Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include <drm/drmP.h>
  31#include "i915_drv.h"
  32#include <drm/i915_drm.h>
  33#include "i915_trace.h"
  34#include "intel_drv.h"
  35
  36static inline int ring_space(struct intel_ring_buffer *ring)
  37{
  38	int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  39	if (space < 0)
  40		space += ring->size;
  41	return space;
  42}
  43
  44void __intel_ring_advance(struct intel_ring_buffer *ring)
  45{
  46	struct drm_i915_private *dev_priv = ring->dev->dev_private;
  47
  48	ring->tail &= ring->size - 1;
  49	if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
  50		return;
  51	ring->write_tail(ring, ring->tail);
  52}
  53
  54static int
  55gen2_render_ring_flush(struct intel_ring_buffer *ring,
  56		       u32	invalidate_domains,
  57		       u32	flush_domains)
  58{
  59	u32 cmd;
  60	int ret;
  61
  62	cmd = MI_FLUSH;
  63	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  64		cmd |= MI_NO_WRITE_FLUSH;
  65
  66	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  67		cmd |= MI_READ_FLUSH;
  68
  69	ret = intel_ring_begin(ring, 2);
  70	if (ret)
  71		return ret;
  72
  73	intel_ring_emit(ring, cmd);
  74	intel_ring_emit(ring, MI_NOOP);
  75	intel_ring_advance(ring);
  76
  77	return 0;
  78}
  79
  80static int
  81gen4_render_ring_flush(struct intel_ring_buffer *ring,
  82		       u32	invalidate_domains,
  83		       u32	flush_domains)
  84{
  85	struct drm_device *dev = ring->dev;
  86	u32 cmd;
  87	int ret;
  88
  89	/*
  90	 * read/write caches:
  91	 *
  92	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  93	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
  94	 * also flushed at 2d versus 3d pipeline switches.
  95	 *
  96	 * read-only caches:
  97	 *
  98	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  99	 * MI_READ_FLUSH is set, and is always flushed on 965.
 100	 *
 101	 * I915_GEM_DOMAIN_COMMAND may not exist?
 102	 *
 103	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 104	 * invalidated when MI_EXE_FLUSH is set.
 105	 *
 106	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 107	 * invalidated with every MI_FLUSH.
 108	 *
 109	 * TLBs:
 110	 *
 111	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 112	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 113	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 114	 * are flushed at any MI_FLUSH.
 115	 */
 116
 117	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
 118	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
 119		cmd &= ~MI_NO_WRITE_FLUSH;
 120	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
 121		cmd |= MI_EXE_FLUSH;
 122
 123	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
 124	    (IS_G4X(dev) || IS_GEN5(dev)))
 125		cmd |= MI_INVALIDATE_ISP;
 126
 127	ret = intel_ring_begin(ring, 2);
 128	if (ret)
 129		return ret;
 130
 131	intel_ring_emit(ring, cmd);
 132	intel_ring_emit(ring, MI_NOOP);
 133	intel_ring_advance(ring);
 134
 135	return 0;
 136}
 137
 138/**
 139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 140 * implementing two workarounds on gen6.  From section 1.4.7.1
 141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 142 *
 143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 144 * produced by non-pipelined state commands), software needs to first
 145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 146 * 0.
 147 *
 148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 150 *
 151 * And the workaround for these two requires this workaround first:
 152 *
 153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 154 * BEFORE the pipe-control with a post-sync op and no write-cache
 155 * flushes.
 156 *
 157 * And this last workaround is tricky because of the requirements on
 158 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 159 * volume 2 part 1:
 160 *
 161 *     "1 of the following must also be set:
 162 *      - Render Target Cache Flush Enable ([12] of DW1)
 163 *      - Depth Cache Flush Enable ([0] of DW1)
 164 *      - Stall at Pixel Scoreboard ([1] of DW1)
 165 *      - Depth Stall ([13] of DW1)
 166 *      - Post-Sync Operation ([13] of DW1)
 167 *      - Notify Enable ([8] of DW1)"
 168 *
 169 * The cache flushes require the workaround flush that triggered this
 170 * one, so we can't use it.  Depth stall would trigger the same.
 171 * Post-sync nonzero is what triggered this second workaround, so we
 172 * can't use that one either.  Notify enable is IRQs, which aren't
 173 * really our business.  That leaves only stall at scoreboard.
 174 */
 175static int
 176intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
 177{
 178	u32 scratch_addr = ring->scratch.gtt_offset + 128;
 179	int ret;
 180
 181
 182	ret = intel_ring_begin(ring, 6);
 183	if (ret)
 184		return ret;
 185
 186	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 187	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 188			PIPE_CONTROL_STALL_AT_SCOREBOARD);
 189	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
 190	intel_ring_emit(ring, 0); /* low dword */
 191	intel_ring_emit(ring, 0); /* high dword */
 192	intel_ring_emit(ring, MI_NOOP);
 193	intel_ring_advance(ring);
 194
 195	ret = intel_ring_begin(ring, 6);
 196	if (ret)
 197		return ret;
 198
 199	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 200	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
 201	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
 202	intel_ring_emit(ring, 0);
 203	intel_ring_emit(ring, 0);
 204	intel_ring_emit(ring, MI_NOOP);
 205	intel_ring_advance(ring);
 206
 207	return 0;
 208}
 209
 210static int
 211gen6_render_ring_flush(struct intel_ring_buffer *ring,
 212                         u32 invalidate_domains, u32 flush_domains)
 213{
 214	u32 flags = 0;
 215	u32 scratch_addr = ring->scratch.gtt_offset + 128;
 216	int ret;
 217
 218	/* Force SNB workarounds for PIPE_CONTROL flushes */
 219	ret = intel_emit_post_sync_nonzero_flush(ring);
 220	if (ret)
 221		return ret;
 222
 223	/* Just flush everything.  Experiments have shown that reducing the
 224	 * number of bits based on the write domains has little performance
 225	 * impact.
 226	 */
 227	if (flush_domains) {
 228		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 229		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 230		/*
 231		 * Ensure that any following seqno writes only happen
 232		 * when the render cache is indeed flushed.
 233		 */
 234		flags |= PIPE_CONTROL_CS_STALL;
 235	}
 236	if (invalidate_domains) {
 237		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 238		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 239		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 240		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 241		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 242		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 243		/*
 244		 * TLB invalidate requires a post-sync write.
 245		 */
 246		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
 247	}
 248
 249	ret = intel_ring_begin(ring, 4);
 250	if (ret)
 251		return ret;
 252
 253	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 254	intel_ring_emit(ring, flags);
 255	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 256	intel_ring_emit(ring, 0);
 257	intel_ring_advance(ring);
 258
 259	return 0;
 260}
 261
 262static int
 263gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
 264{
 265	int ret;
 266
 267	ret = intel_ring_begin(ring, 4);
 268	if (ret)
 269		return ret;
 270
 271	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 272	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 273			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
 274	intel_ring_emit(ring, 0);
 275	intel_ring_emit(ring, 0);
 276	intel_ring_advance(ring);
 277
 278	return 0;
 279}
 280
 281static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
 282{
 283	int ret;
 284
 285	if (!ring->fbc_dirty)
 286		return 0;
 287
 288	ret = intel_ring_begin(ring, 6);
 289	if (ret)
 290		return ret;
 291	/* WaFbcNukeOn3DBlt:ivb/hsw */
 292	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
 293	intel_ring_emit(ring, MSG_FBC_REND_STATE);
 294	intel_ring_emit(ring, value);
 295	intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
 296	intel_ring_emit(ring, MSG_FBC_REND_STATE);
 297	intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
 298	intel_ring_advance(ring);
 299
 300	ring->fbc_dirty = false;
 301	return 0;
 302}
 303
 304static int
 305gen7_render_ring_flush(struct intel_ring_buffer *ring,
 306		       u32 invalidate_domains, u32 flush_domains)
 307{
 308	u32 flags = 0;
 309	u32 scratch_addr = ring->scratch.gtt_offset + 128;
 310	int ret;
 311
 312	/*
 313	 * Ensure that any following seqno writes only happen when the render
 314	 * cache is indeed flushed.
 315	 *
 316	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
 317	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
 318	 * don't try to be clever and just set it unconditionally.
 319	 */
 320	flags |= PIPE_CONTROL_CS_STALL;
 321
 322	/* Just flush everything.  Experiments have shown that reducing the
 323	 * number of bits based on the write domains has little performance
 324	 * impact.
 325	 */
 326	if (flush_domains) {
 327		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 328		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 329	}
 330	if (invalidate_domains) {
 331		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 332		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 333		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 334		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 335		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 336		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 337		/*
 338		 * TLB invalidate requires a post-sync write.
 339		 */
 340		flags |= PIPE_CONTROL_QW_WRITE;
 341		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 342
 343		/* Workaround: we must issue a pipe_control with CS-stall bit
 344		 * set before a pipe_control command that has the state cache
 345		 * invalidate bit set. */
 346		gen7_render_ring_cs_stall_wa(ring);
 347	}
 348
 349	ret = intel_ring_begin(ring, 4);
 350	if (ret)
 351		return ret;
 352
 353	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 354	intel_ring_emit(ring, flags);
 355	intel_ring_emit(ring, scratch_addr);
 356	intel_ring_emit(ring, 0);
 357	intel_ring_advance(ring);
 358
 359	if (!invalidate_domains && flush_domains)
 360		return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
 361
 362	return 0;
 363}
 364
 365static int
 366gen8_render_ring_flush(struct intel_ring_buffer *ring,
 367		       u32 invalidate_domains, u32 flush_domains)
 368{
 369	u32 flags = 0;
 370	u32 scratch_addr = ring->scratch.gtt_offset + 128;
 371	int ret;
 372
 373	flags |= PIPE_CONTROL_CS_STALL;
 374
 375	if (flush_domains) {
 376		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 377		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 378	}
 379	if (invalidate_domains) {
 380		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 381		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 382		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 383		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 384		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 385		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 386		flags |= PIPE_CONTROL_QW_WRITE;
 387		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 388	}
 389
 390	ret = intel_ring_begin(ring, 6);
 391	if (ret)
 392		return ret;
 393
 394	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
 395	intel_ring_emit(ring, flags);
 396	intel_ring_emit(ring, scratch_addr);
 397	intel_ring_emit(ring, 0);
 398	intel_ring_emit(ring, 0);
 399	intel_ring_emit(ring, 0);
 400	intel_ring_advance(ring);
 401
 402	return 0;
 403
 404}
 405
 406static void ring_write_tail(struct intel_ring_buffer *ring,
 407			    u32 value)
 408{
 409	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 410	I915_WRITE_TAIL(ring, value);
 411}
 412
 413u64 intel_ring_get_active_head(struct intel_ring_buffer *ring)
 414{
 415	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 416	u64 acthd;
 417
 418	if (INTEL_INFO(ring->dev)->gen >= 8)
 419		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
 420					 RING_ACTHD_UDW(ring->mmio_base));
 421	else if (INTEL_INFO(ring->dev)->gen >= 4)
 422		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
 423	else
 424		acthd = I915_READ(ACTHD);
 425
 426	return acthd;
 427}
 428
 429static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
 430{
 431	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 432	u32 addr;
 433
 434	addr = dev_priv->status_page_dmah->busaddr;
 435	if (INTEL_INFO(ring->dev)->gen >= 4)
 436		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
 437	I915_WRITE(HWS_PGA, addr);
 438}
 439
 440static bool stop_ring(struct intel_ring_buffer *ring)
 441{
 442	struct drm_i915_private *dev_priv = to_i915(ring->dev);
 443
 444	if (!IS_GEN2(ring->dev)) {
 445		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
 446		if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
 447			DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
 448			return false;
 449		}
 450	}
 451
 452	I915_WRITE_CTL(ring, 0);
 453	I915_WRITE_HEAD(ring, 0);
 454	ring->write_tail(ring, 0);
 455
 456	if (!IS_GEN2(ring->dev)) {
 457		(void)I915_READ_CTL(ring);
 458		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
 459	}
 460
 461	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
 462}
 463
 464static int init_ring_common(struct intel_ring_buffer *ring)
 465{
 466	struct drm_device *dev = ring->dev;
 467	struct drm_i915_private *dev_priv = dev->dev_private;
 468	struct drm_i915_gem_object *obj = ring->obj;
 469	int ret = 0;
 470
 471	gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
 472
 473	if (!stop_ring(ring)) {
 474		/* G45 ring initialization often fails to reset head to zero */
 475		DRM_DEBUG_KMS("%s head not reset to zero "
 476			      "ctl %08x head %08x tail %08x start %08x\n",
 477			      ring->name,
 478			      I915_READ_CTL(ring),
 479			      I915_READ_HEAD(ring),
 480			      I915_READ_TAIL(ring),
 481			      I915_READ_START(ring));
 482
 483		if (!stop_ring(ring)) {
 484			DRM_ERROR("failed to set %s head to zero "
 485				  "ctl %08x head %08x tail %08x start %08x\n",
 486				  ring->name,
 487				  I915_READ_CTL(ring),
 488				  I915_READ_HEAD(ring),
 489				  I915_READ_TAIL(ring),
 490				  I915_READ_START(ring));
 491			ret = -EIO;
 492			goto out;
 493		}
 494	}
 495
 496	if (I915_NEED_GFX_HWS(dev))
 497		intel_ring_setup_status_page(ring);
 498	else
 499		ring_setup_phys_status_page(ring);
 500
 501	/* Initialize the ring. This must happen _after_ we've cleared the ring
 502	 * registers with the above sequence (the readback of the HEAD registers
 503	 * also enforces ordering), otherwise the hw might lose the new ring
 504	 * register values. */
 505	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
 506	I915_WRITE_CTL(ring,
 507			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
 508			| RING_VALID);
 509
 510	/* If the head is still not zero, the ring is dead */
 511	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
 512		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
 513		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
 514		DRM_ERROR("%s initialization failed "
 515				"ctl %08x head %08x tail %08x start %08x\n",
 516				ring->name,
 517				I915_READ_CTL(ring),
 518				I915_READ_HEAD(ring),
 519				I915_READ_TAIL(ring),
 520				I915_READ_START(ring));
 521		ret = -EIO;
 522		goto out;
 523	}
 524
 525	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
 526		i915_kernel_lost_context(ring->dev);
 527	else {
 528		ring->head = I915_READ_HEAD(ring);
 529		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
 530		ring->space = ring_space(ring);
 531		ring->last_retired_head = -1;
 532	}
 533
 534	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
 535
 536out:
 537	gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
 538
 539	return ret;
 540}
 541
 542static int
 543init_pipe_control(struct intel_ring_buffer *ring)
 544{
 545	int ret;
 546
 547	if (ring->scratch.obj)
 548		return 0;
 549
 550	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
 551	if (ring->scratch.obj == NULL) {
 552		DRM_ERROR("Failed to allocate seqno page\n");
 553		ret = -ENOMEM;
 554		goto err;
 555	}
 556
 557	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
 558	if (ret)
 559		goto err_unref;
 560
 561	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
 562	if (ret)
 563		goto err_unref;
 564
 565	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
 566	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
 567	if (ring->scratch.cpu_page == NULL) {
 568		ret = -ENOMEM;
 569		goto err_unpin;
 570	}
 571
 572	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
 573			 ring->name, ring->scratch.gtt_offset);
 574	return 0;
 575
 576err_unpin:
 577	i915_gem_object_ggtt_unpin(ring->scratch.obj);
 578err_unref:
 579	drm_gem_object_unreference(&ring->scratch.obj->base);
 580err:
 581	return ret;
 582}
 583
 584static int init_render_ring(struct intel_ring_buffer *ring)
 585{
 586	struct drm_device *dev = ring->dev;
 587	struct drm_i915_private *dev_priv = dev->dev_private;
 588	int ret = init_ring_common(ring);
 589
 590	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
 591	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
 592		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
 593
 594	/* We need to disable the AsyncFlip performance optimisations in order
 595	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
 596	 * programmed to '1' on all products.
 597	 *
 598	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
 599	 */
 600	if (INTEL_INFO(dev)->gen >= 6)
 601		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
 602
 603	/* Required for the hardware to program scanline values for waiting */
 604	if (INTEL_INFO(dev)->gen == 6)
 605		I915_WRITE(GFX_MODE,
 606			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
 607
 608	if (IS_GEN7(dev))
 609		I915_WRITE(GFX_MODE_GEN7,
 610			   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
 611			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
 612
 613	if (INTEL_INFO(dev)->gen >= 5) {
 614		ret = init_pipe_control(ring);
 615		if (ret)
 616			return ret;
 617	}
 618
 619	if (IS_GEN6(dev)) {
 620		/* From the Sandybridge PRM, volume 1 part 3, page 24:
 621		 * "If this bit is set, STCunit will have LRA as replacement
 622		 *  policy. [...] This bit must be reset.  LRA replacement
 623		 *  policy is not supported."
 624		 */
 625		I915_WRITE(CACHE_MODE_0,
 626			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
 627
 628		/* This is not explicitly set for GEN6, so read the register.
 629		 * see intel_ring_mi_set_context() for why we care.
 630		 * TODO: consider explicitly setting the bit for GEN5
 631		 */
 632		ring->itlb_before_ctx_switch =
 633			!!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
 634	}
 635
 636	if (INTEL_INFO(dev)->gen >= 6)
 637		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
 638
 639	if (HAS_L3_DPF(dev))
 640		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
 641
 642	return ret;
 643}
 644
 645static void render_ring_cleanup(struct intel_ring_buffer *ring)
 646{
 647	struct drm_device *dev = ring->dev;
 648
 649	if (ring->scratch.obj == NULL)
 650		return;
 651
 652	if (INTEL_INFO(dev)->gen >= 5) {
 653		kunmap(sg_page(ring->scratch.obj->pages->sgl));
 654		i915_gem_object_ggtt_unpin(ring->scratch.obj);
 655	}
 656
 657	drm_gem_object_unreference(&ring->scratch.obj->base);
 658	ring->scratch.obj = NULL;
 659}
 660
 661static void
 662update_mboxes(struct intel_ring_buffer *ring,
 663	      u32 mmio_offset)
 664{
 665/* NB: In order to be able to do semaphore MBOX updates for varying number
 666 * of rings, it's easiest if we round up each individual update to a
 667 * multiple of 2 (since ring updates must always be a multiple of 2)
 668 * even though the actual update only requires 3 dwords.
 669 */
 670#define MBOX_UPDATE_DWORDS 4
 671	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
 672	intel_ring_emit(ring, mmio_offset);
 673	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
 674	intel_ring_emit(ring, MI_NOOP);
 675}
 676
 677/**
 678 * gen6_add_request - Update the semaphore mailbox registers
 679 * 
 680 * @ring - ring that is adding a request
 681 * @seqno - return seqno stuck into the ring
 682 *
 683 * Update the mailbox registers in the *other* rings with the current seqno.
 684 * This acts like a signal in the canonical semaphore.
 685 */
 686static int
 687gen6_add_request(struct intel_ring_buffer *ring)
 688{
 689	struct drm_device *dev = ring->dev;
 690	struct drm_i915_private *dev_priv = dev->dev_private;
 691	struct intel_ring_buffer *useless;
 692	int i, ret, num_dwords = 4;
 693
 694	if (i915_semaphore_is_enabled(dev))
 695		num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
 696#undef MBOX_UPDATE_DWORDS
 697
 698	ret = intel_ring_begin(ring, num_dwords);
 699	if (ret)
 700		return ret;
 701
 702	if (i915_semaphore_is_enabled(dev)) {
 703		for_each_ring(useless, dev_priv, i) {
 704			u32 mbox_reg = ring->signal_mbox[i];
 705			if (mbox_reg != GEN6_NOSYNC)
 706				update_mboxes(ring, mbox_reg);
 707		}
 708	}
 709
 710	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 711	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 712	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
 713	intel_ring_emit(ring, MI_USER_INTERRUPT);
 714	__intel_ring_advance(ring);
 715
 716	return 0;
 717}
 718
 719static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
 720					      u32 seqno)
 721{
 722	struct drm_i915_private *dev_priv = dev->dev_private;
 723	return dev_priv->last_seqno < seqno;
 724}
 725
 726/**
 727 * intel_ring_sync - sync the waiter to the signaller on seqno
 728 *
 729 * @waiter - ring that is waiting
 730 * @signaller - ring which has, or will signal
 731 * @seqno - seqno which the waiter will block on
 732 */
 733static int
 734gen6_ring_sync(struct intel_ring_buffer *waiter,
 735	       struct intel_ring_buffer *signaller,
 736	       u32 seqno)
 737{
 738	int ret;
 739	u32 dw1 = MI_SEMAPHORE_MBOX |
 740		  MI_SEMAPHORE_COMPARE |
 741		  MI_SEMAPHORE_REGISTER;
 742
 743	/* Throughout all of the GEM code, seqno passed implies our current
 744	 * seqno is >= the last seqno executed. However for hardware the
 745	 * comparison is strictly greater than.
 746	 */
 747	seqno -= 1;
 748
 749	WARN_ON(signaller->semaphore_register[waiter->id] ==
 750		MI_SEMAPHORE_SYNC_INVALID);
 751
 752	ret = intel_ring_begin(waiter, 4);
 753	if (ret)
 754		return ret;
 755
 756	/* If seqno wrap happened, omit the wait with no-ops */
 757	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
 758		intel_ring_emit(waiter,
 759				dw1 |
 760				signaller->semaphore_register[waiter->id]);
 761		intel_ring_emit(waiter, seqno);
 762		intel_ring_emit(waiter, 0);
 763		intel_ring_emit(waiter, MI_NOOP);
 764	} else {
 765		intel_ring_emit(waiter, MI_NOOP);
 766		intel_ring_emit(waiter, MI_NOOP);
 767		intel_ring_emit(waiter, MI_NOOP);
 768		intel_ring_emit(waiter, MI_NOOP);
 769	}
 770	intel_ring_advance(waiter);
 771
 772	return 0;
 773}
 774
 775#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
 776do {									\
 777	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
 778		 PIPE_CONTROL_DEPTH_STALL);				\
 779	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
 780	intel_ring_emit(ring__, 0);							\
 781	intel_ring_emit(ring__, 0);							\
 782} while (0)
 783
 784static int
 785pc_render_add_request(struct intel_ring_buffer *ring)
 786{
 787	u32 scratch_addr = ring->scratch.gtt_offset + 128;
 788	int ret;
 789
 790	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
 791	 * incoherent with writes to memory, i.e. completely fubar,
 792	 * so we need to use PIPE_NOTIFY instead.
 793	 *
 794	 * However, we also need to workaround the qword write
 795	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
 796	 * memory before requesting an interrupt.
 797	 */
 798	ret = intel_ring_begin(ring, 32);
 799	if (ret)
 800		return ret;
 801
 802	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
 803			PIPE_CONTROL_WRITE_FLUSH |
 804			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
 805	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
 806	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
 807	intel_ring_emit(ring, 0);
 808	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 809	scratch_addr += 128; /* write to separate cachelines */
 810	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 811	scratch_addr += 128;
 812	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 813	scratch_addr += 128;
 814	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 815	scratch_addr += 128;
 816	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 817	scratch_addr += 128;
 818	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 819
 820	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
 821			PIPE_CONTROL_WRITE_FLUSH |
 822			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
 823			PIPE_CONTROL_NOTIFY);
 824	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
 825	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
 826	intel_ring_emit(ring, 0);
 827	__intel_ring_advance(ring);
 828
 829	return 0;
 830}
 831
 832static u32
 833gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
 834{
 835	/* Workaround to force correct ordering between irq and seqno writes on
 836	 * ivb (and maybe also on snb) by reading from a CS register (like
 837	 * ACTHD) before reading the status page. */
 838	if (!lazy_coherency) {
 839		struct drm_i915_private *dev_priv = ring->dev->dev_private;
 840		POSTING_READ(RING_ACTHD(ring->mmio_base));
 841	}
 842
 843	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
 844}
 845
 846static u32
 847ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
 848{
 849	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
 850}
 851
 852static void
 853ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
 854{
 855	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
 856}
 857
 858static u32
 859pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
 860{
 861	return ring->scratch.cpu_page[0];
 862}
 863
 864static void
 865pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
 866{
 867	ring->scratch.cpu_page[0] = seqno;
 868}
 869
 870static bool
 871gen5_ring_get_irq(struct intel_ring_buffer *ring)
 872{
 873	struct drm_device *dev = ring->dev;
 874	struct drm_i915_private *dev_priv = dev->dev_private;
 875	unsigned long flags;
 876
 877	if (!dev->irq_enabled)
 878		return false;
 879
 880	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 881	if (ring->irq_refcount++ == 0)
 882		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
 883	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 884
 885	return true;
 886}
 887
 888static void
 889gen5_ring_put_irq(struct intel_ring_buffer *ring)
 890{
 891	struct drm_device *dev = ring->dev;
 892	struct drm_i915_private *dev_priv = dev->dev_private;
 893	unsigned long flags;
 894
 895	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 896	if (--ring->irq_refcount == 0)
 897		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
 898	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 899}
 900
 901static bool
 902i9xx_ring_get_irq(struct intel_ring_buffer *ring)
 903{
 904	struct drm_device *dev = ring->dev;
 905	struct drm_i915_private *dev_priv = dev->dev_private;
 906	unsigned long flags;
 907
 908	if (!dev->irq_enabled)
 909		return false;
 910
 911	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 912	if (ring->irq_refcount++ == 0) {
 913		dev_priv->irq_mask &= ~ring->irq_enable_mask;
 914		I915_WRITE(IMR, dev_priv->irq_mask);
 915		POSTING_READ(IMR);
 916	}
 917	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 918
 919	return true;
 920}
 921
 922static void
 923i9xx_ring_put_irq(struct intel_ring_buffer *ring)
 924{
 925	struct drm_device *dev = ring->dev;
 926	struct drm_i915_private *dev_priv = dev->dev_private;
 927	unsigned long flags;
 928
 929	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 930	if (--ring->irq_refcount == 0) {
 931		dev_priv->irq_mask |= ring->irq_enable_mask;
 932		I915_WRITE(IMR, dev_priv->irq_mask);
 933		POSTING_READ(IMR);
 934	}
 935	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 936}
 937
 938static bool
 939i8xx_ring_get_irq(struct intel_ring_buffer *ring)
 940{
 941	struct drm_device *dev = ring->dev;
 942	struct drm_i915_private *dev_priv = dev->dev_private;
 943	unsigned long flags;
 944
 945	if (!dev->irq_enabled)
 946		return false;
 947
 948	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 949	if (ring->irq_refcount++ == 0) {
 950		dev_priv->irq_mask &= ~ring->irq_enable_mask;
 951		I915_WRITE16(IMR, dev_priv->irq_mask);
 952		POSTING_READ16(IMR);
 953	}
 954	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 955
 956	return true;
 957}
 958
 959static void
 960i8xx_ring_put_irq(struct intel_ring_buffer *ring)
 961{
 962	struct drm_device *dev = ring->dev;
 963	struct drm_i915_private *dev_priv = dev->dev_private;
 964	unsigned long flags;
 965
 966	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 967	if (--ring->irq_refcount == 0) {
 968		dev_priv->irq_mask |= ring->irq_enable_mask;
 969		I915_WRITE16(IMR, dev_priv->irq_mask);
 970		POSTING_READ16(IMR);
 971	}
 972	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 973}
 974
 975void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
 976{
 977	struct drm_device *dev = ring->dev;
 978	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 979	u32 mmio = 0;
 980
 981	/* The ring status page addresses are no longer next to the rest of
 982	 * the ring registers as of gen7.
 983	 */
 984	if (IS_GEN7(dev)) {
 985		switch (ring->id) {
 986		case RCS:
 987			mmio = RENDER_HWS_PGA_GEN7;
 988			break;
 989		case BCS:
 990			mmio = BLT_HWS_PGA_GEN7;
 991			break;
 992		case VCS:
 993			mmio = BSD_HWS_PGA_GEN7;
 994			break;
 995		case VECS:
 996			mmio = VEBOX_HWS_PGA_GEN7;
 997			break;
 998		}
 999	} else if (IS_GEN6(ring->dev)) {
1000		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1001	} else {
1002		/* XXX: gen8 returns to sanity */
1003		mmio = RING_HWS_PGA(ring->mmio_base);
1004	}
1005
1006	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1007	POSTING_READ(mmio);
1008
1009	/*
1010	 * Flush the TLB for this page
1011	 *
1012	 * FIXME: These two bits have disappeared on gen8, so a question
1013	 * arises: do we still need this and if so how should we go about
1014	 * invalidating the TLB?
1015	 */
1016	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1017		u32 reg = RING_INSTPM(ring->mmio_base);
1018
1019		/* ring should be idle before issuing a sync flush*/
1020		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1021
1022		I915_WRITE(reg,
1023			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1024					      INSTPM_SYNC_FLUSH));
1025		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1026			     1000))
1027			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1028				  ring->name);
1029	}
1030}
1031
1032static int
1033bsd_ring_flush(struct intel_ring_buffer *ring,
1034	       u32     invalidate_domains,
1035	       u32     flush_domains)
1036{
1037	int ret;
1038
1039	ret = intel_ring_begin(ring, 2);
1040	if (ret)
1041		return ret;
1042
1043	intel_ring_emit(ring, MI_FLUSH);
1044	intel_ring_emit(ring, MI_NOOP);
1045	intel_ring_advance(ring);
1046	return 0;
1047}
1048
1049static int
1050i9xx_add_request(struct intel_ring_buffer *ring)
1051{
1052	int ret;
1053
1054	ret = intel_ring_begin(ring, 4);
1055	if (ret)
1056		return ret;
1057
1058	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1059	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1060	intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1061	intel_ring_emit(ring, MI_USER_INTERRUPT);
1062	__intel_ring_advance(ring);
1063
1064	return 0;
1065}
1066
1067static bool
1068gen6_ring_get_irq(struct intel_ring_buffer *ring)
1069{
1070	struct drm_device *dev = ring->dev;
1071	struct drm_i915_private *dev_priv = dev->dev_private;
1072	unsigned long flags;
1073
1074	if (!dev->irq_enabled)
1075	       return false;
1076
1077	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1078	if (ring->irq_refcount++ == 0) {
1079		if (HAS_L3_DPF(dev) && ring->id == RCS)
1080			I915_WRITE_IMR(ring,
1081				       ~(ring->irq_enable_mask |
1082					 GT_PARITY_ERROR(dev)));
1083		else
1084			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1085		ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1086	}
1087	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1088
1089	return true;
1090}
1091
1092static void
1093gen6_ring_put_irq(struct intel_ring_buffer *ring)
1094{
1095	struct drm_device *dev = ring->dev;
1096	struct drm_i915_private *dev_priv = dev->dev_private;
1097	unsigned long flags;
1098
1099	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1100	if (--ring->irq_refcount == 0) {
1101		if (HAS_L3_DPF(dev) && ring->id == RCS)
1102			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1103		else
1104			I915_WRITE_IMR(ring, ~0);
1105		ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1106	}
1107	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1108}
1109
1110static bool
1111hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1112{
1113	struct drm_device *dev = ring->dev;
1114	struct drm_i915_private *dev_priv = dev->dev_private;
1115	unsigned long flags;
1116
1117	if (!dev->irq_enabled)
1118		return false;
1119
1120	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1121	if (ring->irq_refcount++ == 0) {
1122		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1123		snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1124	}
1125	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1126
1127	return true;
1128}
1129
1130static void
1131hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1132{
1133	struct drm_device *dev = ring->dev;
1134	struct drm_i915_private *dev_priv = dev->dev_private;
1135	unsigned long flags;
1136
1137	if (!dev->irq_enabled)
1138		return;
1139
1140	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1141	if (--ring->irq_refcount == 0) {
1142		I915_WRITE_IMR(ring, ~0);
1143		snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1144	}
1145	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1146}
1147
1148static bool
1149gen8_ring_get_irq(struct intel_ring_buffer *ring)
1150{
1151	struct drm_device *dev = ring->dev;
1152	struct drm_i915_private *dev_priv = dev->dev_private;
1153	unsigned long flags;
1154
1155	if (!dev->irq_enabled)
1156		return false;
1157
1158	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1159	if (ring->irq_refcount++ == 0) {
1160		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1161			I915_WRITE_IMR(ring,
1162				       ~(ring->irq_enable_mask |
1163					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1164		} else {
1165			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1166		}
1167		POSTING_READ(RING_IMR(ring->mmio_base));
1168	}
1169	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1170
1171	return true;
1172}
1173
1174static void
1175gen8_ring_put_irq(struct intel_ring_buffer *ring)
1176{
1177	struct drm_device *dev = ring->dev;
1178	struct drm_i915_private *dev_priv = dev->dev_private;
1179	unsigned long flags;
1180
1181	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1182	if (--ring->irq_refcount == 0) {
1183		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1184			I915_WRITE_IMR(ring,
1185				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1186		} else {
1187			I915_WRITE_IMR(ring, ~0);
1188		}
1189		POSTING_READ(RING_IMR(ring->mmio_base));
1190	}
1191	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1192}
1193
1194static int
1195i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1196			 u32 offset, u32 length,
1197			 unsigned flags)
1198{
1199	int ret;
1200
1201	ret = intel_ring_begin(ring, 2);
1202	if (ret)
1203		return ret;
1204
1205	intel_ring_emit(ring,
1206			MI_BATCH_BUFFER_START |
1207			MI_BATCH_GTT |
1208			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1209	intel_ring_emit(ring, offset);
1210	intel_ring_advance(ring);
1211
1212	return 0;
1213}
1214
1215/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1216#define I830_BATCH_LIMIT (256*1024)
1217static int
1218i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1219				u32 offset, u32 len,
1220				unsigned flags)
1221{
1222	int ret;
1223
1224	if (flags & I915_DISPATCH_PINNED) {
1225		ret = intel_ring_begin(ring, 4);
1226		if (ret)
1227			return ret;
1228
1229		intel_ring_emit(ring, MI_BATCH_BUFFER);
1230		intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1231		intel_ring_emit(ring, offset + len - 8);
1232		intel_ring_emit(ring, MI_NOOP);
1233		intel_ring_advance(ring);
1234	} else {
1235		u32 cs_offset = ring->scratch.gtt_offset;
1236
1237		if (len > I830_BATCH_LIMIT)
1238			return -ENOSPC;
1239
1240		ret = intel_ring_begin(ring, 9+3);
1241		if (ret)
1242			return ret;
1243		/* Blit the batch (which has now all relocs applied) to the stable batch
1244		 * scratch bo area (so that the CS never stumbles over its tlb
1245		 * invalidation bug) ... */
1246		intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1247				XY_SRC_COPY_BLT_WRITE_ALPHA |
1248				XY_SRC_COPY_BLT_WRITE_RGB);
1249		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1250		intel_ring_emit(ring, 0);
1251		intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1252		intel_ring_emit(ring, cs_offset);
1253		intel_ring_emit(ring, 0);
1254		intel_ring_emit(ring, 4096);
1255		intel_ring_emit(ring, offset);
1256		intel_ring_emit(ring, MI_FLUSH);
1257
1258		/* ... and execute it. */
1259		intel_ring_emit(ring, MI_BATCH_BUFFER);
1260		intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1261		intel_ring_emit(ring, cs_offset + len - 8);
1262		intel_ring_advance(ring);
1263	}
1264
1265	return 0;
1266}
1267
1268static int
1269i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1270			 u32 offset, u32 len,
1271			 unsigned flags)
1272{
1273	int ret;
1274
1275	ret = intel_ring_begin(ring, 2);
1276	if (ret)
1277		return ret;
1278
1279	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1280	intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1281	intel_ring_advance(ring);
1282
1283	return 0;
1284}
1285
1286static void cleanup_status_page(struct intel_ring_buffer *ring)
1287{
1288	struct drm_i915_gem_object *obj;
1289
1290	obj = ring->status_page.obj;
1291	if (obj == NULL)
1292		return;
1293
1294	kunmap(sg_page(obj->pages->sgl));
1295	i915_gem_object_ggtt_unpin(obj);
1296	drm_gem_object_unreference(&obj->base);
1297	ring->status_page.obj = NULL;
1298}
1299
1300static int init_status_page(struct intel_ring_buffer *ring)
1301{
1302	struct drm_device *dev = ring->dev;
1303	struct drm_i915_gem_object *obj;
1304	int ret;
1305
1306	obj = i915_gem_alloc_object(dev, 4096);
1307	if (obj == NULL) {
1308		DRM_ERROR("Failed to allocate status page\n");
1309		ret = -ENOMEM;
1310		goto err;
1311	}
1312
1313	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1314	if (ret)
1315		goto err_unref;
1316
1317	ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
1318	if (ret)
1319		goto err_unref;
1320
1321	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1322	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1323	if (ring->status_page.page_addr == NULL) {
1324		ret = -ENOMEM;
1325		goto err_unpin;
1326	}
1327	ring->status_page.obj = obj;
1328	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1329
1330	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1331			ring->name, ring->status_page.gfx_addr);
1332
1333	return 0;
1334
1335err_unpin:
1336	i915_gem_object_ggtt_unpin(obj);
1337err_unref:
1338	drm_gem_object_unreference(&obj->base);
1339err:
1340	return ret;
1341}
1342
1343static int init_phys_status_page(struct intel_ring_buffer *ring)
1344{
1345	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1346
1347	if (!dev_priv->status_page_dmah) {
1348		dev_priv->status_page_dmah =
1349			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1350		if (!dev_priv->status_page_dmah)
1351			return -ENOMEM;
1352	}
1353
1354	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1355	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1356
1357	return 0;
1358}
1359
1360static int intel_init_ring_buffer(struct drm_device *dev,
1361				  struct intel_ring_buffer *ring)
1362{
1363	struct drm_i915_gem_object *obj;
1364	struct drm_i915_private *dev_priv = dev->dev_private;
1365	int ret;
1366
1367	ring->dev = dev;
1368	INIT_LIST_HEAD(&ring->active_list);
1369	INIT_LIST_HEAD(&ring->request_list);
1370	ring->size = 32 * PAGE_SIZE;
1371	memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1372
1373	init_waitqueue_head(&ring->irq_queue);
1374
1375	if (I915_NEED_GFX_HWS(dev)) {
1376		ret = init_status_page(ring);
1377		if (ret)
1378			return ret;
1379	} else {
1380		BUG_ON(ring->id != RCS);
1381		ret = init_phys_status_page(ring);
1382		if (ret)
1383			return ret;
1384	}
1385
1386	obj = NULL;
1387	if (!HAS_LLC(dev))
1388		obj = i915_gem_object_create_stolen(dev, ring->size);
1389	if (obj == NULL)
1390		obj = i915_gem_alloc_object(dev, ring->size);
1391	if (obj == NULL) {
1392		DRM_ERROR("Failed to allocate ringbuffer\n");
1393		ret = -ENOMEM;
1394		goto err_hws;
1395	}
1396
1397	ring->obj = obj;
1398
1399	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1400	if (ret)
1401		goto err_unref;
1402
1403	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1404	if (ret)
1405		goto err_unpin;
1406
1407	ring->virtual_start =
1408		ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1409			   ring->size);
1410	if (ring->virtual_start == NULL) {
1411		DRM_ERROR("Failed to map ringbuffer.\n");
1412		ret = -EINVAL;
1413		goto err_unpin;
1414	}
1415
1416	ret = ring->init(ring);
1417	if (ret)
1418		goto err_unmap;
1419
1420	/* Workaround an erratum on the i830 which causes a hang if
1421	 * the TAIL pointer points to within the last 2 cachelines
1422	 * of the buffer.
1423	 */
1424	ring->effective_size = ring->size;
1425	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1426		ring->effective_size -= 128;
1427
1428	i915_cmd_parser_init_ring(ring);
1429
1430	return 0;
1431
1432err_unmap:
1433	iounmap(ring->virtual_start);
1434err_unpin:
1435	i915_gem_object_ggtt_unpin(obj);
1436err_unref:
1437	drm_gem_object_unreference(&obj->base);
1438	ring->obj = NULL;
1439err_hws:
1440	cleanup_status_page(ring);
1441	return ret;
1442}
1443
1444void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1445{
1446	struct drm_i915_private *dev_priv;
1447	int ret;
1448
1449	if (ring->obj == NULL)
1450		return;
1451
1452	/* Disable the ring buffer. The ring must be idle at this point */
1453	dev_priv = ring->dev->dev_private;
1454	ret = intel_ring_idle(ring);
1455	if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
1456		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1457			  ring->name, ret);
1458
1459	I915_WRITE_CTL(ring, 0);
1460
1461	iounmap(ring->virtual_start);
1462
1463	i915_gem_object_ggtt_unpin(ring->obj);
1464	drm_gem_object_unreference(&ring->obj->base);
1465	ring->obj = NULL;
1466	ring->preallocated_lazy_request = NULL;
1467	ring->outstanding_lazy_seqno = 0;
1468
1469	if (ring->cleanup)
1470		ring->cleanup(ring);
1471
1472	cleanup_status_page(ring);
1473}
1474
1475static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1476{
1477	struct drm_i915_gem_request *request;
1478	u32 seqno = 0, tail;
1479	int ret;
1480
1481	if (ring->last_retired_head != -1) {
1482		ring->head = ring->last_retired_head;
1483		ring->last_retired_head = -1;
1484
1485		ring->space = ring_space(ring);
1486		if (ring->space >= n)
1487			return 0;
1488	}
1489
1490	list_for_each_entry(request, &ring->request_list, list) {
1491		int space;
1492
1493		if (request->tail == -1)
1494			continue;
1495
1496		space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1497		if (space < 0)
1498			space += ring->size;
1499		if (space >= n) {
1500			seqno = request->seqno;
1501			tail = request->tail;
1502			break;
1503		}
1504
1505		/* Consume this request in case we need more space than
1506		 * is available and so need to prevent a race between
1507		 * updating last_retired_head and direct reads of
1508		 * I915_RING_HEAD. It also provides a nice sanity check.
1509		 */
1510		request->tail = -1;
1511	}
1512
1513	if (seqno == 0)
1514		return -ENOSPC;
1515
1516	ret = i915_wait_seqno(ring, seqno);
1517	if (ret)
1518		return ret;
1519
1520	ring->head = tail;
1521	ring->space = ring_space(ring);
1522	if (WARN_ON(ring->space < n))
1523		return -ENOSPC;
1524
1525	return 0;
1526}
1527
1528static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1529{
1530	struct drm_device *dev = ring->dev;
1531	struct drm_i915_private *dev_priv = dev->dev_private;
1532	unsigned long end;
1533	int ret;
1534
1535	ret = intel_ring_wait_request(ring, n);
1536	if (ret != -ENOSPC)
1537		return ret;
1538
1539	/* force the tail write in case we have been skipping them */
1540	__intel_ring_advance(ring);
1541
1542	trace_i915_ring_wait_begin(ring);
1543	/* With GEM the hangcheck timer should kick us out of the loop,
1544	 * leaving it early runs the risk of corrupting GEM state (due
1545	 * to running on almost untested codepaths). But on resume
1546	 * timers don't work yet, so prevent a complete hang in that
1547	 * case by choosing an insanely large timeout. */
1548	end = jiffies + 60 * HZ;
1549
1550	do {
1551		ring->head = I915_READ_HEAD(ring);
1552		ring->space = ring_space(ring);
1553		if (ring->space >= n) {
1554			trace_i915_ring_wait_end(ring);
1555			return 0;
1556		}
1557
1558		if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1559		    dev->primary->master) {
1560			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1561			if (master_priv->sarea_priv)
1562				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1563		}
1564
1565		msleep(1);
1566
1567		ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1568					   dev_priv->mm.interruptible);
1569		if (ret)
1570			return ret;
1571	} while (!time_after(jiffies, end));
1572	trace_i915_ring_wait_end(ring);
1573	return -EBUSY;
1574}
1575
1576static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1577{
1578	uint32_t __iomem *virt;
1579	int rem = ring->size - ring->tail;
1580
1581	if (ring->space < rem) {
1582		int ret = ring_wait_for_space(ring, rem);
1583		if (ret)
1584			return ret;
1585	}
1586
1587	virt = ring->virtual_start + ring->tail;
1588	rem /= 4;
1589	while (rem--)
1590		iowrite32(MI_NOOP, virt++);
1591
1592	ring->tail = 0;
1593	ring->space = ring_space(ring);
1594
1595	return 0;
1596}
1597
1598int intel_ring_idle(struct intel_ring_buffer *ring)
1599{
1600	u32 seqno;
1601	int ret;
1602
1603	/* We need to add any requests required to flush the objects and ring */
1604	if (ring->outstanding_lazy_seqno) {
1605		ret = i915_add_request(ring, NULL);
1606		if (ret)
1607			return ret;
1608	}
1609
1610	/* Wait upon the last request to be completed */
1611	if (list_empty(&ring->request_list))
1612		return 0;
1613
1614	seqno = list_entry(ring->request_list.prev,
1615			   struct drm_i915_gem_request,
1616			   list)->seqno;
1617
1618	return i915_wait_seqno(ring, seqno);
1619}
1620
1621static int
1622intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1623{
1624	if (ring->outstanding_lazy_seqno)
1625		return 0;
1626
1627	if (ring->preallocated_lazy_request == NULL) {
1628		struct drm_i915_gem_request *request;
1629
1630		request = kmalloc(sizeof(*request), GFP_KERNEL);
1631		if (request == NULL)
1632			return -ENOMEM;
1633
1634		ring->preallocated_lazy_request = request;
1635	}
1636
1637	return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
1638}
1639
1640static int __intel_ring_prepare(struct intel_ring_buffer *ring,
1641				int bytes)
1642{
1643	int ret;
1644
1645	if (unlikely(ring->tail + bytes > ring->effective_size)) {
1646		ret = intel_wrap_ring_buffer(ring);
1647		if (unlikely(ret))
1648			return ret;
1649	}
1650
1651	if (unlikely(ring->space < bytes)) {
1652		ret = ring_wait_for_space(ring, bytes);
1653		if (unlikely(ret))
1654			return ret;
1655	}
1656
1657	return 0;
1658}
1659
1660int intel_ring_begin(struct intel_ring_buffer *ring,
1661		     int num_dwords)
1662{
1663	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1664	int ret;
1665
1666	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1667				   dev_priv->mm.interruptible);
1668	if (ret)
1669		return ret;
1670
1671	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
1672	if (ret)
1673		return ret;
1674
1675	/* Preallocate the olr before touching the ring */
1676	ret = intel_ring_alloc_seqno(ring);
1677	if (ret)
1678		return ret;
1679
1680	ring->space -= num_dwords * sizeof(uint32_t);
1681	return 0;
1682}
1683
1684/* Align the ring tail to a cacheline boundary */
1685int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
1686{
1687	int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
1688	int ret;
1689
1690	if (num_dwords == 0)
1691		return 0;
1692
1693	ret = intel_ring_begin(ring, num_dwords);
1694	if (ret)
1695		return ret;
1696
1697	while (num_dwords--)
1698		intel_ring_emit(ring, MI_NOOP);
1699
1700	intel_ring_advance(ring);
1701
1702	return 0;
1703}
1704
1705void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1706{
1707	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1708
1709	BUG_ON(ring->outstanding_lazy_seqno);
1710
1711	if (INTEL_INFO(ring->dev)->gen >= 6) {
1712		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1713		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1714		if (HAS_VEBOX(ring->dev))
1715			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
1716	}
1717
1718	ring->set_seqno(ring, seqno);
1719	ring->hangcheck.seqno = seqno;
1720}
1721
1722static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1723				     u32 value)
1724{
1725	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1726
1727       /* Every tail move must follow the sequence below */
1728
1729	/* Disable notification that the ring is IDLE. The GT
1730	 * will then assume that it is busy and bring it out of rc6.
1731	 */
1732	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1733		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1734
1735	/* Clear the context id. Here be magic! */
1736	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1737
1738	/* Wait for the ring not to be idle, i.e. for it to wake up. */
1739	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1740		      GEN6_BSD_SLEEP_INDICATOR) == 0,
1741		     50))
1742		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1743
1744	/* Now that the ring is fully powered up, update the tail */
1745	I915_WRITE_TAIL(ring, value);
1746	POSTING_READ(RING_TAIL(ring->mmio_base));
1747
1748	/* Let the ring send IDLE messages to the GT again,
1749	 * and so let it sleep to conserve power when idle.
1750	 */
1751	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1752		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1753}
1754
1755static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1756			       u32 invalidate, u32 flush)
1757{
1758	uint32_t cmd;
1759	int ret;
1760
1761	ret = intel_ring_begin(ring, 4);
1762	if (ret)
1763		return ret;
1764
1765	cmd = MI_FLUSH_DW;
1766	if (INTEL_INFO(ring->dev)->gen >= 8)
1767		cmd += 1;
1768	/*
1769	 * Bspec vol 1c.5 - video engine command streamer:
1770	 * "If ENABLED, all TLBs will be invalidated once the flush
1771	 * operation is complete. This bit is only valid when the
1772	 * Post-Sync Operation field is a value of 1h or 3h."
1773	 */
1774	if (invalidate & I915_GEM_GPU_DOMAINS)
1775		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1776			MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1777	intel_ring_emit(ring, cmd);
1778	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1779	if (INTEL_INFO(ring->dev)->gen >= 8) {
1780		intel_ring_emit(ring, 0); /* upper addr */
1781		intel_ring_emit(ring, 0); /* value */
1782	} else  {
1783		intel_ring_emit(ring, 0);
1784		intel_ring_emit(ring, MI_NOOP);
1785	}
1786	intel_ring_advance(ring);
1787	return 0;
1788}
1789
1790static int
1791gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1792			      u32 offset, u32 len,
1793			      unsigned flags)
1794{
1795	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1796	bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
1797		!(flags & I915_DISPATCH_SECURE);
1798	int ret;
1799
1800	ret = intel_ring_begin(ring, 4);
1801	if (ret)
1802		return ret;
1803
1804	/* FIXME(BDW): Address space and security selectors. */
1805	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1806	intel_ring_emit(ring, offset);
1807	intel_ring_emit(ring, 0);
1808	intel_ring_emit(ring, MI_NOOP);
1809	intel_ring_advance(ring);
1810
1811	return 0;
1812}
1813
1814static int
1815hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1816			      u32 offset, u32 len,
1817			      unsigned flags)
1818{
1819	int ret;
1820
1821	ret = intel_ring_begin(ring, 2);
1822	if (ret)
1823		return ret;
1824
1825	intel_ring_emit(ring,
1826			MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1827			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1828	/* bit0-7 is the length on GEN6+ */
1829	intel_ring_emit(ring, offset);
1830	intel_ring_advance(ring);
1831
1832	return 0;
1833}
1834
1835static int
1836gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1837			      u32 offset, u32 len,
1838			      unsigned flags)
1839{
1840	int ret;
1841
1842	ret = intel_ring_begin(ring, 2);
1843	if (ret)
1844		return ret;
1845
1846	intel_ring_emit(ring,
1847			MI_BATCH_BUFFER_START |
1848			(flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1849	/* bit0-7 is the length on GEN6+ */
1850	intel_ring_emit(ring, offset);
1851	intel_ring_advance(ring);
1852
1853	return 0;
1854}
1855
1856/* Blitter support (SandyBridge+) */
1857
1858static int gen6_ring_flush(struct intel_ring_buffer *ring,
1859			   u32 invalidate, u32 flush)
1860{
1861	struct drm_device *dev = ring->dev;
1862	uint32_t cmd;
1863	int ret;
1864
1865	ret = intel_ring_begin(ring, 4);
1866	if (ret)
1867		return ret;
1868
1869	cmd = MI_FLUSH_DW;
1870	if (INTEL_INFO(ring->dev)->gen >= 8)
1871		cmd += 1;
1872	/*
1873	 * Bspec vol 1c.3 - blitter engine command streamer:
1874	 * "If ENABLED, all TLBs will be invalidated once the flush
1875	 * operation is complete. This bit is only valid when the
1876	 * Post-Sync Operation field is a value of 1h or 3h."
1877	 */
1878	if (invalidate & I915_GEM_DOMAIN_RENDER)
1879		cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1880			MI_FLUSH_DW_OP_STOREDW;
1881	intel_ring_emit(ring, cmd);
1882	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1883	if (INTEL_INFO(ring->dev)->gen >= 8) {
1884		intel_ring_emit(ring, 0); /* upper addr */
1885		intel_ring_emit(ring, 0); /* value */
1886	} else  {
1887		intel_ring_emit(ring, 0);
1888		intel_ring_emit(ring, MI_NOOP);
1889	}
1890	intel_ring_advance(ring);
1891
1892	if (IS_GEN7(dev) && !invalidate && flush)
1893		return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1894
1895	return 0;
1896}
1897
1898int intel_init_render_ring_buffer(struct drm_device *dev)
1899{
1900	struct drm_i915_private *dev_priv = dev->dev_private;
1901	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1902
1903	ring->name = "render ring";
1904	ring->id = RCS;
1905	ring->mmio_base = RENDER_RING_BASE;
1906
1907	if (INTEL_INFO(dev)->gen >= 6) {
1908		ring->add_request = gen6_add_request;
1909		ring->flush = gen7_render_ring_flush;
1910		if (INTEL_INFO(dev)->gen == 6)
1911			ring->flush = gen6_render_ring_flush;
1912		if (INTEL_INFO(dev)->gen >= 8) {
1913			ring->flush = gen8_render_ring_flush;
1914			ring->irq_get = gen8_ring_get_irq;
1915			ring->irq_put = gen8_ring_put_irq;
1916		} else {
1917			ring->irq_get = gen6_ring_get_irq;
1918			ring->irq_put = gen6_ring_put_irq;
1919		}
1920		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1921		ring->get_seqno = gen6_ring_get_seqno;
1922		ring->set_seqno = ring_set_seqno;
1923		ring->sync_to = gen6_ring_sync;
1924		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1925		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1926		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1927		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1928		ring->signal_mbox[RCS] = GEN6_NOSYNC;
1929		ring->signal_mbox[VCS] = GEN6_VRSYNC;
1930		ring->signal_mbox[BCS] = GEN6_BRSYNC;
1931		ring->signal_mbox[VECS] = GEN6_VERSYNC;
1932	} else if (IS_GEN5(dev)) {
1933		ring->add_request = pc_render_add_request;
1934		ring->flush = gen4_render_ring_flush;
1935		ring->get_seqno = pc_render_get_seqno;
1936		ring->set_seqno = pc_render_set_seqno;
1937		ring->irq_get = gen5_ring_get_irq;
1938		ring->irq_put = gen5_ring_put_irq;
1939		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1940					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1941	} else {
1942		ring->add_request = i9xx_add_request;
1943		if (INTEL_INFO(dev)->gen < 4)
1944			ring->flush = gen2_render_ring_flush;
1945		else
1946			ring->flush = gen4_render_ring_flush;
1947		ring->get_seqno = ring_get_seqno;
1948		ring->set_seqno = ring_set_seqno;
1949		if (IS_GEN2(dev)) {
1950			ring->irq_get = i8xx_ring_get_irq;
1951			ring->irq_put = i8xx_ring_put_irq;
1952		} else {
1953			ring->irq_get = i9xx_ring_get_irq;
1954			ring->irq_put = i9xx_ring_put_irq;
1955		}
1956		ring->irq_enable_mask = I915_USER_INTERRUPT;
1957	}
1958	ring->write_tail = ring_write_tail;
1959	if (IS_HASWELL(dev))
1960		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1961	else if (IS_GEN8(dev))
1962		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
1963	else if (INTEL_INFO(dev)->gen >= 6)
1964		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1965	else if (INTEL_INFO(dev)->gen >= 4)
1966		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1967	else if (IS_I830(dev) || IS_845G(dev))
1968		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1969	else
1970		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1971	ring->init = init_render_ring;
1972	ring->cleanup = render_ring_cleanup;
1973
1974	/* Workaround batchbuffer to combat CS tlb bug. */
1975	if (HAS_BROKEN_CS_TLB(dev)) {
1976		struct drm_i915_gem_object *obj;
1977		int ret;
1978
1979		obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1980		if (obj == NULL) {
1981			DRM_ERROR("Failed to allocate batch bo\n");
1982			return -ENOMEM;
1983		}
1984
1985		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
1986		if (ret != 0) {
1987			drm_gem_object_unreference(&obj->base);
1988			DRM_ERROR("Failed to ping batch bo\n");
1989			return ret;
1990		}
1991
1992		ring->scratch.obj = obj;
1993		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
1994	}
1995
1996	return intel_init_ring_buffer(dev, ring);
1997}
1998
1999int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2000{
2001	struct drm_i915_private *dev_priv = dev->dev_private;
2002	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2003	int ret;
2004
2005	ring->name = "render ring";
2006	ring->id = RCS;
2007	ring->mmio_base = RENDER_RING_BASE;
2008
2009	if (INTEL_INFO(dev)->gen >= 6) {
2010		/* non-kms not supported on gen6+ */
2011		return -ENODEV;
2012	}
2013
2014	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
2015	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2016	 * the special gen5 functions. */
2017	ring->add_request = i9xx_add_request;
2018	if (INTEL_INFO(dev)->gen < 4)
2019		ring->flush = gen2_render_ring_flush;
2020	else
2021		ring->flush = gen4_render_ring_flush;
2022	ring->get_seqno = ring_get_seqno;
2023	ring->set_seqno = ring_set_seqno;
2024	if (IS_GEN2(dev)) {
2025		ring->irq_get = i8xx_ring_get_irq;
2026		ring->irq_put = i8xx_ring_put_irq;
2027	} else {
2028		ring->irq_get = i9xx_ring_get_irq;
2029		ring->irq_put = i9xx_ring_put_irq;
2030	}
2031	ring->irq_enable_mask = I915_USER_INTERRUPT;
2032	ring->write_tail = ring_write_tail;
2033	if (INTEL_INFO(dev)->gen >= 4)
2034		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2035	else if (IS_I830(dev) || IS_845G(dev))
2036		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2037	else
2038		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2039	ring->init = init_render_ring;
2040	ring->cleanup = render_ring_cleanup;
2041
2042	ring->dev = dev;
2043	INIT_LIST_HEAD(&ring->active_list);
2044	INIT_LIST_HEAD(&ring->request_list);
2045
2046	ring->size = size;
2047	ring->effective_size = ring->size;
2048	if (IS_I830(ring->dev) || IS_845G(ring->dev))
2049		ring->effective_size -= 128;
2050
2051	ring->virtual_start = ioremap_wc(start, size);
2052	if (ring->virtual_start == NULL) {
2053		DRM_ERROR("can not ioremap virtual address for"
2054			  " ring buffer\n");
2055		return -ENOMEM;
2056	}
2057
2058	if (!I915_NEED_GFX_HWS(dev)) {
2059		ret = init_phys_status_page(ring);
2060		if (ret)
2061			return ret;
2062	}
2063
2064	return 0;
2065}
2066
2067int intel_init_bsd_ring_buffer(struct drm_device *dev)
2068{
2069	struct drm_i915_private *dev_priv = dev->dev_private;
2070	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
2071
2072	ring->name = "bsd ring";
2073	ring->id = VCS;
2074
2075	ring->write_tail = ring_write_tail;
2076	if (INTEL_INFO(dev)->gen >= 6) {
2077		ring->mmio_base = GEN6_BSD_RING_BASE;
2078		/* gen6 bsd needs a special wa for tail updates */
2079		if (IS_GEN6(dev))
2080			ring->write_tail = gen6_bsd_ring_write_tail;
2081		ring->flush = gen6_bsd_ring_flush;
2082		ring->add_request = gen6_add_request;
2083		ring->get_seqno = gen6_ring_get_seqno;
2084		ring->set_seqno = ring_set_seqno;
2085		if (INTEL_INFO(dev)->gen >= 8) {
2086			ring->irq_enable_mask =
2087				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2088			ring->irq_get = gen8_ring_get_irq;
2089			ring->irq_put = gen8_ring_put_irq;
2090			ring->dispatch_execbuffer =
2091				gen8_ring_dispatch_execbuffer;
2092		} else {
2093			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2094			ring->irq_get = gen6_ring_get_irq;
2095			ring->irq_put = gen6_ring_put_irq;
2096			ring->dispatch_execbuffer =
2097				gen6_ring_dispatch_execbuffer;
2098		}
2099		ring->sync_to = gen6_ring_sync;
2100		ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
2101		ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2102		ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
2103		ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
2104		ring->signal_mbox[RCS] = GEN6_RVSYNC;
2105		ring->signal_mbox[VCS] = GEN6_NOSYNC;
2106		ring->signal_mbox[BCS] = GEN6_BVSYNC;
2107		ring->signal_mbox[VECS] = GEN6_VEVSYNC;
2108	} else {
2109		ring->mmio_base = BSD_RING_BASE;
2110		ring->flush = bsd_ring_flush;
2111		ring->add_request = i9xx_add_request;
2112		ring->get_seqno = ring_get_seqno;
2113		ring->set_seqno = ring_set_seqno;
2114		if (IS_GEN5(dev)) {
2115			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2116			ring->irq_get = gen5_ring_get_irq;
2117			ring->irq_put = gen5_ring_put_irq;
2118		} else {
2119			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2120			ring->irq_get = i9xx_ring_get_irq;
2121			ring->irq_put = i9xx_ring_put_irq;
2122		}
2123		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2124	}
2125	ring->init = init_ring_common;
2126
2127	return intel_init_ring_buffer(dev, ring);
2128}
2129
2130int intel_init_blt_ring_buffer(struct drm_device *dev)
2131{
2132	struct drm_i915_private *dev_priv = dev->dev_private;
2133	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
2134
2135	ring->name = "blitter ring";
2136	ring->id = BCS;
2137
2138	ring->mmio_base = BLT_RING_BASE;
2139	ring->write_tail = ring_write_tail;
2140	ring->flush = gen6_ring_flush;
2141	ring->add_request = gen6_add_request;
2142	ring->get_seqno = gen6_ring_get_seqno;
2143	ring->set_seqno = ring_set_seqno;
2144	if (INTEL_INFO(dev)->gen >= 8) {
2145		ring->irq_enable_mask =
2146			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2147		ring->irq_get = gen8_ring_get_irq;
2148		ring->irq_put = gen8_ring_put_irq;
2149		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2150	} else {
2151		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2152		ring->irq_get = gen6_ring_get_irq;
2153		ring->irq_put = gen6_ring_put_irq;
2154		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2155	}
2156	ring->sync_to = gen6_ring_sync;
2157	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
2158	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
2159	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2160	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
2161	ring->signal_mbox[RCS] = GEN6_RBSYNC;
2162	ring->signal_mbox[VCS] = GEN6_VBSYNC;
2163	ring->signal_mbox[BCS] = GEN6_NOSYNC;
2164	ring->signal_mbox[VECS] = GEN6_VEBSYNC;
2165	ring->init = init_ring_common;
2166
2167	return intel_init_ring_buffer(dev, ring);
2168}
2169
2170int intel_init_vebox_ring_buffer(struct drm_device *dev)
2171{
2172	struct drm_i915_private *dev_priv = dev->dev_private;
2173	struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2174
2175	ring->name = "video enhancement ring";
2176	ring->id = VECS;
2177
2178	ring->mmio_base = VEBOX_RING_BASE;
2179	ring->write_tail = ring_write_tail;
2180	ring->flush = gen6_ring_flush;
2181	ring->add_request = gen6_add_request;
2182	ring->get_seqno = gen6_ring_get_seqno;
2183	ring->set_seqno = ring_set_seqno;
2184
2185	if (INTEL_INFO(dev)->gen >= 8) {
2186		ring->irq_enable_mask =
2187			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2188		ring->irq_get = gen8_ring_get_irq;
2189		ring->irq_put = gen8_ring_put_irq;
2190		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2191	} else {
2192		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2193		ring->irq_get = hsw_vebox_get_irq;
2194		ring->irq_put = hsw_vebox_put_irq;
2195		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2196	}
2197	ring->sync_to = gen6_ring_sync;
2198	ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2199	ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2200	ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2201	ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2202	ring->signal_mbox[RCS] = GEN6_RVESYNC;
2203	ring->signal_mbox[VCS] = GEN6_VVESYNC;
2204	ring->signal_mbox[BCS] = GEN6_BVESYNC;
2205	ring->signal_mbox[VECS] = GEN6_NOSYNC;
2206	ring->init = init_ring_common;
2207
2208	return intel_init_ring_buffer(dev, ring);
2209}
2210
2211int
2212intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2213{
2214	int ret;
2215
2216	if (!ring->gpu_caches_dirty)
2217		return 0;
2218
2219	ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2220	if (ret)
2221		return ret;
2222
2223	trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2224
2225	ring->gpu_caches_dirty = false;
2226	return 0;
2227}
2228
2229int
2230intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2231{
2232	uint32_t flush_domains;
2233	int ret;
2234
2235	flush_domains = 0;
2236	if (ring->gpu_caches_dirty)
2237		flush_domains = I915_GEM_GPU_DOMAINS;
2238
2239	ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2240	if (ret)
2241		return ret;
2242
2243	trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2244
2245	ring->gpu_caches_dirty = false;
2246	return 0;
2247}