Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Copyright (C) 2006, 2007 Eugene Konev
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/interrupt.h>
  21#include <linux/moduleparam.h>
  22
  23#include <linux/sched.h>
  24#include <linux/kernel.h>
  25#include <linux/slab.h>
  26#include <linux/errno.h>
  27#include <linux/types.h>
  28#include <linux/delay.h>
  29
  30#include <linux/netdevice.h>
  31#include <linux/if_vlan.h>
  32#include <linux/etherdevice.h>
  33#include <linux/ethtool.h>
  34#include <linux/skbuff.h>
  35#include <linux/mii.h>
  36#include <linux/phy.h>
  37#include <linux/phy_fixed.h>
  38#include <linux/platform_device.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/clk.h>
  41#include <linux/gpio.h>
  42#include <linux/atomic.h>
  43
  44MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
  45MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
  46MODULE_LICENSE("GPL");
  47MODULE_ALIAS("platform:cpmac");
  48
  49static int debug_level = 8;
  50static int dumb_switch;
  51
  52/* Next 2 are only used in cpmac_probe, so it's pointless to change them */
  53module_param(debug_level, int, 0444);
  54module_param(dumb_switch, int, 0444);
  55
  56MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
  57MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
  58
  59#define CPMAC_VERSION "0.5.2"
  60/* frame size + 802.1q tag + FCS size */
  61#define CPMAC_SKB_SIZE		(ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
  62#define CPMAC_QUEUES	8
  63
  64/* Ethernet registers */
  65#define CPMAC_TX_CONTROL		0x0004
  66#define CPMAC_TX_TEARDOWN		0x0008
  67#define CPMAC_RX_CONTROL		0x0014
  68#define CPMAC_RX_TEARDOWN		0x0018
  69#define CPMAC_MBP			0x0100
  70# define MBP_RXPASSCRC			0x40000000
  71# define MBP_RXQOS			0x20000000
  72# define MBP_RXNOCHAIN			0x10000000
  73# define MBP_RXCMF			0x01000000
  74# define MBP_RXSHORT			0x00800000
  75# define MBP_RXCEF			0x00400000
  76# define MBP_RXPROMISC			0x00200000
  77# define MBP_PROMISCCHAN(channel)	(((channel) & 0x7) << 16)
  78# define MBP_RXBCAST			0x00002000
  79# define MBP_BCASTCHAN(channel)		(((channel) & 0x7) << 8)
  80# define MBP_RXMCAST			0x00000020
  81# define MBP_MCASTCHAN(channel)		((channel) & 0x7)
  82#define CPMAC_UNICAST_ENABLE		0x0104
  83#define CPMAC_UNICAST_CLEAR		0x0108
  84#define CPMAC_MAX_LENGTH		0x010c
  85#define CPMAC_BUFFER_OFFSET		0x0110
  86#define CPMAC_MAC_CONTROL		0x0160
  87# define MAC_TXPTYPE			0x00000200
  88# define MAC_TXPACE			0x00000040
  89# define MAC_MII			0x00000020
  90# define MAC_TXFLOW			0x00000010
  91# define MAC_RXFLOW			0x00000008
  92# define MAC_MTEST			0x00000004
  93# define MAC_LOOPBACK			0x00000002
  94# define MAC_FDX			0x00000001
  95#define CPMAC_MAC_STATUS		0x0164
  96# define MAC_STATUS_QOS			0x00000004
  97# define MAC_STATUS_RXFLOW		0x00000002
  98# define MAC_STATUS_TXFLOW		0x00000001
  99#define CPMAC_TX_INT_ENABLE		0x0178
 100#define CPMAC_TX_INT_CLEAR		0x017c
 101#define CPMAC_MAC_INT_VECTOR		0x0180
 102# define MAC_INT_STATUS			0x00080000
 103# define MAC_INT_HOST			0x00040000
 104# define MAC_INT_RX			0x00020000
 105# define MAC_INT_TX			0x00010000
 106#define CPMAC_MAC_EOI_VECTOR		0x0184
 107#define CPMAC_RX_INT_ENABLE		0x0198
 108#define CPMAC_RX_INT_CLEAR		0x019c
 109#define CPMAC_MAC_INT_ENABLE		0x01a8
 110#define CPMAC_MAC_INT_CLEAR		0x01ac
 111#define CPMAC_MAC_ADDR_LO(channel)	(0x01b0 + (channel) * 4)
 112#define CPMAC_MAC_ADDR_MID		0x01d0
 113#define CPMAC_MAC_ADDR_HI		0x01d4
 114#define CPMAC_MAC_HASH_LO		0x01d8
 115#define CPMAC_MAC_HASH_HI		0x01dc
 116#define CPMAC_TX_PTR(channel)		(0x0600 + (channel) * 4)
 117#define CPMAC_RX_PTR(channel)		(0x0620 + (channel) * 4)
 118#define CPMAC_TX_ACK(channel)		(0x0640 + (channel) * 4)
 119#define CPMAC_RX_ACK(channel)		(0x0660 + (channel) * 4)
 120#define CPMAC_REG_END			0x0680
 121/*
 122 * Rx/Tx statistics
 123 * TODO: use some of them to fill stats in cpmac_stats()
 124 */
 125#define CPMAC_STATS_RX_GOOD		0x0200
 126#define CPMAC_STATS_RX_BCAST		0x0204
 127#define CPMAC_STATS_RX_MCAST		0x0208
 128#define CPMAC_STATS_RX_PAUSE		0x020c
 129#define CPMAC_STATS_RX_CRC		0x0210
 130#define CPMAC_STATS_RX_ALIGN		0x0214
 131#define CPMAC_STATS_RX_OVER		0x0218
 132#define CPMAC_STATS_RX_JABBER		0x021c
 133#define CPMAC_STATS_RX_UNDER		0x0220
 134#define CPMAC_STATS_RX_FRAG		0x0224
 135#define CPMAC_STATS_RX_FILTER		0x0228
 136#define CPMAC_STATS_RX_QOSFILTER	0x022c
 137#define CPMAC_STATS_RX_OCTETS		0x0230
 138
 139#define CPMAC_STATS_TX_GOOD		0x0234
 140#define CPMAC_STATS_TX_BCAST		0x0238
 141#define CPMAC_STATS_TX_MCAST		0x023c
 142#define CPMAC_STATS_TX_PAUSE		0x0240
 143#define CPMAC_STATS_TX_DEFER		0x0244
 144#define CPMAC_STATS_TX_COLLISION	0x0248
 145#define CPMAC_STATS_TX_SINGLECOLL	0x024c
 146#define CPMAC_STATS_TX_MULTICOLL	0x0250
 147#define CPMAC_STATS_TX_EXCESSCOLL	0x0254
 148#define CPMAC_STATS_TX_LATECOLL		0x0258
 149#define CPMAC_STATS_TX_UNDERRUN		0x025c
 150#define CPMAC_STATS_TX_CARRIERSENSE	0x0260
 151#define CPMAC_STATS_TX_OCTETS		0x0264
 152
 153#define cpmac_read(base, reg)		(readl((void __iomem *)(base) + (reg)))
 154#define cpmac_write(base, reg, val)	(writel(val, (void __iomem *)(base) + \
 155						(reg)))
 156
 157/* MDIO bus */
 158#define CPMAC_MDIO_VERSION		0x0000
 159#define CPMAC_MDIO_CONTROL		0x0004
 160# define MDIOC_IDLE			0x80000000
 161# define MDIOC_ENABLE			0x40000000
 162# define MDIOC_PREAMBLE			0x00100000
 163# define MDIOC_FAULT			0x00080000
 164# define MDIOC_FAULTDETECT		0x00040000
 165# define MDIOC_INTTEST			0x00020000
 166# define MDIOC_CLKDIV(div)		((div) & 0xff)
 167#define CPMAC_MDIO_ALIVE		0x0008
 168#define CPMAC_MDIO_LINK			0x000c
 169#define CPMAC_MDIO_ACCESS(channel)	(0x0080 + (channel) * 8)
 170# define MDIO_BUSY			0x80000000
 171# define MDIO_WRITE			0x40000000
 172# define MDIO_REG(reg)			(((reg) & 0x1f) << 21)
 173# define MDIO_PHY(phy)			(((phy) & 0x1f) << 16)
 174# define MDIO_DATA(data)		((data) & 0xffff)
 175#define CPMAC_MDIO_PHYSEL(channel)	(0x0084 + (channel) * 8)
 176# define PHYSEL_LINKSEL			0x00000040
 177# define PHYSEL_LINKINT			0x00000020
 178
 179struct cpmac_desc {
 180	u32 hw_next;
 181	u32 hw_data;
 182	u16 buflen;
 183	u16 bufflags;
 184	u16 datalen;
 185	u16 dataflags;
 186#define CPMAC_SOP			0x8000
 187#define CPMAC_EOP			0x4000
 188#define CPMAC_OWN			0x2000
 189#define CPMAC_EOQ			0x1000
 190	struct sk_buff *skb;
 191	struct cpmac_desc *next;
 192	struct cpmac_desc *prev;
 193	dma_addr_t mapping;
 194	dma_addr_t data_mapping;
 195};
 196
 197struct cpmac_priv {
 198	spinlock_t lock;
 199	spinlock_t rx_lock;
 200	struct cpmac_desc *rx_head;
 201	int ring_size;
 202	struct cpmac_desc *desc_ring;
 203	dma_addr_t dma_ring;
 204	void __iomem *regs;
 205	struct mii_bus *mii_bus;
 206	struct phy_device *phy;
 207	char phy_name[MII_BUS_ID_SIZE + 3];
 208	int oldlink, oldspeed, oldduplex;
 209	u32 msg_enable;
 210	struct net_device *dev;
 211	struct work_struct reset_work;
 212	struct platform_device *pdev;
 213	struct napi_struct napi;
 214	atomic_t reset_pending;
 215};
 216
 217static irqreturn_t cpmac_irq(int, void *);
 218static void cpmac_hw_start(struct net_device *dev);
 219static void cpmac_hw_stop(struct net_device *dev);
 220static int cpmac_stop(struct net_device *dev);
 221static int cpmac_open(struct net_device *dev);
 222
 223static void cpmac_dump_regs(struct net_device *dev)
 224{
 225	int i;
 226	struct cpmac_priv *priv = netdev_priv(dev);
 227	for (i = 0; i < CPMAC_REG_END; i += 4) {
 228		if (i % 16 == 0) {
 229			if (i)
 230				pr_cont("\n");
 231			printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
 232			       priv->regs + i);
 233		}
 234		printk(" %08x", cpmac_read(priv->regs, i));
 235	}
 236	printk("\n");
 237}
 238
 239static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
 240{
 241	int i;
 242	printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
 243	for (i = 0; i < sizeof(*desc) / 4; i++)
 244		printk(" %08x", ((u32 *)desc)[i]);
 245	printk("\n");
 246}
 247
 248static void cpmac_dump_all_desc(struct net_device *dev)
 249{
 250	struct cpmac_priv *priv = netdev_priv(dev);
 251	struct cpmac_desc *dump = priv->rx_head;
 252	do {
 253		cpmac_dump_desc(dev, dump);
 254		dump = dump->next;
 255	} while (dump != priv->rx_head);
 256}
 257
 258static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
 259{
 260	int i;
 261	printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
 262	for (i = 0; i < skb->len; i++) {
 263		if (i % 16 == 0) {
 264			if (i)
 265				pr_cont("\n");
 266			printk(KERN_DEBUG "%s: data[%p]:", dev->name,
 267			       skb->data + i);
 268		}
 269		printk(" %02x", ((u8 *)skb->data)[i]);
 270	}
 271	printk("\n");
 272}
 273
 274static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
 275{
 276	u32 val;
 277
 278	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
 279		cpu_relax();
 280	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
 281		    MDIO_PHY(phy_id));
 282	while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
 283		cpu_relax();
 284	return MDIO_DATA(val);
 285}
 286
 287static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
 288			    int reg, u16 val)
 289{
 290	while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
 291		cpu_relax();
 292	cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
 293		    MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
 294	return 0;
 295}
 296
 297static int cpmac_mdio_reset(struct mii_bus *bus)
 298{
 299	struct clk *cpmac_clk;
 300
 301	cpmac_clk = clk_get(&bus->dev, "cpmac");
 302	if (IS_ERR(cpmac_clk)) {
 303		printk(KERN_ERR "unable to get cpmac clock\n");
 304		return -1;
 305	}
 306	ar7_device_reset(AR7_RESET_BIT_MDIO);
 307	cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
 308		    MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
 309	return 0;
 310}
 311
 312static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
 313
 314static struct mii_bus *cpmac_mii;
 315
 316static int cpmac_config(struct net_device *dev, struct ifmap *map)
 317{
 318	if (dev->flags & IFF_UP)
 319		return -EBUSY;
 320
 321	/* Don't allow changing the I/O address */
 322	if (map->base_addr != dev->base_addr)
 323		return -EOPNOTSUPP;
 324
 325	/* ignore other fields */
 326	return 0;
 327}
 328
 329static void cpmac_set_multicast_list(struct net_device *dev)
 330{
 331	struct netdev_hw_addr *ha;
 332	u8 tmp;
 333	u32 mbp, bit, hash[2] = { 0, };
 334	struct cpmac_priv *priv = netdev_priv(dev);
 335
 336	mbp = cpmac_read(priv->regs, CPMAC_MBP);
 337	if (dev->flags & IFF_PROMISC) {
 338		cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
 339			    MBP_RXPROMISC);
 340	} else {
 341		cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
 342		if (dev->flags & IFF_ALLMULTI) {
 343			/* enable all multicast mode */
 344			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
 345			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
 346		} else {
 347			/*
 348			 * cpmac uses some strange mac address hashing
 349			 * (not crc32)
 350			 */
 351			netdev_for_each_mc_addr(ha, dev) {
 352				bit = 0;
 353				tmp = ha->addr[0];
 354				bit  ^= (tmp >> 2) ^ (tmp << 4);
 355				tmp = ha->addr[1];
 356				bit  ^= (tmp >> 4) ^ (tmp << 2);
 357				tmp = ha->addr[2];
 358				bit  ^= (tmp >> 6) ^ tmp;
 359				tmp = ha->addr[3];
 360				bit  ^= (tmp >> 2) ^ (tmp << 4);
 361				tmp = ha->addr[4];
 362				bit  ^= (tmp >> 4) ^ (tmp << 2);
 363				tmp = ha->addr[5];
 364				bit  ^= (tmp >> 6) ^ tmp;
 365				bit &= 0x3f;
 366				hash[bit / 32] |= 1 << (bit % 32);
 367			}
 368
 369			cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
 370			cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
 371		}
 372	}
 373}
 374
 375static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
 376				    struct cpmac_desc *desc)
 377{
 378	struct sk_buff *skb, *result = NULL;
 379
 380	if (unlikely(netif_msg_hw(priv)))
 381		cpmac_dump_desc(priv->dev, desc);
 382	cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
 383	if (unlikely(!desc->datalen)) {
 384		if (netif_msg_rx_err(priv) && net_ratelimit())
 385			printk(KERN_WARNING "%s: rx: spurious interrupt\n",
 386			       priv->dev->name);
 387		return NULL;
 388	}
 389
 390	skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
 391	if (likely(skb)) {
 392		skb_put(desc->skb, desc->datalen);
 393		desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
 394		skb_checksum_none_assert(desc->skb);
 395		priv->dev->stats.rx_packets++;
 396		priv->dev->stats.rx_bytes += desc->datalen;
 397		result = desc->skb;
 398		dma_unmap_single(&priv->dev->dev, desc->data_mapping,
 399				 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
 400		desc->skb = skb;
 401		desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
 402						    CPMAC_SKB_SIZE,
 403						    DMA_FROM_DEVICE);
 404		desc->hw_data = (u32)desc->data_mapping;
 405		if (unlikely(netif_msg_pktdata(priv))) {
 406			printk(KERN_DEBUG "%s: received packet:\n",
 407			       priv->dev->name);
 408			cpmac_dump_skb(priv->dev, result);
 409		}
 410	} else {
 411		if (netif_msg_rx_err(priv) && net_ratelimit())
 412			printk(KERN_WARNING
 413			       "%s: low on skbs, dropping packet\n",
 414			       priv->dev->name);
 415		priv->dev->stats.rx_dropped++;
 416	}
 417
 418	desc->buflen = CPMAC_SKB_SIZE;
 419	desc->dataflags = CPMAC_OWN;
 420
 421	return result;
 422}
 423
 424static int cpmac_poll(struct napi_struct *napi, int budget)
 425{
 426	struct sk_buff *skb;
 427	struct cpmac_desc *desc, *restart;
 428	struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
 429	int received = 0, processed = 0;
 430
 431	spin_lock(&priv->rx_lock);
 432	if (unlikely(!priv->rx_head)) {
 433		if (netif_msg_rx_err(priv) && net_ratelimit())
 434			printk(KERN_WARNING "%s: rx: polling, but no queue\n",
 435			       priv->dev->name);
 436		spin_unlock(&priv->rx_lock);
 437		napi_complete(napi);
 438		return 0;
 439	}
 440
 441	desc = priv->rx_head;
 442	restart = NULL;
 443	while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
 444		processed++;
 445
 446		if ((desc->dataflags & CPMAC_EOQ) != 0) {
 447			/* The last update to eoq->hw_next didn't happen
 448			* soon enough, and the receiver stopped here.
 449			*Remember this descriptor so we can restart
 450			* the receiver after freeing some space.
 451			*/
 452			if (unlikely(restart)) {
 453				if (netif_msg_rx_err(priv))
 454					printk(KERN_ERR "%s: poll found a"
 455						" duplicate EOQ: %p and %p\n",
 456						priv->dev->name, restart, desc);
 457				goto fatal_error;
 458			}
 459
 460			restart = desc->next;
 461		}
 462
 463		skb = cpmac_rx_one(priv, desc);
 464		if (likely(skb)) {
 465			netif_receive_skb(skb);
 466			received++;
 467		}
 468		desc = desc->next;
 469	}
 470
 471	if (desc != priv->rx_head) {
 472		/* We freed some buffers, but not the whole ring,
 473		 * add what we did free to the rx list */
 474		desc->prev->hw_next = (u32)0;
 475		priv->rx_head->prev->hw_next = priv->rx_head->mapping;
 476	}
 477
 478	/* Optimization: If we did not actually process an EOQ (perhaps because
 479	 * of quota limits), check to see if the tail of the queue has EOQ set.
 480	* We should immediately restart in that case so that the receiver can
 481	* restart and run in parallel with more packet processing.
 482	* This lets us handle slightly larger bursts before running
 483	* out of ring space (assuming dev->weight < ring_size) */
 484
 485	if (!restart &&
 486	     (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
 487		    == CPMAC_EOQ &&
 488	     (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
 489		/* reset EOQ so the poll loop (above) doesn't try to
 490		* restart this when it eventually gets to this descriptor.
 491		*/
 492		priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
 493		restart = priv->rx_head;
 494	}
 495
 496	if (restart) {
 497		priv->dev->stats.rx_errors++;
 498		priv->dev->stats.rx_fifo_errors++;
 499		if (netif_msg_rx_err(priv) && net_ratelimit())
 500			printk(KERN_WARNING "%s: rx dma ring overrun\n",
 501			       priv->dev->name);
 502
 503		if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
 504			if (netif_msg_drv(priv))
 505				printk(KERN_ERR "%s: cpmac_poll is trying to "
 506					"restart rx from a descriptor that's "
 507					"not free: %p\n",
 508					priv->dev->name, restart);
 509			goto fatal_error;
 510		}
 511
 512		cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
 513	}
 514
 515	priv->rx_head = desc;
 516	spin_unlock(&priv->rx_lock);
 517	if (unlikely(netif_msg_rx_status(priv)))
 518		printk(KERN_DEBUG "%s: poll processed %d packets\n",
 519		       priv->dev->name, received);
 520	if (processed == 0) {
 521		/* we ran out of packets to read,
 522		 * revert to interrupt-driven mode */
 523		napi_complete(napi);
 524		cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
 525		return 0;
 526	}
 527
 528	return 1;
 529
 530fatal_error:
 531	/* Something went horribly wrong.
 532	 * Reset hardware to try to recover rather than wedging. */
 533
 534	if (netif_msg_drv(priv)) {
 535		printk(KERN_ERR "%s: cpmac_poll is confused. "
 536				"Resetting hardware\n", priv->dev->name);
 537		cpmac_dump_all_desc(priv->dev);
 538		printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
 539			priv->dev->name,
 540			cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
 541			cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
 542	}
 543
 544	spin_unlock(&priv->rx_lock);
 545	napi_complete(napi);
 546	netif_tx_stop_all_queues(priv->dev);
 547	napi_disable(&priv->napi);
 548
 549	atomic_inc(&priv->reset_pending);
 550	cpmac_hw_stop(priv->dev);
 551	if (!schedule_work(&priv->reset_work))
 552		atomic_dec(&priv->reset_pending);
 553	return 0;
 554
 555}
 556
 557static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
 558{
 559	int queue, len;
 560	struct cpmac_desc *desc;
 561	struct cpmac_priv *priv = netdev_priv(dev);
 562
 563	if (unlikely(atomic_read(&priv->reset_pending)))
 564		return NETDEV_TX_BUSY;
 565
 566	if (unlikely(skb_padto(skb, ETH_ZLEN)))
 567		return NETDEV_TX_OK;
 568
 569	len = max(skb->len, ETH_ZLEN);
 570	queue = skb_get_queue_mapping(skb);
 571	netif_stop_subqueue(dev, queue);
 572
 573	desc = &priv->desc_ring[queue];
 574	if (unlikely(desc->dataflags & CPMAC_OWN)) {
 575		if (netif_msg_tx_err(priv) && net_ratelimit())
 576			printk(KERN_WARNING "%s: tx dma ring full\n",
 577			       dev->name);
 578		return NETDEV_TX_BUSY;
 579	}
 580
 581	spin_lock(&priv->lock);
 582	spin_unlock(&priv->lock);
 583	desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
 584	desc->skb = skb;
 585	desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
 586					    DMA_TO_DEVICE);
 587	desc->hw_data = (u32)desc->data_mapping;
 588	desc->datalen = len;
 589	desc->buflen = len;
 590	if (unlikely(netif_msg_tx_queued(priv)))
 591		printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
 592		       skb->len);
 593	if (unlikely(netif_msg_hw(priv)))
 594		cpmac_dump_desc(dev, desc);
 595	if (unlikely(netif_msg_pktdata(priv)))
 596		cpmac_dump_skb(dev, skb);
 597	cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
 598
 599	return NETDEV_TX_OK;
 600}
 601
 602static void cpmac_end_xmit(struct net_device *dev, int queue)
 603{
 604	struct cpmac_desc *desc;
 605	struct cpmac_priv *priv = netdev_priv(dev);
 606
 607	desc = &priv->desc_ring[queue];
 608	cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
 609	if (likely(desc->skb)) {
 610		spin_lock(&priv->lock);
 611		dev->stats.tx_packets++;
 612		dev->stats.tx_bytes += desc->skb->len;
 613		spin_unlock(&priv->lock);
 614		dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
 615				 DMA_TO_DEVICE);
 616
 617		if (unlikely(netif_msg_tx_done(priv)))
 618			printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
 619			       desc->skb, desc->skb->len);
 620
 621		dev_kfree_skb_irq(desc->skb);
 622		desc->skb = NULL;
 623		if (__netif_subqueue_stopped(dev, queue))
 624			netif_wake_subqueue(dev, queue);
 625	} else {
 626		if (netif_msg_tx_err(priv) && net_ratelimit())
 627			printk(KERN_WARNING
 628			       "%s: end_xmit: spurious interrupt\n", dev->name);
 629		if (__netif_subqueue_stopped(dev, queue))
 630			netif_wake_subqueue(dev, queue);
 631	}
 632}
 633
 634static void cpmac_hw_stop(struct net_device *dev)
 635{
 636	int i;
 637	struct cpmac_priv *priv = netdev_priv(dev);
 638	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
 639
 640	ar7_device_reset(pdata->reset_bit);
 641	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
 642		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
 643	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
 644		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
 645	for (i = 0; i < 8; i++) {
 646		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
 647		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
 648	}
 649	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
 650	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
 651	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
 652	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
 653	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
 654		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
 655}
 656
 657static void cpmac_hw_start(struct net_device *dev)
 658{
 659	int i;
 660	struct cpmac_priv *priv = netdev_priv(dev);
 661	struct plat_cpmac_data *pdata = dev_get_platdata(&priv->pdev->dev);
 662
 663	ar7_device_reset(pdata->reset_bit);
 664	for (i = 0; i < 8; i++) {
 665		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
 666		cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
 667	}
 668	cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
 669
 670	cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
 671		    MBP_RXMCAST);
 672	cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
 673	for (i = 0; i < 8; i++)
 674		cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
 675	cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
 676	cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
 677		    (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
 678		    (dev->dev_addr[3] << 24));
 679	cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
 680	cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
 681	cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
 682	cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
 683	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
 684	cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
 685	cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
 686	cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
 687	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
 688
 689	cpmac_write(priv->regs, CPMAC_RX_CONTROL,
 690		    cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
 691	cpmac_write(priv->regs, CPMAC_TX_CONTROL,
 692		    cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
 693	cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
 694		    cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
 695		    MAC_FDX);
 696}
 697
 698static void cpmac_clear_rx(struct net_device *dev)
 699{
 700	struct cpmac_priv *priv = netdev_priv(dev);
 701	struct cpmac_desc *desc;
 702	int i;
 703	if (unlikely(!priv->rx_head))
 704		return;
 705	desc = priv->rx_head;
 706	for (i = 0; i < priv->ring_size; i++) {
 707		if ((desc->dataflags & CPMAC_OWN) == 0) {
 708			if (netif_msg_rx_err(priv) && net_ratelimit())
 709				printk(KERN_WARNING "%s: packet dropped\n",
 710				       dev->name);
 711			if (unlikely(netif_msg_hw(priv)))
 712				cpmac_dump_desc(dev, desc);
 713			desc->dataflags = CPMAC_OWN;
 714			dev->stats.rx_dropped++;
 715		}
 716		desc->hw_next = desc->next->mapping;
 717		desc = desc->next;
 718	}
 719	priv->rx_head->prev->hw_next = 0;
 720}
 721
 722static void cpmac_clear_tx(struct net_device *dev)
 723{
 724	struct cpmac_priv *priv = netdev_priv(dev);
 725	int i;
 726	if (unlikely(!priv->desc_ring))
 727		return;
 728	for (i = 0; i < CPMAC_QUEUES; i++) {
 729		priv->desc_ring[i].dataflags = 0;
 730		if (priv->desc_ring[i].skb) {
 731			dev_kfree_skb_any(priv->desc_ring[i].skb);
 732			priv->desc_ring[i].skb = NULL;
 733		}
 734	}
 735}
 736
 737static void cpmac_hw_error(struct work_struct *work)
 738{
 739	struct cpmac_priv *priv =
 740		container_of(work, struct cpmac_priv, reset_work);
 741
 742	spin_lock(&priv->rx_lock);
 743	cpmac_clear_rx(priv->dev);
 744	spin_unlock(&priv->rx_lock);
 745	cpmac_clear_tx(priv->dev);
 746	cpmac_hw_start(priv->dev);
 747	barrier();
 748	atomic_dec(&priv->reset_pending);
 749
 750	netif_tx_wake_all_queues(priv->dev);
 751	cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
 752}
 753
 754static void cpmac_check_status(struct net_device *dev)
 755{
 756	struct cpmac_priv *priv = netdev_priv(dev);
 757
 758	u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
 759	int rx_channel = (macstatus >> 8) & 7;
 760	int rx_code = (macstatus >> 12) & 15;
 761	int tx_channel = (macstatus >> 16) & 7;
 762	int tx_code = (macstatus >> 20) & 15;
 763
 764	if (rx_code || tx_code) {
 765		if (netif_msg_drv(priv) && net_ratelimit()) {
 766			/* Can't find any documentation on what these
 767			 *error codes actually are. So just log them and hope..
 768			 */
 769			if (rx_code)
 770				printk(KERN_WARNING "%s: host error %d on rx "
 771				     "channel %d (macstatus %08x), resetting\n",
 772				     dev->name, rx_code, rx_channel, macstatus);
 773			if (tx_code)
 774				printk(KERN_WARNING "%s: host error %d on tx "
 775				     "channel %d (macstatus %08x), resetting\n",
 776				     dev->name, tx_code, tx_channel, macstatus);
 777		}
 778
 779		netif_tx_stop_all_queues(dev);
 780		cpmac_hw_stop(dev);
 781		if (schedule_work(&priv->reset_work))
 782			atomic_inc(&priv->reset_pending);
 783		if (unlikely(netif_msg_hw(priv)))
 784			cpmac_dump_regs(dev);
 785	}
 786	cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
 787}
 788
 789static irqreturn_t cpmac_irq(int irq, void *dev_id)
 790{
 791	struct net_device *dev = dev_id;
 792	struct cpmac_priv *priv;
 793	int queue;
 794	u32 status;
 795
 796	priv = netdev_priv(dev);
 797
 798	status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
 799
 800	if (unlikely(netif_msg_intr(priv)))
 801		printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
 802		       status);
 803
 804	if (status & MAC_INT_TX)
 805		cpmac_end_xmit(dev, (status & 7));
 806
 807	if (status & MAC_INT_RX) {
 808		queue = (status >> 8) & 7;
 809		if (napi_schedule_prep(&priv->napi)) {
 810			cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
 811			__napi_schedule(&priv->napi);
 812		}
 813	}
 814
 815	cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
 816
 817	if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
 818		cpmac_check_status(dev);
 819
 820	return IRQ_HANDLED;
 821}
 822
 823static void cpmac_tx_timeout(struct net_device *dev)
 824{
 825	struct cpmac_priv *priv = netdev_priv(dev);
 826
 827	spin_lock(&priv->lock);
 828	dev->stats.tx_errors++;
 829	spin_unlock(&priv->lock);
 830	if (netif_msg_tx_err(priv) && net_ratelimit())
 831		printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
 832
 833	atomic_inc(&priv->reset_pending);
 834	barrier();
 835	cpmac_clear_tx(dev);
 836	barrier();
 837	atomic_dec(&priv->reset_pending);
 838
 839	netif_tx_wake_all_queues(priv->dev);
 840}
 841
 842static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
 843{
 844	struct cpmac_priv *priv = netdev_priv(dev);
 845	if (!(netif_running(dev)))
 846		return -EINVAL;
 847	if (!priv->phy)
 848		return -EINVAL;
 849
 850	return phy_mii_ioctl(priv->phy, ifr, cmd);
 851}
 852
 853static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 854{
 855	struct cpmac_priv *priv = netdev_priv(dev);
 856
 857	if (priv->phy)
 858		return phy_ethtool_gset(priv->phy, cmd);
 859
 860	return -EINVAL;
 861}
 862
 863static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 864{
 865	struct cpmac_priv *priv = netdev_priv(dev);
 866
 867	if (!capable(CAP_NET_ADMIN))
 868		return -EPERM;
 869
 870	if (priv->phy)
 871		return phy_ethtool_sset(priv->phy, cmd);
 872
 873	return -EINVAL;
 874}
 875
 876static void cpmac_get_ringparam(struct net_device *dev,
 877						struct ethtool_ringparam *ring)
 878{
 879	struct cpmac_priv *priv = netdev_priv(dev);
 880
 881	ring->rx_max_pending = 1024;
 882	ring->rx_mini_max_pending = 1;
 883	ring->rx_jumbo_max_pending = 1;
 884	ring->tx_max_pending = 1;
 885
 886	ring->rx_pending = priv->ring_size;
 887	ring->rx_mini_pending = 1;
 888	ring->rx_jumbo_pending = 1;
 889	ring->tx_pending = 1;
 890}
 891
 892static int cpmac_set_ringparam(struct net_device *dev,
 893						struct ethtool_ringparam *ring)
 894{
 895	struct cpmac_priv *priv = netdev_priv(dev);
 896
 897	if (netif_running(dev))
 898		return -EBUSY;
 899	priv->ring_size = ring->rx_pending;
 900	return 0;
 901}
 902
 903static void cpmac_get_drvinfo(struct net_device *dev,
 904			      struct ethtool_drvinfo *info)
 905{
 906	strlcpy(info->driver, "cpmac", sizeof(info->driver));
 907	strlcpy(info->version, CPMAC_VERSION, sizeof(info->version));
 908	snprintf(info->bus_info, sizeof(info->bus_info), "%s", "cpmac");
 909	info->regdump_len = 0;
 910}
 911
 912static const struct ethtool_ops cpmac_ethtool_ops = {
 913	.get_settings = cpmac_get_settings,
 914	.set_settings = cpmac_set_settings,
 915	.get_drvinfo = cpmac_get_drvinfo,
 916	.get_link = ethtool_op_get_link,
 917	.get_ringparam = cpmac_get_ringparam,
 918	.set_ringparam = cpmac_set_ringparam,
 919};
 920
 921static void cpmac_adjust_link(struct net_device *dev)
 922{
 923	struct cpmac_priv *priv = netdev_priv(dev);
 924	int new_state = 0;
 925
 926	spin_lock(&priv->lock);
 927	if (priv->phy->link) {
 928		netif_tx_start_all_queues(dev);
 929		if (priv->phy->duplex != priv->oldduplex) {
 930			new_state = 1;
 931			priv->oldduplex = priv->phy->duplex;
 932		}
 933
 934		if (priv->phy->speed != priv->oldspeed) {
 935			new_state = 1;
 936			priv->oldspeed = priv->phy->speed;
 937		}
 938
 939		if (!priv->oldlink) {
 940			new_state = 1;
 941			priv->oldlink = 1;
 942		}
 943	} else if (priv->oldlink) {
 944		new_state = 1;
 945		priv->oldlink = 0;
 946		priv->oldspeed = 0;
 947		priv->oldduplex = -1;
 948	}
 949
 950	if (new_state && netif_msg_link(priv) && net_ratelimit())
 951		phy_print_status(priv->phy);
 952
 953	spin_unlock(&priv->lock);
 954}
 955
 956static int cpmac_open(struct net_device *dev)
 957{
 958	int i, size, res;
 959	struct cpmac_priv *priv = netdev_priv(dev);
 960	struct resource *mem;
 961	struct cpmac_desc *desc;
 962	struct sk_buff *skb;
 963
 964	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
 965	if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
 966		if (netif_msg_drv(priv))
 967			printk(KERN_ERR "%s: failed to request registers\n",
 968			       dev->name);
 969		res = -ENXIO;
 970		goto fail_reserve;
 971	}
 972
 973	priv->regs = ioremap(mem->start, resource_size(mem));
 974	if (!priv->regs) {
 975		if (netif_msg_drv(priv))
 976			printk(KERN_ERR "%s: failed to remap registers\n",
 977			       dev->name);
 978		res = -ENXIO;
 979		goto fail_remap;
 980	}
 981
 982	size = priv->ring_size + CPMAC_QUEUES;
 983	priv->desc_ring = dma_alloc_coherent(&dev->dev,
 984					     sizeof(struct cpmac_desc) * size,
 985					     &priv->dma_ring,
 986					     GFP_KERNEL);
 987	if (!priv->desc_ring) {
 988		res = -ENOMEM;
 989		goto fail_alloc;
 990	}
 991
 992	for (i = 0; i < size; i++)
 993		priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
 994
 995	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
 996	for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
 997		skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
 998		if (unlikely(!skb)) {
 999			res = -ENOMEM;
1000			goto fail_desc;
1001		}
1002		desc->skb = skb;
1003		desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1004						    CPMAC_SKB_SIZE,
1005						    DMA_FROM_DEVICE);
1006		desc->hw_data = (u32)desc->data_mapping;
1007		desc->buflen = CPMAC_SKB_SIZE;
1008		desc->dataflags = CPMAC_OWN;
1009		desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1010		desc->next->prev = desc;
1011		desc->hw_next = (u32)desc->next->mapping;
1012	}
1013
1014	priv->rx_head->prev->hw_next = (u32)0;
1015
1016	res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1017	if (res) {
1018		if (netif_msg_drv(priv))
1019			printk(KERN_ERR "%s: failed to obtain irq\n",
1020			       dev->name);
1021		goto fail_irq;
1022	}
1023
1024	atomic_set(&priv->reset_pending, 0);
1025	INIT_WORK(&priv->reset_work, cpmac_hw_error);
1026	cpmac_hw_start(dev);
1027
1028	napi_enable(&priv->napi);
1029	priv->phy->state = PHY_CHANGELINK;
1030	phy_start(priv->phy);
1031
1032	return 0;
1033
1034fail_irq:
1035fail_desc:
1036	for (i = 0; i < priv->ring_size; i++) {
1037		if (priv->rx_head[i].skb) {
1038			dma_unmap_single(&dev->dev,
1039					 priv->rx_head[i].data_mapping,
1040					 CPMAC_SKB_SIZE,
1041					 DMA_FROM_DEVICE);
1042			kfree_skb(priv->rx_head[i].skb);
1043		}
1044	}
1045fail_alloc:
1046	kfree(priv->desc_ring);
1047	iounmap(priv->regs);
1048
1049fail_remap:
1050	release_mem_region(mem->start, resource_size(mem));
1051
1052fail_reserve:
1053	return res;
1054}
1055
1056static int cpmac_stop(struct net_device *dev)
1057{
1058	int i;
1059	struct cpmac_priv *priv = netdev_priv(dev);
1060	struct resource *mem;
1061
1062	netif_tx_stop_all_queues(dev);
1063
1064	cancel_work_sync(&priv->reset_work);
1065	napi_disable(&priv->napi);
1066	phy_stop(priv->phy);
1067
1068	cpmac_hw_stop(dev);
1069
1070	for (i = 0; i < 8; i++)
1071		cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1072	cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1073	cpmac_write(priv->regs, CPMAC_MBP, 0);
1074
1075	free_irq(dev->irq, dev);
1076	iounmap(priv->regs);
1077	mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1078	release_mem_region(mem->start, resource_size(mem));
1079	priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1080	for (i = 0; i < priv->ring_size; i++) {
1081		if (priv->rx_head[i].skb) {
1082			dma_unmap_single(&dev->dev,
1083					 priv->rx_head[i].data_mapping,
1084					 CPMAC_SKB_SIZE,
1085					 DMA_FROM_DEVICE);
1086			kfree_skb(priv->rx_head[i].skb);
1087		}
1088	}
1089
1090	dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1091			  (CPMAC_QUEUES + priv->ring_size),
1092			  priv->desc_ring, priv->dma_ring);
1093	return 0;
1094}
1095
1096static const struct net_device_ops cpmac_netdev_ops = {
1097	.ndo_open		= cpmac_open,
1098	.ndo_stop		= cpmac_stop,
1099	.ndo_start_xmit		= cpmac_start_xmit,
1100	.ndo_tx_timeout		= cpmac_tx_timeout,
1101	.ndo_set_rx_mode	= cpmac_set_multicast_list,
1102	.ndo_do_ioctl		= cpmac_ioctl,
1103	.ndo_set_config		= cpmac_config,
1104	.ndo_change_mtu		= eth_change_mtu,
1105	.ndo_validate_addr	= eth_validate_addr,
1106	.ndo_set_mac_address	= eth_mac_addr,
1107};
1108
1109static int external_switch;
1110
1111static int cpmac_probe(struct platform_device *pdev)
1112{
1113	int rc, phy_id;
1114	char mdio_bus_id[MII_BUS_ID_SIZE];
1115	struct resource *mem;
1116	struct cpmac_priv *priv;
1117	struct net_device *dev;
1118	struct plat_cpmac_data *pdata;
1119
1120	pdata = dev_get_platdata(&pdev->dev);
1121
1122	if (external_switch || dumb_switch) {
1123		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1124		phy_id = pdev->id;
1125	} else {
1126		for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1127			if (!(pdata->phy_mask & (1 << phy_id)))
1128				continue;
1129			if (!cpmac_mii->phy_map[phy_id])
1130				continue;
1131			strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1132			break;
1133		}
1134	}
1135
1136	if (phy_id == PHY_MAX_ADDR) {
1137		dev_err(&pdev->dev, "no PHY present, falling back "
1138					"to switch on MDIO bus 0\n");
1139		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); /* fixed phys bus */
1140		phy_id = pdev->id;
1141	}
1142
1143	dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1144	if (!dev)
1145		return -ENOMEM;
1146
1147	platform_set_drvdata(pdev, dev);
1148	priv = netdev_priv(dev);
1149
1150	priv->pdev = pdev;
1151	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1152	if (!mem) {
1153		rc = -ENODEV;
1154		goto fail;
1155	}
1156
1157	dev->irq = platform_get_irq_byname(pdev, "irq");
1158
1159	dev->netdev_ops = &cpmac_netdev_ops;
1160	dev->ethtool_ops = &cpmac_ethtool_ops;
1161
1162	netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1163
1164	spin_lock_init(&priv->lock);
1165	spin_lock_init(&priv->rx_lock);
1166	priv->dev = dev;
1167	priv->ring_size = 64;
1168	priv->msg_enable = netif_msg_init(debug_level, 0xff);
1169	memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1170
1171	snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1172						mdio_bus_id, phy_id);
1173
1174	priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link,
1175				PHY_INTERFACE_MODE_MII);
1176
1177	if (IS_ERR(priv->phy)) {
1178		if (netif_msg_drv(priv))
1179			printk(KERN_ERR "%s: Could not attach to PHY\n",
1180			       dev->name);
1181		rc = PTR_ERR(priv->phy);
1182		goto fail;
1183	}
1184
1185	rc = register_netdev(dev);
1186	if (rc) {
1187		printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1188		       dev->name);
1189		goto fail;
1190	}
1191
1192	if (netif_msg_probe(priv)) {
1193		printk(KERN_INFO
1194		       "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1195		       "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1196		       priv->phy_name, dev->dev_addr);
1197	}
1198	return 0;
1199
1200fail:
1201	free_netdev(dev);
1202	return rc;
1203}
1204
1205static int cpmac_remove(struct platform_device *pdev)
1206{
1207	struct net_device *dev = platform_get_drvdata(pdev);
1208	unregister_netdev(dev);
1209	free_netdev(dev);
1210	return 0;
1211}
1212
1213static struct platform_driver cpmac_driver = {
1214	.driver.name = "cpmac",
1215	.driver.owner = THIS_MODULE,
1216	.probe = cpmac_probe,
1217	.remove = cpmac_remove,
1218};
1219
1220int cpmac_init(void)
1221{
1222	u32 mask;
1223	int i, res;
1224
1225	cpmac_mii = mdiobus_alloc();
1226	if (cpmac_mii == NULL)
1227		return -ENOMEM;
1228
1229	cpmac_mii->name = "cpmac-mii";
1230	cpmac_mii->read = cpmac_mdio_read;
1231	cpmac_mii->write = cpmac_mdio_write;
1232	cpmac_mii->reset = cpmac_mdio_reset;
1233	cpmac_mii->irq = mii_irqs;
1234
1235	cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1236
1237	if (!cpmac_mii->priv) {
1238		printk(KERN_ERR "Can't ioremap mdio registers\n");
1239		res = -ENXIO;
1240		goto fail_alloc;
1241	}
1242
1243#warning FIXME: unhardcode gpio&reset bits
1244	ar7_gpio_disable(26);
1245	ar7_gpio_disable(27);
1246	ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1247	ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1248	ar7_device_reset(AR7_RESET_BIT_EPHY);
1249
1250	cpmac_mii->reset(cpmac_mii);
1251
1252	for (i = 0; i < 300; i++) {
1253		mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1254		if (mask)
1255			break;
1256		else
1257			msleep(10);
1258	}
1259
1260	mask &= 0x7fffffff;
1261	if (mask & (mask - 1)) {
1262		external_switch = 1;
1263		mask = 0;
1264	}
1265
1266	cpmac_mii->phy_mask = ~(mask | 0x80000000);
1267	snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "cpmac-1");
1268
1269	res = mdiobus_register(cpmac_mii);
1270	if (res)
1271		goto fail_mii;
1272
1273	res = platform_driver_register(&cpmac_driver);
1274	if (res)
1275		goto fail_cpmac;
1276
1277	return 0;
1278
1279fail_cpmac:
1280	mdiobus_unregister(cpmac_mii);
1281
1282fail_mii:
1283	iounmap(cpmac_mii->priv);
1284
1285fail_alloc:
1286	mdiobus_free(cpmac_mii);
1287
1288	return res;
1289}
1290
1291void cpmac_exit(void)
1292{
1293	platform_driver_unregister(&cpmac_driver);
1294	mdiobus_unregister(cpmac_mii);
1295	iounmap(cpmac_mii->priv);
1296	mdiobus_free(cpmac_mii);
1297}
1298
1299module_init(cpmac_init);
1300module_exit(cpmac_exit);