Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
   3 *
   4 * Copyright (C) 2012 Marvell
   5 *
   6 * Rami Rosen <rosenr@marvell.com>
   7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
   8 *
   9 * This file is licensed under the terms of the GNU General Public
  10 * License version 2. This program is licensed "as is" without any
  11 * warranty of any kind, whether express or implied.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/cpu.h>
  16#include <linux/etherdevice.h>
  17#include <linux/if_vlan.h>
 
  18#include <linux/inetdevice.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/kernel.h>
  22#include <linux/mbus.h>
  23#include <linux/module.h>
  24#include <linux/netdevice.h>
 
 
 
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_mdio.h>
  29#include <linux/of_net.h>
  30#include <linux/phy/phy.h>
  31#include <linux/phy.h>
  32#include <linux/phylink.h>
  33#include <linux/platform_device.h>
  34#include <linux/skbuff.h>
  35#include <net/hwbm.h>
  36#include "mvneta_bm.h"
  37#include <net/ip.h>
  38#include <net/ipv6.h>
  39#include <net/tso.h>
  40#include <net/page_pool/helpers.h>
  41#include <net/pkt_sched.h>
  42#include <linux/bpf_trace.h>
  43
  44/* Registers */
  45#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
  46#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
  47#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
  48#define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
  49#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
  50#define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
  51#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
  52#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
  53#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
  54#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
  55#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
  56#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
  57#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
  58#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
  59#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
  60#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
  61#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
  62#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
  63#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
  64#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
  65#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
  66#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
  67#define MVNETA_PORT_RX_RESET                    0x1cc0
  68#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
  69#define MVNETA_PHY_ADDR                         0x2000
  70#define      MVNETA_PHY_ADDR_MASK               0x1f
  71#define MVNETA_MBUS_RETRY                       0x2010
  72#define MVNETA_UNIT_INTR_CAUSE                  0x2080
  73#define MVNETA_UNIT_CONTROL                     0x20B0
  74#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
  75#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
  76#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
  77#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
  78#define MVNETA_BASE_ADDR_ENABLE                 0x2290
  79#define      MVNETA_AC5_CNM_DDR_TARGET		0x2
  80#define      MVNETA_AC5_CNM_DDR_ATTR		0xb
  81#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
  82#define MVNETA_PORT_CONFIG                      0x2400
  83#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
  84#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
  85#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
  86#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
  87#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
  88#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
  89#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
  90#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
  91#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
  92						 MVNETA_DEF_RXQ_ARP(q)	 | \
  93						 MVNETA_DEF_RXQ_TCP(q)	 | \
  94						 MVNETA_DEF_RXQ_UDP(q)	 | \
  95						 MVNETA_DEF_RXQ_BPDU(q)	 | \
  96						 MVNETA_TX_UNSET_ERR_SUM | \
  97						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  98#define MVNETA_PORT_CONFIG_EXTEND                0x2404
  99#define MVNETA_MAC_ADDR_LOW                      0x2414
 100#define MVNETA_MAC_ADDR_HIGH                     0x2418
 101#define MVNETA_SDMA_CONFIG                       0x241c
 102#define      MVNETA_SDMA_BRST_SIZE_16            4
 103#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
 104#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
 105#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
 106#define      MVNETA_DESC_SWAP                    BIT(6)
 107#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
 108#define	MVNETA_VLAN_PRIO_TO_RXQ			 0x2440
 109#define      MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3))
 110#define MVNETA_PORT_STATUS                       0x2444
 111#define      MVNETA_TX_IN_PRGRS                  BIT(0)
 112#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
 113#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
 114/* Only exists on Armada XP and Armada 370 */
 115#define MVNETA_SERDES_CFG			 0x24A0
 116#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
 117#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
 118#define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
 119#define MVNETA_TYPE_PRIO                         0x24bc
 120#define      MVNETA_FORCE_UNI                    BIT(21)
 121#define MVNETA_TXQ_CMD_1                         0x24e4
 122#define MVNETA_TXQ_CMD                           0x2448
 123#define      MVNETA_TXQ_DISABLE_SHIFT            8
 124#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
 125#define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
 126#define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
 127#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
 128#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
 129#define MVNETA_ACC_MODE                          0x2500
 130#define MVNETA_BM_ADDRESS                        0x2504
 131#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
 132#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
 133#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
 134#define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
 135#define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
 136#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
 137
 138/* Exception Interrupt Port/Queue Cause register
 139 *
 140 * Their behavior depend of the mapping done using the PCPX2Q
 141 * registers. For a given CPU if the bit associated to a queue is not
 142 * set, then for the register a read from this CPU will always return
 143 * 0 and a write won't do anything
 144 */
 145
 146#define MVNETA_INTR_NEW_CAUSE                    0x25a0
 147#define MVNETA_INTR_NEW_MASK                     0x25a4
 148
 149/* bits  0..7  = TXQ SENT, one bit per queue.
 150 * bits  8..15 = RXQ OCCUP, one bit per queue.
 151 * bits 16..23 = RXQ FREE, one bit per queue.
 152 * bit  29 = OLD_REG_SUM, see old reg ?
 153 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 154 * bit  31 = MISC_SUM,   one bit for 4 ports
 155 */
 156#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
 157#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
 158#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
 159#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
 160#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
 161
 162#define MVNETA_INTR_OLD_CAUSE                    0x25a8
 163#define MVNETA_INTR_OLD_MASK                     0x25ac
 164
 165/* Data Path Port/Queue Cause Register */
 166#define MVNETA_INTR_MISC_CAUSE                   0x25b0
 167#define MVNETA_INTR_MISC_MASK                    0x25b4
 168
 169#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
 170#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
 171#define      MVNETA_CAUSE_PTP                    BIT(4)
 172
 173#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
 174#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
 175#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
 176#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
 177#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
 178#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
 179#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
 180#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
 181
 182#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
 183#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
 184#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
 185
 186#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
 187#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
 188#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
 189
 190#define MVNETA_INTR_ENABLE                       0x25b8
 191#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
 192#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
 193
 194#define MVNETA_RXQ_CMD                           0x2680
 195#define      MVNETA_RXQ_DISABLE_SHIFT            8
 196#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
 197#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
 198#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
 199#define MVNETA_GMAC_CTRL_0                       0x2c00
 200#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
 201#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
 202#define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
 203#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
 204#define MVNETA_GMAC_CTRL_2                       0x2c08
 205#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
 206#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
 207#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
 208#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
 209#define MVNETA_GMAC_STATUS                       0x2c10
 210#define      MVNETA_GMAC_LINK_UP                 BIT(0)
 211#define      MVNETA_GMAC_SPEED_1000              BIT(1)
 212#define      MVNETA_GMAC_SPEED_100               BIT(2)
 213#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
 214#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
 215#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
 216#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
 217#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
 218#define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
 219#define      MVNETA_GMAC_SYNC_OK                 BIT(14)
 220#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
 221#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
 222#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
 223#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
 224#define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
 225#define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
 226#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
 227#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
 228#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
 229#define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
 230#define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
 231#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
 232#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
 233#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
 234#define MVNETA_GMAC_CTRL_4                       0x2c90
 235#define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
 236#define MVNETA_MIB_COUNTERS_BASE                 0x3000
 237#define      MVNETA_MIB_LATE_COLLISION           0x7c
 238#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
 239#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
 240#define MVNETA_DA_FILT_UCAST_BASE                0x3600
 241#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
 242#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
 243#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
 244#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
 245#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
 246#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
 247#define      MVNETA_TXQ_DEC_SENT_MASK            0xff
 248#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
 249#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
 250#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
 251#define MVNETA_PORT_TX_RESET                     0x3cf0
 252#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
 253#define MVNETA_TXQ_CMD1_REG			 0x3e00
 254#define      MVNETA_TXQ_CMD1_BW_LIM_SEL_V1	 BIT(3)
 255#define      MVNETA_TXQ_CMD1_BW_LIM_EN		 BIT(0)
 256#define MVNETA_REFILL_NUM_CLK_REG		 0x3e08
 257#define      MVNETA_REFILL_MAX_NUM_CLK		 0x0000ffff
 258#define MVNETA_TX_MTU                            0x3e0c
 259#define MVNETA_TX_TOKEN_SIZE                     0x3e14
 260#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
 261#define MVNETA_TXQ_BUCKET_REFILL_REG(q)		 (0x3e20 + ((q) << 2))
 262#define      MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK	0x3ff00000
 263#define      MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT	20
 264#define      MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX	 0x0007ffff
 265#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
 266#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
 267
 268/* The values of the bucket refill base period and refill period are taken from
 269 * the reference manual, and adds up to a base resolution of 10Kbps. This allows
 270 * to cover all rate-limit values from 10Kbps up to 5Gbps
 271 */
 272
 273/* Base period for the rate limit algorithm */
 274#define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS	100
 275
 276/* Number of Base Period to wait between each bucket refill */
 277#define MVNETA_TXQ_BUCKET_REFILL_PERIOD	1000
 278
 279/* The base resolution for rate limiting, in bps. Any max_rate value should be
 280 * a multiple of that value.
 281 */
 282#define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \
 283					 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \
 284					  MVNETA_TXQ_BUCKET_REFILL_PERIOD))
 285
 286#define MVNETA_LPI_CTRL_0                        0x2cc0
 287#define MVNETA_LPI_CTRL_1                        0x2cc4
 288#define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
 289#define MVNETA_LPI_CTRL_2                        0x2cc8
 290#define MVNETA_LPI_STATUS                        0x2ccc
 291
 292#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
 293
 294/* Descriptor ring Macros */
 295#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
 296	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
 297
 298/* Various constants */
 299
 300/* Coalescing */
 301#define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
 302#define MVNETA_RX_COAL_PKTS		32
 303#define MVNETA_RX_COAL_USEC		100
 304
 
 
 
 305/* The two bytes Marvell header. Either contains a special value used
 306 * by Marvell switches when a specific hardware mode is enabled (not
 307 * supported by this driver) or is filled automatically by zeroes on
 308 * the RX side. Those two bytes being at the front of the Ethernet
 309 * header, they allow to have the IP header aligned on a 4 bytes
 310 * boundary automatically: the hardware skips those two bytes on its
 311 * own.
 312 */
 313#define MVNETA_MH_SIZE			2
 314
 315#define MVNETA_VLAN_TAG_LEN             4
 316
 317#define MVNETA_TX_CSUM_DEF_SIZE		1600
 318#define MVNETA_TX_CSUM_MAX_SIZE		9800
 319#define MVNETA_ACC_MODE_EXT1		1
 320#define MVNETA_ACC_MODE_EXT2		2
 321
 322#define MVNETA_MAX_DECODE_WIN		6
 323
 324/* Timeout constants */
 325#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
 326#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
 327#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
 328
 329#define MVNETA_TX_MTU_MAX		0x3ffff
 330
 331/* The RSS lookup table actually has 256 entries but we do not use
 332 * them yet
 333 */
 334#define MVNETA_RSS_LU_TABLE_SIZE	1
 335
 336/* Max number of Rx descriptors */
 337#define MVNETA_MAX_RXD 512
 338
 339/* Max number of Tx descriptors */
 340#define MVNETA_MAX_TXD 1024
 341
 342/* Max number of allowed TCP segments for software TSO */
 343#define MVNETA_MAX_TSO_SEGS 100
 344
 345#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 346
 347/* The size of a TSO header page */
 348#define MVNETA_TSO_PAGE_SIZE (2 * PAGE_SIZE)
 349
 350/* Number of TSO headers per page. This should be a power of 2 */
 351#define MVNETA_TSO_PER_PAGE (MVNETA_TSO_PAGE_SIZE / TSO_HEADER_SIZE)
 352
 353/* Maximum number of TSO header pages */
 354#define MVNETA_MAX_TSO_PAGES (MVNETA_MAX_TXD / MVNETA_TSO_PER_PAGE)
 355
 356/* descriptor aligned size */
 357#define MVNETA_DESC_ALIGNED_SIZE	32
 358
 359/* Number of bytes to be taken into account by HW when putting incoming data
 360 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
 361 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
 362 */
 363#define MVNETA_RX_PKT_OFFSET_CORRECTION		64
 364
 365#define MVNETA_RX_PKT_SIZE(mtu) \
 366	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
 367	      ETH_HLEN + ETH_FCS_LEN,			     \
 368	      cache_line_size())
 369
 370/* Driver assumes that the last 3 bits are 0 */
 371#define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
 372#define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
 373			 MVNETA_SKB_HEADROOM))
 374#define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
 375
 376#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
 377	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
 378
 379enum {
 380	ETHTOOL_STAT_EEE_WAKEUP,
 381	ETHTOOL_STAT_SKB_ALLOC_ERR,
 382	ETHTOOL_STAT_REFILL_ERR,
 383	ETHTOOL_XDP_REDIRECT,
 384	ETHTOOL_XDP_PASS,
 385	ETHTOOL_XDP_DROP,
 386	ETHTOOL_XDP_TX,
 387	ETHTOOL_XDP_TX_ERR,
 388	ETHTOOL_XDP_XMIT,
 389	ETHTOOL_XDP_XMIT_ERR,
 390	ETHTOOL_MAX_STATS,
 391};
 392
 393struct mvneta_statistic {
 394	unsigned short offset;
 395	unsigned short type;
 396	const char name[ETH_GSTRING_LEN];
 397};
 398
 399#define T_REG_32	32
 400#define T_REG_64	64
 401#define T_SW		1
 402
 403#define MVNETA_XDP_PASS		0
 404#define MVNETA_XDP_DROPPED	BIT(0)
 405#define MVNETA_XDP_TX		BIT(1)
 406#define MVNETA_XDP_REDIR	BIT(2)
 407
 408static const struct mvneta_statistic mvneta_statistics[] = {
 409	{ 0x3000, T_REG_64, "good_octets_received", },
 410	{ 0x3010, T_REG_32, "good_frames_received", },
 411	{ 0x3008, T_REG_32, "bad_octets_received", },
 412	{ 0x3014, T_REG_32, "bad_frames_received", },
 413	{ 0x3018, T_REG_32, "broadcast_frames_received", },
 414	{ 0x301c, T_REG_32, "multicast_frames_received", },
 415	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
 416	{ 0x3058, T_REG_32, "good_fc_received", },
 417	{ 0x305c, T_REG_32, "bad_fc_received", },
 418	{ 0x3060, T_REG_32, "undersize_received", },
 419	{ 0x3064, T_REG_32, "fragments_received", },
 420	{ 0x3068, T_REG_32, "oversize_received", },
 421	{ 0x306c, T_REG_32, "jabber_received", },
 422	{ 0x3070, T_REG_32, "mac_receive_error", },
 423	{ 0x3074, T_REG_32, "bad_crc_event", },
 424	{ 0x3078, T_REG_32, "collision", },
 425	{ 0x307c, T_REG_32, "late_collision", },
 426	{ 0x2484, T_REG_32, "rx_discard", },
 427	{ 0x2488, T_REG_32, "rx_overrun", },
 428	{ 0x3020, T_REG_32, "frames_64_octets", },
 429	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
 430	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
 431	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
 432	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
 433	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
 434	{ 0x3038, T_REG_64, "good_octets_sent", },
 435	{ 0x3040, T_REG_32, "good_frames_sent", },
 436	{ 0x3044, T_REG_32, "excessive_collision", },
 437	{ 0x3048, T_REG_32, "multicast_frames_sent", },
 438	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
 439	{ 0x3054, T_REG_32, "fc_sent", },
 440	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
 441	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
 442	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
 443	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
 444	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
 445	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
 446	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
 447	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
 448	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
 449	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
 450	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
 451};
 452
 453struct mvneta_stats {
 
 454	u64	rx_packets;
 455	u64	rx_bytes;
 456	u64	tx_packets;
 457	u64	tx_bytes;
 458	/* xdp */
 459	u64	xdp_redirect;
 460	u64	xdp_pass;
 461	u64	xdp_drop;
 462	u64	xdp_xmit;
 463	u64	xdp_xmit_err;
 464	u64	xdp_tx;
 465	u64	xdp_tx_err;
 466};
 467
 468struct mvneta_ethtool_stats {
 469	struct mvneta_stats ps;
 470	u64	skb_alloc_error;
 471	u64	refill_error;
 472};
 473
 474struct mvneta_pcpu_stats {
 475	struct u64_stats_sync syncp;
 476
 477	struct mvneta_ethtool_stats es;
 478	u64	rx_dropped;
 479	u64	rx_errors;
 480};
 481
 482struct mvneta_pcpu_port {
 483	/* Pointer to the shared port */
 484	struct mvneta_port	*pp;
 485
 486	/* Pointer to the CPU-local NAPI struct */
 487	struct napi_struct	napi;
 488
 489	/* Cause of the previous interrupt */
 490	u32			cause_rx_tx;
 491};
 492
 493enum {
 494	__MVNETA_DOWN,
 495};
 496
 497struct mvneta_port {
 498	u8 id;
 499	struct mvneta_pcpu_port __percpu	*ports;
 500	struct mvneta_pcpu_stats __percpu	*stats;
 501
 502	unsigned long state;
 503
 504	int pkt_size;
 
 505	void __iomem *base;
 506	struct mvneta_rx_queue *rxqs;
 507	struct mvneta_tx_queue *txqs;
 508	struct net_device *dev;
 509	struct hlist_node node_online;
 510	struct hlist_node node_dead;
 511	int rxq_def;
 512	/* Protect the access to the percpu interrupt registers,
 513	 * ensuring that the configuration remains coherent.
 514	 */
 515	spinlock_t lock;
 516	bool is_stopped;
 517
 518	u32 cause_rx_tx;
 519	struct napi_struct napi;
 520
 521	struct bpf_prog *xdp_prog;
 
 522
 523	/* Core clock */
 524	struct clk *clk;
 525	/* AXI clock */
 526	struct clk *clk_bus;
 527	u8 mcast_count[256];
 528	u16 tx_ring_size;
 529	u16 rx_ring_size;
 
 530
 
 
 531	phy_interface_t phy_interface;
 532	struct device_node *dn;
 533	unsigned int tx_csum_limit;
 534	struct phylink *phylink;
 535	struct phylink_config phylink_config;
 536	struct phylink_pcs phylink_pcs;
 537	struct phy *comphy;
 538
 539	struct mvneta_bm *bm_priv;
 540	struct mvneta_bm_pool *pool_long;
 541	struct mvneta_bm_pool *pool_short;
 542	int bm_win_id;
 543
 544	bool eee_enabled;
 545	bool eee_active;
 546	bool tx_lpi_enabled;
 547
 548	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
 549
 550	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
 551
 552	/* Flags for special SoC configurations */
 553	bool neta_armada3700;
 554	bool neta_ac5;
 555	u16 rx_offset_correction;
 556	const struct mbus_dram_target_info *dram_target_info;
 557};
 558
 559/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 560 * layout of the transmit and reception DMA descriptors, and their
 561 * layout is therefore defined by the hardware design
 562 */
 563
 564#define MVNETA_TX_L3_OFF_SHIFT	0
 565#define MVNETA_TX_IP_HLEN_SHIFT	8
 566#define MVNETA_TX_L4_UDP	BIT(16)
 567#define MVNETA_TX_L3_IP6	BIT(17)
 568#define MVNETA_TXD_IP_CSUM	BIT(18)
 569#define MVNETA_TXD_Z_PAD	BIT(19)
 570#define MVNETA_TXD_L_DESC	BIT(20)
 571#define MVNETA_TXD_F_DESC	BIT(21)
 572#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
 573				 MVNETA_TXD_L_DESC | \
 574				 MVNETA_TXD_F_DESC)
 575#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
 576#define MVNETA_TX_L4_CSUM_NOT	BIT(31)
 577
 578#define MVNETA_RXD_ERR_CRC		0x0
 579#define MVNETA_RXD_BM_POOL_SHIFT	13
 580#define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
 581#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
 582#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
 583#define MVNETA_RXD_ERR_LEN		BIT(18)
 584#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
 585#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
 586#define MVNETA_RXD_L3_IP4		BIT(25)
 587#define MVNETA_RXD_LAST_DESC		BIT(26)
 588#define MVNETA_RXD_FIRST_DESC		BIT(27)
 589#define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
 590					 MVNETA_RXD_LAST_DESC)
 591#define MVNETA_RXD_L4_CSUM_OK		BIT(30)
 592
 593#if defined(__LITTLE_ENDIAN)
 594struct mvneta_tx_desc {
 595	u32  command;		/* Options used by HW for packet transmitting.*/
 596	u16  reserved1;		/* csum_l4 (for future use)		*/
 597	u16  data_size;		/* Data size of transmitted packet in bytes */
 598	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
 599	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
 600	u32  reserved3[4];	/* Reserved - (for future use)		*/
 601};
 602
 603struct mvneta_rx_desc {
 604	u32  status;		/* Info about received packet		*/
 605	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
 606	u16  data_size;		/* Size of received packet in bytes	*/
 607
 608	u32  buf_phys_addr;	/* Physical address of the buffer	*/
 609	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
 610
 611	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
 612	u16  reserved3;		/* prefetch_cmd, for future use		*/
 613	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
 614
 615	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
 616	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
 617};
 618#else
 619struct mvneta_tx_desc {
 620	u16  data_size;		/* Data size of transmitted packet in bytes */
 621	u16  reserved1;		/* csum_l4 (for future use)		*/
 622	u32  command;		/* Options used by HW for packet transmitting.*/
 623	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
 624	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
 625	u32  reserved3[4];	/* Reserved - (for future use)		*/
 626};
 627
 628struct mvneta_rx_desc {
 629	u16  data_size;		/* Size of received packet in bytes	*/
 630	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
 631	u32  status;		/* Info about received packet		*/
 632
 633	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
 634	u32  buf_phys_addr;	/* Physical address of the buffer	*/
 635
 636	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
 637	u16  reserved3;		/* prefetch_cmd, for future use		*/
 638	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
 639
 640	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
 641	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
 642};
 643#endif
 644
 645enum mvneta_tx_buf_type {
 646	MVNETA_TYPE_TSO,
 647	MVNETA_TYPE_SKB,
 648	MVNETA_TYPE_XDP_TX,
 649	MVNETA_TYPE_XDP_NDO,
 650};
 651
 652struct mvneta_tx_buf {
 653	enum mvneta_tx_buf_type type;
 654	union {
 655		struct xdp_frame *xdpf;
 656		struct sk_buff *skb;
 657	};
 658};
 659
 660struct mvneta_tx_queue {
 661	/* Number of this TX queue, in the range 0-7 */
 662	u8 id;
 663
 664	/* Number of TX DMA descriptors in the descriptor ring */
 665	int size;
 666
 667	/* Number of currently used TX DMA descriptor in the
 668	 * descriptor ring
 669	 */
 670	int count;
 671	int pending;
 672	int tx_stop_threshold;
 673	int tx_wake_threshold;
 674
 675	/* Array of transmitted buffers */
 676	struct mvneta_tx_buf *buf;
 677
 678	/* Index of last TX DMA descriptor that was inserted */
 679	int txq_put_index;
 680
 681	/* Index of the TX DMA descriptor to be cleaned up */
 682	int txq_get_index;
 683
 684	u32 done_pkts_coal;
 685
 686	/* Virtual address of the TX DMA descriptors array */
 687	struct mvneta_tx_desc *descs;
 688
 689	/* DMA address of the TX DMA descriptors array */
 690	dma_addr_t descs_phys;
 691
 692	/* Index of the last TX DMA descriptor */
 693	int last_desc;
 694
 695	/* Index of the next TX DMA descriptor to process */
 696	int next_desc_to_proc;
 697
 698	/* DMA buffers for TSO headers */
 699	char *tso_hdrs[MVNETA_MAX_TSO_PAGES];
 700
 701	/* DMA address of TSO headers */
 702	dma_addr_t tso_hdrs_phys[MVNETA_MAX_TSO_PAGES];
 703
 704	/* Affinity mask for CPUs*/
 705	cpumask_t affinity_mask;
 706};
 707
 708struct mvneta_rx_queue {
 709	/* rx queue number, in the range 0-7 */
 710	u8 id;
 711
 712	/* num of rx descriptors in the rx descriptor ring */
 713	int size;
 714
 
 
 
 715	u32 pkts_coal;
 716	u32 time_coal;
 717
 718	/* page_pool */
 719	struct page_pool *page_pool;
 720	struct xdp_rxq_info xdp_rxq;
 721
 722	/* Virtual address of the RX buffer */
 723	void  **buf_virt_addr;
 724
 725	/* Virtual address of the RX DMA descriptors array */
 726	struct mvneta_rx_desc *descs;
 727
 728	/* DMA address of the RX DMA descriptors array */
 729	dma_addr_t descs_phys;
 730
 731	/* Index of the last RX DMA descriptor */
 732	int last_desc;
 733
 734	/* Index of the next RX DMA descriptor to process */
 735	int next_desc_to_proc;
 736
 737	/* Index of first RX DMA descriptor to refill */
 738	int first_to_refill;
 739	u32 refill_num;
 740};
 741
 742static enum cpuhp_state online_hpstate;
 743/* The hardware supports eight (8) rx queues, but we are only allowing
 744 * the first one to be used. Therefore, let's just allocate one queue.
 745 */
 746static int rxq_number = 8;
 747static int txq_number = 8;
 748
 749static int rxq_def;
 750
 751static int rx_copybreak __read_mostly = 256;
 752
 753/* HW BM need that each port be identify by a unique ID */
 754static int global_port_id;
 755
 756#define MVNETA_DRIVER_NAME "mvneta"
 757#define MVNETA_DRIVER_VERSION "1.0"
 758
 759/* Utility/helper methods */
 760
 761/* Write helper method */
 762static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
 763{
 764	writel(data, pp->base + offset);
 765}
 766
 767/* Read helper method */
 768static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
 769{
 770	return readl(pp->base + offset);
 771}
 772
 773/* Increment txq get counter */
 774static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
 775{
 776	txq->txq_get_index++;
 777	if (txq->txq_get_index == txq->size)
 778		txq->txq_get_index = 0;
 779}
 780
 781/* Increment txq put counter */
 782static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
 783{
 784	txq->txq_put_index++;
 785	if (txq->txq_put_index == txq->size)
 786		txq->txq_put_index = 0;
 787}
 788
 789
 790/* Clear all MIB counters */
 791static void mvneta_mib_counters_clear(struct mvneta_port *pp)
 792{
 793	int i;
 
 794
 795	/* Perform dummy reads from MIB counters */
 796	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
 797		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
 798	mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
 799	mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
 800}
 801
 802/* Get System Network Statistics */
 803static void
 804mvneta_get_stats64(struct net_device *dev,
 805		   struct rtnl_link_stats64 *stats)
 806{
 807	struct mvneta_port *pp = netdev_priv(dev);
 808	unsigned int start;
 809	int cpu;
 810
 811	for_each_possible_cpu(cpu) {
 812		struct mvneta_pcpu_stats *cpu_stats;
 813		u64 rx_packets;
 814		u64 rx_bytes;
 815		u64 rx_dropped;
 816		u64 rx_errors;
 817		u64 tx_packets;
 818		u64 tx_bytes;
 819
 820		cpu_stats = per_cpu_ptr(pp->stats, cpu);
 821		do {
 822			start = u64_stats_fetch_begin(&cpu_stats->syncp);
 823			rx_packets = cpu_stats->es.ps.rx_packets;
 824			rx_bytes   = cpu_stats->es.ps.rx_bytes;
 825			rx_dropped = cpu_stats->rx_dropped;
 826			rx_errors  = cpu_stats->rx_errors;
 827			tx_packets = cpu_stats->es.ps.tx_packets;
 828			tx_bytes   = cpu_stats->es.ps.tx_bytes;
 829		} while (u64_stats_fetch_retry(&cpu_stats->syncp, start));
 830
 831		stats->rx_packets += rx_packets;
 832		stats->rx_bytes   += rx_bytes;
 833		stats->rx_dropped += rx_dropped;
 834		stats->rx_errors  += rx_errors;
 835		stats->tx_packets += tx_packets;
 836		stats->tx_bytes   += tx_bytes;
 837	}
 838
 
 
 
 839	stats->tx_dropped	= dev->stats.tx_dropped;
 
 
 840}
 841
 842/* Rx descriptors helper methods */
 843
 844/* Checks whether the RX descriptor having this status is both the first
 845 * and the last descriptor for the RX packet. Each RX packet is currently
 846 * received through a single RX descriptor, so not having each RX
 847 * descriptor with its first and last bits set is an error
 848 */
 849static int mvneta_rxq_desc_is_first_last(u32 status)
 850{
 851	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
 852		MVNETA_RXD_FIRST_LAST_DESC;
 853}
 854
 855/* Add number of descriptors ready to receive new packets */
 856static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
 857					  struct mvneta_rx_queue *rxq,
 858					  int ndescs)
 859{
 860	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
 861	 * be added at once
 862	 */
 863	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
 864		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 865			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
 866			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 867		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
 868	}
 869
 870	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 871		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 872}
 873
 874/* Get number of RX descriptors occupied by received packets */
 875static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
 876					struct mvneta_rx_queue *rxq)
 877{
 878	u32 val;
 879
 880	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
 881	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
 882}
 883
 884/* Update num of rx desc called upon return from rx path or
 885 * from mvneta_rxq_drop_pkts().
 886 */
 887static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
 888				       struct mvneta_rx_queue *rxq,
 889				       int rx_done, int rx_filled)
 890{
 891	u32 val;
 892
 893	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
 894		val = rx_done |
 895		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
 896		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 897		return;
 898	}
 899
 900	/* Only 255 descriptors can be added at once */
 901	while ((rx_done > 0) || (rx_filled > 0)) {
 902		if (rx_done <= 0xff) {
 903			val = rx_done;
 904			rx_done = 0;
 905		} else {
 906			val = 0xff;
 907			rx_done -= 0xff;
 908		}
 909		if (rx_filled <= 0xff) {
 910			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 911			rx_filled = 0;
 912		} else {
 913			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 914			rx_filled -= 0xff;
 915		}
 916		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 917	}
 918}
 919
 920/* Get pointer to next RX descriptor to be processed by SW */
 921static struct mvneta_rx_desc *
 922mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
 923{
 924	int rx_desc = rxq->next_desc_to_proc;
 925
 926	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
 927	prefetch(rxq->descs + rxq->next_desc_to_proc);
 928	return rxq->descs + rx_desc;
 929}
 930
 931/* Change maximum receive size of the port. */
 932static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
 933{
 934	u32 val;
 935
 936	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 937	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
 938	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
 939		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
 940	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 941}
 942
 943
 944/* Set rx queue offset */
 945static void mvneta_rxq_offset_set(struct mvneta_port *pp,
 946				  struct mvneta_rx_queue *rxq,
 947				  int offset)
 948{
 949	u32 val;
 950
 951	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 952	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
 953
 954	/* Offset is in */
 955	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
 956	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 957}
 958
 959
 960/* Tx descriptors helper methods */
 961
 962/* Update HW with number of TX descriptors to be sent */
 963static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
 964				     struct mvneta_tx_queue *txq,
 965				     int pend_desc)
 966{
 967	u32 val;
 968
 969	pend_desc += txq->pending;
 970
 971	/* Only 255 Tx descriptors can be added at once */
 972	do {
 973		val = min(pend_desc, 255);
 974		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
 975		pend_desc -= val;
 976	} while (pend_desc > 0);
 977	txq->pending = 0;
 978}
 979
 980/* Get pointer to next TX descriptor to be processed (send) by HW */
 981static struct mvneta_tx_desc *
 982mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
 983{
 984	int tx_desc = txq->next_desc_to_proc;
 985
 986	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
 987	return txq->descs + tx_desc;
 988}
 989
 990/* Release the last allocated TX descriptor. Useful to handle DMA
 991 * mapping failures in the TX path.
 992 */
 993static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
 994{
 995	if (txq->next_desc_to_proc == 0)
 996		txq->next_desc_to_proc = txq->last_desc - 1;
 997	else
 998		txq->next_desc_to_proc--;
 999}
1000
1001/* Set rxq buf size */
1002static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
1003				    struct mvneta_rx_queue *rxq,
1004				    int buf_size)
1005{
1006	u32 val;
1007
1008	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
1009
1010	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
1011	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
1012
1013	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
1014}
1015
1016/* Disable buffer management (BM) */
1017static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
1018				  struct mvneta_rx_queue *rxq)
1019{
1020	u32 val;
1021
1022	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1023	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
1024	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1025}
1026
1027/* Enable buffer management (BM) */
1028static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
1029				 struct mvneta_rx_queue *rxq)
1030{
1031	u32 val;
1032
1033	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1034	val |= MVNETA_RXQ_HW_BUF_ALLOC;
1035	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1036}
1037
1038/* Notify HW about port's assignment of pool for bigger packets */
1039static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1040				     struct mvneta_rx_queue *rxq)
1041{
1042	u32 val;
1043
1044	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1045	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1046	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1047
1048	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1049}
1050
1051/* Notify HW about port's assignment of pool for smaller packets */
1052static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1053				      struct mvneta_rx_queue *rxq)
1054{
1055	u32 val;
1056
1057	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1058	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1059	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1060
1061	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1062}
1063
1064/* Set port's receive buffer size for assigned BM pool */
1065static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1066					      int buf_size,
1067					      u8 pool_id)
1068{
1069	u32 val;
1070
1071	if (!IS_ALIGNED(buf_size, 8)) {
1072		dev_warn(pp->dev->dev.parent,
1073			 "illegal buf_size value %d, round to %d\n",
1074			 buf_size, ALIGN(buf_size, 8));
1075		buf_size = ALIGN(buf_size, 8);
1076	}
1077
1078	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1079	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1080	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1081}
1082
1083/* Configure MBUS window in order to enable access BM internal SRAM */
1084static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1085				  u8 target, u8 attr)
1086{
1087	u32 win_enable, win_protect;
1088	int i;
1089
1090	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1091
1092	if (pp->bm_win_id < 0) {
1093		/* Find first not occupied window */
1094		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1095			if (win_enable & (1 << i)) {
1096				pp->bm_win_id = i;
1097				break;
1098			}
1099		}
1100		if (i == MVNETA_MAX_DECODE_WIN)
1101			return -ENOMEM;
1102	} else {
1103		i = pp->bm_win_id;
1104	}
1105
1106	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1107	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1108
1109	if (i < 4)
1110		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1111
1112	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1113		    (attr << 8) | target);
1114
1115	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1116
1117	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1118	win_protect |= 3 << (2 * i);
1119	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1120
1121	win_enable &= ~(1 << i);
1122	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1123
1124	return 0;
1125}
1126
1127static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1128{
1129	u32 wsize;
1130	u8 target, attr;
1131	int err;
1132
1133	/* Get BM window information */
1134	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1135					 &target, &attr);
1136	if (err < 0)
1137		return err;
1138
1139	pp->bm_win_id = -1;
1140
1141	/* Open NETA -> BM window */
1142	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1143				     target, attr);
1144	if (err < 0) {
1145		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1146		return err;
1147	}
1148	return 0;
1149}
1150
1151/* Assign and initialize pools for port. In case of fail
1152 * buffer manager will remain disabled for current port.
1153 */
1154static int mvneta_bm_port_init(struct platform_device *pdev,
1155			       struct mvneta_port *pp)
1156{
1157	struct device_node *dn = pdev->dev.of_node;
1158	u32 long_pool_id, short_pool_id;
1159
1160	if (!pp->neta_armada3700) {
1161		int ret;
1162
1163		ret = mvneta_bm_port_mbus_init(pp);
1164		if (ret)
1165			return ret;
1166	}
1167
1168	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1169		netdev_info(pp->dev, "missing long pool id\n");
1170		return -EINVAL;
1171	}
1172
1173	/* Create port's long pool depending on mtu */
1174	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1175					   MVNETA_BM_LONG, pp->id,
1176					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1177	if (!pp->pool_long) {
1178		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1179		return -ENOMEM;
1180	}
1181
1182	pp->pool_long->port_map |= 1 << pp->id;
1183
1184	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1185				   pp->pool_long->id);
1186
1187	/* If short pool id is not defined, assume using single pool */
1188	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1189		short_pool_id = long_pool_id;
1190
1191	/* Create port's short pool */
1192	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1193					    MVNETA_BM_SHORT, pp->id,
1194					    MVNETA_BM_SHORT_PKT_SIZE);
1195	if (!pp->pool_short) {
1196		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1197		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1198		return -ENOMEM;
1199	}
1200
1201	if (short_pool_id != long_pool_id) {
1202		pp->pool_short->port_map |= 1 << pp->id;
1203		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1204					   pp->pool_short->id);
1205	}
1206
1207	return 0;
1208}
1209
1210/* Update settings of a pool for bigger packets */
1211static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1212{
1213	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1214	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1215	int num;
1216
1217	/* Release all buffers from long pool */
1218	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1219	if (hwbm_pool->buf_num) {
1220		WARN(1, "cannot free all buffers in pool %d\n",
1221		     bm_pool->id);
1222		goto bm_mtu_err;
1223	}
1224
1225	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1226	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1227	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1228			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1229
1230	/* Fill entire long pool */
1231	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1232	if (num != hwbm_pool->size) {
1233		WARN(1, "pool %d: %d of %d allocated\n",
1234		     bm_pool->id, num, hwbm_pool->size);
1235		goto bm_mtu_err;
1236	}
1237	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1238
1239	return;
1240
1241bm_mtu_err:
1242	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1243	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1244
1245	pp->bm_priv = NULL;
1246	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1247	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1248	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1249}
1250
1251/* Start the Ethernet port RX and TX activity */
1252static void mvneta_port_up(struct mvneta_port *pp)
1253{
1254	int queue;
1255	u32 q_map;
1256
1257	/* Enable all initialized TXs. */
 
1258	q_map = 0;
1259	for (queue = 0; queue < txq_number; queue++) {
1260		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1261		if (txq->descs)
1262			q_map |= (1 << queue);
1263	}
1264	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1265
1266	q_map = 0;
1267	/* Enable all initialized RXQs. */
 
1268	for (queue = 0; queue < rxq_number; queue++) {
1269		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1270
1271		if (rxq->descs)
1272			q_map |= (1 << queue);
1273	}
 
1274	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1275}
1276
1277/* Stop the Ethernet port activity */
1278static void mvneta_port_down(struct mvneta_port *pp)
1279{
1280	u32 val;
1281	int count;
1282
1283	/* Stop Rx port activity. Check port Rx activity. */
1284	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1285
1286	/* Issue stop command for active channels only */
1287	if (val != 0)
1288		mvreg_write(pp, MVNETA_RXQ_CMD,
1289			    val << MVNETA_RXQ_DISABLE_SHIFT);
1290
1291	/* Wait for all Rx activity to terminate. */
1292	count = 0;
1293	do {
1294		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1295			netdev_warn(pp->dev,
1296				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1297				    val);
1298			break;
1299		}
1300		mdelay(1);
1301
1302		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1303	} while (val & MVNETA_RXQ_ENABLE_MASK);
1304
1305	/* Stop Tx port activity. Check port Tx activity. Issue stop
1306	 * command for active channels only
1307	 */
1308	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1309
1310	if (val != 0)
1311		mvreg_write(pp, MVNETA_TXQ_CMD,
1312			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1313
1314	/* Wait for all Tx activity to terminate. */
1315	count = 0;
1316	do {
1317		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1318			netdev_warn(pp->dev,
1319				    "TIMEOUT for TX stopped status=0x%08x\n",
1320				    val);
1321			break;
1322		}
1323		mdelay(1);
1324
1325		/* Check TX Command reg that all Txqs are stopped */
1326		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1327
1328	} while (val & MVNETA_TXQ_ENABLE_MASK);
1329
1330	/* Double check to verify that TX FIFO is empty */
1331	count = 0;
1332	do {
1333		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1334			netdev_warn(pp->dev,
1335				    "TX FIFO empty timeout status=0x%08x\n",
1336				    val);
1337			break;
1338		}
1339		mdelay(1);
1340
1341		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1342	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1343		 (val & MVNETA_TX_IN_PRGRS));
1344
1345	udelay(200);
1346}
1347
1348/* Enable the port by setting the port enable bit of the MAC control register */
1349static void mvneta_port_enable(struct mvneta_port *pp)
1350{
1351	u32 val;
1352
1353	/* Enable port */
1354	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1355	val |= MVNETA_GMAC0_PORT_ENABLE;
1356	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1357}
1358
1359/* Disable the port and wait for about 200 usec before retuning */
1360static void mvneta_port_disable(struct mvneta_port *pp)
1361{
1362	u32 val;
1363
1364	/* Reset the Enable bit in the Serial Control Register */
1365	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1366	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1367	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1368
1369	udelay(200);
1370}
1371
1372/* Multicast tables methods */
1373
1374/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1375static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1376{
1377	int offset;
1378	u32 val;
1379
1380	if (queue == -1) {
1381		val = 0;
1382	} else {
1383		val = 0x1 | (queue << 1);
1384		val |= (val << 24) | (val << 16) | (val << 8);
1385	}
1386
1387	for (offset = 0; offset <= 0xc; offset += 4)
1388		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1389}
1390
1391/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1392static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1393{
1394	int offset;
1395	u32 val;
1396
1397	if (queue == -1) {
1398		val = 0;
1399	} else {
1400		val = 0x1 | (queue << 1);
1401		val |= (val << 24) | (val << 16) | (val << 8);
1402	}
1403
1404	for (offset = 0; offset <= 0xfc; offset += 4)
1405		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1406
1407}
1408
1409/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1410static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1411{
1412	int offset;
1413	u32 val;
1414
1415	if (queue == -1) {
1416		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1417		val = 0;
1418	} else {
1419		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1420		val = 0x1 | (queue << 1);
1421		val |= (val << 24) | (val << 16) | (val << 8);
1422	}
1423
1424	for (offset = 0; offset <= 0xfc; offset += 4)
1425		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1426}
1427
1428static void mvneta_percpu_unmask_interrupt(void *arg)
1429{
1430	struct mvneta_port *pp = arg;
1431
1432	/* All the queue are unmasked, but actually only the ones
1433	 * mapped to this CPU will be unmasked
1434	 */
1435	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1436		    MVNETA_RX_INTR_MASK_ALL |
1437		    MVNETA_TX_INTR_MASK_ALL |
1438		    MVNETA_MISCINTR_INTR_MASK);
1439}
1440
1441static void mvneta_percpu_mask_interrupt(void *arg)
1442{
1443	struct mvneta_port *pp = arg;
1444
1445	/* All the queue are masked, but actually only the ones
1446	 * mapped to this CPU will be masked
1447	 */
1448	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1449	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1450	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1451}
1452
1453static void mvneta_percpu_clear_intr_cause(void *arg)
1454{
1455	struct mvneta_port *pp = arg;
1456
1457	/* All the queue are cleared, but actually only the ones
1458	 * mapped to this CPU will be cleared
1459	 */
1460	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1461	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1462	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1463}
1464
1465/* This method sets defaults to the NETA port:
1466 *	Clears interrupt Cause and Mask registers.
1467 *	Clears all MAC tables.
1468 *	Sets defaults to all registers.
1469 *	Resets RX and TX descriptor rings.
1470 *	Resets PHY.
1471 * This method can be called after mvneta_port_down() to return the port
1472 *	settings to defaults.
1473 */
1474static void mvneta_defaults_set(struct mvneta_port *pp)
1475{
1476	int cpu;
1477	int queue;
1478	u32 val;
1479	int max_cpu = num_present_cpus();
1480
1481	/* Clear all Cause registers */
1482	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
 
 
1483
1484	/* Mask all interrupts */
1485	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
 
 
1486	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1487
1488	/* Enable MBUS Retry bit16 */
1489	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1490
1491	/* Set CPU queue access map. CPUs are assigned to the RX and
1492	 * TX queues modulo their number. If there is only one TX
1493	 * queue then it is assigned to the CPU associated to the
1494	 * default RX queue.
1495	 */
1496	for_each_present_cpu(cpu) {
1497		int rxq_map = 0, txq_map = 0;
1498		int rxq, txq;
1499		if (!pp->neta_armada3700) {
1500			for (rxq = 0; rxq < rxq_number; rxq++)
1501				if ((rxq % max_cpu) == cpu)
1502					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1503
1504			for (txq = 0; txq < txq_number; txq++)
1505				if ((txq % max_cpu) == cpu)
1506					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1507
1508			/* With only one TX queue we configure a special case
1509			 * which will allow to get all the irq on a single
1510			 * CPU
1511			 */
1512			if (txq_number == 1)
1513				txq_map = (cpu == pp->rxq_def) ?
1514					MVNETA_CPU_TXQ_ACCESS(0) : 0;
1515
1516		} else {
1517			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1518			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1519		}
1520
1521		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1522	}
1523
1524	/* Reset RX and TX DMAs */
1525	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1526	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1527
1528	/* Disable Legacy WRR, Disable EJP, Release from reset */
1529	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1530	for (queue = 0; queue < txq_number; queue++) {
1531		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1532		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1533	}
1534
1535	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1536	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1537
1538	/* Set Port Acceleration Mode */
1539	if (pp->bm_priv)
1540		/* HW buffer management + legacy parser */
1541		val = MVNETA_ACC_MODE_EXT2;
1542	else
1543		/* SW buffer management + legacy parser */
1544		val = MVNETA_ACC_MODE_EXT1;
1545	mvreg_write(pp, MVNETA_ACC_MODE, val);
1546
1547	if (pp->bm_priv)
1548		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1549
1550	/* Update val of portCfg register accordingly with all RxQueue types */
1551	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1552	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1553
1554	val = 0;
1555	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1556	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1557
1558	/* Build PORT_SDMA_CONFIG_REG */
1559	val = 0;
1560
1561	/* Default burst size */
1562	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1563	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1564	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1565
1566#if defined(__BIG_ENDIAN)
1567	val |= MVNETA_DESC_SWAP;
1568#endif
1569
1570	/* Assign port SDMA configuration */
1571	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1572
1573	/* Disable PHY polling in hardware, since we're using the
1574	 * kernel phylib to do this.
1575	 */
1576	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1577	val &= ~MVNETA_PHY_POLLING_ENABLE;
1578	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1579
1580	mvneta_set_ucast_table(pp, -1);
1581	mvneta_set_special_mcast_table(pp, -1);
1582	mvneta_set_other_mcast_table(pp, -1);
1583
1584	/* Set port interrupt enable register - default enable all */
1585	mvreg_write(pp, MVNETA_INTR_ENABLE,
1586		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1587		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1588
1589	mvneta_mib_counters_clear(pp);
1590}
1591
1592/* Set max sizes for tx queues */
1593static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1594
1595{
1596	u32 val, size, mtu;
1597	int queue;
1598
1599	mtu = max_tx_size * 8;
1600	if (mtu > MVNETA_TX_MTU_MAX)
1601		mtu = MVNETA_TX_MTU_MAX;
1602
1603	/* Set MTU */
1604	val = mvreg_read(pp, MVNETA_TX_MTU);
1605	val &= ~MVNETA_TX_MTU_MAX;
1606	val |= mtu;
1607	mvreg_write(pp, MVNETA_TX_MTU, val);
1608
1609	/* TX token size and all TXQs token size must be larger that MTU */
1610	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1611
1612	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1613	if (size < mtu) {
1614		size = mtu;
1615		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1616		val |= size;
1617		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1618	}
1619	for (queue = 0; queue < txq_number; queue++) {
1620		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1621
1622		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1623		if (size < mtu) {
1624			size = mtu;
1625			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1626			val |= size;
1627			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1628		}
1629	}
1630}
1631
1632/* Set unicast address */
1633static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1634				  int queue)
1635{
1636	unsigned int unicast_reg;
1637	unsigned int tbl_offset;
1638	unsigned int reg_offset;
1639
1640	/* Locate the Unicast table entry */
1641	last_nibble = (0xf & last_nibble);
1642
1643	/* offset from unicast tbl base */
1644	tbl_offset = (last_nibble / 4) * 4;
1645
1646	/* offset within the above reg  */
1647	reg_offset = last_nibble % 4;
1648
1649	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1650
1651	if (queue == -1) {
1652		/* Clear accepts frame bit at specified unicast DA tbl entry */
1653		unicast_reg &= ~(0xff << (8 * reg_offset));
1654	} else {
1655		unicast_reg &= ~(0xff << (8 * reg_offset));
1656		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1657	}
1658
1659	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1660}
1661
1662/* Set mac address */
1663static void mvneta_mac_addr_set(struct mvneta_port *pp,
1664				const unsigned char *addr, int queue)
1665{
1666	unsigned int mac_h;
1667	unsigned int mac_l;
1668
1669	if (queue != -1) {
1670		mac_l = (addr[4] << 8) | (addr[5]);
1671		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1672			(addr[2] << 8) | (addr[3] << 0);
1673
1674		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1675		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1676	}
1677
1678	/* Accept frames of this address */
1679	mvneta_set_ucast_addr(pp, addr[5], queue);
1680}
1681
1682/* Set the number of packets that will be received before RX interrupt
1683 * will be generated by HW.
1684 */
1685static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1686				    struct mvneta_rx_queue *rxq, u32 value)
1687{
1688	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1689		    value | MVNETA_RXQ_NON_OCCUPIED(0));
 
1690}
1691
1692/* Set the time delay in usec before RX interrupt will be generated by
1693 * HW.
1694 */
1695static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1696				    struct mvneta_rx_queue *rxq, u32 value)
1697{
1698	u32 val;
1699	unsigned long clk_rate;
1700
1701	clk_rate = clk_get_rate(pp->clk);
1702	val = (clk_rate / 1000000) * value;
1703
1704	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
 
1705}
1706
1707/* Set threshold for TX_DONE pkts coalescing */
1708static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1709					 struct mvneta_tx_queue *txq, u32 value)
1710{
1711	u32 val;
1712
1713	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1714
1715	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1716	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1717
1718	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
 
 
1719}
1720
1721/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1722static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1723				u32 phys_addr, void *virt_addr,
1724				struct mvneta_rx_queue *rxq)
1725{
1726	int i;
1727
1728	rx_desc->buf_phys_addr = phys_addr;
1729	i = rx_desc - rxq->descs;
1730	rxq->buf_virt_addr[i] = virt_addr;
1731}
1732
1733/* Decrement sent descriptors counter */
1734static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1735				     struct mvneta_tx_queue *txq,
1736				     int sent_desc)
1737{
1738	u32 val;
1739
1740	/* Only 255 TX descriptors can be updated at once */
1741	while (sent_desc > 0xff) {
1742		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1743		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1744		sent_desc = sent_desc - 0xff;
1745	}
1746
1747	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1748	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1749}
1750
1751/* Get number of TX descriptors already sent by HW */
1752static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1753					struct mvneta_tx_queue *txq)
1754{
1755	u32 val;
1756	int sent_desc;
1757
1758	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1759	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1760		MVNETA_TXQ_SENT_DESC_SHIFT;
1761
1762	return sent_desc;
1763}
1764
1765/* Get number of sent descriptors and decrement counter.
1766 *  The number of sent descriptors is returned.
1767 */
1768static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1769				     struct mvneta_tx_queue *txq)
1770{
1771	int sent_desc;
1772
1773	/* Get number of sent descriptors */
1774	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1775
1776	/* Decrement sent descriptors counter */
1777	if (sent_desc)
1778		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1779
1780	return sent_desc;
1781}
1782
1783/* Set TXQ descriptors fields relevant for CSUM calculation */
1784static u32 mvneta_txq_desc_csum(int l3_offs, __be16 l3_proto,
1785				int ip_hdr_len, int l4_proto)
1786{
1787	u32 command;
1788
1789	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1790	 * G_L4_chk, L4_type; required only for checksum
1791	 * calculation
1792	 */
1793	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1794	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1795
1796	if (l3_proto == htons(ETH_P_IP))
1797		command |= MVNETA_TXD_IP_CSUM;
1798	else
1799		command |= MVNETA_TX_L3_IP6;
1800
1801	if (l4_proto == IPPROTO_TCP)
1802		command |=  MVNETA_TX_L4_CSUM_FULL;
1803	else if (l4_proto == IPPROTO_UDP)
1804		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1805	else
1806		command |= MVNETA_TX_L4_CSUM_NOT;
1807
1808	return command;
1809}
1810
1811
1812/* Display more error info */
1813static void mvneta_rx_error(struct mvneta_port *pp,
1814			    struct mvneta_rx_desc *rx_desc)
1815{
1816	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1817	u32 status = rx_desc->status;
1818
1819	/* update per-cpu counter */
1820	u64_stats_update_begin(&stats->syncp);
1821	stats->rx_errors++;
1822	u64_stats_update_end(&stats->syncp);
 
 
1823
1824	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1825	case MVNETA_RXD_ERR_CRC:
1826		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1827			   status, rx_desc->data_size);
1828		break;
1829	case MVNETA_RXD_ERR_OVERRUN:
1830		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1831			   status, rx_desc->data_size);
1832		break;
1833	case MVNETA_RXD_ERR_LEN:
1834		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1835			   status, rx_desc->data_size);
1836		break;
1837	case MVNETA_RXD_ERR_RESOURCE:
1838		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1839			   status, rx_desc->data_size);
1840		break;
1841	}
1842}
1843
1844/* Handle RX checksum offload based on the descriptor's status */
1845static int mvneta_rx_csum(struct mvneta_port *pp, u32 status)
 
1846{
1847	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1848	    (status & MVNETA_RXD_L3_IP4) &&
1849	    (status & MVNETA_RXD_L4_CSUM_OK))
1850		return CHECKSUM_UNNECESSARY;
 
 
1851
1852	return CHECKSUM_NONE;
1853}
1854
1855/* Return tx queue pointer (find last set bit) according to <cause> returned
1856 * form tx_done reg. <cause> must not be null. The return value is always a
1857 * valid queue for matching the first one found in <cause>.
1858 */
1859static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1860						     u32 cause)
1861{
1862	int queue = fls(cause) - 1;
1863
1864	return &pp->txqs[queue];
1865}
1866
1867/* Free tx queue skbuffs */
1868static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1869				 struct mvneta_tx_queue *txq, int num,
1870				 struct netdev_queue *nq, bool napi)
1871{
1872	unsigned int bytes_compl = 0, pkts_compl = 0;
1873	struct xdp_frame_bulk bq;
1874	int i;
1875
1876	xdp_frame_bulk_init(&bq);
1877
1878	rcu_read_lock(); /* need for xdp_return_frame_bulk */
1879
1880	for (i = 0; i < num; i++) {
1881		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1882		struct mvneta_tx_desc *tx_desc = txq->descs +
1883			txq->txq_get_index;
 
1884
1885		mvneta_txq_inc_get(txq);
1886
1887		if (buf->type == MVNETA_TYPE_XDP_NDO ||
1888		    buf->type == MVNETA_TYPE_SKB)
1889			dma_unmap_single(pp->dev->dev.parent,
1890					 tx_desc->buf_phys_addr,
1891					 tx_desc->data_size, DMA_TO_DEVICE);
1892		if ((buf->type == MVNETA_TYPE_TSO ||
1893		     buf->type == MVNETA_TYPE_SKB) && buf->skb) {
1894			bytes_compl += buf->skb->len;
1895			pkts_compl++;
1896			dev_kfree_skb_any(buf->skb);
1897		} else if ((buf->type == MVNETA_TYPE_XDP_TX ||
1898			    buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) {
1899			if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1900				xdp_return_frame_rx_napi(buf->xdpf);
1901			else
1902				xdp_return_frame_bulk(buf->xdpf, &bq);
1903		}
1904	}
1905	xdp_flush_frame_bulk(&bq);
1906
1907	rcu_read_unlock();
1908
1909	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
 
 
 
1910}
1911
1912/* Handle end of transmission */
1913static void mvneta_txq_done(struct mvneta_port *pp,
1914			   struct mvneta_tx_queue *txq)
1915{
1916	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1917	int tx_done;
1918
1919	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1920	if (!tx_done)
1921		return;
1922
1923	mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1924
1925	txq->count -= tx_done;
1926
1927	if (netif_tx_queue_stopped(nq)) {
1928		if (txq->count <= txq->tx_wake_threshold)
1929			netif_tx_wake_queue(nq);
1930	}
1931}
1932
1933/* Refill processing for SW buffer management */
1934/* Allocate page per descriptor */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1935static int mvneta_rx_refill(struct mvneta_port *pp,
1936			    struct mvneta_rx_desc *rx_desc,
1937			    struct mvneta_rx_queue *rxq,
1938			    gfp_t gfp_mask)
1939{
1940	dma_addr_t phys_addr;
1941	struct page *page;
1942
1943	page = page_pool_alloc_pages(rxq->page_pool,
1944				     gfp_mask | __GFP_NOWARN);
1945	if (!page)
1946		return -ENOMEM;
1947
1948	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1949	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
 
 
 
 
 
1950
 
1951	return 0;
1952}
1953
1954/* Handle tx checksum */
1955static u32 mvneta_skb_tx_csum(struct sk_buff *skb)
1956{
1957	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1958		int ip_hdr_len = 0;
1959		__be16 l3_proto = vlan_get_protocol(skb);
1960		u8 l4_proto;
1961
1962		if (l3_proto == htons(ETH_P_IP)) {
1963			struct iphdr *ip4h = ip_hdr(skb);
1964
1965			/* Calculate IPv4 checksum and L4 checksum */
1966			ip_hdr_len = ip4h->ihl;
1967			l4_proto = ip4h->protocol;
1968		} else if (l3_proto == htons(ETH_P_IPV6)) {
1969			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1970
1971			/* Read l4_protocol from one of IPv6 extra headers */
1972			if (skb_network_header_len(skb) > 0)
1973				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1974			l4_proto = ip6h->nexthdr;
1975		} else
1976			return MVNETA_TX_L4_CSUM_NOT;
1977
1978		return mvneta_txq_desc_csum(skb_network_offset(skb),
1979					    l3_proto, ip_hdr_len, l4_proto);
1980	}
1981
1982	return MVNETA_TX_L4_CSUM_NOT;
1983}
1984
 
 
 
 
 
 
 
 
 
 
 
1985/* Drop packets received by the RXQ and free buffers */
1986static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1987				 struct mvneta_rx_queue *rxq)
1988{
1989	int rx_done, i;
1990
1991	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1992	if (rx_done)
1993		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1994
1995	if (pp->bm_priv) {
1996		for (i = 0; i < rx_done; i++) {
1997			struct mvneta_rx_desc *rx_desc =
1998						  mvneta_rxq_next_desc_get(rxq);
1999			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2000			struct mvneta_bm_pool *bm_pool;
2001
2002			bm_pool = &pp->bm_priv->bm_pools[pool_id];
2003			/* Return dropped buffer to the pool */
2004			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2005					      rx_desc->buf_phys_addr);
2006		}
2007		return;
2008	}
2009
2010	for (i = 0; i < rxq->size; i++) {
2011		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
2012		void *data = rxq->buf_virt_addr[i];
2013		if (!data || !(rx_desc->buf_phys_addr))
2014			continue;
2015
2016		page_pool_put_full_page(rxq->page_pool, data, false);
2017	}
2018	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
2019		xdp_rxq_info_unreg(&rxq->xdp_rxq);
2020	page_pool_destroy(rxq->page_pool);
2021	rxq->page_pool = NULL;
2022}
2023
2024static void
2025mvneta_update_stats(struct mvneta_port *pp,
2026		    struct mvneta_stats *ps)
2027{
2028	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2029
2030	u64_stats_update_begin(&stats->syncp);
2031	stats->es.ps.rx_packets += ps->rx_packets;
2032	stats->es.ps.rx_bytes += ps->rx_bytes;
2033	/* xdp */
2034	stats->es.ps.xdp_redirect += ps->xdp_redirect;
2035	stats->es.ps.xdp_pass += ps->xdp_pass;
2036	stats->es.ps.xdp_drop += ps->xdp_drop;
2037	u64_stats_update_end(&stats->syncp);
2038}
2039
2040static inline
2041int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2042{
2043	struct mvneta_rx_desc *rx_desc;
2044	int curr_desc = rxq->first_to_refill;
2045	int i;
2046
2047	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2048		rx_desc = rxq->descs + curr_desc;
2049		if (!(rx_desc->buf_phys_addr)) {
2050			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2051				struct mvneta_pcpu_stats *stats;
2052
2053				pr_err("Can't refill queue %d. Done %d from %d\n",
2054				       rxq->id, i, rxq->refill_num);
2055
2056				stats = this_cpu_ptr(pp->stats);
2057				u64_stats_update_begin(&stats->syncp);
2058				stats->es.refill_error++;
2059				u64_stats_update_end(&stats->syncp);
2060				break;
2061			}
2062		}
2063		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2064	}
2065	rxq->refill_num -= i;
2066	rxq->first_to_refill = curr_desc;
2067
2068	return i;
2069}
2070
2071static void
2072mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2073		    struct xdp_buff *xdp, int sync_len)
2074{
2075	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2076	int i;
2077
2078	if (likely(!xdp_buff_has_frags(xdp)))
2079		goto out;
2080
2081	for (i = 0; i < sinfo->nr_frags; i++)
2082		page_pool_put_full_page(rxq->page_pool,
2083					skb_frag_page(&sinfo->frags[i]), true);
2084
2085out:
2086	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2087			   sync_len, true);
2088}
2089
2090static int
2091mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2092			struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map)
2093{
2094	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2095	struct device *dev = pp->dev->dev.parent;
2096	struct mvneta_tx_desc *tx_desc;
2097	int i, num_frames = 1;
2098	struct page *page;
2099
2100	if (unlikely(xdp_frame_has_frags(xdpf)))
2101		num_frames += sinfo->nr_frags;
2102
2103	if (txq->count + num_frames >= txq->size)
2104		return MVNETA_XDP_DROPPED;
2105
2106	for (i = 0; i < num_frames; i++) {
2107		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2108		skb_frag_t *frag = NULL;
2109		int len = xdpf->len;
2110		dma_addr_t dma_addr;
2111
2112		if (unlikely(i)) { /* paged area */
2113			frag = &sinfo->frags[i - 1];
2114			len = skb_frag_size(frag);
2115		}
2116
2117		tx_desc = mvneta_txq_next_desc_get(txq);
2118		if (dma_map) {
2119			/* ndo_xdp_xmit */
2120			void *data;
2121
2122			data = unlikely(frag) ? skb_frag_address(frag)
2123					      : xdpf->data;
2124			dma_addr = dma_map_single(dev, data, len,
2125						  DMA_TO_DEVICE);
2126			if (dma_mapping_error(dev, dma_addr)) {
2127				mvneta_txq_desc_put(txq);
2128				goto unmap;
2129			}
2130
2131			buf->type = MVNETA_TYPE_XDP_NDO;
2132		} else {
2133			page = unlikely(frag) ? skb_frag_page(frag)
2134					      : virt_to_page(xdpf->data);
2135			dma_addr = page_pool_get_dma_addr(page);
2136			if (unlikely(frag))
2137				dma_addr += skb_frag_off(frag);
2138			else
2139				dma_addr += sizeof(*xdpf) + xdpf->headroom;
2140			dma_sync_single_for_device(dev, dma_addr, len,
2141						   DMA_BIDIRECTIONAL);
2142			buf->type = MVNETA_TYPE_XDP_TX;
2143		}
2144		buf->xdpf = unlikely(i) ? NULL : xdpf;
2145
2146		tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC;
2147		tx_desc->buf_phys_addr = dma_addr;
2148		tx_desc->data_size = len;
2149		*nxmit_byte += len;
2150
2151		mvneta_txq_inc_put(txq);
2152	}
2153	/*last descriptor */
2154	tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2155
2156	txq->pending += num_frames;
2157	txq->count += num_frames;
2158
2159	return MVNETA_XDP_TX;
2160
2161unmap:
2162	for (i--; i >= 0; i--) {
2163		mvneta_txq_desc_put(txq);
2164		tx_desc = txq->descs + txq->next_desc_to_proc;
2165		dma_unmap_single(dev, tx_desc->buf_phys_addr,
2166				 tx_desc->data_size,
2167				 DMA_TO_DEVICE);
2168	}
2169
2170	return MVNETA_XDP_DROPPED;
2171}
2172
2173static int
2174mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2175{
2176	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2177	struct mvneta_tx_queue *txq;
2178	struct netdev_queue *nq;
2179	int cpu, nxmit_byte = 0;
2180	struct xdp_frame *xdpf;
2181	u32 ret;
2182
2183	xdpf = xdp_convert_buff_to_frame(xdp);
2184	if (unlikely(!xdpf))
2185		return MVNETA_XDP_DROPPED;
2186
2187	cpu = smp_processor_id();
2188	txq = &pp->txqs[cpu % txq_number];
2189	nq = netdev_get_tx_queue(pp->dev, txq->id);
2190
2191	__netif_tx_lock(nq, cpu);
2192	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false);
2193	if (ret == MVNETA_XDP_TX) {
2194		u64_stats_update_begin(&stats->syncp);
2195		stats->es.ps.tx_bytes += nxmit_byte;
2196		stats->es.ps.tx_packets++;
2197		stats->es.ps.xdp_tx++;
2198		u64_stats_update_end(&stats->syncp);
2199
2200		mvneta_txq_pend_desc_add(pp, txq, 0);
2201	} else {
2202		u64_stats_update_begin(&stats->syncp);
2203		stats->es.ps.xdp_tx_err++;
2204		u64_stats_update_end(&stats->syncp);
2205	}
2206	__netif_tx_unlock(nq);
2207
2208	return ret;
2209}
2210
2211static int
2212mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2213		struct xdp_frame **frames, u32 flags)
2214{
2215	struct mvneta_port *pp = netdev_priv(dev);
2216	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2217	int i, nxmit_byte = 0, nxmit = 0;
2218	int cpu = smp_processor_id();
2219	struct mvneta_tx_queue *txq;
2220	struct netdev_queue *nq;
2221	u32 ret;
2222
2223	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2224		return -ENETDOWN;
2225
2226	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2227		return -EINVAL;
2228
2229	txq = &pp->txqs[cpu % txq_number];
2230	nq = netdev_get_tx_queue(pp->dev, txq->id);
2231
2232	__netif_tx_lock(nq, cpu);
2233	for (i = 0; i < num_frame; i++) {
2234		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte,
2235					      true);
2236		if (ret != MVNETA_XDP_TX)
2237			break;
2238
2239		nxmit++;
2240	}
2241
2242	if (unlikely(flags & XDP_XMIT_FLUSH))
2243		mvneta_txq_pend_desc_add(pp, txq, 0);
2244	__netif_tx_unlock(nq);
2245
2246	u64_stats_update_begin(&stats->syncp);
2247	stats->es.ps.tx_bytes += nxmit_byte;
2248	stats->es.ps.tx_packets += nxmit;
2249	stats->es.ps.xdp_xmit += nxmit;
2250	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2251	u64_stats_update_end(&stats->syncp);
2252
2253	return nxmit;
2254}
2255
2256static int
2257mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2258	       struct bpf_prog *prog, struct xdp_buff *xdp,
2259	       u32 frame_sz, struct mvneta_stats *stats)
2260{
2261	unsigned int len, data_len, sync;
2262	u32 ret, act;
2263
2264	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2265	data_len = xdp->data_end - xdp->data;
2266	act = bpf_prog_run_xdp(prog, xdp);
2267
2268	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2269	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2270	sync = max(sync, len);
2271
2272	switch (act) {
2273	case XDP_PASS:
2274		stats->xdp_pass++;
2275		return MVNETA_XDP_PASS;
2276	case XDP_REDIRECT: {
2277		int err;
2278
2279		err = xdp_do_redirect(pp->dev, xdp, prog);
2280		if (unlikely(err)) {
2281			mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2282			ret = MVNETA_XDP_DROPPED;
2283		} else {
2284			ret = MVNETA_XDP_REDIR;
2285			stats->xdp_redirect++;
2286		}
2287		break;
2288	}
2289	case XDP_TX:
2290		ret = mvneta_xdp_xmit_back(pp, xdp);
2291		if (ret != MVNETA_XDP_TX)
2292			mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2293		break;
2294	default:
2295		bpf_warn_invalid_xdp_action(pp->dev, prog, act);
2296		fallthrough;
2297	case XDP_ABORTED:
2298		trace_xdp_exception(pp->dev, prog, act);
2299		fallthrough;
2300	case XDP_DROP:
2301		mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2302		ret = MVNETA_XDP_DROPPED;
2303		stats->xdp_drop++;
2304		break;
2305	}
2306
2307	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2308	stats->rx_packets++;
2309
2310	return ret;
2311}
2312
2313static void
2314mvneta_swbm_rx_frame(struct mvneta_port *pp,
2315		     struct mvneta_rx_desc *rx_desc,
2316		     struct mvneta_rx_queue *rxq,
2317		     struct xdp_buff *xdp, int *size,
2318		     struct page *page)
2319{
2320	unsigned char *data = page_address(page);
2321	int data_len = -MVNETA_MH_SIZE, len;
2322	struct net_device *dev = pp->dev;
2323	enum dma_data_direction dma_dir;
2324
2325	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2326		len = MVNETA_MAX_RX_BUF_SIZE;
2327		data_len += len;
2328	} else {
2329		len = *size;
2330		data_len += len - ETH_FCS_LEN;
2331	}
2332	*size = *size - len;
2333
2334	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2335	dma_sync_single_for_cpu(dev->dev.parent,
2336				rx_desc->buf_phys_addr,
2337				len, dma_dir);
2338
2339	rx_desc->buf_phys_addr = 0;
2340
2341	/* Prefetch header */
2342	prefetch(data);
2343	xdp_buff_clear_frags_flag(xdp);
2344	xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE,
2345			 data_len, false);
2346}
2347
2348static void
2349mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2350			    struct mvneta_rx_desc *rx_desc,
2351			    struct mvneta_rx_queue *rxq,
2352			    struct xdp_buff *xdp, int *size,
2353			    struct page *page)
2354{
2355	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2356	struct net_device *dev = pp->dev;
2357	enum dma_data_direction dma_dir;
2358	int data_len, len;
2359
2360	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2361		len = MVNETA_MAX_RX_BUF_SIZE;
2362		data_len = len;
2363	} else {
2364		len = *size;
2365		data_len = len - ETH_FCS_LEN;
2366	}
2367	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2368	dma_sync_single_for_cpu(dev->dev.parent,
2369				rx_desc->buf_phys_addr,
2370				len, dma_dir);
2371	rx_desc->buf_phys_addr = 0;
2372
2373	if (!xdp_buff_has_frags(xdp))
2374		sinfo->nr_frags = 0;
2375
2376	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2377		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++];
2378
2379		skb_frag_fill_page_desc(frag, page,
2380					pp->rx_offset_correction, data_len);
2381
2382		if (!xdp_buff_has_frags(xdp)) {
2383			sinfo->xdp_frags_size = *size;
2384			xdp_buff_set_frags_flag(xdp);
2385		}
2386		if (page_is_pfmemalloc(page))
2387			xdp_buff_set_frag_pfmemalloc(xdp);
2388	} else {
2389		page_pool_put_full_page(rxq->page_pool, page, true);
2390	}
2391	*size -= len;
2392}
2393
2394static struct sk_buff *
2395mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool,
2396		      struct xdp_buff *xdp, u32 desc_status)
2397{
2398	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2399	struct sk_buff *skb;
2400	u8 num_frags;
2401
2402	if (unlikely(xdp_buff_has_frags(xdp)))
2403		num_frags = sinfo->nr_frags;
2404
2405	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2406	if (!skb)
2407		return ERR_PTR(-ENOMEM);
2408
2409	skb_mark_for_recycle(skb);
2410
2411	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2412	skb_put(skb, xdp->data_end - xdp->data);
2413	skb->ip_summed = mvneta_rx_csum(pp, desc_status);
2414
2415	if (unlikely(xdp_buff_has_frags(xdp)))
2416		xdp_update_skb_shared_info(skb, num_frags,
2417					   sinfo->xdp_frags_size,
2418					   num_frags * xdp->frame_sz,
2419					   xdp_buff_is_frag_pfmemalloc(xdp));
2420
2421	return skb;
2422}
2423
2424/* Main rx processing when using software buffer management */
2425static int mvneta_rx_swbm(struct napi_struct *napi,
2426			  struct mvneta_port *pp, int budget,
2427			  struct mvneta_rx_queue *rxq)
2428{
2429	int rx_proc = 0, rx_todo, refill, size = 0;
2430	struct net_device *dev = pp->dev;
2431	struct mvneta_stats ps = {};
2432	struct bpf_prog *xdp_prog;
2433	u32 desc_status, frame_sz;
2434	struct xdp_buff xdp_buf;
2435
2436	xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq);
2437	xdp_buf.data_hard_start = NULL;
2438
2439	/* Get number of received packets */
2440	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2441
2442	xdp_prog = READ_ONCE(pp->xdp_prog);
2443
2444	/* Fairness NAPI loop */
2445	while (rx_proc < budget && rx_proc < rx_todo) {
2446		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2447		u32 rx_status, index;
2448		struct sk_buff *skb;
2449		struct page *page;
2450
2451		index = rx_desc - rxq->descs;
2452		page = (struct page *)rxq->buf_virt_addr[index];
2453
2454		rx_status = rx_desc->status;
2455		rx_proc++;
2456		rxq->refill_num++;
2457
2458		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2459			/* Check errors only for FIRST descriptor */
2460			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2461				mvneta_rx_error(pp, rx_desc);
2462				goto next;
2463			}
2464
2465			size = rx_desc->data_size;
2466			frame_sz = size - ETH_FCS_LEN;
2467			desc_status = rx_status;
2468
2469			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2470					     &size, page);
2471		} else {
2472			if (unlikely(!xdp_buf.data_hard_start)) {
2473				rx_desc->buf_phys_addr = 0;
2474				page_pool_put_full_page(rxq->page_pool, page,
2475							true);
2476				goto next;
2477			}
2478
2479			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2480						    &size, page);
2481		} /* Middle or Last descriptor */
2482
2483		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2484			/* no last descriptor this time */
2485			continue;
2486
2487		if (size) {
2488			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2489			goto next;
2490		}
2491
2492		if (xdp_prog &&
2493		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2494			goto next;
2495
2496		skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status);
2497		if (IS_ERR(skb)) {
2498			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2499
2500			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2501
2502			u64_stats_update_begin(&stats->syncp);
2503			stats->es.skb_alloc_error++;
2504			stats->rx_dropped++;
2505			u64_stats_update_end(&stats->syncp);
2506
2507			goto next;
2508		}
2509
2510		ps.rx_bytes += skb->len;
2511		ps.rx_packets++;
2512
2513		skb->protocol = eth_type_trans(skb, dev);
2514		napi_gro_receive(napi, skb);
2515next:
2516		xdp_buf.data_hard_start = NULL;
2517	}
2518
2519	if (xdp_buf.data_hard_start)
2520		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2521
2522	if (ps.xdp_redirect)
2523		xdp_do_flush();
2524
2525	if (ps.rx_packets)
2526		mvneta_update_stats(pp, &ps);
2527
2528	/* return some buffers to hardware queue, one at a time is too slow */
2529	refill = mvneta_rx_refill_queue(pp, rxq);
2530
2531	/* Update rxq management counters */
2532	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2533
2534	return ps.rx_packets;
2535}
2536
2537/* Main rx processing when using hardware buffer management */
2538static int mvneta_rx_hwbm(struct napi_struct *napi,
2539			  struct mvneta_port *pp, int rx_todo,
2540			  struct mvneta_rx_queue *rxq)
2541{
2542	struct net_device *dev = pp->dev;
2543	int rx_done;
2544	u32 rcvd_pkts = 0;
2545	u32 rcvd_bytes = 0;
2546
2547	/* Get number of received packets */
2548	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2549
2550	if (rx_todo > rx_done)
2551		rx_todo = rx_done;
2552
2553	rx_done = 0;
 
2554
2555	/* Fairness NAPI loop */
2556	while (rx_done < rx_todo) {
2557		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2558		struct mvneta_bm_pool *bm_pool = NULL;
2559		struct sk_buff *skb;
2560		unsigned char *data;
2561		dma_addr_t phys_addr;
2562		u32 rx_status, frag_size;
2563		int rx_bytes, err;
2564		u8 pool_id;
2565
2566		rx_done++;
 
2567		rx_status = rx_desc->status;
2568		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2569		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2570		phys_addr = rx_desc->buf_phys_addr;
2571		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2572		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2573
2574		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2575		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2576err_drop_frame_ret_pool:
2577			/* Return the buffer to the pool */
2578			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2579					      rx_desc->buf_phys_addr);
2580err_drop_frame:
2581			mvneta_rx_error(pp, rx_desc);
2582			/* leave the descriptor untouched */
2583			continue;
2584		}
2585
2586		if (rx_bytes <= rx_copybreak) {
2587			/* better copy a small frame and not unmap the DMA region */
2588			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2589			if (unlikely(!skb))
2590				goto err_drop_frame_ret_pool;
2591
2592			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2593			                              rx_desc->buf_phys_addr,
2594			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2595			                              rx_bytes,
2596			                              DMA_FROM_DEVICE);
2597			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2598				     rx_bytes);
 
2599
2600			skb->protocol = eth_type_trans(skb, dev);
2601			skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2602			napi_gro_receive(napi, skb);
2603
2604			rcvd_pkts++;
2605			rcvd_bytes += rx_bytes;
2606
2607			/* Return the buffer to the pool */
2608			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2609					      rx_desc->buf_phys_addr);
2610
2611			/* leave the descriptor and buffer untouched */
2612			continue;
2613		}
2614
2615		/* Refill processing */
2616		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2617		if (err) {
2618			struct mvneta_pcpu_stats *stats;
2619
2620			netdev_err(dev, "Linux processing - Can't refill\n");
2621
2622			stats = this_cpu_ptr(pp->stats);
2623			u64_stats_update_begin(&stats->syncp);
2624			stats->es.refill_error++;
2625			u64_stats_update_end(&stats->syncp);
2626
2627			goto err_drop_frame_ret_pool;
2628		}
2629
2630		frag_size = bm_pool->hwbm_pool.frag_size;
2631
2632		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2633
2634		/* After refill old buffer has to be unmapped regardless
2635		 * the skb is successfully built or not.
2636		 */
2637		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2638				 bm_pool->buf_size, DMA_FROM_DEVICE);
2639		if (!skb)
2640			goto err_drop_frame;
2641
 
 
 
2642		rcvd_pkts++;
2643		rcvd_bytes += rx_bytes;
2644
2645		/* Linux processing */
2646		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2647		skb_put(skb, rx_bytes);
2648
2649		skb->protocol = eth_type_trans(skb, dev);
2650		skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2651
2652		napi_gro_receive(napi, skb);
 
 
 
 
 
 
 
 
 
 
2653	}
2654
2655	if (rcvd_pkts) {
2656		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2657
2658		u64_stats_update_begin(&stats->syncp);
2659		stats->es.ps.rx_packets += rcvd_pkts;
2660		stats->es.ps.rx_bytes += rcvd_bytes;
2661		u64_stats_update_end(&stats->syncp);
2662	}
2663
2664	/* Update rxq management counters */
2665	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2666
2667	return rx_done;
2668}
2669
2670static void mvneta_free_tso_hdrs(struct mvneta_port *pp,
2671				 struct mvneta_tx_queue *txq)
2672{
2673	struct device *dev = pp->dev->dev.parent;
2674	int i;
2675
2676	for (i = 0; i < MVNETA_MAX_TSO_PAGES; i++) {
2677		if (txq->tso_hdrs[i]) {
2678			dma_free_coherent(dev, MVNETA_TSO_PAGE_SIZE,
2679					  txq->tso_hdrs[i],
2680					  txq->tso_hdrs_phys[i]);
2681			txq->tso_hdrs[i] = NULL;
2682		}
2683	}
2684}
2685
2686static int mvneta_alloc_tso_hdrs(struct mvneta_port *pp,
2687				 struct mvneta_tx_queue *txq)
2688{
2689	struct device *dev = pp->dev->dev.parent;
2690	int i, num;
2691
2692	num = DIV_ROUND_UP(txq->size, MVNETA_TSO_PER_PAGE);
2693	for (i = 0; i < num; i++) {
2694		txq->tso_hdrs[i] = dma_alloc_coherent(dev, MVNETA_TSO_PAGE_SIZE,
2695						      &txq->tso_hdrs_phys[i],
2696						      GFP_KERNEL);
2697		if (!txq->tso_hdrs[i]) {
2698			mvneta_free_tso_hdrs(pp, txq);
2699			return -ENOMEM;
2700		}
2701	}
2702
2703	return 0;
2704}
2705
2706static char *mvneta_get_tso_hdr(struct mvneta_tx_queue *txq, dma_addr_t *dma)
2707{
2708	int index, offset;
2709
2710	index = txq->txq_put_index / MVNETA_TSO_PER_PAGE;
2711	offset = (txq->txq_put_index % MVNETA_TSO_PER_PAGE) * TSO_HEADER_SIZE;
2712
2713	*dma = txq->tso_hdrs_phys[index] + offset;
2714
2715	return txq->tso_hdrs[index] + offset;
2716}
2717
2718static void mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq,
2719			       struct tso_t *tso, int size, bool is_last)
2720{
2721	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2722	int hdr_len = skb_tcp_all_headers(skb);
2723	struct mvneta_tx_desc *tx_desc;
2724	dma_addr_t hdr_phys;
2725	char *hdr;
2726
2727	hdr = mvneta_get_tso_hdr(txq, &hdr_phys);
2728	tso_build_hdr(skb, hdr, tso, size, is_last);
2729
2730	tx_desc = mvneta_txq_next_desc_get(txq);
2731	tx_desc->data_size = hdr_len;
2732	tx_desc->command = mvneta_skb_tx_csum(skb);
2733	tx_desc->command |= MVNETA_TXD_F_DESC;
2734	tx_desc->buf_phys_addr = hdr_phys;
2735	buf->type = MVNETA_TYPE_TSO;
2736	buf->skb = NULL;
2737
2738	mvneta_txq_inc_put(txq);
2739}
2740
2741static inline int
2742mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2743		    struct sk_buff *skb, char *data, int size,
2744		    bool last_tcp, bool is_last)
2745{
2746	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2747	struct mvneta_tx_desc *tx_desc;
2748
2749	tx_desc = mvneta_txq_next_desc_get(txq);
2750	tx_desc->data_size = size;
2751	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2752						size, DMA_TO_DEVICE);
2753	if (unlikely(dma_mapping_error(dev->dev.parent,
2754		     tx_desc->buf_phys_addr))) {
2755		mvneta_txq_desc_put(txq);
2756		return -ENOMEM;
2757	}
2758
2759	tx_desc->command = 0;
2760	buf->type = MVNETA_TYPE_SKB;
2761	buf->skb = NULL;
2762
2763	if (last_tcp) {
2764		/* last descriptor in the TCP packet */
2765		tx_desc->command = MVNETA_TXD_L_DESC;
2766
2767		/* last descriptor in SKB */
2768		if (is_last)
2769			buf->skb = skb;
2770	}
2771	mvneta_txq_inc_put(txq);
2772	return 0;
2773}
2774
2775static void mvneta_release_descs(struct mvneta_port *pp,
2776				 struct mvneta_tx_queue *txq,
2777				 int first, int num)
2778{
2779	int desc_idx, i;
2780
2781	desc_idx = first + num;
2782	if (desc_idx >= txq->size)
2783		desc_idx -= txq->size;
2784
2785	for (i = num; i >= 0; i--) {
2786		struct mvneta_tx_desc *tx_desc = txq->descs + desc_idx;
2787		struct mvneta_tx_buf *buf = &txq->buf[desc_idx];
2788
2789		if (buf->type == MVNETA_TYPE_SKB)
2790			dma_unmap_single(pp->dev->dev.parent,
2791					 tx_desc->buf_phys_addr,
2792					 tx_desc->data_size,
2793					 DMA_TO_DEVICE);
2794
2795		mvneta_txq_desc_put(txq);
2796
2797		if (desc_idx == 0)
2798			desc_idx = txq->size;
2799		desc_idx -= 1;
2800	}
2801}
2802
2803static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2804			 struct mvneta_tx_queue *txq)
2805{
2806	int hdr_len, total_len, data_left;
2807	int first_desc, desc_count = 0;
2808	struct mvneta_port *pp = netdev_priv(dev);
2809	struct tso_t tso;
2810
2811	/* Count needed descriptors */
2812	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2813		return 0;
2814
2815	if (skb_headlen(skb) < skb_tcp_all_headers(skb)) {
2816		pr_info("*** Is this even possible?\n");
2817		return 0;
2818	}
2819
2820	first_desc = txq->txq_put_index;
2821
2822	/* Initialize the TSO handler, and prepare the first payload */
2823	hdr_len = tso_start(skb, &tso);
2824
2825	total_len = skb->len - hdr_len;
2826	while (total_len > 0) {
2827		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2828		total_len -= data_left;
2829		desc_count++;
2830
2831		/* prepare packet headers: MAC + IP + TCP */
2832		mvneta_tso_put_hdr(skb, txq, &tso, data_left, total_len == 0);
2833
2834		while (data_left > 0) {
2835			int size;
2836			desc_count++;
2837
2838			size = min_t(int, tso.size, data_left);
2839
2840			if (mvneta_tso_put_data(dev, txq, skb,
2841						 tso.data, size,
2842						 size == data_left,
2843						 total_len == 0))
2844				goto err_release;
2845			data_left -= size;
2846
2847			tso_build_data(skb, &tso, size);
2848		}
2849	}
2850
2851	return desc_count;
2852
2853err_release:
2854	/* Release all used data descriptors; header descriptors must not
2855	 * be DMA-unmapped.
2856	 */
2857	mvneta_release_descs(pp, txq, first_desc, desc_count - 1);
2858	return 0;
2859}
2860
2861/* Handle tx fragmentation processing */
2862static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2863				  struct mvneta_tx_queue *txq)
2864{
2865	struct mvneta_tx_desc *tx_desc;
2866	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2867	int first_desc = txq->txq_put_index;
2868
2869	for (i = 0; i < nr_frags; i++) {
2870		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2871		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2872		void *addr = skb_frag_address(frag);
2873
2874		tx_desc = mvneta_txq_next_desc_get(txq);
2875		tx_desc->data_size = skb_frag_size(frag);
2876
2877		tx_desc->buf_phys_addr =
2878			dma_map_single(pp->dev->dev.parent, addr,
2879				       tx_desc->data_size, DMA_TO_DEVICE);
2880
2881		if (dma_mapping_error(pp->dev->dev.parent,
2882				      tx_desc->buf_phys_addr)) {
2883			mvneta_txq_desc_put(txq);
2884			goto error;
2885		}
2886
2887		if (i == nr_frags - 1) {
2888			/* Last descriptor */
2889			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2890			buf->skb = skb;
 
 
 
2891		} else {
2892			/* Descriptor in the middle: Not First, Not Last */
2893			tx_desc->command = 0;
2894			buf->skb = NULL;
 
 
2895		}
2896		buf->type = MVNETA_TYPE_SKB;
2897		mvneta_txq_inc_put(txq);
2898	}
2899
2900	return 0;
2901
2902error:
2903	/* Release all descriptors that were used to map fragments of
2904	 * this packet, as well as the corresponding DMA mappings
2905	 */
2906	mvneta_release_descs(pp, txq, first_desc, i - 1);
 
 
 
 
 
 
 
 
2907	return -ENOMEM;
2908}
2909
2910/* Main tx processing */
2911static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2912{
2913	struct mvneta_port *pp = netdev_priv(dev);
2914	u16 txq_id = skb_get_queue_mapping(skb);
2915	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2916	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2917	struct mvneta_tx_desc *tx_desc;
2918	int len = skb->len;
2919	int frags = 0;
2920	u32 tx_cmd;
2921
2922	if (!netif_running(dev))
2923		goto out;
2924
2925	if (skb_is_gso(skb)) {
2926		frags = mvneta_tx_tso(skb, dev, txq);
2927		goto out;
2928	}
2929
2930	frags = skb_shinfo(skb)->nr_frags + 1;
 
2931
2932	/* Get a descriptor for the first part of the packet */
2933	tx_desc = mvneta_txq_next_desc_get(txq);
2934
2935	tx_cmd = mvneta_skb_tx_csum(skb);
2936
2937	tx_desc->data_size = skb_headlen(skb);
2938
2939	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2940						tx_desc->data_size,
2941						DMA_TO_DEVICE);
2942	if (unlikely(dma_mapping_error(dev->dev.parent,
2943				       tx_desc->buf_phys_addr))) {
2944		mvneta_txq_desc_put(txq);
2945		frags = 0;
2946		goto out;
2947	}
2948
2949	buf->type = MVNETA_TYPE_SKB;
2950	if (frags == 1) {
2951		/* First and Last descriptor */
2952		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2953		tx_desc->command = tx_cmd;
2954		buf->skb = skb;
2955		mvneta_txq_inc_put(txq);
2956	} else {
2957		/* First but not Last */
2958		tx_cmd |= MVNETA_TXD_F_DESC;
2959		buf->skb = NULL;
2960		mvneta_txq_inc_put(txq);
2961		tx_desc->command = tx_cmd;
2962		/* Continue with other skb fragments */
2963		if (mvneta_tx_frag_process(pp, skb, txq)) {
2964			dma_unmap_single(dev->dev.parent,
2965					 tx_desc->buf_phys_addr,
2966					 tx_desc->data_size,
2967					 DMA_TO_DEVICE);
2968			mvneta_txq_desc_put(txq);
2969			frags = 0;
2970			goto out;
2971		}
2972	}
2973
 
 
 
 
 
 
2974out:
2975	if (frags > 0) {
2976		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2977		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2978
2979		netdev_tx_sent_queue(nq, len);
2980
2981		txq->count += frags;
2982		if (txq->count >= txq->tx_stop_threshold)
2983			netif_tx_stop_queue(nq);
2984
2985		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2986		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2987			mvneta_txq_pend_desc_add(pp, txq, frags);
2988		else
2989			txq->pending += frags;
2990
2991		u64_stats_update_begin(&stats->syncp);
2992		stats->es.ps.tx_bytes += len;
2993		stats->es.ps.tx_packets++;
2994		u64_stats_update_end(&stats->syncp);
2995	} else {
2996		dev->stats.tx_dropped++;
2997		dev_kfree_skb_any(skb);
2998	}
2999
3000	return NETDEV_TX_OK;
3001}
3002
3003
3004/* Free tx resources, when resetting a port */
3005static void mvneta_txq_done_force(struct mvneta_port *pp,
3006				  struct mvneta_tx_queue *txq)
3007
3008{
3009	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3010	int tx_done = txq->count;
3011
3012	mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
3013
3014	/* reset txq */
3015	txq->count = 0;
3016	txq->txq_put_index = 0;
3017	txq->txq_get_index = 0;
3018}
3019
3020/* Handle tx done - called in softirq context. The <cause_tx_done> argument
3021 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
3022 */
3023static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
3024{
3025	struct mvneta_tx_queue *txq;
3026	struct netdev_queue *nq;
3027	int cpu = smp_processor_id();
3028
3029	while (cause_tx_done) {
3030		txq = mvneta_tx_done_policy(pp, cause_tx_done);
3031
3032		nq = netdev_get_tx_queue(pp->dev, txq->id);
3033		__netif_tx_lock(nq, cpu);
3034
3035		if (txq->count)
3036			mvneta_txq_done(pp, txq);
3037
3038		__netif_tx_unlock(nq);
3039		cause_tx_done &= ~((1 << txq->id));
3040	}
3041}
3042
3043/* Compute crc8 of the specified address, using a unique algorithm ,
3044 * according to hw spec, different than generic crc8 algorithm
3045 */
3046static int mvneta_addr_crc(unsigned char *addr)
3047{
3048	int crc = 0;
3049	int i;
3050
3051	for (i = 0; i < ETH_ALEN; i++) {
3052		int j;
3053
3054		crc = (crc ^ addr[i]) << 8;
3055		for (j = 7; j >= 0; j--) {
3056			if (crc & (0x100 << j))
3057				crc ^= 0x107 << j;
3058		}
3059	}
3060
3061	return crc;
3062}
3063
3064/* This method controls the net device special MAC multicast support.
3065 * The Special Multicast Table for MAC addresses supports MAC of the form
3066 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3067 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3068 * Table entries in the DA-Filter table. This method set the Special
3069 * Multicast Table appropriate entry.
3070 */
3071static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
3072					  unsigned char last_byte,
3073					  int queue)
3074{
3075	unsigned int smc_table_reg;
3076	unsigned int tbl_offset;
3077	unsigned int reg_offset;
3078
3079	/* Register offset from SMC table base    */
3080	tbl_offset = (last_byte / 4);
3081	/* Entry offset within the above reg */
3082	reg_offset = last_byte % 4;
3083
3084	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
3085					+ tbl_offset * 4));
3086
3087	if (queue == -1)
3088		smc_table_reg &= ~(0xff << (8 * reg_offset));
3089	else {
3090		smc_table_reg &= ~(0xff << (8 * reg_offset));
3091		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3092	}
3093
3094	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
3095		    smc_table_reg);
3096}
3097
3098/* This method controls the network device Other MAC multicast support.
3099 * The Other Multicast Table is used for multicast of another type.
3100 * A CRC-8 is used as an index to the Other Multicast Table entries
3101 * in the DA-Filter table.
3102 * The method gets the CRC-8 value from the calling routine and
3103 * sets the Other Multicast Table appropriate entry according to the
3104 * specified CRC-8 .
3105 */
3106static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
3107					unsigned char crc8,
3108					int queue)
3109{
3110	unsigned int omc_table_reg;
3111	unsigned int tbl_offset;
3112	unsigned int reg_offset;
3113
3114	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
3115	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
3116
3117	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
3118
3119	if (queue == -1) {
3120		/* Clear accepts frame bit at specified Other DA table entry */
3121		omc_table_reg &= ~(0xff << (8 * reg_offset));
3122	} else {
3123		omc_table_reg &= ~(0xff << (8 * reg_offset));
3124		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3125	}
3126
3127	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3128}
3129
3130/* The network device supports multicast using two tables:
3131 *    1) Special Multicast Table for MAC addresses of the form
3132 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3133 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3134 *       Table entries in the DA-Filter table.
3135 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
3136 *       is used as an index to the Other Multicast Table entries in the
3137 *       DA-Filter table.
3138 */
3139static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3140				 int queue)
3141{
3142	unsigned char crc_result = 0;
3143
3144	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3145		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3146		return 0;
3147	}
3148
3149	crc_result = mvneta_addr_crc(p_addr);
3150	if (queue == -1) {
3151		if (pp->mcast_count[crc_result] == 0) {
3152			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3153				    crc_result);
3154			return -EINVAL;
3155		}
3156
3157		pp->mcast_count[crc_result]--;
3158		if (pp->mcast_count[crc_result] != 0) {
3159			netdev_info(pp->dev,
3160				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3161				    pp->mcast_count[crc_result], crc_result);
3162			return -EINVAL;
3163		}
3164	} else
3165		pp->mcast_count[crc_result]++;
3166
3167	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3168
3169	return 0;
3170}
3171
3172/* Configure Fitering mode of Ethernet port */
3173static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3174					  int is_promisc)
3175{
3176	u32 port_cfg_reg, val;
3177
3178	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3179
3180	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3181
3182	/* Set / Clear UPM bit in port configuration register */
3183	if (is_promisc) {
3184		/* Accept all Unicast addresses */
3185		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3186		val |= MVNETA_FORCE_UNI;
3187		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3188		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3189	} else {
3190		/* Reject all Unicast addresses */
3191		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3192		val &= ~MVNETA_FORCE_UNI;
3193	}
3194
3195	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3196	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3197}
3198
3199/* register unicast and multicast addresses */
3200static void mvneta_set_rx_mode(struct net_device *dev)
3201{
3202	struct mvneta_port *pp = netdev_priv(dev);
3203	struct netdev_hw_addr *ha;
3204
3205	if (dev->flags & IFF_PROMISC) {
3206		/* Accept all: Multicast + Unicast */
3207		mvneta_rx_unicast_promisc_set(pp, 1);
3208		mvneta_set_ucast_table(pp, pp->rxq_def);
3209		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3210		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3211	} else {
3212		/* Accept single Unicast */
3213		mvneta_rx_unicast_promisc_set(pp, 0);
3214		mvneta_set_ucast_table(pp, -1);
3215		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3216
3217		if (dev->flags & IFF_ALLMULTI) {
3218			/* Accept all multicast */
3219			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3220			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3221		} else {
3222			/* Accept only initialized multicast */
3223			mvneta_set_special_mcast_table(pp, -1);
3224			mvneta_set_other_mcast_table(pp, -1);
3225
3226			if (!netdev_mc_empty(dev)) {
3227				netdev_for_each_mc_addr(ha, dev) {
3228					mvneta_mcast_addr_set(pp, ha->addr,
3229							      pp->rxq_def);
3230				}
3231			}
3232		}
3233	}
3234}
3235
3236/* Interrupt handling - the callback for request_irq() */
3237static irqreturn_t mvneta_isr(int irq, void *dev_id)
3238{
3239	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3240
 
3241	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3242	napi_schedule(&pp->napi);
3243
3244	return IRQ_HANDLED;
3245}
3246
3247/* Interrupt handling - the callback for request_percpu_irq() */
3248static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3249{
3250	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3251
3252	disable_percpu_irq(port->pp->dev->irq);
3253	napi_schedule(&port->napi);
3254
3255	return IRQ_HANDLED;
3256}
3257
3258static void mvneta_link_change(struct mvneta_port *pp)
3259{
3260	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3261
3262	phylink_pcs_change(&pp->phylink_pcs,
3263			   !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3264}
3265
3266/* NAPI handler
3267 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3268 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3269 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3270 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3271 * Each CPU has its own causeRxTx register
3272 */
3273static int mvneta_poll(struct napi_struct *napi, int budget)
3274{
3275	int rx_done = 0;
3276	u32 cause_rx_tx;
3277	int rx_queue;
3278	struct mvneta_port *pp = netdev_priv(napi->dev);
3279	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3280
3281	if (!netif_running(pp->dev)) {
3282		napi_complete(napi);
3283		return rx_done;
3284	}
3285
3286	/* Read cause register */
3287	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3288	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3289		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3290
3291		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3292
3293		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3294				  MVNETA_CAUSE_LINK_CHANGE))
3295			mvneta_link_change(pp);
3296	}
3297
3298	/* Release Tx descriptors */
3299	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3300		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3301		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3302	}
3303
3304	/* For the case where the last mvneta_poll did not process all
3305	 * RX packets
3306	 */
3307	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3308		port->cause_rx_tx;
 
 
 
 
 
 
 
3309
3310	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3311	if (rx_queue) {
3312		rx_queue = rx_queue - 1;
3313		if (pp->bm_priv)
3314			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3315						 &pp->rxqs[rx_queue]);
3316		else
3317			rx_done = mvneta_rx_swbm(napi, pp, budget,
3318						 &pp->rxqs[rx_queue]);
 
 
 
 
 
 
 
 
3319	}
3320
3321	if (rx_done < budget) {
3322		cause_rx_tx = 0;
3323		napi_complete_done(napi, rx_done);
3324
3325		if (pp->neta_armada3700) {
3326			unsigned long flags;
3327
3328			local_irq_save(flags);
3329			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3330				    MVNETA_RX_INTR_MASK(rxq_number) |
3331				    MVNETA_TX_INTR_MASK(txq_number) |
3332				    MVNETA_MISCINTR_INTR_MASK);
3333			local_irq_restore(flags);
3334		} else {
3335			enable_percpu_irq(pp->dev->irq, 0);
3336		}
3337	}
3338
3339	if (pp->neta_armada3700)
3340		pp->cause_rx_tx = cause_rx_tx;
3341	else
3342		port->cause_rx_tx = cause_rx_tx;
3343
3344	return rx_done;
3345}
3346
3347static int mvneta_create_page_pool(struct mvneta_port *pp,
3348				   struct mvneta_rx_queue *rxq, int size)
3349{
3350	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3351	struct page_pool_params pp_params = {
3352		.order = 0,
3353		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3354		.pool_size = size,
3355		.nid = NUMA_NO_NODE,
3356		.dev = pp->dev->dev.parent,
3357		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3358		.offset = pp->rx_offset_correction,
3359		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3360	};
3361	int err;
3362
3363	rxq->page_pool = page_pool_create(&pp_params);
3364	if (IS_ERR(rxq->page_pool)) {
3365		err = PTR_ERR(rxq->page_pool);
3366		rxq->page_pool = NULL;
3367		return err;
3368	}
3369
3370	err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0,
3371				 PAGE_SIZE);
3372	if (err < 0)
3373		goto err_free_pp;
3374
3375	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3376					 rxq->page_pool);
3377	if (err)
3378		goto err_unregister_rxq;
3379
3380	return 0;
3381
3382err_unregister_rxq:
3383	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3384err_free_pp:
3385	page_pool_destroy(rxq->page_pool);
3386	rxq->page_pool = NULL;
3387	return err;
3388}
3389
3390/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3391static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3392			   int num)
3393{
3394	int i, err;
3395
3396	err = mvneta_create_page_pool(pp, rxq, num);
3397	if (err < 0)
3398		return err;
3399
3400	for (i = 0; i < num; i++) {
3401		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3402		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3403				     GFP_KERNEL) != 0) {
3404			netdev_err(pp->dev,
3405				   "%s:rxq %d, %d of %d buffs  filled\n",
3406				   __func__, rxq->id, i, num);
3407			break;
3408		}
3409	}
3410
3411	/* Add this number of RX descriptors as non occupied (ready to
3412	 * get packets)
3413	 */
3414	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3415
3416	return i;
3417}
3418
3419/* Free all packets pending transmit from all TXQs and reset TX port */
3420static void mvneta_tx_reset(struct mvneta_port *pp)
3421{
3422	int queue;
3423
3424	/* free the skb's in the tx ring */
3425	for (queue = 0; queue < txq_number; queue++)
3426		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3427
3428	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3429	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3430}
3431
3432static void mvneta_rx_reset(struct mvneta_port *pp)
3433{
3434	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3435	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3436}
3437
3438/* Rx/Tx queue initialization/cleanup methods */
3439
3440static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3441			      struct mvneta_rx_queue *rxq)
 
 
3442{
3443	rxq->size = pp->rx_ring_size;
3444
3445	/* Allocate memory for RX descriptors */
3446	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3447					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3448					&rxq->descs_phys, GFP_KERNEL);
3449	if (!rxq->descs)
3450		return -ENOMEM;
3451
3452	rxq->last_desc = rxq->size - 1;
 
3453
3454	return 0;
3455}
3456
3457static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3458			       struct mvneta_rx_queue *rxq)
3459{
3460	/* Set Rx descriptors queue starting address */
3461	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3462	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3463
 
 
 
3464	/* Set coalescing pkts and time */
3465	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3466	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3467
3468	if (!pp->bm_priv) {
3469		/* Set Offset */
3470		mvneta_rxq_offset_set(pp, rxq, 0);
3471		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3472					MVNETA_MAX_RX_BUF_SIZE :
3473					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3474		mvneta_rxq_bm_disable(pp, rxq);
3475		mvneta_rxq_fill(pp, rxq, rxq->size);
3476	} else {
3477		/* Set Offset */
3478		mvneta_rxq_offset_set(pp, rxq,
3479				      NET_SKB_PAD - pp->rx_offset_correction);
3480
3481		mvneta_rxq_bm_enable(pp, rxq);
3482		/* Fill RXQ with buffers from RX pool */
3483		mvneta_rxq_long_pool_set(pp, rxq);
3484		mvneta_rxq_short_pool_set(pp, rxq);
3485		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3486	}
3487}
3488
3489/* Create a specified RX queue */
3490static int mvneta_rxq_init(struct mvneta_port *pp,
3491			   struct mvneta_rx_queue *rxq)
3492
3493{
3494	int ret;
3495
3496	ret = mvneta_rxq_sw_init(pp, rxq);
3497	if (ret < 0)
3498		return ret;
3499
3500	mvneta_rxq_hw_init(pp, rxq);
3501
3502	return 0;
3503}
3504
3505/* Cleanup Rx queue */
3506static void mvneta_rxq_deinit(struct mvneta_port *pp,
3507			      struct mvneta_rx_queue *rxq)
3508{
3509	mvneta_rxq_drop_pkts(pp, rxq);
3510
3511	if (rxq->descs)
3512		dma_free_coherent(pp->dev->dev.parent,
3513				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3514				  rxq->descs,
3515				  rxq->descs_phys);
3516
3517	rxq->descs             = NULL;
3518	rxq->last_desc         = 0;
3519	rxq->next_desc_to_proc = 0;
3520	rxq->descs_phys        = 0;
3521	rxq->first_to_refill   = 0;
3522	rxq->refill_num        = 0;
3523}
3524
3525static int mvneta_txq_sw_init(struct mvneta_port *pp,
3526			      struct mvneta_tx_queue *txq)
 
3527{
3528	int cpu, err;
3529
3530	txq->size = pp->tx_ring_size;
3531
3532	/* A queue must always have room for at least one skb.
3533	 * Therefore, stop the queue when the free entries reaches
3534	 * the maximum number of descriptors per skb.
3535	 */
3536	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3537	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3538
3539	/* Allocate memory for TX descriptors */
3540	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3541					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3542					&txq->descs_phys, GFP_KERNEL);
3543	if (!txq->descs)
3544		return -ENOMEM;
3545
3546	txq->last_desc = txq->size - 1;
3547
3548	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3549	if (!txq->buf)
3550		return -ENOMEM;
3551
3552	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3553	err = mvneta_alloc_tso_hdrs(pp, txq);
3554	if (err)
3555		return err;
3556
3557	/* Setup XPS mapping */
3558	if (pp->neta_armada3700)
3559		cpu = 0;
3560	else if (txq_number > 1)
3561		cpu = txq->id % num_present_cpus();
3562	else
3563		cpu = pp->rxq_def % num_present_cpus();
3564	cpumask_set_cpu(cpu, &txq->affinity_mask);
3565	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3566
3567	return 0;
3568}
3569
3570static void mvneta_txq_hw_init(struct mvneta_port *pp,
3571			       struct mvneta_tx_queue *txq)
3572{
3573	/* Set maximum bandwidth for enabled TXQs */
3574	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3575	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3576
3577	/* Set Tx descriptors queue starting address */
3578	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3579	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3580
 
 
 
 
 
 
 
3581	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3582}
3583
3584/* Create and initialize a tx queue */
3585static int mvneta_txq_init(struct mvneta_port *pp,
3586			   struct mvneta_tx_queue *txq)
3587{
3588	int ret;
3589
3590	ret = mvneta_txq_sw_init(pp, txq);
3591	if (ret < 0)
3592		return ret;
3593
3594	mvneta_txq_hw_init(pp, txq);
3595
3596	return 0;
3597}
3598
3599/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3600static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3601				 struct mvneta_tx_queue *txq)
3602{
3603	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3604
3605	kfree(txq->buf);
3606
3607	mvneta_free_tso_hdrs(pp, txq);
3608	if (txq->descs)
3609		dma_free_coherent(pp->dev->dev.parent,
3610				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3611				  txq->descs, txq->descs_phys);
3612
3613	netdev_tx_reset_queue(nq);
3614
3615	txq->buf               = NULL;
3616	txq->descs             = NULL;
3617	txq->last_desc         = 0;
3618	txq->next_desc_to_proc = 0;
3619	txq->descs_phys        = 0;
3620}
3621
3622static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3623				 struct mvneta_tx_queue *txq)
3624{
3625	/* Set minimum bandwidth for disabled TXQs */
3626	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3627	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3628
3629	/* Set Tx descriptors queue starting address and size */
3630	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3631	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3632}
3633
3634static void mvneta_txq_deinit(struct mvneta_port *pp,
3635			      struct mvneta_tx_queue *txq)
3636{
3637	mvneta_txq_sw_deinit(pp, txq);
3638	mvneta_txq_hw_deinit(pp, txq);
3639}
3640
3641/* Cleanup all Tx queues */
3642static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3643{
3644	int queue;
3645
3646	for (queue = 0; queue < txq_number; queue++)
3647		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3648}
3649
3650/* Cleanup all Rx queues */
3651static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3652{
3653	int queue;
3654
3655	for (queue = 0; queue < rxq_number; queue++)
3656		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3657}
3658
3659
3660/* Init all Rx queues */
3661static int mvneta_setup_rxqs(struct mvneta_port *pp)
3662{
3663	int queue;
3664
3665	for (queue = 0; queue < rxq_number; queue++) {
3666		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3667
3668		if (err) {
3669			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3670				   __func__, queue);
3671			mvneta_cleanup_rxqs(pp);
3672			return err;
3673		}
3674	}
3675
3676	return 0;
3677}
3678
3679/* Init all tx queues */
3680static int mvneta_setup_txqs(struct mvneta_port *pp)
3681{
3682	int queue;
3683
3684	for (queue = 0; queue < txq_number; queue++) {
3685		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3686		if (err) {
3687			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3688				   __func__, queue);
3689			mvneta_cleanup_txqs(pp);
3690			return err;
3691		}
3692	}
3693
3694	return 0;
3695}
3696
3697static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3698{
3699	int ret;
3700
3701	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3702	if (ret)
3703		return ret;
3704
3705	return phy_power_on(pp->comphy);
3706}
3707
3708static int mvneta_config_interface(struct mvneta_port *pp,
3709				   phy_interface_t interface)
3710{
3711	int ret = 0;
3712
3713	if (pp->comphy) {
3714		if (interface == PHY_INTERFACE_MODE_SGMII ||
3715		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3716		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3717			ret = mvneta_comphy_init(pp, interface);
3718		}
3719	} else {
3720		switch (interface) {
3721		case PHY_INTERFACE_MODE_QSGMII:
3722			mvreg_write(pp, MVNETA_SERDES_CFG,
3723				    MVNETA_QSGMII_SERDES_PROTO);
3724			break;
3725
3726		case PHY_INTERFACE_MODE_SGMII:
3727		case PHY_INTERFACE_MODE_1000BASEX:
3728			mvreg_write(pp, MVNETA_SERDES_CFG,
3729				    MVNETA_SGMII_SERDES_PROTO);
3730			break;
3731
3732		case PHY_INTERFACE_MODE_2500BASEX:
3733			mvreg_write(pp, MVNETA_SERDES_CFG,
3734				    MVNETA_HSGMII_SERDES_PROTO);
3735			break;
3736		default:
3737			break;
3738		}
3739	}
3740
3741	pp->phy_interface = interface;
3742
3743	return ret;
3744}
3745
3746static void mvneta_start_dev(struct mvneta_port *pp)
3747{
3748	int cpu;
3749
3750	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3751
3752	mvneta_max_rx_size_set(pp, pp->pkt_size);
3753	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3754
3755	/* start the Rx/Tx activity */
3756	mvneta_port_enable(pp);
3757
3758	if (!pp->neta_armada3700) {
3759		/* Enable polling on the port */
3760		for_each_online_cpu(cpu) {
3761			struct mvneta_pcpu_port *port =
3762				per_cpu_ptr(pp->ports, cpu);
3763
3764			napi_enable(&port->napi);
3765		}
3766	} else {
3767		napi_enable(&pp->napi);
3768	}
3769
3770	/* Unmask interrupts. It has to be done from each CPU */
3771	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3772
3773	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3774		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3775		    MVNETA_CAUSE_LINK_CHANGE);
3776
3777	phylink_start(pp->phylink);
3778
3779	/* We may have called phylink_speed_down before */
3780	phylink_speed_up(pp->phylink);
3781
 
3782	netif_tx_start_all_queues(pp->dev);
3783
3784	clear_bit(__MVNETA_DOWN, &pp->state);
3785}
3786
3787static void mvneta_stop_dev(struct mvneta_port *pp)
3788{
3789	unsigned int cpu;
3790
3791	set_bit(__MVNETA_DOWN, &pp->state);
3792
3793	if (device_may_wakeup(&pp->dev->dev))
3794		phylink_speed_down(pp->phylink, false);
3795
3796	phylink_stop(pp->phylink);
3797
3798	if (!pp->neta_armada3700) {
3799		for_each_online_cpu(cpu) {
3800			struct mvneta_pcpu_port *port =
3801				per_cpu_ptr(pp->ports, cpu);
3802
3803			napi_disable(&port->napi);
3804		}
3805	} else {
3806		napi_disable(&pp->napi);
3807	}
3808
3809	netif_carrier_off(pp->dev);
3810
3811	mvneta_port_down(pp);
3812	netif_tx_stop_all_queues(pp->dev);
3813
3814	/* Stop the port activity */
3815	mvneta_port_disable(pp);
3816
3817	/* Clear all ethernet port interrupts */
3818	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
 
3819
3820	/* Mask all ethernet port interrupts */
3821	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
 
 
3822
3823	mvneta_tx_reset(pp);
3824	mvneta_rx_reset(pp);
3825
3826	WARN_ON(phy_power_off(pp->comphy));
3827}
3828
3829static void mvneta_percpu_enable(void *arg)
 
3830{
3831	struct mvneta_port *pp = arg;
 
 
 
3832
3833	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3834}
 
 
 
3835
3836static void mvneta_percpu_disable(void *arg)
3837{
3838	struct mvneta_port *pp = arg;
 
 
3839
3840	disable_percpu_irq(pp->dev->irq);
3841}
3842
3843/* Change the device mtu */
3844static int mvneta_change_mtu(struct net_device *dev, int mtu)
3845{
3846	struct mvneta_port *pp = netdev_priv(dev);
3847	struct bpf_prog *prog = pp->xdp_prog;
3848	int ret;
3849
3850	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3851		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3852			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3853		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3854	}
3855
3856	if (prog && !prog->aux->xdp_has_frags &&
3857	    mtu > MVNETA_MAX_RX_BUF_SIZE) {
3858		netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n",
3859			    mtu);
3860
3861		return -EINVAL;
3862	}
3863
3864	WRITE_ONCE(dev->mtu, mtu);
3865
3866	if (!netif_running(dev)) {
3867		if (pp->bm_priv)
3868			mvneta_bm_update_mtu(pp, mtu);
3869
3870		netdev_update_features(dev);
3871		return 0;
3872	}
3873
3874	/* The interface is running, so we have to force a
3875	 * reallocation of the queues
3876	 */
3877	mvneta_stop_dev(pp);
3878	on_each_cpu(mvneta_percpu_disable, pp, true);
3879
3880	mvneta_cleanup_txqs(pp);
3881	mvneta_cleanup_rxqs(pp);
3882
3883	if (pp->bm_priv)
3884		mvneta_bm_update_mtu(pp, mtu);
3885
3886	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3887
3888	ret = mvneta_setup_rxqs(pp);
3889	if (ret) {
3890		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3891		return ret;
3892	}
3893
3894	ret = mvneta_setup_txqs(pp);
3895	if (ret) {
3896		netdev_err(dev, "unable to setup txqs after MTU change\n");
3897		return ret;
3898	}
3899
3900	on_each_cpu(mvneta_percpu_enable, pp, true);
3901	mvneta_start_dev(pp);
3902
3903	netdev_update_features(dev);
3904
3905	return 0;
3906}
3907
3908static netdev_features_t mvneta_fix_features(struct net_device *dev,
3909					     netdev_features_t features)
3910{
3911	struct mvneta_port *pp = netdev_priv(dev);
3912
3913	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3914		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3915		netdev_info(dev,
3916			    "Disable IP checksum for MTU greater than %dB\n",
3917			    pp->tx_csum_limit);
3918	}
3919
3920	return features;
3921}
3922
3923/* Get mac address */
3924static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3925{
3926	u32 mac_addr_l, mac_addr_h;
3927
3928	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3929	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3930	addr[0] = (mac_addr_h >> 24) & 0xFF;
3931	addr[1] = (mac_addr_h >> 16) & 0xFF;
3932	addr[2] = (mac_addr_h >> 8) & 0xFF;
3933	addr[3] = mac_addr_h & 0xFF;
3934	addr[4] = (mac_addr_l >> 8) & 0xFF;
3935	addr[5] = mac_addr_l & 0xFF;
3936}
3937
3938/* Handle setting mac address */
3939static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3940{
3941	struct mvneta_port *pp = netdev_priv(dev);
3942	struct sockaddr *sockaddr = addr;
3943	int ret;
 
 
 
3944
3945	ret = eth_prepare_mac_addr_change(dev, addr);
3946	if (ret < 0)
3947		return ret;
3948	/* Remove previous address table entry */
3949	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3950
3951	/* Set new addr in hw */
3952	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3953
3954	eth_commit_mac_addr_change(dev, addr);
3955	return 0;
3956}
3957
3958static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs)
3959{
3960	return container_of(pcs, struct mvneta_port, phylink_pcs);
3961}
3962
3963static int mvneta_pcs_validate(struct phylink_pcs *pcs,
3964			       unsigned long *supported,
3965			       const struct phylink_link_state *state)
3966{
3967	/* We only support QSGMII, SGMII, 802.3z and RGMII modes.
3968	 * When in 802.3z mode, we must have AN enabled:
3969	 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ...
3970	 * When <PortType> = 1 (1000BASE-X) this field must be set to 1."
3971	 */
3972	if (phy_interface_mode_is_8023z(state->interface) &&
3973	    !phylink_test(state->advertising, Autoneg))
3974		return -EINVAL;
3975
3976	return 0;
3977}
3978
3979static void mvneta_pcs_get_state(struct phylink_pcs *pcs,
3980				 struct phylink_link_state *state)
3981{
3982	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
3983	u32 gmac_stat;
3984
3985	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3986
3987	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3988		state->speed =
3989			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3990			SPEED_2500 : SPEED_1000;
3991	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3992		state->speed = SPEED_100;
3993	else
3994		state->speed = SPEED_10;
3995
3996	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3997	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3998	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3999
4000	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
4001		state->pause |= MLO_PAUSE_RX;
4002	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
4003		state->pause |= MLO_PAUSE_TX;
4004}
4005
4006static int mvneta_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
4007			     phy_interface_t interface,
4008			     const unsigned long *advertising,
4009			     bool permit_pause_to_mac)
4010{
4011	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
4012	u32 mask, val, an, old_an, changed;
4013
4014	mask = MVNETA_GMAC_INBAND_AN_ENABLE |
4015	       MVNETA_GMAC_INBAND_RESTART_AN |
4016	       MVNETA_GMAC_AN_SPEED_EN |
4017	       MVNETA_GMAC_AN_FLOW_CTRL_EN |
4018	       MVNETA_GMAC_AN_DUPLEX_EN;
4019
4020	if (neg_mode == PHYLINK_PCS_NEG_INBAND_ENABLED) {
4021		mask |= MVNETA_GMAC_CONFIG_MII_SPEED |
4022			MVNETA_GMAC_CONFIG_GMII_SPEED |
4023			MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4024		val = MVNETA_GMAC_INBAND_AN_ENABLE;
4025
4026		if (interface == PHY_INTERFACE_MODE_SGMII) {
4027			/* SGMII mode receives the speed and duplex from PHY */
4028			val |= MVNETA_GMAC_AN_SPEED_EN |
4029			       MVNETA_GMAC_AN_DUPLEX_EN;
4030		} else {
4031			/* 802.3z mode has fixed speed and duplex */
4032			val |= MVNETA_GMAC_CONFIG_GMII_SPEED |
4033			       MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4034
4035			/* The FLOW_CTRL_EN bit selects either the hardware
4036			 * automatically or the CONFIG_FLOW_CTRL manually
4037			 * controls the GMAC pause mode.
4038			 */
4039			if (permit_pause_to_mac)
4040				val |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
4041
4042			/* Update the advertisement bits */
4043			mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
4044			if (phylink_test(advertising, Pause))
4045				val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
4046		}
4047	} else {
4048		/* Phy or fixed speed - disable in-band AN modes */
4049		val = 0;
4050	}
4051
4052	old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4053	an = (an & ~mask) | val;
4054	changed = old_an ^ an;
4055	if (changed)
4056		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an);
4057
4058	/* We are only interested in the advertisement bits changing */
4059	return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL);
4060}
4061
4062static void mvneta_pcs_an_restart(struct phylink_pcs *pcs)
4063{
4064	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
4065	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4066
4067	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4068		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
4069	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4070		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
4071}
4072
4073static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = {
4074	.pcs_validate = mvneta_pcs_validate,
4075	.pcs_get_state = mvneta_pcs_get_state,
4076	.pcs_config = mvneta_pcs_config,
4077	.pcs_an_restart = mvneta_pcs_an_restart,
4078};
4079
4080static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config,
4081						 phy_interface_t interface)
4082{
4083	struct net_device *ndev = to_net_dev(config->dev);
4084	struct mvneta_port *pp = netdev_priv(ndev);
4085
4086	return &pp->phylink_pcs;
4087}
4088
4089static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode,
4090			      phy_interface_t interface)
4091{
4092	struct net_device *ndev = to_net_dev(config->dev);
4093	struct mvneta_port *pp = netdev_priv(ndev);
4094	u32 val;
4095
4096	if (pp->phy_interface != interface ||
4097	    phylink_autoneg_inband(mode)) {
4098		/* Force the link down when changing the interface or if in
4099		 * in-band mode. According to Armada 370 documentation, we
4100		 * can only change the port mode and in-band enable when the
4101		 * link is down.
4102		 */
4103		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4104		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4105		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4106		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4107	}
4108
4109	if (pp->phy_interface != interface)
4110		WARN_ON(phy_power_off(pp->comphy));
4111
4112	/* Enable the 1ms clock */
4113	if (phylink_autoneg_inband(mode)) {
4114		unsigned long rate = clk_get_rate(pp->clk);
4115
4116		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER,
4117			    MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000));
4118	}
4119
4120	return 0;
4121}
4122
4123static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
4124			      const struct phylink_link_state *state)
4125{
4126	struct net_device *ndev = to_net_dev(config->dev);
4127	struct mvneta_port *pp = netdev_priv(ndev);
4128	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
4129	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4130	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
4131
4132	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
4133	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
4134				   MVNETA_GMAC2_PORT_RESET);
4135	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
4136
4137	/* Even though it might look weird, when we're configured in
4138	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4139	 */
4140	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
4141
4142	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
4143	    state->interface == PHY_INTERFACE_MODE_SGMII ||
4144	    phy_interface_mode_is_8023z(state->interface))
4145		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
4146
4147	if (!phylink_autoneg_inband(mode)) {
4148		/* Phy or fixed speed - nothing to do, leave the
4149		 * configured speed, duplex and flow control as-is.
4150		 */
4151	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
4152		/* SGMII mode receives the state from the PHY */
4153		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
4154	} else {
4155		/* 802.3z negotiation - only 1000base-X */
4156		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
4157	}
4158
4159	/* When at 2.5G, the link partner can send frames with shortened
4160	 * preambles.
4161	 */
4162	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4163		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4164
4165	if (new_ctrl0 != gmac_ctrl0)
4166		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4167	if (new_ctrl2 != gmac_ctrl2)
4168		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4169	if (new_ctrl4 != gmac_ctrl4)
4170		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4171
4172	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4173		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4174			MVNETA_GMAC2_PORT_RESET) != 0)
4175			continue;
4176	}
4177}
4178
4179static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode,
4180			     phy_interface_t interface)
4181{
4182	struct net_device *ndev = to_net_dev(config->dev);
4183	struct mvneta_port *pp = netdev_priv(ndev);
4184	u32 val, clk;
4185
4186	/* Disable 1ms clock if not in in-band mode */
4187	if (!phylink_autoneg_inband(mode)) {
4188		clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
4189		clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
4190		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk);
4191	}
4192
4193	if (pp->phy_interface != interface)
4194		/* Enable the Serdes PHY */
4195		WARN_ON(mvneta_config_interface(pp, interface));
4196
4197	/* Allow the link to come up if in in-band mode, otherwise the
4198	 * link is forced via mac_link_down()/mac_link_up()
4199	 */
4200	if (phylink_autoneg_inband(mode)) {
4201		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4202		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
4203		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4204	}
4205
4206	return 0;
4207}
4208
4209static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4210{
4211	u32 lpi_ctl1;
 
 
 
 
 
4212
4213	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4214	if (enable)
4215		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4216	else
4217		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4218	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4219}
4220
4221static void mvneta_mac_link_down(struct phylink_config *config,
4222				 unsigned int mode, phy_interface_t interface)
4223{
4224	struct net_device *ndev = to_net_dev(config->dev);
4225	struct mvneta_port *pp = netdev_priv(ndev);
4226	u32 val;
4227
4228	mvneta_port_down(pp);
4229
4230	if (!phylink_autoneg_inband(mode)) {
4231		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4232		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4233		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4234		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4235	}
4236
4237	pp->eee_active = false;
4238	mvneta_set_eee(pp, false);
4239}
4240
4241static void mvneta_mac_link_up(struct phylink_config *config,
4242			       struct phy_device *phy,
4243			       unsigned int mode, phy_interface_t interface,
4244			       int speed, int duplex,
4245			       bool tx_pause, bool rx_pause)
4246{
4247	struct net_device *ndev = to_net_dev(config->dev);
4248	struct mvneta_port *pp = netdev_priv(ndev);
4249	u32 val;
4250
4251	if (!phylink_autoneg_inband(mode)) {
4252		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4253		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4254			 MVNETA_GMAC_CONFIG_MII_SPEED |
4255			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4256			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4257			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4258		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4259
4260		if (speed == SPEED_1000 || speed == SPEED_2500)
4261			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4262		else if (speed == SPEED_100)
4263			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4264
4265		if (duplex == DUPLEX_FULL)
4266			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4267
4268		if (tx_pause || rx_pause)
4269			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4270
4271		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4272	} else {
4273		/* When inband doesn't cover flow control or flow control is
4274		 * disabled, we need to manually configure it. This bit will
4275		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4276		 */
4277		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4278		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4279
4280		if (tx_pause || rx_pause)
4281			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4282
4283		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
 
4284	}
4285
4286	mvneta_port_up(pp);
4287
4288	if (phy && pp->eee_enabled) {
4289		pp->eee_active = phy_init_eee(phy, false) >= 0;
4290		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
 
 
 
 
 
 
 
4291	}
4292}
4293
4294static const struct phylink_mac_ops mvneta_phylink_ops = {
4295	.mac_select_pcs = mvneta_mac_select_pcs,
4296	.mac_prepare = mvneta_mac_prepare,
4297	.mac_config = mvneta_mac_config,
4298	.mac_finish = mvneta_mac_finish,
4299	.mac_link_down = mvneta_mac_link_down,
4300	.mac_link_up = mvneta_mac_link_up,
4301};
4302
4303static int mvneta_mdio_probe(struct mvneta_port *pp)
4304{
4305	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4306	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4307
4308	if (err)
4309		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4310
4311	phylink_ethtool_get_wol(pp->phylink, &wol);
4312	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4313
4314	/* PHY WoL may be enabled but device wakeup disabled */
4315	if (wol.supported)
4316		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4317
4318	return err;
4319}
4320
4321static void mvneta_mdio_remove(struct mvneta_port *pp)
4322{
4323	phylink_disconnect_phy(pp->phylink);
4324}
4325
4326/* Electing a CPU must be done in an atomic way: it should be done
4327 * after or before the removal/insertion of a CPU and this function is
4328 * not reentrant.
4329 */
4330static void mvneta_percpu_elect(struct mvneta_port *pp)
4331{
4332	int elected_cpu = 0, max_cpu, cpu;
4333
4334	/* Use the cpu associated to the rxq when it is online, in all
4335	 * the other cases, use the cpu 0 which can't be offline.
4336	 */
4337	if (pp->rxq_def < nr_cpu_ids && cpu_online(pp->rxq_def))
4338		elected_cpu = pp->rxq_def;
4339
4340	max_cpu = num_present_cpus();
4341
4342	for_each_online_cpu(cpu) {
4343		int rxq_map = 0, txq_map = 0;
4344		int rxq;
4345
4346		for (rxq = 0; rxq < rxq_number; rxq++)
4347			if ((rxq % max_cpu) == cpu)
4348				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4349
4350		if (cpu == elected_cpu)
4351			/* Map the default receive queue to the elected CPU */
4352			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4353
4354		/* We update the TX queue map only if we have one
4355		 * queue. In this case we associate the TX queue to
4356		 * the CPU bound to the default RX queue
4357		 */
4358		if (txq_number == 1)
4359			txq_map = (cpu == elected_cpu) ?
4360				MVNETA_CPU_TXQ_ACCESS(0) : 0;
4361		else
4362			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4363				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4364
4365		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4366
4367		/* Update the interrupt mask on each CPU according the
4368		 * new mapping
4369		 */
4370		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4371					 pp, true);
4372	}
4373};
4374
4375static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4376{
4377	int other_cpu;
4378	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4379						  node_online);
4380	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4381
4382	/* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4383	 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4384	 */
4385	if (pp->neta_armada3700)
4386		return 0;
4387
4388	spin_lock(&pp->lock);
4389	/*
4390	 * Configuring the driver for a new CPU while the driver is
4391	 * stopping is racy, so just avoid it.
4392	 */
4393	if (pp->is_stopped) {
4394		spin_unlock(&pp->lock);
4395		return 0;
4396	}
4397	netif_tx_stop_all_queues(pp->dev);
4398
4399	/*
4400	 * We have to synchronise on tha napi of each CPU except the one
4401	 * just being woken up
4402	 */
4403	for_each_online_cpu(other_cpu) {
4404		if (other_cpu != cpu) {
4405			struct mvneta_pcpu_port *other_port =
4406				per_cpu_ptr(pp->ports, other_cpu);
4407
4408			napi_synchronize(&other_port->napi);
4409		}
4410	}
4411
4412	/* Mask all ethernet port interrupts */
4413	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4414	napi_enable(&port->napi);
4415
4416	/*
4417	 * Enable per-CPU interrupts on the CPU that is
4418	 * brought up.
4419	 */
4420	mvneta_percpu_enable(pp);
4421
4422	/*
4423	 * Enable per-CPU interrupt on the one CPU we care
4424	 * about.
4425	 */
4426	mvneta_percpu_elect(pp);
4427
4428	/* Unmask all ethernet port interrupts */
4429	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4430	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4431		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4432		    MVNETA_CAUSE_LINK_CHANGE);
4433	netif_tx_start_all_queues(pp->dev);
4434	spin_unlock(&pp->lock);
4435	return 0;
4436}
4437
4438static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4439{
4440	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4441						  node_online);
4442	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4443
4444	/*
4445	 * Thanks to this lock we are sure that any pending cpu election is
4446	 * done.
4447	 */
4448	spin_lock(&pp->lock);
4449	/* Mask all ethernet port interrupts */
4450	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4451	spin_unlock(&pp->lock);
4452
4453	napi_synchronize(&port->napi);
4454	napi_disable(&port->napi);
4455	/* Disable per-CPU interrupts on the CPU that is brought down. */
4456	mvneta_percpu_disable(pp);
4457	return 0;
4458}
4459
4460static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4461{
4462	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4463						  node_dead);
4464
4465	/* Check if a new CPU must be elected now this on is down */
4466	spin_lock(&pp->lock);
4467	mvneta_percpu_elect(pp);
4468	spin_unlock(&pp->lock);
4469	/* Unmask all ethernet port interrupts */
4470	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4471	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4472		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4473		    MVNETA_CAUSE_LINK_CHANGE);
4474	netif_tx_start_all_queues(pp->dev);
4475	return 0;
4476}
4477
4478static int mvneta_open(struct net_device *dev)
4479{
4480	struct mvneta_port *pp = netdev_priv(dev);
4481	int ret;
4482
 
 
4483	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
 
 
4484
4485	ret = mvneta_setup_rxqs(pp);
4486	if (ret)
4487		return ret;
4488
4489	ret = mvneta_setup_txqs(pp);
4490	if (ret)
4491		goto err_cleanup_rxqs;
4492
4493	/* Connect to port interrupt line */
4494	if (pp->neta_armada3700)
4495		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4496				  dev->name, pp);
4497	else
4498		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4499					 dev->name, pp->ports);
4500	if (ret) {
4501		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4502		goto err_cleanup_txqs;
4503	}
4504
4505	if (!pp->neta_armada3700) {
4506		/* Enable per-CPU interrupt on all the CPU to handle our RX
4507		 * queue interrupts
4508		 */
4509		on_each_cpu(mvneta_percpu_enable, pp, true);
4510
4511		pp->is_stopped = false;
4512		/* Register a CPU notifier to handle the case where our CPU
4513		 * might be taken offline.
4514		 */
4515		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4516						       &pp->node_online);
4517		if (ret)
4518			goto err_free_irq;
4519
4520		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4521						       &pp->node_dead);
4522		if (ret)
4523			goto err_free_online_hp;
4524	}
4525
4526	ret = mvneta_mdio_probe(pp);
4527	if (ret < 0) {
4528		netdev_err(dev, "cannot probe MDIO bus\n");
4529		goto err_free_dead_hp;
4530	}
4531
4532	mvneta_start_dev(pp);
4533
4534	return 0;
4535
4536err_free_dead_hp:
4537	if (!pp->neta_armada3700)
4538		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4539						    &pp->node_dead);
4540err_free_online_hp:
4541	if (!pp->neta_armada3700)
4542		cpuhp_state_remove_instance_nocalls(online_hpstate,
4543						    &pp->node_online);
4544err_free_irq:
4545	if (pp->neta_armada3700) {
4546		free_irq(pp->dev->irq, pp);
4547	} else {
4548		on_each_cpu(mvneta_percpu_disable, pp, true);
4549		free_percpu_irq(pp->dev->irq, pp->ports);
4550	}
4551err_cleanup_txqs:
4552	mvneta_cleanup_txqs(pp);
4553err_cleanup_rxqs:
4554	mvneta_cleanup_rxqs(pp);
4555	return ret;
4556}
4557
4558/* Stop the port, free port interrupt line */
4559static int mvneta_stop(struct net_device *dev)
4560{
4561	struct mvneta_port *pp = netdev_priv(dev);
4562
4563	if (!pp->neta_armada3700) {
4564		/* Inform that we are stopping so we don't want to setup the
4565		 * driver for new CPUs in the notifiers. The code of the
4566		 * notifier for CPU online is protected by the same spinlock,
4567		 * so when we get the lock, the notifer work is done.
4568		 */
4569		spin_lock(&pp->lock);
4570		pp->is_stopped = true;
4571		spin_unlock(&pp->lock);
4572
4573		mvneta_stop_dev(pp);
4574		mvneta_mdio_remove(pp);
4575
4576		cpuhp_state_remove_instance_nocalls(online_hpstate,
4577						    &pp->node_online);
4578		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4579						    &pp->node_dead);
4580		on_each_cpu(mvneta_percpu_disable, pp, true);
4581		free_percpu_irq(dev->irq, pp->ports);
4582	} else {
4583		mvneta_stop_dev(pp);
4584		mvneta_mdio_remove(pp);
4585		free_irq(dev->irq, pp);
4586	}
4587
4588	mvneta_cleanup_rxqs(pp);
4589	mvneta_cleanup_txqs(pp);
4590
4591	return 0;
4592}
4593
4594static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4595{
4596	struct mvneta_port *pp = netdev_priv(dev);
 
4597
4598	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4599}
4600
4601static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4602			    struct netlink_ext_ack *extack)
4603{
4604	bool need_update, running = netif_running(dev);
4605	struct mvneta_port *pp = netdev_priv(dev);
4606	struct bpf_prog *old_prog;
4607
4608	if (prog && !prog->aux->xdp_has_frags &&
4609	    dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4610		NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags");
4611		return -EOPNOTSUPP;
4612	}
4613
4614	if (pp->bm_priv) {
4615		NL_SET_ERR_MSG_MOD(extack,
4616				   "Hardware Buffer Management not supported on XDP");
4617		return -EOPNOTSUPP;
4618	}
4619
4620	need_update = !!pp->xdp_prog != !!prog;
4621	if (running && need_update)
4622		mvneta_stop(dev);
4623
4624	old_prog = xchg(&pp->xdp_prog, prog);
4625	if (old_prog)
4626		bpf_prog_put(old_prog);
4627
4628	if (running && need_update)
4629		return mvneta_open(dev);
4630
4631	return 0;
4632}
 
4633
4634static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4635{
4636	switch (xdp->command) {
4637	case XDP_SETUP_PROG:
4638		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4639	default:
4640		return -EINVAL;
4641	}
4642}
4643
4644/* Ethtool methods */
4645
4646/* Set link ksettings (phy address, speed) for ethtools */
4647static int
4648mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4649				  const struct ethtool_link_ksettings *cmd)
4650{
4651	struct mvneta_port *pp = netdev_priv(ndev);
4652
4653	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4654}
4655
4656/* Get link ksettings for ethtools */
4657static int
4658mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4659				  struct ethtool_link_ksettings *cmd)
4660{
4661	struct mvneta_port *pp = netdev_priv(ndev);
4662
4663	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4664}
4665
4666static int mvneta_ethtool_nway_reset(struct net_device *dev)
 
4667{
4668	struct mvneta_port *pp = netdev_priv(dev);
4669
4670	return phylink_ethtool_nway_reset(pp->phylink);
 
 
 
4671}
4672
4673/* Set interrupt coalescing for ethtools */
4674static int
4675mvneta_ethtool_set_coalesce(struct net_device *dev,
4676			    struct ethtool_coalesce *c,
4677			    struct kernel_ethtool_coalesce *kernel_coal,
4678			    struct netlink_ext_ack *extack)
4679{
4680	struct mvneta_port *pp = netdev_priv(dev);
4681	int queue;
4682
4683	for (queue = 0; queue < rxq_number; queue++) {
4684		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4685		rxq->time_coal = c->rx_coalesce_usecs;
4686		rxq->pkts_coal = c->rx_max_coalesced_frames;
4687		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4688		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4689	}
4690
4691	for (queue = 0; queue < txq_number; queue++) {
4692		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4693		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4694		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4695	}
4696
4697	return 0;
4698}
4699
4700/* get coalescing for ethtools */
4701static int
4702mvneta_ethtool_get_coalesce(struct net_device *dev,
4703			    struct ethtool_coalesce *c,
4704			    struct kernel_ethtool_coalesce *kernel_coal,
4705			    struct netlink_ext_ack *extack)
4706{
4707	struct mvneta_port *pp = netdev_priv(dev);
4708
4709	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4710	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4711
4712	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4713	return 0;
4714}
4715
4716
4717static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4718				    struct ethtool_drvinfo *drvinfo)
4719{
4720	strscpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4721		sizeof(drvinfo->driver));
4722	strscpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4723		sizeof(drvinfo->version));
4724	strscpy(drvinfo->bus_info, dev_name(&dev->dev),
4725		sizeof(drvinfo->bus_info));
4726}
4727
4728
4729static void
4730mvneta_ethtool_get_ringparam(struct net_device *netdev,
4731			     struct ethtool_ringparam *ring,
4732			     struct kernel_ethtool_ringparam *kernel_ring,
4733			     struct netlink_ext_ack *extack)
4734{
4735	struct mvneta_port *pp = netdev_priv(netdev);
4736
4737	ring->rx_max_pending = MVNETA_MAX_RXD;
4738	ring->tx_max_pending = MVNETA_MAX_TXD;
4739	ring->rx_pending = pp->rx_ring_size;
4740	ring->tx_pending = pp->tx_ring_size;
4741}
4742
4743static int
4744mvneta_ethtool_set_ringparam(struct net_device *dev,
4745			     struct ethtool_ringparam *ring,
4746			     struct kernel_ethtool_ringparam *kernel_ring,
4747			     struct netlink_ext_ack *extack)
4748{
4749	struct mvneta_port *pp = netdev_priv(dev);
4750
4751	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4752		return -EINVAL;
4753	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4754		ring->rx_pending : MVNETA_MAX_RXD;
4755
4756	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4757				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4758	if (pp->tx_ring_size != ring->tx_pending)
4759		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4760			    pp->tx_ring_size, ring->tx_pending);
4761
4762	if (netif_running(dev)) {
4763		mvneta_stop(dev);
4764		if (mvneta_open(dev)) {
4765			netdev_err(dev,
4766				   "error on opening device after ring param change\n");
4767			return -ENOMEM;
4768		}
4769	}
4770
4771	return 0;
4772}
4773
4774static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4775					  struct ethtool_pauseparam *pause)
4776{
4777	struct mvneta_port *pp = netdev_priv(dev);
4778
4779	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4780}
4781
4782static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4783					 struct ethtool_pauseparam *pause)
4784{
4785	struct mvneta_port *pp = netdev_priv(dev);
4786
4787	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4788}
4789
4790static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4791				       u8 *data)
4792{
4793	if (sset == ETH_SS_STATS) {
4794		struct mvneta_port *pp = netdev_priv(netdev);
4795		int i;
4796
4797		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4798			ethtool_puts(&data, mvneta_statistics[i].name);
4799
4800		if (!pp->bm_priv) {
4801			page_pool_ethtool_stats_get_strings(data);
4802		}
4803	}
4804}
4805
4806static void
4807mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4808				 struct mvneta_ethtool_stats *es)
4809{
4810	unsigned int start;
4811	int cpu;
4812
4813	for_each_possible_cpu(cpu) {
4814		struct mvneta_pcpu_stats *stats;
4815		u64 skb_alloc_error;
4816		u64 refill_error;
4817		u64 xdp_redirect;
4818		u64 xdp_xmit_err;
4819		u64 xdp_tx_err;
4820		u64 xdp_pass;
4821		u64 xdp_drop;
4822		u64 xdp_xmit;
4823		u64 xdp_tx;
4824
4825		stats = per_cpu_ptr(pp->stats, cpu);
4826		do {
4827			start = u64_stats_fetch_begin(&stats->syncp);
4828			skb_alloc_error = stats->es.skb_alloc_error;
4829			refill_error = stats->es.refill_error;
4830			xdp_redirect = stats->es.ps.xdp_redirect;
4831			xdp_pass = stats->es.ps.xdp_pass;
4832			xdp_drop = stats->es.ps.xdp_drop;
4833			xdp_xmit = stats->es.ps.xdp_xmit;
4834			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4835			xdp_tx = stats->es.ps.xdp_tx;
4836			xdp_tx_err = stats->es.ps.xdp_tx_err;
4837		} while (u64_stats_fetch_retry(&stats->syncp, start));
4838
4839		es->skb_alloc_error += skb_alloc_error;
4840		es->refill_error += refill_error;
4841		es->ps.xdp_redirect += xdp_redirect;
4842		es->ps.xdp_pass += xdp_pass;
4843		es->ps.xdp_drop += xdp_drop;
4844		es->ps.xdp_xmit += xdp_xmit;
4845		es->ps.xdp_xmit_err += xdp_xmit_err;
4846		es->ps.xdp_tx += xdp_tx;
4847		es->ps.xdp_tx_err += xdp_tx_err;
4848	}
4849}
4850
4851static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4852{
4853	struct mvneta_ethtool_stats stats = {};
4854	const struct mvneta_statistic *s;
4855	void __iomem *base = pp->base;
4856	u32 high, low;
4857	u64 val;
4858	int i;
4859
4860	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4861	for (i = 0, s = mvneta_statistics;
4862	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4863	     s++, i++) {
4864		switch (s->type) {
4865		case T_REG_32:
4866			val = readl_relaxed(base + s->offset);
4867			pp->ethtool_stats[i] += val;
4868			break;
4869		case T_REG_64:
4870			/* Docs say to read low 32-bit then high */
4871			low = readl_relaxed(base + s->offset);
4872			high = readl_relaxed(base + s->offset + 4);
4873			val = (u64)high << 32 | low;
4874			pp->ethtool_stats[i] += val;
4875			break;
4876		case T_SW:
4877			switch (s->offset) {
4878			case ETHTOOL_STAT_EEE_WAKEUP:
4879				val = phylink_get_eee_err(pp->phylink);
4880				pp->ethtool_stats[i] += val;
4881				break;
4882			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4883				pp->ethtool_stats[i] = stats.skb_alloc_error;
4884				break;
4885			case ETHTOOL_STAT_REFILL_ERR:
4886				pp->ethtool_stats[i] = stats.refill_error;
4887				break;
4888			case ETHTOOL_XDP_REDIRECT:
4889				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4890				break;
4891			case ETHTOOL_XDP_PASS:
4892				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4893				break;
4894			case ETHTOOL_XDP_DROP:
4895				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4896				break;
4897			case ETHTOOL_XDP_TX:
4898				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4899				break;
4900			case ETHTOOL_XDP_TX_ERR:
4901				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4902				break;
4903			case ETHTOOL_XDP_XMIT:
4904				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4905				break;
4906			case ETHTOOL_XDP_XMIT_ERR:
4907				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4908				break;
4909			}
4910			break;
4911		}
4912	}
4913}
4914
4915static void mvneta_ethtool_pp_stats(struct mvneta_port *pp, u64 *data)
4916{
4917	struct page_pool_stats stats = {};
4918	int i;
4919
4920	for (i = 0; i < rxq_number; i++) {
4921		if (pp->rxqs[i].page_pool)
4922			page_pool_get_stats(pp->rxqs[i].page_pool, &stats);
4923	}
4924
4925	page_pool_ethtool_stats_get(data, &stats);
4926}
4927
4928static void mvneta_ethtool_get_stats(struct net_device *dev,
4929				     struct ethtool_stats *stats, u64 *data)
4930{
4931	struct mvneta_port *pp = netdev_priv(dev);
4932	int i;
4933
4934	mvneta_ethtool_update_stats(pp);
4935
4936	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4937		*data++ = pp->ethtool_stats[i];
4938
4939	if (!pp->bm_priv)
4940		mvneta_ethtool_pp_stats(pp, data);
4941}
4942
4943static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4944{
4945	if (sset == ETH_SS_STATS) {
4946		int count = ARRAY_SIZE(mvneta_statistics);
4947		struct mvneta_port *pp = netdev_priv(dev);
4948
4949		if (!pp->bm_priv)
4950			count += page_pool_ethtool_stats_get_count();
4951
4952		return count;
4953	}
4954
4955	return -EOPNOTSUPP;
4956}
4957
4958static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4959{
4960	return MVNETA_RSS_LU_TABLE_SIZE;
4961}
4962
4963static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4964				    struct ethtool_rxnfc *info,
4965				    u32 *rules __always_unused)
4966{
4967	switch (info->cmd) {
4968	case ETHTOOL_GRXRINGS:
4969		info->data =  rxq_number;
4970		return 0;
4971	case ETHTOOL_GRXFH:
4972		return -EOPNOTSUPP;
4973	default:
4974		return -EOPNOTSUPP;
4975	}
4976}
4977
4978static int  mvneta_config_rss(struct mvneta_port *pp)
4979{
4980	int cpu;
4981	u32 val;
4982
4983	netif_tx_stop_all_queues(pp->dev);
4984
4985	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4986
4987	if (!pp->neta_armada3700) {
4988		/* We have to synchronise on the napi of each CPU */
4989		for_each_online_cpu(cpu) {
4990			struct mvneta_pcpu_port *pcpu_port =
4991				per_cpu_ptr(pp->ports, cpu);
4992
4993			napi_synchronize(&pcpu_port->napi);
4994			napi_disable(&pcpu_port->napi);
4995		}
4996	} else {
4997		napi_synchronize(&pp->napi);
4998		napi_disable(&pp->napi);
4999	}
5000
5001	pp->rxq_def = pp->indir[0];
5002
5003	/* Update unicast mapping */
5004	mvneta_set_rx_mode(pp->dev);
5005
5006	/* Update val of portCfg register accordingly with all RxQueue types */
5007	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
5008	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
5009
5010	/* Update the elected CPU matching the new rxq_def */
5011	spin_lock(&pp->lock);
5012	mvneta_percpu_elect(pp);
5013	spin_unlock(&pp->lock);
5014
5015	if (!pp->neta_armada3700) {
5016		/* We have to synchronise on the napi of each CPU */
5017		for_each_online_cpu(cpu) {
5018			struct mvneta_pcpu_port *pcpu_port =
5019				per_cpu_ptr(pp->ports, cpu);
5020
5021			napi_enable(&pcpu_port->napi);
5022		}
5023	} else {
5024		napi_enable(&pp->napi);
5025	}
5026
5027	netif_tx_start_all_queues(pp->dev);
5028
5029	return 0;
5030}
5031
5032static int mvneta_ethtool_set_rxfh(struct net_device *dev,
5033				   struct ethtool_rxfh_param *rxfh,
5034				   struct netlink_ext_ack *extack)
5035{
5036	struct mvneta_port *pp = netdev_priv(dev);
5037
5038	/* Current code for Armada 3700 doesn't support RSS features yet */
5039	if (pp->neta_armada3700)
5040		return -EOPNOTSUPP;
5041
5042	/* We require at least one supported parameter to be changed
5043	 * and no change in any of the unsupported parameters
5044	 */
5045	if (rxfh->key ||
5046	    (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
5047	     rxfh->hfunc != ETH_RSS_HASH_TOP))
5048		return -EOPNOTSUPP;
5049
5050	if (!rxfh->indir)
5051		return 0;
5052
5053	memcpy(pp->indir, rxfh->indir, MVNETA_RSS_LU_TABLE_SIZE);
5054
5055	return mvneta_config_rss(pp);
5056}
5057
5058static int mvneta_ethtool_get_rxfh(struct net_device *dev,
5059				   struct ethtool_rxfh_param *rxfh)
5060{
5061	struct mvneta_port *pp = netdev_priv(dev);
5062
5063	/* Current code for Armada 3700 doesn't support RSS features yet */
5064	if (pp->neta_armada3700)
5065		return -EOPNOTSUPP;
5066
5067	rxfh->hfunc = ETH_RSS_HASH_TOP;
5068
5069	if (!rxfh->indir)
5070		return 0;
5071
5072	memcpy(rxfh->indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
5073
5074	return 0;
5075}
5076
5077static void mvneta_ethtool_get_wol(struct net_device *dev,
5078				   struct ethtool_wolinfo *wol)
5079{
5080	struct mvneta_port *pp = netdev_priv(dev);
5081
5082	phylink_ethtool_get_wol(pp->phylink, wol);
5083}
5084
5085static int mvneta_ethtool_set_wol(struct net_device *dev,
5086				  struct ethtool_wolinfo *wol)
5087{
5088	struct mvneta_port *pp = netdev_priv(dev);
5089	int ret;
5090
5091	ret = phylink_ethtool_set_wol(pp->phylink, wol);
5092	if (!ret)
5093		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
5094
5095	return ret;
5096}
5097
5098static int mvneta_ethtool_get_eee(struct net_device *dev,
5099				  struct ethtool_keee *eee)
5100{
5101	struct mvneta_port *pp = netdev_priv(dev);
5102	u32 lpi_ctl0;
5103
5104	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
5105
5106	eee->eee_enabled = pp->eee_enabled;
5107	eee->eee_active = pp->eee_active;
5108	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
5109	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
5110
5111	return phylink_ethtool_get_eee(pp->phylink, eee);
5112}
5113
5114static int mvneta_ethtool_set_eee(struct net_device *dev,
5115				  struct ethtool_keee *eee)
5116{
5117	struct mvneta_port *pp = netdev_priv(dev);
5118	u32 lpi_ctl0;
5119
5120	/* The Armada 37x documents do not give limits for this other than
5121	 * it being an 8-bit register.
5122	 */
5123	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
5124		return -EINVAL;
5125
5126	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
5127	lpi_ctl0 &= ~(0xff << 8);
5128	lpi_ctl0 |= eee->tx_lpi_timer << 8;
5129	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
5130
5131	pp->eee_enabled = eee->eee_enabled;
5132	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
5133
5134	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
5135
5136	return phylink_ethtool_set_eee(pp->phylink, eee);
5137}
5138
5139static void mvneta_clear_rx_prio_map(struct mvneta_port *pp)
5140{
5141	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0);
5142}
5143
5144static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq)
5145{
5146	u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ);
5147
5148	val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7);
5149	val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq);
5150
5151	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val);
5152}
5153
5154static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp)
5155{
5156	unsigned long core_clk_rate;
5157	u32 refill_cycles;
5158	u32 val;
5159
5160	core_clk_rate = clk_get_rate(pp->clk);
5161	if (!core_clk_rate)
5162		return -EINVAL;
5163
5164	refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS /
5165			(NSEC_PER_SEC / core_clk_rate);
5166
5167	if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK)
5168		return -EINVAL;
5169
5170	/* Enable bw limit algorithm version 3 */
5171	val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5172	val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5173	mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5174
5175	/* Set the base refill rate */
5176	mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles);
5177
5178	return 0;
5179}
5180
5181static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp)
5182{
5183	u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5184
5185	val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5186	mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5187}
5188
5189static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue,
5190				    u64 min_rate, u64 max_rate)
5191{
5192	u32 refill_val, rem;
5193	u32 val = 0;
5194
5195	/* Convert to from Bps to bps */
5196	max_rate *= 8;
5197
5198	if (min_rate)
5199		return -EINVAL;
5200
5201	refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION,
5202				 &rem);
5203
5204	if (rem || !refill_val ||
5205	    refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX)
5206		return -EINVAL;
5207
5208	val = refill_val;
5209	val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD <<
5210		MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT);
5211
5212	mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val);
5213
5214	return 0;
5215}
5216
5217static int mvneta_setup_mqprio(struct net_device *dev,
5218			       struct tc_mqprio_qopt_offload *mqprio)
5219{
5220	struct mvneta_port *pp = netdev_priv(dev);
5221	int rxq, txq, tc, ret;
5222	u8 num_tc;
5223
5224	if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS)
5225		return 0;
5226
5227	num_tc = mqprio->qopt.num_tc;
5228
5229	if (num_tc > rxq_number)
5230		return -EINVAL;
5231
5232	mvneta_clear_rx_prio_map(pp);
5233
5234	if (!num_tc) {
5235		mvneta_disable_per_queue_rate_limit(pp);
5236		netdev_reset_tc(dev);
5237		return 0;
5238	}
5239
5240	netdev_set_num_tc(dev, mqprio->qopt.num_tc);
5241
5242	for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5243		netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc],
5244				    mqprio->qopt.offset[tc]);
5245
5246		for (rxq = mqprio->qopt.offset[tc];
5247		     rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5248		     rxq++) {
5249			if (rxq >= rxq_number)
5250				return -EINVAL;
5251
5252			mvneta_map_vlan_prio_to_rxq(pp, tc, rxq);
5253		}
5254	}
5255
5256	if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
5257		mvneta_disable_per_queue_rate_limit(pp);
5258		return 0;
5259	}
5260
5261	if (mqprio->qopt.num_tc > txq_number)
5262		return -EINVAL;
5263
5264	ret = mvneta_enable_per_queue_rate_limit(pp);
5265	if (ret)
5266		return ret;
5267
5268	for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5269		for (txq = mqprio->qopt.offset[tc];
5270		     txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5271		     txq++) {
5272			if (txq >= txq_number)
5273				return -EINVAL;
5274
5275			ret = mvneta_setup_queue_rates(pp, txq,
5276						       mqprio->min_rate[tc],
5277						       mqprio->max_rate[tc]);
5278			if (ret)
5279				return ret;
5280		}
5281	}
5282
5283	return 0;
5284}
5285
5286static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type,
5287			   void *type_data)
5288{
5289	switch (type) {
5290	case TC_SETUP_QDISC_MQPRIO:
5291		return mvneta_setup_mqprio(dev, type_data);
5292	default:
5293		return -EOPNOTSUPP;
5294	}
5295}
5296
5297static const struct net_device_ops mvneta_netdev_ops = {
5298	.ndo_open            = mvneta_open,
5299	.ndo_stop            = mvneta_stop,
5300	.ndo_start_xmit      = mvneta_tx,
5301	.ndo_set_rx_mode     = mvneta_set_rx_mode,
5302	.ndo_set_mac_address = mvneta_set_mac_addr,
5303	.ndo_change_mtu      = mvneta_change_mtu,
5304	.ndo_fix_features    = mvneta_fix_features,
5305	.ndo_get_stats64     = mvneta_get_stats64,
5306	.ndo_eth_ioctl        = mvneta_ioctl,
5307	.ndo_bpf	     = mvneta_xdp,
5308	.ndo_xdp_xmit        = mvneta_xdp_xmit,
5309	.ndo_setup_tc	     = mvneta_setup_tc,
5310};
5311
5312static const struct ethtool_ops mvneta_eth_tool_ops = {
5313	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
5314				     ETHTOOL_COALESCE_MAX_FRAMES,
5315	.nway_reset	= mvneta_ethtool_nway_reset,
5316	.get_link       = ethtool_op_get_link,
 
 
5317	.set_coalesce   = mvneta_ethtool_set_coalesce,
5318	.get_coalesce   = mvneta_ethtool_get_coalesce,
5319	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
5320	.get_ringparam  = mvneta_ethtool_get_ringparam,
5321	.set_ringparam	= mvneta_ethtool_set_ringparam,
5322	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
5323	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
5324	.get_strings	= mvneta_ethtool_get_strings,
5325	.get_ethtool_stats = mvneta_ethtool_get_stats,
5326	.get_sset_count	= mvneta_ethtool_get_sset_count,
5327	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
5328	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
5329	.get_rxfh	= mvneta_ethtool_get_rxfh,
5330	.set_rxfh	= mvneta_ethtool_set_rxfh,
5331	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
5332	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
5333	.get_wol        = mvneta_ethtool_get_wol,
5334	.set_wol        = mvneta_ethtool_set_wol,
5335	.get_eee	= mvneta_ethtool_get_eee,
5336	.set_eee	= mvneta_ethtool_set_eee,
5337};
5338
5339/* Initialize hw */
5340static int mvneta_init(struct device *dev, struct mvneta_port *pp)
5341{
5342	int queue;
5343
5344	/* Disable port */
5345	mvneta_port_disable(pp);
5346
5347	/* Set port default values */
5348	mvneta_defaults_set(pp);
5349
5350	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
 
5351	if (!pp->txqs)
5352		return -ENOMEM;
5353
5354	/* Initialize TX descriptor rings */
5355	for (queue = 0; queue < txq_number; queue++) {
5356		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5357		txq->id = queue;
5358		txq->size = pp->tx_ring_size;
5359		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
5360	}
5361
5362	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
5363	if (!pp->rxqs)
 
 
5364		return -ENOMEM;
 
5365
5366	/* Create Rx descriptor rings */
5367	for (queue = 0; queue < rxq_number; queue++) {
5368		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5369		rxq->id = queue;
5370		rxq->size = pp->rx_ring_size;
5371		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
5372		rxq->time_coal = MVNETA_RX_COAL_USEC;
5373		rxq->buf_virt_addr
5374			= devm_kmalloc_array(pp->dev->dev.parent,
5375					     rxq->size,
5376					     sizeof(*rxq->buf_virt_addr),
5377					     GFP_KERNEL);
5378		if (!rxq->buf_virt_addr)
5379			return -ENOMEM;
5380	}
5381
5382	return 0;
5383}
5384
 
 
 
 
 
 
5385/* platform glue : initialize decoding windows */
5386static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5387				     const struct mbus_dram_target_info *dram)
5388{
5389	u32 win_enable;
5390	u32 win_protect;
5391	int i;
5392
5393	for (i = 0; i < 6; i++) {
5394		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5395		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5396
5397		if (i < 4)
5398			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5399	}
5400
5401	win_enable = 0x3f;
5402	win_protect = 0;
5403
5404	if (dram) {
5405		for (i = 0; i < dram->num_cs; i++) {
5406			const struct mbus_dram_window *cs = dram->cs + i;
5407
5408			mvreg_write(pp, MVNETA_WIN_BASE(i),
5409				    (cs->base & 0xffff0000) |
5410				    (cs->mbus_attr << 8) |
5411				    dram->mbus_dram_target_id);
5412
5413			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5414				    (cs->size - 1) & 0xffff0000);
5415
5416			win_enable &= ~(1 << i);
5417			win_protect |= 3 << (2 * i);
5418		}
5419	} else {
5420		if (pp->neta_ac5)
5421			mvreg_write(pp, MVNETA_WIN_BASE(0),
5422				    (MVNETA_AC5_CNM_DDR_ATTR << 8) |
5423				    MVNETA_AC5_CNM_DDR_TARGET);
5424		/* For Armada3700 open default 4GB Mbus window, leaving
5425		 * arbitration of target/attribute to a different layer
5426		 * of configuration.
5427		 */
5428		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5429		win_enable &= ~BIT(0);
5430		win_protect = 3;
5431	}
5432
5433	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5434	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5435}
5436
5437/* Power up the port */
5438static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5439{
 
 
5440	/* MAC Cause register should be cleared */
5441	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5442
5443	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5444	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5445	    !phy_interface_mode_is_8023z(phy_mode) &&
5446	    !phy_interface_mode_is_rgmii(phy_mode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5447		return -EINVAL;
 
 
 
 
 
 
 
 
 
5448
5449	return 0;
5450}
5451
5452/* Device initialization routine */
5453static int mvneta_probe(struct platform_device *pdev)
5454{
 
 
5455	struct device_node *dn = pdev->dev.of_node;
5456	struct device_node *bm_node;
 
5457	struct mvneta_port *pp;
5458	struct net_device *dev;
5459	struct phylink *phylink;
5460	struct phy *comphy;
5461	char hw_mac_addr[ETH_ALEN];
5462	phy_interface_t phy_mode;
5463	const char *mac_from;
5464	int tx_csum_limit;
5465	int err;
5466	int cpu;
5467
5468	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5469				      txq_number, rxq_number);
 
 
 
 
 
 
 
5470	if (!dev)
5471		return -ENOMEM;
5472
5473	dev->tx_queue_len = MVNETA_MAX_TXD;
5474	dev->watchdog_timeo = 5 * HZ;
5475	dev->netdev_ops = &mvneta_netdev_ops;
5476	dev->ethtool_ops = &mvneta_eth_tool_ops;
5477
5478	pp = netdev_priv(dev);
5479	spin_lock_init(&pp->lock);
5480	pp->dn = dn;
5481
5482	pp->rxq_def = rxq_def;
5483	pp->indir[0] = rxq_def;
 
 
 
 
5484
5485	err = of_get_phy_mode(dn, &phy_mode);
5486	if (err) {
5487		dev_err(&pdev->dev, "incorrect phy-mode\n");
5488		return err;
 
5489	}
5490
5491	pp->phy_interface = phy_mode;
 
 
5492
5493	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5494	if (comphy == ERR_PTR(-EPROBE_DEFER))
5495		return -EPROBE_DEFER;
5496
5497	if (IS_ERR(comphy))
5498		comphy = NULL;
5499
5500	pp->comphy = comphy;
5501
5502	pp->base = devm_platform_ioremap_resource(pdev, 0);
5503	if (IS_ERR(pp->base))
5504		return PTR_ERR(pp->base);
5505
5506	/* Get special SoC configurations */
5507	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5508		pp->neta_armada3700 = true;
5509	if (of_device_is_compatible(dn, "marvell,armada-ac5-neta")) {
5510		pp->neta_armada3700 = true;
5511		pp->neta_ac5 = true;
5512	}
5513
5514	dev->irq = irq_of_parse_and_map(dn, 0);
5515	if (dev->irq == 0)
5516		return -EINVAL;
 
 
5517
5518	pp->clk = devm_clk_get(&pdev->dev, "core");
5519	if (IS_ERR(pp->clk))
5520		pp->clk = devm_clk_get(&pdev->dev, NULL);
5521	if (IS_ERR(pp->clk)) {
5522		err = PTR_ERR(pp->clk);
5523		goto err_free_irq;
5524	}
5525
5526	clk_prepare_enable(pp->clk);
5527
5528	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5529	if (!IS_ERR(pp->clk_bus))
5530		clk_prepare_enable(pp->clk_bus);
5531
5532	pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops;
5533	pp->phylink_pcs.neg_mode = true;
5534
5535	pp->phylink_config.dev = &dev->dev;
5536	pp->phylink_config.type = PHYLINK_NETDEV;
5537	pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
5538		MAC_100 | MAC_1000FD | MAC_2500FD;
5539
5540	phy_interface_set_rgmii(pp->phylink_config.supported_interfaces);
5541	__set_bit(PHY_INTERFACE_MODE_QSGMII,
5542		  pp->phylink_config.supported_interfaces);
5543	if (comphy) {
5544		/* If a COMPHY is present, we can support any of the serdes
5545		 * modes and switch between them.
5546		 */
5547		__set_bit(PHY_INTERFACE_MODE_SGMII,
5548			  pp->phylink_config.supported_interfaces);
5549		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
5550			  pp->phylink_config.supported_interfaces);
5551		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
5552			  pp->phylink_config.supported_interfaces);
5553	} else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) {
5554		/* No COMPHY, with only 2500BASE-X mode supported */
5555		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
5556			  pp->phylink_config.supported_interfaces);
5557	} else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX ||
5558		   phy_mode == PHY_INTERFACE_MODE_SGMII) {
5559		/* No COMPHY, we can switch between 1000BASE-X and SGMII */
5560		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
5561			  pp->phylink_config.supported_interfaces);
5562		__set_bit(PHY_INTERFACE_MODE_SGMII,
5563			  pp->phylink_config.supported_interfaces);
5564	}
5565
5566	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5567				 phy_mode, &mvneta_phylink_ops);
5568	if (IS_ERR(phylink)) {
5569		err = PTR_ERR(phylink);
5570		goto err_clk;
5571	}
5572
5573	pp->phylink = phylink;
5574
5575	/* Alloc per-cpu port structure */
5576	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5577	if (!pp->ports) {
5578		err = -ENOMEM;
5579		goto err_free_phylink;
5580	}
5581
5582	/* Alloc per-cpu stats */
5583	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5584	if (!pp->stats) {
5585		err = -ENOMEM;
5586		goto err_free_ports;
5587	}
5588
5589	err = of_get_ethdev_address(dn, dev);
5590	if (!err) {
5591		mac_from = "device tree";
 
5592	} else {
5593		mvneta_get_mac_addr(pp, hw_mac_addr);
5594		if (is_valid_ether_addr(hw_mac_addr)) {
5595			mac_from = "hardware";
5596			eth_hw_addr_set(dev, hw_mac_addr);
5597		} else {
5598			mac_from = "random";
5599			eth_hw_addr_random(dev);
5600		}
5601	}
5602
5603	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5604		if (tx_csum_limit < 0 ||
5605		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5606			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5607			dev_info(&pdev->dev,
5608				 "Wrong TX csum limit in DT, set to %dB\n",
5609				 MVNETA_TX_CSUM_DEF_SIZE);
5610		}
5611	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5612		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5613	} else {
5614		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5615	}
5616
5617	pp->tx_csum_limit = tx_csum_limit;
5618
5619	pp->dram_target_info = mv_mbus_dram_info();
5620	/* Armada3700 requires setting default configuration of Mbus
5621	 * windows, however without using filled mbus_dram_target_info
5622	 * structure.
5623	 */
5624	if (pp->dram_target_info || pp->neta_armada3700)
5625		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5626
5627	pp->tx_ring_size = MVNETA_MAX_TXD;
5628	pp->rx_ring_size = MVNETA_MAX_RXD;
5629
5630	pp->dev = dev;
5631	SET_NETDEV_DEV(dev, &pdev->dev);
5632
5633	pp->id = global_port_id++;
5634
5635	/* Obtain access to BM resources if enabled and already initialized */
5636	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5637	if (bm_node) {
5638		pp->bm_priv = mvneta_bm_get(bm_node);
5639		if (pp->bm_priv) {
5640			err = mvneta_bm_port_init(pdev, pp);
5641			if (err < 0) {
5642				dev_info(&pdev->dev,
5643					 "use SW buffer management\n");
5644				mvneta_bm_put(pp->bm_priv);
5645				pp->bm_priv = NULL;
5646			}
5647		}
5648		/* Set RX packet offset correction for platforms, whose
5649		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5650		 * platforms and 0B for 32-bit ones.
5651		 */
5652		pp->rx_offset_correction = max(0,
5653					       NET_SKB_PAD -
5654					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5655	}
5656	of_node_put(bm_node);
5657
5658	/* sw buffer management */
5659	if (!pp->bm_priv)
5660		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5661
5662	err = mvneta_init(&pdev->dev, pp);
5663	if (err < 0)
5664		goto err_netdev;
5665
5666	err = mvneta_port_power_up(pp, pp->phy_interface);
5667	if (err < 0) {
5668		dev_err(&pdev->dev, "can't power up port\n");
5669		goto err_netdev;
5670	}
5671
5672	/* Armada3700 network controller does not support per-cpu
5673	 * operation, so only single NAPI should be initialized.
5674	 */
5675	if (pp->neta_armada3700) {
5676		netif_napi_add(dev, &pp->napi, mvneta_poll);
5677	} else {
5678		for_each_present_cpu(cpu) {
5679			struct mvneta_pcpu_port *port =
5680				per_cpu_ptr(pp->ports, cpu);
5681
5682			netif_napi_add(dev, &port->napi, mvneta_poll);
5683			port->pp = pp;
5684		}
5685	}
5686
5687	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5688			NETIF_F_TSO | NETIF_F_RXCSUM;
5689	dev->hw_features |= dev->features;
5690	dev->vlan_features |= dev->features;
5691	if (!pp->bm_priv)
5692		dev->xdp_features = NETDEV_XDP_ACT_BASIC |
5693				    NETDEV_XDP_ACT_REDIRECT |
5694				    NETDEV_XDP_ACT_NDO_XMIT |
5695				    NETDEV_XDP_ACT_RX_SG |
5696				    NETDEV_XDP_ACT_NDO_XMIT_SG;
5697	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5698	netif_set_tso_max_segs(dev, MVNETA_MAX_TSO_SEGS);
5699
5700	/* MTU range: 68 - 9676 */
5701	dev->min_mtu = ETH_MIN_MTU;
5702	/* 9676 == 9700 - 20 and rounding to 8 */
5703	dev->max_mtu = 9676;
5704
5705	err = register_netdev(dev);
5706	if (err < 0) {
5707		dev_err(&pdev->dev, "failed to register\n");
5708		goto err_netdev;
5709	}
5710
5711	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5712		    dev->dev_addr);
5713
5714	platform_set_drvdata(pdev, pp->dev);
5715
5716	return 0;
5717
5718err_netdev:
5719	if (pp->bm_priv) {
5720		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5721		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5722				       1 << pp->id);
5723		mvneta_bm_put(pp->bm_priv);
5724	}
5725	free_percpu(pp->stats);
5726err_free_ports:
5727	free_percpu(pp->ports);
5728err_free_phylink:
5729	if (pp->phylink)
5730		phylink_destroy(pp->phylink);
5731err_clk:
5732	clk_disable_unprepare(pp->clk_bus);
5733	clk_disable_unprepare(pp->clk);
5734err_free_irq:
5735	irq_dispose_mapping(dev->irq);
 
 
5736	return err;
5737}
5738
5739/* Device removal routine */
5740static void mvneta_remove(struct platform_device *pdev)
5741{
5742	struct net_device  *dev = platform_get_drvdata(pdev);
5743	struct mvneta_port *pp = netdev_priv(dev);
5744
5745	unregister_netdev(dev);
5746	clk_disable_unprepare(pp->clk_bus);
5747	clk_disable_unprepare(pp->clk);
5748	free_percpu(pp->ports);
5749	free_percpu(pp->stats);
5750	irq_dispose_mapping(dev->irq);
5751	phylink_destroy(pp->phylink);
5752
5753	if (pp->bm_priv) {
5754		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5755		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5756				       1 << pp->id);
5757		mvneta_bm_put(pp->bm_priv);
5758	}
5759}
5760
5761#ifdef CONFIG_PM_SLEEP
5762static int mvneta_suspend(struct device *device)
5763{
5764	int queue;
5765	struct net_device *dev = dev_get_drvdata(device);
5766	struct mvneta_port *pp = netdev_priv(dev);
5767
5768	if (!netif_running(dev))
5769		goto clean_exit;
5770
5771	if (!pp->neta_armada3700) {
5772		spin_lock(&pp->lock);
5773		pp->is_stopped = true;
5774		spin_unlock(&pp->lock);
5775
5776		cpuhp_state_remove_instance_nocalls(online_hpstate,
5777						    &pp->node_online);
5778		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5779						    &pp->node_dead);
5780	}
5781
5782	rtnl_lock();
5783	mvneta_stop_dev(pp);
5784	rtnl_unlock();
5785
5786	for (queue = 0; queue < rxq_number; queue++) {
5787		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5788
5789		mvneta_rxq_drop_pkts(pp, rxq);
5790	}
5791
5792	for (queue = 0; queue < txq_number; queue++) {
5793		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5794
5795		mvneta_txq_hw_deinit(pp, txq);
5796	}
5797
5798clean_exit:
5799	netif_device_detach(dev);
5800	clk_disable_unprepare(pp->clk_bus);
5801	clk_disable_unprepare(pp->clk);
5802
5803	return 0;
5804}
5805
5806static int mvneta_resume(struct device *device)
5807{
5808	struct platform_device *pdev = to_platform_device(device);
5809	struct net_device *dev = dev_get_drvdata(device);
5810	struct mvneta_port *pp = netdev_priv(dev);
5811	int err, queue;
5812
5813	clk_prepare_enable(pp->clk);
5814	if (!IS_ERR(pp->clk_bus))
5815		clk_prepare_enable(pp->clk_bus);
5816	if (pp->dram_target_info || pp->neta_armada3700)
5817		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5818	if (pp->bm_priv) {
5819		err = mvneta_bm_port_init(pdev, pp);
5820		if (err < 0) {
5821			dev_info(&pdev->dev, "use SW buffer management\n");
5822			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5823			pp->bm_priv = NULL;
5824		}
5825	}
5826	mvneta_defaults_set(pp);
5827	err = mvneta_port_power_up(pp, pp->phy_interface);
5828	if (err < 0) {
5829		dev_err(device, "can't power up port\n");
5830		return err;
5831	}
5832
5833	netif_device_attach(dev);
5834
5835	if (!netif_running(dev))
5836		return 0;
5837
5838	for (queue = 0; queue < rxq_number; queue++) {
5839		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5840
5841		rxq->next_desc_to_proc = 0;
5842		mvneta_rxq_hw_init(pp, rxq);
5843	}
5844
5845	for (queue = 0; queue < txq_number; queue++) {
5846		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5847
5848		txq->next_desc_to_proc = 0;
5849		mvneta_txq_hw_init(pp, txq);
5850	}
5851
5852	if (!pp->neta_armada3700) {
5853		spin_lock(&pp->lock);
5854		pp->is_stopped = false;
5855		spin_unlock(&pp->lock);
5856		cpuhp_state_add_instance_nocalls(online_hpstate,
5857						 &pp->node_online);
5858		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5859						 &pp->node_dead);
5860	}
5861
5862	rtnl_lock();
5863	mvneta_start_dev(pp);
5864	rtnl_unlock();
5865	mvneta_set_rx_mode(dev);
5866
5867	return 0;
5868}
5869#endif
5870
5871static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5872
5873static const struct of_device_id mvneta_match[] = {
5874	{ .compatible = "marvell,armada-370-neta" },
5875	{ .compatible = "marvell,armada-xp-neta" },
5876	{ .compatible = "marvell,armada-3700-neta" },
5877	{ .compatible = "marvell,armada-ac5-neta" },
5878	{ }
5879};
5880MODULE_DEVICE_TABLE(of, mvneta_match);
5881
5882static struct platform_driver mvneta_driver = {
5883	.probe = mvneta_probe,
5884	.remove = mvneta_remove,
5885	.driver = {
5886		.name = MVNETA_DRIVER_NAME,
5887		.of_match_table = mvneta_match,
5888		.pm = &mvneta_pm_ops,
5889	},
5890};
5891
5892static int __init mvneta_driver_init(void)
5893{
5894	int ret;
5895
5896	BUILD_BUG_ON_NOT_POWER_OF_2(MVNETA_TSO_PER_PAGE);
5897
5898	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5899				      mvneta_cpu_online,
5900				      mvneta_cpu_down_prepare);
5901	if (ret < 0)
5902		goto out;
5903	online_hpstate = ret;
5904	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5905				      NULL, mvneta_cpu_dead);
5906	if (ret)
5907		goto err_dead;
5908
5909	ret = platform_driver_register(&mvneta_driver);
5910	if (ret)
5911		goto err;
5912	return 0;
5913
5914err:
5915	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5916err_dead:
5917	cpuhp_remove_multi_state(online_hpstate);
5918out:
5919	return ret;
5920}
5921module_init(mvneta_driver_init);
5922
5923static void __exit mvneta_driver_exit(void)
5924{
5925	platform_driver_unregister(&mvneta_driver);
5926	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5927	cpuhp_remove_multi_state(online_hpstate);
5928}
5929module_exit(mvneta_driver_exit);
5930
5931MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5932MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5933MODULE_LICENSE("GPL");
5934
5935module_param(rxq_number, int, 0444);
5936module_param(txq_number, int, 0444);
5937
5938module_param(rxq_def, int, 0444);
5939module_param(rx_copybreak, int, 0644);
v3.15
   1/*
   2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
   3 *
   4 * Copyright (C) 2012 Marvell
   5 *
   6 * Rami Rosen <rosenr@marvell.com>
   7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
   8 *
   9 * This file is licensed under the terms of the GNU General Public
  10 * License version 2. This program is licensed "as is" without any
  11 * warranty of any kind, whether express or implied.
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/platform_device.h>
  18#include <linux/skbuff.h>
  19#include <linux/inetdevice.h>
 
 
 
  20#include <linux/mbus.h>
  21#include <linux/module.h>
  22#include <linux/interrupt.h>
  23#include <net/ip.h>
  24#include <net/ipv6.h>
  25#include <linux/io.h>
  26#include <linux/of.h>
 
  27#include <linux/of_irq.h>
  28#include <linux/of_mdio.h>
  29#include <linux/of_net.h>
  30#include <linux/of_address.h>
  31#include <linux/phy.h>
  32#include <linux/clk.h>
 
 
 
 
 
 
 
 
 
 
  33
  34/* Registers */
  35#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
  36#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
 
 
 
 
  37#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
  38#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
  39#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
  40#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
  41#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
  42#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
  43#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
  44#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
  45#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
  46#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
  47#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
  48#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
  49#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
 
 
 
  50#define MVNETA_PORT_RX_RESET                    0x1cc0
  51#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
  52#define MVNETA_PHY_ADDR                         0x2000
  53#define      MVNETA_PHY_ADDR_MASK               0x1f
  54#define MVNETA_MBUS_RETRY                       0x2010
  55#define MVNETA_UNIT_INTR_CAUSE                  0x2080
  56#define MVNETA_UNIT_CONTROL                     0x20B0
  57#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
  58#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
  59#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
  60#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
  61#define MVNETA_BASE_ADDR_ENABLE                 0x2290
 
 
 
  62#define MVNETA_PORT_CONFIG                      0x2400
  63#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
  64#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
  65#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
  66#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
  67#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
  68#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
  69#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
  70#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
  71#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
  72						 MVNETA_DEF_RXQ_ARP(q)	 | \
  73						 MVNETA_DEF_RXQ_TCP(q)	 | \
  74						 MVNETA_DEF_RXQ_UDP(q)	 | \
  75						 MVNETA_DEF_RXQ_BPDU(q)	 | \
  76						 MVNETA_TX_UNSET_ERR_SUM | \
  77						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  78#define MVNETA_PORT_CONFIG_EXTEND                0x2404
  79#define MVNETA_MAC_ADDR_LOW                      0x2414
  80#define MVNETA_MAC_ADDR_HIGH                     0x2418
  81#define MVNETA_SDMA_CONFIG                       0x241c
  82#define      MVNETA_SDMA_BRST_SIZE_16            4
  83#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
  84#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
  85#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
  86#define      MVNETA_DESC_SWAP                    BIT(6)
  87#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
 
 
  88#define MVNETA_PORT_STATUS                       0x2444
  89#define      MVNETA_TX_IN_PRGRS                  BIT(1)
  90#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
  91#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
 
  92#define MVNETA_SERDES_CFG			 0x24A0
  93#define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
  94#define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
 
  95#define MVNETA_TYPE_PRIO                         0x24bc
  96#define      MVNETA_FORCE_UNI                    BIT(21)
  97#define MVNETA_TXQ_CMD_1                         0x24e4
  98#define MVNETA_TXQ_CMD                           0x2448
  99#define      MVNETA_TXQ_DISABLE_SHIFT            8
 100#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
 
 
 
 
 101#define MVNETA_ACC_MODE                          0x2500
 
 102#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
 103#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
 104#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
 
 
 105#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
 106
 107/* Exception Interrupt Port/Queue Cause register */
 
 
 
 
 
 
 108
 109#define MVNETA_INTR_NEW_CAUSE                    0x25a0
 110#define MVNETA_INTR_NEW_MASK                     0x25a4
 111
 112/* bits  0..7  = TXQ SENT, one bit per queue.
 113 * bits  8..15 = RXQ OCCUP, one bit per queue.
 114 * bits 16..23 = RXQ FREE, one bit per queue.
 115 * bit  29 = OLD_REG_SUM, see old reg ?
 116 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 117 * bit  31 = MISC_SUM,   one bit for 4 ports
 118 */
 119#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
 120#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
 121#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
 122#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
 
 123
 124#define MVNETA_INTR_OLD_CAUSE                    0x25a8
 125#define MVNETA_INTR_OLD_MASK                     0x25ac
 126
 127/* Data Path Port/Queue Cause Register */
 128#define MVNETA_INTR_MISC_CAUSE                   0x25b0
 129#define MVNETA_INTR_MISC_MASK                    0x25b4
 130
 131#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
 132#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
 133#define      MVNETA_CAUSE_PTP                    BIT(4)
 134
 135#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
 136#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
 137#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
 138#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
 139#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
 140#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
 141#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
 142#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
 143
 144#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
 145#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
 146#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
 147
 148#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
 149#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
 150#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
 151
 152#define MVNETA_INTR_ENABLE                       0x25b8
 153#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
 154#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000  // note: neta says it's 0x000000FF
 155
 156#define MVNETA_RXQ_CMD                           0x2680
 157#define      MVNETA_RXQ_DISABLE_SHIFT            8
 158#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
 159#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
 160#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
 161#define MVNETA_GMAC_CTRL_0                       0x2c00
 162#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
 163#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
 
 164#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
 165#define MVNETA_GMAC_CTRL_2                       0x2c08
 
 166#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
 167#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
 168#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
 169#define MVNETA_GMAC_STATUS                       0x2c10
 170#define      MVNETA_GMAC_LINK_UP                 BIT(0)
 171#define      MVNETA_GMAC_SPEED_1000              BIT(1)
 172#define      MVNETA_GMAC_SPEED_100               BIT(2)
 173#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
 174#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
 175#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
 176#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
 177#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
 
 
 178#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
 179#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
 180#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
 
 
 
 181#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
 182#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
 183#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
 
 
 
 184#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
 185#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
 186#define MVNETA_MIB_COUNTERS_BASE                 0x3080
 
 
 187#define      MVNETA_MIB_LATE_COLLISION           0x7c
 188#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
 189#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
 190#define MVNETA_DA_FILT_UCAST_BASE                0x3600
 191#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
 192#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
 193#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
 194#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
 195#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
 196#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
 
 197#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
 198#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
 199#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
 200#define MVNETA_PORT_TX_RESET                     0x3cf0
 201#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
 
 
 
 
 
 202#define MVNETA_TX_MTU                            0x3e0c
 203#define MVNETA_TX_TOKEN_SIZE                     0x3e14
 204#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
 
 
 
 
 205#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
 206#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
 207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
 209
 210/* Descriptor ring Macros */
 211#define MVNETA_QUEUE_NEXT_DESC(q, index)	\
 212	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
 213
 214/* Various constants */
 215
 216/* Coalescing */
 217#define MVNETA_TXDONE_COAL_PKTS		16
 218#define MVNETA_RX_COAL_PKTS		32
 219#define MVNETA_RX_COAL_USEC		100
 220
 221/* Napi polling weight */
 222#define MVNETA_RX_POLL_WEIGHT		64
 223
 224/* The two bytes Marvell header. Either contains a special value used
 225 * by Marvell switches when a specific hardware mode is enabled (not
 226 * supported by this driver) or is filled automatically by zeroes on
 227 * the RX side. Those two bytes being at the front of the Ethernet
 228 * header, they allow to have the IP header aligned on a 4 bytes
 229 * boundary automatically: the hardware skips those two bytes on its
 230 * own.
 231 */
 232#define MVNETA_MH_SIZE			2
 233
 234#define MVNETA_VLAN_TAG_LEN             4
 235
 236#define MVNETA_CPU_D_CACHE_LINE_SIZE    32
 237#define MVNETA_TX_CSUM_MAX_SIZE		9800
 238#define MVNETA_ACC_MODE_EXT		1
 
 
 
 239
 240/* Timeout constants */
 241#define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
 242#define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
 243#define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
 244
 245#define MVNETA_TX_MTU_MAX		0x3ffff
 246
 
 
 
 
 
 247/* Max number of Rx descriptors */
 248#define MVNETA_MAX_RXD 128
 249
 250/* Max number of Tx descriptors */
 251#define MVNETA_MAX_TXD 532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252
 253/* descriptor aligned size */
 254#define MVNETA_DESC_ALIGNED_SIZE	32
 255
 
 
 
 
 
 
 256#define MVNETA_RX_PKT_SIZE(mtu) \
 257	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
 258	      ETH_HLEN + ETH_FCS_LEN,			     \
 259	      MVNETA_CPU_D_CACHE_LINE_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260
 261#define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262
 263struct mvneta_pcpu_stats {
 264	struct	u64_stats_sync syncp;
 265	u64	rx_packets;
 266	u64	rx_bytes;
 267	u64	tx_packets;
 268	u64	tx_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 269};
 270
 271struct mvneta_port {
 
 
 
 
 
 
 272	int pkt_size;
 273	unsigned int frag_size;
 274	void __iomem *base;
 275	struct mvneta_rx_queue *rxqs;
 276	struct mvneta_tx_queue *txqs;
 277	struct net_device *dev;
 
 
 
 
 
 
 
 
 278
 279	u32 cause_rx_tx;
 280	struct napi_struct napi;
 281
 282	/* Napi weight */
 283	int weight;
 284
 285	/* Core clock */
 286	struct clk *clk;
 
 
 287	u8 mcast_count[256];
 288	u16 tx_ring_size;
 289	u16 rx_ring_size;
 290	struct mvneta_pcpu_stats *stats;
 291
 292	struct mii_bus *mii_bus;
 293	struct phy_device *phy_dev;
 294	phy_interface_t phy_interface;
 295	struct device_node *phy_node;
 296	unsigned int link;
 297	unsigned int duplex;
 298	unsigned int speed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299};
 300
 301/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 302 * layout of the transmit and reception DMA descriptors, and their
 303 * layout is therefore defined by the hardware design
 304 */
 305
 306#define MVNETA_TX_L3_OFF_SHIFT	0
 307#define MVNETA_TX_IP_HLEN_SHIFT	8
 308#define MVNETA_TX_L4_UDP	BIT(16)
 309#define MVNETA_TX_L3_IP6	BIT(17)
 310#define MVNETA_TXD_IP_CSUM	BIT(18)
 311#define MVNETA_TXD_Z_PAD	BIT(19)
 312#define MVNETA_TXD_L_DESC	BIT(20)
 313#define MVNETA_TXD_F_DESC	BIT(21)
 314#define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
 315				 MVNETA_TXD_L_DESC | \
 316				 MVNETA_TXD_F_DESC)
 317#define MVNETA_TX_L4_CSUM_FULL	BIT(30)
 318#define MVNETA_TX_L4_CSUM_NOT	BIT(31)
 319
 320#define MVNETA_RXD_ERR_CRC		0x0
 
 
 321#define MVNETA_RXD_ERR_SUMMARY		BIT(16)
 322#define MVNETA_RXD_ERR_OVERRUN		BIT(17)
 323#define MVNETA_RXD_ERR_LEN		BIT(18)
 324#define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
 325#define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
 326#define MVNETA_RXD_L3_IP4		BIT(25)
 327#define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
 
 
 
 328#define MVNETA_RXD_L4_CSUM_OK		BIT(30)
 329
 330#if defined(__LITTLE_ENDIAN)
 331struct mvneta_tx_desc {
 332	u32  command;		/* Options used by HW for packet transmitting.*/
 333	u16  reserverd1;	/* csum_l4 (for future use)		*/
 334	u16  data_size;		/* Data size of transmitted packet in bytes */
 335	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
 336	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
 337	u32  reserved3[4];	/* Reserved - (for future use)		*/
 338};
 339
 340struct mvneta_rx_desc {
 341	u32  status;		/* Info about received packet		*/
 342	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
 343	u16  data_size;		/* Size of received packet in bytes	*/
 344
 345	u32  buf_phys_addr;	/* Physical address of the buffer	*/
 346	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
 347
 348	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
 349	u16  reserved3;		/* prefetch_cmd, for future use		*/
 350	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
 351
 352	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
 353	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
 354};
 355#else
 356struct mvneta_tx_desc {
 357	u16  data_size;		/* Data size of transmitted packet in bytes */
 358	u16  reserverd1;	/* csum_l4 (for future use)		*/
 359	u32  command;		/* Options used by HW for packet transmitting.*/
 360	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
 361	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
 362	u32  reserved3[4];	/* Reserved - (for future use)		*/
 363};
 364
 365struct mvneta_rx_desc {
 366	u16  data_size;		/* Size of received packet in bytes	*/
 367	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
 368	u32  status;		/* Info about received packet		*/
 369
 370	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
 371	u32  buf_phys_addr;	/* Physical address of the buffer	*/
 372
 373	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
 374	u16  reserved3;		/* prefetch_cmd, for future use		*/
 375	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
 376
 377	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
 378	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
 379};
 380#endif
 381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382struct mvneta_tx_queue {
 383	/* Number of this TX queue, in the range 0-7 */
 384	u8 id;
 385
 386	/* Number of TX DMA descriptors in the descriptor ring */
 387	int size;
 388
 389	/* Number of currently used TX DMA descriptor in the
 390	 * descriptor ring
 391	 */
 392	int count;
 
 
 
 393
 394	/* Array of transmitted skb */
 395	struct sk_buff **tx_skb;
 396
 397	/* Index of last TX DMA descriptor that was inserted */
 398	int txq_put_index;
 399
 400	/* Index of the TX DMA descriptor to be cleaned up */
 401	int txq_get_index;
 402
 403	u32 done_pkts_coal;
 404
 405	/* Virtual address of the TX DMA descriptors array */
 406	struct mvneta_tx_desc *descs;
 407
 408	/* DMA address of the TX DMA descriptors array */
 409	dma_addr_t descs_phys;
 410
 411	/* Index of the last TX DMA descriptor */
 412	int last_desc;
 413
 414	/* Index of the next TX DMA descriptor to process */
 415	int next_desc_to_proc;
 
 
 
 
 
 
 
 
 
 416};
 417
 418struct mvneta_rx_queue {
 419	/* rx queue number, in the range 0-7 */
 420	u8 id;
 421
 422	/* num of rx descriptors in the rx descriptor ring */
 423	int size;
 424
 425	/* counter of times when mvneta_refill() failed */
 426	int missed;
 427
 428	u32 pkts_coal;
 429	u32 time_coal;
 430
 
 
 
 
 
 
 
 431	/* Virtual address of the RX DMA descriptors array */
 432	struct mvneta_rx_desc *descs;
 433
 434	/* DMA address of the RX DMA descriptors array */
 435	dma_addr_t descs_phys;
 436
 437	/* Index of the last RX DMA descriptor */
 438	int last_desc;
 439
 440	/* Index of the next RX DMA descriptor to process */
 441	int next_desc_to_proc;
 
 
 
 
 442};
 443
 
 
 
 
 444static int rxq_number = 8;
 445static int txq_number = 8;
 446
 447static int rxq_def;
 448
 449static int rx_copybreak __read_mostly = 256;
 450
 
 
 
 451#define MVNETA_DRIVER_NAME "mvneta"
 452#define MVNETA_DRIVER_VERSION "1.0"
 453
 454/* Utility/helper methods */
 455
 456/* Write helper method */
 457static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
 458{
 459	writel(data, pp->base + offset);
 460}
 461
 462/* Read helper method */
 463static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
 464{
 465	return readl(pp->base + offset);
 466}
 467
 468/* Increment txq get counter */
 469static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
 470{
 471	txq->txq_get_index++;
 472	if (txq->txq_get_index == txq->size)
 473		txq->txq_get_index = 0;
 474}
 475
 476/* Increment txq put counter */
 477static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
 478{
 479	txq->txq_put_index++;
 480	if (txq->txq_put_index == txq->size)
 481		txq->txq_put_index = 0;
 482}
 483
 484
 485/* Clear all MIB counters */
 486static void mvneta_mib_counters_clear(struct mvneta_port *pp)
 487{
 488	int i;
 489	u32 dummy;
 490
 491	/* Perform dummy reads from MIB counters */
 492	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
 493		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
 
 
 494}
 495
 496/* Get System Network Statistics */
 497struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
 498					     struct rtnl_link_stats64 *stats)
 
 499{
 500	struct mvneta_port *pp = netdev_priv(dev);
 501	unsigned int start;
 502	int cpu;
 503
 504	for_each_possible_cpu(cpu) {
 505		struct mvneta_pcpu_stats *cpu_stats;
 506		u64 rx_packets;
 507		u64 rx_bytes;
 
 
 508		u64 tx_packets;
 509		u64 tx_bytes;
 510
 511		cpu_stats = per_cpu_ptr(pp->stats, cpu);
 512		do {
 513			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
 514			rx_packets = cpu_stats->rx_packets;
 515			rx_bytes   = cpu_stats->rx_bytes;
 516			tx_packets = cpu_stats->tx_packets;
 517			tx_bytes   = cpu_stats->tx_bytes;
 518		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
 
 
 519
 520		stats->rx_packets += rx_packets;
 521		stats->rx_bytes   += rx_bytes;
 
 
 522		stats->tx_packets += tx_packets;
 523		stats->tx_bytes   += tx_bytes;
 524	}
 525
 526	stats->rx_errors	= dev->stats.rx_errors;
 527	stats->rx_dropped	= dev->stats.rx_dropped;
 528
 529	stats->tx_dropped	= dev->stats.tx_dropped;
 530
 531	return stats;
 532}
 533
 534/* Rx descriptors helper methods */
 535
 536/* Checks whether the RX descriptor having this status is both the first
 537 * and the last descriptor for the RX packet. Each RX packet is currently
 538 * received through a single RX descriptor, so not having each RX
 539 * descriptor with its first and last bits set is an error
 540 */
 541static int mvneta_rxq_desc_is_first_last(u32 status)
 542{
 543	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
 544		MVNETA_RXD_FIRST_LAST_DESC;
 545}
 546
 547/* Add number of descriptors ready to receive new packets */
 548static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
 549					  struct mvneta_rx_queue *rxq,
 550					  int ndescs)
 551{
 552	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
 553	 * be added at once
 554	 */
 555	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
 556		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 557			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
 558			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 559		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
 560	}
 561
 562	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 563		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 564}
 565
 566/* Get number of RX descriptors occupied by received packets */
 567static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
 568					struct mvneta_rx_queue *rxq)
 569{
 570	u32 val;
 571
 572	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
 573	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
 574}
 575
 576/* Update num of rx desc called upon return from rx path or
 577 * from mvneta_rxq_drop_pkts().
 578 */
 579static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
 580				       struct mvneta_rx_queue *rxq,
 581				       int rx_done, int rx_filled)
 582{
 583	u32 val;
 584
 585	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
 586		val = rx_done |
 587		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
 588		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 589		return;
 590	}
 591
 592	/* Only 255 descriptors can be added at once */
 593	while ((rx_done > 0) || (rx_filled > 0)) {
 594		if (rx_done <= 0xff) {
 595			val = rx_done;
 596			rx_done = 0;
 597		} else {
 598			val = 0xff;
 599			rx_done -= 0xff;
 600		}
 601		if (rx_filled <= 0xff) {
 602			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 603			rx_filled = 0;
 604		} else {
 605			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 606			rx_filled -= 0xff;
 607		}
 608		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 609	}
 610}
 611
 612/* Get pointer to next RX descriptor to be processed by SW */
 613static struct mvneta_rx_desc *
 614mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
 615{
 616	int rx_desc = rxq->next_desc_to_proc;
 617
 618	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
 619	prefetch(rxq->descs + rxq->next_desc_to_proc);
 620	return rxq->descs + rx_desc;
 621}
 622
 623/* Change maximum receive size of the port. */
 624static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
 625{
 626	u32 val;
 627
 628	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 629	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
 630	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
 631		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
 632	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 633}
 634
 635
 636/* Set rx queue offset */
 637static void mvneta_rxq_offset_set(struct mvneta_port *pp,
 638				  struct mvneta_rx_queue *rxq,
 639				  int offset)
 640{
 641	u32 val;
 642
 643	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 644	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
 645
 646	/* Offset is in */
 647	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
 648	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 649}
 650
 651
 652/* Tx descriptors helper methods */
 653
 654/* Update HW with number of TX descriptors to be sent */
 655static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
 656				     struct mvneta_tx_queue *txq,
 657				     int pend_desc)
 658{
 659	u32 val;
 660
 661	/* Only 255 descriptors can be added at once ; Assume caller
 662	 * process TX desriptors in quanta less than 256
 663	 */
 664	val = pend_desc;
 665	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
 
 
 
 
 666}
 667
 668/* Get pointer to next TX descriptor to be processed (send) by HW */
 669static struct mvneta_tx_desc *
 670mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
 671{
 672	int tx_desc = txq->next_desc_to_proc;
 673
 674	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
 675	return txq->descs + tx_desc;
 676}
 677
 678/* Release the last allocated TX descriptor. Useful to handle DMA
 679 * mapping failures in the TX path.
 680 */
 681static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
 682{
 683	if (txq->next_desc_to_proc == 0)
 684		txq->next_desc_to_proc = txq->last_desc - 1;
 685	else
 686		txq->next_desc_to_proc--;
 687}
 688
 689/* Set rxq buf size */
 690static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
 691				    struct mvneta_rx_queue *rxq,
 692				    int buf_size)
 693{
 694	u32 val;
 695
 696	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
 697
 698	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
 699	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
 700
 701	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
 702}
 703
 704/* Disable buffer management (BM) */
 705static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
 706				  struct mvneta_rx_queue *rxq)
 707{
 708	u32 val;
 709
 710	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 711	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
 712	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 713}
 714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715/* Start the Ethernet port RX and TX activity */
 716static void mvneta_port_up(struct mvneta_port *pp)
 717{
 718	int queue;
 719	u32 q_map;
 720
 721	/* Enable all initialized TXs. */
 722	mvneta_mib_counters_clear(pp);
 723	q_map = 0;
 724	for (queue = 0; queue < txq_number; queue++) {
 725		struct mvneta_tx_queue *txq = &pp->txqs[queue];
 726		if (txq->descs != NULL)
 727			q_map |= (1 << queue);
 728	}
 729	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
 730
 
 731	/* Enable all initialized RXQs. */
 732	q_map = 0;
 733	for (queue = 0; queue < rxq_number; queue++) {
 734		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
 735		if (rxq->descs != NULL)
 
 736			q_map |= (1 << queue);
 737	}
 738
 739	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
 740}
 741
 742/* Stop the Ethernet port activity */
 743static void mvneta_port_down(struct mvneta_port *pp)
 744{
 745	u32 val;
 746	int count;
 747
 748	/* Stop Rx port activity. Check port Rx activity. */
 749	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
 750
 751	/* Issue stop command for active channels only */
 752	if (val != 0)
 753		mvreg_write(pp, MVNETA_RXQ_CMD,
 754			    val << MVNETA_RXQ_DISABLE_SHIFT);
 755
 756	/* Wait for all Rx activity to terminate. */
 757	count = 0;
 758	do {
 759		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
 760			netdev_warn(pp->dev,
 761				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
 762				    val);
 763			break;
 764		}
 765		mdelay(1);
 766
 767		val = mvreg_read(pp, MVNETA_RXQ_CMD);
 768	} while (val & 0xff);
 769
 770	/* Stop Tx port activity. Check port Tx activity. Issue stop
 771	 * command for active channels only
 772	 */
 773	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
 774
 775	if (val != 0)
 776		mvreg_write(pp, MVNETA_TXQ_CMD,
 777			    (val << MVNETA_TXQ_DISABLE_SHIFT));
 778
 779	/* Wait for all Tx activity to terminate. */
 780	count = 0;
 781	do {
 782		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
 783			netdev_warn(pp->dev,
 784				    "TIMEOUT for TX stopped status=0x%08x\n",
 785				    val);
 786			break;
 787		}
 788		mdelay(1);
 789
 790		/* Check TX Command reg that all Txqs are stopped */
 791		val = mvreg_read(pp, MVNETA_TXQ_CMD);
 792
 793	} while (val & 0xff);
 794
 795	/* Double check to verify that TX FIFO is empty */
 796	count = 0;
 797	do {
 798		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
 799			netdev_warn(pp->dev,
 800				    "TX FIFO empty timeout status=0x08%x\n",
 801				    val);
 802			break;
 803		}
 804		mdelay(1);
 805
 806		val = mvreg_read(pp, MVNETA_PORT_STATUS);
 807	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
 808		 (val & MVNETA_TX_IN_PRGRS));
 809
 810	udelay(200);
 811}
 812
 813/* Enable the port by setting the port enable bit of the MAC control register */
 814static void mvneta_port_enable(struct mvneta_port *pp)
 815{
 816	u32 val;
 817
 818	/* Enable port */
 819	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 820	val |= MVNETA_GMAC0_PORT_ENABLE;
 821	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 822}
 823
 824/* Disable the port and wait for about 200 usec before retuning */
 825static void mvneta_port_disable(struct mvneta_port *pp)
 826{
 827	u32 val;
 828
 829	/* Reset the Enable bit in the Serial Control Register */
 830	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 831	val &= ~MVNETA_GMAC0_PORT_ENABLE;
 832	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 833
 834	udelay(200);
 835}
 836
 837/* Multicast tables methods */
 838
 839/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
 840static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
 841{
 842	int offset;
 843	u32 val;
 844
 845	if (queue == -1) {
 846		val = 0;
 847	} else {
 848		val = 0x1 | (queue << 1);
 849		val |= (val << 24) | (val << 16) | (val << 8);
 850	}
 851
 852	for (offset = 0; offset <= 0xc; offset += 4)
 853		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
 854}
 855
 856/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
 857static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
 858{
 859	int offset;
 860	u32 val;
 861
 862	if (queue == -1) {
 863		val = 0;
 864	} else {
 865		val = 0x1 | (queue << 1);
 866		val |= (val << 24) | (val << 16) | (val << 8);
 867	}
 868
 869	for (offset = 0; offset <= 0xfc; offset += 4)
 870		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
 871
 872}
 873
 874/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
 875static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
 876{
 877	int offset;
 878	u32 val;
 879
 880	if (queue == -1) {
 881		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
 882		val = 0;
 883	} else {
 884		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
 885		val = 0x1 | (queue << 1);
 886		val |= (val << 24) | (val << 16) | (val << 8);
 887	}
 888
 889	for (offset = 0; offset <= 0xfc; offset += 4)
 890		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
 891}
 892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893/* This method sets defaults to the NETA port:
 894 *	Clears interrupt Cause and Mask registers.
 895 *	Clears all MAC tables.
 896 *	Sets defaults to all registers.
 897 *	Resets RX and TX descriptor rings.
 898 *	Resets PHY.
 899 * This method can be called after mvneta_port_down() to return the port
 900 *	settings to defaults.
 901 */
 902static void mvneta_defaults_set(struct mvneta_port *pp)
 903{
 904	int cpu;
 905	int queue;
 906	u32 val;
 
 907
 908	/* Clear all Cause registers */
 909	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
 910	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
 911	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
 912
 913	/* Mask all interrupts */
 914	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
 915	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
 916	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
 917	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
 918
 919	/* Enable MBUS Retry bit16 */
 920	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
 921
 922	/* Set CPU queue access map - all CPUs have access to all RX
 923	 * queues and to all TX queues
 
 
 924	 */
 925	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
 926		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
 927			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
 928			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 930	/* Reset RX and TX DMAs */
 931	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
 932	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
 933
 934	/* Disable Legacy WRR, Disable EJP, Release from reset */
 935	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
 936	for (queue = 0; queue < txq_number; queue++) {
 937		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
 938		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
 939	}
 940
 941	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
 942	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
 943
 944	/* Set Port Acceleration Mode */
 945	val = MVNETA_ACC_MODE_EXT;
 
 
 
 
 
 946	mvreg_write(pp, MVNETA_ACC_MODE, val);
 947
 
 
 
 948	/* Update val of portCfg register accordingly with all RxQueue types */
 949	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
 950	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
 951
 952	val = 0;
 953	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
 954	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
 955
 956	/* Build PORT_SDMA_CONFIG_REG */
 957	val = 0;
 958
 959	/* Default burst size */
 960	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
 961	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
 962	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
 963
 964#if defined(__BIG_ENDIAN)
 965	val |= MVNETA_DESC_SWAP;
 966#endif
 967
 968	/* Assign port SDMA configuration */
 969	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
 970
 971	/* Disable PHY polling in hardware, since we're using the
 972	 * kernel phylib to do this.
 973	 */
 974	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
 975	val &= ~MVNETA_PHY_POLLING_ENABLE;
 976	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
 977
 978	mvneta_set_ucast_table(pp, -1);
 979	mvneta_set_special_mcast_table(pp, -1);
 980	mvneta_set_other_mcast_table(pp, -1);
 981
 982	/* Set port interrupt enable register - default enable all */
 983	mvreg_write(pp, MVNETA_INTR_ENABLE,
 984		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
 985		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
 
 
 986}
 987
 988/* Set max sizes for tx queues */
 989static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
 990
 991{
 992	u32 val, size, mtu;
 993	int queue;
 994
 995	mtu = max_tx_size * 8;
 996	if (mtu > MVNETA_TX_MTU_MAX)
 997		mtu = MVNETA_TX_MTU_MAX;
 998
 999	/* Set MTU */
1000	val = mvreg_read(pp, MVNETA_TX_MTU);
1001	val &= ~MVNETA_TX_MTU_MAX;
1002	val |= mtu;
1003	mvreg_write(pp, MVNETA_TX_MTU, val);
1004
1005	/* TX token size and all TXQs token size must be larger that MTU */
1006	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1007
1008	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1009	if (size < mtu) {
1010		size = mtu;
1011		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1012		val |= size;
1013		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1014	}
1015	for (queue = 0; queue < txq_number; queue++) {
1016		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1017
1018		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1019		if (size < mtu) {
1020			size = mtu;
1021			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1022			val |= size;
1023			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1024		}
1025	}
1026}
1027
1028/* Set unicast address */
1029static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1030				  int queue)
1031{
1032	unsigned int unicast_reg;
1033	unsigned int tbl_offset;
1034	unsigned int reg_offset;
1035
1036	/* Locate the Unicast table entry */
1037	last_nibble = (0xf & last_nibble);
1038
1039	/* offset from unicast tbl base */
1040	tbl_offset = (last_nibble / 4) * 4;
1041
1042	/* offset within the above reg  */
1043	reg_offset = last_nibble % 4;
1044
1045	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1046
1047	if (queue == -1) {
1048		/* Clear accepts frame bit at specified unicast DA tbl entry */
1049		unicast_reg &= ~(0xff << (8 * reg_offset));
1050	} else {
1051		unicast_reg &= ~(0xff << (8 * reg_offset));
1052		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1053	}
1054
1055	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1056}
1057
1058/* Set mac address */
1059static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1060				int queue)
1061{
1062	unsigned int mac_h;
1063	unsigned int mac_l;
1064
1065	if (queue != -1) {
1066		mac_l = (addr[4] << 8) | (addr[5]);
1067		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1068			(addr[2] << 8) | (addr[3] << 0);
1069
1070		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1071		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1072	}
1073
1074	/* Accept frames of this address */
1075	mvneta_set_ucast_addr(pp, addr[5], queue);
1076}
1077
1078/* Set the number of packets that will be received before RX interrupt
1079 * will be generated by HW.
1080 */
1081static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1082				    struct mvneta_rx_queue *rxq, u32 value)
1083{
1084	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1085		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1086	rxq->pkts_coal = value;
1087}
1088
1089/* Set the time delay in usec before RX interrupt will be generated by
1090 * HW.
1091 */
1092static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1093				    struct mvneta_rx_queue *rxq, u32 value)
1094{
1095	u32 val;
1096	unsigned long clk_rate;
1097
1098	clk_rate = clk_get_rate(pp->clk);
1099	val = (clk_rate / 1000000) * value;
1100
1101	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1102	rxq->time_coal = value;
1103}
1104
1105/* Set threshold for TX_DONE pkts coalescing */
1106static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1107					 struct mvneta_tx_queue *txq, u32 value)
1108{
1109	u32 val;
1110
1111	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1112
1113	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1114	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1115
1116	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1117
1118	txq->done_pkts_coal = value;
1119}
1120
1121/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1122static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1123				u32 phys_addr, u32 cookie)
 
1124{
1125	rx_desc->buf_cookie = cookie;
 
1126	rx_desc->buf_phys_addr = phys_addr;
 
 
1127}
1128
1129/* Decrement sent descriptors counter */
1130static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1131				     struct mvneta_tx_queue *txq,
1132				     int sent_desc)
1133{
1134	u32 val;
1135
1136	/* Only 255 TX descriptors can be updated at once */
1137	while (sent_desc > 0xff) {
1138		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1139		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1140		sent_desc = sent_desc - 0xff;
1141	}
1142
1143	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1144	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1145}
1146
1147/* Get number of TX descriptors already sent by HW */
1148static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1149					struct mvneta_tx_queue *txq)
1150{
1151	u32 val;
1152	int sent_desc;
1153
1154	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1155	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1156		MVNETA_TXQ_SENT_DESC_SHIFT;
1157
1158	return sent_desc;
1159}
1160
1161/* Get number of sent descriptors and decrement counter.
1162 *  The number of sent descriptors is returned.
1163 */
1164static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1165				     struct mvneta_tx_queue *txq)
1166{
1167	int sent_desc;
1168
1169	/* Get number of sent descriptors */
1170	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1171
1172	/* Decrement sent descriptors counter */
1173	if (sent_desc)
1174		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1175
1176	return sent_desc;
1177}
1178
1179/* Set TXQ descriptors fields relevant for CSUM calculation */
1180static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1181				int ip_hdr_len, int l4_proto)
1182{
1183	u32 command;
1184
1185	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1186	 * G_L4_chk, L4_type; required only for checksum
1187	 * calculation
1188	 */
1189	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1190	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1191
1192	if (l3_proto == swab16(ETH_P_IP))
1193		command |= MVNETA_TXD_IP_CSUM;
1194	else
1195		command |= MVNETA_TX_L3_IP6;
1196
1197	if (l4_proto == IPPROTO_TCP)
1198		command |=  MVNETA_TX_L4_CSUM_FULL;
1199	else if (l4_proto == IPPROTO_UDP)
1200		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1201	else
1202		command |= MVNETA_TX_L4_CSUM_NOT;
1203
1204	return command;
1205}
1206
1207
1208/* Display more error info */
1209static void mvneta_rx_error(struct mvneta_port *pp,
1210			    struct mvneta_rx_desc *rx_desc)
1211{
 
1212	u32 status = rx_desc->status;
1213
1214	if (!mvneta_rxq_desc_is_first_last(status)) {
1215		netdev_err(pp->dev,
1216			   "bad rx status %08x (buffer oversize), size=%d\n",
1217			   status, rx_desc->data_size);
1218		return;
1219	}
1220
1221	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1222	case MVNETA_RXD_ERR_CRC:
1223		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1224			   status, rx_desc->data_size);
1225		break;
1226	case MVNETA_RXD_ERR_OVERRUN:
1227		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1228			   status, rx_desc->data_size);
1229		break;
1230	case MVNETA_RXD_ERR_LEN:
1231		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1232			   status, rx_desc->data_size);
1233		break;
1234	case MVNETA_RXD_ERR_RESOURCE:
1235		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1236			   status, rx_desc->data_size);
1237		break;
1238	}
1239}
1240
1241/* Handle RX checksum offload based on the descriptor's status */
1242static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1243			   struct sk_buff *skb)
1244{
1245	if ((status & MVNETA_RXD_L3_IP4) &&
1246	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1247		skb->csum = 0;
1248		skb->ip_summed = CHECKSUM_UNNECESSARY;
1249		return;
1250	}
1251
1252	skb->ip_summed = CHECKSUM_NONE;
1253}
1254
1255/* Return tx queue pointer (find last set bit) according to <cause> returned
1256 * form tx_done reg. <cause> must not be null. The return value is always a
1257 * valid queue for matching the first one found in <cause>.
1258 */
1259static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1260						     u32 cause)
1261{
1262	int queue = fls(cause) - 1;
1263
1264	return &pp->txqs[queue];
1265}
1266
1267/* Free tx queue skbuffs */
1268static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1269				 struct mvneta_tx_queue *txq, int num)
 
1270{
 
 
1271	int i;
1272
 
 
 
 
1273	for (i = 0; i < num; i++) {
 
1274		struct mvneta_tx_desc *tx_desc = txq->descs +
1275			txq->txq_get_index;
1276		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1277
1278		mvneta_txq_inc_get(txq);
1279
1280		if (!skb)
1281			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282
1283		dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1284				 tx_desc->data_size, DMA_TO_DEVICE);
1285		dev_kfree_skb_any(skb);
1286	}
1287}
1288
1289/* Handle end of transmission */
1290static void mvneta_txq_done(struct mvneta_port *pp,
1291			   struct mvneta_tx_queue *txq)
1292{
1293	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1294	int tx_done;
1295
1296	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1297	if (!tx_done)
1298		return;
1299
1300	mvneta_txq_bufs_free(pp, txq, tx_done);
1301
1302	txq->count -= tx_done;
1303
1304	if (netif_tx_queue_stopped(nq)) {
1305		if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1306			netif_tx_wake_queue(nq);
1307	}
1308}
1309
1310static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1311{
1312	if (likely(pp->frag_size <= PAGE_SIZE))
1313		return netdev_alloc_frag(pp->frag_size);
1314	else
1315		return kmalloc(pp->frag_size, GFP_ATOMIC);
1316}
1317
1318static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1319{
1320	if (likely(pp->frag_size <= PAGE_SIZE))
1321		put_page(virt_to_head_page(data));
1322	else
1323		kfree(data);
1324}
1325
1326/* Refill processing */
1327static int mvneta_rx_refill(struct mvneta_port *pp,
1328			    struct mvneta_rx_desc *rx_desc)
1329
 
1330{
1331	dma_addr_t phys_addr;
1332	void *data;
1333
1334	data = mvneta_frag_alloc(pp);
1335	if (!data)
 
1336		return -ENOMEM;
1337
1338	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1339				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1340				   DMA_FROM_DEVICE);
1341	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1342		mvneta_frag_free(pp, data);
1343		return -ENOMEM;
1344	}
1345
1346	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1347	return 0;
1348}
1349
1350/* Handle tx checksum */
1351static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1352{
1353	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1354		int ip_hdr_len = 0;
 
1355		u8 l4_proto;
1356
1357		if (skb->protocol == htons(ETH_P_IP)) {
1358			struct iphdr *ip4h = ip_hdr(skb);
1359
1360			/* Calculate IPv4 checksum and L4 checksum */
1361			ip_hdr_len = ip4h->ihl;
1362			l4_proto = ip4h->protocol;
1363		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1364			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1365
1366			/* Read l4_protocol from one of IPv6 extra headers */
1367			if (skb_network_header_len(skb) > 0)
1368				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1369			l4_proto = ip6h->nexthdr;
1370		} else
1371			return MVNETA_TX_L4_CSUM_NOT;
1372
1373		return mvneta_txq_desc_csum(skb_network_offset(skb),
1374				skb->protocol, ip_hdr_len, l4_proto);
1375	}
1376
1377	return MVNETA_TX_L4_CSUM_NOT;
1378}
1379
1380/* Returns rx queue pointer (find last set bit) according to causeRxTx
1381 * value
1382 */
1383static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1384						u32 cause)
1385{
1386	int queue = fls(cause >> 8) - 1;
1387
1388	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1389}
1390
1391/* Drop packets received by the RXQ and free buffers */
1392static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1393				 struct mvneta_rx_queue *rxq)
1394{
1395	int rx_done, i;
1396
1397	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398	for (i = 0; i < rxq->size; i++) {
1399		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1400		void *data = (void *)rx_desc->buf_cookie;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401
1402		mvneta_frag_free(pp, data);
1403		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1404				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405	}
 
 
 
 
1406
1407	if (rx_done)
1408		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409}
1410
1411/* Main rx processing */
1412static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1413		     struct mvneta_rx_queue *rxq)
 
1414{
1415	struct net_device *dev = pp->dev;
1416	int rx_done, rx_filled;
1417	u32 rcvd_pkts = 0;
1418	u32 rcvd_bytes = 0;
1419
1420	/* Get number of received packets */
1421	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1422
1423	if (rx_todo > rx_done)
1424		rx_todo = rx_done;
1425
1426	rx_done = 0;
1427	rx_filled = 0;
1428
1429	/* Fairness NAPI loop */
1430	while (rx_done < rx_todo) {
1431		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
 
1432		struct sk_buff *skb;
1433		unsigned char *data;
1434		u32 rx_status;
 
1435		int rx_bytes, err;
 
1436
1437		rx_done++;
1438		rx_filled++;
1439		rx_status = rx_desc->status;
1440		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1441		data = (unsigned char *)rx_desc->buf_cookie;
 
 
 
1442
1443		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1444		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1445		err_drop_frame:
1446			dev->stats.rx_errors++;
 
 
 
1447			mvneta_rx_error(pp, rx_desc);
1448			/* leave the descriptor untouched */
1449			continue;
1450		}
1451
1452		if (rx_bytes <= rx_copybreak) {
1453			/* better copy a small frame and not unmap the DMA region */
1454			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1455			if (unlikely(!skb))
1456				goto err_drop_frame;
1457
1458			dma_sync_single_range_for_cpu(dev->dev.parent,
1459			                              rx_desc->buf_phys_addr,
1460			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1461			                              rx_bytes,
1462			                              DMA_FROM_DEVICE);
1463			memcpy(skb_put(skb, rx_bytes),
1464			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1465			       rx_bytes);
1466
1467			skb->protocol = eth_type_trans(skb, dev);
1468			mvneta_rx_csum(pp, rx_status, skb);
1469			napi_gro_receive(&pp->napi, skb);
1470
1471			rcvd_pkts++;
1472			rcvd_bytes += rx_bytes;
1473
 
 
 
 
1474			/* leave the descriptor and buffer untouched */
1475			continue;
1476		}
1477
1478		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1479		if (!skb)
1480			goto err_drop_frame;
1481
1482		dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1483				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1484
1485		rcvd_pkts++;
1486		rcvd_bytes += rx_bytes;
1487
1488		/* Linux processing */
1489		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1490		skb_put(skb, rx_bytes);
1491
1492		skb->protocol = eth_type_trans(skb, dev);
 
1493
1494		mvneta_rx_csum(pp, rx_status, skb);
1495
1496		napi_gro_receive(&pp->napi, skb);
1497
1498		/* Refill processing */
1499		err = mvneta_rx_refill(pp, rx_desc);
1500		if (err) {
1501			netdev_err(dev, "Linux processing - Can't refill\n");
1502			rxq->missed++;
1503			rx_filled--;
1504		}
1505	}
1506
1507	if (rcvd_pkts) {
1508		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1509
1510		u64_stats_update_begin(&stats->syncp);
1511		stats->rx_packets += rcvd_pkts;
1512		stats->rx_bytes   += rcvd_bytes;
1513		u64_stats_update_end(&stats->syncp);
1514	}
1515
1516	/* Update rxq management counters */
1517	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1518
1519	return rx_done;
1520}
1521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1522/* Handle tx fragmentation processing */
1523static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1524				  struct mvneta_tx_queue *txq)
1525{
1526	struct mvneta_tx_desc *tx_desc;
1527	int i;
 
1528
1529	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 
1530		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1531		void *addr = page_address(frag->page.p) + frag->page_offset;
1532
1533		tx_desc = mvneta_txq_next_desc_get(txq);
1534		tx_desc->data_size = frag->size;
1535
1536		tx_desc->buf_phys_addr =
1537			dma_map_single(pp->dev->dev.parent, addr,
1538				       tx_desc->data_size, DMA_TO_DEVICE);
1539
1540		if (dma_mapping_error(pp->dev->dev.parent,
1541				      tx_desc->buf_phys_addr)) {
1542			mvneta_txq_desc_put(txq);
1543			goto error;
1544		}
1545
1546		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1547			/* Last descriptor */
1548			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1549
1550			txq->tx_skb[txq->txq_put_index] = skb;
1551
1552			mvneta_txq_inc_put(txq);
1553		} else {
1554			/* Descriptor in the middle: Not First, Not Last */
1555			tx_desc->command = 0;
1556
1557			txq->tx_skb[txq->txq_put_index] = NULL;
1558			mvneta_txq_inc_put(txq);
1559		}
 
 
1560	}
1561
1562	return 0;
1563
1564error:
1565	/* Release all descriptors that were used to map fragments of
1566	 * this packet, as well as the corresponding DMA mappings
1567	 */
1568	for (i = i - 1; i >= 0; i--) {
1569		tx_desc = txq->descs + i;
1570		dma_unmap_single(pp->dev->dev.parent,
1571				 tx_desc->buf_phys_addr,
1572				 tx_desc->data_size,
1573				 DMA_TO_DEVICE);
1574		mvneta_txq_desc_put(txq);
1575	}
1576
1577	return -ENOMEM;
1578}
1579
1580/* Main tx processing */
1581static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1582{
1583	struct mvneta_port *pp = netdev_priv(dev);
1584	u16 txq_id = skb_get_queue_mapping(skb);
1585	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
 
1586	struct mvneta_tx_desc *tx_desc;
1587	struct netdev_queue *nq;
1588	int frags = 0;
1589	u32 tx_cmd;
1590
1591	if (!netif_running(dev))
1592		goto out;
1593
 
 
 
 
 
1594	frags = skb_shinfo(skb)->nr_frags + 1;
1595	nq    = netdev_get_tx_queue(dev, txq_id);
1596
1597	/* Get a descriptor for the first part of the packet */
1598	tx_desc = mvneta_txq_next_desc_get(txq);
1599
1600	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1601
1602	tx_desc->data_size = skb_headlen(skb);
1603
1604	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1605						tx_desc->data_size,
1606						DMA_TO_DEVICE);
1607	if (unlikely(dma_mapping_error(dev->dev.parent,
1608				       tx_desc->buf_phys_addr))) {
1609		mvneta_txq_desc_put(txq);
1610		frags = 0;
1611		goto out;
1612	}
1613
 
1614	if (frags == 1) {
1615		/* First and Last descriptor */
1616		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1617		tx_desc->command = tx_cmd;
1618		txq->tx_skb[txq->txq_put_index] = skb;
1619		mvneta_txq_inc_put(txq);
1620	} else {
1621		/* First but not Last */
1622		tx_cmd |= MVNETA_TXD_F_DESC;
1623		txq->tx_skb[txq->txq_put_index] = NULL;
1624		mvneta_txq_inc_put(txq);
1625		tx_desc->command = tx_cmd;
1626		/* Continue with other skb fragments */
1627		if (mvneta_tx_frag_process(pp, skb, txq)) {
1628			dma_unmap_single(dev->dev.parent,
1629					 tx_desc->buf_phys_addr,
1630					 tx_desc->data_size,
1631					 DMA_TO_DEVICE);
1632			mvneta_txq_desc_put(txq);
1633			frags = 0;
1634			goto out;
1635		}
1636	}
1637
1638	txq->count += frags;
1639	mvneta_txq_pend_desc_add(pp, txq, frags);
1640
1641	if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1642		netif_tx_stop_queue(nq);
1643
1644out:
1645	if (frags > 0) {
 
1646		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1647
 
 
 
 
 
 
 
 
 
 
 
 
1648		u64_stats_update_begin(&stats->syncp);
1649		stats->tx_packets++;
1650		stats->tx_bytes  += skb->len;
1651		u64_stats_update_end(&stats->syncp);
1652	} else {
1653		dev->stats.tx_dropped++;
1654		dev_kfree_skb_any(skb);
1655	}
1656
1657	return NETDEV_TX_OK;
1658}
1659
1660
1661/* Free tx resources, when resetting a port */
1662static void mvneta_txq_done_force(struct mvneta_port *pp,
1663				  struct mvneta_tx_queue *txq)
1664
1665{
 
1666	int tx_done = txq->count;
1667
1668	mvneta_txq_bufs_free(pp, txq, tx_done);
1669
1670	/* reset txq */
1671	txq->count = 0;
1672	txq->txq_put_index = 0;
1673	txq->txq_get_index = 0;
1674}
1675
1676/* Handle tx done - called in softirq context. The <cause_tx_done> argument
1677 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1678 */
1679static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1680{
1681	struct mvneta_tx_queue *txq;
1682	struct netdev_queue *nq;
 
1683
1684	while (cause_tx_done) {
1685		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1686
1687		nq = netdev_get_tx_queue(pp->dev, txq->id);
1688		__netif_tx_lock(nq, smp_processor_id());
1689
1690		if (txq->count)
1691			mvneta_txq_done(pp, txq);
1692
1693		__netif_tx_unlock(nq);
1694		cause_tx_done &= ~((1 << txq->id));
1695	}
1696}
1697
1698/* Compute crc8 of the specified address, using a unique algorithm ,
1699 * according to hw spec, different than generic crc8 algorithm
1700 */
1701static int mvneta_addr_crc(unsigned char *addr)
1702{
1703	int crc = 0;
1704	int i;
1705
1706	for (i = 0; i < ETH_ALEN; i++) {
1707		int j;
1708
1709		crc = (crc ^ addr[i]) << 8;
1710		for (j = 7; j >= 0; j--) {
1711			if (crc & (0x100 << j))
1712				crc ^= 0x107 << j;
1713		}
1714	}
1715
1716	return crc;
1717}
1718
1719/* This method controls the net device special MAC multicast support.
1720 * The Special Multicast Table for MAC addresses supports MAC of the form
1721 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1722 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1723 * Table entries in the DA-Filter table. This method set the Special
1724 * Multicast Table appropriate entry.
1725 */
1726static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1727					  unsigned char last_byte,
1728					  int queue)
1729{
1730	unsigned int smc_table_reg;
1731	unsigned int tbl_offset;
1732	unsigned int reg_offset;
1733
1734	/* Register offset from SMC table base    */
1735	tbl_offset = (last_byte / 4);
1736	/* Entry offset within the above reg */
1737	reg_offset = last_byte % 4;
1738
1739	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1740					+ tbl_offset * 4));
1741
1742	if (queue == -1)
1743		smc_table_reg &= ~(0xff << (8 * reg_offset));
1744	else {
1745		smc_table_reg &= ~(0xff << (8 * reg_offset));
1746		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1747	}
1748
1749	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1750		    smc_table_reg);
1751}
1752
1753/* This method controls the network device Other MAC multicast support.
1754 * The Other Multicast Table is used for multicast of another type.
1755 * A CRC-8 is used as an index to the Other Multicast Table entries
1756 * in the DA-Filter table.
1757 * The method gets the CRC-8 value from the calling routine and
1758 * sets the Other Multicast Table appropriate entry according to the
1759 * specified CRC-8 .
1760 */
1761static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1762					unsigned char crc8,
1763					int queue)
1764{
1765	unsigned int omc_table_reg;
1766	unsigned int tbl_offset;
1767	unsigned int reg_offset;
1768
1769	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1770	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1771
1772	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1773
1774	if (queue == -1) {
1775		/* Clear accepts frame bit at specified Other DA table entry */
1776		omc_table_reg &= ~(0xff << (8 * reg_offset));
1777	} else {
1778		omc_table_reg &= ~(0xff << (8 * reg_offset));
1779		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1780	}
1781
1782	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1783}
1784
1785/* The network device supports multicast using two tables:
1786 *    1) Special Multicast Table for MAC addresses of the form
1787 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1788 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1789 *       Table entries in the DA-Filter table.
1790 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1791 *       is used as an index to the Other Multicast Table entries in the
1792 *       DA-Filter table.
1793 */
1794static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1795				 int queue)
1796{
1797	unsigned char crc_result = 0;
1798
1799	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1800		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1801		return 0;
1802	}
1803
1804	crc_result = mvneta_addr_crc(p_addr);
1805	if (queue == -1) {
1806		if (pp->mcast_count[crc_result] == 0) {
1807			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1808				    crc_result);
1809			return -EINVAL;
1810		}
1811
1812		pp->mcast_count[crc_result]--;
1813		if (pp->mcast_count[crc_result] != 0) {
1814			netdev_info(pp->dev,
1815				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1816				    pp->mcast_count[crc_result], crc_result);
1817			return -EINVAL;
1818		}
1819	} else
1820		pp->mcast_count[crc_result]++;
1821
1822	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1823
1824	return 0;
1825}
1826
1827/* Configure Fitering mode of Ethernet port */
1828static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1829					  int is_promisc)
1830{
1831	u32 port_cfg_reg, val;
1832
1833	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1834
1835	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1836
1837	/* Set / Clear UPM bit in port configuration register */
1838	if (is_promisc) {
1839		/* Accept all Unicast addresses */
1840		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1841		val |= MVNETA_FORCE_UNI;
1842		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1843		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1844	} else {
1845		/* Reject all Unicast addresses */
1846		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1847		val &= ~MVNETA_FORCE_UNI;
1848	}
1849
1850	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1851	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1852}
1853
1854/* register unicast and multicast addresses */
1855static void mvneta_set_rx_mode(struct net_device *dev)
1856{
1857	struct mvneta_port *pp = netdev_priv(dev);
1858	struct netdev_hw_addr *ha;
1859
1860	if (dev->flags & IFF_PROMISC) {
1861		/* Accept all: Multicast + Unicast */
1862		mvneta_rx_unicast_promisc_set(pp, 1);
1863		mvneta_set_ucast_table(pp, rxq_def);
1864		mvneta_set_special_mcast_table(pp, rxq_def);
1865		mvneta_set_other_mcast_table(pp, rxq_def);
1866	} else {
1867		/* Accept single Unicast */
1868		mvneta_rx_unicast_promisc_set(pp, 0);
1869		mvneta_set_ucast_table(pp, -1);
1870		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1871
1872		if (dev->flags & IFF_ALLMULTI) {
1873			/* Accept all multicast */
1874			mvneta_set_special_mcast_table(pp, rxq_def);
1875			mvneta_set_other_mcast_table(pp, rxq_def);
1876		} else {
1877			/* Accept only initialized multicast */
1878			mvneta_set_special_mcast_table(pp, -1);
1879			mvneta_set_other_mcast_table(pp, -1);
1880
1881			if (!netdev_mc_empty(dev)) {
1882				netdev_for_each_mc_addr(ha, dev) {
1883					mvneta_mcast_addr_set(pp, ha->addr,
1884							      rxq_def);
1885				}
1886			}
1887		}
1888	}
1889}
1890
1891/* Interrupt handling - the callback for request_irq() */
1892static irqreturn_t mvneta_isr(int irq, void *dev_id)
1893{
1894	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1895
1896	/* Mask all interrupts */
1897	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
 
 
 
 
1898
1899	napi_schedule(&pp->napi);
 
 
 
 
 
 
1900
1901	return IRQ_HANDLED;
1902}
1903
 
 
 
 
 
 
 
 
1904/* NAPI handler
1905 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1906 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1907 * Bits 8 -15 of the cause Rx Tx register indicate that are received
1908 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1909 * Each CPU has its own causeRxTx register
1910 */
1911static int mvneta_poll(struct napi_struct *napi, int budget)
1912{
1913	int rx_done = 0;
1914	u32 cause_rx_tx;
1915	unsigned long flags;
1916	struct mvneta_port *pp = netdev_priv(napi->dev);
 
1917
1918	if (!netif_running(pp->dev)) {
1919		napi_complete(napi);
1920		return rx_done;
1921	}
1922
1923	/* Read cause register */
1924	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1925		(MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
 
 
 
 
 
 
 
 
1926
1927	/* Release Tx descriptors */
1928	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
1929		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
1930		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
1931	}
1932
1933	/* For the case where the last mvneta_poll did not process all
1934	 * RX packets
1935	 */
1936	cause_rx_tx |= pp->cause_rx_tx;
1937	if (rxq_number > 1) {
1938		while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
1939			int count;
1940			struct mvneta_rx_queue *rxq;
1941			/* get rx queue number from cause_rx_tx */
1942			rxq = mvneta_rx_policy(pp, cause_rx_tx);
1943			if (!rxq)
1944				break;
1945
1946			/* process the packet in that rx queue */
1947			count = mvneta_rx(pp, budget, rxq);
1948			rx_done += count;
1949			budget -= count;
1950			if (budget > 0) {
1951				/* set off the rx bit of the
1952				 * corresponding bit in the cause rx
1953				 * tx register, so that next iteration
1954				 * will find the next rx queue where
1955				 * packets are received on
1956				 */
1957				cause_rx_tx &= ~((1 << rxq->id) << 8);
1958			}
1959		}
1960	} else {
1961		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1962		budget -= rx_done;
1963	}
1964
1965	if (budget > 0) {
1966		cause_rx_tx = 0;
1967		napi_complete(napi);
1968		local_irq_save(flags);
1969		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1970			    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
1971		local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
1972	}
1973
1974	pp->cause_rx_tx = cause_rx_tx;
 
 
 
 
1975	return rx_done;
1976}
1977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1978/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1979static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1980			   int num)
1981{
1982	int i;
 
 
 
 
1983
1984	for (i = 0; i < num; i++) {
1985		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
1986		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
1987			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
1988				__func__, rxq->id, i, num);
 
 
1989			break;
1990		}
1991	}
1992
1993	/* Add this number of RX descriptors as non occupied (ready to
1994	 * get packets)
1995	 */
1996	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1997
1998	return i;
1999}
2000
2001/* Free all packets pending transmit from all TXQs and reset TX port */
2002static void mvneta_tx_reset(struct mvneta_port *pp)
2003{
2004	int queue;
2005
2006	/* free the skb's in the hal tx ring */
2007	for (queue = 0; queue < txq_number; queue++)
2008		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2009
2010	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2011	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2012}
2013
2014static void mvneta_rx_reset(struct mvneta_port *pp)
2015{
2016	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2017	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2018}
2019
2020/* Rx/Tx queue initialization/cleanup methods */
2021
2022/* Create a specified RX queue */
2023static int mvneta_rxq_init(struct mvneta_port *pp,
2024			   struct mvneta_rx_queue *rxq)
2025
2026{
2027	rxq->size = pp->rx_ring_size;
2028
2029	/* Allocate memory for RX descriptors */
2030	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2031					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2032					&rxq->descs_phys, GFP_KERNEL);
2033	if (rxq->descs == NULL)
2034		return -ENOMEM;
2035
2036	BUG_ON(rxq->descs !=
2037	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2038
2039	rxq->last_desc = rxq->size - 1;
 
2040
 
 
 
2041	/* Set Rx descriptors queue starting address */
2042	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2043	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2044
2045	/* Set Offset */
2046	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2047
2048	/* Set coalescing pkts and time */
2049	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2050	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2051
2052	/* Fill RXQ with buffers from RX pool */
2053	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2054	mvneta_rxq_bm_disable(pp, rxq);
2055	mvneta_rxq_fill(pp, rxq, rxq->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056
2057	return 0;
2058}
2059
2060/* Cleanup Rx queue */
2061static void mvneta_rxq_deinit(struct mvneta_port *pp,
2062			      struct mvneta_rx_queue *rxq)
2063{
2064	mvneta_rxq_drop_pkts(pp, rxq);
2065
2066	if (rxq->descs)
2067		dma_free_coherent(pp->dev->dev.parent,
2068				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2069				  rxq->descs,
2070				  rxq->descs_phys);
2071
2072	rxq->descs             = NULL;
2073	rxq->last_desc         = 0;
2074	rxq->next_desc_to_proc = 0;
2075	rxq->descs_phys        = 0;
 
 
2076}
2077
2078/* Create and initialize a tx queue */
2079static int mvneta_txq_init(struct mvneta_port *pp,
2080			   struct mvneta_tx_queue *txq)
2081{
 
 
2082	txq->size = pp->tx_ring_size;
2083
 
 
 
 
 
 
 
2084	/* Allocate memory for TX descriptors */
2085	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2086					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2087					&txq->descs_phys, GFP_KERNEL);
2088	if (txq->descs == NULL)
 
 
 
 
 
 
2089		return -ENOMEM;
2090
2091	/* Make sure descriptor address is cache line size aligned  */
2092	BUG_ON(txq->descs !=
2093	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
 
 
 
 
 
 
 
 
 
 
 
2094
2095	txq->last_desc = txq->size - 1;
 
2096
 
 
 
2097	/* Set maximum bandwidth for enabled TXQs */
2098	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2099	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2100
2101	/* Set Tx descriptors queue starting address */
2102	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2103	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2104
2105	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2106	if (txq->tx_skb == NULL) {
2107		dma_free_coherent(pp->dev->dev.parent,
2108				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2109				  txq->descs, txq->descs_phys);
2110		return -ENOMEM;
2111	}
2112	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
 
 
 
 
 
 
 
 
 
 
 
 
 
2113
2114	return 0;
2115}
2116
2117/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2118static void mvneta_txq_deinit(struct mvneta_port *pp,
2119			      struct mvneta_tx_queue *txq)
2120{
2121	kfree(txq->tx_skb);
2122
 
 
 
2123	if (txq->descs)
2124		dma_free_coherent(pp->dev->dev.parent,
2125				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2126				  txq->descs, txq->descs_phys);
2127
 
 
 
2128	txq->descs             = NULL;
2129	txq->last_desc         = 0;
2130	txq->next_desc_to_proc = 0;
2131	txq->descs_phys        = 0;
 
2132
 
 
 
2133	/* Set minimum bandwidth for disabled TXQs */
2134	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2135	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2136
2137	/* Set Tx descriptors queue starting address and size */
2138	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2139	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2140}
2141
 
 
 
 
 
 
 
2142/* Cleanup all Tx queues */
2143static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2144{
2145	int queue;
2146
2147	for (queue = 0; queue < txq_number; queue++)
2148		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2149}
2150
2151/* Cleanup all Rx queues */
2152static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2153{
2154	int queue;
2155
2156	for (queue = 0; queue < rxq_number; queue++)
2157		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2158}
2159
2160
2161/* Init all Rx queues */
2162static int mvneta_setup_rxqs(struct mvneta_port *pp)
2163{
2164	int queue;
2165
2166	for (queue = 0; queue < rxq_number; queue++) {
2167		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
 
2168		if (err) {
2169			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2170				   __func__, queue);
2171			mvneta_cleanup_rxqs(pp);
2172			return err;
2173		}
2174	}
2175
2176	return 0;
2177}
2178
2179/* Init all tx queues */
2180static int mvneta_setup_txqs(struct mvneta_port *pp)
2181{
2182	int queue;
2183
2184	for (queue = 0; queue < txq_number; queue++) {
2185		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2186		if (err) {
2187			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2188				   __func__, queue);
2189			mvneta_cleanup_txqs(pp);
2190			return err;
2191		}
2192	}
2193
2194	return 0;
2195}
2196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197static void mvneta_start_dev(struct mvneta_port *pp)
2198{
 
 
 
 
2199	mvneta_max_rx_size_set(pp, pp->pkt_size);
2200	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2201
2202	/* start the Rx/Tx activity */
2203	mvneta_port_enable(pp);
2204
2205	/* Enable polling on the port */
2206	napi_enable(&pp->napi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207
2208	/* Unmask interrupts */
2209	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2210		    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
 
2211
2212	phy_start(pp->phy_dev);
2213	netif_tx_start_all_queues(pp->dev);
 
 
2214}
2215
2216static void mvneta_stop_dev(struct mvneta_port *pp)
2217{
2218	phy_stop(pp->phy_dev);
 
 
 
 
 
2219
2220	napi_disable(&pp->napi);
 
 
 
 
 
 
 
 
 
 
 
2221
2222	netif_carrier_off(pp->dev);
2223
2224	mvneta_port_down(pp);
2225	netif_tx_stop_all_queues(pp->dev);
2226
2227	/* Stop the port activity */
2228	mvneta_port_disable(pp);
2229
2230	/* Clear all ethernet port interrupts */
2231	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2232	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2233
2234	/* Mask all ethernet port interrupts */
2235	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2236	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2237	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2238
2239	mvneta_tx_reset(pp);
2240	mvneta_rx_reset(pp);
 
 
2241}
2242
2243/* Return positive if MTU is valid */
2244static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2245{
2246	if (mtu < 68) {
2247		netdev_err(dev, "cannot change mtu to less than 68\n");
2248		return -EINVAL;
2249	}
2250
2251	/* 9676 == 9700 - 20 and rounding to 8 */
2252	if (mtu > 9676) {
2253		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2254		mtu = 9676;
2255	}
2256
2257	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2258		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2259			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2260		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2261	}
2262
2263	return mtu;
2264}
2265
2266/* Change the device mtu */
2267static int mvneta_change_mtu(struct net_device *dev, int mtu)
2268{
2269	struct mvneta_port *pp = netdev_priv(dev);
 
2270	int ret;
2271
2272	mtu = mvneta_check_mtu_valid(dev, mtu);
2273	if (mtu < 0)
 
 
 
 
 
 
 
 
 
2274		return -EINVAL;
 
2275
2276	dev->mtu = mtu;
2277
2278	if (!netif_running(dev))
 
 
 
 
2279		return 0;
 
2280
2281	/* The interface is running, so we have to force a
2282	 * reallocation of the RXQs
2283	 */
2284	mvneta_stop_dev(pp);
 
2285
2286	mvneta_cleanup_txqs(pp);
2287	mvneta_cleanup_rxqs(pp);
2288
2289	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2290	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2291	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 
2292
2293	ret = mvneta_setup_rxqs(pp);
2294	if (ret) {
2295		netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2296		return ret;
2297	}
2298
2299	mvneta_setup_txqs(pp);
 
 
 
 
2300
 
2301	mvneta_start_dev(pp);
2302	mvneta_port_up(pp);
 
2303
2304	return 0;
2305}
2306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2307/* Get mac address */
2308static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2309{
2310	u32 mac_addr_l, mac_addr_h;
2311
2312	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2313	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2314	addr[0] = (mac_addr_h >> 24) & 0xFF;
2315	addr[1] = (mac_addr_h >> 16) & 0xFF;
2316	addr[2] = (mac_addr_h >> 8) & 0xFF;
2317	addr[3] = mac_addr_h & 0xFF;
2318	addr[4] = (mac_addr_l >> 8) & 0xFF;
2319	addr[5] = mac_addr_l & 0xFF;
2320}
2321
2322/* Handle setting mac address */
2323static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2324{
2325	struct mvneta_port *pp = netdev_priv(dev);
2326	u8 *mac = addr + 2;
2327	int i;
2328
2329	if (netif_running(dev))
2330		return -EBUSY;
2331
 
 
 
2332	/* Remove previous address table entry */
2333	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2334
2335	/* Set new addr in hw */
2336	mvneta_mac_addr_set(pp, mac, rxq_def);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337
2338	/* Set addr in the device */
2339	for (i = 0; i < ETH_ALEN; i++)
2340		dev->dev_addr[i] = mac[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341
2342	return 0;
2343}
2344
2345static void mvneta_adjust_link(struct net_device *ndev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346{
 
2347	struct mvneta_port *pp = netdev_priv(ndev);
2348	struct phy_device *phydev = pp->phy_dev;
2349	int status_change = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2350
2351	if (phydev->link) {
2352		if ((pp->speed != phydev->speed) ||
2353		    (pp->duplex != phydev->duplex)) {
2354			u32 val;
2355
2356			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2357			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2358				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2359				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2360				 MVNETA_GMAC_AN_SPEED_EN |
2361				 MVNETA_GMAC_AN_DUPLEX_EN);
2362
2363			if (phydev->duplex)
2364				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
 
 
 
 
 
2365
2366			if (phydev->speed == SPEED_1000)
2367				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2368			else
2369				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
 
 
2370
2371			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2372
2373			pp->duplex = phydev->duplex;
2374			pp->speed  = phydev->speed;
2375		}
 
 
2376	}
2377
2378	if (phydev->link != pp->link) {
2379		if (!phydev->link) {
2380			pp->duplex = -1;
2381			pp->speed = 0;
2382		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2383
2384		pp->link = phydev->link;
2385		status_change = 1;
2386	}
2387
2388	if (status_change) {
2389		if (phydev->link) {
2390			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2391			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2392				MVNETA_GMAC_FORCE_LINK_DOWN);
2393			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2394			mvneta_port_up(pp);
2395			netdev_info(pp->dev, "link up\n");
2396		} else {
2397			mvneta_port_down(pp);
2398			netdev_info(pp->dev, "link down\n");
2399		}
2400	}
2401}
2402
 
 
 
 
 
 
 
 
 
2403static int mvneta_mdio_probe(struct mvneta_port *pp)
2404{
2405	struct phy_device *phy_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2406
2407	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2408				 pp->phy_interface);
2409	if (!phy_dev) {
2410		netdev_err(pp->dev, "could not find the PHY\n");
2411		return -ENODEV;
2412	}
2413
2414	phy_dev->supported &= PHY_GBIT_FEATURES;
2415	phy_dev->advertising = phy_dev->supported;
2416
2417	pp->phy_dev = phy_dev;
2418	pp->link    = 0;
2419	pp->duplex  = 0;
2420	pp->speed   = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2422	return 0;
2423}
2424
2425static void mvneta_mdio_remove(struct mvneta_port *pp)
2426{
2427	phy_disconnect(pp->phy_dev);
2428	pp->phy_dev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
2429}
2430
2431static int mvneta_open(struct net_device *dev)
2432{
2433	struct mvneta_port *pp = netdev_priv(dev);
2434	int ret;
2435
2436	mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2437
2438	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2439	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2440	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2441
2442	ret = mvneta_setup_rxqs(pp);
2443	if (ret)
2444		return ret;
2445
2446	ret = mvneta_setup_txqs(pp);
2447	if (ret)
2448		goto err_cleanup_rxqs;
2449
2450	/* Connect to port interrupt line */
2451	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2452			  MVNETA_DRIVER_NAME, pp);
 
 
 
 
2453	if (ret) {
2454		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2455		goto err_cleanup_txqs;
2456	}
2457
2458	/* In default link is down */
2459	netif_carrier_off(pp->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460
2461	ret = mvneta_mdio_probe(pp);
2462	if (ret < 0) {
2463		netdev_err(dev, "cannot probe MDIO bus\n");
2464		goto err_free_irq;
2465	}
2466
2467	mvneta_start_dev(pp);
2468
2469	return 0;
2470
 
 
 
 
 
 
 
 
2471err_free_irq:
2472	free_irq(pp->dev->irq, pp);
 
 
 
 
 
2473err_cleanup_txqs:
2474	mvneta_cleanup_txqs(pp);
2475err_cleanup_rxqs:
2476	mvneta_cleanup_rxqs(pp);
2477	return ret;
2478}
2479
2480/* Stop the port, free port interrupt line */
2481static int mvneta_stop(struct net_device *dev)
2482{
2483	struct mvneta_port *pp = netdev_priv(dev);
2484
2485	mvneta_stop_dev(pp);
2486	mvneta_mdio_remove(pp);
2487	free_irq(dev->irq, pp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2488	mvneta_cleanup_rxqs(pp);
2489	mvneta_cleanup_txqs(pp);
2490
2491	return 0;
2492}
2493
2494static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2495{
2496	struct mvneta_port *pp = netdev_priv(dev);
2497	int ret;
2498
2499	if (!pp->phy_dev)
2500		return -ENOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2501
2502	ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2503	if (!ret)
2504		mvneta_adjust_link(dev);
2505
2506	return ret;
 
 
 
 
 
 
 
2507}
2508
2509/* Ethtool methods */
2510
2511/* Get settings (phy address, speed) for ethtools */
2512int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 
 
2513{
2514	struct mvneta_port *pp = netdev_priv(dev);
 
 
 
2515
2516	if (!pp->phy_dev)
2517		return -ENODEV;
 
 
 
 
2518
2519	return phy_ethtool_gset(pp->phy_dev, cmd);
2520}
2521
2522/* Set settings (phy address, speed) for ethtools */
2523int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2524{
2525	struct mvneta_port *pp = netdev_priv(dev);
2526
2527	if (!pp->phy_dev)
2528		return -ENODEV;
2529
2530	return phy_ethtool_sset(pp->phy_dev, cmd);
2531}
2532
2533/* Set interrupt coalescing for ethtools */
2534static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2535				       struct ethtool_coalesce *c)
 
 
 
2536{
2537	struct mvneta_port *pp = netdev_priv(dev);
2538	int queue;
2539
2540	for (queue = 0; queue < rxq_number; queue++) {
2541		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2542		rxq->time_coal = c->rx_coalesce_usecs;
2543		rxq->pkts_coal = c->rx_max_coalesced_frames;
2544		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2545		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2546	}
2547
2548	for (queue = 0; queue < txq_number; queue++) {
2549		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2550		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2551		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2552	}
2553
2554	return 0;
2555}
2556
2557/* get coalescing for ethtools */
2558static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2559				       struct ethtool_coalesce *c)
 
 
 
2560{
2561	struct mvneta_port *pp = netdev_priv(dev);
2562
2563	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2564	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2565
2566	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2567	return 0;
2568}
2569
2570
2571static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2572				    struct ethtool_drvinfo *drvinfo)
2573{
2574	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2575		sizeof(drvinfo->driver));
2576	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2577		sizeof(drvinfo->version));
2578	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2579		sizeof(drvinfo->bus_info));
2580}
2581
2582
2583static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2584					 struct ethtool_ringparam *ring)
 
 
 
2585{
2586	struct mvneta_port *pp = netdev_priv(netdev);
2587
2588	ring->rx_max_pending = MVNETA_MAX_RXD;
2589	ring->tx_max_pending = MVNETA_MAX_TXD;
2590	ring->rx_pending = pp->rx_ring_size;
2591	ring->tx_pending = pp->tx_ring_size;
2592}
2593
2594static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2595					struct ethtool_ringparam *ring)
 
 
 
2596{
2597	struct mvneta_port *pp = netdev_priv(dev);
2598
2599	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2600		return -EINVAL;
2601	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2602		ring->rx_pending : MVNETA_MAX_RXD;
2603	pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2604		ring->tx_pending : MVNETA_MAX_TXD;
 
 
 
 
2605
2606	if (netif_running(dev)) {
2607		mvneta_stop(dev);
2608		if (mvneta_open(dev)) {
2609			netdev_err(dev,
2610				   "error on opening device after ring param change\n");
2611			return -ENOMEM;
2612		}
2613	}
2614
2615	return 0;
2616}
2617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2618static const struct net_device_ops mvneta_netdev_ops = {
2619	.ndo_open            = mvneta_open,
2620	.ndo_stop            = mvneta_stop,
2621	.ndo_start_xmit      = mvneta_tx,
2622	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2623	.ndo_set_mac_address = mvneta_set_mac_addr,
2624	.ndo_change_mtu      = mvneta_change_mtu,
 
2625	.ndo_get_stats64     = mvneta_get_stats64,
2626	.ndo_do_ioctl        = mvneta_ioctl,
 
 
 
2627};
2628
2629const struct ethtool_ops mvneta_eth_tool_ops = {
 
 
 
2630	.get_link       = ethtool_op_get_link,
2631	.get_settings   = mvneta_ethtool_get_settings,
2632	.set_settings   = mvneta_ethtool_set_settings,
2633	.set_coalesce   = mvneta_ethtool_set_coalesce,
2634	.get_coalesce   = mvneta_ethtool_get_coalesce,
2635	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2636	.get_ringparam  = mvneta_ethtool_get_ringparam,
2637	.set_ringparam	= mvneta_ethtool_set_ringparam,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2638};
2639
2640/* Initialize hw */
2641static int mvneta_init(struct mvneta_port *pp, int phy_addr)
2642{
2643	int queue;
2644
2645	/* Disable port */
2646	mvneta_port_disable(pp);
2647
2648	/* Set port default values */
2649	mvneta_defaults_set(pp);
2650
2651	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2652			   GFP_KERNEL);
2653	if (!pp->txqs)
2654		return -ENOMEM;
2655
2656	/* Initialize TX descriptor rings */
2657	for (queue = 0; queue < txq_number; queue++) {
2658		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2659		txq->id = queue;
2660		txq->size = pp->tx_ring_size;
2661		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2662	}
2663
2664	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2665			   GFP_KERNEL);
2666	if (!pp->rxqs) {
2667		kfree(pp->txqs);
2668		return -ENOMEM;
2669	}
2670
2671	/* Create Rx descriptor rings */
2672	for (queue = 0; queue < rxq_number; queue++) {
2673		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2674		rxq->id = queue;
2675		rxq->size = pp->rx_ring_size;
2676		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2677		rxq->time_coal = MVNETA_RX_COAL_USEC;
 
 
 
 
 
 
 
2678	}
2679
2680	return 0;
2681}
2682
2683static void mvneta_deinit(struct mvneta_port *pp)
2684{
2685	kfree(pp->txqs);
2686	kfree(pp->rxqs);
2687}
2688
2689/* platform glue : initialize decoding windows */
2690static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2691				     const struct mbus_dram_target_info *dram)
2692{
2693	u32 win_enable;
2694	u32 win_protect;
2695	int i;
2696
2697	for (i = 0; i < 6; i++) {
2698		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2699		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2700
2701		if (i < 4)
2702			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2703	}
2704
2705	win_enable = 0x3f;
2706	win_protect = 0;
2707
2708	for (i = 0; i < dram->num_cs; i++) {
2709		const struct mbus_dram_window *cs = dram->cs + i;
2710		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2711			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
 
 
 
 
2712
2713		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2714			    (cs->size - 1) & 0xffff0000);
2715
2716		win_enable &= ~(1 << i);
2717		win_protect |= 3 << (2 * i);
 
 
 
 
 
 
 
 
 
 
 
 
 
2718	}
2719
2720	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
 
2721}
2722
2723/* Power up the port */
2724static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2725{
2726	u32 ctrl;
2727
2728	/* MAC Cause register should be cleared */
2729	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2730
2731	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2732
2733	/* Even though it might look weird, when we're configured in
2734	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2735	 */
2736	switch(phy_mode) {
2737	case PHY_INTERFACE_MODE_QSGMII:
2738		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2739		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2740		break;
2741	case PHY_INTERFACE_MODE_SGMII:
2742		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2743		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2744		break;
2745	case PHY_INTERFACE_MODE_RGMII:
2746	case PHY_INTERFACE_MODE_RGMII_ID:
2747		ctrl |= MVNETA_GMAC2_PORT_RGMII;
2748		break;
2749	default:
2750		return -EINVAL;
2751	}
2752
2753	/* Cancel Port Reset */
2754	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
2755	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
2756
2757	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2758		MVNETA_GMAC2_PORT_RESET) != 0)
2759		continue;
2760
2761	return 0;
2762}
2763
2764/* Device initialization routine */
2765static int mvneta_probe(struct platform_device *pdev)
2766{
2767	const struct mbus_dram_target_info *dram_target_info;
2768	struct resource *res;
2769	struct device_node *dn = pdev->dev.of_node;
2770	struct device_node *phy_node;
2771	u32 phy_addr;
2772	struct mvneta_port *pp;
2773	struct net_device *dev;
2774	const char *dt_mac_addr;
 
2775	char hw_mac_addr[ETH_ALEN];
 
2776	const char *mac_from;
2777	int phy_mode;
2778	int err;
 
2779
2780	/* Our multiqueue support is not complete, so for now, only
2781	 * allow the usage of the first RX queue
2782	 */
2783	if (rxq_def != 0) {
2784		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2785		return -EINVAL;
2786	}
2787
2788	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2789	if (!dev)
2790		return -ENOMEM;
2791
2792	dev->irq = irq_of_parse_and_map(dn, 0);
2793	if (dev->irq == 0) {
2794		err = -EINVAL;
2795		goto err_free_netdev;
2796	}
 
 
 
2797
2798	phy_node = of_parse_phandle(dn, "phy", 0);
2799	if (!phy_node) {
2800		dev_err(&pdev->dev, "no associated PHY\n");
2801		err = -ENODEV;
2802		goto err_free_irq;
2803	}
2804
2805	phy_mode = of_get_phy_mode(dn);
2806	if (phy_mode < 0) {
2807		dev_err(&pdev->dev, "incorrect phy-mode\n");
2808		err = -EINVAL;
2809		goto err_free_irq;
2810	}
2811
2812	dev->tx_queue_len = MVNETA_MAX_TXD;
2813	dev->watchdog_timeo = 5 * HZ;
2814	dev->netdev_ops = &mvneta_netdev_ops;
2815
2816	SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2817
2818	pp = netdev_priv(dev);
2819
2820	pp->weight = MVNETA_RX_POLL_WEIGHT;
2821	pp->phy_node = phy_node;
2822	pp->phy_interface = phy_mode;
2823
2824	pp->clk = devm_clk_get(&pdev->dev, NULL);
 
 
2825	if (IS_ERR(pp->clk)) {
2826		err = PTR_ERR(pp->clk);
2827		goto err_free_irq;
2828	}
2829
2830	clk_prepare_enable(pp->clk);
2831
2832	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2833	pp->base = devm_ioremap_resource(&pdev->dev, res);
2834	if (IS_ERR(pp->base)) {
2835		err = PTR_ERR(pp->base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2836		goto err_clk;
2837	}
2838
 
 
 
 
 
 
 
 
 
2839	/* Alloc per-cpu stats */
2840	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
2841	if (!pp->stats) {
2842		err = -ENOMEM;
2843		goto err_clk;
2844	}
2845
2846	dt_mac_addr = of_get_mac_address(dn);
2847	if (dt_mac_addr) {
2848		mac_from = "device tree";
2849		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
2850	} else {
2851		mvneta_get_mac_addr(pp, hw_mac_addr);
2852		if (is_valid_ether_addr(hw_mac_addr)) {
2853			mac_from = "hardware";
2854			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
2855		} else {
2856			mac_from = "random";
2857			eth_hw_addr_random(dev);
2858		}
2859	}
2860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2861	pp->tx_ring_size = MVNETA_MAX_TXD;
2862	pp->rx_ring_size = MVNETA_MAX_RXD;
2863
2864	pp->dev = dev;
2865	SET_NETDEV_DEV(dev, &pdev->dev);
2866
2867	err = mvneta_init(pp, phy_addr);
2868	if (err < 0) {
2869		dev_err(&pdev->dev, "can't init eth hal\n");
2870		goto err_free_stats;
2871	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2872
2873	err = mvneta_port_power_up(pp, phy_mode);
2874	if (err < 0) {
2875		dev_err(&pdev->dev, "can't power up port\n");
2876		goto err_deinit;
2877	}
2878
2879	dram_target_info = mv_mbus_dram_info();
2880	if (dram_target_info)
2881		mvneta_conf_mbus_windows(pp, dram_target_info);
 
 
 
 
 
 
2882
2883	netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884
2885	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2886	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2887	dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2888	dev->priv_flags |= IFF_UNICAST_FLT;
2889
2890	err = register_netdev(dev);
2891	if (err < 0) {
2892		dev_err(&pdev->dev, "failed to register\n");
2893		goto err_deinit;
2894	}
2895
2896	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
2897		    dev->dev_addr);
2898
2899	platform_set_drvdata(pdev, pp->dev);
2900
2901	return 0;
2902
2903err_deinit:
2904	mvneta_deinit(pp);
2905err_free_stats:
 
 
 
 
2906	free_percpu(pp->stats);
 
 
 
 
 
2907err_clk:
 
2908	clk_disable_unprepare(pp->clk);
2909err_free_irq:
2910	irq_dispose_mapping(dev->irq);
2911err_free_netdev:
2912	free_netdev(dev);
2913	return err;
2914}
2915
2916/* Device removal routine */
2917static int mvneta_remove(struct platform_device *pdev)
2918{
2919	struct net_device  *dev = platform_get_drvdata(pdev);
2920	struct mvneta_port *pp = netdev_priv(dev);
2921
2922	unregister_netdev(dev);
2923	mvneta_deinit(pp);
2924	clk_disable_unprepare(pp->clk);
 
2925	free_percpu(pp->stats);
2926	irq_dispose_mapping(dev->irq);
2927	free_netdev(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2928
2929	return 0;
2930}
2931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932static const struct of_device_id mvneta_match[] = {
2933	{ .compatible = "marvell,armada-370-neta" },
 
 
 
2934	{ }
2935};
2936MODULE_DEVICE_TABLE(of, mvneta_match);
2937
2938static struct platform_driver mvneta_driver = {
2939	.probe = mvneta_probe,
2940	.remove = mvneta_remove,
2941	.driver = {
2942		.name = MVNETA_DRIVER_NAME,
2943		.of_match_table = mvneta_match,
 
2944	},
2945};
2946
2947module_platform_driver(mvneta_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948
2949MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2950MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2951MODULE_LICENSE("GPL");
2952
2953module_param(rxq_number, int, S_IRUGO);
2954module_param(txq_number, int, S_IRUGO);
2955
2956module_param(rxq_def, int, S_IRUGO);
2957module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);