Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/bitfield.h>
   5#include <linux/delay.h>
   6#include "i40e_alloc.h"
   7#include "i40e_prototype.h"
   8
   9/**
  10 * i40e_init_nvm - Initialize NVM function pointers
  11 * @hw: pointer to the HW structure
  12 *
  13 * Setup the function pointers and the NVM info structure. Should be called
  14 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
  15 * Please notice that the NVM term is used here (& in all methods covered
  16 * in this file) as an equivalent of the FLASH part mapped into the SR.
  17 * We are accessing FLASH always thru the Shadow RAM.
  18 **/
  19int i40e_init_nvm(struct i40e_hw *hw)
  20{
  21	struct i40e_nvm_info *nvm = &hw->nvm;
  22	int ret_code = 0;
  23	u32 fla, gens;
  24	u8 sr_size;
  25
  26	/* The SR size is stored regardless of the nvm programming mode
  27	 * as the blank mode may be used in the factory line.
  28	 */
  29	gens = rd32(hw, I40E_GLNVM_GENS);
  30	sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
 
  31	/* Switching to words (sr_size contains power of 2KB) */
  32	nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
  33
  34	/* Check if we are in the normal or blank NVM programming mode */
  35	fla = rd32(hw, I40E_GLNVM_FLA);
  36	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
  37		/* Max NVM timeout */
  38		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
  39		nvm->blank_nvm_mode = false;
  40	} else { /* Blank programming mode */
  41		nvm->blank_nvm_mode = true;
  42		ret_code = -EIO;
  43		i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
  44	}
  45
  46	return ret_code;
  47}
  48
  49/**
  50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
  51 * @hw: pointer to the HW structure
  52 * @access: NVM access type (read or write)
  53 *
  54 * This function will request NVM ownership for reading
  55 * via the proper Admin Command.
  56 **/
  57int i40e_acquire_nvm(struct i40e_hw *hw,
  58		     enum i40e_aq_resource_access_type access)
  59{
 
  60	u64 gtime, timeout;
  61	u64 time_left = 0;
  62	int ret_code = 0;
  63
  64	if (hw->nvm.blank_nvm_mode)
  65		goto i40e_i40e_acquire_nvm_exit;
  66
  67	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
  68					    0, &time_left, NULL);
  69	/* Reading the Global Device Timer */
  70	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  71
  72	/* Store the timeout */
  73	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
  74
  75	if (ret_code)
  76		i40e_debug(hw, I40E_DEBUG_NVM,
  77			   "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
  78			   access, time_left, ret_code, hw->aq.asq_last_status);
  79
  80	if (ret_code && time_left) {
 
  81		/* Poll until the current NVM owner timeouts */
  82		timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
  83		while ((gtime < timeout) && time_left) {
  84			usleep_range(10000, 20000);
  85			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
  86			ret_code = i40e_aq_request_resource(hw,
  87							I40E_NVM_RESOURCE_ID,
  88							access, 0, &time_left,
  89							NULL);
  90			if (!ret_code) {
  91				hw->nvm.hw_semaphore_timeout =
  92					    I40E_MS_TO_GTIME(time_left) + gtime;
  93				break;
  94			}
 
  95		}
  96		if (ret_code) {
  97			hw->nvm.hw_semaphore_timeout = 0;
  98			i40e_debug(hw, I40E_DEBUG_NVM,
  99				   "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
 100				   time_left, ret_code, hw->aq.asq_last_status);
 
 101		}
 102	}
 103
 104i40e_i40e_acquire_nvm_exit:
 105	return ret_code;
 106}
 107
 108/**
 109 * i40e_release_nvm - Generic request for releasing the NVM ownership
 110 * @hw: pointer to the HW structure
 111 *
 112 * This function will release NVM resource via the proper Admin Command.
 113 **/
 114void i40e_release_nvm(struct i40e_hw *hw)
 115{
 116	u32 total_delay = 0;
 117	int ret_code = 0;
 118
 119	if (hw->nvm.blank_nvm_mode)
 120		return;
 121
 122	ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 123
 124	/* there are some rare cases when trying to release the resource
 125	 * results in an admin Q timeout, so handle them correctly
 126	 */
 127	while ((ret_code == -EIO) &&
 128	       (total_delay < hw->aq.asq_cmd_timeout)) {
 129		usleep_range(1000, 2000);
 130		ret_code = i40e_aq_release_resource(hw,
 131						    I40E_NVM_RESOURCE_ID,
 132						    0, NULL);
 133		total_delay++;
 134	}
 135}
 136
 137/**
 138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
 139 * @hw: pointer to the HW structure
 140 *
 141 * Polls the SRCTL Shadow RAM register done bit.
 142 **/
 143static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
 144{
 145	int ret_code = -EIO;
 146	u32 srctl, wait_cnt;
 147
 148	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
 149	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
 150		srctl = rd32(hw, I40E_GLNVM_SRCTL);
 151		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
 152			ret_code = 0;
 153			break;
 154		}
 155		udelay(5);
 156	}
 157	if (ret_code == -EIO)
 158		i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
 159	return ret_code;
 160}
 161
 162/**
 163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
 164 * @hw: pointer to the HW structure
 165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 166 * @data: word read from the Shadow RAM
 167 *
 168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
 169 **/
 170static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
 171				    u16 *data)
 172{
 173	int ret_code = -EIO;
 174	u32 sr_reg;
 175
 176	if (offset >= hw->nvm.sr_size) {
 177		i40e_debug(hw, I40E_DEBUG_NVM,
 178			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 179			   offset, hw->nvm.sr_size);
 180		ret_code = -EINVAL;
 181		goto read_nvm_exit;
 182	}
 183
 184	/* Poll the done bit first */
 185	ret_code = i40e_poll_sr_srctl_done_bit(hw);
 186	if (!ret_code) {
 187		/* Write the address and start reading */
 188		sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
 189			 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
 190		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
 191
 192		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
 193		ret_code = i40e_poll_sr_srctl_done_bit(hw);
 194		if (!ret_code) {
 195			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
 196			*data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
 197					  sr_reg);
 
 198		}
 199	}
 200	if (ret_code)
 201		i40e_debug(hw, I40E_DEBUG_NVM,
 202			   "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
 203			   offset);
 204
 205read_nvm_exit:
 206	return ret_code;
 207}
 208
 209/**
 210 * i40e_read_nvm_aq - Read Shadow RAM.
 211 * @hw: pointer to the HW structure.
 212 * @module_pointer: module pointer location in words from the NVM beginning
 213 * @offset: offset in words from module start
 214 * @words: number of words to read
 215 * @data: buffer with words to read to the Shadow RAM
 216 * @last_command: tells the AdminQ that this is the last command
 217 *
 218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
 219 **/
 220static int i40e_read_nvm_aq(struct i40e_hw *hw,
 221			    u8 module_pointer, u32 offset,
 222			    u16 words, void *data,
 223			    bool last_command)
 224{
 225	struct i40e_asq_cmd_details cmd_details;
 226	int ret_code = -EIO;
 227
 228	memset(&cmd_details, 0, sizeof(cmd_details));
 229	cmd_details.wb_desc = &hw->nvm_wb_desc;
 230
 231	/* Here we are checking the SR limit only for the flat memory model.
 232	 * We cannot do it for the module-based model, as we did not acquire
 233	 * the NVM resource yet (we cannot get the module pointer value).
 234	 * Firmware will check the module-based model.
 235	 */
 236	if ((offset + words) > hw->nvm.sr_size)
 237		i40e_debug(hw, I40E_DEBUG_NVM,
 238			   "NVM read error: offset %d beyond Shadow RAM limit %d\n",
 239			   (offset + words), hw->nvm.sr_size);
 240	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 241		/* We can read only up to 4KB (one sector), in one AQ write */
 242		i40e_debug(hw, I40E_DEBUG_NVM,
 243			   "NVM read fail error: tried to read %d words, limit is %d.\n",
 244			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 245	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 246		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 247		/* A single read cannot spread over two sectors */
 248		i40e_debug(hw, I40E_DEBUG_NVM,
 249			   "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
 250			   offset, words);
 251	else
 252		ret_code = i40e_aq_read_nvm(hw, module_pointer,
 253					    2 * offset,  /*bytes*/
 254					    2 * words,   /*bytes*/
 255					    data, last_command, &cmd_details);
 256
 257	return ret_code;
 258}
 259
 260/**
 261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
 262 * @hw: pointer to the HW structure
 263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 264 * @data: word read from the Shadow RAM
 265 *
 266 * Reads one 16 bit word from the Shadow RAM using the AdminQ
 267 **/
 268static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
 269				 u16 *data)
 270{
 271	int ret_code = -EIO;
 272
 273	ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
 274	*data = le16_to_cpu(*(__le16 *)data);
 275
 276	return ret_code;
 277}
 278
 279/**
 280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
 281 * @hw: pointer to the HW structure
 282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 283 * @data: word read from the Shadow RAM
 284 *
 285 * Reads one 16 bit word from the Shadow RAM.
 286 *
 287 * Do not use this function except in cases where the nvm lock is already
 288 * taken via i40e_acquire_nvm().
 289 **/
 290static int __i40e_read_nvm_word(struct i40e_hw *hw,
 291				u16 offset, u16 *data)
 292{
 293	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 294		return i40e_read_nvm_word_aq(hw, offset, data);
 295
 296	return i40e_read_nvm_word_srctl(hw, offset, data);
 297}
 298
 299/**
 300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
 301 * @hw: pointer to the HW structure
 302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
 303 * @data: word read from the Shadow RAM
 304 *
 305 * Reads one 16 bit word from the Shadow RAM.
 306 **/
 307int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
 308		       u16 *data)
 309{
 310	int ret_code = 0;
 311
 312	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 313		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 314	if (ret_code)
 315		return ret_code;
 316
 317	ret_code = __i40e_read_nvm_word(hw, offset, data);
 318
 319	if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
 320		i40e_release_nvm(hw);
 321
 322	return ret_code;
 323}
 324
 325/**
 326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
 327 * @hw: Pointer to the HW structure
 328 * @module_ptr: Pointer to module in words with respect to NVM beginning
 329 * @module_offset: Offset in words from module start
 330 * @data_offset: Offset in words from reading data area start
 331 * @words_data_size: Words to read from NVM
 332 * @data_ptr: Pointer to memory location where resulting buffer will be stored
 333 **/
 334int i40e_read_nvm_module_data(struct i40e_hw *hw,
 335			      u8 module_ptr,
 336			      u16 module_offset,
 337			      u16 data_offset,
 338			      u16 words_data_size,
 339			      u16 *data_ptr)
 340{
 341	u16 specific_ptr = 0;
 342	u16 ptr_value = 0;
 343	u32 offset = 0;
 344	int status;
 345
 346	if (module_ptr != 0) {
 347		status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
 348		if (status) {
 349			i40e_debug(hw, I40E_DEBUG_ALL,
 350				   "Reading nvm word failed.Error code: %d.\n",
 351				   status);
 352			return -EIO;
 353		}
 354	}
 355#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
 356#define I40E_NVM_INVALID_VAL 0xFFFF
 357
 358	/* Pointer not initialized */
 359	if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
 360	    ptr_value == I40E_NVM_INVALID_VAL) {
 361		i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
 362		return -EINVAL;
 363	}
 364
 365	/* Check whether the module is in SR mapped area or outside */
 366	if (ptr_value & I40E_PTR_TYPE) {
 367		/* Pointer points outside of the Shared RAM mapped area */
 368		i40e_debug(hw, I40E_DEBUG_ALL,
 369			   "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
 370
 371		return -EINVAL;
 372	} else {
 373		/* Read from the Shadow RAM */
 374
 375		status = i40e_read_nvm_word(hw, ptr_value + module_offset,
 376					    &specific_ptr);
 377		if (status) {
 378			i40e_debug(hw, I40E_DEBUG_ALL,
 379				   "Reading nvm word failed.Error code: %d.\n",
 380				   status);
 381			return -EIO;
 382		}
 383
 384		offset = ptr_value + module_offset + specific_ptr +
 385			data_offset;
 386
 387		status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
 388					      data_ptr);
 389		if (status) {
 390			i40e_debug(hw, I40E_DEBUG_ALL,
 391				   "Reading nvm buffer failed.Error code: %d.\n",
 392				   status);
 393		}
 394	}
 395
 396	return status;
 397}
 398
 399/**
 400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
 401 * @hw: pointer to the HW structure
 402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 403 * @words: (in) number of words to read; (out) number of words actually read
 404 * @data: words read from the Shadow RAM
 405 *
 406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 407 * method. The buffer read is preceded by the NVM ownership take
 408 * and followed by the release.
 409 **/
 410static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
 411				      u16 *words, u16 *data)
 412{
 413	int ret_code = 0;
 414	u16 index, word;
 415
 416	/* Loop thru the selected region */
 417	for (word = 0; word < *words; word++) {
 418		index = offset + word;
 419		ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
 420		if (ret_code)
 421			break;
 422	}
 423
 424	/* Update the number of words read from the Shadow RAM */
 425	*words = word;
 426
 427	return ret_code;
 428}
 429
 430/**
 431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
 432 * @hw: pointer to the HW structure
 433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 434 * @words: (in) number of words to read; (out) number of words actually read
 435 * @data: words read from the Shadow RAM
 436 *
 437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
 438 * method. The buffer read is preceded by the NVM ownership take
 439 * and followed by the release.
 440 **/
 441static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
 442				   u16 *words, u16 *data)
 443{
 444	bool last_cmd = false;
 445	u16 words_read = 0;
 446	u16 read_size;
 447	int ret_code;
 448	u16 i = 0;
 449
 450	do {
 451		/* Calculate number of bytes we should read in this step.
 452		 * FVL AQ do not allow to read more than one page at a time or
 453		 * to cross page boundaries.
 454		 */
 455		if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
 456			read_size = min(*words,
 457					(u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
 458				      (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
 459		else
 460			read_size = min((*words - words_read),
 461					I40E_SR_SECTOR_SIZE_IN_WORDS);
 462
 463		/* Check if this is last command, if so set proper flag */
 464		if ((words_read + read_size) >= *words)
 465			last_cmd = true;
 466
 467		ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
 468					    data + words_read, last_cmd);
 469		if (ret_code)
 470			goto read_nvm_buffer_aq_exit;
 471
 472		/* Increment counter for words already read and move offset to
 473		 * new read location
 474		 */
 475		words_read += read_size;
 476		offset += read_size;
 477	} while (words_read < *words);
 478
 479	for (i = 0; i < *words; i++)
 480		data[i] = le16_to_cpu(((__le16 *)data)[i]);
 481
 482read_nvm_buffer_aq_exit:
 483	*words = words_read;
 484	return ret_code;
 485}
 486
 487/**
 488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
 489 * @hw: pointer to the HW structure
 490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 491 * @words: (in) number of words to read; (out) number of words actually read
 492 * @data: words read from the Shadow RAM
 493 *
 494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 495 * method.
 496 **/
 497static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
 498				  u16 offset, u16 *words,
 499				  u16 *data)
 500{
 501	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
 502		return i40e_read_nvm_buffer_aq(hw, offset, words, data);
 503
 504	return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 505}
 506
 507/**
 508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
 509 * @hw: pointer to the HW structure
 510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
 511 * @words: (in) number of words to read; (out) number of words actually read
 512 * @data: words read from the Shadow RAM
 513 *
 514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
 515 * method. The buffer read is preceded by the NVM ownership take
 516 * and followed by the release.
 517 **/
 518int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
 519			 u16 *words, u16 *data)
 520{
 521	int ret_code = 0;
 522
 523	if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
 524		ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 525		if (!ret_code) {
 526			ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
 527							   data);
 528			i40e_release_nvm(hw);
 529		}
 530	} else {
 531		ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
 532	}
 533
 534	return ret_code;
 535}
 536
 537/**
 538 * i40e_write_nvm_aq - Writes Shadow RAM.
 539 * @hw: pointer to the HW structure.
 540 * @module_pointer: module pointer location in words from the NVM beginning
 541 * @offset: offset in words from module start
 542 * @words: number of words to write
 543 * @data: buffer with words to write to the Shadow RAM
 544 * @last_command: tells the AdminQ that this is the last command
 545 *
 546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
 547 **/
 548static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
 549			     u32 offset, u16 words, void *data,
 550			     bool last_command)
 551{
 552	struct i40e_asq_cmd_details cmd_details;
 553	int ret_code = -EIO;
 554
 555	memset(&cmd_details, 0, sizeof(cmd_details));
 556	cmd_details.wb_desc = &hw->nvm_wb_desc;
 557
 558	/* Here we are checking the SR limit only for the flat memory model.
 559	 * We cannot do it for the module-based model, as we did not acquire
 560	 * the NVM resource yet (we cannot get the module pointer value).
 561	 * Firmware will check the module-based model.
 562	 */
 563	if ((offset + words) > hw->nvm.sr_size)
 564		i40e_debug(hw, I40E_DEBUG_NVM,
 565			   "NVM write error: offset %d beyond Shadow RAM limit %d\n",
 566			   (offset + words), hw->nvm.sr_size);
 567	else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
 568		/* We can write only up to 4KB (one sector), in one AQ write */
 569		i40e_debug(hw, I40E_DEBUG_NVM,
 570			   "NVM write fail error: tried to write %d words, limit is %d.\n",
 571			   words, I40E_SR_SECTOR_SIZE_IN_WORDS);
 572	else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
 573		 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
 574		/* A single write cannot spread over two sectors */
 575		i40e_debug(hw, I40E_DEBUG_NVM,
 576			   "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
 577			   offset, words);
 578	else
 579		ret_code = i40e_aq_update_nvm(hw, module_pointer,
 580					      2 * offset,  /*bytes*/
 581					      2 * words,   /*bytes*/
 582					      data, last_command, 0,
 583					      &cmd_details);
 584
 585	return ret_code;
 586}
 587
 588/**
 589 * i40e_calc_nvm_checksum - Calculates and returns the checksum
 590 * @hw: pointer to hardware structure
 591 * @checksum: pointer to the checksum
 592 *
 593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
 594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
 595 * is customer specific and unknown. Therefore, this function skips all maximum
 596 * possible size of VPD (1kB).
 597 **/
 598static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
 599				  u16 *checksum)
 600{
 601	struct i40e_virt_mem vmem;
 602	u16 pcie_alt_module = 0;
 603	u16 checksum_local = 0;
 604	u16 vpd_module = 0;
 605	int ret_code;
 606	u16 *data;
 607	u16 i = 0;
 608
 609	ret_code = i40e_allocate_virt_mem(hw, &vmem,
 610				    I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
 611	if (ret_code)
 612		goto i40e_calc_nvm_checksum_exit;
 613	data = (u16 *)vmem.va;
 614
 615	/* read pointer to VPD area */
 616	ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
 617	if (ret_code) {
 618		ret_code = -EIO;
 619		goto i40e_calc_nvm_checksum_exit;
 620	}
 621
 622	/* read pointer to PCIe Alt Auto-load module */
 623	ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
 624					&pcie_alt_module);
 625	if (ret_code) {
 626		ret_code = -EIO;
 627		goto i40e_calc_nvm_checksum_exit;
 628	}
 629
 630	/* Calculate SW checksum that covers the whole 64kB shadow RAM
 631	 * except the VPD and PCIe ALT Auto-load modules
 632	 */
 633	for (i = 0; i < hw->nvm.sr_size; i++) {
 634		/* Read SR page */
 635		if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
 636			u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
 637
 638			ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
 639			if (ret_code) {
 640				ret_code = -EIO;
 641				goto i40e_calc_nvm_checksum_exit;
 642			}
 643		}
 644
 645		/* Skip Checksum word */
 646		if (i == I40E_SR_SW_CHECKSUM_WORD)
 647			continue;
 648		/* Skip VPD module (convert byte size to word count) */
 649		if ((i >= (u32)vpd_module) &&
 650		    (i < ((u32)vpd_module +
 651		     (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
 652			continue;
 653		}
 654		/* Skip PCIe ALT module (convert byte size to word count) */
 655		if ((i >= (u32)pcie_alt_module) &&
 656		    (i < ((u32)pcie_alt_module +
 657		     (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
 658			continue;
 659		}
 660
 661		checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
 
 
 
 
 
 662	}
 663
 664	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
 665
 666i40e_calc_nvm_checksum_exit:
 667	i40e_free_virt_mem(hw, &vmem);
 668	return ret_code;
 669}
 670
 671/**
 672 * i40e_update_nvm_checksum - Updates the NVM checksum
 673 * @hw: pointer to hardware structure
 674 *
 675 * NVM ownership must be acquired before calling this function and released
 676 * on ARQ completion event reception by caller.
 677 * This function will commit SR to NVM.
 678 **/
 679int i40e_update_nvm_checksum(struct i40e_hw *hw)
 680{
 681	__le16 le_sum;
 682	int ret_code;
 683	u16 checksum;
 684
 685	ret_code = i40e_calc_nvm_checksum(hw, &checksum);
 686	if (!ret_code) {
 687		le_sum = cpu_to_le16(checksum);
 688		ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
 689					     1, &le_sum, true);
 690	}
 691
 692	return ret_code;
 693}
 694
 695/**
 696 * i40e_validate_nvm_checksum - Validate EEPROM checksum
 697 * @hw: pointer to hardware structure
 698 * @checksum: calculated checksum
 699 *
 700 * Performs checksum calculation and validates the NVM SW checksum. If the
 701 * caller does not need checksum, the value can be NULL.
 702 **/
 703int i40e_validate_nvm_checksum(struct i40e_hw *hw,
 704			       u16 *checksum)
 705{
 706	u16 checksum_local = 0;
 707	u16 checksum_sr = 0;
 708	int ret_code = 0;
 709
 710	/* We must acquire the NVM lock in order to correctly synchronize the
 711	 * NVM accesses across multiple PFs. Without doing so it is possible
 712	 * for one of the PFs to read invalid data potentially indicating that
 713	 * the checksum is invalid.
 714	 */
 715	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
 716	if (ret_code)
 717		return ret_code;
 
 718	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 719	__i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
 720	i40e_release_nvm(hw);
 721	if (ret_code)
 722		return ret_code;
 
 
 
 
 
 723
 724	/* Verify read checksum from EEPROM is the same as
 725	 * calculated checksum
 726	 */
 727	if (checksum_local != checksum_sr)
 728		ret_code = -EIO;
 729
 730	/* If the user cares, return the calculated checksum */
 731	if (checksum)
 732		*checksum = checksum_local;
 733
 734	return ret_code;
 735}
 736
 737static u8 i40e_nvmupd_get_module(u32 val)
 738{
 739	return (u8)(val & I40E_NVM_MOD_PNT_MASK);
 740}
 741static inline u8 i40e_nvmupd_get_transaction(u32 val)
 742{
 743	return FIELD_GET(I40E_NVM_TRANS_MASK, val);
 744}
 745
 746static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
 747{
 748	return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
 749}
 750
 751static const char * const i40e_nvm_update_state_str[] = {
 752	"I40E_NVMUPD_INVALID",
 753	"I40E_NVMUPD_READ_CON",
 754	"I40E_NVMUPD_READ_SNT",
 755	"I40E_NVMUPD_READ_LCB",
 756	"I40E_NVMUPD_READ_SA",
 757	"I40E_NVMUPD_WRITE_ERA",
 758	"I40E_NVMUPD_WRITE_CON",
 759	"I40E_NVMUPD_WRITE_SNT",
 760	"I40E_NVMUPD_WRITE_LCB",
 761	"I40E_NVMUPD_WRITE_SA",
 762	"I40E_NVMUPD_CSUM_CON",
 763	"I40E_NVMUPD_CSUM_SA",
 764	"I40E_NVMUPD_CSUM_LCB",
 765	"I40E_NVMUPD_STATUS",
 766	"I40E_NVMUPD_EXEC_AQ",
 767	"I40E_NVMUPD_GET_AQ_RESULT",
 768	"I40E_NVMUPD_GET_AQ_EVENT",
 769};
 770
 771/**
 772 * i40e_nvmupd_validate_command - Validate given command
 773 * @hw: pointer to hardware structure
 774 * @cmd: pointer to nvm update command buffer
 775 * @perrno: pointer to return error code
 776 *
 777 * Return one of the valid command types or I40E_NVMUPD_INVALID
 778 **/
 779static enum i40e_nvmupd_cmd
 780i40e_nvmupd_validate_command(struct i40e_hw *hw, struct i40e_nvm_access *cmd,
 781			     int *perrno)
 782{
 783	enum i40e_nvmupd_cmd upd_cmd;
 784	u8 module, transaction;
 785
 786	/* anything that doesn't match a recognized case is an error */
 787	upd_cmd = I40E_NVMUPD_INVALID;
 788
 789	transaction = i40e_nvmupd_get_transaction(cmd->config);
 790	module = i40e_nvmupd_get_module(cmd->config);
 791
 792	/* limits on data size */
 793	if (cmd->data_size < 1 || cmd->data_size > I40E_NVMUPD_MAX_DATA) {
 794		i40e_debug(hw, I40E_DEBUG_NVM,
 795			   "%s data_size %d\n", __func__, cmd->data_size);
 796		*perrno = -EFAULT;
 797		return I40E_NVMUPD_INVALID;
 798	}
 799
 800	switch (cmd->command) {
 801	case I40E_NVM_READ:
 802		switch (transaction) {
 803		case I40E_NVM_CON:
 804			upd_cmd = I40E_NVMUPD_READ_CON;
 805			break;
 806		case I40E_NVM_SNT:
 807			upd_cmd = I40E_NVMUPD_READ_SNT;
 808			break;
 809		case I40E_NVM_LCB:
 810			upd_cmd = I40E_NVMUPD_READ_LCB;
 811			break;
 812		case I40E_NVM_SA:
 813			upd_cmd = I40E_NVMUPD_READ_SA;
 814			break;
 815		case I40E_NVM_EXEC:
 816			if (module == 0xf)
 817				upd_cmd = I40E_NVMUPD_STATUS;
 818			else if (module == 0)
 819				upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
 820			break;
 821		case I40E_NVM_AQE:
 822			upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
 823			break;
 824		}
 825		break;
 826
 827	case I40E_NVM_WRITE:
 828		switch (transaction) {
 829		case I40E_NVM_CON:
 830			upd_cmd = I40E_NVMUPD_WRITE_CON;
 831			break;
 832		case I40E_NVM_SNT:
 833			upd_cmd = I40E_NVMUPD_WRITE_SNT;
 834			break;
 835		case I40E_NVM_LCB:
 836			upd_cmd = I40E_NVMUPD_WRITE_LCB;
 837			break;
 838		case I40E_NVM_SA:
 839			upd_cmd = I40E_NVMUPD_WRITE_SA;
 840			break;
 841		case I40E_NVM_ERA:
 842			upd_cmd = I40E_NVMUPD_WRITE_ERA;
 843			break;
 844		case I40E_NVM_CSUM:
 845			upd_cmd = I40E_NVMUPD_CSUM_CON;
 846			break;
 847		case (I40E_NVM_CSUM | I40E_NVM_SA):
 848			upd_cmd = I40E_NVMUPD_CSUM_SA;
 849			break;
 850		case (I40E_NVM_CSUM | I40E_NVM_LCB):
 851			upd_cmd = I40E_NVMUPD_CSUM_LCB;
 852			break;
 853		case I40E_NVM_EXEC:
 854			if (module == 0)
 855				upd_cmd = I40E_NVMUPD_EXEC_AQ;
 856			break;
 857		}
 858		break;
 859	}
 860
 861	return upd_cmd;
 862}
 863
 864/**
 865 * i40e_nvmupd_nvm_erase - Erase an NVM module
 866 * @hw: pointer to hardware structure
 867 * @cmd: pointer to nvm update command buffer
 868 * @perrno: pointer to return error code
 869 *
 870 * module, offset, data_size and data are in cmd structure
 871 **/
 872static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
 873				 struct i40e_nvm_access *cmd,
 874				 int *perrno)
 875{
 876	struct i40e_asq_cmd_details cmd_details;
 877	u8 module, transaction;
 878	int status = 0;
 879	bool last;
 880
 881	transaction = i40e_nvmupd_get_transaction(cmd->config);
 882	module = i40e_nvmupd_get_module(cmd->config);
 883	last = (transaction & I40E_NVM_LCB);
 884
 885	memset(&cmd_details, 0, sizeof(cmd_details));
 886	cmd_details.wb_desc = &hw->nvm_wb_desc;
 887
 888	status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
 889				   last, &cmd_details);
 890	if (status) {
 891		i40e_debug(hw, I40E_DEBUG_NVM,
 892			   "%s mod 0x%x  off 0x%x len 0x%x\n",
 893			   __func__, module, cmd->offset, cmd->data_size);
 894		i40e_debug(hw, I40E_DEBUG_NVM,
 895			   "%s status %d aq %d\n",
 896			   __func__, status, hw->aq.asq_last_status);
 897		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 898	}
 899
 900	return status;
 901}
 902
 903/**
 904 * i40e_nvmupd_nvm_write - Write NVM
 905 * @hw: pointer to hardware structure
 906 * @cmd: pointer to nvm update command buffer
 907 * @bytes: pointer to the data buffer
 908 * @perrno: pointer to return error code
 909 *
 910 * module, offset, data_size and data are in cmd structure
 911 **/
 912static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
 913				 struct i40e_nvm_access *cmd,
 914				 u8 *bytes, int *perrno)
 915{
 916	struct i40e_asq_cmd_details cmd_details;
 917	u8 module, transaction;
 918	u8 preservation_flags;
 919	int status = 0;
 920	bool last;
 921
 922	transaction = i40e_nvmupd_get_transaction(cmd->config);
 923	module = i40e_nvmupd_get_module(cmd->config);
 924	last = (transaction & I40E_NVM_LCB);
 925	preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
 926
 927	memset(&cmd_details, 0, sizeof(cmd_details));
 928	cmd_details.wb_desc = &hw->nvm_wb_desc;
 929
 930	status = i40e_aq_update_nvm(hw, module, cmd->offset,
 931				    (u16)cmd->data_size, bytes, last,
 932				    preservation_flags, &cmd_details);
 933	if (status) {
 934		i40e_debug(hw, I40E_DEBUG_NVM,
 935			   "%s mod 0x%x off 0x%x len 0x%x\n",
 936			   __func__, module, cmd->offset, cmd->data_size);
 937		i40e_debug(hw, I40E_DEBUG_NVM,
 938			   "%s status %d aq %d\n",
 939			   __func__, status, hw->aq.asq_last_status);
 940		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 941	}
 942
 943	return status;
 944}
 945
 946/**
 947 * i40e_nvmupd_nvm_read - Read NVM
 948 * @hw: pointer to hardware structure
 949 * @cmd: pointer to nvm update command buffer
 950 * @bytes: pointer to the data buffer
 951 * @perrno: pointer to return error code
 952 *
 953 * cmd structure contains identifiers and data buffer
 954 **/
 955static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
 956				struct i40e_nvm_access *cmd,
 957				u8 *bytes, int *perrno)
 958{
 959	struct i40e_asq_cmd_details cmd_details;
 960	u8 module, transaction;
 961	int status;
 962	bool last;
 963
 964	transaction = i40e_nvmupd_get_transaction(cmd->config);
 965	module = i40e_nvmupd_get_module(cmd->config);
 966	last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
 967
 968	memset(&cmd_details, 0, sizeof(cmd_details));
 969	cmd_details.wb_desc = &hw->nvm_wb_desc;
 970
 971	status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
 972				  bytes, last, &cmd_details);
 973	if (status) {
 974		i40e_debug(hw, I40E_DEBUG_NVM,
 975			   "%s mod 0x%x  off 0x%x  len 0x%x\n",
 976			   __func__, module, cmd->offset, cmd->data_size);
 977		i40e_debug(hw, I40E_DEBUG_NVM,
 978			   "%s status %d aq %d\n",
 979			   __func__, status, hw->aq.asq_last_status);
 980		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
 981	}
 982
 983	return status;
 984}
 985
 986/**
 987 * i40e_nvmupd_exec_aq - Run an AQ command
 988 * @hw: pointer to hardware structure
 989 * @cmd: pointer to nvm update command buffer
 990 * @bytes: pointer to the data buffer
 991 * @perrno: pointer to return error code
 992 *
 993 * cmd structure contains identifiers and data buffer
 994 **/
 995static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
 996			       struct i40e_nvm_access *cmd,
 997			       u8 *bytes, int *perrno)
 998{
 999	struct i40e_asq_cmd_details cmd_details;
1000	struct i40e_aq_desc *aq_desc;
1001	u32 buff_size = 0;
1002	u8 *buff = NULL;
1003	u32 aq_desc_len;
1004	u32 aq_data_len;
1005	int status;
1006
1007	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1008	if (cmd->offset == 0xffff)
1009		return 0;
1010
1011	memset(&cmd_details, 0, sizeof(cmd_details));
1012	cmd_details.wb_desc = &hw->nvm_wb_desc;
1013
1014	aq_desc_len = sizeof(struct i40e_aq_desc);
1015	memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1016
1017	/* get the aq descriptor */
1018	if (cmd->data_size < aq_desc_len) {
1019		i40e_debug(hw, I40E_DEBUG_NVM,
1020			   "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1021			   cmd->data_size, aq_desc_len);
1022		*perrno = -EINVAL;
1023		return -EINVAL;
1024	}
1025	aq_desc = (struct i40e_aq_desc *)bytes;
1026
1027	/* if data buffer needed, make sure it's ready */
1028	aq_data_len = cmd->data_size - aq_desc_len;
1029	buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1030	if (buff_size) {
1031		if (!hw->nvm_buff.va) {
1032			status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1033							hw->aq.asq_buf_size);
1034			if (status)
1035				i40e_debug(hw, I40E_DEBUG_NVM,
1036					   "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1037					   status);
1038		}
1039
1040		if (hw->nvm_buff.va) {
1041			buff = hw->nvm_buff.va;
1042			memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1043		}
1044	}
1045
1046	if (cmd->offset)
1047		memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1048
1049	/* and away we go! */
1050	status = i40e_asq_send_command(hw, aq_desc, buff,
1051				       buff_size, &cmd_details);
1052	if (status) {
1053		i40e_debug(hw, I40E_DEBUG_NVM,
1054			   "%s err %pe aq_err %s\n",
1055			   __func__, ERR_PTR(status),
1056			   i40e_aq_str(hw, hw->aq.asq_last_status));
1057		*perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1058		return status;
1059	}
1060
1061	/* should we wait for a followup event? */
1062	if (cmd->offset) {
1063		hw->nvm_wait_opcode = cmd->offset;
1064		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1065	}
1066
1067	return status;
1068}
1069
1070/**
1071 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1072 * @hw: pointer to hardware structure
1073 * @cmd: pointer to nvm update command buffer
1074 * @bytes: pointer to the data buffer
1075 * @perrno: pointer to return error code
1076 *
1077 * cmd structure contains identifiers and data buffer
1078 **/
1079static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1080				     struct i40e_nvm_access *cmd,
1081				     u8 *bytes, int *perrno)
1082{
1083	u32 aq_total_len;
1084	u32 aq_desc_len;
1085	int remainder;
1086	u8 *buff;
1087
1088	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1089
1090	aq_desc_len = sizeof(struct i40e_aq_desc);
1091	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1092
1093	/* check offset range */
1094	if (cmd->offset > aq_total_len) {
1095		i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1096			   __func__, cmd->offset, aq_total_len);
1097		*perrno = -EINVAL;
1098		return -EINVAL;
1099	}
1100
1101	/* check copylength range */
1102	if (cmd->data_size > (aq_total_len - cmd->offset)) {
1103		int new_len = aq_total_len - cmd->offset;
1104
1105		i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1106			   __func__, cmd->data_size, new_len);
1107		cmd->data_size = new_len;
1108	}
1109
1110	remainder = cmd->data_size;
1111	if (cmd->offset < aq_desc_len) {
1112		u32 len = aq_desc_len - cmd->offset;
1113
1114		len = min(len, cmd->data_size);
1115		i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1116			   __func__, cmd->offset, cmd->offset + len);
1117
1118		buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1119		memcpy(bytes, buff, len);
1120
1121		bytes += len;
1122		remainder -= len;
1123		buff = hw->nvm_buff.va;
1124	} else {
1125		buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1126	}
1127
1128	if (remainder > 0) {
1129		int start_byte = buff - (u8 *)hw->nvm_buff.va;
1130
1131		i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1132			   __func__, start_byte, start_byte + remainder);
1133		memcpy(bytes, buff, remainder);
1134	}
1135
1136	return 0;
1137}
1138
1139/**
1140 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1141 * @hw: pointer to hardware structure
1142 * @cmd: pointer to nvm update command buffer
1143 * @bytes: pointer to the data buffer
1144 * @perrno: pointer to return error code
1145 *
1146 * cmd structure contains identifiers and data buffer
1147 **/
1148static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1149				    struct i40e_nvm_access *cmd,
1150				    u8 *bytes, int *perrno)
1151{
1152	u32 aq_total_len;
1153	u32 aq_desc_len;
1154
1155	i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1156
1157	aq_desc_len = sizeof(struct i40e_aq_desc);
1158	aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1159
1160	/* check copylength range */
1161	if (cmd->data_size > aq_total_len) {
1162		i40e_debug(hw, I40E_DEBUG_NVM,
1163			   "%s: copy length %d too big, trimming to %d\n",
1164			   __func__, cmd->data_size, aq_total_len);
1165		cmd->data_size = aq_total_len;
1166	}
1167
1168	memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1169
1170	return 0;
1171}
1172
1173/**
1174 * i40e_nvmupd_state_init - Handle NVM update state Init
1175 * @hw: pointer to hardware structure
1176 * @cmd: pointer to nvm update command buffer
1177 * @bytes: pointer to the data buffer
1178 * @perrno: pointer to return error code
1179 *
1180 * Process legitimate commands of the Init state and conditionally set next
1181 * state. Reject all other commands.
1182 **/
1183static int i40e_nvmupd_state_init(struct i40e_hw *hw,
1184				  struct i40e_nvm_access *cmd,
1185				  u8 *bytes, int *perrno)
1186{
1187	enum i40e_nvmupd_cmd upd_cmd;
1188	int status = 0;
1189
1190	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1191
1192	switch (upd_cmd) {
1193	case I40E_NVMUPD_READ_SA:
1194		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1195		if (status) {
1196			*perrno = i40e_aq_rc_to_posix(status,
1197						      hw->aq.asq_last_status);
1198		} else {
1199			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1200			i40e_release_nvm(hw);
1201		}
1202		break;
1203
1204	case I40E_NVMUPD_READ_SNT:
1205		status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
1206		if (status) {
1207			*perrno = i40e_aq_rc_to_posix(status,
1208						      hw->aq.asq_last_status);
1209		} else {
1210			status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1211			if (status)
1212				i40e_release_nvm(hw);
1213			else
1214				hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
1215		}
1216		break;
1217
1218	case I40E_NVMUPD_WRITE_ERA:
1219		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1220		if (status) {
1221			*perrno = i40e_aq_rc_to_posix(status,
1222						      hw->aq.asq_last_status);
1223		} else {
1224			status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
1225			if (status) {
1226				i40e_release_nvm(hw);
1227			} else {
1228				hw->nvm_release_on_done = true;
1229				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
1230				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1231			}
1232		}
1233		break;
1234
1235	case I40E_NVMUPD_WRITE_SA:
1236		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1237		if (status) {
1238			*perrno = i40e_aq_rc_to_posix(status,
1239						      hw->aq.asq_last_status);
1240		} else {
1241			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1242			if (status) {
1243				i40e_release_nvm(hw);
1244			} else {
1245				hw->nvm_release_on_done = true;
1246				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1247				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1248			}
1249		}
1250		break;
1251
1252	case I40E_NVMUPD_WRITE_SNT:
1253		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1254		if (status) {
1255			*perrno = i40e_aq_rc_to_posix(status,
1256						      hw->aq.asq_last_status);
1257		} else {
1258			status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1259			if (status) {
1260				i40e_release_nvm(hw);
1261			} else {
1262				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1263				hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1264			}
1265		}
1266		break;
1267
1268	case I40E_NVMUPD_CSUM_SA:
1269		status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1270		if (status) {
1271			*perrno = i40e_aq_rc_to_posix(status,
1272						      hw->aq.asq_last_status);
1273		} else {
1274			status = i40e_update_nvm_checksum(hw);
1275			if (status) {
1276				*perrno = hw->aq.asq_last_status ?
1277				   i40e_aq_rc_to_posix(status,
1278						       hw->aq.asq_last_status) :
1279				   -EIO;
1280				i40e_release_nvm(hw);
1281			} else {
1282				hw->nvm_release_on_done = true;
1283				hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1284				hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1285			}
1286		}
1287		break;
1288
1289	case I40E_NVMUPD_EXEC_AQ:
1290		status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1291		break;
1292
1293	case I40E_NVMUPD_GET_AQ_RESULT:
1294		status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1295		break;
1296
1297	case I40E_NVMUPD_GET_AQ_EVENT:
1298		status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1299		break;
1300
1301	default:
1302		i40e_debug(hw, I40E_DEBUG_NVM,
1303			   "NVMUPD: bad cmd %s in init state\n",
1304			   i40e_nvm_update_state_str[upd_cmd]);
1305		status = -EIO;
1306		*perrno = -ESRCH;
1307		break;
1308	}
1309	return status;
1310}
1311
1312/**
1313 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1314 * @hw: pointer to hardware structure
1315 * @cmd: pointer to nvm update command buffer
1316 * @bytes: pointer to the data buffer
1317 * @perrno: pointer to return error code
1318 *
1319 * NVM ownership is already held.  Process legitimate commands and set any
1320 * change in state; reject all other commands.
1321 **/
1322static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1323				     struct i40e_nvm_access *cmd,
1324				     u8 *bytes, int *perrno)
1325{
1326	enum i40e_nvmupd_cmd upd_cmd;
1327	int status = 0;
1328
1329	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1330
1331	switch (upd_cmd) {
1332	case I40E_NVMUPD_READ_SA:
1333	case I40E_NVMUPD_READ_CON:
1334		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1335		break;
1336
1337	case I40E_NVMUPD_READ_LCB:
1338		status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1339		i40e_release_nvm(hw);
1340		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1341		break;
1342
1343	default:
1344		i40e_debug(hw, I40E_DEBUG_NVM,
1345			   "NVMUPD: bad cmd %s in reading state.\n",
1346			   i40e_nvm_update_state_str[upd_cmd]);
1347		status = -EOPNOTSUPP;
1348		*perrno = -ESRCH;
1349		break;
1350	}
1351	return status;
1352}
1353
1354/**
1355 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1356 * @hw: pointer to hardware structure
1357 * @cmd: pointer to nvm update command buffer
1358 * @bytes: pointer to the data buffer
1359 * @perrno: pointer to return error code
1360 *
1361 * NVM ownership is already held.  Process legitimate commands and set any
1362 * change in state; reject all other commands
1363 **/
1364static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1365				     struct i40e_nvm_access *cmd,
1366				     u8 *bytes, int *perrno)
1367{
1368	enum i40e_nvmupd_cmd upd_cmd;
1369	bool retry_attempt = false;
1370	int status = 0;
1371
1372	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1373
1374retry:
1375	switch (upd_cmd) {
1376	case I40E_NVMUPD_WRITE_CON:
1377		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1378		if (!status) {
1379			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1380			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1381		}
1382		break;
1383
1384	case I40E_NVMUPD_WRITE_LCB:
1385		status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1386		if (status) {
1387			*perrno = hw->aq.asq_last_status ?
1388				   i40e_aq_rc_to_posix(status,
1389						       hw->aq.asq_last_status) :
1390				   -EIO;
1391			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1392		} else {
1393			hw->nvm_release_on_done = true;
1394			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1395			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1396		}
1397		break;
1398
1399	case I40E_NVMUPD_CSUM_CON:
1400		/* Assumes the caller has acquired the nvm */
1401		status = i40e_update_nvm_checksum(hw);
1402		if (status) {
1403			*perrno = hw->aq.asq_last_status ?
1404				   i40e_aq_rc_to_posix(status,
1405						       hw->aq.asq_last_status) :
1406				   -EIO;
1407			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1408		} else {
1409			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1410			hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1411		}
1412		break;
1413
1414	case I40E_NVMUPD_CSUM_LCB:
1415		/* Assumes the caller has acquired the nvm */
1416		status = i40e_update_nvm_checksum(hw);
1417		if (status) {
1418			*perrno = hw->aq.asq_last_status ?
1419				   i40e_aq_rc_to_posix(status,
1420						       hw->aq.asq_last_status) :
1421				   -EIO;
1422			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1423		} else {
1424			hw->nvm_release_on_done = true;
1425			hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1426			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1427		}
1428		break;
1429
1430	default:
1431		i40e_debug(hw, I40E_DEBUG_NVM,
1432			   "NVMUPD: bad cmd %s in writing state.\n",
1433			   i40e_nvm_update_state_str[upd_cmd]);
1434		status = -EOPNOTSUPP;
1435		*perrno = -ESRCH;
1436		break;
1437	}
1438
1439	/* In some circumstances, a multi-write transaction takes longer
1440	 * than the default 3 minute timeout on the write semaphore.  If
1441	 * the write failed with an EBUSY status, this is likely the problem,
1442	 * so here we try to reacquire the semaphore then retry the write.
1443	 * We only do one retry, then give up.
1444	 */
1445	if (status && hw->aq.asq_last_status == I40E_AQ_RC_EBUSY &&
1446	    !retry_attempt) {
1447		u32 old_asq_status = hw->aq.asq_last_status;
1448		int old_status = status;
1449		u32 gtime;
1450
1451		gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1452		if (gtime >= hw->nvm.hw_semaphore_timeout) {
1453			i40e_debug(hw, I40E_DEBUG_ALL,
1454				   "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1455				   gtime, hw->nvm.hw_semaphore_timeout);
1456			i40e_release_nvm(hw);
1457			status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1458			if (status) {
1459				i40e_debug(hw, I40E_DEBUG_ALL,
1460					   "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1461					   hw->aq.asq_last_status);
1462				status = old_status;
1463				hw->aq.asq_last_status = old_asq_status;
1464			} else {
1465				retry_attempt = true;
1466				goto retry;
1467			}
1468		}
1469	}
1470
1471	return status;
1472}
1473
1474/**
1475 * i40e_nvmupd_command - Process an NVM update command
1476 * @hw: pointer to hardware structure
1477 * @cmd: pointer to nvm update command
1478 * @bytes: pointer to the data buffer
1479 * @perrno: pointer to return error code
1480 *
1481 * Dispatches command depending on what update state is current
1482 **/
1483int i40e_nvmupd_command(struct i40e_hw *hw,
1484			struct i40e_nvm_access *cmd,
1485			u8 *bytes, int *perrno)
1486{
1487	enum i40e_nvmupd_cmd upd_cmd;
1488	int status;
1489
1490	/* assume success */
1491	*perrno = 0;
1492
1493	/* early check for status command and debug msgs */
1494	upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1495
1496	i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
1497		   i40e_nvm_update_state_str[upd_cmd],
1498		   hw->nvmupd_state,
1499		   hw->nvm_release_on_done, hw->nvm_wait_opcode,
1500		   cmd->command, cmd->config, cmd->offset, cmd->data_size);
1501
1502	if (upd_cmd == I40E_NVMUPD_INVALID) {
1503		*perrno = -EFAULT;
1504		i40e_debug(hw, I40E_DEBUG_NVM,
1505			   "i40e_nvmupd_validate_command returns %d errno %d\n",
1506			   upd_cmd, *perrno);
1507	}
1508
1509	/* a status request returns immediately rather than
1510	 * going into the state machine
1511	 */
1512	if (upd_cmd == I40E_NVMUPD_STATUS) {
1513		if (!cmd->data_size) {
1514			*perrno = -EFAULT;
1515			return -EINVAL;
1516		}
1517
1518		bytes[0] = hw->nvmupd_state;
1519
1520		if (cmd->data_size >= 4) {
1521			bytes[1] = 0;
1522			*((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
1523		}
1524
1525		/* Clear error status on read */
1526		if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
1527			hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1528
1529		return 0;
1530	}
1531
1532	/* Clear status even it is not read and log */
1533	if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
1534		i40e_debug(hw, I40E_DEBUG_NVM,
1535			   "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
1536		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1537	}
1538
1539	/* Acquire lock to prevent race condition where adminq_task
1540	 * can execute after i40e_nvmupd_nvm_read/write but before state
1541	 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
1542	 *
1543	 * During NVMUpdate, it is observed that lock could be held for
1544	 * ~5ms for most commands. However lock is held for ~60ms for
1545	 * NVMUPD_CSUM_LCB command.
1546	 */
1547	mutex_lock(&hw->aq.arq_mutex);
1548	switch (hw->nvmupd_state) {
1549	case I40E_NVMUPD_STATE_INIT:
1550		status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
1551		break;
1552
1553	case I40E_NVMUPD_STATE_READING:
1554		status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
1555		break;
1556
1557	case I40E_NVMUPD_STATE_WRITING:
1558		status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
1559		break;
1560
1561	case I40E_NVMUPD_STATE_INIT_WAIT:
1562	case I40E_NVMUPD_STATE_WRITE_WAIT:
1563		/* if we need to stop waiting for an event, clear
1564		 * the wait info and return before doing anything else
1565		 */
1566		if (cmd->offset == 0xffff) {
1567			i40e_nvmupd_clear_wait_state(hw);
1568			status = 0;
1569			break;
1570		}
1571
1572		status = -EBUSY;
1573		*perrno = -EBUSY;
1574		break;
1575
1576	default:
1577		/* invalid state, should never happen */
1578		i40e_debug(hw, I40E_DEBUG_NVM,
1579			   "NVMUPD: no such state %d\n", hw->nvmupd_state);
1580		status = -EOPNOTSUPP;
1581		*perrno = -ESRCH;
1582		break;
1583	}
1584
1585	mutex_unlock(&hw->aq.arq_mutex);
1586	return status;
1587}
1588
1589/**
1590 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1591 * @hw: pointer to the hardware structure
1592 **/
1593void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1594{
1595	i40e_debug(hw, I40E_DEBUG_NVM,
1596		   "NVMUPD: clearing wait on opcode 0x%04x\n",
1597		   hw->nvm_wait_opcode);
1598
1599	if (hw->nvm_release_on_done) {
1600		i40e_release_nvm(hw);
1601		hw->nvm_release_on_done = false;
1602	}
1603	hw->nvm_wait_opcode = 0;
1604
1605	if (hw->aq.arq_last_status) {
1606		hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1607		return;
1608	}
1609
1610	switch (hw->nvmupd_state) {
1611	case I40E_NVMUPD_STATE_INIT_WAIT:
1612		hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1613		break;
1614
1615	case I40E_NVMUPD_STATE_WRITE_WAIT:
1616		hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1617		break;
1618
1619	default:
1620		break;
1621	}
1622}
1623
1624/**
1625 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1626 * @hw: pointer to the hardware structure
1627 * @opcode: the event that just happened
1628 * @desc: AdminQ descriptor
1629 **/
1630void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1631				  struct i40e_aq_desc *desc)
1632{
1633	u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1634
1635	if (opcode == hw->nvm_wait_opcode) {
1636		memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1637		i40e_nvmupd_clear_wait_state(hw);
1638	}
1639}
v3.15
  1/*******************************************************************************
  2 *
  3 * Intel Ethernet Controller XL710 Family Linux Driver
  4 * Copyright(c) 2013 - 2014 Intel Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms and conditions of the GNU General Public License,
  8 * version 2, as published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along
 16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
 17 *
 18 * The full GNU General Public License is included in this distribution in
 19 * the file called "COPYING".
 20 *
 21 * Contact Information:
 22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 24 *
 25 ******************************************************************************/
 26
 
 
 
 27#include "i40e_prototype.h"
 28
 29/**
 30 * i40e_init_nvm_ops - Initialize NVM function pointers
 31 * @hw: pointer to the HW structure
 32 *
 33 * Setup the function pointers and the NVM info structure. Should be called
 34 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
 35 * Please notice that the NVM term is used here (& in all methods covered
 36 * in this file) as an equivalent of the FLASH part mapped into the SR.
 37 * We are accessing FLASH always thru the Shadow RAM.
 38 **/
 39i40e_status i40e_init_nvm(struct i40e_hw *hw)
 40{
 41	struct i40e_nvm_info *nvm = &hw->nvm;
 42	i40e_status ret_code = 0;
 43	u32 fla, gens;
 44	u8 sr_size;
 45
 46	/* The SR size is stored regardless of the nvm programming mode
 47	 * as the blank mode may be used in the factory line.
 48	 */
 49	gens = rd32(hw, I40E_GLNVM_GENS);
 50	sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
 51			   I40E_GLNVM_GENS_SR_SIZE_SHIFT);
 52	/* Switching to words (sr_size contains power of 2KB) */
 53	nvm->sr_size = (1 << sr_size) * I40E_SR_WORDS_IN_1KB;
 54
 55	/* Check if we are in the normal or blank NVM programming mode */
 56	fla = rd32(hw, I40E_GLNVM_FLA);
 57	if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
 58		/* Max NVM timeout */
 59		nvm->timeout = I40E_MAX_NVM_TIMEOUT;
 60		nvm->blank_nvm_mode = false;
 61	} else { /* Blank programming mode */
 62		nvm->blank_nvm_mode = true;
 63		ret_code = I40E_ERR_NVM_BLANK_MODE;
 64		hw_dbg(hw, "NVM init error: unsupported blank mode.\n");
 65	}
 66
 67	return ret_code;
 68}
 69
 70/**
 71 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
 72 * @hw: pointer to the HW structure
 73 * @access: NVM access type (read or write)
 74 *
 75 * This function will request NVM ownership for reading
 76 * via the proper Admin Command.
 77 **/
 78i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
 79				       enum i40e_aq_resource_access_type access)
 80{
 81	i40e_status ret_code = 0;
 82	u64 gtime, timeout;
 83	u64 time = 0;
 
 84
 85	if (hw->nvm.blank_nvm_mode)
 86		goto i40e_i40e_acquire_nvm_exit;
 87
 88	ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
 89					    0, &time, NULL);
 90	/* Reading the Global Device Timer */
 91	gtime = rd32(hw, I40E_GLVFGEN_TIMER);
 92
 93	/* Store the timeout */
 94	hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time) + gtime;
 95
 96	if (ret_code) {
 97		/* Set the polling timeout */
 98		if (time > I40E_MAX_NVM_TIMEOUT)
 99			timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT)
100				  + gtime;
101		else
102			timeout = hw->nvm.hw_semaphore_timeout;
103		/* Poll until the current NVM owner timeouts */
104		while (gtime < timeout) {
 
105			usleep_range(10000, 20000);
 
106			ret_code = i40e_aq_request_resource(hw,
107							I40E_NVM_RESOURCE_ID,
108							access, 0, &time,
109							NULL);
110			if (!ret_code) {
111				hw->nvm.hw_semaphore_timeout =
112						I40E_MS_TO_GTIME(time) + gtime;
113				break;
114			}
115			gtime = rd32(hw, I40E_GLVFGEN_TIMER);
116		}
117		if (ret_code) {
118			hw->nvm.hw_semaphore_timeout = 0;
119			hw->nvm.hw_semaphore_wait =
120						I40E_MS_TO_GTIME(time) + gtime;
121			hw_dbg(hw, "NVM acquire timed out, wait %llu ms before trying again.\n",
122				  time);
123		}
124	}
125
126i40e_i40e_acquire_nvm_exit:
127	return ret_code;
128}
129
130/**
131 * i40e_release_nvm - Generic request for releasing the NVM ownership
132 * @hw: pointer to the HW structure
133 *
134 * This function will release NVM resource via the proper Admin Command.
135 **/
136void i40e_release_nvm(struct i40e_hw *hw)
137{
138	if (!hw->nvm.blank_nvm_mode)
139		i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140}
141
142/**
143 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
144 * @hw: pointer to the HW structure
145 *
146 * Polls the SRCTL Shadow RAM register done bit.
147 **/
148static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
149{
150	i40e_status ret_code = I40E_ERR_TIMEOUT;
151	u32 srctl, wait_cnt;
152
153	/* Poll the I40E_GLNVM_SRCTL until the done bit is set */
154	for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
155		srctl = rd32(hw, I40E_GLNVM_SRCTL);
156		if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
157			ret_code = 0;
158			break;
159		}
160		udelay(5);
161	}
162	if (ret_code == I40E_ERR_TIMEOUT)
163		hw_dbg(hw, "Done bit in GLNVM_SRCTL not set\n");
164	return ret_code;
165}
166
167/**
168 * i40e_read_nvm_word - Reads Shadow RAM
169 * @hw: pointer to the HW structure
170 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
171 * @data: word read from the Shadow RAM
172 *
173 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
174 **/
175i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
176					 u16 *data)
177{
178	i40e_status ret_code = I40E_ERR_TIMEOUT;
179	u32 sr_reg;
180
181	if (offset >= hw->nvm.sr_size) {
182		hw_dbg(hw, "NVM read error: Offset beyond Shadow RAM limit.\n");
183		ret_code = I40E_ERR_PARAM;
 
 
184		goto read_nvm_exit;
185	}
186
187	/* Poll the done bit first */
188	ret_code = i40e_poll_sr_srctl_done_bit(hw);
189	if (!ret_code) {
190		/* Write the address and start reading */
191		sr_reg = (u32)(offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
192			 (1 << I40E_GLNVM_SRCTL_START_SHIFT);
193		wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
194
195		/* Poll I40E_GLNVM_SRCTL until the done bit is set */
196		ret_code = i40e_poll_sr_srctl_done_bit(hw);
197		if (!ret_code) {
198			sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
199			*data = (u16)((sr_reg &
200				       I40E_GLNVM_SRDATA_RDDATA_MASK)
201				    >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
202		}
203	}
204	if (ret_code)
205		hw_dbg(hw, "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
206			  offset);
 
207
208read_nvm_exit:
209	return ret_code;
210}
211
212/**
213 * i40e_read_nvm_buffer - Reads Shadow RAM buffer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214 * @hw: pointer to the HW structure
215 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
216 * @words: (in) number of words to read; (out) number of words actually read
217 * @data: words read from the Shadow RAM
218 *
219 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
220 * method. The buffer read is preceded by the NVM ownership take
221 * and followed by the release.
222 **/
223i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
224					   u16 *words, u16 *data)
225{
226	i40e_status ret_code = 0;
227	u16 index, word;
228
229	/* Loop thru the selected region */
230	for (word = 0; word < *words; word++) {
231		index = offset + word;
232		ret_code = i40e_read_nvm_word(hw, index, &data[word]);
233		if (ret_code)
234			break;
235	}
236
237	/* Update the number of words read from the Shadow RAM */
238	*words = word;
239
240	return ret_code;
241}
242
243/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244 * i40e_calc_nvm_checksum - Calculates and returns the checksum
245 * @hw: pointer to hardware structure
246 * @checksum: pointer to the checksum
247 *
248 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
249 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
250 * is customer specific and unknown. Therefore, this function skips all maximum
251 * possible size of VPD (1kB).
252 **/
253static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
254						    u16 *checksum)
255{
256	i40e_status ret_code = 0;
257	u16 pcie_alt_module = 0;
258	u16 checksum_local = 0;
259	u16 vpd_module = 0;
260	u16 word = 0;
261	u32 i = 0;
 
 
 
 
 
 
 
262
263	/* read pointer to VPD area */
264	ret_code = i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
265	if (ret_code) {
266		ret_code = I40E_ERR_NVM_CHECKSUM;
267		goto i40e_calc_nvm_checksum_exit;
268	}
269
270	/* read pointer to PCIe Alt Auto-load module */
271	ret_code = i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
272				       &pcie_alt_module);
273	if (ret_code) {
274		ret_code = I40E_ERR_NVM_CHECKSUM;
275		goto i40e_calc_nvm_checksum_exit;
276	}
277
278	/* Calculate SW checksum that covers the whole 64kB shadow RAM
279	 * except the VPD and PCIe ALT Auto-load modules
280	 */
281	for (i = 0; i < hw->nvm.sr_size; i++) {
 
 
 
 
 
 
 
 
 
 
 
282		/* Skip Checksum word */
283		if (i == I40E_SR_SW_CHECKSUM_WORD)
284			i++;
285		/* Skip VPD module (convert byte size to word count) */
286		if (i == (u32)vpd_module) {
287			i += (I40E_SR_VPD_MODULE_MAX_SIZE / 2);
288			if (i >= hw->nvm.sr_size)
289				break;
290		}
291		/* Skip PCIe ALT module (convert byte size to word count) */
292		if (i == (u32)pcie_alt_module) {
293			i += (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2);
294			if (i >= hw->nvm.sr_size)
295				break;
296		}
297
298		ret_code = i40e_read_nvm_word(hw, (u16)i, &word);
299		if (ret_code) {
300			ret_code = I40E_ERR_NVM_CHECKSUM;
301			goto i40e_calc_nvm_checksum_exit;
302		}
303		checksum_local += word;
304	}
305
306	*checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
307
308i40e_calc_nvm_checksum_exit:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309	return ret_code;
310}
311
312/**
313 * i40e_validate_nvm_checksum - Validate EEPROM checksum
314 * @hw: pointer to hardware structure
315 * @checksum: calculated checksum
316 *
317 * Performs checksum calculation and validates the NVM SW checksum. If the
318 * caller does not need checksum, the value can be NULL.
319 **/
320i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
321						 u16 *checksum)
322{
323	i40e_status ret_code = 0;
324	u16 checksum_sr = 0;
325	u16 checksum_local = 0;
326
 
 
 
 
 
327	ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
328	if (ret_code)
329		goto i40e_validate_nvm_checksum_exit;
330
331	ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
 
 
332	if (ret_code)
333		goto i40e_validate_nvm_checksum_free;
334
335	/* Do not use i40e_read_nvm_word() because we do not want to take
336	 * the synchronization semaphores twice here.
337	 */
338	i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
339
340	/* Verify read checksum from EEPROM is the same as
341	 * calculated checksum
342	 */
343	if (checksum_local != checksum_sr)
344		ret_code = I40E_ERR_NVM_CHECKSUM;
345
346	/* If the user cares, return the calculated checksum */
347	if (checksum)
348		*checksum = checksum_local;
349
350i40e_validate_nvm_checksum_free:
351	i40e_release_nvm(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352
353i40e_validate_nvm_checksum_exit:
354	return ret_code;
 
 
355}