Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/bitfield.h>
7#include <linux/delay.h>
8#include <linux/ethtool.h>
9#include <linux/if_vlan.h>
10#include <linux/init.h>
11#include <linux/ipv6.h>
12#include <linux/mii.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/pagemap.h>
16#include <linux/pci.h>
17#include <linux/prefetch.h>
18#include <linux/sctp.h>
19#include <linux/slab.h>
20#include <linux/tcp.h>
21#include <linux/types.h>
22#include <linux/vmalloc.h>
23#include <net/checksum.h>
24#include <net/ip6_checksum.h>
25#include "igbvf.h"
26
27char igbvf_driver_name[] = "igbvf";
28static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34static int debug = -1;
35module_param(debug, int, 0);
36MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38static int igbvf_poll(struct napi_struct *napi, int budget);
39static void igbvf_reset(struct igbvf_adapter *);
40static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48};
49
50static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55};
56
57static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60};
61
62/**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
66static int igbvf_desc_unused(struct igbvf_ring *ring)
67{
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72}
73
74/**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87{
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101}
102
103static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105{
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126}
127
128/**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
133static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135{
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233}
234
235/**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
244static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246{
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = le16_get_bits(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info,
277 E1000_RXDADV_HDRBUFLEN_MASK);
278 if (hlen > adapter->rx_ps_hdr_size)
279 hlen = adapter->rx_ps_hdr_size;
280
281 length = le16_to_cpu(rx_desc->wb.upper.length);
282 cleaned = true;
283 cleaned_count++;
284
285 skb = buffer_info->skb;
286 prefetch(skb->data - NET_IP_ALIGN);
287 buffer_info->skb = NULL;
288 if (!adapter->rx_ps_hdr_size) {
289 dma_unmap_single(&pdev->dev, buffer_info->dma,
290 adapter->rx_buffer_len,
291 DMA_FROM_DEVICE);
292 buffer_info->dma = 0;
293 skb_put(skb, length);
294 goto send_up;
295 }
296
297 if (!skb_shinfo(skb)->nr_frags) {
298 dma_unmap_single(&pdev->dev, buffer_info->dma,
299 adapter->rx_ps_hdr_size,
300 DMA_FROM_DEVICE);
301 buffer_info->dma = 0;
302 skb_put(skb, hlen);
303 }
304
305 if (length) {
306 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
307 PAGE_SIZE / 2,
308 DMA_FROM_DEVICE);
309 buffer_info->page_dma = 0;
310
311 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
312 buffer_info->page,
313 buffer_info->page_offset,
314 length);
315
316 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
317 (page_count(buffer_info->page) != 1))
318 buffer_info->page = NULL;
319 else
320 get_page(buffer_info->page);
321
322 skb->len += length;
323 skb->data_len += length;
324 skb->truesize += PAGE_SIZE / 2;
325 }
326send_up:
327 i++;
328 if (i == rx_ring->count)
329 i = 0;
330 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
331 prefetch(next_rxd);
332 next_buffer = &rx_ring->buffer_info[i];
333
334 if (!(staterr & E1000_RXD_STAT_EOP)) {
335 buffer_info->skb = next_buffer->skb;
336 buffer_info->dma = next_buffer->dma;
337 next_buffer->skb = skb;
338 next_buffer->dma = 0;
339 goto next_desc;
340 }
341
342 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
343 dev_kfree_skb_irq(skb);
344 goto next_desc;
345 }
346
347 total_bytes += skb->len;
348 total_packets++;
349
350 igbvf_rx_checksum_adv(adapter, staterr, skb);
351
352 skb->protocol = eth_type_trans(skb, netdev);
353
354 igbvf_receive_skb(adapter, netdev, skb, staterr,
355 rx_desc->wb.upper.vlan);
356
357next_desc:
358 rx_desc->wb.upper.status_error = 0;
359
360 /* return some buffers to hardware, one at a time is too slow */
361 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
362 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
363 cleaned_count = 0;
364 }
365
366 /* use prefetched values */
367 rx_desc = next_rxd;
368 buffer_info = next_buffer;
369
370 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
371 }
372
373 rx_ring->next_to_clean = i;
374 cleaned_count = igbvf_desc_unused(rx_ring);
375
376 if (cleaned_count)
377 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
378
379 adapter->total_rx_packets += total_packets;
380 adapter->total_rx_bytes += total_bytes;
381 netdev->stats.rx_bytes += total_bytes;
382 netdev->stats.rx_packets += total_packets;
383 return cleaned;
384}
385
386static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
387 struct igbvf_buffer *buffer_info)
388{
389 if (buffer_info->dma) {
390 if (buffer_info->mapped_as_page)
391 dma_unmap_page(&adapter->pdev->dev,
392 buffer_info->dma,
393 buffer_info->length,
394 DMA_TO_DEVICE);
395 else
396 dma_unmap_single(&adapter->pdev->dev,
397 buffer_info->dma,
398 buffer_info->length,
399 DMA_TO_DEVICE);
400 buffer_info->dma = 0;
401 }
402 if (buffer_info->skb) {
403 dev_kfree_skb_any(buffer_info->skb);
404 buffer_info->skb = NULL;
405 }
406 buffer_info->time_stamp = 0;
407}
408
409/**
410 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
411 * @adapter: board private structure
412 * @tx_ring: ring being initialized
413 *
414 * Return 0 on success, negative on failure
415 **/
416int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
417 struct igbvf_ring *tx_ring)
418{
419 struct pci_dev *pdev = adapter->pdev;
420 int size;
421
422 size = sizeof(struct igbvf_buffer) * tx_ring->count;
423 tx_ring->buffer_info = vzalloc(size);
424 if (!tx_ring->buffer_info)
425 goto err;
426
427 /* round up to nearest 4K */
428 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
429 tx_ring->size = ALIGN(tx_ring->size, 4096);
430
431 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
432 &tx_ring->dma, GFP_KERNEL);
433 if (!tx_ring->desc)
434 goto err;
435
436 tx_ring->adapter = adapter;
437 tx_ring->next_to_use = 0;
438 tx_ring->next_to_clean = 0;
439
440 return 0;
441err:
442 vfree(tx_ring->buffer_info);
443 dev_err(&adapter->pdev->dev,
444 "Unable to allocate memory for the transmit descriptor ring\n");
445 return -ENOMEM;
446}
447
448/**
449 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
450 * @adapter: board private structure
451 * @rx_ring: ring being initialized
452 *
453 * Returns 0 on success, negative on failure
454 **/
455int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
456 struct igbvf_ring *rx_ring)
457{
458 struct pci_dev *pdev = adapter->pdev;
459 int size, desc_len;
460
461 size = sizeof(struct igbvf_buffer) * rx_ring->count;
462 rx_ring->buffer_info = vzalloc(size);
463 if (!rx_ring->buffer_info)
464 goto err;
465
466 desc_len = sizeof(union e1000_adv_rx_desc);
467
468 /* Round up to nearest 4K */
469 rx_ring->size = rx_ring->count * desc_len;
470 rx_ring->size = ALIGN(rx_ring->size, 4096);
471
472 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
473 &rx_ring->dma, GFP_KERNEL);
474 if (!rx_ring->desc)
475 goto err;
476
477 rx_ring->next_to_clean = 0;
478 rx_ring->next_to_use = 0;
479
480 rx_ring->adapter = adapter;
481
482 return 0;
483
484err:
485 vfree(rx_ring->buffer_info);
486 rx_ring->buffer_info = NULL;
487 dev_err(&adapter->pdev->dev,
488 "Unable to allocate memory for the receive descriptor ring\n");
489 return -ENOMEM;
490}
491
492/**
493 * igbvf_clean_tx_ring - Free Tx Buffers
494 * @tx_ring: ring to be cleaned
495 **/
496static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
497{
498 struct igbvf_adapter *adapter = tx_ring->adapter;
499 struct igbvf_buffer *buffer_info;
500 unsigned long size;
501 unsigned int i;
502
503 if (!tx_ring->buffer_info)
504 return;
505
506 /* Free all the Tx ring sk_buffs */
507 for (i = 0; i < tx_ring->count; i++) {
508 buffer_info = &tx_ring->buffer_info[i];
509 igbvf_put_txbuf(adapter, buffer_info);
510 }
511
512 size = sizeof(struct igbvf_buffer) * tx_ring->count;
513 memset(tx_ring->buffer_info, 0, size);
514
515 /* Zero out the descriptor ring */
516 memset(tx_ring->desc, 0, tx_ring->size);
517
518 tx_ring->next_to_use = 0;
519 tx_ring->next_to_clean = 0;
520
521 writel(0, adapter->hw.hw_addr + tx_ring->head);
522 writel(0, adapter->hw.hw_addr + tx_ring->tail);
523}
524
525/**
526 * igbvf_free_tx_resources - Free Tx Resources per Queue
527 * @tx_ring: ring to free resources from
528 *
529 * Free all transmit software resources
530 **/
531void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
532{
533 struct pci_dev *pdev = tx_ring->adapter->pdev;
534
535 igbvf_clean_tx_ring(tx_ring);
536
537 vfree(tx_ring->buffer_info);
538 tx_ring->buffer_info = NULL;
539
540 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
541 tx_ring->dma);
542
543 tx_ring->desc = NULL;
544}
545
546/**
547 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
548 * @rx_ring: ring structure pointer to free buffers from
549 **/
550static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
551{
552 struct igbvf_adapter *adapter = rx_ring->adapter;
553 struct igbvf_buffer *buffer_info;
554 struct pci_dev *pdev = adapter->pdev;
555 unsigned long size;
556 unsigned int i;
557
558 if (!rx_ring->buffer_info)
559 return;
560
561 /* Free all the Rx ring sk_buffs */
562 for (i = 0; i < rx_ring->count; i++) {
563 buffer_info = &rx_ring->buffer_info[i];
564 if (buffer_info->dma) {
565 if (adapter->rx_ps_hdr_size) {
566 dma_unmap_single(&pdev->dev, buffer_info->dma,
567 adapter->rx_ps_hdr_size,
568 DMA_FROM_DEVICE);
569 } else {
570 dma_unmap_single(&pdev->dev, buffer_info->dma,
571 adapter->rx_buffer_len,
572 DMA_FROM_DEVICE);
573 }
574 buffer_info->dma = 0;
575 }
576
577 if (buffer_info->skb) {
578 dev_kfree_skb(buffer_info->skb);
579 buffer_info->skb = NULL;
580 }
581
582 if (buffer_info->page) {
583 if (buffer_info->page_dma)
584 dma_unmap_page(&pdev->dev,
585 buffer_info->page_dma,
586 PAGE_SIZE / 2,
587 DMA_FROM_DEVICE);
588 put_page(buffer_info->page);
589 buffer_info->page = NULL;
590 buffer_info->page_dma = 0;
591 buffer_info->page_offset = 0;
592 }
593 }
594
595 size = sizeof(struct igbvf_buffer) * rx_ring->count;
596 memset(rx_ring->buffer_info, 0, size);
597
598 /* Zero out the descriptor ring */
599 memset(rx_ring->desc, 0, rx_ring->size);
600
601 rx_ring->next_to_clean = 0;
602 rx_ring->next_to_use = 0;
603
604 writel(0, adapter->hw.hw_addr + rx_ring->head);
605 writel(0, adapter->hw.hw_addr + rx_ring->tail);
606}
607
608/**
609 * igbvf_free_rx_resources - Free Rx Resources
610 * @rx_ring: ring to clean the resources from
611 *
612 * Free all receive software resources
613 **/
614
615void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
616{
617 struct pci_dev *pdev = rx_ring->adapter->pdev;
618
619 igbvf_clean_rx_ring(rx_ring);
620
621 vfree(rx_ring->buffer_info);
622 rx_ring->buffer_info = NULL;
623
624 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
625 rx_ring->dma);
626 rx_ring->desc = NULL;
627}
628
629/**
630 * igbvf_update_itr - update the dynamic ITR value based on statistics
631 * @adapter: pointer to adapter
632 * @itr_setting: current adapter->itr
633 * @packets: the number of packets during this measurement interval
634 * @bytes: the number of bytes during this measurement interval
635 *
636 * Stores a new ITR value based on packets and byte counts during the last
637 * interrupt. The advantage of per interrupt computation is faster updates
638 * and more accurate ITR for the current traffic pattern. Constants in this
639 * function were computed based on theoretical maximum wire speed and thresholds
640 * were set based on testing data as well as attempting to minimize response
641 * time while increasing bulk throughput.
642 **/
643static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
644 enum latency_range itr_setting,
645 int packets, int bytes)
646{
647 enum latency_range retval = itr_setting;
648
649 if (packets == 0)
650 goto update_itr_done;
651
652 switch (itr_setting) {
653 case lowest_latency:
654 /* handle TSO and jumbo frames */
655 if (bytes/packets > 8000)
656 retval = bulk_latency;
657 else if ((packets < 5) && (bytes > 512))
658 retval = low_latency;
659 break;
660 case low_latency: /* 50 usec aka 20000 ints/s */
661 if (bytes > 10000) {
662 /* this if handles the TSO accounting */
663 if (bytes/packets > 8000)
664 retval = bulk_latency;
665 else if ((packets < 10) || ((bytes/packets) > 1200))
666 retval = bulk_latency;
667 else if ((packets > 35))
668 retval = lowest_latency;
669 } else if (bytes/packets > 2000) {
670 retval = bulk_latency;
671 } else if (packets <= 2 && bytes < 512) {
672 retval = lowest_latency;
673 }
674 break;
675 case bulk_latency: /* 250 usec aka 4000 ints/s */
676 if (bytes > 25000) {
677 if (packets > 35)
678 retval = low_latency;
679 } else if (bytes < 6000) {
680 retval = low_latency;
681 }
682 break;
683 default:
684 break;
685 }
686
687update_itr_done:
688 return retval;
689}
690
691static int igbvf_range_to_itr(enum latency_range current_range)
692{
693 int new_itr;
694
695 switch (current_range) {
696 /* counts and packets in update_itr are dependent on these numbers */
697 case lowest_latency:
698 new_itr = IGBVF_70K_ITR;
699 break;
700 case low_latency:
701 new_itr = IGBVF_20K_ITR;
702 break;
703 case bulk_latency:
704 new_itr = IGBVF_4K_ITR;
705 break;
706 default:
707 new_itr = IGBVF_START_ITR;
708 break;
709 }
710 return new_itr;
711}
712
713static void igbvf_set_itr(struct igbvf_adapter *adapter)
714{
715 u32 new_itr;
716
717 adapter->tx_ring->itr_range =
718 igbvf_update_itr(adapter,
719 adapter->tx_ring->itr_val,
720 adapter->total_tx_packets,
721 adapter->total_tx_bytes);
722
723 /* conservative mode (itr 3) eliminates the lowest_latency setting */
724 if (adapter->requested_itr == 3 &&
725 adapter->tx_ring->itr_range == lowest_latency)
726 adapter->tx_ring->itr_range = low_latency;
727
728 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
729
730 if (new_itr != adapter->tx_ring->itr_val) {
731 u32 current_itr = adapter->tx_ring->itr_val;
732 /* this attempts to bias the interrupt rate towards Bulk
733 * by adding intermediate steps when interrupt rate is
734 * increasing
735 */
736 new_itr = new_itr > current_itr ?
737 min(current_itr + (new_itr >> 2), new_itr) :
738 new_itr;
739 adapter->tx_ring->itr_val = new_itr;
740
741 adapter->tx_ring->set_itr = 1;
742 }
743
744 adapter->rx_ring->itr_range =
745 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
746 adapter->total_rx_packets,
747 adapter->total_rx_bytes);
748 if (adapter->requested_itr == 3 &&
749 adapter->rx_ring->itr_range == lowest_latency)
750 adapter->rx_ring->itr_range = low_latency;
751
752 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
753
754 if (new_itr != adapter->rx_ring->itr_val) {
755 u32 current_itr = adapter->rx_ring->itr_val;
756
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->rx_ring->itr_val = new_itr;
761
762 adapter->rx_ring->set_itr = 1;
763 }
764}
765
766/**
767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768 * @tx_ring: ring structure to clean descriptors from
769 *
770 * returns true if ring is completely cleaned
771 **/
772static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
773{
774 struct igbvf_adapter *adapter = tx_ring->adapter;
775 struct net_device *netdev = adapter->netdev;
776 struct igbvf_buffer *buffer_info;
777 struct sk_buff *skb;
778 union e1000_adv_tx_desc *tx_desc, *eop_desc;
779 unsigned int total_bytes = 0, total_packets = 0;
780 unsigned int i, count = 0;
781 bool cleaned = false;
782
783 i = tx_ring->next_to_clean;
784 buffer_info = &tx_ring->buffer_info[i];
785 eop_desc = buffer_info->next_to_watch;
786
787 do {
788 /* if next_to_watch is not set then there is no work pending */
789 if (!eop_desc)
790 break;
791
792 /* prevent any other reads prior to eop_desc */
793 smp_rmb();
794
795 /* if DD is not set pending work has not been completed */
796 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
797 break;
798
799 /* clear next_to_watch to prevent false hangs */
800 buffer_info->next_to_watch = NULL;
801
802 for (cleaned = false; !cleaned; count++) {
803 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
804 cleaned = (tx_desc == eop_desc);
805 skb = buffer_info->skb;
806
807 if (skb) {
808 unsigned int segs, bytecount;
809
810 /* gso_segs is currently only valid for tcp */
811 segs = skb_shinfo(skb)->gso_segs ?: 1;
812 /* multiply data chunks by size of headers */
813 bytecount = ((segs - 1) * skb_headlen(skb)) +
814 skb->len;
815 total_packets += segs;
816 total_bytes += bytecount;
817 }
818
819 igbvf_put_txbuf(adapter, buffer_info);
820 tx_desc->wb.status = 0;
821
822 i++;
823 if (i == tx_ring->count)
824 i = 0;
825
826 buffer_info = &tx_ring->buffer_info[i];
827 }
828
829 eop_desc = buffer_info->next_to_watch;
830 } while (count < tx_ring->count);
831
832 tx_ring->next_to_clean = i;
833
834 if (unlikely(count && netif_carrier_ok(netdev) &&
835 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
836 /* Make sure that anybody stopping the queue after this
837 * sees the new next_to_clean.
838 */
839 smp_mb();
840 if (netif_queue_stopped(netdev) &&
841 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
842 netif_wake_queue(netdev);
843 ++adapter->restart_queue;
844 }
845 }
846
847 netdev->stats.tx_bytes += total_bytes;
848 netdev->stats.tx_packets += total_packets;
849 return count < tx_ring->count;
850}
851
852static irqreturn_t igbvf_msix_other(int irq, void *data)
853{
854 struct net_device *netdev = data;
855 struct igbvf_adapter *adapter = netdev_priv(netdev);
856 struct e1000_hw *hw = &adapter->hw;
857
858 adapter->int_counter1++;
859
860 hw->mac.get_link_status = 1;
861 if (!test_bit(__IGBVF_DOWN, &adapter->state))
862 mod_timer(&adapter->watchdog_timer, jiffies + 1);
863
864 ew32(EIMS, adapter->eims_other);
865
866 return IRQ_HANDLED;
867}
868
869static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
870{
871 struct net_device *netdev = data;
872 struct igbvf_adapter *adapter = netdev_priv(netdev);
873 struct e1000_hw *hw = &adapter->hw;
874 struct igbvf_ring *tx_ring = adapter->tx_ring;
875
876 if (tx_ring->set_itr) {
877 writel(tx_ring->itr_val,
878 adapter->hw.hw_addr + tx_ring->itr_register);
879 adapter->tx_ring->set_itr = 0;
880 }
881
882 adapter->total_tx_bytes = 0;
883 adapter->total_tx_packets = 0;
884
885 /* auto mask will automatically re-enable the interrupt when we write
886 * EICS
887 */
888 if (!igbvf_clean_tx_irq(tx_ring))
889 /* Ring was not completely cleaned, so fire another interrupt */
890 ew32(EICS, tx_ring->eims_value);
891 else
892 ew32(EIMS, tx_ring->eims_value);
893
894 return IRQ_HANDLED;
895}
896
897static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
898{
899 struct net_device *netdev = data;
900 struct igbvf_adapter *adapter = netdev_priv(netdev);
901
902 adapter->int_counter0++;
903
904 /* Write the ITR value calculated at the end of the
905 * previous interrupt.
906 */
907 if (adapter->rx_ring->set_itr) {
908 writel(adapter->rx_ring->itr_val,
909 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
910 adapter->rx_ring->set_itr = 0;
911 }
912
913 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
914 adapter->total_rx_bytes = 0;
915 adapter->total_rx_packets = 0;
916 __napi_schedule(&adapter->rx_ring->napi);
917 }
918
919 return IRQ_HANDLED;
920}
921
922#define IGBVF_NO_QUEUE -1
923
924static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
925 int tx_queue, int msix_vector)
926{
927 struct e1000_hw *hw = &adapter->hw;
928 u32 ivar, index;
929
930 /* 82576 uses a table-based method for assigning vectors.
931 * Each queue has a single entry in the table to which we write
932 * a vector number along with a "valid" bit. Sadly, the layout
933 * of the table is somewhat counterintuitive.
934 */
935 if (rx_queue > IGBVF_NO_QUEUE) {
936 index = (rx_queue >> 1);
937 ivar = array_er32(IVAR0, index);
938 if (rx_queue & 0x1) {
939 /* vector goes into third byte of register */
940 ivar = ivar & 0xFF00FFFF;
941 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
942 } else {
943 /* vector goes into low byte of register */
944 ivar = ivar & 0xFFFFFF00;
945 ivar |= msix_vector | E1000_IVAR_VALID;
946 }
947 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
948 array_ew32(IVAR0, index, ivar);
949 }
950 if (tx_queue > IGBVF_NO_QUEUE) {
951 index = (tx_queue >> 1);
952 ivar = array_er32(IVAR0, index);
953 if (tx_queue & 0x1) {
954 /* vector goes into high byte of register */
955 ivar = ivar & 0x00FFFFFF;
956 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
957 } else {
958 /* vector goes into second byte of register */
959 ivar = ivar & 0xFFFF00FF;
960 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
961 }
962 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
963 array_ew32(IVAR0, index, ivar);
964 }
965}
966
967/**
968 * igbvf_configure_msix - Configure MSI-X hardware
969 * @adapter: board private structure
970 *
971 * igbvf_configure_msix sets up the hardware to properly
972 * generate MSI-X interrupts.
973 **/
974static void igbvf_configure_msix(struct igbvf_adapter *adapter)
975{
976 u32 tmp;
977 struct e1000_hw *hw = &adapter->hw;
978 struct igbvf_ring *tx_ring = adapter->tx_ring;
979 struct igbvf_ring *rx_ring = adapter->rx_ring;
980 int vector = 0;
981
982 adapter->eims_enable_mask = 0;
983
984 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
985 adapter->eims_enable_mask |= tx_ring->eims_value;
986 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
987 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
988 adapter->eims_enable_mask |= rx_ring->eims_value;
989 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
990
991 /* set vector for other causes, i.e. link changes */
992
993 tmp = (vector++ | E1000_IVAR_VALID);
994
995 ew32(IVAR_MISC, tmp);
996
997 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
998 adapter->eims_other = BIT(vector - 1);
999 e1e_flush();
1000}
1001
1002static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1003{
1004 if (adapter->msix_entries) {
1005 pci_disable_msix(adapter->pdev);
1006 kfree(adapter->msix_entries);
1007 adapter->msix_entries = NULL;
1008 }
1009}
1010
1011/**
1012 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1013 * @adapter: board private structure
1014 *
1015 * Attempt to configure interrupts using the best available
1016 * capabilities of the hardware and kernel.
1017 **/
1018static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1019{
1020 int err = -ENOMEM;
1021 int i;
1022
1023 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1024 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1025 GFP_KERNEL);
1026 if (adapter->msix_entries) {
1027 for (i = 0; i < 3; i++)
1028 adapter->msix_entries[i].entry = i;
1029
1030 err = pci_enable_msix_range(adapter->pdev,
1031 adapter->msix_entries, 3, 3);
1032 }
1033
1034 if (err < 0) {
1035 /* MSI-X failed */
1036 dev_err(&adapter->pdev->dev,
1037 "Failed to initialize MSI-X interrupts.\n");
1038 igbvf_reset_interrupt_capability(adapter);
1039 }
1040}
1041
1042/**
1043 * igbvf_request_msix - Initialize MSI-X interrupts
1044 * @adapter: board private structure
1045 *
1046 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1047 * kernel.
1048 **/
1049static int igbvf_request_msix(struct igbvf_adapter *adapter)
1050{
1051 struct net_device *netdev = adapter->netdev;
1052 int err = 0, vector = 0;
1053
1054 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1055 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1056 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1057 } else {
1058 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1059 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1060 }
1061
1062 err = request_irq(adapter->msix_entries[vector].vector,
1063 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1064 netdev);
1065 if (err)
1066 goto out;
1067
1068 adapter->tx_ring->itr_register = E1000_EITR(vector);
1069 adapter->tx_ring->itr_val = adapter->current_itr;
1070 vector++;
1071
1072 err = request_irq(adapter->msix_entries[vector].vector,
1073 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1074 netdev);
1075 if (err)
1076 goto free_irq_tx;
1077
1078 adapter->rx_ring->itr_register = E1000_EITR(vector);
1079 adapter->rx_ring->itr_val = adapter->current_itr;
1080 vector++;
1081
1082 err = request_irq(adapter->msix_entries[vector].vector,
1083 igbvf_msix_other, 0, netdev->name, netdev);
1084 if (err)
1085 goto free_irq_rx;
1086
1087 igbvf_configure_msix(adapter);
1088 return 0;
1089free_irq_rx:
1090 free_irq(adapter->msix_entries[--vector].vector, netdev);
1091free_irq_tx:
1092 free_irq(adapter->msix_entries[--vector].vector, netdev);
1093out:
1094 return err;
1095}
1096
1097/**
1098 * igbvf_alloc_queues - Allocate memory for all rings
1099 * @adapter: board private structure to initialize
1100 **/
1101static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1102{
1103 struct net_device *netdev = adapter->netdev;
1104
1105 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 if (!adapter->tx_ring)
1107 return -ENOMEM;
1108
1109 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110 if (!adapter->rx_ring) {
1111 kfree(adapter->tx_ring);
1112 return -ENOMEM;
1113 }
1114
1115 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1116
1117 return 0;
1118}
1119
1120/**
1121 * igbvf_request_irq - initialize interrupts
1122 * @adapter: board private structure
1123 *
1124 * Attempts to configure interrupts using the best available
1125 * capabilities of the hardware and kernel.
1126 **/
1127static int igbvf_request_irq(struct igbvf_adapter *adapter)
1128{
1129 int err = -1;
1130
1131 /* igbvf supports msi-x only */
1132 if (adapter->msix_entries)
1133 err = igbvf_request_msix(adapter);
1134
1135 if (!err)
1136 return err;
1137
1138 dev_err(&adapter->pdev->dev,
1139 "Unable to allocate interrupt, Error: %d\n", err);
1140
1141 return err;
1142}
1143
1144static void igbvf_free_irq(struct igbvf_adapter *adapter)
1145{
1146 struct net_device *netdev = adapter->netdev;
1147 int vector;
1148
1149 if (adapter->msix_entries) {
1150 for (vector = 0; vector < 3; vector++)
1151 free_irq(adapter->msix_entries[vector].vector, netdev);
1152 }
1153}
1154
1155/**
1156 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1157 * @adapter: board private structure
1158 **/
1159static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1160{
1161 struct e1000_hw *hw = &adapter->hw;
1162
1163 ew32(EIMC, ~0);
1164
1165 if (adapter->msix_entries)
1166 ew32(EIAC, 0);
1167}
1168
1169/**
1170 * igbvf_irq_enable - Enable default interrupt generation settings
1171 * @adapter: board private structure
1172 **/
1173static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1174{
1175 struct e1000_hw *hw = &adapter->hw;
1176
1177 ew32(EIAC, adapter->eims_enable_mask);
1178 ew32(EIAM, adapter->eims_enable_mask);
1179 ew32(EIMS, adapter->eims_enable_mask);
1180}
1181
1182/**
1183 * igbvf_poll - NAPI Rx polling callback
1184 * @napi: struct associated with this polling callback
1185 * @budget: amount of packets driver is allowed to process this poll
1186 **/
1187static int igbvf_poll(struct napi_struct *napi, int budget)
1188{
1189 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1190 struct igbvf_adapter *adapter = rx_ring->adapter;
1191 struct e1000_hw *hw = &adapter->hw;
1192 int work_done = 0;
1193
1194 igbvf_clean_rx_irq(adapter, &work_done, budget);
1195
1196 if (work_done == budget)
1197 return budget;
1198
1199 /* Exit the polling mode, but don't re-enable interrupts if stack might
1200 * poll us due to busy-polling
1201 */
1202 if (likely(napi_complete_done(napi, work_done))) {
1203 if (adapter->requested_itr & 3)
1204 igbvf_set_itr(adapter);
1205
1206 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1207 ew32(EIMS, adapter->rx_ring->eims_value);
1208 }
1209
1210 return work_done;
1211}
1212
1213/**
1214 * igbvf_set_rlpml - set receive large packet maximum length
1215 * @adapter: board private structure
1216 *
1217 * Configure the maximum size of packets that will be received
1218 */
1219static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1220{
1221 int max_frame_size;
1222 struct e1000_hw *hw = &adapter->hw;
1223
1224 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1225
1226 spin_lock_bh(&hw->mbx_lock);
1227
1228 e1000_rlpml_set_vf(hw, max_frame_size);
1229
1230 spin_unlock_bh(&hw->mbx_lock);
1231}
1232
1233static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234 __be16 proto, u16 vid)
1235{
1236 struct igbvf_adapter *adapter = netdev_priv(netdev);
1237 struct e1000_hw *hw = &adapter->hw;
1238
1239 spin_lock_bh(&hw->mbx_lock);
1240
1241 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1242 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1243 spin_unlock_bh(&hw->mbx_lock);
1244 return -EINVAL;
1245 }
1246
1247 spin_unlock_bh(&hw->mbx_lock);
1248
1249 set_bit(vid, adapter->active_vlans);
1250 return 0;
1251}
1252
1253static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1254 __be16 proto, u16 vid)
1255{
1256 struct igbvf_adapter *adapter = netdev_priv(netdev);
1257 struct e1000_hw *hw = &adapter->hw;
1258
1259 spin_lock_bh(&hw->mbx_lock);
1260
1261 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262 dev_err(&adapter->pdev->dev,
1263 "Failed to remove vlan id %d\n", vid);
1264 spin_unlock_bh(&hw->mbx_lock);
1265 return -EINVAL;
1266 }
1267
1268 spin_unlock_bh(&hw->mbx_lock);
1269
1270 clear_bit(vid, adapter->active_vlans);
1271 return 0;
1272}
1273
1274static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1275{
1276 u16 vid;
1277
1278 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1279 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1280}
1281
1282/**
1283 * igbvf_configure_tx - Configure Transmit Unit after Reset
1284 * @adapter: board private structure
1285 *
1286 * Configure the Tx unit of the MAC after a reset.
1287 **/
1288static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1289{
1290 struct e1000_hw *hw = &adapter->hw;
1291 struct igbvf_ring *tx_ring = adapter->tx_ring;
1292 u64 tdba;
1293 u32 txdctl, dca_txctrl;
1294
1295 /* disable transmits */
1296 txdctl = er32(TXDCTL(0));
1297 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1298 e1e_flush();
1299 msleep(10);
1300
1301 /* Setup the HW Tx Head and Tail descriptor pointers */
1302 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1303 tdba = tx_ring->dma;
1304 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1305 ew32(TDBAH(0), (tdba >> 32));
1306 ew32(TDH(0), 0);
1307 ew32(TDT(0), 0);
1308 tx_ring->head = E1000_TDH(0);
1309 tx_ring->tail = E1000_TDT(0);
1310
1311 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1312 * MUST be delivered in order or it will completely screw up
1313 * our bookkeeping.
1314 */
1315 dca_txctrl = er32(DCA_TXCTRL(0));
1316 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1317 ew32(DCA_TXCTRL(0), dca_txctrl);
1318
1319 /* enable transmits */
1320 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1321 ew32(TXDCTL(0), txdctl);
1322
1323 /* Setup Transmit Descriptor Settings for eop descriptor */
1324 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1325
1326 /* enable Report Status bit */
1327 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1328}
1329
1330/**
1331 * igbvf_setup_srrctl - configure the receive control registers
1332 * @adapter: Board private structure
1333 **/
1334static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1335{
1336 struct e1000_hw *hw = &adapter->hw;
1337 u32 srrctl = 0;
1338
1339 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1340 E1000_SRRCTL_BSIZEHDR_MASK |
1341 E1000_SRRCTL_BSIZEPKT_MASK);
1342
1343 /* Enable queue drop to avoid head of line blocking */
1344 srrctl |= E1000_SRRCTL_DROP_EN;
1345
1346 /* Setup buffer sizes */
1347 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1348 E1000_SRRCTL_BSIZEPKT_SHIFT;
1349
1350 if (adapter->rx_buffer_len < 2048) {
1351 adapter->rx_ps_hdr_size = 0;
1352 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1353 } else {
1354 adapter->rx_ps_hdr_size = 128;
1355 srrctl |= adapter->rx_ps_hdr_size <<
1356 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1357 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1358 }
1359
1360 ew32(SRRCTL(0), srrctl);
1361}
1362
1363/**
1364 * igbvf_configure_rx - Configure Receive Unit after Reset
1365 * @adapter: board private structure
1366 *
1367 * Configure the Rx unit of the MAC after a reset.
1368 **/
1369static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1370{
1371 struct e1000_hw *hw = &adapter->hw;
1372 struct igbvf_ring *rx_ring = adapter->rx_ring;
1373 u64 rdba;
1374 u32 rxdctl;
1375
1376 /* disable receives */
1377 rxdctl = er32(RXDCTL(0));
1378 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1379 e1e_flush();
1380 msleep(10);
1381
1382 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1383 * the Base and Length of the Rx Descriptor Ring
1384 */
1385 rdba = rx_ring->dma;
1386 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1387 ew32(RDBAH(0), (rdba >> 32));
1388 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1389 rx_ring->head = E1000_RDH(0);
1390 rx_ring->tail = E1000_RDT(0);
1391 ew32(RDH(0), 0);
1392 ew32(RDT(0), 0);
1393
1394 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1395 rxdctl &= 0xFFF00000;
1396 rxdctl |= IGBVF_RX_PTHRESH;
1397 rxdctl |= IGBVF_RX_HTHRESH << 8;
1398 rxdctl |= IGBVF_RX_WTHRESH << 16;
1399
1400 igbvf_set_rlpml(adapter);
1401
1402 /* enable receives */
1403 ew32(RXDCTL(0), rxdctl);
1404}
1405
1406/**
1407 * igbvf_set_multi - Multicast and Promiscuous mode set
1408 * @netdev: network interface device structure
1409 *
1410 * The set_multi entry point is called whenever the multicast address
1411 * list or the network interface flags are updated. This routine is
1412 * responsible for configuring the hardware for proper multicast,
1413 * promiscuous mode, and all-multi behavior.
1414 **/
1415static void igbvf_set_multi(struct net_device *netdev)
1416{
1417 struct igbvf_adapter *adapter = netdev_priv(netdev);
1418 struct e1000_hw *hw = &adapter->hw;
1419 struct netdev_hw_addr *ha;
1420 u8 *mta_list = NULL;
1421 int i;
1422
1423 if (!netdev_mc_empty(netdev)) {
1424 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1425 GFP_ATOMIC);
1426 if (!mta_list)
1427 return;
1428 }
1429
1430 /* prepare a packed array of only addresses. */
1431 i = 0;
1432 netdev_for_each_mc_addr(ha, netdev)
1433 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1434
1435 spin_lock_bh(&hw->mbx_lock);
1436
1437 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1438
1439 spin_unlock_bh(&hw->mbx_lock);
1440 kfree(mta_list);
1441}
1442
1443/**
1444 * igbvf_set_uni - Configure unicast MAC filters
1445 * @netdev: network interface device structure
1446 *
1447 * This routine is responsible for configuring the hardware for proper
1448 * unicast filters.
1449 **/
1450static int igbvf_set_uni(struct net_device *netdev)
1451{
1452 struct igbvf_adapter *adapter = netdev_priv(netdev);
1453 struct e1000_hw *hw = &adapter->hw;
1454
1455 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1456 pr_err("Too many unicast filters - No Space\n");
1457 return -ENOSPC;
1458 }
1459
1460 spin_lock_bh(&hw->mbx_lock);
1461
1462 /* Clear all unicast MAC filters */
1463 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1464
1465 spin_unlock_bh(&hw->mbx_lock);
1466
1467 if (!netdev_uc_empty(netdev)) {
1468 struct netdev_hw_addr *ha;
1469
1470 /* Add MAC filters one by one */
1471 netdev_for_each_uc_addr(ha, netdev) {
1472 spin_lock_bh(&hw->mbx_lock);
1473
1474 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1475 ha->addr);
1476
1477 spin_unlock_bh(&hw->mbx_lock);
1478 udelay(200);
1479 }
1480 }
1481
1482 return 0;
1483}
1484
1485static void igbvf_set_rx_mode(struct net_device *netdev)
1486{
1487 igbvf_set_multi(netdev);
1488 igbvf_set_uni(netdev);
1489}
1490
1491/**
1492 * igbvf_configure - configure the hardware for Rx and Tx
1493 * @adapter: private board structure
1494 **/
1495static void igbvf_configure(struct igbvf_adapter *adapter)
1496{
1497 igbvf_set_rx_mode(adapter->netdev);
1498
1499 igbvf_restore_vlan(adapter);
1500
1501 igbvf_configure_tx(adapter);
1502 igbvf_setup_srrctl(adapter);
1503 igbvf_configure_rx(adapter);
1504 igbvf_alloc_rx_buffers(adapter->rx_ring,
1505 igbvf_desc_unused(adapter->rx_ring));
1506}
1507
1508/* igbvf_reset - bring the hardware into a known good state
1509 * @adapter: private board structure
1510 *
1511 * This function boots the hardware and enables some settings that
1512 * require a configuration cycle of the hardware - those cannot be
1513 * set/changed during runtime. After reset the device needs to be
1514 * properly configured for Rx, Tx etc.
1515 */
1516static void igbvf_reset(struct igbvf_adapter *adapter)
1517{
1518 struct e1000_mac_info *mac = &adapter->hw.mac;
1519 struct net_device *netdev = adapter->netdev;
1520 struct e1000_hw *hw = &adapter->hw;
1521
1522 spin_lock_bh(&hw->mbx_lock);
1523
1524 /* Allow time for pending master requests to run */
1525 if (mac->ops.reset_hw(hw))
1526 dev_info(&adapter->pdev->dev, "PF still resetting\n");
1527
1528 mac->ops.init_hw(hw);
1529
1530 spin_unlock_bh(&hw->mbx_lock);
1531
1532 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1533 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1534 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1535 netdev->addr_len);
1536 }
1537
1538 adapter->last_reset = jiffies;
1539}
1540
1541int igbvf_up(struct igbvf_adapter *adapter)
1542{
1543 struct e1000_hw *hw = &adapter->hw;
1544
1545 /* hardware has been reset, we need to reload some things */
1546 igbvf_configure(adapter);
1547
1548 clear_bit(__IGBVF_DOWN, &adapter->state);
1549
1550 napi_enable(&adapter->rx_ring->napi);
1551 if (adapter->msix_entries)
1552 igbvf_configure_msix(adapter);
1553
1554 /* Clear any pending interrupts. */
1555 er32(EICR);
1556 igbvf_irq_enable(adapter);
1557
1558 /* start the watchdog */
1559 hw->mac.get_link_status = 1;
1560 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1561
1562 return 0;
1563}
1564
1565void igbvf_down(struct igbvf_adapter *adapter)
1566{
1567 struct net_device *netdev = adapter->netdev;
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 rxdctl, txdctl;
1570
1571 /* signal that we're down so the interrupt handler does not
1572 * reschedule our watchdog timer
1573 */
1574 set_bit(__IGBVF_DOWN, &adapter->state);
1575
1576 /* disable receives in the hardware */
1577 rxdctl = er32(RXDCTL(0));
1578 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1579
1580 netif_carrier_off(netdev);
1581 netif_stop_queue(netdev);
1582
1583 /* disable transmits in the hardware */
1584 txdctl = er32(TXDCTL(0));
1585 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1586
1587 /* flush both disables and wait for them to finish */
1588 e1e_flush();
1589 msleep(10);
1590
1591 napi_disable(&adapter->rx_ring->napi);
1592
1593 igbvf_irq_disable(adapter);
1594
1595 del_timer_sync(&adapter->watchdog_timer);
1596
1597 /* record the stats before reset*/
1598 igbvf_update_stats(adapter);
1599
1600 adapter->link_speed = 0;
1601 adapter->link_duplex = 0;
1602
1603 igbvf_reset(adapter);
1604 igbvf_clean_tx_ring(adapter->tx_ring);
1605 igbvf_clean_rx_ring(adapter->rx_ring);
1606}
1607
1608void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1609{
1610 might_sleep();
1611 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1612 usleep_range(1000, 2000);
1613 igbvf_down(adapter);
1614 igbvf_up(adapter);
1615 clear_bit(__IGBVF_RESETTING, &adapter->state);
1616}
1617
1618/**
1619 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1620 * @adapter: board private structure to initialize
1621 *
1622 * igbvf_sw_init initializes the Adapter private data structure.
1623 * Fields are initialized based on PCI device information and
1624 * OS network device settings (MTU size).
1625 **/
1626static int igbvf_sw_init(struct igbvf_adapter *adapter)
1627{
1628 struct net_device *netdev = adapter->netdev;
1629 s32 rc;
1630
1631 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1632 adapter->rx_ps_hdr_size = 0;
1633 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1634 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1635
1636 adapter->tx_int_delay = 8;
1637 adapter->tx_abs_int_delay = 32;
1638 adapter->rx_int_delay = 0;
1639 adapter->rx_abs_int_delay = 8;
1640 adapter->requested_itr = 3;
1641 adapter->current_itr = IGBVF_START_ITR;
1642
1643 /* Set various function pointers */
1644 adapter->ei->init_ops(&adapter->hw);
1645
1646 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1647 if (rc)
1648 return rc;
1649
1650 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1651 if (rc)
1652 return rc;
1653
1654 igbvf_set_interrupt_capability(adapter);
1655
1656 if (igbvf_alloc_queues(adapter))
1657 return -ENOMEM;
1658
1659 /* Explicitly disable IRQ since the NIC can be in any state. */
1660 igbvf_irq_disable(adapter);
1661
1662 spin_lock_init(&adapter->hw.mbx_lock);
1663
1664 set_bit(__IGBVF_DOWN, &adapter->state);
1665 return 0;
1666}
1667
1668static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1669{
1670 struct e1000_hw *hw = &adapter->hw;
1671
1672 adapter->stats.last_gprc = er32(VFGPRC);
1673 adapter->stats.last_gorc = er32(VFGORC);
1674 adapter->stats.last_gptc = er32(VFGPTC);
1675 adapter->stats.last_gotc = er32(VFGOTC);
1676 adapter->stats.last_mprc = er32(VFMPRC);
1677 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1678 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1679 adapter->stats.last_gorlbc = er32(VFGORLBC);
1680 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1681
1682 adapter->stats.base_gprc = er32(VFGPRC);
1683 adapter->stats.base_gorc = er32(VFGORC);
1684 adapter->stats.base_gptc = er32(VFGPTC);
1685 adapter->stats.base_gotc = er32(VFGOTC);
1686 adapter->stats.base_mprc = er32(VFMPRC);
1687 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1688 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1689 adapter->stats.base_gorlbc = er32(VFGORLBC);
1690 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1691}
1692
1693/**
1694 * igbvf_open - Called when a network interface is made active
1695 * @netdev: network interface device structure
1696 *
1697 * Returns 0 on success, negative value on failure
1698 *
1699 * The open entry point is called when a network interface is made
1700 * active by the system (IFF_UP). At this point all resources needed
1701 * for transmit and receive operations are allocated, the interrupt
1702 * handler is registered with the OS, the watchdog timer is started,
1703 * and the stack is notified that the interface is ready.
1704 **/
1705static int igbvf_open(struct net_device *netdev)
1706{
1707 struct igbvf_adapter *adapter = netdev_priv(netdev);
1708 struct e1000_hw *hw = &adapter->hw;
1709 int err;
1710
1711 /* disallow open during test */
1712 if (test_bit(__IGBVF_TESTING, &adapter->state))
1713 return -EBUSY;
1714
1715 /* allocate transmit descriptors */
1716 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1717 if (err)
1718 goto err_setup_tx;
1719
1720 /* allocate receive descriptors */
1721 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1722 if (err)
1723 goto err_setup_rx;
1724
1725 /* before we allocate an interrupt, we must be ready to handle it.
1726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 * as soon as we call pci_request_irq, so we have to setup our
1728 * clean_rx handler before we do so.
1729 */
1730 igbvf_configure(adapter);
1731
1732 err = igbvf_request_irq(adapter);
1733 if (err)
1734 goto err_req_irq;
1735
1736 /* From here on the code is the same as igbvf_up() */
1737 clear_bit(__IGBVF_DOWN, &adapter->state);
1738
1739 napi_enable(&adapter->rx_ring->napi);
1740
1741 /* clear any pending interrupts */
1742 er32(EICR);
1743
1744 igbvf_irq_enable(adapter);
1745
1746 /* start the watchdog */
1747 hw->mac.get_link_status = 1;
1748 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1749
1750 return 0;
1751
1752err_req_irq:
1753 igbvf_free_rx_resources(adapter->rx_ring);
1754err_setup_rx:
1755 igbvf_free_tx_resources(adapter->tx_ring);
1756err_setup_tx:
1757 igbvf_reset(adapter);
1758
1759 return err;
1760}
1761
1762/**
1763 * igbvf_close - Disables a network interface
1764 * @netdev: network interface device structure
1765 *
1766 * Returns 0, this is not allowed to fail
1767 *
1768 * The close entry point is called when an interface is de-activated
1769 * by the OS. The hardware is still under the drivers control, but
1770 * needs to be disabled. A global MAC reset is issued to stop the
1771 * hardware, and all transmit and receive resources are freed.
1772 **/
1773static int igbvf_close(struct net_device *netdev)
1774{
1775 struct igbvf_adapter *adapter = netdev_priv(netdev);
1776
1777 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1778 igbvf_down(adapter);
1779
1780 igbvf_free_irq(adapter);
1781
1782 igbvf_free_tx_resources(adapter->tx_ring);
1783 igbvf_free_rx_resources(adapter->rx_ring);
1784
1785 return 0;
1786}
1787
1788/**
1789 * igbvf_set_mac - Change the Ethernet Address of the NIC
1790 * @netdev: network interface device structure
1791 * @p: pointer to an address structure
1792 *
1793 * Returns 0 on success, negative on failure
1794 **/
1795static int igbvf_set_mac(struct net_device *netdev, void *p)
1796{
1797 struct igbvf_adapter *adapter = netdev_priv(netdev);
1798 struct e1000_hw *hw = &adapter->hw;
1799 struct sockaddr *addr = p;
1800
1801 if (!is_valid_ether_addr(addr->sa_data))
1802 return -EADDRNOTAVAIL;
1803
1804 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1805
1806 spin_lock_bh(&hw->mbx_lock);
1807
1808 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1809
1810 spin_unlock_bh(&hw->mbx_lock);
1811
1812 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1813 return -EADDRNOTAVAIL;
1814
1815 eth_hw_addr_set(netdev, addr->sa_data);
1816
1817 return 0;
1818}
1819
1820#define UPDATE_VF_COUNTER(reg, name) \
1821{ \
1822 u32 current_counter = er32(reg); \
1823 if (current_counter < adapter->stats.last_##name) \
1824 adapter->stats.name += 0x100000000LL; \
1825 adapter->stats.last_##name = current_counter; \
1826 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1827 adapter->stats.name |= current_counter; \
1828}
1829
1830/**
1831 * igbvf_update_stats - Update the board statistics counters
1832 * @adapter: board private structure
1833**/
1834void igbvf_update_stats(struct igbvf_adapter *adapter)
1835{
1836 struct e1000_hw *hw = &adapter->hw;
1837 struct pci_dev *pdev = adapter->pdev;
1838
1839 /* Prevent stats update while adapter is being reset, link is down
1840 * or if the pci connection is down.
1841 */
1842 if (adapter->link_speed == 0)
1843 return;
1844
1845 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1846 return;
1847
1848 if (pci_channel_offline(pdev))
1849 return;
1850
1851 UPDATE_VF_COUNTER(VFGPRC, gprc);
1852 UPDATE_VF_COUNTER(VFGORC, gorc);
1853 UPDATE_VF_COUNTER(VFGPTC, gptc);
1854 UPDATE_VF_COUNTER(VFGOTC, gotc);
1855 UPDATE_VF_COUNTER(VFMPRC, mprc);
1856 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1857 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1858 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1859 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1860
1861 /* Fill out the OS statistics structure */
1862 adapter->netdev->stats.multicast = adapter->stats.mprc;
1863}
1864
1865static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1866{
1867 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1868 adapter->link_speed,
1869 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1870}
1871
1872static bool igbvf_has_link(struct igbvf_adapter *adapter)
1873{
1874 struct e1000_hw *hw = &adapter->hw;
1875 s32 ret_val = E1000_SUCCESS;
1876 bool link_active;
1877
1878 /* If interface is down, stay link down */
1879 if (test_bit(__IGBVF_DOWN, &adapter->state))
1880 return false;
1881
1882 spin_lock_bh(&hw->mbx_lock);
1883
1884 ret_val = hw->mac.ops.check_for_link(hw);
1885
1886 spin_unlock_bh(&hw->mbx_lock);
1887
1888 link_active = !hw->mac.get_link_status;
1889
1890 /* if check for link returns error we will need to reset */
1891 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1892 schedule_work(&adapter->reset_task);
1893
1894 return link_active;
1895}
1896
1897/**
1898 * igbvf_watchdog - Timer Call-back
1899 * @t: timer list pointer containing private struct
1900 **/
1901static void igbvf_watchdog(struct timer_list *t)
1902{
1903 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1904
1905 /* Do the rest outside of interrupt context */
1906 schedule_work(&adapter->watchdog_task);
1907}
1908
1909static void igbvf_watchdog_task(struct work_struct *work)
1910{
1911 struct igbvf_adapter *adapter = container_of(work,
1912 struct igbvf_adapter,
1913 watchdog_task);
1914 struct net_device *netdev = adapter->netdev;
1915 struct e1000_mac_info *mac = &adapter->hw.mac;
1916 struct igbvf_ring *tx_ring = adapter->tx_ring;
1917 struct e1000_hw *hw = &adapter->hw;
1918 u32 link;
1919 int tx_pending = 0;
1920
1921 link = igbvf_has_link(adapter);
1922
1923 if (link) {
1924 if (!netif_carrier_ok(netdev)) {
1925 mac->ops.get_link_up_info(&adapter->hw,
1926 &adapter->link_speed,
1927 &adapter->link_duplex);
1928 igbvf_print_link_info(adapter);
1929
1930 netif_carrier_on(netdev);
1931 netif_wake_queue(netdev);
1932 }
1933 } else {
1934 if (netif_carrier_ok(netdev)) {
1935 adapter->link_speed = 0;
1936 adapter->link_duplex = 0;
1937 dev_info(&adapter->pdev->dev, "Link is Down\n");
1938 netif_carrier_off(netdev);
1939 netif_stop_queue(netdev);
1940 }
1941 }
1942
1943 if (netif_carrier_ok(netdev)) {
1944 igbvf_update_stats(adapter);
1945 } else {
1946 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1947 tx_ring->count);
1948 if (tx_pending) {
1949 /* We've lost link, so the controller stops DMA,
1950 * but we've got queued Tx work that's never going
1951 * to get done, so reset controller to flush Tx.
1952 * (Do the reset outside of interrupt context).
1953 */
1954 adapter->tx_timeout_count++;
1955 schedule_work(&adapter->reset_task);
1956 }
1957 }
1958
1959 /* Cause software interrupt to ensure Rx ring is cleaned */
1960 ew32(EICS, adapter->rx_ring->eims_value);
1961
1962 /* Reset the timer */
1963 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1964 mod_timer(&adapter->watchdog_timer,
1965 round_jiffies(jiffies + (2 * HZ)));
1966}
1967
1968#define IGBVF_TX_FLAGS_CSUM 0x00000001
1969#define IGBVF_TX_FLAGS_VLAN 0x00000002
1970#define IGBVF_TX_FLAGS_TSO 0x00000004
1971#define IGBVF_TX_FLAGS_IPV4 0x00000008
1972#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1973#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1974
1975static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1976 u32 type_tucmd, u32 mss_l4len_idx)
1977{
1978 struct e1000_adv_tx_context_desc *context_desc;
1979 struct igbvf_buffer *buffer_info;
1980 u16 i = tx_ring->next_to_use;
1981
1982 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1983 buffer_info = &tx_ring->buffer_info[i];
1984
1985 i++;
1986 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1987
1988 /* set bits to identify this as an advanced context descriptor */
1989 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1990
1991 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1992 context_desc->seqnum_seed = 0;
1993 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1994 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1995
1996 buffer_info->time_stamp = jiffies;
1997 buffer_info->dma = 0;
1998}
1999
2000static int igbvf_tso(struct igbvf_ring *tx_ring,
2001 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2002{
2003 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2004 union {
2005 struct iphdr *v4;
2006 struct ipv6hdr *v6;
2007 unsigned char *hdr;
2008 } ip;
2009 union {
2010 struct tcphdr *tcp;
2011 unsigned char *hdr;
2012 } l4;
2013 u32 paylen, l4_offset;
2014 int err;
2015
2016 if (skb->ip_summed != CHECKSUM_PARTIAL)
2017 return 0;
2018
2019 if (!skb_is_gso(skb))
2020 return 0;
2021
2022 err = skb_cow_head(skb, 0);
2023 if (err < 0)
2024 return err;
2025
2026 ip.hdr = skb_network_header(skb);
2027 l4.hdr = skb_checksum_start(skb);
2028
2029 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2030 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2031
2032 /* initialize outer IP header fields */
2033 if (ip.v4->version == 4) {
2034 unsigned char *csum_start = skb_checksum_start(skb);
2035 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2036
2037 /* IP header will have to cancel out any data that
2038 * is not a part of the outer IP header
2039 */
2040 ip.v4->check = csum_fold(csum_partial(trans_start,
2041 csum_start - trans_start,
2042 0));
2043 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2044
2045 ip.v4->tot_len = 0;
2046 } else {
2047 ip.v6->payload_len = 0;
2048 }
2049
2050 /* determine offset of inner transport header */
2051 l4_offset = l4.hdr - skb->data;
2052
2053 /* compute length of segmentation header */
2054 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2055
2056 /* remove payload length from inner checksum */
2057 paylen = skb->len - l4_offset;
2058 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2059
2060 /* MSS L4LEN IDX */
2061 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2062 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2063
2064 /* VLAN MACLEN IPLEN */
2065 vlan_macip_lens = l4.hdr - ip.hdr;
2066 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2067 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2068
2069 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2070
2071 return 1;
2072}
2073
2074static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2075 u32 tx_flags, __be16 protocol)
2076{
2077 u32 vlan_macip_lens = 0;
2078 u32 type_tucmd = 0;
2079
2080 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2081csum_failed:
2082 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2083 return false;
2084 goto no_csum;
2085 }
2086
2087 switch (skb->csum_offset) {
2088 case offsetof(struct tcphdr, check):
2089 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2090 fallthrough;
2091 case offsetof(struct udphdr, check):
2092 break;
2093 case offsetof(struct sctphdr, checksum):
2094 /* validate that this is actually an SCTP request */
2095 if (skb_csum_is_sctp(skb)) {
2096 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2097 break;
2098 }
2099 fallthrough;
2100 default:
2101 skb_checksum_help(skb);
2102 goto csum_failed;
2103 }
2104
2105 vlan_macip_lens = skb_checksum_start_offset(skb) -
2106 skb_network_offset(skb);
2107no_csum:
2108 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2109 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2110
2111 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2112 return true;
2113}
2114
2115static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2116{
2117 struct igbvf_adapter *adapter = netdev_priv(netdev);
2118
2119 /* there is enough descriptors then we don't need to worry */
2120 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2121 return 0;
2122
2123 netif_stop_queue(netdev);
2124
2125 /* Herbert's original patch had:
2126 * smp_mb__after_netif_stop_queue();
2127 * but since that doesn't exist yet, just open code it.
2128 */
2129 smp_mb();
2130
2131 /* We need to check again just in case room has been made available */
2132 if (igbvf_desc_unused(adapter->tx_ring) < size)
2133 return -EBUSY;
2134
2135 netif_wake_queue(netdev);
2136
2137 ++adapter->restart_queue;
2138 return 0;
2139}
2140
2141#define IGBVF_MAX_TXD_PWR 16
2142#define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2143
2144static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 struct sk_buff *skb)
2147{
2148 struct igbvf_buffer *buffer_info;
2149 struct pci_dev *pdev = adapter->pdev;
2150 unsigned int len = skb_headlen(skb);
2151 unsigned int count = 0, i;
2152 unsigned int f;
2153
2154 i = tx_ring->next_to_use;
2155
2156 buffer_info = &tx_ring->buffer_info[i];
2157 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2158 buffer_info->length = len;
2159 /* set time_stamp *before* dma to help avoid a possible race */
2160 buffer_info->time_stamp = jiffies;
2161 buffer_info->mapped_as_page = false;
2162 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2163 DMA_TO_DEVICE);
2164 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2165 goto dma_error;
2166
2167 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2168 const skb_frag_t *frag;
2169
2170 count++;
2171 i++;
2172 if (i == tx_ring->count)
2173 i = 0;
2174
2175 frag = &skb_shinfo(skb)->frags[f];
2176 len = skb_frag_size(frag);
2177
2178 buffer_info = &tx_ring->buffer_info[i];
2179 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2180 buffer_info->length = len;
2181 buffer_info->time_stamp = jiffies;
2182 buffer_info->mapped_as_page = true;
2183 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2184 DMA_TO_DEVICE);
2185 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2186 goto dma_error;
2187 }
2188
2189 tx_ring->buffer_info[i].skb = skb;
2190
2191 return ++count;
2192
2193dma_error:
2194 dev_err(&pdev->dev, "TX DMA map failed\n");
2195
2196 /* clear timestamp and dma mappings for failed buffer_info mapping */
2197 buffer_info->dma = 0;
2198 buffer_info->time_stamp = 0;
2199 buffer_info->length = 0;
2200 buffer_info->mapped_as_page = false;
2201 if (count)
2202 count--;
2203
2204 /* clear timestamp and dma mappings for remaining portion of packet */
2205 while (count--) {
2206 if (i == 0)
2207 i += tx_ring->count;
2208 i--;
2209 buffer_info = &tx_ring->buffer_info[i];
2210 igbvf_put_txbuf(adapter, buffer_info);
2211 }
2212
2213 return 0;
2214}
2215
2216static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2217 struct igbvf_ring *tx_ring,
2218 int tx_flags, int count,
2219 unsigned int first, u32 paylen,
2220 u8 hdr_len)
2221{
2222 union e1000_adv_tx_desc *tx_desc = NULL;
2223 struct igbvf_buffer *buffer_info;
2224 u32 olinfo_status = 0, cmd_type_len;
2225 unsigned int i;
2226
2227 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2228 E1000_ADVTXD_DCMD_DEXT);
2229
2230 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2231 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2232
2233 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2234 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2235
2236 /* insert tcp checksum */
2237 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2238
2239 /* insert ip checksum */
2240 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2241 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2242
2243 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2244 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2245 }
2246
2247 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2248
2249 i = tx_ring->next_to_use;
2250 while (count--) {
2251 buffer_info = &tx_ring->buffer_info[i];
2252 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2253 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2254 tx_desc->read.cmd_type_len =
2255 cpu_to_le32(cmd_type_len | buffer_info->length);
2256 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2257 i++;
2258 if (i == tx_ring->count)
2259 i = 0;
2260 }
2261
2262 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2263 /* Force memory writes to complete before letting h/w
2264 * know there are new descriptors to fetch. (Only
2265 * applicable for weak-ordered memory model archs,
2266 * such as IA-64).
2267 */
2268 wmb();
2269
2270 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2271 tx_ring->next_to_use = i;
2272 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2273}
2274
2275static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2276 struct net_device *netdev,
2277 struct igbvf_ring *tx_ring)
2278{
2279 struct igbvf_adapter *adapter = netdev_priv(netdev);
2280 unsigned int first, tx_flags = 0;
2281 u8 hdr_len = 0;
2282 int count = 0;
2283 int tso = 0;
2284 __be16 protocol = vlan_get_protocol(skb);
2285
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 if (skb->len <= 0) {
2292 dev_kfree_skb_any(skb);
2293 return NETDEV_TX_OK;
2294 }
2295
2296 /* need: count + 4 desc gap to keep tail from touching
2297 * + 2 desc gap to keep tail from touching head,
2298 * + 1 desc for skb->data,
2299 * + 1 desc for context descriptor,
2300 * head, otherwise try next time
2301 */
2302 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2303 /* this is a hard error */
2304 return NETDEV_TX_BUSY;
2305 }
2306
2307 if (skb_vlan_tag_present(skb)) {
2308 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2309 tx_flags |= (skb_vlan_tag_get(skb) <<
2310 IGBVF_TX_FLAGS_VLAN_SHIFT);
2311 }
2312
2313 if (protocol == htons(ETH_P_IP))
2314 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2315
2316 first = tx_ring->next_to_use;
2317
2318 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2319 if (unlikely(tso < 0)) {
2320 dev_kfree_skb_any(skb);
2321 return NETDEV_TX_OK;
2322 }
2323
2324 if (tso)
2325 tx_flags |= IGBVF_TX_FLAGS_TSO;
2326 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2327 (skb->ip_summed == CHECKSUM_PARTIAL))
2328 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2329
2330 /* count reflects descriptors mapped, if 0 then mapping error
2331 * has occurred and we need to rewind the descriptor queue
2332 */
2333 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2334
2335 if (count) {
2336 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2337 first, skb->len, hdr_len);
2338 /* Make sure there is space in the ring for the next send. */
2339 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2340 } else {
2341 dev_kfree_skb_any(skb);
2342 tx_ring->buffer_info[first].time_stamp = 0;
2343 tx_ring->next_to_use = first;
2344 }
2345
2346 return NETDEV_TX_OK;
2347}
2348
2349static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2350 struct net_device *netdev)
2351{
2352 struct igbvf_adapter *adapter = netdev_priv(netdev);
2353 struct igbvf_ring *tx_ring;
2354
2355 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2358 }
2359
2360 tx_ring = &adapter->tx_ring[0];
2361
2362 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2363}
2364
2365/**
2366 * igbvf_tx_timeout - Respond to a Tx Hang
2367 * @netdev: network interface device structure
2368 * @txqueue: queue timing out (unused)
2369 **/
2370static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2371{
2372 struct igbvf_adapter *adapter = netdev_priv(netdev);
2373
2374 /* Do the reset outside of interrupt context */
2375 adapter->tx_timeout_count++;
2376 schedule_work(&adapter->reset_task);
2377}
2378
2379static void igbvf_reset_task(struct work_struct *work)
2380{
2381 struct igbvf_adapter *adapter;
2382
2383 adapter = container_of(work, struct igbvf_adapter, reset_task);
2384
2385 igbvf_reinit_locked(adapter);
2386}
2387
2388/**
2389 * igbvf_change_mtu - Change the Maximum Transfer Unit
2390 * @netdev: network interface device structure
2391 * @new_mtu: new value for maximum frame size
2392 *
2393 * Returns 0 on success, negative on failure
2394 **/
2395static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2396{
2397 struct igbvf_adapter *adapter = netdev_priv(netdev);
2398 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2399
2400 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2401 usleep_range(1000, 2000);
2402 /* igbvf_down has a dependency on max_frame_size */
2403 adapter->max_frame_size = max_frame;
2404 if (netif_running(netdev))
2405 igbvf_down(adapter);
2406
2407 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2408 * means we reserve 2 more, this pushes us to allocate from the next
2409 * larger slab size.
2410 * i.e. RXBUFFER_2048 --> size-4096 slab
2411 * However with the new *_jumbo_rx* routines, jumbo receives will use
2412 * fragmented skbs
2413 */
2414
2415 if (max_frame <= 1024)
2416 adapter->rx_buffer_len = 1024;
2417 else if (max_frame <= 2048)
2418 adapter->rx_buffer_len = 2048;
2419 else
2420#if (PAGE_SIZE / 2) > 16384
2421 adapter->rx_buffer_len = 16384;
2422#else
2423 adapter->rx_buffer_len = PAGE_SIZE / 2;
2424#endif
2425
2426 /* adjust allocation if LPE protects us, and we aren't using SBP */
2427 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2428 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2429 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2430 ETH_FCS_LEN;
2431
2432 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2433 netdev->mtu, new_mtu);
2434 WRITE_ONCE(netdev->mtu, new_mtu);
2435
2436 if (netif_running(netdev))
2437 igbvf_up(adapter);
2438 else
2439 igbvf_reset(adapter);
2440
2441 clear_bit(__IGBVF_RESETTING, &adapter->state);
2442
2443 return 0;
2444}
2445
2446static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2447{
2448 switch (cmd) {
2449 default:
2450 return -EOPNOTSUPP;
2451 }
2452}
2453
2454static int igbvf_suspend(struct device *dev_d)
2455{
2456 struct net_device *netdev = dev_get_drvdata(dev_d);
2457 struct igbvf_adapter *adapter = netdev_priv(netdev);
2458
2459 netif_device_detach(netdev);
2460
2461 if (netif_running(netdev)) {
2462 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2463 igbvf_down(adapter);
2464 igbvf_free_irq(adapter);
2465 }
2466
2467 return 0;
2468}
2469
2470static int igbvf_resume(struct device *dev_d)
2471{
2472 struct pci_dev *pdev = to_pci_dev(dev_d);
2473 struct net_device *netdev = pci_get_drvdata(pdev);
2474 struct igbvf_adapter *adapter = netdev_priv(netdev);
2475 u32 err;
2476
2477 pci_set_master(pdev);
2478
2479 if (netif_running(netdev)) {
2480 err = igbvf_request_irq(adapter);
2481 if (err)
2482 return err;
2483 }
2484
2485 igbvf_reset(adapter);
2486
2487 if (netif_running(netdev))
2488 igbvf_up(adapter);
2489
2490 netif_device_attach(netdev);
2491
2492 return 0;
2493}
2494
2495static void igbvf_shutdown(struct pci_dev *pdev)
2496{
2497 igbvf_suspend(&pdev->dev);
2498}
2499
2500#ifdef CONFIG_NET_POLL_CONTROLLER
2501/* Polling 'interrupt' - used by things like netconsole to send skbs
2502 * without having to re-enable interrupts. It's not called while
2503 * the interrupt routine is executing.
2504 */
2505static void igbvf_netpoll(struct net_device *netdev)
2506{
2507 struct igbvf_adapter *adapter = netdev_priv(netdev);
2508
2509 disable_irq(adapter->pdev->irq);
2510
2511 igbvf_clean_tx_irq(adapter->tx_ring);
2512
2513 enable_irq(adapter->pdev->irq);
2514}
2515#endif
2516
2517/**
2518 * igbvf_io_error_detected - called when PCI error is detected
2519 * @pdev: Pointer to PCI device
2520 * @state: The current pci connection state
2521 *
2522 * This function is called after a PCI bus error affecting
2523 * this device has been detected.
2524 */
2525static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2526 pci_channel_state_t state)
2527{
2528 struct net_device *netdev = pci_get_drvdata(pdev);
2529 struct igbvf_adapter *adapter = netdev_priv(netdev);
2530
2531 netif_device_detach(netdev);
2532
2533 if (state == pci_channel_io_perm_failure)
2534 return PCI_ERS_RESULT_DISCONNECT;
2535
2536 if (netif_running(netdev))
2537 igbvf_down(adapter);
2538 pci_disable_device(pdev);
2539
2540 /* Request a slot reset. */
2541 return PCI_ERS_RESULT_NEED_RESET;
2542}
2543
2544/**
2545 * igbvf_io_slot_reset - called after the pci bus has been reset.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * Restart the card from scratch, as if from a cold-boot. Implementation
2549 * resembles the first-half of the igbvf_resume routine.
2550 */
2551static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2552{
2553 struct net_device *netdev = pci_get_drvdata(pdev);
2554 struct igbvf_adapter *adapter = netdev_priv(netdev);
2555
2556 if (pci_enable_device_mem(pdev)) {
2557 dev_err(&pdev->dev,
2558 "Cannot re-enable PCI device after reset.\n");
2559 return PCI_ERS_RESULT_DISCONNECT;
2560 }
2561 pci_set_master(pdev);
2562
2563 igbvf_reset(adapter);
2564
2565 return PCI_ERS_RESULT_RECOVERED;
2566}
2567
2568/**
2569 * igbvf_io_resume - called when traffic can start flowing again.
2570 * @pdev: Pointer to PCI device
2571 *
2572 * This callback is called when the error recovery driver tells us that
2573 * its OK to resume normal operation. Implementation resembles the
2574 * second-half of the igbvf_resume routine.
2575 */
2576static void igbvf_io_resume(struct pci_dev *pdev)
2577{
2578 struct net_device *netdev = pci_get_drvdata(pdev);
2579 struct igbvf_adapter *adapter = netdev_priv(netdev);
2580
2581 if (netif_running(netdev)) {
2582 if (igbvf_up(adapter)) {
2583 dev_err(&pdev->dev,
2584 "can't bring device back up after reset\n");
2585 return;
2586 }
2587 }
2588
2589 netif_device_attach(netdev);
2590}
2591
2592/**
2593 * igbvf_io_prepare - prepare device driver for PCI reset
2594 * @pdev: PCI device information struct
2595 */
2596static void igbvf_io_prepare(struct pci_dev *pdev)
2597{
2598 struct net_device *netdev = pci_get_drvdata(pdev);
2599 struct igbvf_adapter *adapter = netdev_priv(netdev);
2600
2601 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2602 usleep_range(1000, 2000);
2603 igbvf_down(adapter);
2604}
2605
2606/**
2607 * igbvf_io_reset_done - PCI reset done, device driver reset can begin
2608 * @pdev: PCI device information struct
2609 */
2610static void igbvf_io_reset_done(struct pci_dev *pdev)
2611{
2612 struct net_device *netdev = pci_get_drvdata(pdev);
2613 struct igbvf_adapter *adapter = netdev_priv(netdev);
2614
2615 igbvf_up(adapter);
2616 clear_bit(__IGBVF_RESETTING, &adapter->state);
2617}
2618
2619static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2620{
2621 struct e1000_hw *hw = &adapter->hw;
2622 struct net_device *netdev = adapter->netdev;
2623 struct pci_dev *pdev = adapter->pdev;
2624
2625 if (hw->mac.type == e1000_vfadapt_i350)
2626 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2627 else
2628 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2629 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2630}
2631
2632static int igbvf_set_features(struct net_device *netdev,
2633 netdev_features_t features)
2634{
2635 struct igbvf_adapter *adapter = netdev_priv(netdev);
2636
2637 if (features & NETIF_F_RXCSUM)
2638 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2639 else
2640 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2641
2642 return 0;
2643}
2644
2645#define IGBVF_MAX_MAC_HDR_LEN 127
2646#define IGBVF_MAX_NETWORK_HDR_LEN 511
2647
2648static netdev_features_t
2649igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2650 netdev_features_t features)
2651{
2652 unsigned int network_hdr_len, mac_hdr_len;
2653
2654 /* Make certain the headers can be described by a context descriptor */
2655 mac_hdr_len = skb_network_offset(skb);
2656 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2657 return features & ~(NETIF_F_HW_CSUM |
2658 NETIF_F_SCTP_CRC |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_TSO |
2661 NETIF_F_TSO6);
2662
2663 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2664 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2665 return features & ~(NETIF_F_HW_CSUM |
2666 NETIF_F_SCTP_CRC |
2667 NETIF_F_TSO |
2668 NETIF_F_TSO6);
2669
2670 /* We can only support IPV4 TSO in tunnels if we can mangle the
2671 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2672 */
2673 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2674 features &= ~NETIF_F_TSO;
2675
2676 return features;
2677}
2678
2679static const struct net_device_ops igbvf_netdev_ops = {
2680 .ndo_open = igbvf_open,
2681 .ndo_stop = igbvf_close,
2682 .ndo_start_xmit = igbvf_xmit_frame,
2683 .ndo_set_rx_mode = igbvf_set_rx_mode,
2684 .ndo_set_mac_address = igbvf_set_mac,
2685 .ndo_change_mtu = igbvf_change_mtu,
2686 .ndo_eth_ioctl = igbvf_ioctl,
2687 .ndo_tx_timeout = igbvf_tx_timeout,
2688 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2689 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2690#ifdef CONFIG_NET_POLL_CONTROLLER
2691 .ndo_poll_controller = igbvf_netpoll,
2692#endif
2693 .ndo_set_features = igbvf_set_features,
2694 .ndo_features_check = igbvf_features_check,
2695};
2696
2697/**
2698 * igbvf_probe - Device Initialization Routine
2699 * @pdev: PCI device information struct
2700 * @ent: entry in igbvf_pci_tbl
2701 *
2702 * Returns 0 on success, negative on failure
2703 *
2704 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2705 * The OS initialization, configuring of the adapter private structure,
2706 * and a hardware reset occur.
2707 **/
2708static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2709{
2710 struct net_device *netdev;
2711 struct igbvf_adapter *adapter;
2712 struct e1000_hw *hw;
2713 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2714 static int cards_found;
2715 int err;
2716
2717 err = pci_enable_device_mem(pdev);
2718 if (err)
2719 return err;
2720
2721 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2722 if (err) {
2723 dev_err(&pdev->dev,
2724 "No usable DMA configuration, aborting\n");
2725 goto err_dma;
2726 }
2727
2728 err = pci_request_regions(pdev, igbvf_driver_name);
2729 if (err)
2730 goto err_pci_reg;
2731
2732 pci_set_master(pdev);
2733
2734 err = -ENOMEM;
2735 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2736 if (!netdev)
2737 goto err_alloc_etherdev;
2738
2739 SET_NETDEV_DEV(netdev, &pdev->dev);
2740
2741 pci_set_drvdata(pdev, netdev);
2742 adapter = netdev_priv(netdev);
2743 hw = &adapter->hw;
2744 adapter->netdev = netdev;
2745 adapter->pdev = pdev;
2746 adapter->ei = ei;
2747 adapter->pba = ei->pba;
2748 adapter->flags = ei->flags;
2749 adapter->hw.back = adapter;
2750 adapter->hw.mac.type = ei->mac;
2751 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2752
2753 /* PCI config space info */
2754
2755 hw->vendor_id = pdev->vendor;
2756 hw->device_id = pdev->device;
2757 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2758 hw->subsystem_device_id = pdev->subsystem_device;
2759 hw->revision_id = pdev->revision;
2760
2761 err = -EIO;
2762 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2763 pci_resource_len(pdev, 0));
2764
2765 if (!adapter->hw.hw_addr)
2766 goto err_ioremap;
2767
2768 if (ei->get_variants) {
2769 err = ei->get_variants(adapter);
2770 if (err)
2771 goto err_get_variants;
2772 }
2773
2774 /* setup adapter struct */
2775 err = igbvf_sw_init(adapter);
2776 if (err)
2777 goto err_sw_init;
2778
2779 /* construct the net_device struct */
2780 netdev->netdev_ops = &igbvf_netdev_ops;
2781
2782 igbvf_set_ethtool_ops(netdev);
2783 netdev->watchdog_timeo = 5 * HZ;
2784 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2785
2786 adapter->bd_number = cards_found++;
2787
2788 netdev->hw_features = NETIF_F_SG |
2789 NETIF_F_TSO |
2790 NETIF_F_TSO6 |
2791 NETIF_F_RXCSUM |
2792 NETIF_F_HW_CSUM |
2793 NETIF_F_SCTP_CRC;
2794
2795#define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2796 NETIF_F_GSO_GRE_CSUM | \
2797 NETIF_F_GSO_IPXIP4 | \
2798 NETIF_F_GSO_IPXIP6 | \
2799 NETIF_F_GSO_UDP_TUNNEL | \
2800 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2801
2802 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2803 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2804 IGBVF_GSO_PARTIAL_FEATURES;
2805
2806 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2807
2808 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2809 netdev->mpls_features |= NETIF_F_HW_CSUM;
2810 netdev->hw_enc_features |= netdev->vlan_features;
2811
2812 /* set this bit last since it cannot be part of vlan_features */
2813 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2814 NETIF_F_HW_VLAN_CTAG_RX |
2815 NETIF_F_HW_VLAN_CTAG_TX;
2816
2817 /* MTU range: 68 - 9216 */
2818 netdev->min_mtu = ETH_MIN_MTU;
2819 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2820
2821 spin_lock_bh(&hw->mbx_lock);
2822
2823 /*reset the controller to put the device in a known good state */
2824 err = hw->mac.ops.reset_hw(hw);
2825 if (err) {
2826 dev_info(&pdev->dev,
2827 "PF still in reset state. Is the PF interface up?\n");
2828 } else {
2829 err = hw->mac.ops.read_mac_addr(hw);
2830 if (err)
2831 dev_info(&pdev->dev, "Error reading MAC address.\n");
2832 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2833 dev_info(&pdev->dev,
2834 "MAC address not assigned by administrator.\n");
2835 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2836 }
2837
2838 spin_unlock_bh(&hw->mbx_lock);
2839
2840 if (!is_valid_ether_addr(netdev->dev_addr)) {
2841 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2842 eth_hw_addr_random(netdev);
2843 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2844 netdev->addr_len);
2845 }
2846
2847 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2848
2849 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2850 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2851
2852 /* ring size defaults */
2853 adapter->rx_ring->count = 1024;
2854 adapter->tx_ring->count = 1024;
2855
2856 /* reset the hardware with the new settings */
2857 igbvf_reset(adapter);
2858
2859 /* set hardware-specific flags */
2860 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2861 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2862
2863 strcpy(netdev->name, "eth%d");
2864 err = register_netdev(netdev);
2865 if (err)
2866 goto err_hw_init;
2867
2868 /* tell the stack to leave us alone until igbvf_open() is called */
2869 netif_carrier_off(netdev);
2870 netif_stop_queue(netdev);
2871
2872 igbvf_print_device_info(adapter);
2873
2874 igbvf_initialize_last_counter_stats(adapter);
2875
2876 return 0;
2877
2878err_hw_init:
2879 netif_napi_del(&adapter->rx_ring->napi);
2880 kfree(adapter->tx_ring);
2881 kfree(adapter->rx_ring);
2882err_sw_init:
2883 igbvf_reset_interrupt_capability(adapter);
2884err_get_variants:
2885 iounmap(adapter->hw.hw_addr);
2886err_ioremap:
2887 free_netdev(netdev);
2888err_alloc_etherdev:
2889 pci_release_regions(pdev);
2890err_pci_reg:
2891err_dma:
2892 pci_disable_device(pdev);
2893 return err;
2894}
2895
2896/**
2897 * igbvf_remove - Device Removal Routine
2898 * @pdev: PCI device information struct
2899 *
2900 * igbvf_remove is called by the PCI subsystem to alert the driver
2901 * that it should release a PCI device. The could be caused by a
2902 * Hot-Plug event, or because the driver is going to be removed from
2903 * memory.
2904 **/
2905static void igbvf_remove(struct pci_dev *pdev)
2906{
2907 struct net_device *netdev = pci_get_drvdata(pdev);
2908 struct igbvf_adapter *adapter = netdev_priv(netdev);
2909 struct e1000_hw *hw = &adapter->hw;
2910
2911 /* The watchdog timer may be rescheduled, so explicitly
2912 * disable it from being rescheduled.
2913 */
2914 set_bit(__IGBVF_DOWN, &adapter->state);
2915 del_timer_sync(&adapter->watchdog_timer);
2916
2917 cancel_work_sync(&adapter->reset_task);
2918 cancel_work_sync(&adapter->watchdog_task);
2919
2920 unregister_netdev(netdev);
2921
2922 igbvf_reset_interrupt_capability(adapter);
2923
2924 /* it is important to delete the NAPI struct prior to freeing the
2925 * Rx ring so that you do not end up with null pointer refs
2926 */
2927 netif_napi_del(&adapter->rx_ring->napi);
2928 kfree(adapter->tx_ring);
2929 kfree(adapter->rx_ring);
2930
2931 iounmap(hw->hw_addr);
2932 if (hw->flash_address)
2933 iounmap(hw->flash_address);
2934 pci_release_regions(pdev);
2935
2936 free_netdev(netdev);
2937
2938 pci_disable_device(pdev);
2939}
2940
2941/* PCI Error Recovery (ERS) */
2942static const struct pci_error_handlers igbvf_err_handler = {
2943 .error_detected = igbvf_io_error_detected,
2944 .slot_reset = igbvf_io_slot_reset,
2945 .resume = igbvf_io_resume,
2946 .reset_prepare = igbvf_io_prepare,
2947 .reset_done = igbvf_io_reset_done,
2948};
2949
2950static const struct pci_device_id igbvf_pci_tbl[] = {
2951 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2952 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2953 { } /* terminate list */
2954};
2955MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2956
2957static DEFINE_SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2958
2959/* PCI Device API Driver */
2960static struct pci_driver igbvf_driver = {
2961 .name = igbvf_driver_name,
2962 .id_table = igbvf_pci_tbl,
2963 .probe = igbvf_probe,
2964 .remove = igbvf_remove,
2965 .driver.pm = pm_sleep_ptr(&igbvf_pm_ops),
2966 .shutdown = igbvf_shutdown,
2967 .err_handler = &igbvf_err_handler
2968};
2969
2970/**
2971 * igbvf_init_module - Driver Registration Routine
2972 *
2973 * igbvf_init_module is the first routine called when the driver is
2974 * loaded. All it does is register with the PCI subsystem.
2975 **/
2976static int __init igbvf_init_module(void)
2977{
2978 int ret;
2979
2980 pr_info("%s\n", igbvf_driver_string);
2981 pr_info("%s\n", igbvf_copyright);
2982
2983 ret = pci_register_driver(&igbvf_driver);
2984
2985 return ret;
2986}
2987module_init(igbvf_init_module);
2988
2989/**
2990 * igbvf_exit_module - Driver Exit Cleanup Routine
2991 *
2992 * igbvf_exit_module is called just before the driver is removed
2993 * from memory.
2994 **/
2995static void __exit igbvf_exit_module(void)
2996{
2997 pci_unregister_driver(&igbvf_driver);
2998}
2999module_exit(igbvf_exit_module);
3000
3001MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3002MODULE_LICENSE("GPL v2");
3003
3004/* netdev.c */
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
33#include <linux/pci.h>
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/delay.h>
37#include <linux/netdevice.h>
38#include <linux/tcp.h>
39#include <linux/ipv6.h>
40#include <linux/slab.h>
41#include <net/checksum.h>
42#include <net/ip6_checksum.h>
43#include <linux/mii.h>
44#include <linux/ethtool.h>
45#include <linux/if_vlan.h>
46#include <linux/prefetch.h>
47
48#include "igbvf.h"
49
50#define DRV_VERSION "2.0.2-k"
51char igbvf_driver_name[] = "igbvf";
52const char igbvf_driver_version[] = DRV_VERSION;
53static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59static int debug = -1;
60module_param(debug, int, 0);
61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63static int igbvf_poll(struct napi_struct *napi, int budget);
64static void igbvf_reset(struct igbvf_adapter *);
65static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73};
74
75static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
80};
81
82static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
85};
86
87/**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 **/
90static int igbvf_desc_unused(struct igbvf_ring *ring)
91{
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96}
97
98/**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109{
110 u16 vid;
111
112 if (status & E1000_RXD_STAT_VP) {
113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 (status & E1000_RXDEXT_STATERR_LB))
115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 else
117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 if (test_bit(vid, adapter->active_vlans))
119 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120 }
121
122 napi_gro_receive(&adapter->rx_ring->napi, skb);
123}
124
125static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 u32 status_err, struct sk_buff *skb)
127{
128 skb_checksum_none_assert(skb);
129
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 if ((status_err & E1000_RXD_STAT_IXSM) ||
132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 return;
134
135 /* TCP/UDP checksum error bit is set */
136 if (status_err &
137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 /* let the stack verify checksum errors */
139 adapter->hw_csum_err++;
140 return;
141 }
142
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147 adapter->hw_csum_good++;
148}
149
150/**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 int cleaned_count)
157{
158 struct igbvf_adapter *adapter = rx_ring->adapter;
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 union e1000_adv_rx_desc *rx_desc;
162 struct igbvf_buffer *buffer_info;
163 struct sk_buff *skb;
164 unsigned int i;
165 int bufsz;
166
167 i = rx_ring->next_to_use;
168 buffer_info = &rx_ring->buffer_info[i];
169
170 if (adapter->rx_ps_hdr_size)
171 bufsz = adapter->rx_ps_hdr_size;
172 else
173 bufsz = adapter->rx_buffer_len;
174
175 while (cleaned_count--) {
176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 if (!buffer_info->page) {
180 buffer_info->page = alloc_page(GFP_ATOMIC);
181 if (!buffer_info->page) {
182 adapter->alloc_rx_buff_failed++;
183 goto no_buffers;
184 }
185 buffer_info->page_offset = 0;
186 } else {
187 buffer_info->page_offset ^= PAGE_SIZE / 2;
188 }
189 buffer_info->page_dma =
190 dma_map_page(&pdev->dev, buffer_info->page,
191 buffer_info->page_offset,
192 PAGE_SIZE / 2,
193 DMA_FROM_DEVICE);
194 if (dma_mapping_error(&pdev->dev,
195 buffer_info->page_dma)) {
196 __free_page(buffer_info->page);
197 buffer_info->page = NULL;
198 dev_err(&pdev->dev, "RX DMA map failed\n");
199 break;
200 }
201 }
202
203 if (!buffer_info->skb) {
204 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 if (!skb) {
206 adapter->alloc_rx_buff_failed++;
207 goto no_buffers;
208 }
209
210 buffer_info->skb = skb;
211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 bufsz,
213 DMA_FROM_DEVICE);
214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 dev_kfree_skb(buffer_info->skb);
216 buffer_info->skb = NULL;
217 dev_err(&pdev->dev, "RX DMA map failed\n");
218 goto no_buffers;
219 }
220 }
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info. */
223 if (adapter->rx_ps_hdr_size) {
224 rx_desc->read.pkt_addr =
225 cpu_to_le64(buffer_info->page_dma);
226 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227 } else {
228 rx_desc->read.pkt_addr =
229 cpu_to_le64(buffer_info->dma);
230 rx_desc->read.hdr_addr = 0;
231 }
232
233 i++;
234 if (i == rx_ring->count)
235 i = 0;
236 buffer_info = &rx_ring->buffer_info[i];
237 }
238
239no_buffers:
240 if (rx_ring->next_to_use != i) {
241 rx_ring->next_to_use = i;
242 if (i == 0)
243 i = (rx_ring->count - 1);
244 else
245 i--;
246
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
250 * such as IA-64). */
251 wmb();
252 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253 }
254}
255
256/**
257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258 * @adapter: board private structure
259 *
260 * the return value indicates whether actual cleaning was done, there
261 * is no guarantee that everything was cleaned
262 **/
263static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264 int *work_done, int work_to_do)
265{
266 struct igbvf_ring *rx_ring = adapter->rx_ring;
267 struct net_device *netdev = adapter->netdev;
268 struct pci_dev *pdev = adapter->pdev;
269 union e1000_adv_rx_desc *rx_desc, *next_rxd;
270 struct igbvf_buffer *buffer_info, *next_buffer;
271 struct sk_buff *skb;
272 bool cleaned = false;
273 int cleaned_count = 0;
274 unsigned int total_bytes = 0, total_packets = 0;
275 unsigned int i;
276 u32 length, hlen, staterr;
277
278 i = rx_ring->next_to_clean;
279 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282 while (staterr & E1000_RXD_STAT_DD) {
283 if (*work_done >= work_to_do)
284 break;
285 (*work_done)++;
286 rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288 buffer_info = &rx_ring->buffer_info[i];
289
290 /* HW will not DMA in data larger than the given buffer, even
291 * if it parses the (NFS, of course) header to be larger. In
292 * that case, it fills the header buffer and spills the rest
293 * into the page.
294 */
295 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297 if (hlen > adapter->rx_ps_hdr_size)
298 hlen = adapter->rx_ps_hdr_size;
299
300 length = le16_to_cpu(rx_desc->wb.upper.length);
301 cleaned = true;
302 cleaned_count++;
303
304 skb = buffer_info->skb;
305 prefetch(skb->data - NET_IP_ALIGN);
306 buffer_info->skb = NULL;
307 if (!adapter->rx_ps_hdr_size) {
308 dma_unmap_single(&pdev->dev, buffer_info->dma,
309 adapter->rx_buffer_len,
310 DMA_FROM_DEVICE);
311 buffer_info->dma = 0;
312 skb_put(skb, length);
313 goto send_up;
314 }
315
316 if (!skb_shinfo(skb)->nr_frags) {
317 dma_unmap_single(&pdev->dev, buffer_info->dma,
318 adapter->rx_ps_hdr_size,
319 DMA_FROM_DEVICE);
320 skb_put(skb, hlen);
321 }
322
323 if (length) {
324 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325 PAGE_SIZE / 2,
326 DMA_FROM_DEVICE);
327 buffer_info->page_dma = 0;
328
329 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330 buffer_info->page,
331 buffer_info->page_offset,
332 length);
333
334 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335 (page_count(buffer_info->page) != 1))
336 buffer_info->page = NULL;
337 else
338 get_page(buffer_info->page);
339
340 skb->len += length;
341 skb->data_len += length;
342 skb->truesize += PAGE_SIZE / 2;
343 }
344send_up:
345 i++;
346 if (i == rx_ring->count)
347 i = 0;
348 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349 prefetch(next_rxd);
350 next_buffer = &rx_ring->buffer_info[i];
351
352 if (!(staterr & E1000_RXD_STAT_EOP)) {
353 buffer_info->skb = next_buffer->skb;
354 buffer_info->dma = next_buffer->dma;
355 next_buffer->skb = skb;
356 next_buffer->dma = 0;
357 goto next_desc;
358 }
359
360 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361 dev_kfree_skb_irq(skb);
362 goto next_desc;
363 }
364
365 total_bytes += skb->len;
366 total_packets++;
367
368 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370 skb->protocol = eth_type_trans(skb, netdev);
371
372 igbvf_receive_skb(adapter, netdev, skb, staterr,
373 rx_desc->wb.upper.vlan);
374
375next_desc:
376 rx_desc->wb.upper.status_error = 0;
377
378 /* return some buffers to hardware, one at a time is too slow */
379 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381 cleaned_count = 0;
382 }
383
384 /* use prefetched values */
385 rx_desc = next_rxd;
386 buffer_info = next_buffer;
387
388 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389 }
390
391 rx_ring->next_to_clean = i;
392 cleaned_count = igbvf_desc_unused(rx_ring);
393
394 if (cleaned_count)
395 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397 adapter->total_rx_packets += total_packets;
398 adapter->total_rx_bytes += total_bytes;
399 adapter->net_stats.rx_bytes += total_bytes;
400 adapter->net_stats.rx_packets += total_packets;
401 return cleaned;
402}
403
404static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405 struct igbvf_buffer *buffer_info)
406{
407 if (buffer_info->dma) {
408 if (buffer_info->mapped_as_page)
409 dma_unmap_page(&adapter->pdev->dev,
410 buffer_info->dma,
411 buffer_info->length,
412 DMA_TO_DEVICE);
413 else
414 dma_unmap_single(&adapter->pdev->dev,
415 buffer_info->dma,
416 buffer_info->length,
417 DMA_TO_DEVICE);
418 buffer_info->dma = 0;
419 }
420 if (buffer_info->skb) {
421 dev_kfree_skb_any(buffer_info->skb);
422 buffer_info->skb = NULL;
423 }
424 buffer_info->time_stamp = 0;
425}
426
427/**
428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429 * @adapter: board private structure
430 *
431 * Return 0 on success, negative on failure
432 **/
433int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434 struct igbvf_ring *tx_ring)
435{
436 struct pci_dev *pdev = adapter->pdev;
437 int size;
438
439 size = sizeof(struct igbvf_buffer) * tx_ring->count;
440 tx_ring->buffer_info = vzalloc(size);
441 if (!tx_ring->buffer_info)
442 goto err;
443
444 /* round up to nearest 4K */
445 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446 tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449 &tx_ring->dma, GFP_KERNEL);
450 if (!tx_ring->desc)
451 goto err;
452
453 tx_ring->adapter = adapter;
454 tx_ring->next_to_use = 0;
455 tx_ring->next_to_clean = 0;
456
457 return 0;
458err:
459 vfree(tx_ring->buffer_info);
460 dev_err(&adapter->pdev->dev,
461 "Unable to allocate memory for the transmit descriptor ring\n");
462 return -ENOMEM;
463}
464
465/**
466 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
467 * @adapter: board private structure
468 *
469 * Returns 0 on success, negative on failure
470 **/
471int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
472 struct igbvf_ring *rx_ring)
473{
474 struct pci_dev *pdev = adapter->pdev;
475 int size, desc_len;
476
477 size = sizeof(struct igbvf_buffer) * rx_ring->count;
478 rx_ring->buffer_info = vzalloc(size);
479 if (!rx_ring->buffer_info)
480 goto err;
481
482 desc_len = sizeof(union e1000_adv_rx_desc);
483
484 /* Round up to nearest 4K */
485 rx_ring->size = rx_ring->count * desc_len;
486 rx_ring->size = ALIGN(rx_ring->size, 4096);
487
488 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
489 &rx_ring->dma, GFP_KERNEL);
490 if (!rx_ring->desc)
491 goto err;
492
493 rx_ring->next_to_clean = 0;
494 rx_ring->next_to_use = 0;
495
496 rx_ring->adapter = adapter;
497
498 return 0;
499
500err:
501 vfree(rx_ring->buffer_info);
502 rx_ring->buffer_info = NULL;
503 dev_err(&adapter->pdev->dev,
504 "Unable to allocate memory for the receive descriptor ring\n");
505 return -ENOMEM;
506}
507
508/**
509 * igbvf_clean_tx_ring - Free Tx Buffers
510 * @tx_ring: ring to be cleaned
511 **/
512static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
513{
514 struct igbvf_adapter *adapter = tx_ring->adapter;
515 struct igbvf_buffer *buffer_info;
516 unsigned long size;
517 unsigned int i;
518
519 if (!tx_ring->buffer_info)
520 return;
521
522 /* Free all the Tx ring sk_buffs */
523 for (i = 0; i < tx_ring->count; i++) {
524 buffer_info = &tx_ring->buffer_info[i];
525 igbvf_put_txbuf(adapter, buffer_info);
526 }
527
528 size = sizeof(struct igbvf_buffer) * tx_ring->count;
529 memset(tx_ring->buffer_info, 0, size);
530
531 /* Zero out the descriptor ring */
532 memset(tx_ring->desc, 0, tx_ring->size);
533
534 tx_ring->next_to_use = 0;
535 tx_ring->next_to_clean = 0;
536
537 writel(0, adapter->hw.hw_addr + tx_ring->head);
538 writel(0, adapter->hw.hw_addr + tx_ring->tail);
539}
540
541/**
542 * igbvf_free_tx_resources - Free Tx Resources per Queue
543 * @tx_ring: ring to free resources from
544 *
545 * Free all transmit software resources
546 **/
547void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
548{
549 struct pci_dev *pdev = tx_ring->adapter->pdev;
550
551 igbvf_clean_tx_ring(tx_ring);
552
553 vfree(tx_ring->buffer_info);
554 tx_ring->buffer_info = NULL;
555
556 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
557 tx_ring->dma);
558
559 tx_ring->desc = NULL;
560}
561
562/**
563 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
564 * @adapter: board private structure
565 **/
566static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
567{
568 struct igbvf_adapter *adapter = rx_ring->adapter;
569 struct igbvf_buffer *buffer_info;
570 struct pci_dev *pdev = adapter->pdev;
571 unsigned long size;
572 unsigned int i;
573
574 if (!rx_ring->buffer_info)
575 return;
576
577 /* Free all the Rx ring sk_buffs */
578 for (i = 0; i < rx_ring->count; i++) {
579 buffer_info = &rx_ring->buffer_info[i];
580 if (buffer_info->dma) {
581 if (adapter->rx_ps_hdr_size){
582 dma_unmap_single(&pdev->dev, buffer_info->dma,
583 adapter->rx_ps_hdr_size,
584 DMA_FROM_DEVICE);
585 } else {
586 dma_unmap_single(&pdev->dev, buffer_info->dma,
587 adapter->rx_buffer_len,
588 DMA_FROM_DEVICE);
589 }
590 buffer_info->dma = 0;
591 }
592
593 if (buffer_info->skb) {
594 dev_kfree_skb(buffer_info->skb);
595 buffer_info->skb = NULL;
596 }
597
598 if (buffer_info->page) {
599 if (buffer_info->page_dma)
600 dma_unmap_page(&pdev->dev,
601 buffer_info->page_dma,
602 PAGE_SIZE / 2,
603 DMA_FROM_DEVICE);
604 put_page(buffer_info->page);
605 buffer_info->page = NULL;
606 buffer_info->page_dma = 0;
607 buffer_info->page_offset = 0;
608 }
609 }
610
611 size = sizeof(struct igbvf_buffer) * rx_ring->count;
612 memset(rx_ring->buffer_info, 0, size);
613
614 /* Zero out the descriptor ring */
615 memset(rx_ring->desc, 0, rx_ring->size);
616
617 rx_ring->next_to_clean = 0;
618 rx_ring->next_to_use = 0;
619
620 writel(0, adapter->hw.hw_addr + rx_ring->head);
621 writel(0, adapter->hw.hw_addr + rx_ring->tail);
622}
623
624/**
625 * igbvf_free_rx_resources - Free Rx Resources
626 * @rx_ring: ring to clean the resources from
627 *
628 * Free all receive software resources
629 **/
630
631void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
632{
633 struct pci_dev *pdev = rx_ring->adapter->pdev;
634
635 igbvf_clean_rx_ring(rx_ring);
636
637 vfree(rx_ring->buffer_info);
638 rx_ring->buffer_info = NULL;
639
640 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
641 rx_ring->dma);
642 rx_ring->desc = NULL;
643}
644
645/**
646 * igbvf_update_itr - update the dynamic ITR value based on statistics
647 * @adapter: pointer to adapter
648 * @itr_setting: current adapter->itr
649 * @packets: the number of packets during this measurement interval
650 * @bytes: the number of bytes during this measurement interval
651 *
652 * Stores a new ITR value based on packets and byte
653 * counts during the last interrupt. The advantage of per interrupt
654 * computation is faster updates and more accurate ITR for the current
655 * traffic pattern. Constants in this function were computed
656 * based on theoretical maximum wire speed and thresholds were set based
657 * on testing data as well as attempting to minimize response time
658 * while increasing bulk throughput.
659 **/
660static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
661 enum latency_range itr_setting,
662 int packets, int bytes)
663{
664 enum latency_range retval = itr_setting;
665
666 if (packets == 0)
667 goto update_itr_done;
668
669 switch (itr_setting) {
670 case lowest_latency:
671 /* handle TSO and jumbo frames */
672 if (bytes/packets > 8000)
673 retval = bulk_latency;
674 else if ((packets < 5) && (bytes > 512))
675 retval = low_latency;
676 break;
677 case low_latency: /* 50 usec aka 20000 ints/s */
678 if (bytes > 10000) {
679 /* this if handles the TSO accounting */
680 if (bytes/packets > 8000)
681 retval = bulk_latency;
682 else if ((packets < 10) || ((bytes/packets) > 1200))
683 retval = bulk_latency;
684 else if ((packets > 35))
685 retval = lowest_latency;
686 } else if (bytes/packets > 2000) {
687 retval = bulk_latency;
688 } else if (packets <= 2 && bytes < 512) {
689 retval = lowest_latency;
690 }
691 break;
692 case bulk_latency: /* 250 usec aka 4000 ints/s */
693 if (bytes > 25000) {
694 if (packets > 35)
695 retval = low_latency;
696 } else if (bytes < 6000) {
697 retval = low_latency;
698 }
699 break;
700 default:
701 break;
702 }
703
704update_itr_done:
705 return retval;
706}
707
708static int igbvf_range_to_itr(enum latency_range current_range)
709{
710 int new_itr;
711
712 switch (current_range) {
713 /* counts and packets in update_itr are dependent on these numbers */
714 case lowest_latency:
715 new_itr = IGBVF_70K_ITR;
716 break;
717 case low_latency:
718 new_itr = IGBVF_20K_ITR;
719 break;
720 case bulk_latency:
721 new_itr = IGBVF_4K_ITR;
722 break;
723 default:
724 new_itr = IGBVF_START_ITR;
725 break;
726 }
727 return new_itr;
728}
729
730static void igbvf_set_itr(struct igbvf_adapter *adapter)
731{
732 u32 new_itr;
733
734 adapter->tx_ring->itr_range =
735 igbvf_update_itr(adapter,
736 adapter->tx_ring->itr_val,
737 adapter->total_tx_packets,
738 adapter->total_tx_bytes);
739
740 /* conservative mode (itr 3) eliminates the lowest_latency setting */
741 if (adapter->requested_itr == 3 &&
742 adapter->tx_ring->itr_range == lowest_latency)
743 adapter->tx_ring->itr_range = low_latency;
744
745 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
746
747
748 if (new_itr != adapter->tx_ring->itr_val) {
749 u32 current_itr = adapter->tx_ring->itr_val;
750 /*
751 * this attempts to bias the interrupt rate towards Bulk
752 * by adding intermediate steps when interrupt rate is
753 * increasing
754 */
755 new_itr = new_itr > current_itr ?
756 min(current_itr + (new_itr >> 2), new_itr) :
757 new_itr;
758 adapter->tx_ring->itr_val = new_itr;
759
760 adapter->tx_ring->set_itr = 1;
761 }
762
763 adapter->rx_ring->itr_range =
764 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765 adapter->total_rx_packets,
766 adapter->total_rx_bytes);
767 if (adapter->requested_itr == 3 &&
768 adapter->rx_ring->itr_range == lowest_latency)
769 adapter->rx_ring->itr_range = low_latency;
770
771 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773 if (new_itr != adapter->rx_ring->itr_val) {
774 u32 current_itr = adapter->rx_ring->itr_val;
775 new_itr = new_itr > current_itr ?
776 min(current_itr + (new_itr >> 2), new_itr) :
777 new_itr;
778 adapter->rx_ring->itr_val = new_itr;
779
780 adapter->rx_ring->set_itr = 1;
781 }
782}
783
784/**
785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786 * @adapter: board private structure
787 *
788 * returns true if ring is completely cleaned
789 **/
790static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791{
792 struct igbvf_adapter *adapter = tx_ring->adapter;
793 struct net_device *netdev = adapter->netdev;
794 struct igbvf_buffer *buffer_info;
795 struct sk_buff *skb;
796 union e1000_adv_tx_desc *tx_desc, *eop_desc;
797 unsigned int total_bytes = 0, total_packets = 0;
798 unsigned int i, count = 0;
799 bool cleaned = false;
800
801 i = tx_ring->next_to_clean;
802 buffer_info = &tx_ring->buffer_info[i];
803 eop_desc = buffer_info->next_to_watch;
804
805 do {
806 /* if next_to_watch is not set then there is no work pending */
807 if (!eop_desc)
808 break;
809
810 /* prevent any other reads prior to eop_desc */
811 read_barrier_depends();
812
813 /* if DD is not set pending work has not been completed */
814 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815 break;
816
817 /* clear next_to_watch to prevent false hangs */
818 buffer_info->next_to_watch = NULL;
819
820 for (cleaned = false; !cleaned; count++) {
821 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822 cleaned = (tx_desc == eop_desc);
823 skb = buffer_info->skb;
824
825 if (skb) {
826 unsigned int segs, bytecount;
827
828 /* gso_segs is currently only valid for tcp */
829 segs = skb_shinfo(skb)->gso_segs ?: 1;
830 /* multiply data chunks by size of headers */
831 bytecount = ((segs - 1) * skb_headlen(skb)) +
832 skb->len;
833 total_packets += segs;
834 total_bytes += bytecount;
835 }
836
837 igbvf_put_txbuf(adapter, buffer_info);
838 tx_desc->wb.status = 0;
839
840 i++;
841 if (i == tx_ring->count)
842 i = 0;
843
844 buffer_info = &tx_ring->buffer_info[i];
845 }
846
847 eop_desc = buffer_info->next_to_watch;
848 } while (count < tx_ring->count);
849
850 tx_ring->next_to_clean = i;
851
852 if (unlikely(count &&
853 netif_carrier_ok(netdev) &&
854 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855 /* Make sure that anybody stopping the queue after this
856 * sees the new next_to_clean.
857 */
858 smp_mb();
859 if (netif_queue_stopped(netdev) &&
860 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861 netif_wake_queue(netdev);
862 ++adapter->restart_queue;
863 }
864 }
865
866 adapter->net_stats.tx_bytes += total_bytes;
867 adapter->net_stats.tx_packets += total_packets;
868 return count < tx_ring->count;
869}
870
871static irqreturn_t igbvf_msix_other(int irq, void *data)
872{
873 struct net_device *netdev = data;
874 struct igbvf_adapter *adapter = netdev_priv(netdev);
875 struct e1000_hw *hw = &adapter->hw;
876
877 adapter->int_counter1++;
878
879 netif_carrier_off(netdev);
880 hw->mac.get_link_status = 1;
881 if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884 ew32(EIMS, adapter->eims_other);
885
886 return IRQ_HANDLED;
887}
888
889static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890{
891 struct net_device *netdev = data;
892 struct igbvf_adapter *adapter = netdev_priv(netdev);
893 struct e1000_hw *hw = &adapter->hw;
894 struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896 if (tx_ring->set_itr) {
897 writel(tx_ring->itr_val,
898 adapter->hw.hw_addr + tx_ring->itr_register);
899 adapter->tx_ring->set_itr = 0;
900 }
901
902 adapter->total_tx_bytes = 0;
903 adapter->total_tx_packets = 0;
904
905 /* auto mask will automatically reenable the interrupt when we write
906 * EICS */
907 if (!igbvf_clean_tx_irq(tx_ring))
908 /* Ring was not completely cleaned, so fire another interrupt */
909 ew32(EICS, tx_ring->eims_value);
910 else
911 ew32(EIMS, tx_ring->eims_value);
912
913 return IRQ_HANDLED;
914}
915
916static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917{
918 struct net_device *netdev = data;
919 struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921 adapter->int_counter0++;
922
923 /* Write the ITR value calculated at the end of the
924 * previous interrupt.
925 */
926 if (adapter->rx_ring->set_itr) {
927 writel(adapter->rx_ring->itr_val,
928 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929 adapter->rx_ring->set_itr = 0;
930 }
931
932 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933 adapter->total_rx_bytes = 0;
934 adapter->total_rx_packets = 0;
935 __napi_schedule(&adapter->rx_ring->napi);
936 }
937
938 return IRQ_HANDLED;
939}
940
941#define IGBVF_NO_QUEUE -1
942
943static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944 int tx_queue, int msix_vector)
945{
946 struct e1000_hw *hw = &adapter->hw;
947 u32 ivar, index;
948
949 /* 82576 uses a table-based method for assigning vectors.
950 Each queue has a single entry in the table to which we write
951 a vector number along with a "valid" bit. Sadly, the layout
952 of the table is somewhat counterintuitive. */
953 if (rx_queue > IGBVF_NO_QUEUE) {
954 index = (rx_queue >> 1);
955 ivar = array_er32(IVAR0, index);
956 if (rx_queue & 0x1) {
957 /* vector goes into third byte of register */
958 ivar = ivar & 0xFF00FFFF;
959 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
960 } else {
961 /* vector goes into low byte of register */
962 ivar = ivar & 0xFFFFFF00;
963 ivar |= msix_vector | E1000_IVAR_VALID;
964 }
965 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
966 array_ew32(IVAR0, index, ivar);
967 }
968 if (tx_queue > IGBVF_NO_QUEUE) {
969 index = (tx_queue >> 1);
970 ivar = array_er32(IVAR0, index);
971 if (tx_queue & 0x1) {
972 /* vector goes into high byte of register */
973 ivar = ivar & 0x00FFFFFF;
974 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
975 } else {
976 /* vector goes into second byte of register */
977 ivar = ivar & 0xFFFF00FF;
978 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
979 }
980 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
981 array_ew32(IVAR0, index, ivar);
982 }
983}
984
985/**
986 * igbvf_configure_msix - Configure MSI-X hardware
987 *
988 * igbvf_configure_msix sets up the hardware to properly
989 * generate MSI-X interrupts.
990 **/
991static void igbvf_configure_msix(struct igbvf_adapter *adapter)
992{
993 u32 tmp;
994 struct e1000_hw *hw = &adapter->hw;
995 struct igbvf_ring *tx_ring = adapter->tx_ring;
996 struct igbvf_ring *rx_ring = adapter->rx_ring;
997 int vector = 0;
998
999 adapter->eims_enable_mask = 0;
1000
1001 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1002 adapter->eims_enable_mask |= tx_ring->eims_value;
1003 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1004 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1005 adapter->eims_enable_mask |= rx_ring->eims_value;
1006 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1007
1008 /* set vector for other causes, i.e. link changes */
1009
1010 tmp = (vector++ | E1000_IVAR_VALID);
1011
1012 ew32(IVAR_MISC, tmp);
1013
1014 adapter->eims_enable_mask = (1 << (vector)) - 1;
1015 adapter->eims_other = 1 << (vector - 1);
1016 e1e_flush();
1017}
1018
1019static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1020{
1021 if (adapter->msix_entries) {
1022 pci_disable_msix(adapter->pdev);
1023 kfree(adapter->msix_entries);
1024 adapter->msix_entries = NULL;
1025 }
1026}
1027
1028/**
1029 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1030 *
1031 * Attempt to configure interrupts using the best available
1032 * capabilities of the hardware and kernel.
1033 **/
1034static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1035{
1036 int err = -ENOMEM;
1037 int i;
1038
1039 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1041 GFP_KERNEL);
1042 if (adapter->msix_entries) {
1043 for (i = 0; i < 3; i++)
1044 adapter->msix_entries[i].entry = i;
1045
1046 err = pci_enable_msix_range(adapter->pdev,
1047 adapter->msix_entries, 3, 3);
1048 }
1049
1050 if (err < 0) {
1051 /* MSI-X failed */
1052 dev_err(&adapter->pdev->dev,
1053 "Failed to initialize MSI-X interrupts.\n");
1054 igbvf_reset_interrupt_capability(adapter);
1055 }
1056}
1057
1058/**
1059 * igbvf_request_msix - Initialize MSI-X interrupts
1060 *
1061 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1062 * kernel.
1063 **/
1064static int igbvf_request_msix(struct igbvf_adapter *adapter)
1065{
1066 struct net_device *netdev = adapter->netdev;
1067 int err = 0, vector = 0;
1068
1069 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1070 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1071 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1072 } else {
1073 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1074 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1075 }
1076
1077 err = request_irq(adapter->msix_entries[vector].vector,
1078 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1079 netdev);
1080 if (err)
1081 goto out;
1082
1083 adapter->tx_ring->itr_register = E1000_EITR(vector);
1084 adapter->tx_ring->itr_val = adapter->current_itr;
1085 vector++;
1086
1087 err = request_irq(adapter->msix_entries[vector].vector,
1088 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1089 netdev);
1090 if (err)
1091 goto out;
1092
1093 adapter->rx_ring->itr_register = E1000_EITR(vector);
1094 adapter->rx_ring->itr_val = adapter->current_itr;
1095 vector++;
1096
1097 err = request_irq(adapter->msix_entries[vector].vector,
1098 igbvf_msix_other, 0, netdev->name, netdev);
1099 if (err)
1100 goto out;
1101
1102 igbvf_configure_msix(adapter);
1103 return 0;
1104out:
1105 return err;
1106}
1107
1108/**
1109 * igbvf_alloc_queues - Allocate memory for all rings
1110 * @adapter: board private structure to initialize
1111 **/
1112static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1113{
1114 struct net_device *netdev = adapter->netdev;
1115
1116 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1117 if (!adapter->tx_ring)
1118 return -ENOMEM;
1119
1120 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121 if (!adapter->rx_ring) {
1122 kfree(adapter->tx_ring);
1123 return -ENOMEM;
1124 }
1125
1126 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1127
1128 return 0;
1129}
1130
1131/**
1132 * igbvf_request_irq - initialize interrupts
1133 *
1134 * Attempts to configure interrupts using the best available
1135 * capabilities of the hardware and kernel.
1136 **/
1137static int igbvf_request_irq(struct igbvf_adapter *adapter)
1138{
1139 int err = -1;
1140
1141 /* igbvf supports msi-x only */
1142 if (adapter->msix_entries)
1143 err = igbvf_request_msix(adapter);
1144
1145 if (!err)
1146 return err;
1147
1148 dev_err(&adapter->pdev->dev,
1149 "Unable to allocate interrupt, Error: %d\n", err);
1150
1151 return err;
1152}
1153
1154static void igbvf_free_irq(struct igbvf_adapter *adapter)
1155{
1156 struct net_device *netdev = adapter->netdev;
1157 int vector;
1158
1159 if (adapter->msix_entries) {
1160 for (vector = 0; vector < 3; vector++)
1161 free_irq(adapter->msix_entries[vector].vector, netdev);
1162 }
1163}
1164
1165/**
1166 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1167 **/
1168static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1169{
1170 struct e1000_hw *hw = &adapter->hw;
1171
1172 ew32(EIMC, ~0);
1173
1174 if (adapter->msix_entries)
1175 ew32(EIAC, 0);
1176}
1177
1178/**
1179 * igbvf_irq_enable - Enable default interrupt generation settings
1180 **/
1181static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1182{
1183 struct e1000_hw *hw = &adapter->hw;
1184
1185 ew32(EIAC, adapter->eims_enable_mask);
1186 ew32(EIAM, adapter->eims_enable_mask);
1187 ew32(EIMS, adapter->eims_enable_mask);
1188}
1189
1190/**
1191 * igbvf_poll - NAPI Rx polling callback
1192 * @napi: struct associated with this polling callback
1193 * @budget: amount of packets driver is allowed to process this poll
1194 **/
1195static int igbvf_poll(struct napi_struct *napi, int budget)
1196{
1197 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1198 struct igbvf_adapter *adapter = rx_ring->adapter;
1199 struct e1000_hw *hw = &adapter->hw;
1200 int work_done = 0;
1201
1202 igbvf_clean_rx_irq(adapter, &work_done, budget);
1203
1204 /* If not enough Rx work done, exit the polling mode */
1205 if (work_done < budget) {
1206 napi_complete(napi);
1207
1208 if (adapter->requested_itr & 3)
1209 igbvf_set_itr(adapter);
1210
1211 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1212 ew32(EIMS, adapter->rx_ring->eims_value);
1213 }
1214
1215 return work_done;
1216}
1217
1218/**
1219 * igbvf_set_rlpml - set receive large packet maximum length
1220 * @adapter: board private structure
1221 *
1222 * Configure the maximum size of packets that will be received
1223 */
1224static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1225{
1226 int max_frame_size;
1227 struct e1000_hw *hw = &adapter->hw;
1228
1229 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1230 e1000_rlpml_set_vf(hw, max_frame_size);
1231}
1232
1233static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234 __be16 proto, u16 vid)
1235{
1236 struct igbvf_adapter *adapter = netdev_priv(netdev);
1237 struct e1000_hw *hw = &adapter->hw;
1238
1239 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1240 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1241 return -EINVAL;
1242 }
1243 set_bit(vid, adapter->active_vlans);
1244 return 0;
1245}
1246
1247static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1248 __be16 proto, u16 vid)
1249{
1250 struct igbvf_adapter *adapter = netdev_priv(netdev);
1251 struct e1000_hw *hw = &adapter->hw;
1252
1253 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1254 dev_err(&adapter->pdev->dev,
1255 "Failed to remove vlan id %d\n", vid);
1256 return -EINVAL;
1257 }
1258 clear_bit(vid, adapter->active_vlans);
1259 return 0;
1260}
1261
1262static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1263{
1264 u16 vid;
1265
1266 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1267 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1268}
1269
1270/**
1271 * igbvf_configure_tx - Configure Transmit Unit after Reset
1272 * @adapter: board private structure
1273 *
1274 * Configure the Tx unit of the MAC after a reset.
1275 **/
1276static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1277{
1278 struct e1000_hw *hw = &adapter->hw;
1279 struct igbvf_ring *tx_ring = adapter->tx_ring;
1280 u64 tdba;
1281 u32 txdctl, dca_txctrl;
1282
1283 /* disable transmits */
1284 txdctl = er32(TXDCTL(0));
1285 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1286 e1e_flush();
1287 msleep(10);
1288
1289 /* Setup the HW Tx Head and Tail descriptor pointers */
1290 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1291 tdba = tx_ring->dma;
1292 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1293 ew32(TDBAH(0), (tdba >> 32));
1294 ew32(TDH(0), 0);
1295 ew32(TDT(0), 0);
1296 tx_ring->head = E1000_TDH(0);
1297 tx_ring->tail = E1000_TDT(0);
1298
1299 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1300 * MUST be delivered in order or it will completely screw up
1301 * our bookeeping.
1302 */
1303 dca_txctrl = er32(DCA_TXCTRL(0));
1304 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1305 ew32(DCA_TXCTRL(0), dca_txctrl);
1306
1307 /* enable transmits */
1308 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1309 ew32(TXDCTL(0), txdctl);
1310
1311 /* Setup Transmit Descriptor Settings for eop descriptor */
1312 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1313
1314 /* enable Report Status bit */
1315 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1316}
1317
1318/**
1319 * igbvf_setup_srrctl - configure the receive control registers
1320 * @adapter: Board private structure
1321 **/
1322static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1323{
1324 struct e1000_hw *hw = &adapter->hw;
1325 u32 srrctl = 0;
1326
1327 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1328 E1000_SRRCTL_BSIZEHDR_MASK |
1329 E1000_SRRCTL_BSIZEPKT_MASK);
1330
1331 /* Enable queue drop to avoid head of line blocking */
1332 srrctl |= E1000_SRRCTL_DROP_EN;
1333
1334 /* Setup buffer sizes */
1335 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1336 E1000_SRRCTL_BSIZEPKT_SHIFT;
1337
1338 if (adapter->rx_buffer_len < 2048) {
1339 adapter->rx_ps_hdr_size = 0;
1340 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1341 } else {
1342 adapter->rx_ps_hdr_size = 128;
1343 srrctl |= adapter->rx_ps_hdr_size <<
1344 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1345 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1346 }
1347
1348 ew32(SRRCTL(0), srrctl);
1349}
1350
1351/**
1352 * igbvf_configure_rx - Configure Receive Unit after Reset
1353 * @adapter: board private structure
1354 *
1355 * Configure the Rx unit of the MAC after a reset.
1356 **/
1357static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1358{
1359 struct e1000_hw *hw = &adapter->hw;
1360 struct igbvf_ring *rx_ring = adapter->rx_ring;
1361 u64 rdba;
1362 u32 rdlen, rxdctl;
1363
1364 /* disable receives */
1365 rxdctl = er32(RXDCTL(0));
1366 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1367 e1e_flush();
1368 msleep(10);
1369
1370 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1371
1372 /*
1373 * Setup the HW Rx Head and Tail Descriptor Pointers and
1374 * the Base and Length of the Rx Descriptor Ring
1375 */
1376 rdba = rx_ring->dma;
1377 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378 ew32(RDBAH(0), (rdba >> 32));
1379 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380 rx_ring->head = E1000_RDH(0);
1381 rx_ring->tail = E1000_RDT(0);
1382 ew32(RDH(0), 0);
1383 ew32(RDT(0), 0);
1384
1385 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386 rxdctl &= 0xFFF00000;
1387 rxdctl |= IGBVF_RX_PTHRESH;
1388 rxdctl |= IGBVF_RX_HTHRESH << 8;
1389 rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391 igbvf_set_rlpml(adapter);
1392
1393 /* enable receives */
1394 ew32(RXDCTL(0), rxdctl);
1395}
1396
1397/**
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1400 *
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated. This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1405 **/
1406static void igbvf_set_multi(struct net_device *netdev)
1407{
1408 struct igbvf_adapter *adapter = netdev_priv(netdev);
1409 struct e1000_hw *hw = &adapter->hw;
1410 struct netdev_hw_addr *ha;
1411 u8 *mta_list = NULL;
1412 int i;
1413
1414 if (!netdev_mc_empty(netdev)) {
1415 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416 GFP_ATOMIC);
1417 if (!mta_list)
1418 return;
1419 }
1420
1421 /* prepare a packed array of only addresses. */
1422 i = 0;
1423 netdev_for_each_mc_addr(ha, netdev)
1424 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
1426 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1427 kfree(mta_list);
1428}
1429
1430/**
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1433 **/
1434static void igbvf_configure(struct igbvf_adapter *adapter)
1435{
1436 igbvf_set_multi(adapter->netdev);
1437
1438 igbvf_restore_vlan(adapter);
1439
1440 igbvf_configure_tx(adapter);
1441 igbvf_setup_srrctl(adapter);
1442 igbvf_configure_rx(adapter);
1443 igbvf_alloc_rx_buffers(adapter->rx_ring,
1444 igbvf_desc_unused(adapter->rx_ring));
1445}
1446
1447/* igbvf_reset - bring the hardware into a known good state
1448 *
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1453 */
1454static void igbvf_reset(struct igbvf_adapter *adapter)
1455{
1456 struct e1000_mac_info *mac = &adapter->hw.mac;
1457 struct net_device *netdev = adapter->netdev;
1458 struct e1000_hw *hw = &adapter->hw;
1459
1460 /* Allow time for pending master requests to run */
1461 if (mac->ops.reset_hw(hw))
1462 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464 mac->ops.init_hw(hw);
1465
1466 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468 netdev->addr_len);
1469 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470 netdev->addr_len);
1471 }
1472
1473 adapter->last_reset = jiffies;
1474}
1475
1476int igbvf_up(struct igbvf_adapter *adapter)
1477{
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* hardware has been reset, we need to reload some things */
1481 igbvf_configure(adapter);
1482
1483 clear_bit(__IGBVF_DOWN, &adapter->state);
1484
1485 napi_enable(&adapter->rx_ring->napi);
1486 if (adapter->msix_entries)
1487 igbvf_configure_msix(adapter);
1488
1489 /* Clear any pending interrupts. */
1490 er32(EICR);
1491 igbvf_irq_enable(adapter);
1492
1493 /* start the watchdog */
1494 hw->mac.get_link_status = 1;
1495 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1496
1497
1498 return 0;
1499}
1500
1501void igbvf_down(struct igbvf_adapter *adapter)
1502{
1503 struct net_device *netdev = adapter->netdev;
1504 struct e1000_hw *hw = &adapter->hw;
1505 u32 rxdctl, txdctl;
1506
1507 /*
1508 * signal that we're down so the interrupt handler does not
1509 * reschedule our watchdog timer
1510 */
1511 set_bit(__IGBVF_DOWN, &adapter->state);
1512
1513 /* disable receives in the hardware */
1514 rxdctl = er32(RXDCTL(0));
1515 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1516
1517 netif_stop_queue(netdev);
1518
1519 /* disable transmits in the hardware */
1520 txdctl = er32(TXDCTL(0));
1521 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1522
1523 /* flush both disables and wait for them to finish */
1524 e1e_flush();
1525 msleep(10);
1526
1527 napi_disable(&adapter->rx_ring->napi);
1528
1529 igbvf_irq_disable(adapter);
1530
1531 del_timer_sync(&adapter->watchdog_timer);
1532
1533 netif_carrier_off(netdev);
1534
1535 /* record the stats before reset*/
1536 igbvf_update_stats(adapter);
1537
1538 adapter->link_speed = 0;
1539 adapter->link_duplex = 0;
1540
1541 igbvf_reset(adapter);
1542 igbvf_clean_tx_ring(adapter->tx_ring);
1543 igbvf_clean_rx_ring(adapter->rx_ring);
1544}
1545
1546void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1547{
1548 might_sleep();
1549 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1550 msleep(1);
1551 igbvf_down(adapter);
1552 igbvf_up(adapter);
1553 clear_bit(__IGBVF_RESETTING, &adapter->state);
1554}
1555
1556/**
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1559 *
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1563 **/
1564static int igbvf_sw_init(struct igbvf_adapter *adapter)
1565{
1566 struct net_device *netdev = adapter->netdev;
1567 s32 rc;
1568
1569 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1570 adapter->rx_ps_hdr_size = 0;
1571 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1572 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1573
1574 adapter->tx_int_delay = 8;
1575 adapter->tx_abs_int_delay = 32;
1576 adapter->rx_int_delay = 0;
1577 adapter->rx_abs_int_delay = 8;
1578 adapter->requested_itr = 3;
1579 adapter->current_itr = IGBVF_START_ITR;
1580
1581 /* Set various function pointers */
1582 adapter->ei->init_ops(&adapter->hw);
1583
1584 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1585 if (rc)
1586 return rc;
1587
1588 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1589 if (rc)
1590 return rc;
1591
1592 igbvf_set_interrupt_capability(adapter);
1593
1594 if (igbvf_alloc_queues(adapter))
1595 return -ENOMEM;
1596
1597 spin_lock_init(&adapter->tx_queue_lock);
1598
1599 /* Explicitly disable IRQ since the NIC can be in any state. */
1600 igbvf_irq_disable(adapter);
1601
1602 spin_lock_init(&adapter->stats_lock);
1603
1604 set_bit(__IGBVF_DOWN, &adapter->state);
1605 return 0;
1606}
1607
1608static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1609{
1610 struct e1000_hw *hw = &adapter->hw;
1611
1612 adapter->stats.last_gprc = er32(VFGPRC);
1613 adapter->stats.last_gorc = er32(VFGORC);
1614 adapter->stats.last_gptc = er32(VFGPTC);
1615 adapter->stats.last_gotc = er32(VFGOTC);
1616 adapter->stats.last_mprc = er32(VFMPRC);
1617 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1618 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1619 adapter->stats.last_gorlbc = er32(VFGORLBC);
1620 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1621
1622 adapter->stats.base_gprc = er32(VFGPRC);
1623 adapter->stats.base_gorc = er32(VFGORC);
1624 adapter->stats.base_gptc = er32(VFGPTC);
1625 adapter->stats.base_gotc = er32(VFGOTC);
1626 adapter->stats.base_mprc = er32(VFMPRC);
1627 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1628 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1629 adapter->stats.base_gorlbc = er32(VFGORLBC);
1630 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1631}
1632
1633/**
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1636 *
1637 * Returns 0 on success, negative value on failure
1638 *
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP). At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1644 **/
1645static int igbvf_open(struct net_device *netdev)
1646{
1647 struct igbvf_adapter *adapter = netdev_priv(netdev);
1648 struct e1000_hw *hw = &adapter->hw;
1649 int err;
1650
1651 /* disallow open during test */
1652 if (test_bit(__IGBVF_TESTING, &adapter->state))
1653 return -EBUSY;
1654
1655 /* allocate transmit descriptors */
1656 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1657 if (err)
1658 goto err_setup_tx;
1659
1660 /* allocate receive descriptors */
1661 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1662 if (err)
1663 goto err_setup_rx;
1664
1665 /*
1666 * before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so.
1670 */
1671 igbvf_configure(adapter);
1672
1673 err = igbvf_request_irq(adapter);
1674 if (err)
1675 goto err_req_irq;
1676
1677 /* From here on the code is the same as igbvf_up() */
1678 clear_bit(__IGBVF_DOWN, &adapter->state);
1679
1680 napi_enable(&adapter->rx_ring->napi);
1681
1682 /* clear any pending interrupts */
1683 er32(EICR);
1684
1685 igbvf_irq_enable(adapter);
1686
1687 /* start the watchdog */
1688 hw->mac.get_link_status = 1;
1689 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690
1691 return 0;
1692
1693err_req_irq:
1694 igbvf_free_rx_resources(adapter->rx_ring);
1695err_setup_rx:
1696 igbvf_free_tx_resources(adapter->tx_ring);
1697err_setup_tx:
1698 igbvf_reset(adapter);
1699
1700 return err;
1701}
1702
1703/**
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1706 *
1707 * Returns 0, this is not allowed to fail
1708 *
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS. The hardware is still under the drivers control, but
1711 * needs to be disabled. A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1713 **/
1714static int igbvf_close(struct net_device *netdev)
1715{
1716 struct igbvf_adapter *adapter = netdev_priv(netdev);
1717
1718 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1719 igbvf_down(adapter);
1720
1721 igbvf_free_irq(adapter);
1722
1723 igbvf_free_tx_resources(adapter->tx_ring);
1724 igbvf_free_rx_resources(adapter->rx_ring);
1725
1726 return 0;
1727}
1728/**
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1732 *
1733 * Returns 0 on success, negative on failure
1734 **/
1735static int igbvf_set_mac(struct net_device *netdev, void *p)
1736{
1737 struct igbvf_adapter *adapter = netdev_priv(netdev);
1738 struct e1000_hw *hw = &adapter->hw;
1739 struct sockaddr *addr = p;
1740
1741 if (!is_valid_ether_addr(addr->sa_data))
1742 return -EADDRNOTAVAIL;
1743
1744 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1745
1746 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1747
1748 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1749 return -EADDRNOTAVAIL;
1750
1751 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1752
1753 return 0;
1754}
1755
1756#define UPDATE_VF_COUNTER(reg, name) \
1757 { \
1758 u32 current_counter = er32(reg); \
1759 if (current_counter < adapter->stats.last_##name) \
1760 adapter->stats.name += 0x100000000LL; \
1761 adapter->stats.last_##name = current_counter; \
1762 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1763 adapter->stats.name |= current_counter; \
1764 }
1765
1766/**
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1769**/
1770void igbvf_update_stats(struct igbvf_adapter *adapter)
1771{
1772 struct e1000_hw *hw = &adapter->hw;
1773 struct pci_dev *pdev = adapter->pdev;
1774
1775 /*
1776 * Prevent stats update while adapter is being reset, link is down
1777 * or if the pci connection is down.
1778 */
1779 if (adapter->link_speed == 0)
1780 return;
1781
1782 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1783 return;
1784
1785 if (pci_channel_offline(pdev))
1786 return;
1787
1788 UPDATE_VF_COUNTER(VFGPRC, gprc);
1789 UPDATE_VF_COUNTER(VFGORC, gorc);
1790 UPDATE_VF_COUNTER(VFGPTC, gptc);
1791 UPDATE_VF_COUNTER(VFGOTC, gotc);
1792 UPDATE_VF_COUNTER(VFMPRC, mprc);
1793 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1794 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1795 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1796 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1797
1798 /* Fill out the OS statistics structure */
1799 adapter->net_stats.multicast = adapter->stats.mprc;
1800}
1801
1802static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1803{
1804 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1805 adapter->link_speed,
1806 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1807}
1808
1809static bool igbvf_has_link(struct igbvf_adapter *adapter)
1810{
1811 struct e1000_hw *hw = &adapter->hw;
1812 s32 ret_val = E1000_SUCCESS;
1813 bool link_active;
1814
1815 /* If interface is down, stay link down */
1816 if (test_bit(__IGBVF_DOWN, &adapter->state))
1817 return false;
1818
1819 ret_val = hw->mac.ops.check_for_link(hw);
1820 link_active = !hw->mac.get_link_status;
1821
1822 /* if check for link returns error we will need to reset */
1823 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1824 schedule_work(&adapter->reset_task);
1825
1826 return link_active;
1827}
1828
1829/**
1830 * igbvf_watchdog - Timer Call-back
1831 * @data: pointer to adapter cast into an unsigned long
1832 **/
1833static void igbvf_watchdog(unsigned long data)
1834{
1835 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1836
1837 /* Do the rest outside of interrupt context */
1838 schedule_work(&adapter->watchdog_task);
1839}
1840
1841static void igbvf_watchdog_task(struct work_struct *work)
1842{
1843 struct igbvf_adapter *adapter = container_of(work,
1844 struct igbvf_adapter,
1845 watchdog_task);
1846 struct net_device *netdev = adapter->netdev;
1847 struct e1000_mac_info *mac = &adapter->hw.mac;
1848 struct igbvf_ring *tx_ring = adapter->tx_ring;
1849 struct e1000_hw *hw = &adapter->hw;
1850 u32 link;
1851 int tx_pending = 0;
1852
1853 link = igbvf_has_link(adapter);
1854
1855 if (link) {
1856 if (!netif_carrier_ok(netdev)) {
1857 mac->ops.get_link_up_info(&adapter->hw,
1858 &adapter->link_speed,
1859 &adapter->link_duplex);
1860 igbvf_print_link_info(adapter);
1861
1862 netif_carrier_on(netdev);
1863 netif_wake_queue(netdev);
1864 }
1865 } else {
1866 if (netif_carrier_ok(netdev)) {
1867 adapter->link_speed = 0;
1868 adapter->link_duplex = 0;
1869 dev_info(&adapter->pdev->dev, "Link is Down\n");
1870 netif_carrier_off(netdev);
1871 netif_stop_queue(netdev);
1872 }
1873 }
1874
1875 if (netif_carrier_ok(netdev)) {
1876 igbvf_update_stats(adapter);
1877 } else {
1878 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1879 tx_ring->count);
1880 if (tx_pending) {
1881 /*
1882 * We've lost link, so the controller stops DMA,
1883 * but we've got queued Tx work that's never going
1884 * to get done, so reset controller to flush Tx.
1885 * (Do the reset outside of interrupt context).
1886 */
1887 adapter->tx_timeout_count++;
1888 schedule_work(&adapter->reset_task);
1889 }
1890 }
1891
1892 /* Cause software interrupt to ensure Rx ring is cleaned */
1893 ew32(EICS, adapter->rx_ring->eims_value);
1894
1895 /* Reset the timer */
1896 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1897 mod_timer(&adapter->watchdog_timer,
1898 round_jiffies(jiffies + (2 * HZ)));
1899}
1900
1901#define IGBVF_TX_FLAGS_CSUM 0x00000001
1902#define IGBVF_TX_FLAGS_VLAN 0x00000002
1903#define IGBVF_TX_FLAGS_TSO 0x00000004
1904#define IGBVF_TX_FLAGS_IPV4 0x00000008
1905#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1906#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1907
1908static int igbvf_tso(struct igbvf_adapter *adapter,
1909 struct igbvf_ring *tx_ring,
1910 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1911{
1912 struct e1000_adv_tx_context_desc *context_desc;
1913 struct igbvf_buffer *buffer_info;
1914 u32 info = 0, tu_cmd = 0;
1915 u32 mss_l4len_idx, l4len;
1916 unsigned int i;
1917 int err;
1918
1919 *hdr_len = 0;
1920
1921 err = skb_cow_head(skb, 0);
1922 if (err < 0) {
1923 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1924 return err;
1925 }
1926
1927 l4len = tcp_hdrlen(skb);
1928 *hdr_len += l4len;
1929
1930 if (skb->protocol == htons(ETH_P_IP)) {
1931 struct iphdr *iph = ip_hdr(skb);
1932 iph->tot_len = 0;
1933 iph->check = 0;
1934 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1935 iph->daddr, 0,
1936 IPPROTO_TCP,
1937 0);
1938 } else if (skb_is_gso_v6(skb)) {
1939 ipv6_hdr(skb)->payload_len = 0;
1940 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1941 &ipv6_hdr(skb)->daddr,
1942 0, IPPROTO_TCP, 0);
1943 }
1944
1945 i = tx_ring->next_to_use;
1946
1947 buffer_info = &tx_ring->buffer_info[i];
1948 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1949 /* VLAN MACLEN IPLEN */
1950 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1951 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1952 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953 *hdr_len += skb_network_offset(skb);
1954 info |= (skb_transport_header(skb) - skb_network_header(skb));
1955 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1956 context_desc->vlan_macip_lens = cpu_to_le32(info);
1957
1958 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1959 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1960
1961 if (skb->protocol == htons(ETH_P_IP))
1962 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1963 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1964
1965 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1966
1967 /* MSS L4LEN IDX */
1968 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1969 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1970
1971 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1972 context_desc->seqnum_seed = 0;
1973
1974 buffer_info->time_stamp = jiffies;
1975 buffer_info->dma = 0;
1976 i++;
1977 if (i == tx_ring->count)
1978 i = 0;
1979
1980 tx_ring->next_to_use = i;
1981
1982 return true;
1983}
1984
1985static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1986 struct igbvf_ring *tx_ring,
1987 struct sk_buff *skb, u32 tx_flags)
1988{
1989 struct e1000_adv_tx_context_desc *context_desc;
1990 unsigned int i;
1991 struct igbvf_buffer *buffer_info;
1992 u32 info = 0, tu_cmd = 0;
1993
1994 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1995 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1996 i = tx_ring->next_to_use;
1997 buffer_info = &tx_ring->buffer_info[i];
1998 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1999
2000 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2001 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2002
2003 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2004 if (skb->ip_summed == CHECKSUM_PARTIAL)
2005 info |= (skb_transport_header(skb) -
2006 skb_network_header(skb));
2007
2008
2009 context_desc->vlan_macip_lens = cpu_to_le32(info);
2010
2011 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2012
2013 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2014 switch (skb->protocol) {
2015 case htons(ETH_P_IP):
2016 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2017 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2018 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2019 break;
2020 case htons(ETH_P_IPV6):
2021 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2022 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023 break;
2024 default:
2025 break;
2026 }
2027 }
2028
2029 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2030 context_desc->seqnum_seed = 0;
2031 context_desc->mss_l4len_idx = 0;
2032
2033 buffer_info->time_stamp = jiffies;
2034 buffer_info->dma = 0;
2035 i++;
2036 if (i == tx_ring->count)
2037 i = 0;
2038 tx_ring->next_to_use = i;
2039
2040 return true;
2041 }
2042
2043 return false;
2044}
2045
2046static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2047{
2048 struct igbvf_adapter *adapter = netdev_priv(netdev);
2049
2050 /* there is enough descriptors then we don't need to worry */
2051 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2052 return 0;
2053
2054 netif_stop_queue(netdev);
2055
2056 smp_mb();
2057
2058 /* We need to check again just in case room has been made available */
2059 if (igbvf_desc_unused(adapter->tx_ring) < size)
2060 return -EBUSY;
2061
2062 netif_wake_queue(netdev);
2063
2064 ++adapter->restart_queue;
2065 return 0;
2066}
2067
2068#define IGBVF_MAX_TXD_PWR 16
2069#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2070
2071static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2072 struct igbvf_ring *tx_ring,
2073 struct sk_buff *skb)
2074{
2075 struct igbvf_buffer *buffer_info;
2076 struct pci_dev *pdev = adapter->pdev;
2077 unsigned int len = skb_headlen(skb);
2078 unsigned int count = 0, i;
2079 unsigned int f;
2080
2081 i = tx_ring->next_to_use;
2082
2083 buffer_info = &tx_ring->buffer_info[i];
2084 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2085 buffer_info->length = len;
2086 /* set time_stamp *before* dma to help avoid a possible race */
2087 buffer_info->time_stamp = jiffies;
2088 buffer_info->mapped_as_page = false;
2089 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2090 DMA_TO_DEVICE);
2091 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2092 goto dma_error;
2093
2094
2095 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2096 const struct skb_frag_struct *frag;
2097
2098 count++;
2099 i++;
2100 if (i == tx_ring->count)
2101 i = 0;
2102
2103 frag = &skb_shinfo(skb)->frags[f];
2104 len = skb_frag_size(frag);
2105
2106 buffer_info = &tx_ring->buffer_info[i];
2107 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108 buffer_info->length = len;
2109 buffer_info->time_stamp = jiffies;
2110 buffer_info->mapped_as_page = true;
2111 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2112 DMA_TO_DEVICE);
2113 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2114 goto dma_error;
2115 }
2116
2117 tx_ring->buffer_info[i].skb = skb;
2118
2119 return ++count;
2120
2121dma_error:
2122 dev_err(&pdev->dev, "TX DMA map failed\n");
2123
2124 /* clear timestamp and dma mappings for failed buffer_info mapping */
2125 buffer_info->dma = 0;
2126 buffer_info->time_stamp = 0;
2127 buffer_info->length = 0;
2128 buffer_info->mapped_as_page = false;
2129 if (count)
2130 count--;
2131
2132 /* clear timestamp and dma mappings for remaining portion of packet */
2133 while (count--) {
2134 if (i==0)
2135 i += tx_ring->count;
2136 i--;
2137 buffer_info = &tx_ring->buffer_info[i];
2138 igbvf_put_txbuf(adapter, buffer_info);
2139 }
2140
2141 return 0;
2142}
2143
2144static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 int tx_flags, int count,
2147 unsigned int first, u32 paylen,
2148 u8 hdr_len)
2149{
2150 union e1000_adv_tx_desc *tx_desc = NULL;
2151 struct igbvf_buffer *buffer_info;
2152 u32 olinfo_status = 0, cmd_type_len;
2153 unsigned int i;
2154
2155 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2156 E1000_ADVTXD_DCMD_DEXT);
2157
2158 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2159 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2160
2161 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2162 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2163
2164 /* insert tcp checksum */
2165 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2166
2167 /* insert ip checksum */
2168 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2169 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2170
2171 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2172 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173 }
2174
2175 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2176
2177 i = tx_ring->next_to_use;
2178 while (count--) {
2179 buffer_info = &tx_ring->buffer_info[i];
2180 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2181 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2182 tx_desc->read.cmd_type_len =
2183 cpu_to_le32(cmd_type_len | buffer_info->length);
2184 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2185 i++;
2186 if (i == tx_ring->count)
2187 i = 0;
2188 }
2189
2190 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2191 /* Force memory writes to complete before letting h/w
2192 * know there are new descriptors to fetch. (Only
2193 * applicable for weak-ordered memory model archs,
2194 * such as IA-64). */
2195 wmb();
2196
2197 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2198 tx_ring->next_to_use = i;
2199 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2200 /* we need this if more than one processor can write to our tail
2201 * at a time, it syncronizes IO on IA64/Altix systems */
2202 mmiowb();
2203}
2204
2205static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2206 struct net_device *netdev,
2207 struct igbvf_ring *tx_ring)
2208{
2209 struct igbvf_adapter *adapter = netdev_priv(netdev);
2210 unsigned int first, tx_flags = 0;
2211 u8 hdr_len = 0;
2212 int count = 0;
2213 int tso = 0;
2214
2215 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2216 dev_kfree_skb_any(skb);
2217 return NETDEV_TX_OK;
2218 }
2219
2220 if (skb->len <= 0) {
2221 dev_kfree_skb_any(skb);
2222 return NETDEV_TX_OK;
2223 }
2224
2225 /*
2226 * need: count + 4 desc gap to keep tail from touching
2227 * + 2 desc gap to keep tail from touching head,
2228 * + 1 desc for skb->data,
2229 * + 1 desc for context descriptor,
2230 * head, otherwise try next time
2231 */
2232 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2233 /* this is a hard error */
2234 return NETDEV_TX_BUSY;
2235 }
2236
2237 if (vlan_tx_tag_present(skb)) {
2238 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2239 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2240 }
2241
2242 if (skb->protocol == htons(ETH_P_IP))
2243 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2244
2245 first = tx_ring->next_to_use;
2246
2247 tso = skb_is_gso(skb) ?
2248 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2249 if (unlikely(tso < 0)) {
2250 dev_kfree_skb_any(skb);
2251 return NETDEV_TX_OK;
2252 }
2253
2254 if (tso)
2255 tx_flags |= IGBVF_TX_FLAGS_TSO;
2256 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2257 (skb->ip_summed == CHECKSUM_PARTIAL))
2258 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2259
2260 /*
2261 * count reflects descriptors mapped, if 0 then mapping error
2262 * has occurred and we need to rewind the descriptor queue
2263 */
2264 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2265
2266 if (count) {
2267 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2268 first, skb->len, hdr_len);
2269 /* Make sure there is space in the ring for the next send. */
2270 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2271 } else {
2272 dev_kfree_skb_any(skb);
2273 tx_ring->buffer_info[first].time_stamp = 0;
2274 tx_ring->next_to_use = first;
2275 }
2276
2277 return NETDEV_TX_OK;
2278}
2279
2280static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2281 struct net_device *netdev)
2282{
2283 struct igbvf_adapter *adapter = netdev_priv(netdev);
2284 struct igbvf_ring *tx_ring;
2285
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2289 }
2290
2291 tx_ring = &adapter->tx_ring[0];
2292
2293 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2294}
2295
2296/**
2297 * igbvf_tx_timeout - Respond to a Tx Hang
2298 * @netdev: network interface device structure
2299 **/
2300static void igbvf_tx_timeout(struct net_device *netdev)
2301{
2302 struct igbvf_adapter *adapter = netdev_priv(netdev);
2303
2304 /* Do the reset outside of interrupt context */
2305 adapter->tx_timeout_count++;
2306 schedule_work(&adapter->reset_task);
2307}
2308
2309static void igbvf_reset_task(struct work_struct *work)
2310{
2311 struct igbvf_adapter *adapter;
2312 adapter = container_of(work, struct igbvf_adapter, reset_task);
2313
2314 igbvf_reinit_locked(adapter);
2315}
2316
2317/**
2318 * igbvf_get_stats - Get System Network Statistics
2319 * @netdev: network interface device structure
2320 *
2321 * Returns the address of the device statistics structure.
2322 * The statistics are actually updated from the timer callback.
2323 **/
2324static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2325{
2326 struct igbvf_adapter *adapter = netdev_priv(netdev);
2327
2328 /* only return the current stats */
2329 return &adapter->net_stats;
2330}
2331
2332/**
2333 * igbvf_change_mtu - Change the Maximum Transfer Unit
2334 * @netdev: network interface device structure
2335 * @new_mtu: new value for maximum frame size
2336 *
2337 * Returns 0 on success, negative on failure
2338 **/
2339static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2340{
2341 struct igbvf_adapter *adapter = netdev_priv(netdev);
2342 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2343
2344 if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2345 max_frame > MAX_JUMBO_FRAME_SIZE)
2346 return -EINVAL;
2347
2348#define MAX_STD_JUMBO_FRAME_SIZE 9234
2349 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2350 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2351 return -EINVAL;
2352 }
2353
2354 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2355 msleep(1);
2356 /* igbvf_down has a dependency on max_frame_size */
2357 adapter->max_frame_size = max_frame;
2358 if (netif_running(netdev))
2359 igbvf_down(adapter);
2360
2361 /*
2362 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2363 * means we reserve 2 more, this pushes us to allocate from the next
2364 * larger slab size.
2365 * i.e. RXBUFFER_2048 --> size-4096 slab
2366 * However with the new *_jumbo_rx* routines, jumbo receives will use
2367 * fragmented skbs
2368 */
2369
2370 if (max_frame <= 1024)
2371 adapter->rx_buffer_len = 1024;
2372 else if (max_frame <= 2048)
2373 adapter->rx_buffer_len = 2048;
2374 else
2375#if (PAGE_SIZE / 2) > 16384
2376 adapter->rx_buffer_len = 16384;
2377#else
2378 adapter->rx_buffer_len = PAGE_SIZE / 2;
2379#endif
2380
2381
2382 /* adjust allocation if LPE protects us, and we aren't using SBP */
2383 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2384 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2385 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2386 ETH_FCS_LEN;
2387
2388 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2389 netdev->mtu, new_mtu);
2390 netdev->mtu = new_mtu;
2391
2392 if (netif_running(netdev))
2393 igbvf_up(adapter);
2394 else
2395 igbvf_reset(adapter);
2396
2397 clear_bit(__IGBVF_RESETTING, &adapter->state);
2398
2399 return 0;
2400}
2401
2402static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2403{
2404 switch (cmd) {
2405 default:
2406 return -EOPNOTSUPP;
2407 }
2408}
2409
2410static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2411{
2412 struct net_device *netdev = pci_get_drvdata(pdev);
2413 struct igbvf_adapter *adapter = netdev_priv(netdev);
2414#ifdef CONFIG_PM
2415 int retval = 0;
2416#endif
2417
2418 netif_device_detach(netdev);
2419
2420 if (netif_running(netdev)) {
2421 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2422 igbvf_down(adapter);
2423 igbvf_free_irq(adapter);
2424 }
2425
2426#ifdef CONFIG_PM
2427 retval = pci_save_state(pdev);
2428 if (retval)
2429 return retval;
2430#endif
2431
2432 pci_disable_device(pdev);
2433
2434 return 0;
2435}
2436
2437#ifdef CONFIG_PM
2438static int igbvf_resume(struct pci_dev *pdev)
2439{
2440 struct net_device *netdev = pci_get_drvdata(pdev);
2441 struct igbvf_adapter *adapter = netdev_priv(netdev);
2442 u32 err;
2443
2444 pci_restore_state(pdev);
2445 err = pci_enable_device_mem(pdev);
2446 if (err) {
2447 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2448 return err;
2449 }
2450
2451 pci_set_master(pdev);
2452
2453 if (netif_running(netdev)) {
2454 err = igbvf_request_irq(adapter);
2455 if (err)
2456 return err;
2457 }
2458
2459 igbvf_reset(adapter);
2460
2461 if (netif_running(netdev))
2462 igbvf_up(adapter);
2463
2464 netif_device_attach(netdev);
2465
2466 return 0;
2467}
2468#endif
2469
2470static void igbvf_shutdown(struct pci_dev *pdev)
2471{
2472 igbvf_suspend(pdev, PMSG_SUSPEND);
2473}
2474
2475#ifdef CONFIG_NET_POLL_CONTROLLER
2476/*
2477 * Polling 'interrupt' - used by things like netconsole to send skbs
2478 * without having to re-enable interrupts. It's not called while
2479 * the interrupt routine is executing.
2480 */
2481static void igbvf_netpoll(struct net_device *netdev)
2482{
2483 struct igbvf_adapter *adapter = netdev_priv(netdev);
2484
2485 disable_irq(adapter->pdev->irq);
2486
2487 igbvf_clean_tx_irq(adapter->tx_ring);
2488
2489 enable_irq(adapter->pdev->irq);
2490}
2491#endif
2492
2493/**
2494 * igbvf_io_error_detected - called when PCI error is detected
2495 * @pdev: Pointer to PCI device
2496 * @state: The current pci connection state
2497 *
2498 * This function is called after a PCI bus error affecting
2499 * this device has been detected.
2500 */
2501static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2502 pci_channel_state_t state)
2503{
2504 struct net_device *netdev = pci_get_drvdata(pdev);
2505 struct igbvf_adapter *adapter = netdev_priv(netdev);
2506
2507 netif_device_detach(netdev);
2508
2509 if (state == pci_channel_io_perm_failure)
2510 return PCI_ERS_RESULT_DISCONNECT;
2511
2512 if (netif_running(netdev))
2513 igbvf_down(adapter);
2514 pci_disable_device(pdev);
2515
2516 /* Request a slot slot reset. */
2517 return PCI_ERS_RESULT_NEED_RESET;
2518}
2519
2520/**
2521 * igbvf_io_slot_reset - called after the pci bus has been reset.
2522 * @pdev: Pointer to PCI device
2523 *
2524 * Restart the card from scratch, as if from a cold-boot. Implementation
2525 * resembles the first-half of the igbvf_resume routine.
2526 */
2527static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2528{
2529 struct net_device *netdev = pci_get_drvdata(pdev);
2530 struct igbvf_adapter *adapter = netdev_priv(netdev);
2531
2532 if (pci_enable_device_mem(pdev)) {
2533 dev_err(&pdev->dev,
2534 "Cannot re-enable PCI device after reset.\n");
2535 return PCI_ERS_RESULT_DISCONNECT;
2536 }
2537 pci_set_master(pdev);
2538
2539 igbvf_reset(adapter);
2540
2541 return PCI_ERS_RESULT_RECOVERED;
2542}
2543
2544/**
2545 * igbvf_io_resume - called when traffic can start flowing again.
2546 * @pdev: Pointer to PCI device
2547 *
2548 * This callback is called when the error recovery driver tells us that
2549 * its OK to resume normal operation. Implementation resembles the
2550 * second-half of the igbvf_resume routine.
2551 */
2552static void igbvf_io_resume(struct pci_dev *pdev)
2553{
2554 struct net_device *netdev = pci_get_drvdata(pdev);
2555 struct igbvf_adapter *adapter = netdev_priv(netdev);
2556
2557 if (netif_running(netdev)) {
2558 if (igbvf_up(adapter)) {
2559 dev_err(&pdev->dev,
2560 "can't bring device back up after reset\n");
2561 return;
2562 }
2563 }
2564
2565 netif_device_attach(netdev);
2566}
2567
2568static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2569{
2570 struct e1000_hw *hw = &adapter->hw;
2571 struct net_device *netdev = adapter->netdev;
2572 struct pci_dev *pdev = adapter->pdev;
2573
2574 if (hw->mac.type == e1000_vfadapt_i350)
2575 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2576 else
2577 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2578 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2579}
2580
2581static int igbvf_set_features(struct net_device *netdev,
2582 netdev_features_t features)
2583{
2584 struct igbvf_adapter *adapter = netdev_priv(netdev);
2585
2586 if (features & NETIF_F_RXCSUM)
2587 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2588 else
2589 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2590
2591 return 0;
2592}
2593
2594static const struct net_device_ops igbvf_netdev_ops = {
2595 .ndo_open = igbvf_open,
2596 .ndo_stop = igbvf_close,
2597 .ndo_start_xmit = igbvf_xmit_frame,
2598 .ndo_get_stats = igbvf_get_stats,
2599 .ndo_set_rx_mode = igbvf_set_multi,
2600 .ndo_set_mac_address = igbvf_set_mac,
2601 .ndo_change_mtu = igbvf_change_mtu,
2602 .ndo_do_ioctl = igbvf_ioctl,
2603 .ndo_tx_timeout = igbvf_tx_timeout,
2604 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2605 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2606#ifdef CONFIG_NET_POLL_CONTROLLER
2607 .ndo_poll_controller = igbvf_netpoll,
2608#endif
2609 .ndo_set_features = igbvf_set_features,
2610};
2611
2612/**
2613 * igbvf_probe - Device Initialization Routine
2614 * @pdev: PCI device information struct
2615 * @ent: entry in igbvf_pci_tbl
2616 *
2617 * Returns 0 on success, negative on failure
2618 *
2619 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2620 * The OS initialization, configuring of the adapter private structure,
2621 * and a hardware reset occur.
2622 **/
2623static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2624{
2625 struct net_device *netdev;
2626 struct igbvf_adapter *adapter;
2627 struct e1000_hw *hw;
2628 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2629
2630 static int cards_found;
2631 int err, pci_using_dac;
2632
2633 err = pci_enable_device_mem(pdev);
2634 if (err)
2635 return err;
2636
2637 pci_using_dac = 0;
2638 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2639 if (!err) {
2640 pci_using_dac = 1;
2641 } else {
2642 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2643 if (err) {
2644 dev_err(&pdev->dev, "No usable DMA "
2645 "configuration, aborting\n");
2646 goto err_dma;
2647 }
2648 }
2649
2650 err = pci_request_regions(pdev, igbvf_driver_name);
2651 if (err)
2652 goto err_pci_reg;
2653
2654 pci_set_master(pdev);
2655
2656 err = -ENOMEM;
2657 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2658 if (!netdev)
2659 goto err_alloc_etherdev;
2660
2661 SET_NETDEV_DEV(netdev, &pdev->dev);
2662
2663 pci_set_drvdata(pdev, netdev);
2664 adapter = netdev_priv(netdev);
2665 hw = &adapter->hw;
2666 adapter->netdev = netdev;
2667 adapter->pdev = pdev;
2668 adapter->ei = ei;
2669 adapter->pba = ei->pba;
2670 adapter->flags = ei->flags;
2671 adapter->hw.back = adapter;
2672 adapter->hw.mac.type = ei->mac;
2673 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2674
2675 /* PCI config space info */
2676
2677 hw->vendor_id = pdev->vendor;
2678 hw->device_id = pdev->device;
2679 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2680 hw->subsystem_device_id = pdev->subsystem_device;
2681 hw->revision_id = pdev->revision;
2682
2683 err = -EIO;
2684 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2685 pci_resource_len(pdev, 0));
2686
2687 if (!adapter->hw.hw_addr)
2688 goto err_ioremap;
2689
2690 if (ei->get_variants) {
2691 err = ei->get_variants(adapter);
2692 if (err)
2693 goto err_get_variants;
2694 }
2695
2696 /* setup adapter struct */
2697 err = igbvf_sw_init(adapter);
2698 if (err)
2699 goto err_sw_init;
2700
2701 /* construct the net_device struct */
2702 netdev->netdev_ops = &igbvf_netdev_ops;
2703
2704 igbvf_set_ethtool_ops(netdev);
2705 netdev->watchdog_timeo = 5 * HZ;
2706 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2707
2708 adapter->bd_number = cards_found++;
2709
2710 netdev->hw_features = NETIF_F_SG |
2711 NETIF_F_IP_CSUM |
2712 NETIF_F_IPV6_CSUM |
2713 NETIF_F_TSO |
2714 NETIF_F_TSO6 |
2715 NETIF_F_RXCSUM;
2716
2717 netdev->features = netdev->hw_features |
2718 NETIF_F_HW_VLAN_CTAG_TX |
2719 NETIF_F_HW_VLAN_CTAG_RX |
2720 NETIF_F_HW_VLAN_CTAG_FILTER;
2721
2722 if (pci_using_dac)
2723 netdev->features |= NETIF_F_HIGHDMA;
2724
2725 netdev->vlan_features |= NETIF_F_TSO;
2726 netdev->vlan_features |= NETIF_F_TSO6;
2727 netdev->vlan_features |= NETIF_F_IP_CSUM;
2728 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2729 netdev->vlan_features |= NETIF_F_SG;
2730
2731 /*reset the controller to put the device in a known good state */
2732 err = hw->mac.ops.reset_hw(hw);
2733 if (err) {
2734 dev_info(&pdev->dev,
2735 "PF still in reset state. Is the PF interface up?\n");
2736 } else {
2737 err = hw->mac.ops.read_mac_addr(hw);
2738 if (err)
2739 dev_info(&pdev->dev, "Error reading MAC address.\n");
2740 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2741 dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
2742 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2743 netdev->addr_len);
2744 }
2745
2746 if (!is_valid_ether_addr(netdev->dev_addr)) {
2747 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2748 eth_hw_addr_random(netdev);
2749 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2750 netdev->addr_len);
2751 }
2752
2753 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2754 (unsigned long) adapter);
2755
2756 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2757 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2758
2759 /* ring size defaults */
2760 adapter->rx_ring->count = 1024;
2761 adapter->tx_ring->count = 1024;
2762
2763 /* reset the hardware with the new settings */
2764 igbvf_reset(adapter);
2765
2766 /* set hardware-specific flags */
2767 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2768 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2769
2770 strcpy(netdev->name, "eth%d");
2771 err = register_netdev(netdev);
2772 if (err)
2773 goto err_hw_init;
2774
2775 /* tell the stack to leave us alone until igbvf_open() is called */
2776 netif_carrier_off(netdev);
2777 netif_stop_queue(netdev);
2778
2779 igbvf_print_device_info(adapter);
2780
2781 igbvf_initialize_last_counter_stats(adapter);
2782
2783 return 0;
2784
2785err_hw_init:
2786 kfree(adapter->tx_ring);
2787 kfree(adapter->rx_ring);
2788err_sw_init:
2789 igbvf_reset_interrupt_capability(adapter);
2790err_get_variants:
2791 iounmap(adapter->hw.hw_addr);
2792err_ioremap:
2793 free_netdev(netdev);
2794err_alloc_etherdev:
2795 pci_release_regions(pdev);
2796err_pci_reg:
2797err_dma:
2798 pci_disable_device(pdev);
2799 return err;
2800}
2801
2802/**
2803 * igbvf_remove - Device Removal Routine
2804 * @pdev: PCI device information struct
2805 *
2806 * igbvf_remove is called by the PCI subsystem to alert the driver
2807 * that it should release a PCI device. The could be caused by a
2808 * Hot-Plug event, or because the driver is going to be removed from
2809 * memory.
2810 **/
2811static void igbvf_remove(struct pci_dev *pdev)
2812{
2813 struct net_device *netdev = pci_get_drvdata(pdev);
2814 struct igbvf_adapter *adapter = netdev_priv(netdev);
2815 struct e1000_hw *hw = &adapter->hw;
2816
2817 /*
2818 * The watchdog timer may be rescheduled, so explicitly
2819 * disable it from being rescheduled.
2820 */
2821 set_bit(__IGBVF_DOWN, &adapter->state);
2822 del_timer_sync(&adapter->watchdog_timer);
2823
2824 cancel_work_sync(&adapter->reset_task);
2825 cancel_work_sync(&adapter->watchdog_task);
2826
2827 unregister_netdev(netdev);
2828
2829 igbvf_reset_interrupt_capability(adapter);
2830
2831 /*
2832 * it is important to delete the napi struct prior to freeing the
2833 * rx ring so that you do not end up with null pointer refs
2834 */
2835 netif_napi_del(&adapter->rx_ring->napi);
2836 kfree(adapter->tx_ring);
2837 kfree(adapter->rx_ring);
2838
2839 iounmap(hw->hw_addr);
2840 if (hw->flash_address)
2841 iounmap(hw->flash_address);
2842 pci_release_regions(pdev);
2843
2844 free_netdev(netdev);
2845
2846 pci_disable_device(pdev);
2847}
2848
2849/* PCI Error Recovery (ERS) */
2850static const struct pci_error_handlers igbvf_err_handler = {
2851 .error_detected = igbvf_io_error_detected,
2852 .slot_reset = igbvf_io_slot_reset,
2853 .resume = igbvf_io_resume,
2854};
2855
2856static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2859 { } /* terminate list */
2860};
2861MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2862
2863/* PCI Device API Driver */
2864static struct pci_driver igbvf_driver = {
2865 .name = igbvf_driver_name,
2866 .id_table = igbvf_pci_tbl,
2867 .probe = igbvf_probe,
2868 .remove = igbvf_remove,
2869#ifdef CONFIG_PM
2870 /* Power Management Hooks */
2871 .suspend = igbvf_suspend,
2872 .resume = igbvf_resume,
2873#endif
2874 .shutdown = igbvf_shutdown,
2875 .err_handler = &igbvf_err_handler
2876};
2877
2878/**
2879 * igbvf_init_module - Driver Registration Routine
2880 *
2881 * igbvf_init_module is the first routine called when the driver is
2882 * loaded. All it does is register with the PCI subsystem.
2883 **/
2884static int __init igbvf_init_module(void)
2885{
2886 int ret;
2887 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2888 pr_info("%s\n", igbvf_copyright);
2889
2890 ret = pci_register_driver(&igbvf_driver);
2891
2892 return ret;
2893}
2894module_init(igbvf_init_module);
2895
2896/**
2897 * igbvf_exit_module - Driver Exit Cleanup Routine
2898 *
2899 * igbvf_exit_module is called just before the driver is removed
2900 * from memory.
2901 **/
2902static void __exit igbvf_exit_module(void)
2903{
2904 pci_unregister_driver(&igbvf_driver);
2905}
2906module_exit(igbvf_exit_module);
2907
2908
2909MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2910MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2911MODULE_LICENSE("GPL");
2912MODULE_VERSION(DRV_VERSION);
2913
2914/* netdev.c */