof(struct pcie_state,
2357						   pipe_cfg_addr)),
2358				     &pipe_cfg_targ_addr);
2359	if (ret != 0) {
2360		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2361		return ret;
2362	}
2363
2364	if (pipe_cfg_targ_addr == 0) {
2365		ret = -EIO;
2366		ath10k_err(ar, "Invalid pipe cfg addr\n");
2367		return ret;
2368	}
2369
2370	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2371					ar_pci->pipe_config,
2372					sizeof(struct ce_pipe_config) *
2373					NUM_TARGET_CE_CONFIG_WLAN);
2374
2375	if (ret != 0) {
2376		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2377		return ret;
2378	}
2379
2380	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2381					  offsetof(struct pcie_state,
2382						   svc_to_pipe_map)),
2383				     &svc_to_pipe_map);
2384	if (ret != 0) {
2385		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2386		return ret;
2387	}
2388
2389	if (svc_to_pipe_map == 0) {
2390		ret = -EIO;
2391		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2392		return ret;
2393	}
2394
2395	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2396					ar_pci->serv_to_pipe,
2397					sizeof(pci_target_service_to_ce_map_wlan));
2398	if (ret != 0) {
2399		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2400		return ret;
2401	}
2402
2403	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2404					  offsetof(struct pcie_state,
2405						   config_flags)),
2406				     &pcie_config_flags);
2407	if (ret != 0) {
2408		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2409		return ret;
2410	}
2411
2412	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2413
2414	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2415					   offsetof(struct pcie_state,
2416						    config_flags)),
2417				      pcie_config_flags);
2418	if (ret != 0) {
2419		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2420		return ret;
2421	}
2422
2423	/* configure early allocation */
2424	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2425
2426	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2427	if (ret != 0) {
2428		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2429		return ret;
2430	}
2431
2432	/* first bank is switched to IRAM */
2433	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2434			 HI_EARLY_ALLOC_MAGIC_MASK);
2435	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2436			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2437			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2438
2439	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2440	if (ret != 0) {
2441		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2442		return ret;
2443	}
2444
2445	/* Tell Target to proceed with initialization */
2446	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2447
2448	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2449	if (ret != 0) {
2450		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2451		return ret;
2452	}
2453
2454	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2455
2456	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2457	if (ret != 0) {
2458		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2459		return ret;
2460	}
2461
2462	return 0;
2463}
2464
2465static void ath10k_pci_override_ce_config(struct ath10k *ar)
2466{
2467	struct ce_attr *attr;
2468	struct ce_pipe_config *config;
2469	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2470
2471	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2472	 * since it is currently used for other feature.
2473	 */
2474
2475	/* Override Host's Copy Engine 5 configuration */
2476	attr = &ar_pci->attr[5];
2477	attr->src_sz_max = 0;
2478	attr->dest_nentries = 0;
2479
2480	/* Override Target firmware's Copy Engine configuration */
2481	config = &ar_pci->pipe_config[5];
2482	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2483	config->nbytes_max = __cpu_to_le32(2048);
2484
2485	/* Map from service/endpoint to Copy Engine */
2486	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2487}
2488
2489int ath10k_pci_alloc_pipes(struct ath10k *ar)
2490{
2491	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2492	struct ath10k_pci_pipe *pipe;
2493	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2494	int i, ret;
2495
2496	for (i = 0; i < CE_COUNT; i++) {
2497		pipe = &ar_pci->pipe_info[i];
2498		pipe->ce_hdl = &ce->ce_states[i];
2499		pipe->pipe_num = i;
2500		pipe->hif_ce_state = ar;
2501
2502		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2503		if (ret) {
2504			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2505				   i, ret);
2506			return ret;
2507		}
2508
2509		/* Last CE is Diagnostic Window */
2510		if (i == CE_DIAG_PIPE) {
2511			ar_pci->ce_diag = pipe->ce_hdl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2512			continue;
2513		}
2514
2515		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2516	}
2517
2518	return 0;
2519}
2520
2521void ath10k_pci_free_pipes(struct ath10k *ar)
2522{
2523	int i;
2524
2525	for (i = 0; i < CE_COUNT; i++)
2526		ath10k_ce_free_pipe(ar, i);
2527}
2528
2529int ath10k_pci_init_pipes(struct ath10k *ar)
2530{
2531	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2532	int i, ret;
2533
2534	for (i = 0; i < CE_COUNT; i++) {
2535		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2536		if (ret) {
2537			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2538				   i, ret);
2539			return ret;
2540		}
2541	}
2542
2543	return 0;
2544}
2545
2546static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2547{
2548	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2549	       FW_IND_EVENT_PENDING;
2550}
2551
2552static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2553{
2554	u32 val;
2555
2556	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2557	val &= ~FW_IND_EVENT_PENDING;
2558	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2559}
2560
2561static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2562{
2563	u32 val;
 
 
 
 
 
 
 
2564
2565	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2566	return (val == 0xffffffff);
2567}
2568
2569/* this function effectively clears target memory controller assert line */
2570static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2571{
 
 
2572	u32 val;
2573
2574	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2575	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2576			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2577	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2578
2579	msleep(10);
2580
2581	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2582	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2583			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2584	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
 
2585
2586	msleep(10);
2587}
 
 
2588
2589static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2590{
2591	u32 val;
 
2592
2593	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
 
 
2594
2595	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2596	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2597			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2598}
2599
2600static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2601{
2602	u32 val;
2603
2604	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
 
2605
2606	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2607			       val | SOC_RESET_CONTROL_CE_RST_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
2608	msleep(10);
2609	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2610			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2611}
2612
2613static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2614{
2615	u32 val;
2616
2617	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2618	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2619			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2620}
2621
2622static int ath10k_pci_warm_reset(struct ath10k *ar)
2623{
2624	int ret;
 
2625
2626	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
 
 
 
2627
2628	spin_lock_bh(&ar->data_lock);
2629	ar->stats.fw_warm_reset_counter++;
2630	spin_unlock_bh(&ar->data_lock);
2631
2632	ath10k_pci_irq_disable(ar);
2633
2634	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2635	 * were to access copy engine while host performs copy engine reset
2636	 * then it is possible for the device to confuse pci-e controller to
2637	 * the point of bringing host system to a complete stop (i.e. hang).
2638	 */
2639	ath10k_pci_warm_reset_si0(ar);
2640	ath10k_pci_warm_reset_cpu(ar);
2641	ath10k_pci_init_pipes(ar);
2642	ath10k_pci_wait_for_target_init(ar);
2643
2644	ath10k_pci_warm_reset_clear_lf(ar);
2645	ath10k_pci_warm_reset_ce(ar);
2646	ath10k_pci_warm_reset_cpu(ar);
2647	ath10k_pci_init_pipes(ar);
2648
2649	ret = ath10k_pci_wait_for_target_init(ar);
2650	if (ret) {
2651		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2652		return ret;
2653	}
2654
2655	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2656
2657	return 0;
2658}
2659
2660static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2661{
2662	ath10k_pci_irq_disable(ar);
2663	return ath10k_pci_qca99x0_chip_reset(ar);
2664}
2665
2666static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2667{
2668	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 
2669
2670	if (!ar_pci->pci_soft_reset)
2671		return -EOPNOTSUPP;
2672
2673	return ar_pci->pci_soft_reset(ar);
2674}
2675
2676static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2677{
2678	int i, ret;
2679	u32 val;
2680
2681	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2682
2683	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2684	 * It is thus preferred to use warm reset which is safer but may not be
2685	 * able to recover the device from all possible fail scenarios.
2686	 *
2687	 * Warm reset doesn't always work on first try so attempt it a few
2688	 * times before giving up.
 
 
 
 
2689	 */
2690	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
 
 
2691		ret = ath10k_pci_warm_reset(ar);
2692		if (ret) {
2693			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2694				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2695				    ret);
2696			continue;
2697		}
2698
2699		/* FIXME: Sometimes copy engine doesn't recover after warm
2700		 * reset. In most cases this needs cold reset. In some of these
2701		 * cases the device is in such a state that a cold reset may
2702		 * lock up the host.
2703		 *
2704		 * Reading any host interest register via copy engine is
2705		 * sufficient to verify if device is capable of booting
2706		 * firmware blob.
2707		 */
2708		ret = ath10k_pci_init_pipes(ar);
2709		if (ret) {
2710			ath10k_warn(ar, "failed to init copy engine: %d\n",
2711				    ret);
2712			continue;
2713		}
2714
2715		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2716					     &val);
2717		if (ret) {
2718			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2719				    ret);
2720			continue;
2721		}
2722
2723		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2724		return 0;
 
2725	}
2726
2727	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2728		ath10k_warn(ar, "refusing cold reset as requested\n");
2729		return -EPERM;
2730	}
2731
2732	ret = ath10k_pci_cold_reset(ar);
2733	if (ret) {
2734		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2735		return ret;
2736	}
2737
2738	ret = ath10k_pci_wait_for_target_init(ar);
2739	if (ret) {
2740		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2741			    ret);
2742		return ret;
2743	}
2744
2745	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2746
2747	return 0;
2748}
2749
2750static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2751{
2752	int ret;
2753
2754	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2755
2756	/* FIXME: QCA6174 requires cold + warm reset to work. */
2757
2758	ret = ath10k_pci_cold_reset(ar);
2759	if (ret) {
2760		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2761		return ret;
2762	}
2763
2764	ret = ath10k_pci_wait_for_target_init(ar);
2765	if (ret) {
2766		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2767			    ret);
2768		return ret;
2769	}
2770
2771	ret = ath10k_pci_warm_reset(ar);
2772	if (ret) {
2773		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2774		return ret;
2775	}
2776
2777	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2778
2779	return 0;
2780}
2781
2782static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2783{
2784	int ret;
2785
2786	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2787
2788	ret = ath10k_pci_cold_reset(ar);
2789	if (ret) {
2790		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2791		return ret;
2792	}
2793
2794	ret = ath10k_pci_wait_for_target_init(ar);
2795	if (ret) {
2796		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2797			    ret);
2798		return ret;
2799	}
2800
2801	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2802
2803	return 0;
2804}
 
 
2805
2806static int ath10k_pci_chip_reset(struct ath10k *ar)
2807{
2808	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2809
2810	if (WARN_ON(!ar_pci->pci_hard_reset))
2811		return -EOPNOTSUPP;
2812
2813	return ar_pci->pci_hard_reset(ar);
 
 
 
 
 
 
 
 
 
 
 
2814}
2815
2816static int ath10k_pci_hif_power_up(struct ath10k *ar,
2817				   enum ath10k_firmware_mode fw_mode)
2818{
2819	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2820	int ret;
2821
2822	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2823
2824	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2825				  &ar_pci->link_ctl);
2826	pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2827				   PCI_EXP_LNKCTL_ASPMC);
2828
2829	/*
2830	 * Bring the target up cleanly.
 
 
2831	 *
2832	 * The target may be in an undefined state with an AUX-powered Target
2833	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2834	 * restarted (without unloading the driver) then the Target is left
2835	 * (aux) powered and running. On a subsequent driver load, the Target
2836	 * is in an unexpected state. We try to catch that here in order to
2837	 * reset the Target and retry the probe.
2838	 */
2839	ret = ath10k_pci_chip_reset(ar);
2840	if (ret) {
2841		if (ath10k_pci_has_fw_crashed(ar)) {
2842			ath10k_warn(ar, "firmware crashed during chip reset\n");
2843			ath10k_pci_fw_crashed_clear(ar);
2844			ath10k_pci_fw_crashed_dump(ar);
2845		}
2846
2847		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2848		goto err_sleep;
2849	}
2850
2851	ret = ath10k_pci_init_pipes(ar);
2852	if (ret) {
2853		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2854		goto err_sleep;
2855	}
2856
2857	ret = ath10k_pci_init_config(ar);
2858	if (ret) {
2859		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2860		goto err_ce;
2861	}
2862
2863	ret = ath10k_pci_wake_target_cpu(ar);
2864	if (ret) {
2865		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2866		goto err_ce;
 
 
2867	}
2868
2869	return 0;
2870
2871err_ce:
2872	ath10k_pci_ce_deinit(ar);
2873
2874err_sleep:
2875	return ret;
2876}
2877
2878void ath10k_pci_hif_power_down(struct ath10k *ar)
2879{
2880	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2881
2882	/* Currently hif_power_up performs effectively a reset and hif_stop
2883	 * resets the chip as well so there's no point in resetting here.
2884	 */
2885}
2886
2887static int ath10k_pci_hif_suspend(struct ath10k *ar)
2888{
2889	/* Nothing to do; the important stuff is in the driver suspend. */
2890	return 0;
2891}
2892
2893static int ath10k_pci_suspend(struct ath10k *ar)
2894{
2895	/* The grace timer can still be counting down and ar->ps_awake be true.
2896	 * It is known that the device may be asleep after resuming regardless
2897	 * of the SoC powersave state before suspending. Hence make sure the
2898	 * device is asleep before proceeding.
2899	 */
2900	ath10k_pci_sleep_sync(ar);
2901
2902	return 0;
2903}
2904
2905static int ath10k_pci_hif_resume(struct ath10k *ar)
2906{
2907	/* Nothing to do; the important stuff is in the driver resume. */
2908	return 0;
2909}
2910
2911static int ath10k_pci_resume(struct ath10k *ar)
2912{
2913	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2914	struct pci_dev *pdev = ar_pci->pdev;
2915	u32 val;
2916	int ret = 0;
2917
2918	ret = ath10k_pci_force_wake(ar);
2919	if (ret) {
2920		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2921		return ret;
2922	}
2923
2924	/* Suspend/Resume resets the PCI configuration space, so we have to
2925	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2926	 * from interfering with C3 CPU state. pci_restore_state won't help
2927	 * here since it only restores the first 64 bytes pci config header.
2928	 */
2929	pci_read_config_dword(pdev, 0x40, &val);
2930	if ((val & 0x0000ff00) != 0)
2931		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2932
2933	return ret;
2934}
2935
2936static bool ath10k_pci_validate_cal(void *data, size_t size)
2937{
2938	__le16 *cal_words = data;
2939	u16 checksum = 0;
2940	size_t i;
2941
2942	if (size % 2 != 0)
2943		return false;
2944
2945	for (i = 0; i < size / 2; i++)
2946		checksum ^= le16_to_cpu(cal_words[i]);
2947
2948	return checksum == 0xffff;
2949}
2950
2951static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2952{
2953	/* Enable SI clock */
2954	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2955
2956	/* Configure GPIOs for I2C operation */
2957	ath10k_pci_write32(ar,
2958			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2959			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2960			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2961			      GPIO_PIN0_CONFIG) |
2962			   SM(1, GPIO_PIN0_PAD_PULL));
2963
2964	ath10k_pci_write32(ar,
2965			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2966			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2967			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2968			   SM(1, GPIO_PIN0_PAD_PULL));
2969
2970	ath10k_pci_write32(ar,
2971			   GPIO_BASE_ADDRESS +
2972			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2973			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2974
2975	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2976	ath10k_pci_write32(ar,
2977			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2978			   SM(1, SI_CONFIG_ERR_INT) |
2979			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2980			   SM(1, SI_CONFIG_I2C) |
2981			   SM(1, SI_CONFIG_POS_SAMPLE) |
2982			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2983			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2984			   SM(8, SI_CONFIG_DIVIDER));
2985}
2986
2987static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2988{
2989	u32 reg;
2990	int wait_limit;
2991
2992	/* set device select byte and for the read operation */
2993	reg = QCA9887_EEPROM_SELECT_READ |
2994	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2995	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2996	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2997
2998	/* write transmit data, transfer length, and START bit */
2999	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3000			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3001			   SM(4, SI_CS_TX_CNT));
3002
3003	/* wait max 1 sec */
3004	wait_limit = 100000;
3005
3006	/* wait for SI_CS_DONE_INT */
3007	do {
3008		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3009		if (MS(reg, SI_CS_DONE_INT))
3010			break;
3011
3012		wait_limit--;
3013		udelay(10);
3014	} while (wait_limit > 0);
3015
3016	if (!MS(reg, SI_CS_DONE_INT)) {
3017		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3018			   addr);
3019		return -ETIMEDOUT;
3020	}
3021
3022	/* clear SI_CS_DONE_INT */
3023	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3024
3025	if (MS(reg, SI_CS_DONE_ERR)) {
3026		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3027		return -EIO;
3028	}
3029
3030	/* extract receive data */
3031	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3032	*out = reg;
3033
3034	return 0;
3035}
3036
3037static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3038					   size_t *data_len)
3039{
3040	u8 *caldata = NULL;
3041	size_t calsize, i;
3042	int ret;
3043
3044	if (!QCA_REV_9887(ar))
3045		return -EOPNOTSUPP;
3046
3047	calsize = ar->hw_params.cal_data_len;
3048	caldata = kmalloc(calsize, GFP_KERNEL);
3049	if (!caldata)
3050		return -ENOMEM;
3051
3052	ath10k_pci_enable_eeprom(ar);
 
 
 
 
3053
3054	for (i = 0; i < calsize; i++) {
3055		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3056		if (ret)
3057			goto err_free;
3058	}
3059
3060	if (!ath10k_pci_validate_cal(caldata, calsize))
3061		goto err_free;
3062
3063	*data = caldata;
3064	*data_len = calsize;
3065
3066	return 0;
3067
3068err_free:
3069	kfree(caldata);
3070
3071	return -EINVAL;
3072}
 
3073
3074static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3075	.tx_sg			= ath10k_pci_hif_tx_sg,
3076	.diag_read		= ath10k_pci_hif_diag_read,
3077	.diag_write		= ath10k_pci_diag_write_mem,
3078	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3079	.start			= ath10k_pci_hif_start,
3080	.stop			= ath10k_pci_hif_stop,
3081	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3082	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3083	.send_complete_check	= ath10k_pci_hif_send_complete_check,
 
3084	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3085	.power_up		= ath10k_pci_hif_power_up,
3086	.power_down		= ath10k_pci_hif_power_down,
3087	.read32			= ath10k_pci_read32,
3088	.write32		= ath10k_pci_write32,
3089	.suspend		= ath10k_pci_hif_suspend,
3090	.resume			= ath10k_pci_hif_resume,
3091	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3092};
3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094/*
3095 * Top-level interrupt handler for all PCI interrupts from a Target.
3096 * When a block of MSI interrupts is allocated, this top-level handler
3097 * is not used; instead, we directly call the correct sub-handler.
3098 */
3099static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3100{
3101	struct ath10k *ar = arg;
3102	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3103	int ret;
3104
3105	if (ath10k_pci_has_device_gone(ar))
3106		return IRQ_NONE;
 
3107
3108	ret = ath10k_pci_force_wake(ar);
3109	if (ret) {
3110		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3111		return IRQ_NONE;
3112	}
3113
3114	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_INTX) &&
3115	    !ath10k_pci_irq_pending(ar))
3116		return IRQ_NONE;
3117
3118	ath10k_pci_disable_and_clear_intx_irq(ar);
3119	ath10k_pci_irq_msi_fw_mask(ar);
3120	napi_schedule(&ar->napi);
3121
3122	return IRQ_HANDLED;
3123}
3124
3125static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3126{
3127	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3128	int done = 0;
 
 
 
 
 
 
 
 
 
3129
3130	if (ath10k_pci_has_fw_crashed(ar)) {
3131		ath10k_pci_fw_crashed_clear(ar);
3132		ath10k_pci_fw_crashed_dump(ar);
3133		napi_complete(ctx);
3134		return done;
 
 
 
3135	}
3136
 
 
 
 
 
 
 
 
 
 
3137	ath10k_ce_per_engine_service_any(ar);
3138
3139	done = ath10k_htt_txrx_compl_task(ar, budget);
 
 
 
3140
3141	if (done < budget) {
3142		napi_complete_done(ctx, done);
3143		/* In case of MSI, it is possible that interrupts are received
3144		 * while NAPI poll is inprogress. So pending interrupts that are
3145		 * received after processing all copy engine pipes by NAPI poll
3146		 * will not be handled again. This is causing failure to
3147		 * complete boot sequence in x86 platform. So before enabling
3148		 * interrupts safer to check for pending interrupts for
3149		 * immediate servicing.
3150		 */
3151		if (ath10k_ce_interrupt_summary(ar)) {
3152			napi_schedule(ctx);
3153			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154		}
3155		ath10k_pci_enable_intx_irq(ar);
3156		ath10k_pci_irq_msi_fw_unmask(ar);
3157	}
3158
3159out:
3160	return done;
3161}
3162
3163static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3164{
3165	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3166	int ret;
3167
3168	ret = request_irq(ar_pci->pdev->irq,
3169			  ath10k_pci_interrupt_handler,
3170			  IRQF_SHARED, "ath10k_pci", ar);
3171	if (ret) {
3172		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3173			    ar_pci->pdev->irq, ret);
3174		return ret;
3175	}
3176
3177	return 0;
3178}
3179
3180static int ath10k_pci_request_irq_intx(struct ath10k *ar)
3181{
3182	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3183	int ret;
3184
3185	ret = request_irq(ar_pci->pdev->irq,
3186			  ath10k_pci_interrupt_handler,
3187			  IRQF_SHARED, "ath10k_pci", ar);
3188	if (ret) {
3189		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3190			    ar_pci->pdev->irq, ret);
3191		return ret;
3192	}
3193
3194	return 0;
3195}
3196
3197static int ath10k_pci_request_irq(struct ath10k *ar)
3198{
3199	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3200
3201	switch (ar_pci->oper_irq_mode) {
3202	case ATH10K_PCI_IRQ_INTX:
3203		return ath10k_pci_request_irq_intx(ar);
3204	case ATH10K_PCI_IRQ_MSI:
3205		return ath10k_pci_request_irq_msi(ar);
3206	default:
3207		return -EINVAL;
3208	}
 
 
 
3209}
3210
3211static void ath10k_pci_free_irq(struct ath10k *ar)
3212{
3213	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
3214
3215	free_irq(ar_pci->pdev->irq, ar);
 
 
 
3216}
3217
3218void ath10k_pci_init_napi(struct ath10k *ar)
3219{
3220	netif_napi_add(ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
 
 
 
 
 
 
 
 
 
 
 
 
 
3221}
3222
3223static int ath10k_pci_init_irq(struct ath10k *ar)
3224{
3225	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 
3226	int ret;
3227
3228	ath10k_pci_init_napi(ar);
 
 
 
 
 
 
 
 
 
 
 
 
3229
3230	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3231		ath10k_info(ar, "limiting irq mode to: %d\n",
3232			    ath10k_pci_irq_mode);
3233
3234	/* Try MSI */
3235	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_INTX) {
3236		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3237		ret = pci_enable_msi(ar_pci->pdev);
3238		if (ret == 0)
3239			return 0;
3240
3241		/* MHI failed, try legacy irq next */
3242	}
3243
3244	/* Try legacy irq
3245	 *
3246	 * A potential race occurs here: The CORE_BASE write
3247	 * depends on target correctly decoding AXI address but
3248	 * host won't know when target writes BAR to CORE_CTRL.
3249	 * This write might get lost if target has NOT written BAR.
3250	 * For now, fix the race by repeating the write in below
3251	 * synchronization checking.
3252	 */
3253	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_INTX;
 
 
 
 
 
3254
3255	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3256			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 
3257
3258	return 0;
3259}
3260
3261static void ath10k_pci_deinit_irq_intx(struct ath10k *ar)
3262{
 
 
 
 
 
 
 
 
3263	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3264			   0);
 
 
 
3265}
3266
3267static int ath10k_pci_deinit_irq(struct ath10k *ar)
3268{
3269	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3270
3271	switch (ar_pci->oper_irq_mode) {
3272	case ATH10K_PCI_IRQ_INTX:
3273		ath10k_pci_deinit_irq_intx(ar);
3274		break;
 
 
 
 
3275	default:
3276		pci_disable_msi(ar_pci->pdev);
3277		break;
3278	}
3279
3280	return 0;
 
3281}
3282
3283int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3284{
3285	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3286	unsigned long timeout;
3287	u32 val;
3288
3289	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3290
3291	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3292
3293	do {
3294		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3295
3296		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3297			   val);
3298
3299		/* target should never return this */
3300		if (val == 0xffffffff)
3301			continue;
3302
3303		/* the device has crashed so don't bother trying anymore */
3304		if (val & FW_IND_EVENT_PENDING)
3305			break;
3306
3307		if (val & FW_IND_INITIALIZED)
3308			break;
 
 
 
3309
3310		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_INTX)
 
 
 
3311			/* Fix potential race by repeating CORE_BASE writes */
3312			ath10k_pci_enable_intx_irq(ar);
3313
 
 
3314		mdelay(10);
3315	} while (time_before(jiffies, timeout));
3316
3317	ath10k_pci_disable_and_clear_intx_irq(ar);
3318	ath10k_pci_irq_msi_fw_mask(ar);
3319
3320	if (val == 0xffffffff) {
3321		ath10k_err(ar, "failed to read device register, device is gone\n");
3322		return -EIO;
3323	}
3324
3325	if (val & FW_IND_EVENT_PENDING) {
3326		ath10k_warn(ar, "device has crashed during init\n");
3327		return -ECOMM;
3328	}
3329
3330	if (!(val & FW_IND_INITIALIZED)) {
3331		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3332			   val);
3333		return -ETIMEDOUT;
3334	}
3335
3336	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3337	return 0;
 
3338}
3339
3340static int ath10k_pci_cold_reset(struct ath10k *ar)
3341{
 
3342	u32 val;
3343
3344	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3345
3346	spin_lock_bh(&ar->data_lock);
3347
3348	ar->stats.fw_cold_reset_counter++;
3349
3350	spin_unlock_bh(&ar->data_lock);
3351
3352	/* Put Target, including PCIe, into RESET. */
3353	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3354	val |= 1;
3355	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3356
3357	/* After writing into SOC_GLOBAL_RESET to put device into
3358	 * reset and pulling out of reset pcie may not be stable
3359	 * for any immediate pcie register access and cause bus error,
3360	 * add delay before any pcie access request to fix this issue.
3361	 */
3362	msleep(20);
3363
3364	/* Pull Target, including PCIe, out of RESET. */
3365	val &= ~1;
3366	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3367
3368	msleep(20);
3369
3370	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3371
3372	return 0;
3373}
3374
3375static int ath10k_pci_claim(struct ath10k *ar)
3376{
3377	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3378	struct pci_dev *pdev = ar_pci->pdev;
3379	int ret;
3380
3381	pci_set_drvdata(pdev, ar);
3382
3383	ret = pci_enable_device(pdev);
3384	if (ret) {
3385		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3386		return ret;
3387	}
3388
3389	ret = pci_request_region(pdev, BAR_NUM, "ath");
3390	if (ret) {
3391		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3392			   ret);
3393		goto err_device;
3394	}
3395
3396	/* Target expects 32 bit DMA. Enforce it. */
3397	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3398	if (ret) {
3399		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3400		goto err_region;
3401	}
3402
3403	pci_set_master(pdev);
3404
3405	/* Arrange for access to Target SoC registers. */
3406	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3407	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3408	if (!ar_pci->mem) {
3409		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3410		ret = -EIO;
3411		goto err_region;
3412	}
3413
3414	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3415	return 0;
3416
3417err_region:
3418	pci_release_region(pdev, BAR_NUM);
3419
3420err_device:
3421	pci_disable_device(pdev);
3422
3423	return ret;
3424}
3425
3426static void ath10k_pci_release(struct ath10k *ar)
3427{
3428	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3429	struct pci_dev *pdev = ar_pci->pdev;
3430
3431	pci_iounmap(pdev, ar_pci->mem);
3432	pci_release_region(pdev, BAR_NUM);
3433	pci_disable_device(pdev);
3434}
3435
3436static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3437{
3438	const struct ath10k_pci_supp_chip *supp_chip;
3439	int i;
3440	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3441
3442	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3443		supp_chip = &ath10k_pci_supp_chips[i];
3444
3445		if (supp_chip->dev_id == dev_id &&
3446		    supp_chip->rev_id == rev_id)
3447			return true;
3448	}
3449
3450	return false;
3451}
3452
3453int ath10k_pci_setup_resource(struct ath10k *ar)
3454{
3455	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3456	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3457	int ret;
3458
3459	spin_lock_init(&ce->ce_lock);
3460	spin_lock_init(&ar_pci->ps_lock);
3461	mutex_init(&ar_pci->ce_diag_mutex);
3462
3463	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3464
3465	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3466
3467	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3468			       sizeof(pci_host_ce_config_wlan),
3469			       GFP_KERNEL);
3470	if (!ar_pci->attr)
3471		return -ENOMEM;
3472
3473	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3474				      sizeof(pci_target_ce_config_wlan),
3475				      GFP_KERNEL);
3476	if (!ar_pci->pipe_config) {
3477		ret = -ENOMEM;
3478		goto err_free_attr;
3479	}
3480
3481	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3482				       sizeof(pci_target_service_to_ce_map_wlan),
3483				       GFP_KERNEL);
3484	if (!ar_pci->serv_to_pipe) {
3485		ret = -ENOMEM;
3486		goto err_free_pipe_config;
3487	}
3488
3489	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3490		ath10k_pci_override_ce_config(ar);
3491
3492	ret = ath10k_pci_alloc_pipes(ar);
3493	if (ret) {
3494		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3495			   ret);
3496		goto err_free_serv_to_pipe;
 
 
 
3497	}
3498
3499	return 0;
3500
3501err_free_serv_to_pipe:
3502	kfree(ar_pci->serv_to_pipe);
3503err_free_pipe_config:
3504	kfree(ar_pci->pipe_config);
3505err_free_attr:
3506	kfree(ar_pci->attr);
3507	return ret;
3508}
3509
3510void ath10k_pci_release_resource(struct ath10k *ar)
3511{
3512	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3513
3514	ath10k_pci_rx_retry_sync(ar);
3515	netif_napi_del(&ar->napi);
3516	ath10k_pci_ce_deinit(ar);
3517	ath10k_pci_free_pipes(ar);
3518	kfree(ar_pci->attr);
3519	kfree(ar_pci->pipe_config);
3520	kfree(ar_pci->serv_to_pipe);
3521}
3522
3523static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3524	.read32		= ath10k_bus_pci_read32,
3525	.write32	= ath10k_bus_pci_write32,
3526	.get_num_banks	= ath10k_pci_get_num_banks,
3527};
3528
3529static int ath10k_pci_probe(struct pci_dev *pdev,
3530			    const struct pci_device_id *pci_dev)
3531{
 
3532	int ret = 0;
3533	struct ath10k *ar;
3534	struct ath10k_pci *ar_pci;
3535	enum ath10k_hw_rev hw_rev;
3536	struct ath10k_bus_params bus_params = {};
3537	bool pci_ps, is_qca988x = false;
3538	int (*pci_soft_reset)(struct ath10k *ar);
3539	int (*pci_hard_reset)(struct ath10k *ar);
3540	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
 
 
 
 
3541
3542	switch (pci_dev->device) {
3543	case QCA988X_2_0_DEVICE_ID_UBNT:
3544	case QCA988X_2_0_DEVICE_ID:
3545		hw_rev = ATH10K_HW_QCA988X;
3546		pci_ps = false;
3547		is_qca988x = true;
3548		pci_soft_reset = ath10k_pci_warm_reset;
3549		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3550		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3551		break;
3552	case QCA9887_1_0_DEVICE_ID:
3553		hw_rev = ATH10K_HW_QCA9887;
3554		pci_ps = false;
3555		pci_soft_reset = ath10k_pci_warm_reset;
3556		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3557		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3558		break;
3559	case QCA6164_2_1_DEVICE_ID:
3560	case QCA6174_2_1_DEVICE_ID:
3561		hw_rev = ATH10K_HW_QCA6174;
3562		pci_ps = true;
3563		pci_soft_reset = ath10k_pci_warm_reset;
3564		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3565		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3566		break;
3567	case QCA99X0_2_0_DEVICE_ID:
3568		hw_rev = ATH10K_HW_QCA99X0;
3569		pci_ps = false;
3570		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3571		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3572		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3573		break;
3574	case QCA9984_1_0_DEVICE_ID:
3575		hw_rev = ATH10K_HW_QCA9984;
3576		pci_ps = false;
3577		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3578		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3579		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3580		break;
3581	case QCA9888_2_0_DEVICE_ID:
3582		hw_rev = ATH10K_HW_QCA9888;
3583		pci_ps = false;
3584		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3585		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3586		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3587		break;
3588	case QCA9377_1_0_DEVICE_ID:
3589		hw_rev = ATH10K_HW_QCA9377;
3590		pci_ps = true;
3591		pci_soft_reset = ath10k_pci_warm_reset;
3592		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3593		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3594		break;
3595	default:
3596		WARN_ON(1);
3597		return -EOPNOTSUPP;
 
3598	}
3599
3600	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3601				hw_rev, &ath10k_pci_hif_ops);
 
 
 
 
3602	if (!ar) {
3603		dev_err(&pdev->dev, "failed to allocate core\n");
3604		return -ENOMEM;
 
3605	}
3606
3607	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3608		   pdev->vendor, pdev->device,
3609		   pdev->subsystem_vendor, pdev->subsystem_device);
3610
3611	ar_pci = ath10k_pci_priv(ar);
3612	ar_pci->pdev = pdev;
3613	ar_pci->dev = &pdev->dev;
3614	ar_pci->ar = ar;
3615	ar->dev_id = pci_dev->device;
3616	ar_pci->pci_ps = pci_ps;
3617	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3618	ar_pci->pci_soft_reset = pci_soft_reset;
3619	ar_pci->pci_hard_reset = pci_hard_reset;
3620	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3621	ar->ce_priv = &ar_pci->ce;
3622
3623	ar->id.vendor = pdev->vendor;
3624	ar->id.device = pdev->device;
3625	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3626	ar->id.subsystem_device = pdev->subsystem_device;
3627
3628	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3629
3630	ret = ath10k_pci_setup_resource(ar);
 
 
 
 
 
 
3631	if (ret) {
3632		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3633		goto err_core_destroy;
3634	}
3635
3636	ret = ath10k_pci_claim(ar);
3637	if (ret) {
3638		ath10k_err(ar, "failed to claim device: %d\n", ret);
3639		goto err_free_pipes;
3640	}
3641
3642	ret = ath10k_pci_force_wake(ar);
 
3643	if (ret) {
3644		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3645		goto err_sleep;
3646	}
3647
3648	ath10k_pci_ce_deinit(ar);
3649	ath10k_pci_irq_disable(ar);
3650
3651	ret = ath10k_pci_init_irq(ar);
 
3652	if (ret) {
3653		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3654		goto err_sleep;
3655	}
3656
3657	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3658		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3659		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3660
3661	ret = ath10k_pci_request_irq(ar);
3662	if (ret) {
3663		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3664		goto err_deinit_irq;
3665	}
3666
3667	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3668	bus_params.link_can_suspend = true;
3669	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3670	 * fall off the bus during chip_reset. These chips have the same pci
3671	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
 
3672	 */
3673	if (is_qca988x) {
3674		bus_params.chip_id =
3675			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3676		if (bus_params.chip_id != 0xffffffff) {
3677			if (!ath10k_pci_chip_is_supported(pdev->device,
3678							  bus_params.chip_id)) {
3679				ret = -ENODEV;
3680				goto err_unsupported;
3681			}
3682		}
3683	}
3684
3685	ret = ath10k_pci_chip_reset(ar);
3686	if (ret) {
3687		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3688		goto err_free_irq;
 
 
3689	}
3690
3691	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3692	if (bus_params.chip_id == 0xffffffff) {
3693		ret = -ENODEV;
3694		goto err_unsupported;
3695	}
3696
3697	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3698		ret = -ENODEV;
3699		goto err_unsupported;
3700	}
3701
3702	ret = ath10k_core_register(ar, &bus_params);
3703	if (ret) {
3704		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3705		goto err_free_irq;
3706	}
3707
3708	return 0;
3709
3710err_unsupported:
3711	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3712		   pdev->device, bus_params.chip_id);
3713
3714err_free_irq:
3715	ath10k_pci_free_irq(ar);
3716
3717err_deinit_irq:
3718	ath10k_pci_release_resource(ar);
3719
3720err_sleep:
3721	ath10k_pci_sleep_sync(ar);
3722	ath10k_pci_release(ar);
3723
3724err_free_pipes:
3725	ath10k_pci_free_pipes(ar);
3726
3727err_core_destroy:
 
 
 
 
 
 
 
 
3728	ath10k_core_destroy(ar);
 
 
 
3729
3730	return ret;
3731}
3732
3733static void ath10k_pci_remove(struct pci_dev *pdev)
3734{
3735	struct ath10k *ar = pci_get_drvdata(pdev);
 
3736
3737	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3738
3739	if (!ar)
3740		return;
3741
3742	ath10k_core_unregister(ar);
3743	ath10k_pci_free_irq(ar);
3744	ath10k_pci_deinit_irq(ar);
3745	ath10k_pci_release_resource(ar);
3746	ath10k_pci_sleep_sync(ar);
3747	ath10k_pci_release(ar);
3748	ath10k_core_destroy(ar);
3749}
3750
3751MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3752
3753static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3754{
3755	struct ath10k *ar = dev_get_drvdata(dev);
3756	int ret;
3757
3758	ret = ath10k_pci_suspend(ar);
3759	if (ret)
3760		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3761
3762	return ret;
3763}
3764
3765static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3766{
3767	struct ath10k *ar = dev_get_drvdata(dev);
3768	int ret;
3769
3770	ret = ath10k_pci_resume(ar);
3771	if (ret)
3772		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
 
3773
3774	return ret;
 
3775}
3776
3777static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3778			 ath10k_pci_pm_suspend,
3779			 ath10k_pci_pm_resume);
3780
3781static struct pci_driver ath10k_pci_driver = {
3782	.name = "ath10k_pci",
3783	.id_table = ath10k_pci_id_table,
3784	.probe = ath10k_pci_probe,
3785	.remove = ath10k_pci_remove,
3786#ifdef CONFIG_PM
3787	.driver.pm = &ath10k_pci_pm_ops,
3788#endif
3789};
3790
3791static int __init ath10k_pci_init(void)
3792{
3793	int ret1, ret2;
3794
3795	ret1 = pci_register_driver(&ath10k_pci_driver);
3796	if (ret1)
3797		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3798		       ret1);
3799
3800	ret2 = ath10k_ahb_init();
3801	if (ret2)
3802		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3803
3804	if (ret1 && ret2)
3805		return ret1;
 
3806
3807	/* registered to at least one bus */
3808	return 0;
3809}
3810module_init(ath10k_pci_init);
3811
3812static void __exit ath10k_pci_exit(void)
3813{
3814	pci_unregister_driver(&ath10k_pci_driver);
3815	ath10k_ahb_exit();
3816}
3817
3818module_exit(ath10k_pci_exit);
3819
3820MODULE_AUTHOR("Qualcomm Atheros");
3821MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3822MODULE_LICENSE("Dual BSD/GPL");
3823
3824/* QCA988x 2.0 firmware files */
3825MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3826MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3827MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3828MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3829MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3830MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3831
3832/* QCA9887 1.0 firmware files */
3833MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3834MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3835MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3836
3837/* QCA6174 2.1 firmware files */
3838MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3839MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3840MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3841MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3842
3843/* QCA6174 3.1 firmware files */
3844MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3845MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3846MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3847MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3848MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3849
3850/* QCA9377 1.0 firmware files */
3851MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3852MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3853MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
v3.15
 
   1/*
   2 * Copyright (c) 2005-2011 Atheros Communications Inc.
   3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include <linux/pci.h>
  19#include <linux/module.h>
  20#include <linux/interrupt.h>
  21#include <linux/spinlock.h>
  22#include <linux/bitops.h>
  23
  24#include "core.h"
  25#include "debug.h"
 
  26
  27#include "targaddrs.h"
  28#include "bmi.h"
  29
  30#include "hif.h"
  31#include "htc.h"
  32
  33#include "ce.h"
  34#include "pci.h"
  35
  36enum ath10k_pci_irq_mode {
  37	ATH10K_PCI_IRQ_AUTO = 0,
  38	ATH10K_PCI_IRQ_LEGACY = 1,
  39	ATH10K_PCI_IRQ_MSI = 2,
  40};
  41
  42static unsigned int ath10k_target_ps;
  43static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
  44
  45module_param(ath10k_target_ps, uint, 0644);
  46MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
  47
  48module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
  49MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
  50
  51#define QCA988X_2_0_DEVICE_ID	(0x003c)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52
  53static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
  54	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
 
 
 
 
 
 
 
  55	{0}
  56};
  57
  58static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
  59				       u32 *data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61static int ath10k_pci_post_rx(struct ath10k *ar);
  62static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
  63					     int num);
  64static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info);
  65static int ath10k_pci_cold_reset(struct ath10k *ar);
  66static int ath10k_pci_warm_reset(struct ath10k *ar);
  67static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
  68static int ath10k_pci_init_irq(struct ath10k *ar);
  69static int ath10k_pci_deinit_irq(struct ath10k *ar);
  70static int ath10k_pci_request_irq(struct ath10k *ar);
  71static void ath10k_pci_free_irq(struct ath10k *ar);
  72static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
 
  73			       struct ath10k_ce_pipe *rx_pipe,
  74			       struct bmi_xfer *xfer);
 
 
 
 
 
 
 
  75
  76static const struct ce_attr host_ce_config_wlan[] = {
  77	/* CE0: host->target HTC control and raw streams */
  78	{
  79		.flags = CE_ATTR_FLAGS,
  80		.src_nentries = 16,
  81		.src_sz_max = 256,
  82		.dest_nentries = 0,
 
  83	},
  84
  85	/* CE1: target->host HTT + HTC control */
  86	{
  87		.flags = CE_ATTR_FLAGS,
  88		.src_nentries = 0,
  89		.src_sz_max = 512,
  90		.dest_nentries = 512,
 
  91	},
  92
  93	/* CE2: target->host WMI */
  94	{
  95		.flags = CE_ATTR_FLAGS,
  96		.src_nentries = 0,
  97		.src_sz_max = 2048,
  98		.dest_nentries = 32,
 
  99	},
 100
 101	/* CE3: host->target WMI */
 102	{
 103		.flags = CE_ATTR_FLAGS,
 104		.src_nentries = 32,
 105		.src_sz_max = 2048,
 106		.dest_nentries = 0,
 
 107	},
 108
 109	/* CE4: host->target HTT */
 110	{
 111		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
 112		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
 113		.src_sz_max = 256,
 114		.dest_nentries = 0,
 
 115	},
 116
 117	/* CE5: unused */
 118	{
 119		.flags = CE_ATTR_FLAGS,
 120		.src_nentries = 0,
 121		.src_sz_max = 0,
 122		.dest_nentries = 0,
 
 123	},
 124
 125	/* CE6: target autonomous hif_memcpy */
 126	{
 127		.flags = CE_ATTR_FLAGS,
 128		.src_nentries = 0,
 129		.src_sz_max = 0,
 130		.dest_nentries = 0,
 131	},
 132
 133	/* CE7: ce_diag, the Diagnostic Window */
 134	{
 135		.flags = CE_ATTR_FLAGS,
 136		.src_nentries = 2,
 137		.src_sz_max = DIAG_TRANSFER_LIMIT,
 138		.dest_nentries = 2,
 139	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140};
 141
 142/* Target firmware's Copy Engine configuration. */
 143static const struct ce_pipe_config target_ce_config_wlan[] = {
 144	/* CE0: host->target HTC control and raw streams */
 145	{
 146		.pipenum = 0,
 147		.pipedir = PIPEDIR_OUT,
 148		.nentries = 32,
 149		.nbytes_max = 256,
 150		.flags = CE_ATTR_FLAGS,
 151		.reserved = 0,
 152	},
 153
 154	/* CE1: target->host HTT + HTC control */
 155	{
 156		.pipenum = 1,
 157		.pipedir = PIPEDIR_IN,
 158		.nentries = 32,
 159		.nbytes_max = 512,
 160		.flags = CE_ATTR_FLAGS,
 161		.reserved = 0,
 162	},
 163
 164	/* CE2: target->host WMI */
 165	{
 166		.pipenum = 2,
 167		.pipedir = PIPEDIR_IN,
 168		.nentries = 32,
 169		.nbytes_max = 2048,
 170		.flags = CE_ATTR_FLAGS,
 171		.reserved = 0,
 172	},
 173
 174	/* CE3: host->target WMI */
 175	{
 176		.pipenum = 3,
 177		.pipedir = PIPEDIR_OUT,
 178		.nentries = 32,
 179		.nbytes_max = 2048,
 180		.flags = CE_ATTR_FLAGS,
 181		.reserved = 0,
 182	},
 183
 184	/* CE4: host->target HTT */
 185	{
 186		.pipenum = 4,
 187		.pipedir = PIPEDIR_OUT,
 188		.nentries = 256,
 189		.nbytes_max = 256,
 190		.flags = CE_ATTR_FLAGS,
 191		.reserved = 0,
 192	},
 193
 194	/* NB: 50% of src nentries, since tx has 2 frags */
 195
 196	/* CE5: unused */
 197	{
 198		.pipenum = 5,
 199		.pipedir = PIPEDIR_OUT,
 200		.nentries = 32,
 201		.nbytes_max = 2048,
 202		.flags = CE_ATTR_FLAGS,
 203		.reserved = 0,
 204	},
 205
 206	/* CE6: Reserved for target autonomous hif_memcpy */
 207	{
 208		.pipenum = 6,
 209		.pipedir = PIPEDIR_INOUT,
 210		.nentries = 32,
 211		.nbytes_max = 4096,
 212		.flags = CE_ATTR_FLAGS,
 213		.reserved = 0,
 214	},
 215
 216	/* CE7 used only by Host */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217};
 218
 219static bool ath10k_pci_irq_pending(struct ath10k *ar)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220{
 221	u32 cause;
 222
 223	/* Check if the shared legacy irq is for us */
 224	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 225				  PCIE_INTR_CAUSE_ADDRESS);
 226	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
 227		return true;
 228
 229	return false;
 230}
 231
 232static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
 233{
 234	/* IMPORTANT: INTR_CLR register has to be set after
 235	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
 236	 * really cleared. */
 
 237	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
 238			   0);
 239	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
 240			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 241
 242	/* IMPORTANT: this extra read transaction is required to
 243	 * flush the posted write buffer. */
 244	(void) ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 245				 PCIE_INTR_ENABLE_ADDRESS);
 
 246}
 247
 248static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
 249{
 250	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
 251			   PCIE_INTR_ENABLE_ADDRESS,
 252			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 253
 254	/* IMPORTANT: this extra read transaction is required to
 255	 * flush the posted write buffer. */
 256	(void) ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 257				 PCIE_INTR_ENABLE_ADDRESS);
 
 258}
 259
 260static irqreturn_t ath10k_pci_early_irq_handler(int irq, void *arg)
 261{
 262	struct ath10k *ar = arg;
 263	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 264
 265	if (ar_pci->num_msi_intrs == 0) {
 266		if (!ath10k_pci_irq_pending(ar))
 267			return IRQ_NONE;
 268
 269		ath10k_pci_disable_and_clear_legacy_irq(ar);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270	}
 271
 272	tasklet_schedule(&ar_pci->early_irq_tasklet);
 273
 274	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 275}
 276
 277static int ath10k_pci_request_early_irq(struct ath10k *ar)
 278{
 
 279	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 280	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282	/* Regardless whether MSI-X/MSI/legacy irqs have been set up the first
 283	 * interrupt from irq vector is triggered in all cases for FW
 284	 * indication/errors */
 285	ret = request_irq(ar_pci->pdev->irq, ath10k_pci_early_irq_handler,
 286			  IRQF_SHARED, "ath10k_pci (early)", ar);
 287	if (ret) {
 288		ath10k_warn("failed to request early irq: %d\n", ret);
 289		return ret;
 
 
 
 290	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292	return 0;
 
 
 
 
 
 
 293}
 294
 295static void ath10k_pci_free_early_irq(struct ath10k *ar)
 296{
 297	free_irq(ath10k_pci_priv(ar)->pdev->irq, ar);
 
 
 
 
 
 298}
 299
 300/*
 301 * Diagnostic read/write access is provided for startup/config/debug usage.
 302 * Caller must guarantee proper alignment, when applicable, and single user
 303 * at any moment.
 304 */
 305static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
 306				    int nbytes)
 307{
 308	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 309	int ret = 0;
 310	u32 buf;
 311	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
 312	unsigned int id;
 313	unsigned int flags;
 314	struct ath10k_ce_pipe *ce_diag;
 315	/* Host buffer address in CE space */
 316	u32 ce_data;
 317	dma_addr_t ce_data_base = 0;
 318	void *data_buf = NULL;
 319	int i;
 320
 321	/*
 322	 * This code cannot handle reads to non-memory space. Redirect to the
 323	 * register read fn but preserve the multi word read capability of
 324	 * this fn
 325	 */
 326	if (address < DRAM_BASE_ADDRESS) {
 327		if (!IS_ALIGNED(address, 4) ||
 328		    !IS_ALIGNED((unsigned long)data, 4))
 329			return -EIO;
 330
 331		while ((nbytes >= 4) &&  ((ret = ath10k_pci_diag_read_access(
 332					   ar, address, (u32 *)data)) == 0)) {
 333			nbytes -= sizeof(u32);
 334			address += sizeof(u32);
 335			data += sizeof(u32);
 336		}
 337		return ret;
 338	}
 339
 340	ce_diag = ar_pci->ce_diag;
 341
 342	/*
 343	 * Allocate a temporary bounce buffer to hold caller's data
 344	 * to be DMA'ed from Target. This guarantees
 345	 *   1) 4-byte alignment
 346	 *   2) Buffer in DMA-able space
 347	 */
 348	orig_nbytes = nbytes;
 349	data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
 350							 orig_nbytes,
 351							 &ce_data_base);
 352
 
 
 353	if (!data_buf) {
 354		ret = -ENOMEM;
 355		goto done;
 356	}
 357	memset(data_buf, 0, orig_nbytes);
 358
 359	remaining_bytes = orig_nbytes;
 
 
 
 
 
 
 
 
 
 360	ce_data = ce_data_base;
 361	while (remaining_bytes) {
 362		nbytes = min_t(unsigned int, remaining_bytes,
 363			       DIAG_TRANSFER_LIMIT);
 364
 365		ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
 366		if (ret != 0)
 367			goto done;
 368
 369		/* Request CE to send from Target(!) address to Host buffer */
 370		/*
 371		 * The address supplied by the caller is in the
 372		 * Target CPU virtual address space.
 373		 *
 374		 * In order to use this address with the diagnostic CE,
 375		 * convert it from Target CPU virtual address space
 376		 * to CE address space
 377		 */
 378		ath10k_pci_wake(ar);
 379		address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
 380						     address);
 381		ath10k_pci_sleep(ar);
 382
 383		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
 384				 0);
 385		if (ret)
 386			goto done;
 387
 388		i = 0;
 389		while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
 390						     &completed_nbytes,
 391						     &id) != 0) {
 392			mdelay(1);
 393			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
 394				ret = -EBUSY;
 395				goto done;
 396			}
 397		}
 398
 399		if (nbytes != completed_nbytes) {
 400			ret = -EIO;
 401			goto done;
 402		}
 403
 404		if (buf != (u32) address) {
 405			ret = -EIO;
 406			goto done;
 407		}
 408
 409		i = 0;
 410		while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
 411						     &completed_nbytes,
 412						     &id, &flags) != 0) {
 413			mdelay(1);
 414
 415			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
 416				ret = -EBUSY;
 417				goto done;
 418			}
 419		}
 420
 421		if (nbytes != completed_nbytes) {
 422			ret = -EIO;
 423			goto done;
 424		}
 425
 426		if (buf != ce_data) {
 427			ret = -EIO;
 428			goto done;
 429		}
 430
 431		remaining_bytes -= nbytes;
 
 
 432		address += nbytes;
 433		ce_data += nbytes;
 434	}
 435
 436done:
 437	if (ret == 0) {
 438		/* Copy data from allocated DMA buf to caller's buf */
 439		WARN_ON_ONCE(orig_nbytes & 3);
 440		for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
 441			((u32 *)data)[i] =
 442				__le32_to_cpu(((__le32 *)data_buf)[i]);
 443		}
 444	} else
 445		ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
 446			   __func__, address);
 447
 448	if (data_buf)
 449		pci_free_consistent(ar_pci->pdev, orig_nbytes,
 450				    data_buf, ce_data_base);
 
 
 451
 452	return ret;
 453}
 454
 455/* Read 4-byte aligned data from Target memory or register */
 456static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
 457				       u32 *data)
 458{
 459	/* Assume range doesn't cross this boundary */
 460	if (address >= DRAM_BASE_ADDRESS)
 461		return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462
 463	ath10k_pci_wake(ar);
 464	*data = ath10k_pci_read32(ar, address);
 465	ath10k_pci_sleep(ar);
 466	return 0;
 467}
 468
 469static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
 470				     const void *data, int nbytes)
 
 
 
 471{
 472	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 473	int ret = 0;
 474	u32 buf;
 475	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
 476	unsigned int id;
 477	unsigned int flags;
 478	struct ath10k_ce_pipe *ce_diag;
 479	void *data_buf = NULL;
 480	u32 ce_data;	/* Host buffer address in CE space */
 481	dma_addr_t ce_data_base = 0;
 482	int i;
 483
 
 484	ce_diag = ar_pci->ce_diag;
 485
 486	/*
 487	 * Allocate a temporary bounce buffer to hold caller's data
 488	 * to be DMA'ed to Target. This guarantees
 489	 *   1) 4-byte alignment
 490	 *   2) Buffer in DMA-able space
 491	 */
 492	orig_nbytes = nbytes;
 493	data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
 494							 orig_nbytes,
 495							 &ce_data_base);
 496	if (!data_buf) {
 497		ret = -ENOMEM;
 498		goto done;
 499	}
 500
 501	/* Copy caller's data to allocated DMA buf */
 502	WARN_ON_ONCE(orig_nbytes & 3);
 503	for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
 504		((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
 505
 506	/*
 507	 * The address supplied by the caller is in the
 508	 * Target CPU virtual address space.
 509	 *
 510	 * In order to use this address with the diagnostic CE,
 511	 * convert it from
 512	 *    Target CPU virtual address space
 513	 * to
 514	 *    CE address space
 515	 */
 516	ath10k_pci_wake(ar);
 517	address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
 518	ath10k_pci_sleep(ar);
 519
 520	remaining_bytes = orig_nbytes;
 521	ce_data = ce_data_base;
 522	while (remaining_bytes) {
 523		/* FIXME: check cast */
 524		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
 525
 
 
 
 526		/* Set up to receive directly into Target(!) address */
 527		ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
 528		if (ret != 0)
 529			goto done;
 530
 531		/*
 532		 * Request CE to send caller-supplied data that
 533		 * was copied to bounce buffer to Target(!) address.
 534		 */
 535		ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
 536				     nbytes, 0, 0);
 537		if (ret != 0)
 538			goto done;
 539
 540		i = 0;
 541		while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
 542						     &completed_nbytes,
 543						     &id) != 0) {
 544			mdelay(1);
 545
 546			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
 547				ret = -EBUSY;
 548				goto done;
 549			}
 550		}
 551
 552		if (nbytes != completed_nbytes) {
 553			ret = -EIO;
 554			goto done;
 555		}
 556
 557		if (buf != ce_data) {
 558			ret = -EIO;
 559			goto done;
 560		}
 561
 562		i = 0;
 563		while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
 564						     &completed_nbytes,
 565						     &id, &flags) != 0) {
 566			mdelay(1);
 567
 568			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
 569				ret = -EBUSY;
 570				goto done;
 571			}
 572		}
 573
 574		if (nbytes != completed_nbytes) {
 575			ret = -EIO;
 576			goto done;
 577		}
 578
 579		if (buf != address) {
 580			ret = -EIO;
 581			goto done;
 582		}
 583
 584		remaining_bytes -= nbytes;
 585		address += nbytes;
 586		ce_data += nbytes;
 587	}
 588
 589done:
 590	if (data_buf) {
 591		pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
 592				    ce_data_base);
 593	}
 594
 595	if (ret != 0)
 596		ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
 597			   address);
 
 
 598
 599	return ret;
 600}
 601
 602/* Write 4B data to Target memory or register */
 603static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
 604					u32 data)
 605{
 606	/* Assume range doesn't cross this boundary */
 607	if (address >= DRAM_BASE_ADDRESS)
 608		return ath10k_pci_diag_write_mem(ar, address, &data,
 609						 sizeof(u32));
 610
 611	ath10k_pci_wake(ar);
 612	ath10k_pci_write32(ar, address, data);
 613	ath10k_pci_sleep(ar);
 614	return 0;
 615}
 616
 617static bool ath10k_pci_target_is_awake(struct ath10k *ar)
 
 618{
 619	void __iomem *mem = ath10k_pci_priv(ar)->mem;
 620	u32 val;
 621	val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
 622		       RTC_STATE_ADDRESS);
 623	return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
 
 
 
 
 
 
 
 
 
 
 624}
 625
 626int ath10k_do_pci_wake(struct ath10k *ar)
 
 
 627{
 
 628	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 629	void __iomem *pci_addr = ar_pci->mem;
 630	int tot_delay = 0;
 631	int curr_delay = 5;
 
 
 632
 633	if (atomic_read(&ar_pci->keep_awake_count) == 0) {
 634		/* Force AWAKE */
 635		iowrite32(PCIE_SOC_WAKE_V_MASK,
 636			  pci_addr + PCIE_LOCAL_BASE_ADDRESS +
 637			  PCIE_SOC_WAKE_ADDRESS);
 638	}
 639	atomic_inc(&ar_pci->keep_awake_count);
 640
 641	if (ar_pci->verified_awake)
 642		return 0;
 643
 644	for (;;) {
 645		if (ath10k_pci_target_is_awake(ar)) {
 646			ar_pci->verified_awake = true;
 647			return 0;
 648		}
 649
 650		if (tot_delay > PCIE_WAKE_TIMEOUT) {
 651			ath10k_warn("target took longer %d us to wake up (awake count %d)\n",
 652				    PCIE_WAKE_TIMEOUT,
 653				    atomic_read(&ar_pci->keep_awake_count));
 654			return -ETIMEDOUT;
 655		}
 656
 657		udelay(curr_delay);
 658		tot_delay += curr_delay;
 
 
 
 659
 660		if (curr_delay < 50)
 661			curr_delay += 5;
 662	}
 663}
 664
 665void ath10k_do_pci_sleep(struct ath10k *ar)
 666{
 667	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 668	void __iomem *pci_addr = ar_pci->mem;
 669
 670	if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
 671		/* Allow sleep */
 672		ar_pci->verified_awake = false;
 673		iowrite32(PCIE_SOC_WAKE_RESET,
 674			  pci_addr + PCIE_LOCAL_BASE_ADDRESS +
 675			  PCIE_SOC_WAKE_ADDRESS);
 676	}
 677}
 678
 679/* Called by lower (CE) layer when a send to Target completes. */
 680static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
 
 681{
 682	struct ath10k *ar = ce_state->ar;
 683	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 684	struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
 
 
 
 685	void *transfer_context;
 686	u32 ce_data;
 687	unsigned int nbytes;
 688	unsigned int transfer_id;
 
 
 
 
 
 
 
 
 
 689
 690	while (ath10k_ce_completed_send_next(ce_state, &transfer_context,
 691					     &ce_data, &nbytes,
 692					     &transfer_id) == 0) {
 693		/* no need to call tx completion for NULL pointers */
 694		if (transfer_context == NULL)
 695			continue;
 
 696
 697		cb->tx_completion(ar, transfer_context, transfer_id);
 
 
 
 698	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701/* Called by lower (CE) layer when data is received from the Target. */
 702static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703{
 704	struct ath10k *ar = ce_state->ar;
 705	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 706	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
 707	struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
 708	struct sk_buff *skb;
 709	void *transfer_context;
 710	u32 ce_data;
 711	unsigned int nbytes, max_nbytes;
 712	unsigned int transfer_id;
 713	unsigned int flags;
 714	int err;
 715
 716	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
 717					     &ce_data, &nbytes, &transfer_id,
 718					     &flags) == 0) {
 719		err = ath10k_pci_post_rx_pipe(pipe_info, 1);
 720		if (unlikely(err)) {
 721			/* FIXME: retry */
 722			ath10k_warn("failed to replenish CE rx ring %d: %d\n",
 723				    pipe_info->pipe_num, err);
 724		}
 725
 726		skb = transfer_context;
 727		max_nbytes = skb->len + skb_tailroom(skb);
 728		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
 729				 max_nbytes, DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 730
 731		if (unlikely(max_nbytes < nbytes)) {
 732			ath10k_warn("rxed more than expected (nbytes %d, max %d)",
 733				    nbytes, max_nbytes);
 734			dev_kfree_skb_any(skb);
 735			continue;
 736		}
 
 737
 738		skb_put(skb, nbytes);
 739		cb->rx_completion(ar, skb, pipe_info->pipe_num);
 740	}
 741}
 742
 743static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
 744				struct ath10k_hif_sg_item *items, int n_items)
 745{
 746	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 747	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
 748	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
 749	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
 750	unsigned int nentries_mask = src_ring->nentries_mask;
 751	unsigned int sw_index = src_ring->sw_index;
 752	unsigned int write_index = src_ring->write_index;
 753	int err, i;
 754
 755	spin_lock_bh(&ar_pci->ce_lock);
 
 
 
 
 756
 757	if (unlikely(CE_RING_DELTA(nentries_mask,
 758				   write_index, sw_index - 1) < n_items)) {
 759		err = -ENOBUFS;
 760		goto unlock;
 761	}
 762
 763	for (i = 0; i < n_items - 1; i++) {
 764		ath10k_dbg(ATH10K_DBG_PCI,
 765			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
 766			   i, items[i].paddr, items[i].len, n_items);
 767		ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL, "item data: ",
 768				items[i].vaddr, items[i].len);
 769
 770		err = ath10k_ce_send_nolock(ce_pipe,
 771					    items[i].transfer_context,
 772					    items[i].paddr,
 773					    items[i].len,
 774					    items[i].transfer_id,
 775					    CE_SEND_FLAG_GATHER);
 776		if (err)
 777			goto unlock;
 778	}
 779
 780	/* `i` is equal to `n_items -1` after for() */
 781
 782	ath10k_dbg(ATH10K_DBG_PCI,
 783		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
 784		   i, items[i].paddr, items[i].len, n_items);
 785	ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL, "item data: ",
 786			items[i].vaddr, items[i].len);
 787
 788	err = ath10k_ce_send_nolock(ce_pipe,
 789				    items[i].transfer_context,
 790				    items[i].paddr,
 791				    items[i].len,
 792				    items[i].transfer_id,
 793				    0);
 794	if (err)
 795		goto unlock;
 
 
 
 
 
 
 
 796
 797	err = 0;
 798unlock:
 799	spin_unlock_bh(&ar_pci->ce_lock);
 800	return err;
 801}
 802
 803static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
 
 
 
 
 
 
 804{
 805	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 
 
 806	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
 807}
 808
 809static void ath10k_pci_hif_dump_area(struct ath10k *ar)
 
 810{
 811	u32 reg_dump_area = 0;
 812	u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
 813	u32 host_addr;
 814	int ret;
 815	u32 i;
 816
 817	ath10k_err("firmware crashed!\n");
 818	ath10k_err("hardware name %s version 0x%x\n",
 819		   ar->hw_params.name, ar->target_version);
 820	ath10k_err("firmware version: %s\n", ar->hw->wiphy->fw_version);
 821
 822	host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
 823	ret = ath10k_pci_diag_read_mem(ar, host_addr,
 824				       &reg_dump_area, sizeof(u32));
 825	if (ret) {
 826		ath10k_err("failed to read FW dump area address: %d\n", ret);
 827		return;
 828	}
 829
 830	ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
 831
 832	ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
 833				       &reg_dump_values[0],
 834				       REG_DUMP_COUNT_QCA988X * sizeof(u32));
 835	if (ret != 0) {
 836		ath10k_err("failed to read FW dump area: %d\n", ret);
 
 
 
 
 
 837		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838	}
 839
 840	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841
 842	ath10k_err("target Register Dump\n");
 843	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
 844		ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
 845			   i,
 846			   reg_dump_values[i],
 847			   reg_dump_values[i + 1],
 848			   reg_dump_values[i + 2],
 849			   reg_dump_values[i + 3]);
 850
 851	queue_work(ar->workqueue, &ar->restart_work);
 852}
 853
 854static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
 855					       int force)
 856{
 857	if (!force) {
 858		int resources;
 859		/*
 860		 * Decide whether to actually poll for completions, or just
 861		 * wait for a later chance.
 862		 * If there seem to be plenty of resources left, then just wait
 863		 * since checking involves reading a CE register, which is a
 864		 * relatively expensive operation.
 865		 */
 866		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
 867
 868		/*
 869		 * If at least 50% of the total resources are still available,
 870		 * don't bother checking again yet.
 871		 */
 872		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
 873			return;
 874	}
 875	ath10k_ce_per_engine_service(ar, pipe);
 
 876}
 877
 878static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
 879					 struct ath10k_hif_cb *callbacks)
 
 
 880{
 881	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
 882
 883	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
 
 
 
 
 
 
 884
 885	memcpy(&ar_pci->msg_callbacks_current, callbacks,
 886	       sizeof(ar_pci->msg_callbacks_current));
 887}
 888
 889static int ath10k_pci_setup_ce_irq(struct ath10k *ar)
 
 
 
 890{
 891	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 892	const struct ce_attr *attr;
 893	struct ath10k_pci_pipe *pipe_info;
 894	int pipe_num, disable_interrupts;
 
 
 
 
 
 
 895
 896	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
 897		pipe_info = &ar_pci->pipe_info[pipe_num];
 898
 899		/* Handle Diagnostic CE specially */
 900		if (pipe_info->ce_hdl == ar_pci->ce_diag)
 901			continue;
 
 
 902
 903		attr = &host_ce_config_wlan[pipe_num];
 
 
 
 
 
 904
 905		if (attr->src_nentries) {
 906			disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
 907			ath10k_ce_send_cb_register(pipe_info->ce_hdl,
 908						   ath10k_pci_ce_send_done,
 909						   disable_interrupts);
 910		}
 911
 912		if (attr->dest_nentries)
 913			ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
 914						   ath10k_pci_ce_recv_data);
 
 
 
 
 
 
 
 
 915	}
 916
 917	return 0;
 918}
 919
 920static void ath10k_pci_kill_tasklet(struct ath10k *ar)
 
 921{
 922	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 923	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924
 925	tasklet_kill(&ar_pci->intr_tq);
 926	tasklet_kill(&ar_pci->msi_fw_err);
 927	tasklet_kill(&ar_pci->early_irq_tasklet);
 928
 929	for (i = 0; i < CE_COUNT; i++)
 930		tasklet_kill(&ar_pci->pipe_info[i].intr);
 931}
 932
 933/* TODO - temporary mapping while we have too few CE's */
 934static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
 935					      u16 service_id, u8 *ul_pipe,
 936					      u8 *dl_pipe, int *ul_is_polled,
 937					      int *dl_is_polled)
 938{
 939	int ret = 0;
 
 
 
 
 940
 941	/* polling for received messages not supported */
 942	*dl_is_polled = 0;
 943
 944	switch (service_id) {
 945	case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
 946		/*
 947		 * Host->target HTT gets its own pipe, so it can be polled
 948		 * while other pipes are interrupt driven.
 949		 */
 950		*ul_pipe = 4;
 951		/*
 952		 * Use the same target->host pipe for HTC ctrl, HTC raw
 953		 * streams, and HTT.
 954		 */
 955		*dl_pipe = 1;
 956		break;
 957
 958	case ATH10K_HTC_SVC_ID_RSVD_CTRL:
 959	case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
 960		/*
 961		 * Note: HTC_RAW_STREAMS_SVC is currently unused, and
 962		 * HTC_CTRL_RSVD_SVC could share the same pipe as the
 963		 * WMI services.  So, if another CE is needed, change
 964		 * this to *ul_pipe = 3, which frees up CE 0.
 965		 */
 966		/* *ul_pipe = 3; */
 967		*ul_pipe = 0;
 968		*dl_pipe = 1;
 969		break;
 970
 971	case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
 972	case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
 973	case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
 974	case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
 975
 976	case ATH10K_HTC_SVC_ID_WMI_CONTROL:
 977		*ul_pipe = 3;
 978		*dl_pipe = 2;
 979		break;
 980
 981		/* pipe 5 unused   */
 982		/* pipe 6 reserved */
 983		/* pipe 7 reserved */
 
 
 984
 985	default:
 986		ret = -1;
 987		break;
 988	}
 989	*ul_is_polled =
 990		(host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
 991
 992	return ret;
 993}
 994
 995static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
 996						u8 *ul_pipe, u8 *dl_pipe)
 997{
 998	int ul_is_polled, dl_is_polled;
 999
1000	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1001						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1002						 ul_pipe,
1003						 dl_pipe,
1004						 &ul_is_polled,
1005						 &dl_is_polled);
1006}
1007
1008static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
1009				   int num)
1010{
1011	struct ath10k *ar = pipe_info->hif_ce_state;
1012	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1013	struct ath10k_ce_pipe *ce_state = pipe_info->ce_hdl;
1014	struct sk_buff *skb;
1015	dma_addr_t ce_data;
1016	int i, ret = 0;
1017
1018	if (pipe_info->buf_sz == 0)
1019		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020
1021	for (i = 0; i < num; i++) {
1022		skb = dev_alloc_skb(pipe_info->buf_sz);
1023		if (!skb) {
1024			ath10k_warn("failed to allocate skbuff for pipe %d\n",
1025				    num);
1026			ret = -ENOMEM;
1027			goto err;
1028		}
1029
1030		WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
 
1031
1032		ce_data = dma_map_single(ar->dev, skb->data,
1033					 skb->len + skb_tailroom(skb),
1034					 DMA_FROM_DEVICE);
 
 
 
 
1035
1036		if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
1037			ath10k_warn("failed to DMA map sk_buff\n");
1038			dev_kfree_skb_any(skb);
1039			ret = -EIO;
1040			goto err;
1041		}
1042
1043		ATH10K_SKB_CB(skb)->paddr = ce_data;
 
1044
1045		pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
1046					       pipe_info->buf_sz,
1047					       PCI_DMA_FROMDEVICE);
1048
1049		ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
1050						 ce_data);
1051		if (ret) {
1052			ath10k_warn("failed to enqueue to pipe %d: %d\n",
1053				    num, ret);
1054			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055		}
1056	}
1057
1058	return ret;
 
1059
1060err:
1061	ath10k_pci_rx_pipe_cleanup(pipe_info);
1062	return ret;
1063}
1064
1065static int ath10k_pci_post_rx(struct ath10k *ar)
 
1066{
1067	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1068	struct ath10k_pci_pipe *pipe_info;
1069	const struct ce_attr *attr;
1070	int pipe_num, ret = 0;
 
 
1071
1072	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1073		pipe_info = &ar_pci->pipe_info[pipe_num];
1074		attr = &host_ce_config_wlan[pipe_num];
1075
1076		if (attr->dest_nentries == 0)
1077			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
1079		ret = ath10k_pci_post_rx_pipe(pipe_info,
1080					      attr->dest_nentries - 1);
1081		if (ret) {
1082			ath10k_warn("failed to post RX buffer for pipe %d: %d\n",
1083				    pipe_num, ret);
1084
1085			for (; pipe_num >= 0; pipe_num--) {
1086				pipe_info = &ar_pci->pipe_info[pipe_num];
1087				ath10k_pci_rx_pipe_cleanup(pipe_info);
1088			}
1089			return ret;
1090		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091	}
 
 
 
 
 
 
 
 
1092
1093	return 0;
 
 
 
 
 
 
 
 
 
 
 
1094}
1095
1096static int ath10k_pci_hif_start(struct ath10k *ar)
1097{
1098	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1099	int ret, ret_early;
1100
1101	ath10k_pci_free_early_irq(ar);
1102	ath10k_pci_kill_tasklet(ar);
1103
1104	ret = ath10k_pci_request_irq(ar);
1105	if (ret) {
1106		ath10k_warn("failed to post RX buffers for all pipes: %d\n",
1107			    ret);
1108		goto err_early_irq;
1109	}
1110
1111	ret = ath10k_pci_setup_ce_irq(ar);
1112	if (ret) {
1113		ath10k_warn("failed to setup CE interrupts: %d\n", ret);
1114		goto err_stop;
1115	}
1116
1117	/* Post buffers once to start things off. */
1118	ret = ath10k_pci_post_rx(ar);
1119	if (ret) {
1120		ath10k_warn("failed to post RX buffers for all pipes: %d\n",
1121			    ret);
1122		goto err_stop;
1123	}
1124
1125	ar_pci->started = 1;
1126	return 0;
1127
1128err_stop:
1129	ath10k_ce_disable_interrupts(ar);
1130	ath10k_pci_free_irq(ar);
1131	ath10k_pci_kill_tasklet(ar);
1132err_early_irq:
1133	/* Though there should be no interrupts (device was reset)
1134	 * power_down() expects the early IRQ to be installed as per the
1135	 * driver lifecycle. */
1136	ret_early = ath10k_pci_request_early_irq(ar);
1137	if (ret_early)
1138		ath10k_warn("failed to re-enable early irq: %d\n", ret_early);
1139
1140	return ret;
1141}
1142
1143static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
1144{
1145	struct ath10k *ar;
1146	struct ath10k_pci *ar_pci;
1147	struct ath10k_ce_pipe *ce_hdl;
1148	u32 buf_sz;
1149	struct sk_buff *netbuf;
1150	u32 ce_data;
1151
1152	buf_sz = pipe_info->buf_sz;
 
 
1153
1154	/* Unused Copy Engine */
1155	if (buf_sz == 0)
1156		return;
1157
1158	ar = pipe_info->hif_ce_state;
1159	ar_pci = ath10k_pci_priv(ar);
1160
1161	if (!ar_pci->started)
1162		return;
 
 
1163
1164	ce_hdl = pipe_info->ce_hdl;
1165
1166	while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
1167					  &ce_data) == 0) {
1168		dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
1169				 netbuf->len + skb_tailroom(netbuf),
1170				 DMA_FROM_DEVICE);
1171		dev_kfree_skb_any(netbuf);
1172	}
1173}
1174
1175static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
1176{
1177	struct ath10k *ar;
1178	struct ath10k_pci *ar_pci;
1179	struct ath10k_ce_pipe *ce_hdl;
1180	struct sk_buff *netbuf;
1181	u32 ce_data;
1182	unsigned int nbytes;
1183	unsigned int id;
1184	u32 buf_sz;
1185
1186	buf_sz = pipe_info->buf_sz;
 
 
1187
1188	/* Unused Copy Engine */
1189	if (buf_sz == 0)
1190		return;
1191
1192	ar = pipe_info->hif_ce_state;
1193	ar_pci = ath10k_pci_priv(ar);
1194
1195	if (!ar_pci->started)
1196		return;
1197
1198	ce_hdl = pipe_info->ce_hdl;
 
 
 
1199
1200	while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
1201					  &ce_data, &nbytes, &id) == 0) {
1202		/* no need to call tx completion for NULL pointers */
1203		if (!netbuf)
1204			continue;
1205
1206		ar_pci->msg_callbacks_current.tx_completion(ar,
1207							    netbuf,
1208							    id);
1209	}
1210}
1211
1212/*
1213 * Cleanup residual buffers for device shutdown:
1214 *    buffers that were enqueued for receive
1215 *    buffers that were to be sent
1216 * Note: Buffers that had completed but which were
1217 * not yet processed are on a completion queue. They
1218 * are handled when the completion thread shuts down.
1219 */
1220static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1221{
1222	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1223	int pipe_num;
1224
1225	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1226		struct ath10k_pci_pipe *pipe_info;
1227
1228		pipe_info = &ar_pci->pipe_info[pipe_num];
1229		ath10k_pci_rx_pipe_cleanup(pipe_info);
1230		ath10k_pci_tx_pipe_cleanup(pipe_info);
1231	}
1232}
1233
1234static void ath10k_pci_ce_deinit(struct ath10k *ar)
1235{
1236	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1237	struct ath10k_pci_pipe *pipe_info;
1238	int pipe_num;
 
 
1239
1240	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1241		pipe_info = &ar_pci->pipe_info[pipe_num];
1242		if (pipe_info->ce_hdl) {
1243			ath10k_ce_deinit(pipe_info->ce_hdl);
1244			pipe_info->ce_hdl = NULL;
1245			pipe_info->buf_sz = 0;
1246		}
1247	}
1248}
1249
1250static void ath10k_pci_hif_stop(struct ath10k *ar)
1251{
1252	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1253	int ret;
1254
1255	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
1256
1257	ret = ath10k_ce_disable_interrupts(ar);
1258	if (ret)
1259		ath10k_warn("failed to disable CE interrupts: %d\n", ret);
1260
1261	ath10k_pci_free_irq(ar);
1262	ath10k_pci_kill_tasklet(ar);
1263
1264	ret = ath10k_pci_request_early_irq(ar);
1265	if (ret)
1266		ath10k_warn("failed to re-enable early irq: %d\n", ret);
1267
1268	/* At this point, asynchronous threads are stopped, the target should
1269	 * not DMA nor interrupt. We process the leftovers and then free
1270	 * everything else up. */
 
 
 
 
 
 
 
 
 
1271
1272	ath10k_pci_buffer_cleanup(ar);
1273
1274	/* Make the sure the device won't access any structures on the host by
1275	 * resetting it. The device was fed with PCI CE ringbuffer
1276	 * configuration during init. If ringbuffers are freed and the device
1277	 * were to access them this could lead to memory corruption on the
1278	 * host. */
1279	ath10k_pci_warm_reset(ar);
1280
1281	ar_pci->started = 0;
1282}
1283
1284static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1285					   void *req, u32 req_len,
1286					   void *resp, u32 *resp_len)
1287{
1288	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1289	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1290	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1291	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1292	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1293	dma_addr_t req_paddr = 0;
1294	dma_addr_t resp_paddr = 0;
1295	struct bmi_xfer xfer = {};
1296	void *treq, *tresp = NULL;
1297	int ret = 0;
1298
1299	might_sleep();
1300
1301	if (resp && !resp_len)
1302		return -EINVAL;
1303
1304	if (resp && resp_len && *resp_len == 0)
1305		return -EINVAL;
1306
1307	treq = kmemdup(req, req_len, GFP_KERNEL);
1308	if (!treq)
1309		return -ENOMEM;
1310
1311	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1312	ret = dma_mapping_error(ar->dev, req_paddr);
1313	if (ret)
 
1314		goto err_dma;
 
1315
1316	if (resp && resp_len) {
1317		tresp = kzalloc(*resp_len, GFP_KERNEL);
1318		if (!tresp) {
1319			ret = -ENOMEM;
1320			goto err_req;
1321		}
1322
1323		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1324					    DMA_FROM_DEVICE);
1325		ret = dma_mapping_error(ar->dev, resp_paddr);
1326		if (ret)
 
1327			goto err_req;
 
1328
1329		xfer.wait_for_resp = true;
1330		xfer.resp_len = 0;
1331
1332		ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
1333	}
1334
1335	init_completion(&xfer.done);
1336
1337	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1338	if (ret)
1339		goto err_resp;
1340
1341	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1342	if (ret) {
1343		u32 unused_buffer;
1344		unsigned int unused_nbytes;
1345		unsigned int unused_id;
1346
1347		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1348					   &unused_nbytes, &unused_id);
1349	} else {
1350		/* non-zero means we did not time out */
1351		ret = 0;
1352	}
1353
1354err_resp:
1355	if (resp) {
1356		u32 unused_buffer;
1357
1358		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1359		dma_unmap_single(ar->dev, resp_paddr,
1360				 *resp_len, DMA_FROM_DEVICE);
1361	}
1362err_req:
1363	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1364
1365	if (ret == 0 && resp_len) {
1366		*resp_len = min(*resp_len, xfer.resp_len);
1367		memcpy(resp, tresp, xfer.resp_len);
1368	}
1369err_dma:
1370	kfree(treq);
1371	kfree(tresp);
1372
1373	return ret;
1374}
1375
1376static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1377{
1378	struct bmi_xfer *xfer;
1379	u32 ce_data;
1380	unsigned int nbytes;
1381	unsigned int transfer_id;
1382
1383	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
1384					  &nbytes, &transfer_id))
1385		return;
1386
1387	if (xfer->wait_for_resp)
1388		return;
1389
1390	complete(&xfer->done);
1391}
1392
1393static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1394{
 
1395	struct bmi_xfer *xfer;
1396	u32 ce_data;
1397	unsigned int nbytes;
1398	unsigned int transfer_id;
1399	unsigned int flags;
1400
1401	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1402					  &nbytes, &transfer_id, &flags))
 
 
 
1403		return;
1404
1405	if (!xfer->wait_for_resp) {
1406		ath10k_warn("unexpected: BMI data received; ignoring\n");
1407		return;
1408	}
1409
1410	xfer->resp_len = nbytes;
1411	complete(&xfer->done);
1412}
1413
1414static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
 
1415			       struct ath10k_ce_pipe *rx_pipe,
1416			       struct bmi_xfer *xfer)
1417{
1418	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
 
 
 
1419
1420	while (time_before_eq(jiffies, timeout)) {
1421		ath10k_pci_bmi_send_done(tx_pipe);
1422		ath10k_pci_bmi_recv_data(rx_pipe);
1423
1424		if (completion_done(&xfer->done))
1425			return 0;
 
 
1426
1427		schedule();
1428	}
1429
1430	return -ETIMEDOUT;
 
 
 
 
 
 
 
 
1431}
1432
1433/*
1434 * Map from service/endpoint to Copy Engine.
1435 * This table is derived from the CE_PCI TABLE, above.
1436 * It is passed to the Target at startup for use by firmware.
1437 */
1438static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
1439	{
1440		 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1441		 PIPEDIR_OUT,		/* out = UL = host -> target */
1442		 3,
1443	},
1444	{
1445		 ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1446		 PIPEDIR_IN,		/* in = DL = target -> host */
1447		 2,
1448	},
1449	{
1450		 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1451		 PIPEDIR_OUT,		/* out = UL = host -> target */
1452		 3,
1453	},
1454	{
1455		 ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1456		 PIPEDIR_IN,		/* in = DL = target -> host */
1457		 2,
1458	},
1459	{
1460		 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1461		 PIPEDIR_OUT,		/* out = UL = host -> target */
1462		 3,
1463	},
1464	{
1465		 ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1466		 PIPEDIR_IN,		/* in = DL = target -> host */
1467		 2,
1468	},
1469	{
1470		 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1471		 PIPEDIR_OUT,		/* out = UL = host -> target */
1472		 3,
1473	},
1474	{
1475		 ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1476		 PIPEDIR_IN,		/* in = DL = target -> host */
1477		 2,
1478	},
1479	{
1480		 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1481		 PIPEDIR_OUT,		/* out = UL = host -> target */
1482		 3,
1483	},
1484	{
1485		 ATH10K_HTC_SVC_ID_WMI_CONTROL,
1486		 PIPEDIR_IN,		/* in = DL = target -> host */
1487		 2,
1488	},
1489	{
1490		 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1491		 PIPEDIR_OUT,		/* out = UL = host -> target */
1492		 0,		/* could be moved to 3 (share with WMI) */
1493	},
1494	{
1495		 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1496		 PIPEDIR_IN,		/* in = DL = target -> host */
1497		 1,
1498	},
1499	{
1500		 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS,	/* not currently used */
1501		 PIPEDIR_OUT,		/* out = UL = host -> target */
1502		 0,
1503	},
1504	{
1505		 ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS,	/* not currently used */
1506		 PIPEDIR_IN,		/* in = DL = target -> host */
1507		 1,
1508	},
1509	{
1510		 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1511		 PIPEDIR_OUT,		/* out = UL = host -> target */
1512		 4,
1513	},
1514	{
1515		 ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1516		 PIPEDIR_IN,		/* in = DL = target -> host */
1517		 1,
1518	},
1519
1520	/* (Additions here) */
 
 
 
1521
1522	{				/* Must be last */
1523		 0,
1524		 0,
1525		 0,
1526	},
1527};
1528
1529/*
1530 * Send an interrupt to the device to wake up the Target CPU
1531 * so it has an opportunity to notice any changed state.
1532 */
1533static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1534{
1535	int ret;
1536	u32 core_ctrl;
1537
1538	ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
1539					      CORE_CTRL_ADDRESS,
1540					  &core_ctrl);
1541	if (ret) {
1542		ath10k_warn("failed to read core_ctrl: %d\n", ret);
1543		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	}
1545
1546	/* A_INUM_FIRMWARE interrupt to Target CPU */
1547	core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
 
1548
1549	ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
1550					       CORE_CTRL_ADDRESS,
1551					   core_ctrl);
1552	if (ret) {
1553		ath10k_warn("failed to set target CPU interrupt mask: %d\n",
1554			    ret);
1555		return ret;
1556	}
1557
1558	return 0;
1559}
1560
1561static int ath10k_pci_init_config(struct ath10k *ar)
1562{
 
1563	u32 interconnect_targ_addr;
1564	u32 pcie_state_targ_addr = 0;
1565	u32 pipe_cfg_targ_addr = 0;
1566	u32 svc_to_pipe_map = 0;
1567	u32 pcie_config_flags = 0;
1568	u32 ealloc_value;
1569	u32 ealloc_targ_addr;
1570	u32 flag2_value;
1571	u32 flag2_targ_addr;
1572	int ret = 0;
1573
1574	/* Download to Target the CE Config and the service-to-CE map */
1575	interconnect_targ_addr =
1576		host_interest_item_address(HI_ITEM(hi_interconnect_state));
1577
1578	/* Supply Target-side CE configuration */
1579	ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
1580					  &pcie_state_targ_addr);
1581	if (ret != 0) {
1582		ath10k_err("Failed to get pcie state addr: %d\n", ret);
1583		return ret;
1584	}
1585
1586	if (pcie_state_targ_addr == 0) {
1587		ret = -EIO;
1588		ath10k_err("Invalid pcie state addr\n");
1589		return ret;
1590	}
1591
1592	ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1593					  offsetof(struct pcie_state,
1594						   pipe_cfg_addr),
1595					  &pipe_cfg_targ_addr);
1596	if (ret != 0) {
1597		ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
1598		return ret;
1599	}
1600
1601	if (pipe_cfg_targ_addr == 0) {
1602		ret = -EIO;
1603		ath10k_err("Invalid pipe cfg addr\n");
1604		return ret;
1605	}
1606
1607	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1608				 target_ce_config_wlan,
1609				 sizeof(target_ce_config_wlan));
 
1610
1611	if (ret != 0) {
1612		ath10k_err("Failed to write pipe cfg: %d\n", ret);
1613		return ret;
1614	}
1615
1616	ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1617					  offsetof(struct pcie_state,
1618						   svc_to_pipe_map),
1619					  &svc_to_pipe_map);
1620	if (ret != 0) {
1621		ath10k_err("Failed to get svc/pipe map: %d\n", ret);
1622		return ret;
1623	}
1624
1625	if (svc_to_pipe_map == 0) {
1626		ret = -EIO;
1627		ath10k_err("Invalid svc_to_pipe map\n");
1628		return ret;
1629	}
1630
1631	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1632				 target_service_to_ce_map_wlan,
1633				 sizeof(target_service_to_ce_map_wlan));
1634	if (ret != 0) {
1635		ath10k_err("Failed to write svc/pipe map: %d\n", ret);
1636		return ret;
1637	}
1638
1639	ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1640					  offsetof(struct pcie_state,
1641						   config_flags),
1642					  &pcie_config_flags);
1643	if (ret != 0) {
1644		ath10k_err("Failed to get pcie config_flags: %d\n", ret);
1645		return ret;
1646	}
1647
1648	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1649
1650	ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
1651				 offsetof(struct pcie_state, config_flags),
1652				 &pcie_config_flags,
1653				 sizeof(pcie_config_flags));
1654	if (ret != 0) {
1655		ath10k_err("Failed to write pcie config_flags: %d\n", ret);
1656		return ret;
1657	}
1658
1659	/* configure early allocation */
1660	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1661
1662	ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
1663	if (ret != 0) {
1664		ath10k_err("Faile to get early alloc val: %d\n", ret);
1665		return ret;
1666	}
1667
1668	/* first bank is switched to IRAM */
1669	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1670			 HI_EARLY_ALLOC_MAGIC_MASK);
1671	ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
 
1672			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1673
1674	ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
1675	if (ret != 0) {
1676		ath10k_err("Failed to set early alloc val: %d\n", ret);
1677		return ret;
1678	}
1679
1680	/* Tell Target to proceed with initialization */
1681	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1682
1683	ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
1684	if (ret != 0) {
1685		ath10k_err("Failed to get option val: %d\n", ret);
1686		return ret;
1687	}
1688
1689	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1690
1691	ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
1692	if (ret != 0) {
1693		ath10k_err("Failed to set option val: %d\n", ret);
1694		return ret;
1695	}
1696
1697	return 0;
1698}
1699
 
 
 
 
 
 
 
 
 
1700
 
 
 
 
 
 
 
 
 
 
 
 
 
1701
1702static int ath10k_pci_ce_init(struct ath10k *ar)
1703{
1704	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1705	struct ath10k_pci_pipe *pipe_info;
1706	const struct ce_attr *attr;
1707	int pipe_num;
 
 
 
 
 
 
 
 
 
 
 
 
 
1708
1709	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1710		pipe_info = &ar_pci->pipe_info[pipe_num];
1711		pipe_info->pipe_num = pipe_num;
1712		pipe_info->hif_ce_state = ar;
1713		attr = &host_ce_config_wlan[pipe_num];
1714
1715		pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
1716		if (pipe_info->ce_hdl == NULL) {
1717			ath10k_err("failed to initialize CE for pipe: %d\n",
1718				   pipe_num);
1719
1720			/* It is safe to call it here. It checks if ce_hdl is
1721			 * valid for each pipe */
1722			ath10k_pci_ce_deinit(ar);
1723			return -1;
1724		}
1725
1726		if (pipe_num == CE_COUNT - 1) {
1727			/*
1728			 * Reserve the ultimate CE for
1729			 * diagnostic Window support
1730			 */
1731			ar_pci->ce_diag = pipe_info->ce_hdl;
1732			continue;
1733		}
1734
1735		pipe_info->buf_sz = (size_t) (attr->src_sz_max);
1736	}
1737
1738	return 0;
1739}
1740
1741static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
 
 
 
 
 
 
 
 
1742{
1743	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1744	u32 fw_indicator_address, fw_indicator;
1745
1746	ath10k_pci_wake(ar);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747
1748	fw_indicator_address = ar_pci->fw_indicator_address;
1749	fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
 
1750
1751	if (fw_indicator & FW_IND_EVENT_PENDING) {
1752		/* ACK: clear Target-side pending event */
1753		ath10k_pci_write32(ar, fw_indicator_address,
1754				   fw_indicator & ~FW_IND_EVENT_PENDING);
1755
1756		if (ar_pci->started) {
1757			ath10k_pci_hif_dump_area(ar);
1758		} else {
1759			/*
1760			 * Probable Target failure before we're prepared
1761			 * to handle it.  Generally unexpected.
1762			 */
1763			ath10k_warn("early firmware event indicated\n");
1764		}
1765	}
1766
1767	ath10k_pci_sleep(ar);
 
1768}
1769
1770static int ath10k_pci_warm_reset(struct ath10k *ar)
 
1771{
1772	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1773	int ret = 0;
1774	u32 val;
1775
1776	ath10k_dbg(ATH10K_DBG_BOOT, "boot performing warm chip reset\n");
 
 
 
 
 
1777
1778	ret = ath10k_do_pci_wake(ar);
1779	if (ret) {
1780		ath10k_err("failed to wake up target: %d\n", ret);
1781		return ret;
1782	}
1783
1784	/* debug */
1785	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1786				PCIE_INTR_CAUSE_ADDRESS);
1787	ath10k_dbg(ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n", val);
1788
1789	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1790				CPU_INTR_ADDRESS);
1791	ath10k_dbg(ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n",
1792		   val);
1793
1794	/* disable pending irqs */
1795	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1796			   PCIE_INTR_ENABLE_ADDRESS, 0);
1797
1798	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1799			   PCIE_INTR_CLR_ADDRESS, ~0);
 
 
1800
1801	msleep(100);
 
 
1802
1803	/* clear fw indicator */
1804	ath10k_pci_write32(ar, ar_pci->fw_indicator_address, 0);
1805
1806	/* clear target LF timer interrupts */
1807	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1808				SOC_LF_TIMER_CONTROL0_ADDRESS);
1809	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
1810			   SOC_LF_TIMER_CONTROL0_ADDRESS,
1811			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
1812
1813	/* reset CE */
1814	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1815				SOC_RESET_CONTROL_ADDRESS);
1816	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1817			   val | SOC_RESET_CONTROL_CE_RST_MASK);
1818	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1819				SOC_RESET_CONTROL_ADDRESS);
1820	msleep(10);
 
 
 
1821
1822	/* unreset CE */
1823	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1824			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
1825	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1826				SOC_RESET_CONTROL_ADDRESS);
1827	msleep(10);
 
 
1828
1829	/* debug */
1830	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1831				PCIE_INTR_CAUSE_ADDRESS);
1832	ath10k_dbg(ATH10K_DBG_BOOT, "boot host cpu intr cause: 0x%08x\n", val);
1833
1834	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1835				CPU_INTR_ADDRESS);
1836	ath10k_dbg(ATH10K_DBG_BOOT, "boot target cpu intr cause: 0x%08x\n",
1837		   val);
1838
1839	/* CPU warm reset */
1840	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1841				SOC_RESET_CONTROL_ADDRESS);
1842	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
1843			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
1846				SOC_RESET_CONTROL_ADDRESS);
1847	ath10k_dbg(ATH10K_DBG_BOOT, "boot target reset state: 0x%08x\n", val);
 
 
1848
1849	msleep(100);
1850
1851	ath10k_dbg(ATH10K_DBG_BOOT, "boot warm reset complete\n");
 
1852
1853	ath10k_do_pci_sleep(ar);
1854	return ret;
 
 
1855}
1856
1857static int __ath10k_pci_hif_power_up(struct ath10k *ar, bool cold_reset)
1858{
1859	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1860	const char *irq_mode;
1861	int ret;
1862
1863	/*
1864	 * Bring the target up cleanly.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865	 *
1866	 * The target may be in an undefined state with an AUX-powered Target
1867	 * and a Host in WoW mode. If the Host crashes, loses power, or is
1868	 * restarted (without unloading the driver) then the Target is left
1869	 * (aux) powered and running. On a subsequent driver load, the Target
1870	 * is in an unexpected state. We try to catch that here in order to
1871	 * reset the Target and retry the probe.
1872	 */
1873	if (cold_reset)
1874		ret = ath10k_pci_cold_reset(ar);
1875	else
1876		ret = ath10k_pci_warm_reset(ar);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877
1878	if (ret) {
1879		ath10k_err("failed to reset target: %d\n", ret);
1880		goto err;
1881	}
1882
1883	if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1884		/* Force AWAKE forever */
1885		ath10k_do_pci_wake(ar);
 
1886
1887	ret = ath10k_pci_ce_init(ar);
1888	if (ret) {
1889		ath10k_err("failed to initialize CE: %d\n", ret);
1890		goto err_ps;
1891	}
1892
1893	ret = ath10k_ce_disable_interrupts(ar);
1894	if (ret) {
1895		ath10k_err("failed to disable CE interrupts: %d\n", ret);
1896		goto err_ce;
 
1897	}
1898
1899	ret = ath10k_pci_init_irq(ar);
 
 
 
 
 
 
 
 
 
 
 
 
 
1900	if (ret) {
1901		ath10k_err("failed to init irqs: %d\n", ret);
1902		goto err_ce;
1903	}
1904
1905	ret = ath10k_pci_request_early_irq(ar);
1906	if (ret) {
1907		ath10k_err("failed to request early irq: %d\n", ret);
1908		goto err_deinit_irq;
 
1909	}
1910
1911	ret = ath10k_pci_wait_for_target_init(ar);
1912	if (ret) {
1913		ath10k_err("failed to wait for target to init: %d\n", ret);
1914		goto err_free_early_irq;
1915	}
1916
1917	ret = ath10k_pci_init_config(ar);
 
 
 
 
 
 
 
 
 
 
 
1918	if (ret) {
1919		ath10k_err("failed to setup init config: %d\n", ret);
1920		goto err_free_early_irq;
1921	}
1922
1923	ret = ath10k_pci_wake_target_cpu(ar);
1924	if (ret) {
1925		ath10k_err("could not wake up target CPU: %d\n", ret);
1926		goto err_free_early_irq;
 
1927	}
1928
1929	if (ar_pci->num_msi_intrs > 1)
1930		irq_mode = "MSI-X";
1931	else if (ar_pci->num_msi_intrs == 1)
1932		irq_mode = "MSI";
1933	else
1934		irq_mode = "legacy";
1935
1936	if (!test_bit(ATH10K_FLAG_FIRST_BOOT_DONE, &ar->dev_flags))
1937		ath10k_info("pci irq %s\n", irq_mode);
 
1938
1939	return 0;
 
1940
1941err_free_early_irq:
1942	ath10k_pci_free_early_irq(ar);
1943err_deinit_irq:
1944	ath10k_pci_deinit_irq(ar);
1945err_ce:
1946	ath10k_pci_ce_deinit(ar);
1947	ath10k_pci_warm_reset(ar);
1948err_ps:
1949	if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1950		ath10k_do_pci_sleep(ar);
1951err:
1952	return ret;
1953}
1954
1955static int ath10k_pci_hif_power_up(struct ath10k *ar)
 
1956{
 
1957	int ret;
1958
 
 
 
 
 
 
 
1959	/*
1960	 * Hardware CUS232 version 2 has some issues with cold reset and the
1961	 * preferred (and safer) way to perform a device reset is through a
1962	 * warm reset.
1963	 *
1964	 * Warm reset doesn't always work though (notably after a firmware
1965	 * crash) so fall back to cold reset if necessary.
 
 
 
 
1966	 */
1967	ret = __ath10k_pci_hif_power_up(ar, false);
1968	if (ret) {
1969		ath10k_warn("failed to power up target using warm reset (%d), trying cold reset\n",
1970			    ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972		ret = __ath10k_pci_hif_power_up(ar, true);
1973		if (ret) {
1974			ath10k_err("failed to power up target using cold reset too (%d)\n",
1975				   ret);
1976			return ret;
1977		}
1978	}
1979
1980	return 0;
 
 
 
 
 
 
1981}
1982
1983static void ath10k_pci_hif_power_down(struct ath10k *ar)
1984{
1985	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1986
1987	ath10k_pci_free_early_irq(ar);
1988	ath10k_pci_kill_tasklet(ar);
1989	ath10k_pci_deinit_irq(ar);
1990	ath10k_pci_warm_reset(ar);
1991
1992	ath10k_pci_ce_deinit(ar);
1993	if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1994		ath10k_do_pci_sleep(ar);
 
1995}
1996
1997#ifdef CONFIG_PM
 
 
 
 
 
 
 
 
 
 
1998
1999#define ATH10K_PCI_PM_CONTROL 0x44
 
 
 
 
2000
2001static int ath10k_pci_hif_suspend(struct ath10k *ar)
2002{
2003	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2004	struct pci_dev *pdev = ar_pci->pdev;
2005	u32 val;
 
 
 
 
 
 
 
2006
2007	pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
 
 
 
 
 
 
 
2008
2009	if ((val & 0x000000ff) != 0x3) {
2010		pci_save_state(pdev);
2011		pci_disable_device(pdev);
2012		pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2013				       (val & 0xffffff00) | 0x03);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	}
2015
 
 
 
 
 
 
 
 
 
 
 
 
2016	return 0;
2017}
2018
2019static int ath10k_pci_hif_resume(struct ath10k *ar)
 
2020{
2021	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2022	struct pci_dev *pdev = ar_pci->pdev;
2023	u32 val;
2024
2025	pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
 
2026
2027	if ((val & 0x000000ff) != 0) {
2028		pci_restore_state(pdev);
2029		pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
2030				       val & 0xffffff00);
2031		/*
2032		 * Suspend/Resume resets the PCI configuration space,
2033		 * so we have to re-disable the RETRY_TIMEOUT register (0x41)
2034		 * to keep PCI Tx retries from interfering with C3 CPU state
2035		 */
2036		pci_read_config_dword(pdev, 0x40, &val);
2037
2038		if ((val & 0x0000ff00) != 0)
2039			pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
 
 
2040	}
2041
 
 
 
 
 
 
2042	return 0;
 
 
 
 
 
2043}
2044#endif
2045
2046static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2047	.tx_sg			= ath10k_pci_hif_tx_sg,
 
 
2048	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2049	.start			= ath10k_pci_hif_start,
2050	.stop			= ath10k_pci_hif_stop,
2051	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2052	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2053	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2054	.set_callbacks		= ath10k_pci_hif_set_callbacks,
2055	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2056	.power_up		= ath10k_pci_hif_power_up,
2057	.power_down		= ath10k_pci_hif_power_down,
2058#ifdef CONFIG_PM
 
2059	.suspend		= ath10k_pci_hif_suspend,
2060	.resume			= ath10k_pci_hif_resume,
2061#endif
2062};
2063
2064static void ath10k_pci_ce_tasklet(unsigned long ptr)
2065{
2066	struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2067	struct ath10k_pci *ar_pci = pipe->ar_pci;
2068
2069	ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2070}
2071
2072static void ath10k_msi_err_tasklet(unsigned long data)
2073{
2074	struct ath10k *ar = (struct ath10k *)data;
2075
2076	ath10k_pci_fw_interrupt_handler(ar);
2077}
2078
2079/*
2080 * Handler for a per-engine interrupt on a PARTICULAR CE.
2081 * This is used in cases where each CE has a private MSI interrupt.
2082 */
2083static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2084{
2085	struct ath10k *ar = arg;
2086	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2087	int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2088
2089	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2090		ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
2091		return IRQ_HANDLED;
2092	}
2093
2094	/*
2095	 * NOTE: We are able to derive ce_id from irq because we
2096	 * use a one-to-one mapping for CE's 0..5.
2097	 * CE's 6 & 7 do not use interrupts at all.
2098	 *
2099	 * This mapping must be kept in sync with the mapping
2100	 * used by firmware.
2101	 */
2102	tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2103	return IRQ_HANDLED;
2104}
2105
2106static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2107{
2108	struct ath10k *ar = arg;
2109	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2110
2111	tasklet_schedule(&ar_pci->msi_fw_err);
2112	return IRQ_HANDLED;
2113}
2114
2115/*
2116 * Top-level interrupt handler for all PCI interrupts from a Target.
2117 * When a block of MSI interrupts is allocated, this top-level handler
2118 * is not used; instead, we directly call the correct sub-handler.
2119 */
2120static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2121{
2122	struct ath10k *ar = arg;
2123	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 
2124
2125	if (ar_pci->num_msi_intrs == 0) {
2126		if (!ath10k_pci_irq_pending(ar))
2127			return IRQ_NONE;
2128
2129		ath10k_pci_disable_and_clear_legacy_irq(ar);
 
 
 
2130	}
2131
2132	tasklet_schedule(&ar_pci->intr_tq);
 
 
 
 
 
 
2133
2134	return IRQ_HANDLED;
2135}
2136
2137static void ath10k_pci_early_irq_tasklet(unsigned long data)
2138{
2139	struct ath10k *ar = (struct ath10k *)data;
2140	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2141	u32 fw_ind;
2142	int ret;
2143
2144	ret = ath10k_pci_wake(ar);
2145	if (ret) {
2146		ath10k_warn("failed to wake target in early irq tasklet: %d\n",
2147			    ret);
2148		return;
2149	}
2150
2151	fw_ind = ath10k_pci_read32(ar, ar_pci->fw_indicator_address);
2152	if (fw_ind & FW_IND_EVENT_PENDING) {
2153		ath10k_pci_write32(ar, ar_pci->fw_indicator_address,
2154				   fw_ind & ~FW_IND_EVENT_PENDING);
2155
2156		/* Some structures are unavailable during early boot or at
2157		 * driver teardown so just print that the device has crashed. */
2158		ath10k_warn("device crashed - no diagnostics available\n");
2159	}
2160
2161	ath10k_pci_sleep(ar);
2162	ath10k_pci_enable_legacy_irq(ar);
2163}
2164
2165static void ath10k_pci_tasklet(unsigned long data)
2166{
2167	struct ath10k *ar = (struct ath10k *)data;
2168	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2169
2170	ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
2171	ath10k_ce_per_engine_service_any(ar);
2172
2173	/* Re-enable legacy irq that was disabled in the irq handler */
2174	if (ar_pci->num_msi_intrs == 0)
2175		ath10k_pci_enable_legacy_irq(ar);
2176}
2177
2178static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2179{
2180	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2181	int ret, i;
2182
2183	ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2184			  ath10k_pci_msi_fw_handler,
2185			  IRQF_SHARED, "ath10k_pci", ar);
2186	if (ret) {
2187		ath10k_warn("failed to request MSI-X fw irq %d: %d\n",
2188			    ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2189		return ret;
2190	}
2191
2192	for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2193		ret = request_irq(ar_pci->pdev->irq + i,
2194				  ath10k_pci_per_engine_handler,
2195				  IRQF_SHARED, "ath10k_pci", ar);
2196		if (ret) {
2197			ath10k_warn("failed to request MSI-X ce irq %d: %d\n",
2198				    ar_pci->pdev->irq + i, ret);
2199
2200			for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2201				free_irq(ar_pci->pdev->irq + i, ar);
2202
2203			free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2204			return ret;
2205		}
 
 
2206	}
2207
2208	return 0;
 
2209}
2210
2211static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2212{
2213	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2214	int ret;
2215
2216	ret = request_irq(ar_pci->pdev->irq,
2217			  ath10k_pci_interrupt_handler,
2218			  IRQF_SHARED, "ath10k_pci", ar);
2219	if (ret) {
2220		ath10k_warn("failed to request MSI irq %d: %d\n",
2221			    ar_pci->pdev->irq, ret);
2222		return ret;
2223	}
2224
2225	return 0;
2226}
2227
2228static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2229{
2230	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2231	int ret;
2232
2233	ret = request_irq(ar_pci->pdev->irq,
2234			  ath10k_pci_interrupt_handler,
2235			  IRQF_SHARED, "ath10k_pci", ar);
2236	if (ret) {
2237		ath10k_warn("failed to request legacy irq %d: %d\n",
2238			    ar_pci->pdev->irq, ret);
2239		return ret;
2240	}
2241
2242	return 0;
2243}
2244
2245static int ath10k_pci_request_irq(struct ath10k *ar)
2246{
2247	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2248
2249	switch (ar_pci->num_msi_intrs) {
2250	case 0:
2251		return ath10k_pci_request_irq_legacy(ar);
2252	case 1:
2253		return ath10k_pci_request_irq_msi(ar);
2254	case MSI_NUM_REQUEST:
2255		return ath10k_pci_request_irq_msix(ar);
2256	}
2257
2258	ath10k_warn("unknown irq configuration upon request\n");
2259	return -EINVAL;
2260}
2261
2262static void ath10k_pci_free_irq(struct ath10k *ar)
2263{
2264	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2265	int i;
2266
2267	/* There's at least one interrupt irregardless whether its legacy INTR
2268	 * or MSI or MSI-X */
2269	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2270		free_irq(ar_pci->pdev->irq + i, ar);
2271}
2272
2273static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2274{
2275	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2276	int i;
2277
2278	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2279	tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2280		     (unsigned long)ar);
2281	tasklet_init(&ar_pci->early_irq_tasklet, ath10k_pci_early_irq_tasklet,
2282		     (unsigned long)ar);
2283
2284	for (i = 0; i < CE_COUNT; i++) {
2285		ar_pci->pipe_info[i].ar_pci = ar_pci;
2286		tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2287			     (unsigned long)&ar_pci->pipe_info[i]);
2288	}
2289}
2290
2291static int ath10k_pci_init_irq(struct ath10k *ar)
2292{
2293	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2294	bool msix_supported = test_bit(ATH10K_PCI_FEATURE_MSI_X,
2295				       ar_pci->features);
2296	int ret;
2297
2298	ath10k_pci_init_irq_tasklets(ar);
2299
2300	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO &&
2301	    !test_bit(ATH10K_FLAG_FIRST_BOOT_DONE, &ar->dev_flags))
2302		ath10k_info("limiting irq mode to: %d\n", ath10k_pci_irq_mode);
2303
2304	/* Try MSI-X */
2305	if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO && msix_supported) {
2306		ar_pci->num_msi_intrs = MSI_NUM_REQUEST;
2307		ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2308							 ar_pci->num_msi_intrs);
2309		if (ret > 0)
2310			return 0;
2311
2312		/* fall-through */
2313	}
 
2314
2315	/* Try MSI */
2316	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2317		ar_pci->num_msi_intrs = 1;
2318		ret = pci_enable_msi(ar_pci->pdev);
2319		if (ret == 0)
2320			return 0;
2321
2322		/* fall-through */
2323	}
2324
2325	/* Try legacy irq
2326	 *
2327	 * A potential race occurs here: The CORE_BASE write
2328	 * depends on target correctly decoding AXI address but
2329	 * host won't know when target writes BAR to CORE_CTRL.
2330	 * This write might get lost if target has NOT written BAR.
2331	 * For now, fix the race by repeating the write in below
2332	 * synchronization checking. */
2333	ar_pci->num_msi_intrs = 0;
2334
2335	ret = ath10k_pci_wake(ar);
2336	if (ret) {
2337		ath10k_warn("failed to wake target: %d\n", ret);
2338		return ret;
2339	}
2340
2341	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2342			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2343	ath10k_pci_sleep(ar);
2344
2345	return 0;
2346}
2347
2348static int ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2349{
2350	int ret;
2351
2352	ret = ath10k_pci_wake(ar);
2353	if (ret) {
2354		ath10k_warn("failed to wake target: %d\n", ret);
2355		return ret;
2356	}
2357
2358	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2359			   0);
2360	ath10k_pci_sleep(ar);
2361
2362	return 0;
2363}
2364
2365static int ath10k_pci_deinit_irq(struct ath10k *ar)
2366{
2367	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2368
2369	switch (ar_pci->num_msi_intrs) {
2370	case 0:
2371		return ath10k_pci_deinit_irq_legacy(ar);
2372	case 1:
2373		/* fall-through */
2374	case MSI_NUM_REQUEST:
2375		pci_disable_msi(ar_pci->pdev);
2376		return 0;
2377	default:
2378		pci_disable_msi(ar_pci->pdev);
 
2379	}
2380
2381	ath10k_warn("unknown irq configuration upon deinit\n");
2382	return -EINVAL;
2383}
2384
2385static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2386{
2387	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2388	int wait_limit = 300; /* 3 sec */
2389	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390
2391	ret = ath10k_pci_wake(ar);
2392	if (ret) {
2393		ath10k_err("failed to wake up target: %d\n", ret);
2394		return ret;
2395	}
2396
2397	while (wait_limit-- &&
2398	       !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
2399		 FW_IND_INITIALIZED)) {
2400		if (ar_pci->num_msi_intrs == 0)
2401			/* Fix potential race by repeating CORE_BASE writes */
2402			iowrite32(PCIE_INTR_FIRMWARE_MASK |
2403				  PCIE_INTR_CE_MASK_ALL,
2404				  ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2405						 PCIE_INTR_ENABLE_ADDRESS));
2406		mdelay(10);
 
 
 
 
 
 
 
 
 
 
 
 
 
2407	}
2408
2409	if (wait_limit < 0) {
2410		ath10k_err("target stalled\n");
2411		ret = -EIO;
2412		goto out;
2413	}
2414
2415out:
2416	ath10k_pci_sleep(ar);
2417	return ret;
2418}
2419
2420static int ath10k_pci_cold_reset(struct ath10k *ar)
2421{
2422	int i, ret;
2423	u32 val;
2424
2425	ret = ath10k_do_pci_wake(ar);
2426	if (ret) {
2427		ath10k_err("failed to wake up target: %d\n",
2428			   ret);
2429		return ret;
2430	}
 
2431
2432	/* Put Target, including PCIe, into RESET. */
2433	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2434	val |= 1;
2435	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2436
2437	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2438		if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2439					  RTC_STATE_COLD_RESET_MASK)
2440			break;
2441		msleep(1);
2442	}
2443
2444	/* Pull Target, including PCIe, out of RESET. */
2445	val &= ~1;
2446	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2447
2448	for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2449		if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
2450					    RTC_STATE_COLD_RESET_MASK))
2451			break;
2452		msleep(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2453	}
2454
2455	ath10k_do_pci_sleep(ar);
2456	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457}
2458
2459static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
2460{
 
2461	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2462
2463	for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
2464		if (!test_bit(i, ar_pci->features))
2465			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466
2467		switch (i) {
2468		case ATH10K_PCI_FEATURE_MSI_X:
2469			ath10k_dbg(ATH10K_DBG_BOOT, "device supports MSI-X\n");
2470			break;
2471		case ATH10K_PCI_FEATURE_SOC_POWER_SAVE:
2472			ath10k_dbg(ATH10K_DBG_BOOT, "QCA98XX SoC power save enabled\n");
2473			break;
2474		}
2475	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476}
2477
 
 
 
 
 
 
2478static int ath10k_pci_probe(struct pci_dev *pdev,
2479			    const struct pci_device_id *pci_dev)
2480{
2481	void __iomem *mem;
2482	int ret = 0;
2483	struct ath10k *ar;
2484	struct ath10k_pci *ar_pci;
2485	u32 lcr_val, chip_id;
2486
2487	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2488
2489	ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
2490	if (ar_pci == NULL)
2491		return -ENOMEM;
2492
2493	ar_pci->pdev = pdev;
2494	ar_pci->dev = &pdev->dev;
2495
2496	switch (pci_dev->device) {
 
2497	case QCA988X_2_0_DEVICE_ID:
2498		set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499		break;
2500	default:
2501		ret = -ENODEV;
2502		ath10k_err("Unknown device ID: %d\n", pci_dev->device);
2503		goto err_ar_pci;
2504	}
2505
2506	if (ath10k_target_ps)
2507		set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features);
2508
2509	ath10k_pci_dump_features(ar_pci);
2510
2511	ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
2512	if (!ar) {
2513		ath10k_err("failed to create driver core\n");
2514		ret = -EINVAL;
2515		goto err_ar_pci;
2516	}
2517
 
 
 
 
 
 
 
2518	ar_pci->ar = ar;
2519	ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
2520	atomic_set(&ar_pci->keep_awake_count, 0);
 
 
 
 
 
 
 
 
 
 
2521
2522	pci_set_drvdata(pdev, ar);
2523
2524	/*
2525	 * Without any knowledge of the Host, the Target may have been reset or
2526	 * power cycled and its Config Space may no longer reflect the PCI
2527	 * address space that was assigned earlier by the PCI infrastructure.
2528	 * Refresh it now.
2529	 */
2530	ret = pci_assign_resource(pdev, BAR_NUM);
2531	if (ret) {
2532		ath10k_err("failed to assign PCI space: %d\n", ret);
2533		goto err_ar;
2534	}
2535
2536	ret = pci_enable_device(pdev);
2537	if (ret) {
2538		ath10k_err("failed to enable PCI device: %d\n", ret);
2539		goto err_ar;
2540	}
2541
2542	/* Request MMIO resources */
2543	ret = pci_request_region(pdev, BAR_NUM, "ath");
2544	if (ret) {
2545		ath10k_err("failed to request MMIO region: %d\n", ret);
2546		goto err_device;
2547	}
2548
2549	/*
2550	 * Target structures have a limit of 32 bit DMA pointers.
2551	 * DMA pointers can be wider than 32 bits by default on some systems.
2552	 */
2553	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2554	if (ret) {
2555		ath10k_err("failed to set DMA mask to 32-bit: %d\n", ret);
2556		goto err_region;
2557	}
2558
2559	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
 
 
 
 
2560	if (ret) {
2561		ath10k_err("failed to set consistent DMA mask to 32-bit\n");
2562		goto err_region;
2563	}
2564
2565	/* Set bus master bit in PCI_COMMAND to enable DMA */
2566	pci_set_master(pdev);
2567
2568	/*
2569	 * Temporary FIX: disable ASPM
2570	 * Will be removed after the OTP is programmed
2571	 */
2572	pci_read_config_dword(pdev, 0x80, &lcr_val);
2573	pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
 
 
 
 
 
 
 
 
 
2574
2575	/* Arrange for access to Target SoC registers. */
2576	mem = pci_iomap(pdev, BAR_NUM, 0);
2577	if (!mem) {
2578		ath10k_err("failed to perform IOMAP for BAR%d\n", BAR_NUM);
2579		ret = -EIO;
2580		goto err_master;
2581	}
2582
2583	ar_pci->mem = mem;
 
 
 
 
2584
2585	spin_lock_init(&ar_pci->ce_lock);
 
 
 
2586
2587	ret = ath10k_do_pci_wake(ar);
2588	if (ret) {
2589		ath10k_err("Failed to get chip id: %d\n", ret);
2590		goto err_iomap;
2591	}
2592
2593	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
2594
2595	ath10k_do_pci_sleep(ar);
 
 
2596
2597	ath10k_dbg(ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
 
2598
2599	ret = ath10k_core_register(ar, chip_id);
2600	if (ret) {
2601		ath10k_err("failed to register driver core: %d\n", ret);
2602		goto err_iomap;
2603	}
 
2604
2605	return 0;
 
2606
2607err_iomap:
2608	pci_iounmap(pdev, mem);
2609err_master:
2610	pci_clear_master(pdev);
2611err_region:
2612	pci_release_region(pdev, BAR_NUM);
2613err_device:
2614	pci_disable_device(pdev);
2615err_ar:
2616	ath10k_core_destroy(ar);
2617err_ar_pci:
2618	/* call HIF PCI free here */
2619	kfree(ar_pci);
2620
2621	return ret;
2622}
2623
2624static void ath10k_pci_remove(struct pci_dev *pdev)
2625{
2626	struct ath10k *ar = pci_get_drvdata(pdev);
2627	struct ath10k_pci *ar_pci;
2628
2629	ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2630
2631	if (!ar)
2632		return;
2633
2634	ar_pci = ath10k_pci_priv(ar);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2635
2636	if (!ar_pci)
2637		return;
 
2638
2639	tasklet_kill(&ar_pci->msi_fw_err);
 
2640
2641	ath10k_core_unregister(ar);
 
 
 
2642
2643	pci_iounmap(pdev, ar_pci->mem);
2644	pci_release_region(pdev, BAR_NUM);
2645	pci_clear_master(pdev);
2646	pci_disable_device(pdev);
2647
2648	ath10k_core_destroy(ar);
2649	kfree(ar_pci);
2650}
2651
2652MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
 
 
2653
2654static struct pci_driver ath10k_pci_driver = {
2655	.name = "ath10k_pci",
2656	.id_table = ath10k_pci_id_table,
2657	.probe = ath10k_pci_probe,
2658	.remove = ath10k_pci_remove,
 
 
 
2659};
2660
2661static int __init ath10k_pci_init(void)
2662{
2663	int ret;
 
 
 
 
 
 
 
 
 
2664
2665	ret = pci_register_driver(&ath10k_pci_driver);
2666	if (ret)
2667		ath10k_err("failed to register PCI driver: %d\n", ret);
2668
2669	return ret;
 
2670}
2671module_init(ath10k_pci_init);
2672
2673static void __exit ath10k_pci_exit(void)
2674{
2675	pci_unregister_driver(&ath10k_pci_driver);
 
2676}
2677
2678module_exit(ath10k_pci_exit);
2679
2680MODULE_AUTHOR("Qualcomm Atheros");
2681MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2682MODULE_LICENSE("Dual BSD/GPL");
2683MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2684MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
2685MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);