Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* e1000_82575
   5 * e1000_82576
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/types.h>
  11#include <linux/if_ether.h>
  12#include <linux/i2c.h>
  13
  14#include "e1000_mac.h"
  15#include "e1000_82575.h"
  16#include "e1000_i210.h"
  17#include "igb.h"
  18
  19static s32  igb_get_invariants_82575(struct e1000_hw *);
  20static s32  igb_acquire_phy_82575(struct e1000_hw *);
  21static void igb_release_phy_82575(struct e1000_hw *);
  22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  23static void igb_release_nvm_82575(struct e1000_hw *);
  24static s32  igb_check_for_link_82575(struct e1000_hw *);
  25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  26static s32  igb_init_hw_82575(struct e1000_hw *);
  27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
 
 
  29static s32  igb_reset_hw_82575(struct e1000_hw *);
  30static s32  igb_reset_hw_82580(struct e1000_hw *);
  31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  40						 u16 *);
  41static s32  igb_get_phy_id_82575(struct e1000_hw *);
  42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  43static bool igb_sgmii_active_82575(struct e1000_hw *);
  44static s32  igb_reset_init_script_82575(struct e1000_hw *);
  45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  52static const u16 e1000_82580_rxpbs_table[] = {
  53	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  54
  55/* Due to a hw errata, if the host tries to  configure the VFTA register
  56 * while performing queries from the BMC or DMA, then the VFTA in some
  57 * cases won't be written.
  58 */
  59
  60/**
  61 *  igb_write_vfta_i350 - Write value to VLAN filter table
  62 *  @hw: pointer to the HW structure
  63 *  @offset: register offset in VLAN filter table
  64 *  @value: register value written to VLAN filter table
  65 *
  66 *  Writes value at the given offset in the register array which stores
  67 *  the VLAN filter table.
  68 **/
  69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  70{
  71	struct igb_adapter *adapter = hw->back;
  72	int i;
  73
  74	for (i = 10; i--;)
  75		array_wr32(E1000_VFTA, offset, value);
  76
  77	wrfl();
  78	adapter->shadow_vfta[offset] = value;
  79}
  80
  81/**
  82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Called to determine if the I2C pins are being used for I2C or as an
  86 *  external MDIO interface since the two options are mutually exclusive.
  87 **/
  88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  89{
  90	u32 reg = 0;
  91	bool ext_mdio = false;
  92
  93	switch (hw->mac.type) {
  94	case e1000_82575:
  95	case e1000_82576:
  96		reg = rd32(E1000_MDIC);
  97		ext_mdio = !!(reg & E1000_MDIC_DEST);
  98		break;
  99	case e1000_82580:
 100	case e1000_i350:
 101	case e1000_i354:
 102	case e1000_i210:
 103	case e1000_i211:
 104		reg = rd32(E1000_MDICNFG);
 105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106		break;
 107	default:
 108		break;
 109	}
 110	return ext_mdio;
 111}
 112
 113/**
 114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 115 *  @hw: pointer to the HW structure
 116 *
 117 *  Poll the M88E1112 interfaces to see which interface achieved link.
 118 */
 119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 120{
 121	struct e1000_phy_info *phy = &hw->phy;
 122	s32 ret_val;
 123	u16 data;
 124	u8 port = 0;
 125
 126	/* Check the copper medium. */
 127	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 128	if (ret_val)
 129		return ret_val;
 130
 131	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 132	if (ret_val)
 133		return ret_val;
 134
 135	if (data & E1000_M88E1112_STATUS_LINK)
 136		port = E1000_MEDIA_PORT_COPPER;
 137
 138	/* Check the other medium. */
 139	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 140	if (ret_val)
 141		return ret_val;
 142
 143	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 144	if (ret_val)
 145		return ret_val;
 146
 
 
 
 
 147
 148	if (data & E1000_M88E1112_STATUS_LINK)
 149		port = E1000_MEDIA_PORT_OTHER;
 150
 151	/* Determine if a swap needs to happen. */
 152	if (port && (hw->dev_spec._82575.media_port != port)) {
 153		hw->dev_spec._82575.media_port = port;
 154		hw->dev_spec._82575.media_changed = true;
 155	}
 156
 157	if (port == E1000_MEDIA_PORT_COPPER) {
 158		/* reset page to 0 */
 159		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 160		if (ret_val)
 161			return ret_val;
 162		igb_check_for_link_82575(hw);
 163	} else {
 164		igb_check_for_link_82575(hw);
 165		/* reset page to 0 */
 166		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 167		if (ret_val)
 168			return ret_val;
 169	}
 170
 171	return 0;
 172}
 173
 174/**
 175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 176 *  @hw: pointer to the HW structure
 177 **/
 178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 179{
 180	struct e1000_phy_info *phy = &hw->phy;
 181	s32 ret_val = 0;
 182	u32 ctrl_ext;
 183
 184	if (hw->phy.media_type != e1000_media_type_copper) {
 185		phy->type = e1000_phy_none;
 186		goto out;
 187	}
 188
 189	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 190	phy->reset_delay_us	= 100;
 191
 192	ctrl_ext = rd32(E1000_CTRL_EXT);
 193
 194	if (igb_sgmii_active_82575(hw)) {
 195		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 196		ctrl_ext |= E1000_CTRL_I2C_ENA;
 197	} else {
 198		phy->ops.reset = igb_phy_hw_reset;
 199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 200	}
 201
 202	wr32(E1000_CTRL_EXT, ctrl_ext);
 203	igb_reset_mdicnfg_82580(hw);
 204
 205	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 206		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 207		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 208	} else {
 209		switch (hw->mac.type) {
 210		case e1000_82580:
 211		case e1000_i350:
 212		case e1000_i354:
 213		case e1000_i210:
 214		case e1000_i211:
 215			phy->ops.read_reg = igb_read_phy_reg_82580;
 216			phy->ops.write_reg = igb_write_phy_reg_82580;
 217			break;
 
 
 
 
 
 218		default:
 219			phy->ops.read_reg = igb_read_phy_reg_igp;
 220			phy->ops.write_reg = igb_write_phy_reg_igp;
 221		}
 222	}
 223
 224	/* set lan id */
 225	hw->bus.func = FIELD_GET(E1000_STATUS_FUNC_MASK, rd32(E1000_STATUS));
 
 226
 227	/* Set phy->phy_addr and phy->id. */
 228	ret_val = igb_get_phy_id_82575(hw);
 229	if (ret_val)
 230		return ret_val;
 231
 232	/* Verify phy id and set remaining function pointers */
 233	switch (phy->id) {
 234	case M88E1543_E_PHY_ID:
 235	case M88E1512_E_PHY_ID:
 236	case I347AT4_E_PHY_ID:
 237	case M88E1112_E_PHY_ID:
 238	case M88E1111_I_PHY_ID:
 239		phy->type		= e1000_phy_m88;
 240		phy->ops.check_polarity	= igb_check_polarity_m88;
 241		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 242		if (phy->id != M88E1111_I_PHY_ID)
 243			phy->ops.get_cable_length =
 244					 igb_get_cable_length_m88_gen2;
 245		else
 246			phy->ops.get_cable_length = igb_get_cable_length_m88;
 247		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 248		/* Check if this PHY is configured for media swap. */
 249		if (phy->id == M88E1112_E_PHY_ID) {
 250			u16 data;
 251
 252			ret_val = phy->ops.write_reg(hw,
 253						     E1000_M88E1112_PAGE_ADDR,
 254						     2);
 255			if (ret_val)
 256				goto out;
 257
 258			ret_val = phy->ops.read_reg(hw,
 259						    E1000_M88E1112_MAC_CTRL_1,
 260						    &data);
 261			if (ret_val)
 262				goto out;
 263
 264			data = FIELD_GET(E1000_M88E1112_MAC_CTRL_1_MODE_MASK,
 265					 data);
 266			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 267			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 268				hw->mac.ops.check_for_link =
 269						igb_check_for_link_media_swap;
 270		}
 271		if (phy->id == M88E1512_E_PHY_ID) {
 272			ret_val = igb_initialize_M88E1512_phy(hw);
 273			if (ret_val)
 274				goto out;
 275		}
 276		if (phy->id == M88E1543_E_PHY_ID) {
 277			ret_val = igb_initialize_M88E1543_phy(hw);
 278			if (ret_val)
 279				goto out;
 280		}
 281		break;
 282	case IGP03E1000_E_PHY_ID:
 283		phy->type = e1000_phy_igp_3;
 284		phy->ops.get_phy_info = igb_get_phy_info_igp;
 285		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 286		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 287		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 288		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 289		break;
 290	case I82580_I_PHY_ID:
 291	case I350_I_PHY_ID:
 292		phy->type = e1000_phy_82580;
 293		phy->ops.force_speed_duplex =
 294					 igb_phy_force_speed_duplex_82580;
 295		phy->ops.get_cable_length = igb_get_cable_length_82580;
 296		phy->ops.get_phy_info = igb_get_phy_info_82580;
 297		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 298		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 299		break;
 300	case I210_I_PHY_ID:
 301		phy->type		= e1000_phy_i210;
 302		phy->ops.check_polarity	= igb_check_polarity_m88;
 303		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
 304		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 305		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 306		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 307		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 308		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 309		break;
 310	case BCM54616_E_PHY_ID:
 311		phy->type = e1000_phy_bcm54616;
 312		break;
 313	default:
 314		ret_val = -E1000_ERR_PHY;
 315		goto out;
 316	}
 317
 318out:
 319	return ret_val;
 320}
 321
 322/**
 323 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 324 *  @hw: pointer to the HW structure
 325 **/
 326static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 327{
 328	struct e1000_nvm_info *nvm = &hw->nvm;
 329	u32 eecd = rd32(E1000_EECD);
 330	u16 size;
 331
 332	size = FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
 
 333
 334	/* Added to a constant, "size" becomes the left-shift value
 335	 * for setting word_size.
 336	 */
 337	size += NVM_WORD_SIZE_BASE_SHIFT;
 338
 339	/* Just in case size is out of range, cap it to the largest
 340	 * EEPROM size supported
 341	 */
 342	if (size > 15)
 343		size = 15;
 344
 345	nvm->word_size = BIT(size);
 346	nvm->opcode_bits = 8;
 347	nvm->delay_usec = 1;
 348
 349	switch (nvm->override) {
 350	case e1000_nvm_override_spi_large:
 351		nvm->page_size = 32;
 352		nvm->address_bits = 16;
 353		break;
 354	case e1000_nvm_override_spi_small:
 355		nvm->page_size = 8;
 356		nvm->address_bits = 8;
 357		break;
 358	default:
 359		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 360		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 361				    16 : 8;
 362		break;
 363	}
 364	if (nvm->word_size == BIT(15))
 365		nvm->page_size = 128;
 366
 367	nvm->type = e1000_nvm_eeprom_spi;
 368
 369	/* NVM Function Pointers */
 370	nvm->ops.acquire = igb_acquire_nvm_82575;
 371	nvm->ops.release = igb_release_nvm_82575;
 372	nvm->ops.write = igb_write_nvm_spi;
 373	nvm->ops.validate = igb_validate_nvm_checksum;
 374	nvm->ops.update = igb_update_nvm_checksum;
 375	if (nvm->word_size < BIT(15))
 376		nvm->ops.read = igb_read_nvm_eerd;
 377	else
 378		nvm->ops.read = igb_read_nvm_spi;
 379
 380	/* override generic family function pointers for specific descendants */
 381	switch (hw->mac.type) {
 382	case e1000_82580:
 383		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 384		nvm->ops.update = igb_update_nvm_checksum_82580;
 385		break;
 386	case e1000_i354:
 387	case e1000_i350:
 388		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 389		nvm->ops.update = igb_update_nvm_checksum_i350;
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	return 0;
 396}
 397
 398/**
 399 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 400 *  @hw: pointer to the HW structure
 401 **/
 402static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 403{
 404	struct e1000_mac_info *mac = &hw->mac;
 405	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 406
 407	/* Set mta register count */
 408	mac->mta_reg_count = 128;
 409	/* Set uta register count */
 410	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 411	/* Set rar entry count */
 412	switch (mac->type) {
 413	case e1000_82576:
 414		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 415		break;
 416	case e1000_82580:
 417		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 418		break;
 419	case e1000_i350:
 420	case e1000_i354:
 421		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 422		break;
 423	default:
 424		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 425		break;
 426	}
 427	/* reset */
 428	if (mac->type >= e1000_82580)
 429		mac->ops.reset_hw = igb_reset_hw_82580;
 430	else
 431		mac->ops.reset_hw = igb_reset_hw_82575;
 432
 433	if (mac->type >= e1000_i210) {
 434		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 435		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 436
 437	} else {
 438		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 439		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 440	}
 441
 442	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 443		mac->ops.write_vfta = igb_write_vfta_i350;
 444	else
 445		mac->ops.write_vfta = igb_write_vfta;
 446
 447	/* Set if part includes ASF firmware */
 448	mac->asf_firmware_present = true;
 449	/* Set if manageability features are enabled. */
 450	mac->arc_subsystem_valid =
 451		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 452			? true : false;
 453	/* enable EEE on i350 parts and later parts */
 454	if (mac->type >= e1000_i350)
 455		dev_spec->eee_disable = false;
 456	else
 457		dev_spec->eee_disable = true;
 458	/* Allow a single clear of the SW semaphore on I210 and newer */
 459	if (mac->type >= e1000_i210)
 460		dev_spec->clear_semaphore_once = true;
 461	/* physical interface link setup */
 462	mac->ops.setup_physical_interface =
 463		(hw->phy.media_type == e1000_media_type_copper)
 464			? igb_setup_copper_link_82575
 465			: igb_setup_serdes_link_82575;
 466
 467	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
 468		switch (hw->device_id) {
 469		/* feature not supported on these id's */
 470		case E1000_DEV_ID_DH89XXCC_SGMII:
 471		case E1000_DEV_ID_DH89XXCC_SERDES:
 472		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 473		case E1000_DEV_ID_DH89XXCC_SFP:
 474			break;
 475		default:
 476			hw->dev_spec._82575.mas_capable = true;
 477			break;
 478		}
 479	}
 480	return 0;
 481}
 482
 483/**
 484 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 485 *  @hw: pointer to the HW structure
 486 *
 487 *  The media type is chosen based on SFP module.
 488 *  compatibility flags retrieved from SFP ID EEPROM.
 489 **/
 490static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 491{
 492	s32 ret_val = E1000_ERR_CONFIG;
 493	u32 ctrl_ext = 0;
 494	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 495	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 496	u8 tranceiver_type = 0;
 497	s32 timeout = 3;
 498
 499	/* Turn I2C interface ON and power on sfp cage */
 500	ctrl_ext = rd32(E1000_CTRL_EXT);
 501	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 502	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 503
 504	wrfl();
 505
 506	/* Read SFP module data */
 507	while (timeout) {
 508		ret_val = igb_read_sfp_data_byte(hw,
 509			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 510			&tranceiver_type);
 511		if (ret_val == 0)
 512			break;
 513		msleep(100);
 514		timeout--;
 515	}
 516	if (ret_val != 0)
 517		goto out;
 518
 519	ret_val = igb_read_sfp_data_byte(hw,
 520			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 521			(u8 *)eth_flags);
 522	if (ret_val != 0)
 523		goto out;
 524
 525	/* Check if there is some SFP module plugged and powered */
 526	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 527	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 528		dev_spec->module_plugged = true;
 529		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 530			hw->phy.media_type = e1000_media_type_internal_serdes;
 531		} else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 532			dev_spec->sgmii_active = true;
 533			hw->phy.media_type = e1000_media_type_internal_serdes;
 534		} else if (eth_flags->e1000_base_t) {
 535			dev_spec->sgmii_active = true;
 536			hw->phy.media_type = e1000_media_type_copper;
 537		} else {
 538			hw->phy.media_type = e1000_media_type_unknown;
 539			hw_dbg("PHY module has not been recognized\n");
 540			goto out;
 541		}
 542	} else {
 543		hw->phy.media_type = e1000_media_type_unknown;
 544	}
 545	ret_val = 0;
 546out:
 547	/* Restore I2C interface setting */
 548	wr32(E1000_CTRL_EXT, ctrl_ext);
 549	return ret_val;
 550}
 551
 552static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 553{
 554	struct e1000_mac_info *mac = &hw->mac;
 555	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 556	s32 ret_val;
 557	u32 ctrl_ext = 0;
 558	u32 link_mode = 0;
 559
 560	switch (hw->device_id) {
 561	case E1000_DEV_ID_82575EB_COPPER:
 562	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 563	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 564		mac->type = e1000_82575;
 565		break;
 566	case E1000_DEV_ID_82576:
 567	case E1000_DEV_ID_82576_NS:
 568	case E1000_DEV_ID_82576_NS_SERDES:
 569	case E1000_DEV_ID_82576_FIBER:
 570	case E1000_DEV_ID_82576_SERDES:
 571	case E1000_DEV_ID_82576_QUAD_COPPER:
 572	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 573	case E1000_DEV_ID_82576_SERDES_QUAD:
 574		mac->type = e1000_82576;
 575		break;
 576	case E1000_DEV_ID_82580_COPPER:
 577	case E1000_DEV_ID_82580_FIBER:
 578	case E1000_DEV_ID_82580_QUAD_FIBER:
 579	case E1000_DEV_ID_82580_SERDES:
 580	case E1000_DEV_ID_82580_SGMII:
 581	case E1000_DEV_ID_82580_COPPER_DUAL:
 582	case E1000_DEV_ID_DH89XXCC_SGMII:
 583	case E1000_DEV_ID_DH89XXCC_SERDES:
 584	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 585	case E1000_DEV_ID_DH89XXCC_SFP:
 586		mac->type = e1000_82580;
 587		break;
 588	case E1000_DEV_ID_I350_COPPER:
 589	case E1000_DEV_ID_I350_FIBER:
 590	case E1000_DEV_ID_I350_SERDES:
 591	case E1000_DEV_ID_I350_SGMII:
 592		mac->type = e1000_i350;
 593		break;
 594	case E1000_DEV_ID_I210_COPPER:
 595	case E1000_DEV_ID_I210_FIBER:
 596	case E1000_DEV_ID_I210_SERDES:
 597	case E1000_DEV_ID_I210_SGMII:
 598	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 599	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 600		mac->type = e1000_i210;
 601		break;
 602	case E1000_DEV_ID_I211_COPPER:
 603		mac->type = e1000_i211;
 604		break;
 605	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 606	case E1000_DEV_ID_I354_SGMII:
 607	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 608		mac->type = e1000_i354;
 609		break;
 610	default:
 611		return -E1000_ERR_MAC_INIT;
 
 612	}
 613
 614	/* Set media type */
 615	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 616	 * based on the EEPROM. We cannot rely upon device ID. There
 617	 * is no distinguishable difference between fiber and internal
 618	 * SerDes mode on the 82575. There can be an external PHY attached
 619	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 620	 */
 621	hw->phy.media_type = e1000_media_type_copper;
 622	dev_spec->sgmii_active = false;
 623	dev_spec->module_plugged = false;
 624
 625	ctrl_ext = rd32(E1000_CTRL_EXT);
 626
 627	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 628	switch (link_mode) {
 629	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 630		hw->phy.media_type = e1000_media_type_internal_serdes;
 631		break;
 632	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 633		/* Get phy control interface type set (MDIO vs. I2C)*/
 634		if (igb_sgmii_uses_mdio_82575(hw)) {
 635			hw->phy.media_type = e1000_media_type_copper;
 636			dev_spec->sgmii_active = true;
 637			break;
 638		}
 639		fallthrough; /* for I2C based SGMII */
 640	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 641		/* read media type from SFP EEPROM */
 642		ret_val = igb_set_sfp_media_type_82575(hw);
 643		if ((ret_val != 0) ||
 644		    (hw->phy.media_type == e1000_media_type_unknown)) {
 645			/* If media type was not identified then return media
 646			 * type defined by the CTRL_EXT settings.
 647			 */
 648			hw->phy.media_type = e1000_media_type_internal_serdes;
 649
 650			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 651				hw->phy.media_type = e1000_media_type_copper;
 652				dev_spec->sgmii_active = true;
 653			}
 654
 655			break;
 656		}
 657
 
 
 
 
 658		/* change current link mode setting */
 659		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 660
 661		if (dev_spec->sgmii_active)
 662			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 663		else
 664			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 665
 666		wr32(E1000_CTRL_EXT, ctrl_ext);
 667
 668		break;
 669	default:
 670		break;
 671	}
 672
 673	/* mac initialization and operations */
 674	ret_val = igb_init_mac_params_82575(hw);
 675	if (ret_val)
 676		goto out;
 677
 678	/* NVM initialization */
 679	ret_val = igb_init_nvm_params_82575(hw);
 680	switch (hw->mac.type) {
 681	case e1000_i210:
 682	case e1000_i211:
 683		ret_val = igb_init_nvm_params_i210(hw);
 684		break;
 685	default:
 686		break;
 687	}
 688
 689	if (ret_val)
 690		goto out;
 691
 692	/* if part supports SR-IOV then initialize mailbox parameters */
 693	switch (mac->type) {
 694	case e1000_82576:
 695	case e1000_i350:
 696		igb_init_mbx_params_pf(hw);
 697		break;
 698	default:
 699		break;
 700	}
 701
 702	/* setup PHY parameters */
 703	ret_val = igb_init_phy_params_82575(hw);
 704
 705out:
 706	return ret_val;
 707}
 708
 709/**
 710 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 711 *  @hw: pointer to the HW structure
 712 *
 713 *  Acquire access rights to the correct PHY.  This is a
 714 *  function pointer entry point called by the api module.
 715 **/
 716static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 717{
 718	u16 mask = E1000_SWFW_PHY0_SM;
 719
 720	if (hw->bus.func == E1000_FUNC_1)
 721		mask = E1000_SWFW_PHY1_SM;
 722	else if (hw->bus.func == E1000_FUNC_2)
 723		mask = E1000_SWFW_PHY2_SM;
 724	else if (hw->bus.func == E1000_FUNC_3)
 725		mask = E1000_SWFW_PHY3_SM;
 726
 727	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 728}
 729
 730/**
 731 *  igb_release_phy_82575 - Release rights to access PHY
 732 *  @hw: pointer to the HW structure
 733 *
 734 *  A wrapper to release access rights to the correct PHY.  This is a
 735 *  function pointer entry point called by the api module.
 736 **/
 737static void igb_release_phy_82575(struct e1000_hw *hw)
 738{
 739	u16 mask = E1000_SWFW_PHY0_SM;
 740
 741	if (hw->bus.func == E1000_FUNC_1)
 742		mask = E1000_SWFW_PHY1_SM;
 743	else if (hw->bus.func == E1000_FUNC_2)
 744		mask = E1000_SWFW_PHY2_SM;
 745	else if (hw->bus.func == E1000_FUNC_3)
 746		mask = E1000_SWFW_PHY3_SM;
 747
 748	hw->mac.ops.release_swfw_sync(hw, mask);
 749}
 750
 751/**
 752 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 753 *  @hw: pointer to the HW structure
 754 *  @offset: register offset to be read
 755 *  @data: pointer to the read data
 756 *
 757 *  Reads the PHY register at offset using the serial gigabit media independent
 758 *  interface and stores the retrieved information in data.
 759 **/
 760static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 761					  u16 *data)
 762{
 763	s32 ret_val = -E1000_ERR_PARAM;
 764
 765	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 766		hw_dbg("PHY Address %u is out of range\n", offset);
 767		goto out;
 768	}
 769
 770	ret_val = hw->phy.ops.acquire(hw);
 771	if (ret_val)
 772		goto out;
 773
 774	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 775
 776	hw->phy.ops.release(hw);
 777
 778out:
 779	return ret_val;
 780}
 781
 782/**
 783 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 784 *  @hw: pointer to the HW structure
 785 *  @offset: register offset to write to
 786 *  @data: data to write at register offset
 787 *
 788 *  Writes the data to PHY register at the offset using the serial gigabit
 789 *  media independent interface.
 790 **/
 791static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 792					   u16 data)
 793{
 794	s32 ret_val = -E1000_ERR_PARAM;
 795
 796
 797	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 798		hw_dbg("PHY Address %d is out of range\n", offset);
 799		goto out;
 800	}
 801
 802	ret_val = hw->phy.ops.acquire(hw);
 803	if (ret_val)
 804		goto out;
 805
 806	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 807
 808	hw->phy.ops.release(hw);
 809
 810out:
 811	return ret_val;
 812}
 813
 814/**
 815 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 816 *  @hw: pointer to the HW structure
 817 *
 818 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 819 *  sgmi interface.
 820 **/
 821static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 822{
 823	struct e1000_phy_info *phy = &hw->phy;
 824	s32  ret_val = 0;
 825	u16 phy_id;
 826	u32 ctrl_ext;
 827	u32 mdic;
 828
 829	/* Extra read required for some PHY's on i354 */
 830	if (hw->mac.type == e1000_i354)
 831		igb_get_phy_id(hw);
 832
 833	/* For SGMII PHYs, we try the list of possible addresses until
 834	 * we find one that works.  For non-SGMII PHYs
 835	 * (e.g. integrated copper PHYs), an address of 1 should
 836	 * work.  The result of this function should mean phy->phy_addr
 837	 * and phy->id are set correctly.
 838	 */
 839	if (!(igb_sgmii_active_82575(hw))) {
 840		phy->addr = 1;
 841		ret_val = igb_get_phy_id(hw);
 842		goto out;
 843	}
 844
 845	if (igb_sgmii_uses_mdio_82575(hw)) {
 846		switch (hw->mac.type) {
 847		case e1000_82575:
 848		case e1000_82576:
 849			mdic = rd32(E1000_MDIC);
 850			mdic &= E1000_MDIC_PHY_MASK;
 851			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 852			break;
 853		case e1000_82580:
 854		case e1000_i350:
 855		case e1000_i354:
 856		case e1000_i210:
 857		case e1000_i211:
 858			mdic = rd32(E1000_MDICNFG);
 859			mdic &= E1000_MDICNFG_PHY_MASK;
 860			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 861			break;
 862		default:
 863			ret_val = -E1000_ERR_PHY;
 864			goto out;
 
 865		}
 866		ret_val = igb_get_phy_id(hw);
 867		goto out;
 868	}
 869
 870	/* Power on sgmii phy if it is disabled */
 871	ctrl_ext = rd32(E1000_CTRL_EXT);
 872	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 873	wrfl();
 874	msleep(300);
 875
 876	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 877	 * Therefore, we need to test 1-7
 878	 */
 879	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 880		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 881		if (ret_val == 0) {
 882			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 883			       phy_id, phy->addr);
 884			/* At the time of this writing, The M88 part is
 885			 * the only supported SGMII PHY product.
 886			 */
 887			if (phy_id == M88_VENDOR)
 888				break;
 889		} else {
 890			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 891		}
 892	}
 893
 894	/* A valid PHY type couldn't be found. */
 895	if (phy->addr == 8) {
 896		phy->addr = 0;
 897		ret_val = -E1000_ERR_PHY;
 898		goto out;
 899	} else {
 900		ret_val = igb_get_phy_id(hw);
 901	}
 902
 903	/* restore previous sfp cage power state */
 904	wr32(E1000_CTRL_EXT, ctrl_ext);
 905
 906out:
 907	return ret_val;
 908}
 909
 910/**
 911 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 912 *  @hw: pointer to the HW structure
 913 *
 914 *  Resets the PHY using the serial gigabit media independent interface.
 915 **/
 916static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 917{
 918	struct e1000_phy_info *phy = &hw->phy;
 919	s32 ret_val;
 920
 921	/* This isn't a true "hard" reset, but is the only reset
 922	 * available to us at this time.
 923	 */
 924
 925	hw_dbg("Soft resetting SGMII attached PHY...\n");
 926
 927	/* SFP documentation requires the following to configure the SPF module
 928	 * to work on SGMII.  No further documentation is given.
 929	 */
 930	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 931	if (ret_val)
 932		goto out;
 933
 934	ret_val = igb_phy_sw_reset(hw);
 935	if (ret_val)
 936		goto out;
 937
 938	if (phy->id == M88E1512_E_PHY_ID)
 939		ret_val = igb_initialize_M88E1512_phy(hw);
 940	if (phy->id == M88E1543_E_PHY_ID)
 941		ret_val = igb_initialize_M88E1543_phy(hw);
 942out:
 943	return ret_val;
 944}
 945
 946/**
 947 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 948 *  @hw: pointer to the HW structure
 949 *  @active: true to enable LPLU, false to disable
 950 *
 951 *  Sets the LPLU D0 state according to the active flag.  When
 952 *  activating LPLU this function also disables smart speed
 953 *  and vice versa.  LPLU will not be activated unless the
 954 *  device autonegotiation advertisement meets standards of
 955 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 956 *  This is a function pointer entry point only called by
 957 *  PHY setup routines.
 958 **/
 959static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 960{
 961	struct e1000_phy_info *phy = &hw->phy;
 962	s32 ret_val;
 963	u16 data;
 964
 965	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 966	if (ret_val)
 967		goto out;
 968
 969	if (active) {
 970		data |= IGP02E1000_PM_D0_LPLU;
 971		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 972						 data);
 973		if (ret_val)
 974			goto out;
 975
 976		/* When LPLU is enabled, we should disable SmartSpeed */
 977		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 978						&data);
 979		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 980		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 981						 data);
 982		if (ret_val)
 983			goto out;
 984	} else {
 985		data &= ~IGP02E1000_PM_D0_LPLU;
 986		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 987						 data);
 988		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 989		 * during Dx states where the power conservation is most
 990		 * important.  During driver activity we should enable
 991		 * SmartSpeed, so performance is maintained.
 992		 */
 993		if (phy->smart_speed == e1000_smart_speed_on) {
 994			ret_val = phy->ops.read_reg(hw,
 995					IGP01E1000_PHY_PORT_CONFIG, &data);
 996			if (ret_val)
 997				goto out;
 998
 999			data |= IGP01E1000_PSCFR_SMART_SPEED;
1000			ret_val = phy->ops.write_reg(hw,
1001					IGP01E1000_PHY_PORT_CONFIG, data);
1002			if (ret_val)
1003				goto out;
1004		} else if (phy->smart_speed == e1000_smart_speed_off) {
1005			ret_val = phy->ops.read_reg(hw,
1006					IGP01E1000_PHY_PORT_CONFIG, &data);
1007			if (ret_val)
1008				goto out;
1009
1010			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1011			ret_val = phy->ops.write_reg(hw,
1012					IGP01E1000_PHY_PORT_CONFIG, data);
1013			if (ret_val)
1014				goto out;
1015		}
1016	}
1017
1018out:
1019	return ret_val;
1020}
1021
1022/**
1023 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1024 *  @hw: pointer to the HW structure
1025 *  @active: true to enable LPLU, false to disable
1026 *
1027 *  Sets the LPLU D0 state according to the active flag.  When
1028 *  activating LPLU this function also disables smart speed
1029 *  and vice versa.  LPLU will not be activated unless the
1030 *  device autonegotiation advertisement meets standards of
1031 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1032 *  This is a function pointer entry point only called by
1033 *  PHY setup routines.
1034 **/
1035static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1036{
1037	struct e1000_phy_info *phy = &hw->phy;
 
1038	u16 data;
1039
1040	data = rd32(E1000_82580_PHY_POWER_MGMT);
1041
1042	if (active) {
1043		data |= E1000_82580_PM_D0_LPLU;
1044
1045		/* When LPLU is enabled, we should disable SmartSpeed */
1046		data &= ~E1000_82580_PM_SPD;
1047	} else {
1048		data &= ~E1000_82580_PM_D0_LPLU;
1049
1050		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1051		 * during Dx states where the power conservation is most
1052		 * important.  During driver activity we should enable
1053		 * SmartSpeed, so performance is maintained.
1054		 */
1055		if (phy->smart_speed == e1000_smart_speed_on)
1056			data |= E1000_82580_PM_SPD;
1057		else if (phy->smart_speed == e1000_smart_speed_off)
1058			data &= ~E1000_82580_PM_SPD; }
1059
1060	wr32(E1000_82580_PHY_POWER_MGMT, data);
1061	return 0;
1062}
1063
1064/**
1065 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1066 *  @hw: pointer to the HW structure
1067 *  @active: boolean used to enable/disable lplu
1068 *
1069 *  Success returns 0, Failure returns 1
1070 *
1071 *  The low power link up (lplu) state is set to the power management level D3
1072 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1073 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1074 *  is used during Dx states where the power conservation is most important.
1075 *  During driver activity, SmartSpeed should be enabled so performance is
1076 *  maintained.
1077 **/
1078static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1079{
1080	struct e1000_phy_info *phy = &hw->phy;
 
1081	u16 data;
1082
1083	data = rd32(E1000_82580_PHY_POWER_MGMT);
1084
1085	if (!active) {
1086		data &= ~E1000_82580_PM_D3_LPLU;
1087		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1088		 * during Dx states where the power conservation is most
1089		 * important.  During driver activity we should enable
1090		 * SmartSpeed, so performance is maintained.
1091		 */
1092		if (phy->smart_speed == e1000_smart_speed_on)
1093			data |= E1000_82580_PM_SPD;
1094		else if (phy->smart_speed == e1000_smart_speed_off)
1095			data &= ~E1000_82580_PM_SPD;
1096	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1097		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1098		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1099		data |= E1000_82580_PM_D3_LPLU;
1100		/* When LPLU is enabled, we should disable SmartSpeed */
1101		data &= ~E1000_82580_PM_SPD;
1102	}
1103
1104	wr32(E1000_82580_PHY_POWER_MGMT, data);
1105	return 0;
1106}
1107
1108/**
1109 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1110 *  @hw: pointer to the HW structure
1111 *
1112 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1113 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1114 *  Return successful if access grant bit set, else clear the request for
1115 *  EEPROM access and return -E1000_ERR_NVM (-1).
1116 **/
1117static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1118{
1119	s32 ret_val;
1120
1121	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1122	if (ret_val)
1123		goto out;
1124
1125	ret_val = igb_acquire_nvm(hw);
1126
1127	if (ret_val)
1128		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1129
1130out:
1131	return ret_val;
1132}
1133
1134/**
1135 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1136 *  @hw: pointer to the HW structure
1137 *
1138 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1139 *  then release the semaphores acquired.
1140 **/
1141static void igb_release_nvm_82575(struct e1000_hw *hw)
1142{
1143	igb_release_nvm(hw);
1144	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145}
1146
1147/**
1148 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1149 *  @hw: pointer to the HW structure
1150 *  @mask: specifies which semaphore to acquire
1151 *
1152 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1153 *  will also specify which port we're acquiring the lock for.
1154 **/
1155static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1156{
1157	u32 swfw_sync;
1158	u32 swmask = mask;
1159	u32 fwmask = mask << 16;
1160	s32 ret_val = 0;
1161	s32 i = 0, timeout = 200;
1162
1163	while (i < timeout) {
1164		if (igb_get_hw_semaphore(hw)) {
1165			ret_val = -E1000_ERR_SWFW_SYNC;
1166			goto out;
1167		}
1168
1169		swfw_sync = rd32(E1000_SW_FW_SYNC);
1170		if (!(swfw_sync & (fwmask | swmask)))
1171			break;
1172
1173		/* Firmware currently using resource (fwmask)
1174		 * or other software thread using resource (swmask)
1175		 */
1176		igb_put_hw_semaphore(hw);
1177		mdelay(5);
1178		i++;
1179	}
1180
1181	if (i == timeout) {
1182		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1183		ret_val = -E1000_ERR_SWFW_SYNC;
1184		goto out;
1185	}
1186
1187	swfw_sync |= swmask;
1188	wr32(E1000_SW_FW_SYNC, swfw_sync);
1189
1190	igb_put_hw_semaphore(hw);
1191
1192out:
1193	return ret_val;
1194}
1195
1196/**
1197 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1198 *  @hw: pointer to the HW structure
1199 *  @mask: specifies which semaphore to acquire
1200 *
1201 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1202 *  will also specify which port we're releasing the lock for.
1203 **/
1204static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1205{
1206	u32 swfw_sync;
1207
1208	while (igb_get_hw_semaphore(hw) != 0)
1209		; /* Empty */
1210
1211	swfw_sync = rd32(E1000_SW_FW_SYNC);
1212	swfw_sync &= ~mask;
1213	wr32(E1000_SW_FW_SYNC, swfw_sync);
1214
1215	igb_put_hw_semaphore(hw);
1216}
1217
1218/**
1219 *  igb_get_cfg_done_82575 - Read config done bit
1220 *  @hw: pointer to the HW structure
1221 *
1222 *  Read the management control register for the config done bit for
1223 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1224 *  to read the config done bit, so an error is *ONLY* logged and returns
1225 *  0.  If we were to return with error, EEPROM-less silicon
1226 *  would not be able to be reset or change link.
1227 **/
1228static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1229{
1230	s32 timeout = PHY_CFG_TIMEOUT;
 
1231	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1232
1233	if (hw->bus.func == 1)
1234		mask = E1000_NVM_CFG_DONE_PORT_1;
1235	else if (hw->bus.func == E1000_FUNC_2)
1236		mask = E1000_NVM_CFG_DONE_PORT_2;
1237	else if (hw->bus.func == E1000_FUNC_3)
1238		mask = E1000_NVM_CFG_DONE_PORT_3;
1239
1240	while (timeout) {
1241		if (rd32(E1000_EEMNGCTL) & mask)
1242			break;
1243		usleep_range(1000, 2000);
1244		timeout--;
1245	}
1246	if (!timeout)
1247		hw_dbg("MNG configuration cycle has not completed.\n");
1248
1249	/* If EEPROM is not marked present, init the PHY manually */
1250	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1251	    (hw->phy.type == e1000_phy_igp_3))
1252		igb_phy_init_script_igp3(hw);
1253
1254	return 0;
1255}
1256
1257/**
1258 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1259 *  @hw: pointer to the HW structure
1260 *  @speed: stores the current speed
1261 *  @duplex: stores the current duplex
1262 *
1263 *  This is a wrapper function, if using the serial gigabit media independent
1264 *  interface, use PCS to retrieve the link speed and duplex information.
1265 *  Otherwise, use the generic function to get the link speed and duplex info.
1266 **/
1267static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1268					u16 *duplex)
1269{
1270	s32 ret_val;
1271
1272	if (hw->phy.media_type != e1000_media_type_copper)
1273		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1274							       duplex);
1275	else
1276		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1277								    duplex);
1278
1279	return ret_val;
1280}
1281
1282/**
1283 *  igb_check_for_link_82575 - Check for link
1284 *  @hw: pointer to the HW structure
1285 *
1286 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1287 *  use the generic interface for determining link.
1288 **/
1289static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1290{
1291	s32 ret_val;
1292	u16 speed, duplex;
1293
1294	if (hw->phy.media_type != e1000_media_type_copper) {
1295		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1296							     &duplex);
1297		/* Use this flag to determine if link needs to be checked or
1298		 * not.  If  we have link clear the flag so that we do not
1299		 * continue to check for link.
1300		 */
1301		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1302
1303		/* Configure Flow Control now that Auto-Neg has completed.
1304		 * First, we need to restore the desired flow control
1305		 * settings because we may have had to re-autoneg with a
1306		 * different link partner.
1307		 */
1308		ret_val = igb_config_fc_after_link_up(hw);
1309		if (ret_val)
1310			hw_dbg("Error configuring flow control\n");
1311	} else {
1312		ret_val = igb_check_for_copper_link(hw);
1313	}
1314
1315	return ret_val;
1316}
1317
1318/**
1319 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1320 *  @hw: pointer to the HW structure
1321 **/
1322void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1323{
1324	u32 reg;
1325
1326
1327	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1328	    !igb_sgmii_active_82575(hw))
1329		return;
1330
1331	/* Enable PCS to turn on link */
1332	reg = rd32(E1000_PCS_CFG0);
1333	reg |= E1000_PCS_CFG_PCS_EN;
1334	wr32(E1000_PCS_CFG0, reg);
1335
1336	/* Power up the laser */
1337	reg = rd32(E1000_CTRL_EXT);
1338	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1339	wr32(E1000_CTRL_EXT, reg);
1340
1341	/* flush the write to verify completion */
1342	wrfl();
1343	usleep_range(1000, 2000);
1344}
1345
1346/**
1347 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1348 *  @hw: pointer to the HW structure
1349 *  @speed: stores the current speed
1350 *  @duplex: stores the current duplex
1351 *
1352 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1353 *  duplex, then store the values in the pointers provided.
1354 **/
1355static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1356						u16 *duplex)
1357{
1358	struct e1000_mac_info *mac = &hw->mac;
1359	u32 pcs, status;
1360
1361	/* Set up defaults for the return values of this function */
1362	mac->serdes_has_link = false;
1363	*speed = 0;
1364	*duplex = 0;
1365
1366	/* Read the PCS Status register for link state. For non-copper mode,
1367	 * the status register is not accurate. The PCS status register is
1368	 * used instead.
1369	 */
1370	pcs = rd32(E1000_PCS_LSTAT);
1371
1372	/* The link up bit determines when link is up on autoneg. The sync ok
1373	 * gets set once both sides sync up and agree upon link. Stable link
1374	 * can be determined by checking for both link up and link sync ok
1375	 */
1376	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1377		mac->serdes_has_link = true;
1378
1379		/* Detect and store PCS speed */
1380		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1381			*speed = SPEED_1000;
1382		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1383			*speed = SPEED_100;
1384		else
1385			*speed = SPEED_10;
1386
1387		/* Detect and store PCS duplex */
1388		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1389			*duplex = FULL_DUPLEX;
1390		else
1391			*duplex = HALF_DUPLEX;
1392
1393	/* Check if it is an I354 2.5Gb backplane connection. */
1394		if (mac->type == e1000_i354) {
1395			status = rd32(E1000_STATUS);
1396			if ((status & E1000_STATUS_2P5_SKU) &&
1397			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1398				*speed = SPEED_2500;
1399				*duplex = FULL_DUPLEX;
1400				hw_dbg("2500 Mbs, ");
1401				hw_dbg("Full Duplex\n");
1402			}
1403		}
1404
1405	}
1406
1407	return 0;
1408}
1409
1410/**
1411 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1412 *  @hw: pointer to the HW structure
1413 *
1414 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1415 *  when management pass thru is not enabled.
1416 **/
1417void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1418{
1419	u32 reg;
1420
1421	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1422	    igb_sgmii_active_82575(hw))
1423		return;
1424
1425	if (!igb_enable_mng_pass_thru(hw)) {
1426		/* Disable PCS to turn off link */
1427		reg = rd32(E1000_PCS_CFG0);
1428		reg &= ~E1000_PCS_CFG_PCS_EN;
1429		wr32(E1000_PCS_CFG0, reg);
1430
1431		/* shutdown the laser */
1432		reg = rd32(E1000_CTRL_EXT);
1433		reg |= E1000_CTRL_EXT_SDP3_DATA;
1434		wr32(E1000_CTRL_EXT, reg);
1435
1436		/* flush the write to verify completion */
1437		wrfl();
1438		usleep_range(1000, 2000);
1439	}
1440}
1441
1442/**
1443 *  igb_reset_hw_82575 - Reset hardware
1444 *  @hw: pointer to the HW structure
1445 *
1446 *  This resets the hardware into a known state.  This is a
1447 *  function pointer entry point called by the api module.
1448 **/
1449static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1450{
1451	u32 ctrl;
1452	s32 ret_val;
1453
1454	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1455	 * on the last TLP read/write transaction when MAC is reset.
1456	 */
1457	ret_val = igb_disable_pcie_master(hw);
1458	if (ret_val)
1459		hw_dbg("PCI-E Master disable polling has failed.\n");
1460
1461	/* set the completion timeout for interface */
1462	ret_val = igb_set_pcie_completion_timeout(hw);
1463	if (ret_val)
1464		hw_dbg("PCI-E Set completion timeout has failed.\n");
 
1465
1466	hw_dbg("Masking off all interrupts\n");
1467	wr32(E1000_IMC, 0xffffffff);
1468
1469	wr32(E1000_RCTL, 0);
1470	wr32(E1000_TCTL, E1000_TCTL_PSP);
1471	wrfl();
1472
1473	usleep_range(10000, 20000);
1474
1475	ctrl = rd32(E1000_CTRL);
1476
1477	hw_dbg("Issuing a global reset to MAC\n");
1478	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1479
1480	ret_val = igb_get_auto_rd_done(hw);
1481	if (ret_val) {
1482		/* When auto config read does not complete, do not
1483		 * return with an error. This can happen in situations
1484		 * where there is no eeprom and prevents getting link.
1485		 */
1486		hw_dbg("Auto Read Done did not complete\n");
1487	}
1488
1489	/* If EEPROM is not present, run manual init scripts */
1490	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1491		igb_reset_init_script_82575(hw);
1492
1493	/* Clear any pending interrupt events. */
1494	wr32(E1000_IMC, 0xffffffff);
1495	rd32(E1000_ICR);
1496
1497	/* Install any alternate MAC address into RAR0 */
1498	ret_val = igb_check_alt_mac_addr(hw);
1499
1500	return ret_val;
1501}
1502
1503/**
1504 *  igb_init_hw_82575 - Initialize hardware
1505 *  @hw: pointer to the HW structure
1506 *
1507 *  This inits the hardware readying it for operation.
1508 **/
1509static s32 igb_init_hw_82575(struct e1000_hw *hw)
1510{
1511	struct e1000_mac_info *mac = &hw->mac;
1512	s32 ret_val;
1513	u16 i, rar_count = mac->rar_entry_count;
1514
1515	if ((hw->mac.type >= e1000_i210) &&
1516	    !(igb_get_flash_presence_i210(hw))) {
1517		ret_val = igb_pll_workaround_i210(hw);
1518		if (ret_val)
1519			return ret_val;
1520	}
1521
1522	/* Initialize identification LED */
1523	ret_val = igb_id_led_init(hw);
1524	if (ret_val) {
1525		hw_dbg("Error initializing identification LED\n");
1526		/* This is not fatal and we should not stop init due to this */
1527	}
1528
1529	/* Disabling VLAN filtering */
1530	hw_dbg("Initializing the IEEE VLAN\n");
1531	igb_clear_vfta(hw);
 
 
 
1532
1533	/* Setup the receive address */
1534	igb_init_rx_addrs(hw, rar_count);
1535
1536	/* Zero out the Multicast HASH table */
1537	hw_dbg("Zeroing the MTA\n");
1538	for (i = 0; i < mac->mta_reg_count; i++)
1539		array_wr32(E1000_MTA, i, 0);
1540
1541	/* Zero out the Unicast HASH table */
1542	hw_dbg("Zeroing the UTA\n");
1543	for (i = 0; i < mac->uta_reg_count; i++)
1544		array_wr32(E1000_UTA, i, 0);
1545
1546	/* Setup link and flow control */
1547	ret_val = igb_setup_link(hw);
1548
1549	/* Clear all of the statistics registers (clear on read).  It is
1550	 * important that we do this after we have tried to establish link
1551	 * because the symbol error count will increment wildly if there
1552	 * is no link.
1553	 */
1554	igb_clear_hw_cntrs_82575(hw);
1555	return ret_val;
1556}
1557
1558/**
1559 *  igb_setup_copper_link_82575 - Configure copper link settings
1560 *  @hw: pointer to the HW structure
1561 *
1562 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1563 *  for link, once link is established calls to configure collision distance
1564 *  and flow control are called.
1565 **/
1566static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1567{
1568	u32 ctrl;
1569	s32  ret_val;
1570	u32 phpm_reg;
1571
1572	ctrl = rd32(E1000_CTRL);
1573	ctrl |= E1000_CTRL_SLU;
1574	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1575	wr32(E1000_CTRL, ctrl);
1576
1577	/* Clear Go Link Disconnect bit on supported devices */
1578	switch (hw->mac.type) {
1579	case e1000_82580:
1580	case e1000_i350:
1581	case e1000_i210:
1582	case e1000_i211:
1583		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1584		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1585		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1586		break;
1587	default:
1588		break;
1589	}
1590
1591	ret_val = igb_setup_serdes_link_82575(hw);
1592	if (ret_val)
1593		goto out;
1594
1595	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1596		/* allow time for SFP cage time to power up phy */
1597		msleep(300);
1598
1599		ret_val = hw->phy.ops.reset(hw);
1600		if (ret_val) {
1601			hw_dbg("Error resetting the PHY.\n");
1602			goto out;
1603		}
1604	}
1605	switch (hw->phy.type) {
1606	case e1000_phy_i210:
1607	case e1000_phy_m88:
1608		switch (hw->phy.id) {
1609		case I347AT4_E_PHY_ID:
1610		case M88E1112_E_PHY_ID:
1611		case M88E1543_E_PHY_ID:
1612		case M88E1512_E_PHY_ID:
1613		case I210_I_PHY_ID:
1614			ret_val = igb_copper_link_setup_m88_gen2(hw);
1615			break;
1616		default:
1617			ret_val = igb_copper_link_setup_m88(hw);
1618			break;
1619		}
1620		break;
1621	case e1000_phy_igp_3:
1622		ret_val = igb_copper_link_setup_igp(hw);
1623		break;
1624	case e1000_phy_82580:
1625		ret_val = igb_copper_link_setup_82580(hw);
1626		break;
1627	case e1000_phy_bcm54616:
1628		ret_val = 0;
1629		break;
1630	default:
1631		ret_val = -E1000_ERR_PHY;
1632		break;
1633	}
1634
1635	if (ret_val)
1636		goto out;
1637
1638	ret_val = igb_setup_copper_link(hw);
1639out:
1640	return ret_val;
1641}
1642
1643/**
1644 *  igb_setup_serdes_link_82575 - Setup link for serdes
1645 *  @hw: pointer to the HW structure
1646 *
1647 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1648 *  used on copper connections where the serialized gigabit media independent
1649 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1650 *  for auto-negotiation or forces speed/duplex.
1651 **/
1652static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1653{
1654	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1655	bool pcs_autoneg;
1656	s32 ret_val = 0;
1657	u16 data;
1658
1659	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1660	    !igb_sgmii_active_82575(hw))
1661		return ret_val;
1662
1663
1664	/* On the 82575, SerDes loopback mode persists until it is
1665	 * explicitly turned off or a power cycle is performed.  A read to
1666	 * the register does not indicate its status.  Therefore, we ensure
1667	 * loopback mode is disabled during initialization.
1668	 */
1669	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1670
1671	/* power on the sfp cage if present and turn on I2C */
1672	ctrl_ext = rd32(E1000_CTRL_EXT);
1673	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1674	ctrl_ext |= E1000_CTRL_I2C_ENA;
1675	wr32(E1000_CTRL_EXT, ctrl_ext);
1676
1677	ctrl_reg = rd32(E1000_CTRL);
1678	ctrl_reg |= E1000_CTRL_SLU;
1679
1680	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1681		/* set both sw defined pins */
1682		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1683
1684		/* Set switch control to serdes energy detect */
1685		reg = rd32(E1000_CONNSW);
1686		reg |= E1000_CONNSW_ENRGSRC;
1687		wr32(E1000_CONNSW, reg);
1688	}
1689
1690	reg = rd32(E1000_PCS_LCTL);
1691
1692	/* default pcs_autoneg to the same setting as mac autoneg */
1693	pcs_autoneg = hw->mac.autoneg;
1694
1695	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1696	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1697		/* sgmii mode lets the phy handle forcing speed/duplex */
1698		pcs_autoneg = true;
1699		/* autoneg time out should be disabled for SGMII mode */
1700		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1701		break;
1702	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1703		/* disable PCS autoneg and support parallel detect only */
1704		pcs_autoneg = false;
1705		fallthrough;
1706	default:
1707		if (hw->mac.type == e1000_82575 ||
1708		    hw->mac.type == e1000_82576) {
1709			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1710			if (ret_val) {
1711				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1712				return ret_val;
1713			}
1714
1715			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1716				pcs_autoneg = false;
1717		}
1718
1719		/* non-SGMII modes only supports a speed of 1000/Full for the
1720		 * link so it is best to just force the MAC and let the pcs
1721		 * link either autoneg or be forced to 1000/Full
1722		 */
1723		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1724				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1725
1726		/* set speed of 1000/Full if speed/duplex is forced */
1727		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1728		break;
1729	}
1730
1731	wr32(E1000_CTRL, ctrl_reg);
1732
1733	/* New SerDes mode allows for forcing speed or autonegotiating speed
1734	 * at 1gb. Autoneg should be default set by most drivers. This is the
1735	 * mode that will be compatible with older link partners and switches.
1736	 * However, both are supported by the hardware and some drivers/tools.
1737	 */
1738	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1739		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1740
1741	if (pcs_autoneg) {
1742		/* Set PCS register for autoneg */
1743		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1744		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1745
1746		/* Disable force flow control for autoneg */
1747		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1748
1749		/* Configure flow control advertisement for autoneg */
1750		anadv_reg = rd32(E1000_PCS_ANADV);
1751		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1752		switch (hw->fc.requested_mode) {
1753		case e1000_fc_full:
1754		case e1000_fc_rx_pause:
1755			anadv_reg |= E1000_TXCW_ASM_DIR;
1756			anadv_reg |= E1000_TXCW_PAUSE;
1757			break;
1758		case e1000_fc_tx_pause:
1759			anadv_reg |= E1000_TXCW_ASM_DIR;
1760			break;
1761		default:
1762			break;
1763		}
1764		wr32(E1000_PCS_ANADV, anadv_reg);
1765
1766		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1767	} else {
1768		/* Set PCS register for forced link */
1769		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1770
1771		/* Force flow control for forced link */
1772		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1773
1774		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1775	}
1776
1777	wr32(E1000_PCS_LCTL, reg);
1778
1779	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1780		igb_force_mac_fc(hw);
1781
1782	return ret_val;
1783}
1784
1785/**
1786 *  igb_sgmii_active_82575 - Return sgmii state
1787 *  @hw: pointer to the HW structure
1788 *
1789 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1790 *  which can be enabled for use in the embedded applications.  Simply
1791 *  return the current state of the sgmii interface.
1792 **/
1793static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1794{
1795	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1796	return dev_spec->sgmii_active;
1797}
1798
1799/**
1800 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1801 *  @hw: pointer to the HW structure
1802 *
1803 *  Inits recommended HW defaults after a reset when there is no EEPROM
1804 *  detected. This is only for the 82575.
1805 **/
1806static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1807{
1808	if (hw->mac.type == e1000_82575) {
1809		hw_dbg("Running reset init script for 82575\n");
1810		/* SerDes configuration via SERDESCTRL */
1811		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1812		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1813		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1814		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1815
1816		/* CCM configuration via CCMCTL register */
1817		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1818		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1819
1820		/* PCIe lanes configuration */
1821		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1822		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1823		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1824		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1825
1826		/* PCIe PLL Configuration */
1827		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1828		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1829		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1830	}
1831
1832	return 0;
1833}
1834
1835/**
1836 *  igb_read_mac_addr_82575 - Read device MAC address
1837 *  @hw: pointer to the HW structure
1838 **/
1839static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1840{
1841	s32 ret_val = 0;
1842
1843	/* If there's an alternate MAC address place it in RAR0
1844	 * so that it will override the Si installed default perm
1845	 * address.
1846	 */
1847	ret_val = igb_check_alt_mac_addr(hw);
1848	if (ret_val)
1849		goto out;
1850
1851	ret_val = igb_read_mac_addr(hw);
1852
1853out:
1854	return ret_val;
1855}
1856
1857/**
1858 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1859 * @hw: pointer to the HW structure
1860 *
1861 * In the case of a PHY power down to save power, or to turn off link during a
1862 * driver unload, or wake on lan is not enabled, remove the link.
1863 **/
1864void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1865{
1866	/* If the management interface is not enabled, then power down */
1867	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1868		igb_power_down_phy_copper(hw);
1869}
1870
1871/**
1872 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Clears the hardware counters by reading the counter registers.
1876 **/
1877static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1878{
1879	igb_clear_hw_cntrs_base(hw);
1880
1881	rd32(E1000_PRC64);
1882	rd32(E1000_PRC127);
1883	rd32(E1000_PRC255);
1884	rd32(E1000_PRC511);
1885	rd32(E1000_PRC1023);
1886	rd32(E1000_PRC1522);
1887	rd32(E1000_PTC64);
1888	rd32(E1000_PTC127);
1889	rd32(E1000_PTC255);
1890	rd32(E1000_PTC511);
1891	rd32(E1000_PTC1023);
1892	rd32(E1000_PTC1522);
1893
1894	rd32(E1000_ALGNERRC);
1895	rd32(E1000_RXERRC);
1896	rd32(E1000_TNCRS);
1897	rd32(E1000_CEXTERR);
1898	rd32(E1000_TSCTC);
1899	rd32(E1000_TSCTFC);
1900
1901	rd32(E1000_MGTPRC);
1902	rd32(E1000_MGTPDC);
1903	rd32(E1000_MGTPTC);
1904
1905	rd32(E1000_IAC);
1906	rd32(E1000_ICRXOC);
1907
1908	rd32(E1000_ICRXPTC);
1909	rd32(E1000_ICRXATC);
1910	rd32(E1000_ICTXPTC);
1911	rd32(E1000_ICTXATC);
1912	rd32(E1000_ICTXQEC);
1913	rd32(E1000_ICTXQMTC);
1914	rd32(E1000_ICRXDMTC);
1915
1916	rd32(E1000_CBTMPC);
1917	rd32(E1000_HTDPMC);
1918	rd32(E1000_CBRMPC);
1919	rd32(E1000_RPTHC);
1920	rd32(E1000_HGPTC);
1921	rd32(E1000_HTCBDPC);
1922	rd32(E1000_HGORCL);
1923	rd32(E1000_HGORCH);
1924	rd32(E1000_HGOTCL);
1925	rd32(E1000_HGOTCH);
1926	rd32(E1000_LENERRS);
1927
1928	/* This register should not be read in copper configurations */
1929	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1930	    igb_sgmii_active_82575(hw))
1931		rd32(E1000_SCVPC);
1932}
1933
1934/**
1935 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1936 *  @hw: pointer to the HW structure
1937 *
1938 *  After rx enable if manageability is enabled then there is likely some
1939 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1940 *  function clears the fifos and flushes any packets that came in as rx was
1941 *  being enabled.
1942 **/
1943void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1944{
1945	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1946	int i, ms_wait;
1947
1948	/* disable IPv6 options as per hardware errata */
1949	rfctl = rd32(E1000_RFCTL);
1950	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1951	wr32(E1000_RFCTL, rfctl);
1952
1953	if (hw->mac.type != e1000_82575 ||
1954	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1955		return;
1956
1957	/* Disable all RX queues */
1958	for (i = 0; i < 4; i++) {
1959		rxdctl[i] = rd32(E1000_RXDCTL(i));
1960		wr32(E1000_RXDCTL(i),
1961		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1962	}
1963	/* Poll all queues to verify they have shut down */
1964	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1965		usleep_range(1000, 2000);
1966		rx_enabled = 0;
1967		for (i = 0; i < 4; i++)
1968			rx_enabled |= rd32(E1000_RXDCTL(i));
1969		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1970			break;
1971	}
1972
1973	if (ms_wait == 10)
1974		hw_dbg("Queue disable timed out after 10ms\n");
1975
1976	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1977	 * incoming packets are rejected.  Set enable and wait 2ms so that
1978	 * any packet that was coming in as RCTL.EN was set is flushed
1979	 */
 
1980	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1981
1982	rlpml = rd32(E1000_RLPML);
1983	wr32(E1000_RLPML, 0);
1984
1985	rctl = rd32(E1000_RCTL);
1986	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1987	temp_rctl |= E1000_RCTL_LPE;
1988
1989	wr32(E1000_RCTL, temp_rctl);
1990	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1991	wrfl();
1992	usleep_range(2000, 3000);
1993
1994	/* Enable RX queues that were previously enabled and restore our
1995	 * previous state
1996	 */
1997	for (i = 0; i < 4; i++)
1998		wr32(E1000_RXDCTL(i), rxdctl[i]);
1999	wr32(E1000_RCTL, rctl);
2000	wrfl();
2001
2002	wr32(E1000_RLPML, rlpml);
2003	wr32(E1000_RFCTL, rfctl);
2004
2005	/* Flush receive errors generated by workaround */
2006	rd32(E1000_ROC);
2007	rd32(E1000_RNBC);
2008	rd32(E1000_MPC);
2009}
2010
2011/**
2012 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2013 *  @hw: pointer to the HW structure
2014 *
2015 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2016 *  however the hardware default for these parts is 500us to 1ms which is less
2017 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2018 *  increase the value to either 10ms to 200ms for capability version 1 config,
2019 *  or 16ms to 55ms for version 2.
2020 **/
2021static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2022{
2023	u32 gcr = rd32(E1000_GCR);
2024	s32 ret_val = 0;
2025	u16 pcie_devctl2;
2026
2027	/* only take action if timeout value is defaulted to 0 */
2028	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2029		goto out;
2030
2031	/* if capabilities version is type 1 we can write the
2032	 * timeout of 10ms to 200ms through the GCR register
2033	 */
2034	if (!(gcr & E1000_GCR_CAP_VER2)) {
2035		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2036		goto out;
2037	}
2038
2039	/* for version 2 capabilities we need to write the config space
2040	 * directly in order to set the completion timeout value for
2041	 * 16ms to 55ms
2042	 */
2043	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2044					&pcie_devctl2);
2045	if (ret_val)
2046		goto out;
2047
2048	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2049
2050	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2051					 &pcie_devctl2);
2052out:
2053	/* disable completion timeout resend */
2054	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2055
2056	wr32(E1000_GCR, gcr);
2057	return ret_val;
2058}
2059
2060/**
2061 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2062 *  @hw: pointer to the hardware struct
2063 *  @enable: state to enter, either enabled or disabled
2064 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2065 *
2066 *  enables/disables L2 switch anti-spoofing functionality.
2067 **/
2068void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2069{
2070	u32 reg_val, reg_offset;
2071
2072	switch (hw->mac.type) {
2073	case e1000_82576:
2074		reg_offset = E1000_DTXSWC;
2075		break;
2076	case e1000_i350:
2077	case e1000_i354:
2078		reg_offset = E1000_TXSWC;
2079		break;
2080	default:
2081		return;
2082	}
2083
2084	reg_val = rd32(reg_offset);
2085	if (enable) {
2086		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2087			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2088		/* The PF can spoof - it has to in order to
2089		 * support emulation mode NICs
2090		 */
2091		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2092	} else {
2093		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2094			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2095	}
2096	wr32(reg_offset, reg_val);
2097}
2098
2099/**
2100 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2101 *  @hw: pointer to the hardware struct
2102 *  @enable: state to enter, either enabled or disabled
2103 *
2104 *  enables/disables L2 switch loopback functionality.
2105 **/
2106void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2107{
2108	u32 dtxswc;
2109
2110	switch (hw->mac.type) {
2111	case e1000_82576:
2112		dtxswc = rd32(E1000_DTXSWC);
2113		if (enable)
2114			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2115		else
2116			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117		wr32(E1000_DTXSWC, dtxswc);
2118		break;
2119	case e1000_i354:
2120	case e1000_i350:
2121		dtxswc = rd32(E1000_TXSWC);
2122		if (enable)
2123			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2124		else
2125			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126		wr32(E1000_TXSWC, dtxswc);
2127		break;
2128	default:
2129		/* Currently no other hardware supports loopback */
2130		break;
2131	}
2132
2133}
2134
2135/**
2136 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2137 *  @hw: pointer to the hardware struct
2138 *  @enable: state to enter, either enabled or disabled
2139 *
2140 *  enables/disables replication of packets across multiple pools.
2141 **/
2142void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2143{
2144	u32 vt_ctl = rd32(E1000_VT_CTL);
2145
2146	if (enable)
2147		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2148	else
2149		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2150
2151	wr32(E1000_VT_CTL, vt_ctl);
2152}
2153
2154/**
2155 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2156 *  @hw: pointer to the HW structure
2157 *  @offset: register offset to be read
2158 *  @data: pointer to the read data
2159 *
2160 *  Reads the MDI control register in the PHY at offset and stores the
2161 *  information read to data.
2162 **/
2163s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2164{
2165	s32 ret_val;
2166
2167	ret_val = hw->phy.ops.acquire(hw);
2168	if (ret_val)
2169		goto out;
2170
2171	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2172
2173	hw->phy.ops.release(hw);
2174
2175out:
2176	return ret_val;
2177}
2178
2179/**
2180 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2181 *  @hw: pointer to the HW structure
2182 *  @offset: register offset to write to
2183 *  @data: data to write to register at offset
2184 *
2185 *  Writes data to MDI control register in the PHY at offset.
2186 **/
2187s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2188{
2189	s32 ret_val;
2190
2191
2192	ret_val = hw->phy.ops.acquire(hw);
2193	if (ret_val)
2194		goto out;
2195
2196	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2197
2198	hw->phy.ops.release(hw);
2199
2200out:
2201	return ret_val;
2202}
2203
2204/**
2205 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2206 *  @hw: pointer to the HW structure
2207 *
2208 *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2209 *  the values found in the EEPROM.  This addresses an issue in which these
2210 *  bits are not restored from EEPROM after reset.
2211 **/
2212static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2213{
2214	s32 ret_val = 0;
2215	u32 mdicnfg;
2216	u16 nvm_data = 0;
2217
2218	if (hw->mac.type != e1000_82580)
2219		goto out;
2220	if (!igb_sgmii_active_82575(hw))
2221		goto out;
2222
2223	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2224				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2225				   &nvm_data);
2226	if (ret_val) {
2227		hw_dbg("NVM Read Error\n");
2228		goto out;
2229	}
2230
2231	mdicnfg = rd32(E1000_MDICNFG);
2232	if (nvm_data & NVM_WORD24_EXT_MDIO)
2233		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2234	if (nvm_data & NVM_WORD24_COM_MDIO)
2235		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2236	wr32(E1000_MDICNFG, mdicnfg);
2237out:
2238	return ret_val;
2239}
2240
2241/**
2242 *  igb_reset_hw_82580 - Reset hardware
2243 *  @hw: pointer to the HW structure
2244 *
2245 *  This resets function or entire device (all ports, etc.)
2246 *  to a known state.
2247 **/
2248static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2249{
2250	s32 ret_val = 0;
2251	/* BH SW mailbox bit in SW_FW_SYNC */
2252	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2253	u32 ctrl;
2254	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2255
2256	hw->dev_spec._82575.global_device_reset = false;
2257
2258	/* due to hw errata, global device reset doesn't always
2259	 * work on 82580
2260	 */
2261	if (hw->mac.type == e1000_82580)
2262		global_device_reset = false;
2263
2264	/* Get current control state. */
2265	ctrl = rd32(E1000_CTRL);
2266
2267	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2268	 * on the last TLP read/write transaction when MAC is reset.
2269	 */
2270	ret_val = igb_disable_pcie_master(hw);
2271	if (ret_val)
2272		hw_dbg("PCI-E Master disable polling has failed.\n");
2273
2274	hw_dbg("Masking off all interrupts\n");
2275	wr32(E1000_IMC, 0xffffffff);
2276	wr32(E1000_RCTL, 0);
2277	wr32(E1000_TCTL, E1000_TCTL_PSP);
2278	wrfl();
2279
2280	usleep_range(10000, 11000);
2281
2282	/* Determine whether or not a global dev reset is requested */
2283	if (global_device_reset &&
2284		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2285			global_device_reset = false;
2286
2287	if (global_device_reset &&
2288		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2289		ctrl |= E1000_CTRL_DEV_RST;
2290	else
2291		ctrl |= E1000_CTRL_RST;
2292
2293	wr32(E1000_CTRL, ctrl);
2294	wrfl();
2295
2296	/* Add delay to insure DEV_RST has time to complete */
2297	if (global_device_reset)
2298		usleep_range(5000, 6000);
2299
2300	ret_val = igb_get_auto_rd_done(hw);
2301	if (ret_val) {
2302		/* When auto config read does not complete, do not
2303		 * return with an error. This can happen in situations
2304		 * where there is no eeprom and prevents getting link.
2305		 */
2306		hw_dbg("Auto Read Done did not complete\n");
2307	}
2308
2309	/* clear global device reset status bit */
2310	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2311
2312	/* Clear any pending interrupt events. */
2313	wr32(E1000_IMC, 0xffffffff);
2314	rd32(E1000_ICR);
2315
2316	ret_val = igb_reset_mdicnfg_82580(hw);
2317	if (ret_val)
2318		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2319
2320	/* Install any alternate MAC address into RAR0 */
2321	ret_val = igb_check_alt_mac_addr(hw);
2322
2323	/* Release semaphore */
2324	if (global_device_reset)
2325		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2326
2327	return ret_val;
2328}
2329
2330/**
2331 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2332 *  @data: data received by reading RXPBS register
2333 *
2334 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2335 *  This function converts the retrieved value into the correct table value
2336 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2337 *  0x0 36  72 144   1   2   4   8  16
2338 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2339 */
2340u16 igb_rxpbs_adjust_82580(u32 data)
2341{
2342	u16 ret_val = 0;
2343
2344	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2345		ret_val = e1000_82580_rxpbs_table[data];
2346
2347	return ret_val;
2348}
2349
2350/**
2351 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2352 *  checksum
2353 *  @hw: pointer to the HW structure
2354 *  @offset: offset in words of the checksum protected region
2355 *
2356 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2357 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2358 **/
2359static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2360						 u16 offset)
2361{
2362	s32 ret_val = 0;
2363	u16 checksum = 0;
2364	u16 i, nvm_data;
2365
2366	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2367		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2368		if (ret_val) {
2369			hw_dbg("NVM Read Error\n");
2370			goto out;
2371		}
2372		checksum += nvm_data;
2373	}
2374
2375	if (checksum != (u16) NVM_SUM) {
2376		hw_dbg("NVM Checksum Invalid\n");
2377		ret_val = -E1000_ERR_NVM;
2378		goto out;
2379	}
2380
2381out:
2382	return ret_val;
2383}
2384
2385/**
2386 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2387 *  checksum
2388 *  @hw: pointer to the HW structure
2389 *  @offset: offset in words of the checksum protected region
2390 *
2391 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2392 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2393 *  value to the EEPROM.
2394 **/
2395static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2396{
2397	s32 ret_val;
2398	u16 checksum = 0;
2399	u16 i, nvm_data;
2400
2401	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2402		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2403		if (ret_val) {
2404			hw_dbg("NVM Read Error while updating checksum.\n");
2405			goto out;
2406		}
2407		checksum += nvm_data;
2408	}
2409	checksum = (u16) NVM_SUM - checksum;
2410	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2411				&checksum);
2412	if (ret_val)
2413		hw_dbg("NVM Write Error while updating checksum.\n");
2414
2415out:
2416	return ret_val;
2417}
2418
2419/**
2420 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2421 *  @hw: pointer to the HW structure
2422 *
2423 *  Calculates the EEPROM section checksum by reading/adding each word of
2424 *  the EEPROM and then verifies that the sum of the EEPROM is
2425 *  equal to 0xBABA.
2426 **/
2427static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2428{
2429	s32 ret_val = 0;
2430	u16 eeprom_regions_count = 1;
2431	u16 j, nvm_data;
2432	u16 nvm_offset;
2433
2434	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435	if (ret_val) {
2436		hw_dbg("NVM Read Error\n");
2437		goto out;
2438	}
2439
2440	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2441		/* if checksums compatibility bit is set validate checksums
2442		 * for all 4 ports.
2443		 */
2444		eeprom_regions_count = 4;
2445	}
2446
2447	for (j = 0; j < eeprom_regions_count; j++) {
2448		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2449		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2450								nvm_offset);
2451		if (ret_val != 0)
2452			goto out;
2453	}
2454
2455out:
2456	return ret_val;
2457}
2458
2459/**
2460 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2461 *  @hw: pointer to the HW structure
2462 *
2463 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2464 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2465 *  checksum and writes the value to the EEPROM.
2466 **/
2467static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2468{
2469	s32 ret_val;
2470	u16 j, nvm_data;
2471	u16 nvm_offset;
2472
2473	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2474	if (ret_val) {
2475		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
 
2476		goto out;
2477	}
2478
2479	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2480		/* set compatibility bit to validate checksums appropriately */
2481		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2482		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2483					&nvm_data);
2484		if (ret_val) {
2485			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
 
2486			goto out;
2487		}
2488	}
2489
2490	for (j = 0; j < 4; j++) {
2491		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2492		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2493		if (ret_val)
2494			goto out;
2495	}
2496
2497out:
2498	return ret_val;
2499}
2500
2501/**
2502 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2503 *  @hw: pointer to the HW structure
2504 *
2505 *  Calculates the EEPROM section checksum by reading/adding each word of
2506 *  the EEPROM and then verifies that the sum of the EEPROM is
2507 *  equal to 0xBABA.
2508 **/
2509static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2510{
2511	s32 ret_val = 0;
2512	u16 j;
2513	u16 nvm_offset;
2514
2515	for (j = 0; j < 4; j++) {
2516		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2517		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2518								nvm_offset);
2519		if (ret_val != 0)
2520			goto out;
2521	}
2522
2523out:
2524	return ret_val;
2525}
2526
2527/**
2528 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2529 *  @hw: pointer to the HW structure
2530 *
2531 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2532 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2533 *  checksum and writes the value to the EEPROM.
2534 **/
2535static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2536{
2537	s32 ret_val = 0;
2538	u16 j;
2539	u16 nvm_offset;
2540
2541	for (j = 0; j < 4; j++) {
2542		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2543		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2544		if (ret_val != 0)
2545			goto out;
2546	}
2547
2548out:
2549	return ret_val;
2550}
2551
2552/**
2553 *  __igb_access_emi_reg - Read/write EMI register
2554 *  @hw: pointer to the HW structure
2555 *  @address: EMI address to program
2556 *  @data: pointer to value to read/write from/to the EMI address
2557 *  @read: boolean flag to indicate read or write
2558 **/
2559static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2560				  u16 *data, bool read)
2561{
2562	s32 ret_val = 0;
2563
2564	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2565	if (ret_val)
2566		return ret_val;
2567
2568	if (read)
2569		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2570	else
2571		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2572
2573	return ret_val;
2574}
2575
2576/**
2577 *  igb_read_emi_reg - Read Extended Management Interface register
2578 *  @hw: pointer to the HW structure
2579 *  @addr: EMI address to program
2580 *  @data: value to be read from the EMI address
2581 **/
2582s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2583{
2584	return __igb_access_emi_reg(hw, addr, data, true);
2585}
2586
2587/**
2588 *  igb_set_eee_i350 - Enable/disable EEE support
2589 *  @hw: pointer to the HW structure
2590 *  @adv1G: boolean flag enabling 1G EEE advertisement
2591 *  @adv100M: boolean flag enabling 100M EEE advertisement
2592 *
2593 *  Enable/disable EEE based on setting in dev_spec structure.
2594 *
2595 **/
2596s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2597{
 
2598	u32 ipcnfg, eeer;
2599
2600	if ((hw->mac.type < e1000_i350) ||
2601	    (hw->phy.media_type != e1000_media_type_copper))
2602		goto out;
2603	ipcnfg = rd32(E1000_IPCNFG);
2604	eeer = rd32(E1000_EEER);
2605
2606	/* enable or disable per user setting */
2607	if (!(hw->dev_spec._82575.eee_disable)) {
2608		u32 eee_su = rd32(E1000_EEE_SU);
2609
2610		if (adv100M)
2611			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2612		else
2613			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2614
2615		if (adv1G)
2616			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2617		else
2618			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2619
2620		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2621			E1000_EEER_LPI_FC);
2622
2623		/* This bit should not be set in normal operation. */
2624		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2625			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2626
2627	} else {
2628		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2629			E1000_IPCNFG_EEE_100M_AN);
2630		eeer &= ~(E1000_EEER_TX_LPI_EN |
2631			E1000_EEER_RX_LPI_EN |
2632			E1000_EEER_LPI_FC);
2633	}
2634	wr32(E1000_IPCNFG, ipcnfg);
2635	wr32(E1000_EEER, eeer);
2636	rd32(E1000_IPCNFG);
2637	rd32(E1000_EEER);
2638out:
2639
2640	return 0;
2641}
2642
2643/**
2644 *  igb_set_eee_i354 - Enable/disable EEE support
2645 *  @hw: pointer to the HW structure
2646 *  @adv1G: boolean flag enabling 1G EEE advertisement
2647 *  @adv100M: boolean flag enabling 100M EEE advertisement
2648 *
2649 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2650 *
2651 **/
2652s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2653{
2654	struct e1000_phy_info *phy = &hw->phy;
2655	s32 ret_val = 0;
2656	u16 phy_data;
2657
2658	if ((hw->phy.media_type != e1000_media_type_copper) ||
2659	    ((phy->id != M88E1543_E_PHY_ID) &&
2660	     (phy->id != M88E1512_E_PHY_ID)))
2661		goto out;
2662
2663	if (!hw->dev_spec._82575.eee_disable) {
2664		/* Switch to PHY page 18. */
2665		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2666		if (ret_val)
2667			goto out;
2668
2669		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2670					    &phy_data);
2671		if (ret_val)
2672			goto out;
2673
2674		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2675		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2676					     phy_data);
2677		if (ret_val)
2678			goto out;
2679
2680		/* Return the PHY to page 0. */
2681		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2682		if (ret_val)
2683			goto out;
2684
2685		/* Turn on EEE advertisement. */
2686		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2687					     E1000_EEE_ADV_DEV_I354,
2688					     &phy_data);
2689		if (ret_val)
2690			goto out;
2691
2692		if (adv100M)
2693			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2694		else
2695			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2696
2697		if (adv1G)
2698			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2699		else
2700			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2701
2702		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2703						E1000_EEE_ADV_DEV_I354,
2704						phy_data);
2705	} else {
2706		/* Turn off EEE advertisement. */
2707		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2708					     E1000_EEE_ADV_DEV_I354,
2709					     &phy_data);
2710		if (ret_val)
2711			goto out;
2712
2713		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2714			      E1000_EEE_ADV_1000_SUPPORTED);
2715		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2716					      E1000_EEE_ADV_DEV_I354,
2717					      phy_data);
2718	}
2719
2720out:
2721	return ret_val;
2722}
2723
2724/**
2725 *  igb_get_eee_status_i354 - Get EEE status
2726 *  @hw: pointer to the HW structure
2727 *  @status: EEE status
2728 *
2729 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2730 *  been received.
2731 **/
2732s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2733{
2734	struct e1000_phy_info *phy = &hw->phy;
2735	s32 ret_val = 0;
2736	u16 phy_data;
2737
2738	/* Check if EEE is supported on this device. */
2739	if ((hw->phy.media_type != e1000_media_type_copper) ||
2740	    ((phy->id != M88E1543_E_PHY_ID) &&
2741	     (phy->id != M88E1512_E_PHY_ID)))
2742		goto out;
2743
2744	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2745				     E1000_PCS_STATUS_DEV_I354,
2746				     &phy_data);
2747	if (ret_val)
2748		goto out;
2749
2750	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2751			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2752
2753out:
2754	return ret_val;
2755}
2756
2757#ifdef CONFIG_IGB_HWMON
2758static const u8 e1000_emc_temp_data[4] = {
2759	E1000_EMC_INTERNAL_DATA,
2760	E1000_EMC_DIODE1_DATA,
2761	E1000_EMC_DIODE2_DATA,
2762	E1000_EMC_DIODE3_DATA
2763};
2764static const u8 e1000_emc_therm_limit[4] = {
2765	E1000_EMC_INTERNAL_THERM_LIMIT,
2766	E1000_EMC_DIODE1_THERM_LIMIT,
2767	E1000_EMC_DIODE2_THERM_LIMIT,
2768	E1000_EMC_DIODE3_THERM_LIMIT
2769};
2770
 
2771/**
2772 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2773 *  @hw: pointer to hardware structure
2774 *
2775 *  Updates the temperatures in mac.thermal_sensor_data
2776 **/
2777static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2778{
 
2779	u16 ets_offset;
2780	u16 ets_cfg;
2781	u16 ets_sensor;
2782	u8  num_sensors;
2783	u8  sensor_index;
2784	u8  sensor_location;
2785	u8  i;
2786	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2787
2788	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2789		return E1000_NOT_IMPLEMENTED;
2790
2791	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2792
2793	/* Return the internal sensor only if ETS is unsupported */
2794	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2795	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2796		return 0;
2797
2798	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2799	if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2800	    != NVM_ETS_TYPE_EMC)
2801		return E1000_NOT_IMPLEMENTED;
2802
2803	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2804	if (num_sensors > E1000_MAX_SENSORS)
2805		num_sensors = E1000_MAX_SENSORS;
2806
2807	for (i = 1; i < num_sensors; i++) {
2808		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2809		sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2810		sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
 
 
2811
2812		if (sensor_location != 0)
2813			hw->phy.ops.read_i2c_byte(hw,
2814					e1000_emc_temp_data[sensor_index],
2815					E1000_I2C_THERMAL_SENSOR_ADDR,
2816					&data->sensor[i].temp);
2817	}
2818	return 0;
2819}
2820
2821/**
2822 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2823 *  @hw: pointer to hardware structure
2824 *
2825 *  Sets the thermal sensor thresholds according to the NVM map
2826 *  and save off the threshold and location values into mac.thermal_sensor_data
2827 **/
2828static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2829{
 
2830	u16 ets_offset;
2831	u16 ets_cfg;
2832	u16 ets_sensor;
2833	u8  low_thresh_delta;
2834	u8  num_sensors;
2835	u8  sensor_index;
2836	u8  sensor_location;
2837	u8  therm_limit;
2838	u8  i;
2839	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2840
2841	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2842		return E1000_NOT_IMPLEMENTED;
2843
2844	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2845
2846	data->sensor[0].location = 0x1;
2847	data->sensor[0].caution_thresh =
2848		(rd32(E1000_THHIGHTC) & 0xFF);
2849	data->sensor[0].max_op_thresh =
2850		(rd32(E1000_THLOWTC) & 0xFF);
2851
2852	/* Return the internal sensor only if ETS is unsupported */
2853	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2854	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2855		return 0;
2856
2857	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2858	if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2859	    != NVM_ETS_TYPE_EMC)
2860		return E1000_NOT_IMPLEMENTED;
2861
2862	low_thresh_delta = FIELD_GET(NVM_ETS_LTHRES_DELTA_MASK, ets_cfg);
 
2863	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2864
2865	for (i = 1; i <= num_sensors; i++) {
2866		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2867		sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2868		sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
 
 
2869		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2870
2871		hw->phy.ops.write_i2c_byte(hw,
2872			e1000_emc_therm_limit[sensor_index],
2873			E1000_I2C_THERMAL_SENSOR_ADDR,
2874			therm_limit);
2875
2876		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2877			data->sensor[i].location = sensor_location;
2878			data->sensor[i].caution_thresh = therm_limit;
2879			data->sensor[i].max_op_thresh = therm_limit -
2880							low_thresh_delta;
2881		}
2882	}
2883	return 0;
2884}
2885
2886#endif
2887static struct e1000_mac_operations e1000_mac_ops_82575 = {
2888	.init_hw              = igb_init_hw_82575,
2889	.check_for_link       = igb_check_for_link_82575,
2890	.rar_set              = igb_rar_set,
2891	.read_mac_addr        = igb_read_mac_addr_82575,
2892	.get_speed_and_duplex = igb_get_link_up_info_82575,
2893#ifdef CONFIG_IGB_HWMON
2894	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2895	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2896#endif
2897};
2898
2899static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2900	.acquire              = igb_acquire_phy_82575,
2901	.get_cfg_done         = igb_get_cfg_done_82575,
2902	.release              = igb_release_phy_82575,
2903	.write_i2c_byte       = igb_write_i2c_byte,
2904	.read_i2c_byte        = igb_read_i2c_byte,
2905};
2906
2907static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2908	.acquire              = igb_acquire_nvm_82575,
2909	.read                 = igb_read_nvm_eerd,
2910	.release              = igb_release_nvm_82575,
2911	.write                = igb_write_nvm_spi,
2912};
2913
2914const struct e1000_info e1000_82575_info = {
2915	.get_invariants = igb_get_invariants_82575,
2916	.mac_ops = &e1000_mac_ops_82575,
2917	.phy_ops = &e1000_phy_ops_82575,
2918	.nvm_ops = &e1000_nvm_ops_82575,
2919};
2920
v3.15
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2014 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, see <http://www.gnu.org/licenses/>.
  17
  18  The full GNU General Public License is included in this distribution in
  19  the file called "COPYING".
  20
  21  Contact Information:
  22  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24
  25*******************************************************************************/
  26
  27/* e1000_82575
  28 * e1000_82576
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/types.h>
  34#include <linux/if_ether.h>
  35#include <linux/i2c.h>
  36
  37#include "e1000_mac.h"
  38#include "e1000_82575.h"
  39#include "e1000_i210.h"
 
  40
  41static s32  igb_get_invariants_82575(struct e1000_hw *);
  42static s32  igb_acquire_phy_82575(struct e1000_hw *);
  43static void igb_release_phy_82575(struct e1000_hw *);
  44static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  45static void igb_release_nvm_82575(struct e1000_hw *);
  46static s32  igb_check_for_link_82575(struct e1000_hw *);
  47static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  48static s32  igb_init_hw_82575(struct e1000_hw *);
  49static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  50static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  51static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
  52static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
  53static s32  igb_reset_hw_82575(struct e1000_hw *);
  54static s32  igb_reset_hw_82580(struct e1000_hw *);
  55static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  56static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  57static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  58static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  59static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  60static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  61static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  62static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  63static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  64						 u16 *);
  65static s32  igb_get_phy_id_82575(struct e1000_hw *);
  66static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  67static bool igb_sgmii_active_82575(struct e1000_hw *);
  68static s32  igb_reset_init_script_82575(struct e1000_hw *);
  69static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  70static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  71static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  72static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  73static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  74static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  75static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  76static const u16 e1000_82580_rxpbs_table[] =
  77	{ 36, 72, 144, 1, 2, 4, 8, 16,
  78	  35, 70, 140 };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80/**
  81 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  82 *  @hw: pointer to the HW structure
  83 *
  84 *  Called to determine if the I2C pins are being used for I2C or as an
  85 *  external MDIO interface since the two options are mutually exclusive.
  86 **/
  87static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  88{
  89	u32 reg = 0;
  90	bool ext_mdio = false;
  91
  92	switch (hw->mac.type) {
  93	case e1000_82575:
  94	case e1000_82576:
  95		reg = rd32(E1000_MDIC);
  96		ext_mdio = !!(reg & E1000_MDIC_DEST);
  97		break;
  98	case e1000_82580:
  99	case e1000_i350:
 100	case e1000_i354:
 101	case e1000_i210:
 102	case e1000_i211:
 103		reg = rd32(E1000_MDICNFG);
 104		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 105		break;
 106	default:
 107		break;
 108	}
 109	return ext_mdio;
 110}
 111
 112/**
 113 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 114 *  @hw: pointer to the HW structure
 115 *
 116 *  Poll the M88E1112 interfaces to see which interface achieved link.
 117 */
 118static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 119{
 120	struct e1000_phy_info *phy = &hw->phy;
 121	s32 ret_val;
 122	u16 data;
 123	u8 port = 0;
 124
 125	/* Check the copper medium. */
 126	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 127	if (ret_val)
 128		return ret_val;
 129
 130	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 131	if (ret_val)
 132		return ret_val;
 133
 134	if (data & E1000_M88E1112_STATUS_LINK)
 135		port = E1000_MEDIA_PORT_COPPER;
 136
 137	/* Check the other medium. */
 138	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 139	if (ret_val)
 140		return ret_val;
 141
 142	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 143	if (ret_val)
 144		return ret_val;
 145
 146	/* reset page to 0 */
 147	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 148	if (ret_val)
 149		return ret_val;
 150
 151	if (data & E1000_M88E1112_STATUS_LINK)
 152		port = E1000_MEDIA_PORT_OTHER;
 153
 154	/* Determine if a swap needs to happen. */
 155	if (port && (hw->dev_spec._82575.media_port != port)) {
 156		hw->dev_spec._82575.media_port = port;
 157		hw->dev_spec._82575.media_changed = true;
 
 
 
 
 
 
 
 
 158	} else {
 159		ret_val = igb_check_for_link_82575(hw);
 
 
 
 
 160	}
 161
 162	return E1000_SUCCESS;
 163}
 164
 165/**
 166 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 167 *  @hw: pointer to the HW structure
 168 **/
 169static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 170{
 171	struct e1000_phy_info *phy = &hw->phy;
 172	s32 ret_val = 0;
 173	u32 ctrl_ext;
 174
 175	if (hw->phy.media_type != e1000_media_type_copper) {
 176		phy->type = e1000_phy_none;
 177		goto out;
 178	}
 179
 180	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 181	phy->reset_delay_us	= 100;
 182
 183	ctrl_ext = rd32(E1000_CTRL_EXT);
 184
 185	if (igb_sgmii_active_82575(hw)) {
 186		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 187		ctrl_ext |= E1000_CTRL_I2C_ENA;
 188	} else {
 189		phy->ops.reset = igb_phy_hw_reset;
 190		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 191	}
 192
 193	wr32(E1000_CTRL_EXT, ctrl_ext);
 194	igb_reset_mdicnfg_82580(hw);
 195
 196	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 197		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 198		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 199	} else {
 200		switch (hw->mac.type) {
 201		case e1000_82580:
 202		case e1000_i350:
 203		case e1000_i354:
 
 
 204			phy->ops.read_reg = igb_read_phy_reg_82580;
 205			phy->ops.write_reg = igb_write_phy_reg_82580;
 206			break;
 207		case e1000_i210:
 208		case e1000_i211:
 209			phy->ops.read_reg = igb_read_phy_reg_gs40g;
 210			phy->ops.write_reg = igb_write_phy_reg_gs40g;
 211			break;
 212		default:
 213			phy->ops.read_reg = igb_read_phy_reg_igp;
 214			phy->ops.write_reg = igb_write_phy_reg_igp;
 215		}
 216	}
 217
 218	/* set lan id */
 219	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 220			E1000_STATUS_FUNC_SHIFT;
 221
 222	/* Set phy->phy_addr and phy->id. */
 223	ret_val = igb_get_phy_id_82575(hw);
 224	if (ret_val)
 225		return ret_val;
 226
 227	/* Verify phy id and set remaining function pointers */
 228	switch (phy->id) {
 229	case M88E1543_E_PHY_ID:
 
 230	case I347AT4_E_PHY_ID:
 231	case M88E1112_E_PHY_ID:
 232	case M88E1111_I_PHY_ID:
 233		phy->type		= e1000_phy_m88;
 234		phy->ops.check_polarity	= igb_check_polarity_m88;
 235		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 236		if (phy->id != M88E1111_I_PHY_ID)
 237			phy->ops.get_cable_length =
 238					 igb_get_cable_length_m88_gen2;
 239		else
 240			phy->ops.get_cable_length = igb_get_cable_length_m88;
 241		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 242		/* Check if this PHY is confgured for media swap. */
 243		if (phy->id == M88E1112_E_PHY_ID) {
 244			u16 data;
 245
 246			ret_val = phy->ops.write_reg(hw,
 247						     E1000_M88E1112_PAGE_ADDR,
 248						     2);
 249			if (ret_val)
 250				goto out;
 251
 252			ret_val = phy->ops.read_reg(hw,
 253						    E1000_M88E1112_MAC_CTRL_1,
 254						    &data);
 255			if (ret_val)
 256				goto out;
 257
 258			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 259			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 260			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 261			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 262				hw->mac.ops.check_for_link =
 263						igb_check_for_link_media_swap;
 264		}
 
 
 
 
 
 
 
 
 
 
 265		break;
 266	case IGP03E1000_E_PHY_ID:
 267		phy->type = e1000_phy_igp_3;
 268		phy->ops.get_phy_info = igb_get_phy_info_igp;
 269		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 270		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 271		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 272		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 273		break;
 274	case I82580_I_PHY_ID:
 275	case I350_I_PHY_ID:
 276		phy->type = e1000_phy_82580;
 277		phy->ops.force_speed_duplex =
 278					 igb_phy_force_speed_duplex_82580;
 279		phy->ops.get_cable_length = igb_get_cable_length_82580;
 280		phy->ops.get_phy_info = igb_get_phy_info_82580;
 281		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 282		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 283		break;
 284	case I210_I_PHY_ID:
 285		phy->type		= e1000_phy_i210;
 286		phy->ops.check_polarity	= igb_check_polarity_m88;
 
 287		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 288		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 289		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 290		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 291		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 292		break;
 
 
 
 293	default:
 294		ret_val = -E1000_ERR_PHY;
 295		goto out;
 296	}
 297
 298out:
 299	return ret_val;
 300}
 301
 302/**
 303 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 304 *  @hw: pointer to the HW structure
 305 **/
 306static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 307{
 308	struct e1000_nvm_info *nvm = &hw->nvm;
 309	u32 eecd = rd32(E1000_EECD);
 310	u16 size;
 311
 312	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 313		     E1000_EECD_SIZE_EX_SHIFT);
 314
 315	/* Added to a constant, "size" becomes the left-shift value
 316	 * for setting word_size.
 317	 */
 318	size += NVM_WORD_SIZE_BASE_SHIFT;
 319
 320	/* Just in case size is out of range, cap it to the largest
 321	 * EEPROM size supported
 322	 */
 323	if (size > 15)
 324		size = 15;
 325
 326	nvm->word_size = 1 << size;
 327	nvm->opcode_bits = 8;
 328	nvm->delay_usec = 1;
 329
 330	switch (nvm->override) {
 331	case e1000_nvm_override_spi_large:
 332		nvm->page_size = 32;
 333		nvm->address_bits = 16;
 334		break;
 335	case e1000_nvm_override_spi_small:
 336		nvm->page_size = 8;
 337		nvm->address_bits = 8;
 338		break;
 339	default:
 340		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 341		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 342				    16 : 8;
 343		break;
 344	}
 345	if (nvm->word_size == (1 << 15))
 346		nvm->page_size = 128;
 347
 348	nvm->type = e1000_nvm_eeprom_spi;
 349
 350	/* NVM Function Pointers */
 351	nvm->ops.acquire = igb_acquire_nvm_82575;
 352	nvm->ops.release = igb_release_nvm_82575;
 353	nvm->ops.write = igb_write_nvm_spi;
 354	nvm->ops.validate = igb_validate_nvm_checksum;
 355	nvm->ops.update = igb_update_nvm_checksum;
 356	if (nvm->word_size < (1 << 15))
 357		nvm->ops.read = igb_read_nvm_eerd;
 358	else
 359		nvm->ops.read = igb_read_nvm_spi;
 360
 361	/* override generic family function pointers for specific descendants */
 362	switch (hw->mac.type) {
 363	case e1000_82580:
 364		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 365		nvm->ops.update = igb_update_nvm_checksum_82580;
 366		break;
 367	case e1000_i354:
 368	case e1000_i350:
 369		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 370		nvm->ops.update = igb_update_nvm_checksum_i350;
 371		break;
 372	default:
 373		break;
 374	}
 375
 376	return 0;
 377}
 378
 379/**
 380 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 381 *  @hw: pointer to the HW structure
 382 **/
 383static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 384{
 385	struct e1000_mac_info *mac = &hw->mac;
 386	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 387
 388	/* Set mta register count */
 389	mac->mta_reg_count = 128;
 
 
 390	/* Set rar entry count */
 391	switch (mac->type) {
 392	case e1000_82576:
 393		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 394		break;
 395	case e1000_82580:
 396		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 397		break;
 398	case e1000_i350:
 399	case e1000_i354:
 400		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 401		break;
 402	default:
 403		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 404		break;
 405	}
 406	/* reset */
 407	if (mac->type >= e1000_82580)
 408		mac->ops.reset_hw = igb_reset_hw_82580;
 409	else
 410		mac->ops.reset_hw = igb_reset_hw_82575;
 411
 412	if (mac->type >= e1000_i210) {
 413		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 414		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 415
 416	} else {
 417		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 418		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 419	}
 420
 
 
 
 
 
 421	/* Set if part includes ASF firmware */
 422	mac->asf_firmware_present = true;
 423	/* Set if manageability features are enabled. */
 424	mac->arc_subsystem_valid =
 425		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 426			? true : false;
 427	/* enable EEE on i350 parts and later parts */
 428	if (mac->type >= e1000_i350)
 429		dev_spec->eee_disable = false;
 430	else
 431		dev_spec->eee_disable = true;
 432	/* Allow a single clear of the SW semaphore on I210 and newer */
 433	if (mac->type >= e1000_i210)
 434		dev_spec->clear_semaphore_once = true;
 435	/* physical interface link setup */
 436	mac->ops.setup_physical_interface =
 437		(hw->phy.media_type == e1000_media_type_copper)
 438			? igb_setup_copper_link_82575
 439			: igb_setup_serdes_link_82575;
 440
 441	if (mac->type == e1000_82580) {
 442		switch (hw->device_id) {
 443		/* feature not supported on these id's */
 444		case E1000_DEV_ID_DH89XXCC_SGMII:
 445		case E1000_DEV_ID_DH89XXCC_SERDES:
 446		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 447		case E1000_DEV_ID_DH89XXCC_SFP:
 448			break;
 449		default:
 450			hw->dev_spec._82575.mas_capable = true;
 451			break;
 452		}
 453	}
 454	return 0;
 455}
 456
 457/**
 458 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 459 *  @hw: pointer to the HW structure
 460 *
 461 *  The media type is chosen based on SFP module.
 462 *  compatibility flags retrieved from SFP ID EEPROM.
 463 **/
 464static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 465{
 466	s32 ret_val = E1000_ERR_CONFIG;
 467	u32 ctrl_ext = 0;
 468	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 469	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 470	u8 tranceiver_type = 0;
 471	s32 timeout = 3;
 472
 473	/* Turn I2C interface ON and power on sfp cage */
 474	ctrl_ext = rd32(E1000_CTRL_EXT);
 475	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 476	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 477
 478	wrfl();
 479
 480	/* Read SFP module data */
 481	while (timeout) {
 482		ret_val = igb_read_sfp_data_byte(hw,
 483			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 484			&tranceiver_type);
 485		if (ret_val == 0)
 486			break;
 487		msleep(100);
 488		timeout--;
 489	}
 490	if (ret_val != 0)
 491		goto out;
 492
 493	ret_val = igb_read_sfp_data_byte(hw,
 494			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 495			(u8 *)eth_flags);
 496	if (ret_val != 0)
 497		goto out;
 498
 499	/* Check if there is some SFP module plugged and powered */
 500	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 501	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 502		dev_spec->module_plugged = true;
 503		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 504			hw->phy.media_type = e1000_media_type_internal_serdes;
 505		} else if (eth_flags->e100_base_fx) {
 506			dev_spec->sgmii_active = true;
 507			hw->phy.media_type = e1000_media_type_internal_serdes;
 508		} else if (eth_flags->e1000_base_t) {
 509			dev_spec->sgmii_active = true;
 510			hw->phy.media_type = e1000_media_type_copper;
 511		} else {
 512			hw->phy.media_type = e1000_media_type_unknown;
 513			hw_dbg("PHY module has not been recognized\n");
 514			goto out;
 515		}
 516	} else {
 517		hw->phy.media_type = e1000_media_type_unknown;
 518	}
 519	ret_val = 0;
 520out:
 521	/* Restore I2C interface setting */
 522	wr32(E1000_CTRL_EXT, ctrl_ext);
 523	return ret_val;
 524}
 525
 526static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 527{
 528	struct e1000_mac_info *mac = &hw->mac;
 529	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
 530	s32 ret_val;
 531	u32 ctrl_ext = 0;
 532	u32 link_mode = 0;
 533
 534	switch (hw->device_id) {
 535	case E1000_DEV_ID_82575EB_COPPER:
 536	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 537	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 538		mac->type = e1000_82575;
 539		break;
 540	case E1000_DEV_ID_82576:
 541	case E1000_DEV_ID_82576_NS:
 542	case E1000_DEV_ID_82576_NS_SERDES:
 543	case E1000_DEV_ID_82576_FIBER:
 544	case E1000_DEV_ID_82576_SERDES:
 545	case E1000_DEV_ID_82576_QUAD_COPPER:
 546	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 547	case E1000_DEV_ID_82576_SERDES_QUAD:
 548		mac->type = e1000_82576;
 549		break;
 550	case E1000_DEV_ID_82580_COPPER:
 551	case E1000_DEV_ID_82580_FIBER:
 552	case E1000_DEV_ID_82580_QUAD_FIBER:
 553	case E1000_DEV_ID_82580_SERDES:
 554	case E1000_DEV_ID_82580_SGMII:
 555	case E1000_DEV_ID_82580_COPPER_DUAL:
 556	case E1000_DEV_ID_DH89XXCC_SGMII:
 557	case E1000_DEV_ID_DH89XXCC_SERDES:
 558	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 559	case E1000_DEV_ID_DH89XXCC_SFP:
 560		mac->type = e1000_82580;
 561		break;
 562	case E1000_DEV_ID_I350_COPPER:
 563	case E1000_DEV_ID_I350_FIBER:
 564	case E1000_DEV_ID_I350_SERDES:
 565	case E1000_DEV_ID_I350_SGMII:
 566		mac->type = e1000_i350;
 567		break;
 568	case E1000_DEV_ID_I210_COPPER:
 569	case E1000_DEV_ID_I210_FIBER:
 570	case E1000_DEV_ID_I210_SERDES:
 571	case E1000_DEV_ID_I210_SGMII:
 572	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 573	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 574		mac->type = e1000_i210;
 575		break;
 576	case E1000_DEV_ID_I211_COPPER:
 577		mac->type = e1000_i211;
 578		break;
 579	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 580	case E1000_DEV_ID_I354_SGMII:
 581	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 582		mac->type = e1000_i354;
 583		break;
 584	default:
 585		return -E1000_ERR_MAC_INIT;
 586		break;
 587	}
 588
 589	/* Set media type */
 590	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 591	 * based on the EEPROM. We cannot rely upon device ID. There
 592	 * is no distinguishable difference between fiber and internal
 593	 * SerDes mode on the 82575. There can be an external PHY attached
 594	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 595	 */
 596	hw->phy.media_type = e1000_media_type_copper;
 597	dev_spec->sgmii_active = false;
 598	dev_spec->module_plugged = false;
 599
 600	ctrl_ext = rd32(E1000_CTRL_EXT);
 601
 602	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 603	switch (link_mode) {
 604	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 605		hw->phy.media_type = e1000_media_type_internal_serdes;
 606		break;
 607	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 608		/* Get phy control interface type set (MDIO vs. I2C)*/
 609		if (igb_sgmii_uses_mdio_82575(hw)) {
 610			hw->phy.media_type = e1000_media_type_copper;
 611			dev_spec->sgmii_active = true;
 612			break;
 613		}
 614		/* fall through for I2C based SGMII */
 615	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 616		/* read media type from SFP EEPROM */
 617		ret_val = igb_set_sfp_media_type_82575(hw);
 618		if ((ret_val != 0) ||
 619		    (hw->phy.media_type == e1000_media_type_unknown)) {
 620			/* If media type was not identified then return media
 621			 * type defined by the CTRL_EXT settings.
 622			 */
 623			hw->phy.media_type = e1000_media_type_internal_serdes;
 624
 625			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 626				hw->phy.media_type = e1000_media_type_copper;
 627				dev_spec->sgmii_active = true;
 628			}
 629
 630			break;
 631		}
 632
 633		/* do not change link mode for 100BaseFX */
 634		if (dev_spec->eth_flags.e100_base_fx)
 635			break;
 636
 637		/* change current link mode setting */
 638		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 639
 640		if (hw->phy.media_type == e1000_media_type_copper)
 641			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 642		else
 643			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 644
 645		wr32(E1000_CTRL_EXT, ctrl_ext);
 646
 647		break;
 648	default:
 649		break;
 650	}
 651
 652	/* mac initialization and operations */
 653	ret_val = igb_init_mac_params_82575(hw);
 654	if (ret_val)
 655		goto out;
 656
 657	/* NVM initialization */
 658	ret_val = igb_init_nvm_params_82575(hw);
 659	switch (hw->mac.type) {
 660	case e1000_i210:
 661	case e1000_i211:
 662		ret_val = igb_init_nvm_params_i210(hw);
 663		break;
 664	default:
 665		break;
 666	}
 667
 668	if (ret_val)
 669		goto out;
 670
 671	/* if part supports SR-IOV then initialize mailbox parameters */
 672	switch (mac->type) {
 673	case e1000_82576:
 674	case e1000_i350:
 675		igb_init_mbx_params_pf(hw);
 676		break;
 677	default:
 678		break;
 679	}
 680
 681	/* setup PHY parameters */
 682	ret_val = igb_init_phy_params_82575(hw);
 683
 684out:
 685	return ret_val;
 686}
 687
 688/**
 689 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 690 *  @hw: pointer to the HW structure
 691 *
 692 *  Acquire access rights to the correct PHY.  This is a
 693 *  function pointer entry point called by the api module.
 694 **/
 695static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 696{
 697	u16 mask = E1000_SWFW_PHY0_SM;
 698
 699	if (hw->bus.func == E1000_FUNC_1)
 700		mask = E1000_SWFW_PHY1_SM;
 701	else if (hw->bus.func == E1000_FUNC_2)
 702		mask = E1000_SWFW_PHY2_SM;
 703	else if (hw->bus.func == E1000_FUNC_3)
 704		mask = E1000_SWFW_PHY3_SM;
 705
 706	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 707}
 708
 709/**
 710 *  igb_release_phy_82575 - Release rights to access PHY
 711 *  @hw: pointer to the HW structure
 712 *
 713 *  A wrapper to release access rights to the correct PHY.  This is a
 714 *  function pointer entry point called by the api module.
 715 **/
 716static void igb_release_phy_82575(struct e1000_hw *hw)
 717{
 718	u16 mask = E1000_SWFW_PHY0_SM;
 719
 720	if (hw->bus.func == E1000_FUNC_1)
 721		mask = E1000_SWFW_PHY1_SM;
 722	else if (hw->bus.func == E1000_FUNC_2)
 723		mask = E1000_SWFW_PHY2_SM;
 724	else if (hw->bus.func == E1000_FUNC_3)
 725		mask = E1000_SWFW_PHY3_SM;
 726
 727	hw->mac.ops.release_swfw_sync(hw, mask);
 728}
 729
 730/**
 731 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 732 *  @hw: pointer to the HW structure
 733 *  @offset: register offset to be read
 734 *  @data: pointer to the read data
 735 *
 736 *  Reads the PHY register at offset using the serial gigabit media independent
 737 *  interface and stores the retrieved information in data.
 738 **/
 739static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 740					  u16 *data)
 741{
 742	s32 ret_val = -E1000_ERR_PARAM;
 743
 744	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 745		hw_dbg("PHY Address %u is out of range\n", offset);
 746		goto out;
 747	}
 748
 749	ret_val = hw->phy.ops.acquire(hw);
 750	if (ret_val)
 751		goto out;
 752
 753	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 754
 755	hw->phy.ops.release(hw);
 756
 757out:
 758	return ret_val;
 759}
 760
 761/**
 762 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 763 *  @hw: pointer to the HW structure
 764 *  @offset: register offset to write to
 765 *  @data: data to write at register offset
 766 *
 767 *  Writes the data to PHY register at the offset using the serial gigabit
 768 *  media independent interface.
 769 **/
 770static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 771					   u16 data)
 772{
 773	s32 ret_val = -E1000_ERR_PARAM;
 774
 775
 776	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 777		hw_dbg("PHY Address %d is out of range\n", offset);
 778		goto out;
 779	}
 780
 781	ret_val = hw->phy.ops.acquire(hw);
 782	if (ret_val)
 783		goto out;
 784
 785	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 786
 787	hw->phy.ops.release(hw);
 788
 789out:
 790	return ret_val;
 791}
 792
 793/**
 794 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 795 *  @hw: pointer to the HW structure
 796 *
 797 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 798 *  sgmi interface.
 799 **/
 800static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 801{
 802	struct e1000_phy_info *phy = &hw->phy;
 803	s32  ret_val = 0;
 804	u16 phy_id;
 805	u32 ctrl_ext;
 806	u32 mdic;
 807
 808	/* Extra read required for some PHY's on i354 */
 809	if (hw->mac.type == e1000_i354)
 810		igb_get_phy_id(hw);
 811
 812	/* For SGMII PHYs, we try the list of possible addresses until
 813	 * we find one that works.  For non-SGMII PHYs
 814	 * (e.g. integrated copper PHYs), an address of 1 should
 815	 * work.  The result of this function should mean phy->phy_addr
 816	 * and phy->id are set correctly.
 817	 */
 818	if (!(igb_sgmii_active_82575(hw))) {
 819		phy->addr = 1;
 820		ret_val = igb_get_phy_id(hw);
 821		goto out;
 822	}
 823
 824	if (igb_sgmii_uses_mdio_82575(hw)) {
 825		switch (hw->mac.type) {
 826		case e1000_82575:
 827		case e1000_82576:
 828			mdic = rd32(E1000_MDIC);
 829			mdic &= E1000_MDIC_PHY_MASK;
 830			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 831			break;
 832		case e1000_82580:
 833		case e1000_i350:
 834		case e1000_i354:
 835		case e1000_i210:
 836		case e1000_i211:
 837			mdic = rd32(E1000_MDICNFG);
 838			mdic &= E1000_MDICNFG_PHY_MASK;
 839			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 840			break;
 841		default:
 842			ret_val = -E1000_ERR_PHY;
 843			goto out;
 844			break;
 845		}
 846		ret_val = igb_get_phy_id(hw);
 847		goto out;
 848	}
 849
 850	/* Power on sgmii phy if it is disabled */
 851	ctrl_ext = rd32(E1000_CTRL_EXT);
 852	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 853	wrfl();
 854	msleep(300);
 855
 856	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 857	 * Therefore, we need to test 1-7
 858	 */
 859	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 860		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 861		if (ret_val == 0) {
 862			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 863			       phy_id, phy->addr);
 864			/* At the time of this writing, The M88 part is
 865			 * the only supported SGMII PHY product.
 866			 */
 867			if (phy_id == M88_VENDOR)
 868				break;
 869		} else {
 870			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 871		}
 872	}
 873
 874	/* A valid PHY type couldn't be found. */
 875	if (phy->addr == 8) {
 876		phy->addr = 0;
 877		ret_val = -E1000_ERR_PHY;
 878		goto out;
 879	} else {
 880		ret_val = igb_get_phy_id(hw);
 881	}
 882
 883	/* restore previous sfp cage power state */
 884	wr32(E1000_CTRL_EXT, ctrl_ext);
 885
 886out:
 887	return ret_val;
 888}
 889
 890/**
 891 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 892 *  @hw: pointer to the HW structure
 893 *
 894 *  Resets the PHY using the serial gigabit media independent interface.
 895 **/
 896static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 897{
 
 898	s32 ret_val;
 899
 900	/* This isn't a true "hard" reset, but is the only reset
 901	 * available to us at this time.
 902	 */
 903
 904	hw_dbg("Soft resetting SGMII attached PHY...\n");
 905
 906	/* SFP documentation requires the following to configure the SPF module
 907	 * to work on SGMII.  No further documentation is given.
 908	 */
 909	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 910	if (ret_val)
 911		goto out;
 912
 913	ret_val = igb_phy_sw_reset(hw);
 
 
 914
 
 
 
 
 915out:
 916	return ret_val;
 917}
 918
 919/**
 920 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 921 *  @hw: pointer to the HW structure
 922 *  @active: true to enable LPLU, false to disable
 923 *
 924 *  Sets the LPLU D0 state according to the active flag.  When
 925 *  activating LPLU this function also disables smart speed
 926 *  and vice versa.  LPLU will not be activated unless the
 927 *  device autonegotiation advertisement meets standards of
 928 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 929 *  This is a function pointer entry point only called by
 930 *  PHY setup routines.
 931 **/
 932static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 933{
 934	struct e1000_phy_info *phy = &hw->phy;
 935	s32 ret_val;
 936	u16 data;
 937
 938	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 939	if (ret_val)
 940		goto out;
 941
 942	if (active) {
 943		data |= IGP02E1000_PM_D0_LPLU;
 944		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 945						 data);
 946		if (ret_val)
 947			goto out;
 948
 949		/* When LPLU is enabled, we should disable SmartSpeed */
 950		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 951						&data);
 952		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 953		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 954						 data);
 955		if (ret_val)
 956			goto out;
 957	} else {
 958		data &= ~IGP02E1000_PM_D0_LPLU;
 959		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 960						 data);
 961		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 962		 * during Dx states where the power conservation is most
 963		 * important.  During driver activity we should enable
 964		 * SmartSpeed, so performance is maintained.
 965		 */
 966		if (phy->smart_speed == e1000_smart_speed_on) {
 967			ret_val = phy->ops.read_reg(hw,
 968					IGP01E1000_PHY_PORT_CONFIG, &data);
 969			if (ret_val)
 970				goto out;
 971
 972			data |= IGP01E1000_PSCFR_SMART_SPEED;
 973			ret_val = phy->ops.write_reg(hw,
 974					IGP01E1000_PHY_PORT_CONFIG, data);
 975			if (ret_val)
 976				goto out;
 977		} else if (phy->smart_speed == e1000_smart_speed_off) {
 978			ret_val = phy->ops.read_reg(hw,
 979					IGP01E1000_PHY_PORT_CONFIG, &data);
 980			if (ret_val)
 981				goto out;
 982
 983			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 984			ret_val = phy->ops.write_reg(hw,
 985					IGP01E1000_PHY_PORT_CONFIG, data);
 986			if (ret_val)
 987				goto out;
 988		}
 989	}
 990
 991out:
 992	return ret_val;
 993}
 994
 995/**
 996 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 997 *  @hw: pointer to the HW structure
 998 *  @active: true to enable LPLU, false to disable
 999 *
1000 *  Sets the LPLU D0 state according to the active flag.  When
1001 *  activating LPLU this function also disables smart speed
1002 *  and vice versa.  LPLU will not be activated unless the
1003 *  device autonegotiation advertisement meets standards of
1004 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1005 *  This is a function pointer entry point only called by
1006 *  PHY setup routines.
1007 **/
1008static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1009{
1010	struct e1000_phy_info *phy = &hw->phy;
1011	s32 ret_val = 0;
1012	u16 data;
1013
1014	data = rd32(E1000_82580_PHY_POWER_MGMT);
1015
1016	if (active) {
1017		data |= E1000_82580_PM_D0_LPLU;
1018
1019		/* When LPLU is enabled, we should disable SmartSpeed */
1020		data &= ~E1000_82580_PM_SPD;
1021	} else {
1022		data &= ~E1000_82580_PM_D0_LPLU;
1023
1024		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1025		 * during Dx states where the power conservation is most
1026		 * important.  During driver activity we should enable
1027		 * SmartSpeed, so performance is maintained.
1028		 */
1029		if (phy->smart_speed == e1000_smart_speed_on)
1030			data |= E1000_82580_PM_SPD;
1031		else if (phy->smart_speed == e1000_smart_speed_off)
1032			data &= ~E1000_82580_PM_SPD; }
1033
1034	wr32(E1000_82580_PHY_POWER_MGMT, data);
1035	return ret_val;
1036}
1037
1038/**
1039 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1040 *  @hw: pointer to the HW structure
1041 *  @active: boolean used to enable/disable lplu
1042 *
1043 *  Success returns 0, Failure returns 1
1044 *
1045 *  The low power link up (lplu) state is set to the power management level D3
1046 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1047 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1048 *  is used during Dx states where the power conservation is most important.
1049 *  During driver activity, SmartSpeed should be enabled so performance is
1050 *  maintained.
1051 **/
1052static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1053{
1054	struct e1000_phy_info *phy = &hw->phy;
1055	s32 ret_val = 0;
1056	u16 data;
1057
1058	data = rd32(E1000_82580_PHY_POWER_MGMT);
1059
1060	if (!active) {
1061		data &= ~E1000_82580_PM_D3_LPLU;
1062		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1063		 * during Dx states where the power conservation is most
1064		 * important.  During driver activity we should enable
1065		 * SmartSpeed, so performance is maintained.
1066		 */
1067		if (phy->smart_speed == e1000_smart_speed_on)
1068			data |= E1000_82580_PM_SPD;
1069		else if (phy->smart_speed == e1000_smart_speed_off)
1070			data &= ~E1000_82580_PM_SPD;
1071	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1072		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1073		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1074		data |= E1000_82580_PM_D3_LPLU;
1075		/* When LPLU is enabled, we should disable SmartSpeed */
1076		data &= ~E1000_82580_PM_SPD;
1077	}
1078
1079	wr32(E1000_82580_PHY_POWER_MGMT, data);
1080	return ret_val;
1081}
1082
1083/**
1084 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1085 *  @hw: pointer to the HW structure
1086 *
1087 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1088 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1089 *  Return successful if access grant bit set, else clear the request for
1090 *  EEPROM access and return -E1000_ERR_NVM (-1).
1091 **/
1092static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1093{
1094	s32 ret_val;
1095
1096	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1097	if (ret_val)
1098		goto out;
1099
1100	ret_val = igb_acquire_nvm(hw);
1101
1102	if (ret_val)
1103		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1104
1105out:
1106	return ret_val;
1107}
1108
1109/**
1110 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1111 *  @hw: pointer to the HW structure
1112 *
1113 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1114 *  then release the semaphores acquired.
1115 **/
1116static void igb_release_nvm_82575(struct e1000_hw *hw)
1117{
1118	igb_release_nvm(hw);
1119	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1120}
1121
1122/**
1123 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1124 *  @hw: pointer to the HW structure
1125 *  @mask: specifies which semaphore to acquire
1126 *
1127 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1128 *  will also specify which port we're acquiring the lock for.
1129 **/
1130static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1131{
1132	u32 swfw_sync;
1133	u32 swmask = mask;
1134	u32 fwmask = mask << 16;
1135	s32 ret_val = 0;
1136	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1137
1138	while (i < timeout) {
1139		if (igb_get_hw_semaphore(hw)) {
1140			ret_val = -E1000_ERR_SWFW_SYNC;
1141			goto out;
1142		}
1143
1144		swfw_sync = rd32(E1000_SW_FW_SYNC);
1145		if (!(swfw_sync & (fwmask | swmask)))
1146			break;
1147
1148		/* Firmware currently using resource (fwmask)
1149		 * or other software thread using resource (swmask)
1150		 */
1151		igb_put_hw_semaphore(hw);
1152		mdelay(5);
1153		i++;
1154	}
1155
1156	if (i == timeout) {
1157		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1158		ret_val = -E1000_ERR_SWFW_SYNC;
1159		goto out;
1160	}
1161
1162	swfw_sync |= swmask;
1163	wr32(E1000_SW_FW_SYNC, swfw_sync);
1164
1165	igb_put_hw_semaphore(hw);
1166
1167out:
1168	return ret_val;
1169}
1170
1171/**
1172 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1173 *  @hw: pointer to the HW structure
1174 *  @mask: specifies which semaphore to acquire
1175 *
1176 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1177 *  will also specify which port we're releasing the lock for.
1178 **/
1179static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1180{
1181	u32 swfw_sync;
1182
1183	while (igb_get_hw_semaphore(hw) != 0);
1184	/* Empty */
1185
1186	swfw_sync = rd32(E1000_SW_FW_SYNC);
1187	swfw_sync &= ~mask;
1188	wr32(E1000_SW_FW_SYNC, swfw_sync);
1189
1190	igb_put_hw_semaphore(hw);
1191}
1192
1193/**
1194 *  igb_get_cfg_done_82575 - Read config done bit
1195 *  @hw: pointer to the HW structure
1196 *
1197 *  Read the management control register for the config done bit for
1198 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1199 *  to read the config done bit, so an error is *ONLY* logged and returns
1200 *  0.  If we were to return with error, EEPROM-less silicon
1201 *  would not be able to be reset or change link.
1202 **/
1203static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1204{
1205	s32 timeout = PHY_CFG_TIMEOUT;
1206	s32 ret_val = 0;
1207	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1208
1209	if (hw->bus.func == 1)
1210		mask = E1000_NVM_CFG_DONE_PORT_1;
1211	else if (hw->bus.func == E1000_FUNC_2)
1212		mask = E1000_NVM_CFG_DONE_PORT_2;
1213	else if (hw->bus.func == E1000_FUNC_3)
1214		mask = E1000_NVM_CFG_DONE_PORT_3;
1215
1216	while (timeout) {
1217		if (rd32(E1000_EEMNGCTL) & mask)
1218			break;
1219		msleep(1);
1220		timeout--;
1221	}
1222	if (!timeout)
1223		hw_dbg("MNG configuration cycle has not completed.\n");
1224
1225	/* If EEPROM is not marked present, init the PHY manually */
1226	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1227	    (hw->phy.type == e1000_phy_igp_3))
1228		igb_phy_init_script_igp3(hw);
1229
1230	return ret_val;
1231}
1232
1233/**
1234 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1235 *  @hw: pointer to the HW structure
1236 *  @speed: stores the current speed
1237 *  @duplex: stores the current duplex
1238 *
1239 *  This is a wrapper function, if using the serial gigabit media independent
1240 *  interface, use PCS to retrieve the link speed and duplex information.
1241 *  Otherwise, use the generic function to get the link speed and duplex info.
1242 **/
1243static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1244					u16 *duplex)
1245{
1246	s32 ret_val;
1247
1248	if (hw->phy.media_type != e1000_media_type_copper)
1249		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1250							       duplex);
1251	else
1252		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1253								    duplex);
1254
1255	return ret_val;
1256}
1257
1258/**
1259 *  igb_check_for_link_82575 - Check for link
1260 *  @hw: pointer to the HW structure
1261 *
1262 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1263 *  use the generic interface for determining link.
1264 **/
1265static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1266{
1267	s32 ret_val;
1268	u16 speed, duplex;
1269
1270	if (hw->phy.media_type != e1000_media_type_copper) {
1271		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1272		                                             &duplex);
1273		/* Use this flag to determine if link needs to be checked or
1274		 * not.  If  we have link clear the flag so that we do not
1275		 * continue to check for link.
1276		 */
1277		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1278
1279		/* Configure Flow Control now that Auto-Neg has completed.
1280		 * First, we need to restore the desired flow control
1281		 * settings because we may have had to re-autoneg with a
1282		 * different link partner.
1283		 */
1284		ret_val = igb_config_fc_after_link_up(hw);
1285		if (ret_val)
1286			hw_dbg("Error configuring flow control\n");
1287	} else {
1288		ret_val = igb_check_for_copper_link(hw);
1289	}
1290
1291	return ret_val;
1292}
1293
1294/**
1295 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1296 *  @hw: pointer to the HW structure
1297 **/
1298void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1299{
1300	u32 reg;
1301
1302
1303	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1304	    !igb_sgmii_active_82575(hw))
1305		return;
1306
1307	/* Enable PCS to turn on link */
1308	reg = rd32(E1000_PCS_CFG0);
1309	reg |= E1000_PCS_CFG_PCS_EN;
1310	wr32(E1000_PCS_CFG0, reg);
1311
1312	/* Power up the laser */
1313	reg = rd32(E1000_CTRL_EXT);
1314	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1315	wr32(E1000_CTRL_EXT, reg);
1316
1317	/* flush the write to verify completion */
1318	wrfl();
1319	msleep(1);
1320}
1321
1322/**
1323 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1324 *  @hw: pointer to the HW structure
1325 *  @speed: stores the current speed
1326 *  @duplex: stores the current duplex
1327 *
1328 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1329 *  duplex, then store the values in the pointers provided.
1330 **/
1331static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1332						u16 *duplex)
1333{
1334	struct e1000_mac_info *mac = &hw->mac;
1335	u32 pcs, status;
1336
1337	/* Set up defaults for the return values of this function */
1338	mac->serdes_has_link = false;
1339	*speed = 0;
1340	*duplex = 0;
1341
1342	/* Read the PCS Status register for link state. For non-copper mode,
1343	 * the status register is not accurate. The PCS status register is
1344	 * used instead.
1345	 */
1346	pcs = rd32(E1000_PCS_LSTAT);
1347
1348	/* The link up bit determines when link is up on autoneg. The sync ok
1349	 * gets set once both sides sync up and agree upon link. Stable link
1350	 * can be determined by checking for both link up and link sync ok
1351	 */
1352	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1353		mac->serdes_has_link = true;
1354
1355		/* Detect and store PCS speed */
1356		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1357			*speed = SPEED_1000;
1358		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1359			*speed = SPEED_100;
1360		else
1361			*speed = SPEED_10;
1362
1363		/* Detect and store PCS duplex */
1364		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1365			*duplex = FULL_DUPLEX;
1366		else
1367			*duplex = HALF_DUPLEX;
1368
1369	/* Check if it is an I354 2.5Gb backplane connection. */
1370		if (mac->type == e1000_i354) {
1371			status = rd32(E1000_STATUS);
1372			if ((status & E1000_STATUS_2P5_SKU) &&
1373			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1374				*speed = SPEED_2500;
1375				*duplex = FULL_DUPLEX;
1376				hw_dbg("2500 Mbs, ");
1377				hw_dbg("Full Duplex\n");
1378			}
1379		}
1380
1381	}
1382
1383	return 0;
1384}
1385
1386/**
1387 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1388 *  @hw: pointer to the HW structure
1389 *
1390 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1391 *  when management pass thru is not enabled.
1392 **/
1393void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1394{
1395	u32 reg;
1396
1397	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1398	    igb_sgmii_active_82575(hw))
1399		return;
1400
1401	if (!igb_enable_mng_pass_thru(hw)) {
1402		/* Disable PCS to turn off link */
1403		reg = rd32(E1000_PCS_CFG0);
1404		reg &= ~E1000_PCS_CFG_PCS_EN;
1405		wr32(E1000_PCS_CFG0, reg);
1406
1407		/* shutdown the laser */
1408		reg = rd32(E1000_CTRL_EXT);
1409		reg |= E1000_CTRL_EXT_SDP3_DATA;
1410		wr32(E1000_CTRL_EXT, reg);
1411
1412		/* flush the write to verify completion */
1413		wrfl();
1414		msleep(1);
1415	}
1416}
1417
1418/**
1419 *  igb_reset_hw_82575 - Reset hardware
1420 *  @hw: pointer to the HW structure
1421 *
1422 *  This resets the hardware into a known state.  This is a
1423 *  function pointer entry point called by the api module.
1424 **/
1425static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1426{
1427	u32 ctrl;
1428	s32 ret_val;
1429
1430	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1431	 * on the last TLP read/write transaction when MAC is reset.
1432	 */
1433	ret_val = igb_disable_pcie_master(hw);
1434	if (ret_val)
1435		hw_dbg("PCI-E Master disable polling has failed.\n");
1436
1437	/* set the completion timeout for interface */
1438	ret_val = igb_set_pcie_completion_timeout(hw);
1439	if (ret_val) {
1440		hw_dbg("PCI-E Set completion timeout has failed.\n");
1441	}
1442
1443	hw_dbg("Masking off all interrupts\n");
1444	wr32(E1000_IMC, 0xffffffff);
1445
1446	wr32(E1000_RCTL, 0);
1447	wr32(E1000_TCTL, E1000_TCTL_PSP);
1448	wrfl();
1449
1450	msleep(10);
1451
1452	ctrl = rd32(E1000_CTRL);
1453
1454	hw_dbg("Issuing a global reset to MAC\n");
1455	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1456
1457	ret_val = igb_get_auto_rd_done(hw);
1458	if (ret_val) {
1459		/* When auto config read does not complete, do not
1460		 * return with an error. This can happen in situations
1461		 * where there is no eeprom and prevents getting link.
1462		 */
1463		hw_dbg("Auto Read Done did not complete\n");
1464	}
1465
1466	/* If EEPROM is not present, run manual init scripts */
1467	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1468		igb_reset_init_script_82575(hw);
1469
1470	/* Clear any pending interrupt events. */
1471	wr32(E1000_IMC, 0xffffffff);
1472	rd32(E1000_ICR);
1473
1474	/* Install any alternate MAC address into RAR0 */
1475	ret_val = igb_check_alt_mac_addr(hw);
1476
1477	return ret_val;
1478}
1479
1480/**
1481 *  igb_init_hw_82575 - Initialize hardware
1482 *  @hw: pointer to the HW structure
1483 *
1484 *  This inits the hardware readying it for operation.
1485 **/
1486static s32 igb_init_hw_82575(struct e1000_hw *hw)
1487{
1488	struct e1000_mac_info *mac = &hw->mac;
1489	s32 ret_val;
1490	u16 i, rar_count = mac->rar_entry_count;
1491
 
 
 
 
 
 
 
1492	/* Initialize identification LED */
1493	ret_val = igb_id_led_init(hw);
1494	if (ret_val) {
1495		hw_dbg("Error initializing identification LED\n");
1496		/* This is not fatal and we should not stop init due to this */
1497	}
1498
1499	/* Disabling VLAN filtering */
1500	hw_dbg("Initializing the IEEE VLAN\n");
1501	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1502		igb_clear_vfta_i350(hw);
1503	else
1504		igb_clear_vfta(hw);
1505
1506	/* Setup the receive address */
1507	igb_init_rx_addrs(hw, rar_count);
1508
1509	/* Zero out the Multicast HASH table */
1510	hw_dbg("Zeroing the MTA\n");
1511	for (i = 0; i < mac->mta_reg_count; i++)
1512		array_wr32(E1000_MTA, i, 0);
1513
1514	/* Zero out the Unicast HASH table */
1515	hw_dbg("Zeroing the UTA\n");
1516	for (i = 0; i < mac->uta_reg_count; i++)
1517		array_wr32(E1000_UTA, i, 0);
1518
1519	/* Setup link and flow control */
1520	ret_val = igb_setup_link(hw);
1521
1522	/* Clear all of the statistics registers (clear on read).  It is
1523	 * important that we do this after we have tried to establish link
1524	 * because the symbol error count will increment wildly if there
1525	 * is no link.
1526	 */
1527	igb_clear_hw_cntrs_82575(hw);
1528	return ret_val;
1529}
1530
1531/**
1532 *  igb_setup_copper_link_82575 - Configure copper link settings
1533 *  @hw: pointer to the HW structure
1534 *
1535 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1536 *  for link, once link is established calls to configure collision distance
1537 *  and flow control are called.
1538 **/
1539static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1540{
1541	u32 ctrl;
1542	s32  ret_val;
1543	u32 phpm_reg;
1544
1545	ctrl = rd32(E1000_CTRL);
1546	ctrl |= E1000_CTRL_SLU;
1547	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1548	wr32(E1000_CTRL, ctrl);
1549
1550	/* Clear Go Link Disconnect bit on supported devices */
1551	switch (hw->mac.type) {
1552	case e1000_82580:
1553	case e1000_i350:
1554	case e1000_i210:
1555	case e1000_i211:
1556		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1557		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1558		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1559		break;
1560	default:
1561		break;
1562	}
1563
1564	ret_val = igb_setup_serdes_link_82575(hw);
1565	if (ret_val)
1566		goto out;
1567
1568	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1569		/* allow time for SFP cage time to power up phy */
1570		msleep(300);
1571
1572		ret_val = hw->phy.ops.reset(hw);
1573		if (ret_val) {
1574			hw_dbg("Error resetting the PHY.\n");
1575			goto out;
1576		}
1577	}
1578	switch (hw->phy.type) {
1579	case e1000_phy_i210:
1580	case e1000_phy_m88:
1581		switch (hw->phy.id) {
1582		case I347AT4_E_PHY_ID:
1583		case M88E1112_E_PHY_ID:
1584		case M88E1543_E_PHY_ID:
 
1585		case I210_I_PHY_ID:
1586			ret_val = igb_copper_link_setup_m88_gen2(hw);
1587			break;
1588		default:
1589			ret_val = igb_copper_link_setup_m88(hw);
1590			break;
1591		}
1592		break;
1593	case e1000_phy_igp_3:
1594		ret_val = igb_copper_link_setup_igp(hw);
1595		break;
1596	case e1000_phy_82580:
1597		ret_val = igb_copper_link_setup_82580(hw);
1598		break;
 
 
 
1599	default:
1600		ret_val = -E1000_ERR_PHY;
1601		break;
1602	}
1603
1604	if (ret_val)
1605		goto out;
1606
1607	ret_val = igb_setup_copper_link(hw);
1608out:
1609	return ret_val;
1610}
1611
1612/**
1613 *  igb_setup_serdes_link_82575 - Setup link for serdes
1614 *  @hw: pointer to the HW structure
1615 *
1616 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1617 *  used on copper connections where the serialized gigabit media independent
1618 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1619 *  for auto-negotiation or forces speed/duplex.
1620 **/
1621static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1622{
1623	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1624	bool pcs_autoneg;
1625	s32 ret_val = E1000_SUCCESS;
1626	u16 data;
1627
1628	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1629	    !igb_sgmii_active_82575(hw))
1630		return ret_val;
1631
1632
1633	/* On the 82575, SerDes loopback mode persists until it is
1634	 * explicitly turned off or a power cycle is performed.  A read to
1635	 * the register does not indicate its status.  Therefore, we ensure
1636	 * loopback mode is disabled during initialization.
1637	 */
1638	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1639
1640	/* power on the sfp cage if present and turn on I2C */
1641	ctrl_ext = rd32(E1000_CTRL_EXT);
1642	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1643	ctrl_ext |= E1000_CTRL_I2C_ENA;
1644	wr32(E1000_CTRL_EXT, ctrl_ext);
1645
1646	ctrl_reg = rd32(E1000_CTRL);
1647	ctrl_reg |= E1000_CTRL_SLU;
1648
1649	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1650		/* set both sw defined pins */
1651		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1652
1653		/* Set switch control to serdes energy detect */
1654		reg = rd32(E1000_CONNSW);
1655		reg |= E1000_CONNSW_ENRGSRC;
1656		wr32(E1000_CONNSW, reg);
1657	}
1658
1659	reg = rd32(E1000_PCS_LCTL);
1660
1661	/* default pcs_autoneg to the same setting as mac autoneg */
1662	pcs_autoneg = hw->mac.autoneg;
1663
1664	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1665	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1666		/* sgmii mode lets the phy handle forcing speed/duplex */
1667		pcs_autoneg = true;
1668		/* autoneg time out should be disabled for SGMII mode */
1669		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1670		break;
1671	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1672		/* disable PCS autoneg and support parallel detect only */
1673		pcs_autoneg = false;
 
1674	default:
1675		if (hw->mac.type == e1000_82575 ||
1676		    hw->mac.type == e1000_82576) {
1677			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1678			if (ret_val) {
1679				printk(KERN_DEBUG "NVM Read Error\n\n");
1680				return ret_val;
1681			}
1682
1683			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1684				pcs_autoneg = false;
1685		}
1686
1687		/* non-SGMII modes only supports a speed of 1000/Full for the
1688		 * link so it is best to just force the MAC and let the pcs
1689		 * link either autoneg or be forced to 1000/Full
1690		 */
1691		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1692		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1693
1694		/* set speed of 1000/Full if speed/duplex is forced */
1695		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1696		break;
1697	}
1698
1699	wr32(E1000_CTRL, ctrl_reg);
1700
1701	/* New SerDes mode allows for forcing speed or autonegotiating speed
1702	 * at 1gb. Autoneg should be default set by most drivers. This is the
1703	 * mode that will be compatible with older link partners and switches.
1704	 * However, both are supported by the hardware and some drivers/tools.
1705	 */
1706	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1707		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1708
1709	if (pcs_autoneg) {
1710		/* Set PCS register for autoneg */
1711		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1712		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1713
1714		/* Disable force flow control for autoneg */
1715		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1716
1717		/* Configure flow control advertisement for autoneg */
1718		anadv_reg = rd32(E1000_PCS_ANADV);
1719		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1720		switch (hw->fc.requested_mode) {
1721		case e1000_fc_full:
1722		case e1000_fc_rx_pause:
1723			anadv_reg |= E1000_TXCW_ASM_DIR;
1724			anadv_reg |= E1000_TXCW_PAUSE;
1725			break;
1726		case e1000_fc_tx_pause:
1727			anadv_reg |= E1000_TXCW_ASM_DIR;
1728			break;
1729		default:
1730			break;
1731		}
1732		wr32(E1000_PCS_ANADV, anadv_reg);
1733
1734		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1735	} else {
1736		/* Set PCS register for forced link */
1737		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1738
1739		/* Force flow control for forced link */
1740		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1741
1742		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1743	}
1744
1745	wr32(E1000_PCS_LCTL, reg);
1746
1747	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1748		igb_force_mac_fc(hw);
1749
1750	return ret_val;
1751}
1752
1753/**
1754 *  igb_sgmii_active_82575 - Return sgmii state
1755 *  @hw: pointer to the HW structure
1756 *
1757 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1758 *  which can be enabled for use in the embedded applications.  Simply
1759 *  return the current state of the sgmii interface.
1760 **/
1761static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1762{
1763	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1764	return dev_spec->sgmii_active;
1765}
1766
1767/**
1768 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1769 *  @hw: pointer to the HW structure
1770 *
1771 *  Inits recommended HW defaults after a reset when there is no EEPROM
1772 *  detected. This is only for the 82575.
1773 **/
1774static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1775{
1776	if (hw->mac.type == e1000_82575) {
1777		hw_dbg("Running reset init script for 82575\n");
1778		/* SerDes configuration via SERDESCTRL */
1779		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1780		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1781		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1782		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1783
1784		/* CCM configuration via CCMCTL register */
1785		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1786		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1787
1788		/* PCIe lanes configuration */
1789		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1790		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1791		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1792		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1793
1794		/* PCIe PLL Configuration */
1795		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1796		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1797		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1798	}
1799
1800	return 0;
1801}
1802
1803/**
1804 *  igb_read_mac_addr_82575 - Read device MAC address
1805 *  @hw: pointer to the HW structure
1806 **/
1807static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1808{
1809	s32 ret_val = 0;
1810
1811	/* If there's an alternate MAC address place it in RAR0
1812	 * so that it will override the Si installed default perm
1813	 * address.
1814	 */
1815	ret_val = igb_check_alt_mac_addr(hw);
1816	if (ret_val)
1817		goto out;
1818
1819	ret_val = igb_read_mac_addr(hw);
1820
1821out:
1822	return ret_val;
1823}
1824
1825/**
1826 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1827 * @hw: pointer to the HW structure
1828 *
1829 * In the case of a PHY power down to save power, or to turn off link during a
1830 * driver unload, or wake on lan is not enabled, remove the link.
1831 **/
1832void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1833{
1834	/* If the management interface is not enabled, then power down */
1835	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1836		igb_power_down_phy_copper(hw);
1837}
1838
1839/**
1840 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1841 *  @hw: pointer to the HW structure
1842 *
1843 *  Clears the hardware counters by reading the counter registers.
1844 **/
1845static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1846{
1847	igb_clear_hw_cntrs_base(hw);
1848
1849	rd32(E1000_PRC64);
1850	rd32(E1000_PRC127);
1851	rd32(E1000_PRC255);
1852	rd32(E1000_PRC511);
1853	rd32(E1000_PRC1023);
1854	rd32(E1000_PRC1522);
1855	rd32(E1000_PTC64);
1856	rd32(E1000_PTC127);
1857	rd32(E1000_PTC255);
1858	rd32(E1000_PTC511);
1859	rd32(E1000_PTC1023);
1860	rd32(E1000_PTC1522);
1861
1862	rd32(E1000_ALGNERRC);
1863	rd32(E1000_RXERRC);
1864	rd32(E1000_TNCRS);
1865	rd32(E1000_CEXTERR);
1866	rd32(E1000_TSCTC);
1867	rd32(E1000_TSCTFC);
1868
1869	rd32(E1000_MGTPRC);
1870	rd32(E1000_MGTPDC);
1871	rd32(E1000_MGTPTC);
1872
1873	rd32(E1000_IAC);
1874	rd32(E1000_ICRXOC);
1875
1876	rd32(E1000_ICRXPTC);
1877	rd32(E1000_ICRXATC);
1878	rd32(E1000_ICTXPTC);
1879	rd32(E1000_ICTXATC);
1880	rd32(E1000_ICTXQEC);
1881	rd32(E1000_ICTXQMTC);
1882	rd32(E1000_ICRXDMTC);
1883
1884	rd32(E1000_CBTMPC);
1885	rd32(E1000_HTDPMC);
1886	rd32(E1000_CBRMPC);
1887	rd32(E1000_RPTHC);
1888	rd32(E1000_HGPTC);
1889	rd32(E1000_HTCBDPC);
1890	rd32(E1000_HGORCL);
1891	rd32(E1000_HGORCH);
1892	rd32(E1000_HGOTCL);
1893	rd32(E1000_HGOTCH);
1894	rd32(E1000_LENERRS);
1895
1896	/* This register should not be read in copper configurations */
1897	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1898	    igb_sgmii_active_82575(hw))
1899		rd32(E1000_SCVPC);
1900}
1901
1902/**
1903 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1904 *  @hw: pointer to the HW structure
1905 *
1906 *  After rx enable if managability is enabled then there is likely some
1907 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1908 *  function clears the fifos and flushes any packets that came in as rx was
1909 *  being enabled.
1910 **/
1911void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1912{
1913	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1914	int i, ms_wait;
1915
 
 
 
 
 
1916	if (hw->mac.type != e1000_82575 ||
1917	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1918		return;
1919
1920	/* Disable all RX queues */
1921	for (i = 0; i < 4; i++) {
1922		rxdctl[i] = rd32(E1000_RXDCTL(i));
1923		wr32(E1000_RXDCTL(i),
1924		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1925	}
1926	/* Poll all queues to verify they have shut down */
1927	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1928		msleep(1);
1929		rx_enabled = 0;
1930		for (i = 0; i < 4; i++)
1931			rx_enabled |= rd32(E1000_RXDCTL(i));
1932		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1933			break;
1934	}
1935
1936	if (ms_wait == 10)
1937		hw_dbg("Queue disable timed out after 10ms\n");
1938
1939	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1940	 * incoming packets are rejected.  Set enable and wait 2ms so that
1941	 * any packet that was coming in as RCTL.EN was set is flushed
1942	 */
1943	rfctl = rd32(E1000_RFCTL);
1944	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1945
1946	rlpml = rd32(E1000_RLPML);
1947	wr32(E1000_RLPML, 0);
1948
1949	rctl = rd32(E1000_RCTL);
1950	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1951	temp_rctl |= E1000_RCTL_LPE;
1952
1953	wr32(E1000_RCTL, temp_rctl);
1954	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1955	wrfl();
1956	msleep(2);
1957
1958	/* Enable RX queues that were previously enabled and restore our
1959	 * previous state
1960	 */
1961	for (i = 0; i < 4; i++)
1962		wr32(E1000_RXDCTL(i), rxdctl[i]);
1963	wr32(E1000_RCTL, rctl);
1964	wrfl();
1965
1966	wr32(E1000_RLPML, rlpml);
1967	wr32(E1000_RFCTL, rfctl);
1968
1969	/* Flush receive errors generated by workaround */
1970	rd32(E1000_ROC);
1971	rd32(E1000_RNBC);
1972	rd32(E1000_MPC);
1973}
1974
1975/**
1976 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1977 *  @hw: pointer to the HW structure
1978 *
1979 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1980 *  however the hardware default for these parts is 500us to 1ms which is less
1981 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1982 *  increase the value to either 10ms to 200ms for capability version 1 config,
1983 *  or 16ms to 55ms for version 2.
1984 **/
1985static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1986{
1987	u32 gcr = rd32(E1000_GCR);
1988	s32 ret_val = 0;
1989	u16 pcie_devctl2;
1990
1991	/* only take action if timeout value is defaulted to 0 */
1992	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1993		goto out;
1994
1995	/* if capabilities version is type 1 we can write the
1996	 * timeout of 10ms to 200ms through the GCR register
1997	 */
1998	if (!(gcr & E1000_GCR_CAP_VER2)) {
1999		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2000		goto out;
2001	}
2002
2003	/* for version 2 capabilities we need to write the config space
2004	 * directly in order to set the completion timeout value for
2005	 * 16ms to 55ms
2006	 */
2007	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2008	                                &pcie_devctl2);
2009	if (ret_val)
2010		goto out;
2011
2012	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2013
2014	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2015	                                 &pcie_devctl2);
2016out:
2017	/* disable completion timeout resend */
2018	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2019
2020	wr32(E1000_GCR, gcr);
2021	return ret_val;
2022}
2023
2024/**
2025 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2026 *  @hw: pointer to the hardware struct
2027 *  @enable: state to enter, either enabled or disabled
2028 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2029 *
2030 *  enables/disables L2 switch anti-spoofing functionality.
2031 **/
2032void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2033{
2034	u32 reg_val, reg_offset;
2035
2036	switch (hw->mac.type) {
2037	case e1000_82576:
2038		reg_offset = E1000_DTXSWC;
2039		break;
2040	case e1000_i350:
2041	case e1000_i354:
2042		reg_offset = E1000_TXSWC;
2043		break;
2044	default:
2045		return;
2046	}
2047
2048	reg_val = rd32(reg_offset);
2049	if (enable) {
2050		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2051			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2052		/* The PF can spoof - it has to in order to
2053		 * support emulation mode NICs
2054		 */
2055		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2056	} else {
2057		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2058			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2059	}
2060	wr32(reg_offset, reg_val);
2061}
2062
2063/**
2064 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2065 *  @hw: pointer to the hardware struct
2066 *  @enable: state to enter, either enabled or disabled
2067 *
2068 *  enables/disables L2 switch loopback functionality.
2069 **/
2070void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2071{
2072	u32 dtxswc;
2073
2074	switch (hw->mac.type) {
2075	case e1000_82576:
2076		dtxswc = rd32(E1000_DTXSWC);
2077		if (enable)
2078			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2079		else
2080			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2081		wr32(E1000_DTXSWC, dtxswc);
2082		break;
2083	case e1000_i354:
2084	case e1000_i350:
2085		dtxswc = rd32(E1000_TXSWC);
2086		if (enable)
2087			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2088		else
2089			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2090		wr32(E1000_TXSWC, dtxswc);
2091		break;
2092	default:
2093		/* Currently no other hardware supports loopback */
2094		break;
2095	}
2096
2097}
2098
2099/**
2100 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2101 *  @hw: pointer to the hardware struct
2102 *  @enable: state to enter, either enabled or disabled
2103 *
2104 *  enables/disables replication of packets across multiple pools.
2105 **/
2106void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2107{
2108	u32 vt_ctl = rd32(E1000_VT_CTL);
2109
2110	if (enable)
2111		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2112	else
2113		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2114
2115	wr32(E1000_VT_CTL, vt_ctl);
2116}
2117
2118/**
2119 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2120 *  @hw: pointer to the HW structure
2121 *  @offset: register offset to be read
2122 *  @data: pointer to the read data
2123 *
2124 *  Reads the MDI control register in the PHY at offset and stores the
2125 *  information read to data.
2126 **/
2127static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2128{
2129	s32 ret_val;
2130
2131	ret_val = hw->phy.ops.acquire(hw);
2132	if (ret_val)
2133		goto out;
2134
2135	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2136
2137	hw->phy.ops.release(hw);
2138
2139out:
2140	return ret_val;
2141}
2142
2143/**
2144 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2145 *  @hw: pointer to the HW structure
2146 *  @offset: register offset to write to
2147 *  @data: data to write to register at offset
2148 *
2149 *  Writes data to MDI control register in the PHY at offset.
2150 **/
2151static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2152{
2153	s32 ret_val;
2154
2155
2156	ret_val = hw->phy.ops.acquire(hw);
2157	if (ret_val)
2158		goto out;
2159
2160	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2161
2162	hw->phy.ops.release(hw);
2163
2164out:
2165	return ret_val;
2166}
2167
2168/**
2169 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2170 *  @hw: pointer to the HW structure
2171 *
2172 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2173 *  the values found in the EEPROM.  This addresses an issue in which these
2174 *  bits are not restored from EEPROM after reset.
2175 **/
2176static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2177{
2178	s32 ret_val = 0;
2179	u32 mdicnfg;
2180	u16 nvm_data = 0;
2181
2182	if (hw->mac.type != e1000_82580)
2183		goto out;
2184	if (!igb_sgmii_active_82575(hw))
2185		goto out;
2186
2187	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2188				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2189				   &nvm_data);
2190	if (ret_val) {
2191		hw_dbg("NVM Read Error\n");
2192		goto out;
2193	}
2194
2195	mdicnfg = rd32(E1000_MDICNFG);
2196	if (nvm_data & NVM_WORD24_EXT_MDIO)
2197		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2198	if (nvm_data & NVM_WORD24_COM_MDIO)
2199		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2200	wr32(E1000_MDICNFG, mdicnfg);
2201out:
2202	return ret_val;
2203}
2204
2205/**
2206 *  igb_reset_hw_82580 - Reset hardware
2207 *  @hw: pointer to the HW structure
2208 *
2209 *  This resets function or entire device (all ports, etc.)
2210 *  to a known state.
2211 **/
2212static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2213{
2214	s32 ret_val = 0;
2215	/* BH SW mailbox bit in SW_FW_SYNC */
2216	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2217	u32 ctrl;
2218	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2219
2220	hw->dev_spec._82575.global_device_reset = false;
2221
2222	/* due to hw errata, global device reset doesn't always
2223	 * work on 82580
2224	 */
2225	if (hw->mac.type == e1000_82580)
2226		global_device_reset = false;
2227
2228	/* Get current control state. */
2229	ctrl = rd32(E1000_CTRL);
2230
2231	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2232	 * on the last TLP read/write transaction when MAC is reset.
2233	 */
2234	ret_val = igb_disable_pcie_master(hw);
2235	if (ret_val)
2236		hw_dbg("PCI-E Master disable polling has failed.\n");
2237
2238	hw_dbg("Masking off all interrupts\n");
2239	wr32(E1000_IMC, 0xffffffff);
2240	wr32(E1000_RCTL, 0);
2241	wr32(E1000_TCTL, E1000_TCTL_PSP);
2242	wrfl();
2243
2244	msleep(10);
2245
2246	/* Determine whether or not a global dev reset is requested */
2247	if (global_device_reset &&
2248		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2249			global_device_reset = false;
2250
2251	if (global_device_reset &&
2252		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2253		ctrl |= E1000_CTRL_DEV_RST;
2254	else
2255		ctrl |= E1000_CTRL_RST;
2256
2257	wr32(E1000_CTRL, ctrl);
2258	wrfl();
2259
2260	/* Add delay to insure DEV_RST has time to complete */
2261	if (global_device_reset)
2262		msleep(5);
2263
2264	ret_val = igb_get_auto_rd_done(hw);
2265	if (ret_val) {
2266		/* When auto config read does not complete, do not
2267		 * return with an error. This can happen in situations
2268		 * where there is no eeprom and prevents getting link.
2269		 */
2270		hw_dbg("Auto Read Done did not complete\n");
2271	}
2272
2273	/* clear global device reset status bit */
2274	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2275
2276	/* Clear any pending interrupt events. */
2277	wr32(E1000_IMC, 0xffffffff);
2278	rd32(E1000_ICR);
2279
2280	ret_val = igb_reset_mdicnfg_82580(hw);
2281	if (ret_val)
2282		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2283
2284	/* Install any alternate MAC address into RAR0 */
2285	ret_val = igb_check_alt_mac_addr(hw);
2286
2287	/* Release semaphore */
2288	if (global_device_reset)
2289		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2290
2291	return ret_val;
2292}
2293
2294/**
2295 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2296 *  @data: data received by reading RXPBS register
2297 *
2298 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2299 *  This function converts the retrieved value into the correct table value
2300 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2301 *  0x0 36  72 144   1   2   4   8  16
2302 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2303 */
2304u16 igb_rxpbs_adjust_82580(u32 data)
2305{
2306	u16 ret_val = 0;
2307
2308	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2309		ret_val = e1000_82580_rxpbs_table[data];
2310
2311	return ret_val;
2312}
2313
2314/**
2315 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2316 *  checksum
2317 *  @hw: pointer to the HW structure
2318 *  @offset: offset in words of the checksum protected region
2319 *
2320 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2321 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2322 **/
2323static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2324						 u16 offset)
2325{
2326	s32 ret_val = 0;
2327	u16 checksum = 0;
2328	u16 i, nvm_data;
2329
2330	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2331		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2332		if (ret_val) {
2333			hw_dbg("NVM Read Error\n");
2334			goto out;
2335		}
2336		checksum += nvm_data;
2337	}
2338
2339	if (checksum != (u16) NVM_SUM) {
2340		hw_dbg("NVM Checksum Invalid\n");
2341		ret_val = -E1000_ERR_NVM;
2342		goto out;
2343	}
2344
2345out:
2346	return ret_val;
2347}
2348
2349/**
2350 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2351 *  checksum
2352 *  @hw: pointer to the HW structure
2353 *  @offset: offset in words of the checksum protected region
2354 *
2355 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2356 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2357 *  value to the EEPROM.
2358 **/
2359static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2360{
2361	s32 ret_val;
2362	u16 checksum = 0;
2363	u16 i, nvm_data;
2364
2365	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2366		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2367		if (ret_val) {
2368			hw_dbg("NVM Read Error while updating checksum.\n");
2369			goto out;
2370		}
2371		checksum += nvm_data;
2372	}
2373	checksum = (u16) NVM_SUM - checksum;
2374	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2375				&checksum);
2376	if (ret_val)
2377		hw_dbg("NVM Write Error while updating checksum.\n");
2378
2379out:
2380	return ret_val;
2381}
2382
2383/**
2384 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2385 *  @hw: pointer to the HW structure
2386 *
2387 *  Calculates the EEPROM section checksum by reading/adding each word of
2388 *  the EEPROM and then verifies that the sum of the EEPROM is
2389 *  equal to 0xBABA.
2390 **/
2391static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2392{
2393	s32 ret_val = 0;
2394	u16 eeprom_regions_count = 1;
2395	u16 j, nvm_data;
2396	u16 nvm_offset;
2397
2398	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2399	if (ret_val) {
2400		hw_dbg("NVM Read Error\n");
2401		goto out;
2402	}
2403
2404	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2405		/* if checksums compatibility bit is set validate checksums
2406		 * for all 4 ports.
2407		 */
2408		eeprom_regions_count = 4;
2409	}
2410
2411	for (j = 0; j < eeprom_regions_count; j++) {
2412		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2413		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2414								nvm_offset);
2415		if (ret_val != 0)
2416			goto out;
2417	}
2418
2419out:
2420	return ret_val;
2421}
2422
2423/**
2424 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2425 *  @hw: pointer to the HW structure
2426 *
2427 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2428 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2429 *  checksum and writes the value to the EEPROM.
2430 **/
2431static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2432{
2433	s32 ret_val;
2434	u16 j, nvm_data;
2435	u16 nvm_offset;
2436
2437	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2438	if (ret_val) {
2439		hw_dbg("NVM Read Error while updating checksum"
2440			" compatibility bit.\n");
2441		goto out;
2442	}
2443
2444	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2445		/* set compatibility bit to validate checksums appropriately */
2446		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2447		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2448					&nvm_data);
2449		if (ret_val) {
2450			hw_dbg("NVM Write Error while updating checksum"
2451				" compatibility bit.\n");
2452			goto out;
2453		}
2454	}
2455
2456	for (j = 0; j < 4; j++) {
2457		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2458		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2459		if (ret_val)
2460			goto out;
2461	}
2462
2463out:
2464	return ret_val;
2465}
2466
2467/**
2468 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2469 *  @hw: pointer to the HW structure
2470 *
2471 *  Calculates the EEPROM section checksum by reading/adding each word of
2472 *  the EEPROM and then verifies that the sum of the EEPROM is
2473 *  equal to 0xBABA.
2474 **/
2475static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2476{
2477	s32 ret_val = 0;
2478	u16 j;
2479	u16 nvm_offset;
2480
2481	for (j = 0; j < 4; j++) {
2482		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2483		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2484								nvm_offset);
2485		if (ret_val != 0)
2486			goto out;
2487	}
2488
2489out:
2490	return ret_val;
2491}
2492
2493/**
2494 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2495 *  @hw: pointer to the HW structure
2496 *
2497 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2498 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2499 *  checksum and writes the value to the EEPROM.
2500 **/
2501static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2502{
2503	s32 ret_val = 0;
2504	u16 j;
2505	u16 nvm_offset;
2506
2507	for (j = 0; j < 4; j++) {
2508		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2509		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2510		if (ret_val != 0)
2511			goto out;
2512	}
2513
2514out:
2515	return ret_val;
2516}
2517
2518/**
2519 *  __igb_access_emi_reg - Read/write EMI register
2520 *  @hw: pointer to the HW structure
2521 *  @addr: EMI address to program
2522 *  @data: pointer to value to read/write from/to the EMI address
2523 *  @read: boolean flag to indicate read or write
2524 **/
2525static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2526				  u16 *data, bool read)
2527{
2528	s32 ret_val = E1000_SUCCESS;
2529
2530	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2531	if (ret_val)
2532		return ret_val;
2533
2534	if (read)
2535		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2536	else
2537		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2538
2539	return ret_val;
2540}
2541
2542/**
2543 *  igb_read_emi_reg - Read Extended Management Interface register
2544 *  @hw: pointer to the HW structure
2545 *  @addr: EMI address to program
2546 *  @data: value to be read from the EMI address
2547 **/
2548s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2549{
2550	return __igb_access_emi_reg(hw, addr, data, true);
2551}
2552
2553/**
2554 *  igb_set_eee_i350 - Enable/disable EEE support
2555 *  @hw: pointer to the HW structure
 
 
2556 *
2557 *  Enable/disable EEE based on setting in dev_spec structure.
2558 *
2559 **/
2560s32 igb_set_eee_i350(struct e1000_hw *hw)
2561{
2562	s32 ret_val = 0;
2563	u32 ipcnfg, eeer;
2564
2565	if ((hw->mac.type < e1000_i350) ||
2566	    (hw->phy.media_type != e1000_media_type_copper))
2567		goto out;
2568	ipcnfg = rd32(E1000_IPCNFG);
2569	eeer = rd32(E1000_EEER);
2570
2571	/* enable or disable per user setting */
2572	if (!(hw->dev_spec._82575.eee_disable)) {
2573		u32 eee_su = rd32(E1000_EEE_SU);
2574
2575		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
 
 
 
 
 
 
 
 
 
2576		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2577			E1000_EEER_LPI_FC);
2578
2579		/* This bit should not be set in normal operation. */
2580		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2581			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2582
2583	} else {
2584		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2585			E1000_IPCNFG_EEE_100M_AN);
2586		eeer &= ~(E1000_EEER_TX_LPI_EN |
2587			E1000_EEER_RX_LPI_EN |
2588			E1000_EEER_LPI_FC);
2589	}
2590	wr32(E1000_IPCNFG, ipcnfg);
2591	wr32(E1000_EEER, eeer);
2592	rd32(E1000_IPCNFG);
2593	rd32(E1000_EEER);
2594out:
2595
2596	return ret_val;
2597}
2598
2599/**
2600 *  igb_set_eee_i354 - Enable/disable EEE support
2601 *  @hw: pointer to the HW structure
 
 
2602 *
2603 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2604 *
2605 **/
2606s32 igb_set_eee_i354(struct e1000_hw *hw)
2607{
2608	struct e1000_phy_info *phy = &hw->phy;
2609	s32 ret_val = 0;
2610	u16 phy_data;
2611
2612	if ((hw->phy.media_type != e1000_media_type_copper) ||
2613	    (phy->id != M88E1543_E_PHY_ID))
 
2614		goto out;
2615
2616	if (!hw->dev_spec._82575.eee_disable) {
2617		/* Switch to PHY page 18. */
2618		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2619		if (ret_val)
2620			goto out;
2621
2622		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2623					    &phy_data);
2624		if (ret_val)
2625			goto out;
2626
2627		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2628		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2629					     phy_data);
2630		if (ret_val)
2631			goto out;
2632
2633		/* Return the PHY to page 0. */
2634		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2635		if (ret_val)
2636			goto out;
2637
2638		/* Turn on EEE advertisement. */
2639		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2640					     E1000_EEE_ADV_DEV_I354,
2641					     &phy_data);
2642		if (ret_val)
2643			goto out;
2644
2645		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2646			    E1000_EEE_ADV_1000_SUPPORTED;
 
 
 
 
 
 
 
 
2647		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2648						E1000_EEE_ADV_DEV_I354,
2649						phy_data);
2650	} else {
2651		/* Turn off EEE advertisement. */
2652		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2653					     E1000_EEE_ADV_DEV_I354,
2654					     &phy_data);
2655		if (ret_val)
2656			goto out;
2657
2658		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2659			      E1000_EEE_ADV_1000_SUPPORTED);
2660		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2661					      E1000_EEE_ADV_DEV_I354,
2662					      phy_data);
2663	}
2664
2665out:
2666	return ret_val;
2667}
2668
2669/**
2670 *  igb_get_eee_status_i354 - Get EEE status
2671 *  @hw: pointer to the HW structure
2672 *  @status: EEE status
2673 *
2674 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2675 *  been received.
2676 **/
2677s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2678{
2679	struct e1000_phy_info *phy = &hw->phy;
2680	s32 ret_val = 0;
2681	u16 phy_data;
2682
2683	/* Check if EEE is supported on this device. */
2684	if ((hw->phy.media_type != e1000_media_type_copper) ||
2685	    (phy->id != M88E1543_E_PHY_ID))
 
2686		goto out;
2687
2688	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2689				     E1000_PCS_STATUS_DEV_I354,
2690				     &phy_data);
2691	if (ret_val)
2692		goto out;
2693
2694	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2695			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2696
2697out:
2698	return ret_val;
2699}
2700
 
2701static const u8 e1000_emc_temp_data[4] = {
2702	E1000_EMC_INTERNAL_DATA,
2703	E1000_EMC_DIODE1_DATA,
2704	E1000_EMC_DIODE2_DATA,
2705	E1000_EMC_DIODE3_DATA
2706};
2707static const u8 e1000_emc_therm_limit[4] = {
2708	E1000_EMC_INTERNAL_THERM_LIMIT,
2709	E1000_EMC_DIODE1_THERM_LIMIT,
2710	E1000_EMC_DIODE2_THERM_LIMIT,
2711	E1000_EMC_DIODE3_THERM_LIMIT
2712};
2713
2714#ifdef CONFIG_IGB_HWMON
2715/**
2716 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2717 *  @hw: pointer to hardware structure
2718 *
2719 *  Updates the temperatures in mac.thermal_sensor_data
2720 **/
2721static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2722{
2723	s32 status = E1000_SUCCESS;
2724	u16 ets_offset;
2725	u16 ets_cfg;
2726	u16 ets_sensor;
2727	u8  num_sensors;
2728	u8  sensor_index;
2729	u8  sensor_location;
2730	u8  i;
2731	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2732
2733	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2734		return E1000_NOT_IMPLEMENTED;
2735
2736	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2737
2738	/* Return the internal sensor only if ETS is unsupported */
2739	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2740	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2741		return status;
2742
2743	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2744	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2745	    != NVM_ETS_TYPE_EMC)
2746		return E1000_NOT_IMPLEMENTED;
2747
2748	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2749	if (num_sensors > E1000_MAX_SENSORS)
2750		num_sensors = E1000_MAX_SENSORS;
2751
2752	for (i = 1; i < num_sensors; i++) {
2753		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2754		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2755				NVM_ETS_DATA_INDEX_SHIFT);
2756		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2757				   NVM_ETS_DATA_LOC_SHIFT);
2758
2759		if (sensor_location != 0)
2760			hw->phy.ops.read_i2c_byte(hw,
2761					e1000_emc_temp_data[sensor_index],
2762					E1000_I2C_THERMAL_SENSOR_ADDR,
2763					&data->sensor[i].temp);
2764	}
2765	return status;
2766}
2767
2768/**
2769 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2770 *  @hw: pointer to hardware structure
2771 *
2772 *  Sets the thermal sensor thresholds according to the NVM map
2773 *  and save off the threshold and location values into mac.thermal_sensor_data
2774 **/
2775static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2776{
2777	s32 status = E1000_SUCCESS;
2778	u16 ets_offset;
2779	u16 ets_cfg;
2780	u16 ets_sensor;
2781	u8  low_thresh_delta;
2782	u8  num_sensors;
2783	u8  sensor_index;
2784	u8  sensor_location;
2785	u8  therm_limit;
2786	u8  i;
2787	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2788
2789	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2790		return E1000_NOT_IMPLEMENTED;
2791
2792	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2793
2794	data->sensor[0].location = 0x1;
2795	data->sensor[0].caution_thresh =
2796		(rd32(E1000_THHIGHTC) & 0xFF);
2797	data->sensor[0].max_op_thresh =
2798		(rd32(E1000_THLOWTC) & 0xFF);
2799
2800	/* Return the internal sensor only if ETS is unsupported */
2801	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2802	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2803		return status;
2804
2805	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2806	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2807	    != NVM_ETS_TYPE_EMC)
2808		return E1000_NOT_IMPLEMENTED;
2809
2810	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2811			    NVM_ETS_LTHRES_DELTA_SHIFT);
2812	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2813
2814	for (i = 1; i <= num_sensors; i++) {
2815		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2816		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2817				NVM_ETS_DATA_INDEX_SHIFT);
2818		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2819				   NVM_ETS_DATA_LOC_SHIFT);
2820		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2821
2822		hw->phy.ops.write_i2c_byte(hw,
2823			e1000_emc_therm_limit[sensor_index],
2824			E1000_I2C_THERMAL_SENSOR_ADDR,
2825			therm_limit);
2826
2827		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2828			data->sensor[i].location = sensor_location;
2829			data->sensor[i].caution_thresh = therm_limit;
2830			data->sensor[i].max_op_thresh = therm_limit -
2831							low_thresh_delta;
2832		}
2833	}
2834	return status;
2835}
2836
2837#endif
2838static struct e1000_mac_operations e1000_mac_ops_82575 = {
2839	.init_hw              = igb_init_hw_82575,
2840	.check_for_link       = igb_check_for_link_82575,
2841	.rar_set              = igb_rar_set,
2842	.read_mac_addr        = igb_read_mac_addr_82575,
2843	.get_speed_and_duplex = igb_get_link_up_info_82575,
2844#ifdef CONFIG_IGB_HWMON
2845	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2846	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2847#endif
2848};
2849
2850static struct e1000_phy_operations e1000_phy_ops_82575 = {
2851	.acquire              = igb_acquire_phy_82575,
2852	.get_cfg_done         = igb_get_cfg_done_82575,
2853	.release              = igb_release_phy_82575,
2854	.write_i2c_byte       = igb_write_i2c_byte,
2855	.read_i2c_byte        = igb_read_i2c_byte,
2856};
2857
2858static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2859	.acquire              = igb_acquire_nvm_82575,
2860	.read                 = igb_read_nvm_eerd,
2861	.release              = igb_release_nvm_82575,
2862	.write                = igb_write_nvm_spi,
2863};
2864
2865const struct e1000_info e1000_82575_info = {
2866	.get_invariants = igb_get_invariants_82575,
2867	.mac_ops = &e1000_mac_ops_82575,
2868	.phy_ops = &e1000_phy_ops_82575,
2869	.nvm_ops = &e1000_nvm_ops_82575,
2870};
2871