Linux Audio

Check our new training course

Loading...
v6.13.7
   1/**************************************************************************
   2 *
   3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
   4 * Copyright 2016 Intel Corporation
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 *
  28 **************************************************************************/
  29
  30/*
  31 * Generic simple memory manager implementation. Intended to be used as a base
  32 * class implementation for more advanced memory managers.
  33 *
  34 * Note that the algorithm used is quite simple and there might be substantial
  35 * performance gains if a smarter free list is implemented. Currently it is
  36 * just an unordered stack of free regions. This could easily be improved if
  37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
  38 *
  39 * Aligned allocations can also see improvement.
  40 *
  41 * Authors:
  42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
  43 */
  44
  45#include <linux/export.h>
  46#include <linux/interval_tree_generic.h>
  47#include <linux/seq_file.h>
  48#include <linux/slab.h>
  49#include <linux/stacktrace.h>
  50
  51#include <drm/drm_mm.h>
 
 
 
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * drm_mm provides a simple range allocator. The drivers are free to use the
  57 * resource allocator from the linux core if it suits them, the upside of drm_mm
  58 * is that it's in the DRM core. Which means that it's easier to extend for
  59 * some of the crazier special purpose needs of gpus.
  60 *
  61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
  62 * Drivers are free to embed either of them into their own suitable
  63 * datastructures. drm_mm itself will not do any memory allocations of its own,
  64 * so if drivers choose not to embed nodes they need to still allocate them
  65 * themselves.
  66 *
  67 * The range allocator also supports reservation of preallocated blocks. This is
  68 * useful for taking over initial mode setting configurations from the firmware,
  69 * where an object needs to be created which exactly matches the firmware's
  70 * scanout target. As long as the range is still free it can be inserted anytime
  71 * after the allocator is initialized, which helps with avoiding looped
  72 * dependencies in the driver load sequence.
  73 *
  74 * drm_mm maintains a stack of most recently freed holes, which of all
  75 * simplistic datastructures seems to be a fairly decent approach to clustering
  76 * allocations and avoiding too much fragmentation. This means free space
  77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
  78 * something better would be fairly complex and since gfx thrashing is a fairly
  79 * steep cliff not a real concern. Removing a node again is O(1).
  80 *
  81 * drm_mm supports a few features: Alignment and range restrictions can be
  82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
  83 * opaque unsigned long) which in conjunction with a driver callback can be used
  84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
  85 * this to implement guard pages between incompatible caching domains in the
  86 * graphics TT.
  87 *
  88 * Two behaviors are supported for searching and allocating: bottom-up and
  89 * top-down. The default is bottom-up. Top-down allocation can be used if the
  90 * memory area has different restrictions, or just to reduce fragmentation.
  91 *
  92 * Finally iteration helpers to walk all nodes and all holes are provided as are
  93 * some basic allocator dumpers for debugging.
  94 *
  95 * Note that this range allocator is not thread-safe, drivers need to protect
  96 * modifications with their own locking. The idea behind this is that for a full
  97 * memory manager additional data needs to be protected anyway, hence internal
  98 * locking would be fully redundant.
  99 */
 100
 101#ifdef CONFIG_DRM_DEBUG_MM
 102#include <linux/stackdepot.h>
 103
 104#define STACKDEPTH 32
 105#define BUFSZ 4096
 106
 107static noinline void save_stack(struct drm_mm_node *node)
 108{
 109	unsigned long entries[STACKDEPTH];
 110	unsigned int n;
 111
 112	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
 113
 114	/* May be called under spinlock, so avoid sleeping */
 115	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
 116}
 117
 118static void show_leaks(struct drm_mm *mm)
 119{
 120	struct drm_mm_node *node;
 121	char *buf;
 122
 123	buf = kmalloc(BUFSZ, GFP_KERNEL);
 124	if (!buf)
 125		return;
 126
 127	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
 128		if (!node->stack) {
 129			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
 130				  node->start, node->size);
 131			continue;
 132		}
 133
 134		stack_depot_snprint(node->stack, buf, BUFSZ, 0);
 135		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
 136			  node->start, node->size, buf);
 137	}
 138
 139	kfree(buf);
 140}
 141
 142#undef STACKDEPTH
 143#undef BUFSZ
 144#else
 145static void save_stack(struct drm_mm_node *node) { }
 146static void show_leaks(struct drm_mm *mm) { }
 147#endif
 148
 149#define START(node) ((node)->start)
 150#define LAST(node)  ((node)->start + (node)->size - 1)
 151
 152INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
 153		     u64, __subtree_last,
 154		     START, LAST, static inline __maybe_unused, drm_mm_interval_tree)
 155
 156struct drm_mm_node *
 157__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
 158{
 159	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
 160					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
 161}
 162EXPORT_SYMBOL(__drm_mm_interval_first);
 163
 164static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
 165					  struct drm_mm_node *node)
 166{
 167	struct drm_mm *mm = hole_node->mm;
 168	struct rb_node **link, *rb;
 169	struct drm_mm_node *parent;
 170	bool leftmost;
 171
 172	node->__subtree_last = LAST(node);
 173
 174	if (drm_mm_node_allocated(hole_node)) {
 175		rb = &hole_node->rb;
 176		while (rb) {
 177			parent = rb_entry(rb, struct drm_mm_node, rb);
 178			if (parent->__subtree_last >= node->__subtree_last)
 179				break;
 180
 181			parent->__subtree_last = node->__subtree_last;
 182			rb = rb_parent(rb);
 183		}
 184
 185		rb = &hole_node->rb;
 186		link = &hole_node->rb.rb_right;
 187		leftmost = false;
 188	} else {
 189		rb = NULL;
 190		link = &mm->interval_tree.rb_root.rb_node;
 191		leftmost = true;
 192	}
 193
 194	while (*link) {
 195		rb = *link;
 196		parent = rb_entry(rb, struct drm_mm_node, rb);
 197		if (parent->__subtree_last < node->__subtree_last)
 198			parent->__subtree_last = node->__subtree_last;
 199		if (node->start < parent->start) {
 200			link = &parent->rb.rb_left;
 201		} else {
 202			link = &parent->rb.rb_right;
 203			leftmost = false;
 204		}
 205	}
 206
 207	rb_link_node(&node->rb, rb, link);
 208	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
 209				   &drm_mm_interval_tree_augment);
 210}
 211
 212#define HOLE_SIZE(NODE) ((NODE)->hole_size)
 213#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
 214
 215static u64 rb_to_hole_size(struct rb_node *rb)
 216{
 217	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
 218}
 219
 220static void insert_hole_size(struct rb_root_cached *root,
 221			     struct drm_mm_node *node)
 222{
 223	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
 224	u64 x = node->hole_size;
 225	bool first = true;
 226
 227	while (*link) {
 228		rb = *link;
 229		if (x > rb_to_hole_size(rb)) {
 230			link = &rb->rb_left;
 231		} else {
 232			link = &rb->rb_right;
 233			first = false;
 234		}
 235	}
 236
 237	rb_link_node(&node->rb_hole_size, rb, link);
 238	rb_insert_color_cached(&node->rb_hole_size, root, first);
 239}
 240
 241RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
 242			 struct drm_mm_node, rb_hole_addr,
 243			 u64, subtree_max_hole, HOLE_SIZE)
 244
 245static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
 246{
 247	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
 248	u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
 249	struct drm_mm_node *parent;
 250
 251	while (*link) {
 252		rb_parent = *link;
 253		parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
 254		if (parent->subtree_max_hole < subtree_max_hole)
 255			parent->subtree_max_hole = subtree_max_hole;
 256		if (start < HOLE_ADDR(parent))
 257			link = &parent->rb_hole_addr.rb_left;
 258		else
 259			link = &parent->rb_hole_addr.rb_right;
 260	}
 261
 262	rb_link_node(&node->rb_hole_addr, rb_parent, link);
 263	rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
 264}
 265
 266static void add_hole(struct drm_mm_node *node)
 267{
 268	struct drm_mm *mm = node->mm;
 269
 270	node->hole_size =
 271		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
 272	node->subtree_max_hole = node->hole_size;
 273	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 274
 275	insert_hole_size(&mm->holes_size, node);
 276	insert_hole_addr(&mm->holes_addr, node);
 277
 278	list_add(&node->hole_stack, &mm->hole_stack);
 279}
 280
 281static void rm_hole(struct drm_mm_node *node)
 282{
 283	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 284
 285	list_del(&node->hole_stack);
 286	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
 287	rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
 288			   &augment_callbacks);
 289	node->hole_size = 0;
 290	node->subtree_max_hole = 0;
 291
 292	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
 293}
 294
 295static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
 296{
 297	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
 298}
 299
 300static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
 301{
 302	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
 303}
 304
 305static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
 306{
 307	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
 308	struct drm_mm_node *best = NULL;
 309
 310	do {
 311		struct drm_mm_node *node =
 312			rb_entry(rb, struct drm_mm_node, rb_hole_size);
 313
 314		if (size <= node->hole_size) {
 315			best = node;
 316			rb = rb->rb_right;
 317		} else {
 318			rb = rb->rb_left;
 
 
 319		}
 320	} while (rb);
 321
 322	return best;
 323}
 324
 325static bool usable_hole_addr(struct rb_node *rb, u64 size)
 326{
 327	return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size;
 328}
 329
 330static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size)
 331{
 332	struct rb_node *rb = mm->holes_addr.rb_node;
 333	struct drm_mm_node *node = NULL;
 334
 335	while (rb) {
 336		u64 hole_start;
 337
 338		if (!usable_hole_addr(rb, size))
 339			break;
 340
 341		node = rb_hole_addr_to_node(rb);
 342		hole_start = __drm_mm_hole_node_start(node);
 343
 344		if (addr < hole_start)
 345			rb = node->rb_hole_addr.rb_left;
 346		else if (addr > hole_start + node->hole_size)
 347			rb = node->rb_hole_addr.rb_right;
 348		else
 349			break;
 350	}
 351
 352	return node;
 353}
 354
 355static struct drm_mm_node *
 356first_hole(struct drm_mm *mm,
 357	   u64 start, u64 end, u64 size,
 358	   enum drm_mm_insert_mode mode)
 359{
 360	switch (mode) {
 361	default:
 362	case DRM_MM_INSERT_BEST:
 363		return best_hole(mm, size);
 364
 365	case DRM_MM_INSERT_LOW:
 366		return find_hole_addr(mm, start, size);
 367
 368	case DRM_MM_INSERT_HIGH:
 369		return find_hole_addr(mm, end, size);
 370
 371	case DRM_MM_INSERT_EVICT:
 372		return list_first_entry_or_null(&mm->hole_stack,
 373						struct drm_mm_node,
 374						hole_stack);
 375	}
 376}
 377
 378/**
 379 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions
 380 * @name: name of function to declare
 381 * @first: first rb member to traverse (either rb_left or rb_right).
 382 * @last: last rb member to traverse (either rb_right or rb_left).
 383 *
 384 * This macro declares a function to return the next hole of the addr rb tree.
 385 * While traversing the tree we take the searched size into account and only
 386 * visit branches with potential big enough holes.
 387 */
 388
 389#define DECLARE_NEXT_HOLE_ADDR(name, first, last)			\
 390static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size)	\
 391{									\
 392	struct rb_node *parent, *node = &entry->rb_hole_addr;		\
 393									\
 394	if (!entry || RB_EMPTY_NODE(node))				\
 395		return NULL;						\
 396									\
 397	if (usable_hole_addr(node->first, size)) {			\
 398		node = node->first;					\
 399		while (usable_hole_addr(node->last, size))		\
 400			node = node->last;				\
 401		return rb_hole_addr_to_node(node);			\
 402	}								\
 403									\
 404	while ((parent = rb_parent(node)) && node == parent->first)	\
 405		node = parent;						\
 406									\
 407	return rb_hole_addr_to_node(parent);				\
 408}
 409
 410DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right)
 411DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left)
 412
 413static struct drm_mm_node *
 414next_hole(struct drm_mm *mm,
 415	  struct drm_mm_node *node,
 416	  u64 size,
 417	  enum drm_mm_insert_mode mode)
 418{
 419	switch (mode) {
 420	default:
 421	case DRM_MM_INSERT_BEST:
 422		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
 423
 424	case DRM_MM_INSERT_LOW:
 425		return next_hole_low_addr(node, size);
 426
 427	case DRM_MM_INSERT_HIGH:
 428		return next_hole_high_addr(node, size);
 429
 430	case DRM_MM_INSERT_EVICT:
 431		node = list_next_entry(node, hole_stack);
 432		return &node->hole_stack == &mm->hole_stack ? NULL : node;
 
 433	}
 434}
 435
 436/**
 437 * drm_mm_reserve_node - insert an pre-initialized node
 438 * @mm: drm_mm allocator to insert @node into
 439 * @node: drm_mm_node to insert
 440 *
 441 * This functions inserts an already set-up &drm_mm_node into the allocator,
 442 * meaning that start, size and color must be set by the caller. All other
 443 * fields must be cleared to 0. This is useful to initialize the allocator with
 444 * preallocated objects which must be set-up before the range allocator can be
 445 * set-up, e.g. when taking over a firmware framebuffer.
 446 *
 447 * Returns:
 448 * 0 on success, -ENOSPC if there's no hole where @node is.
 449 */
 450int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
 451{
 452	struct drm_mm_node *hole;
 453	u64 hole_start, hole_end;
 454	u64 adj_start, adj_end;
 455	u64 end;
 456
 457	end = node->start + node->size;
 458	if (unlikely(end <= node->start))
 459		return -ENOSPC;
 460
 461	/* Find the relevant hole to add our node to */
 462	hole = find_hole_addr(mm, node->start, 0);
 463	if (!hole)
 464		return -ENOSPC;
 465
 466	adj_start = hole_start = __drm_mm_hole_node_start(hole);
 467	adj_end = hole_end = hole_start + hole->hole_size;
 468
 469	if (mm->color_adjust)
 470		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
 471
 472	if (adj_start > node->start || adj_end < end)
 473		return -ENOSPC;
 
 
 474
 475	node->mm = mm;
 
 
 
 
 476
 477	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 478	list_add(&node->node_list, &hole->node_list);
 479	drm_mm_interval_tree_add_node(hole, node);
 480	node->hole_size = 0;
 481
 482	rm_hole(hole);
 483	if (node->start > hole_start)
 484		add_hole(hole);
 485	if (end < hole_end)
 486		add_hole(node);
 487
 488	save_stack(node);
 489	return 0;
 490}
 491EXPORT_SYMBOL(drm_mm_reserve_node);
 492
 493static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
 494{
 495	return rb ? rb_to_hole_size(rb) : 0;
 496}
 497
 498/**
 499 * drm_mm_insert_node_in_range - ranged search for space and insert @node
 500 * @mm: drm_mm to allocate from
 501 * @node: preallocate node to insert
 502 * @size: size of the allocation
 503 * @alignment: alignment of the allocation
 504 * @color: opaque tag value to use for this node
 505 * @range_start: start of the allowed range for this node
 506 * @range_end: end of the allowed range for this node
 507 * @mode: fine-tune the allocation search and placement
 508 *
 509 * The preallocated @node must be cleared to 0.
 510 *
 511 * Returns:
 512 * 0 on success, -ENOSPC if there's no suitable hole.
 513 */
 514int drm_mm_insert_node_in_range(struct drm_mm * const mm,
 515				struct drm_mm_node * const node,
 516				u64 size, u64 alignment,
 517				unsigned long color,
 518				u64 range_start, u64 range_end,
 519				enum drm_mm_insert_mode mode)
 520{
 521	struct drm_mm_node *hole;
 522	u64 remainder_mask;
 523	bool once;
 524
 525	DRM_MM_BUG_ON(range_start > range_end);
 526
 527	if (unlikely(size == 0 || range_end - range_start < size))
 528		return -ENOSPC;
 529
 530	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
 531		return -ENOSPC;
 532
 533	if (alignment <= 1)
 534		alignment = 0;
 535
 536	once = mode & DRM_MM_INSERT_ONCE;
 537	mode &= ~DRM_MM_INSERT_ONCE;
 538
 539	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 540	for (hole = first_hole(mm, range_start, range_end, size, mode);
 541	     hole;
 542	     hole = once ? NULL : next_hole(mm, hole, size, mode)) {
 543		u64 hole_start = __drm_mm_hole_node_start(hole);
 544		u64 hole_end = hole_start + hole->hole_size;
 545		u64 adj_start, adj_end;
 546		u64 col_start, col_end;
 547
 548		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
 549			break;
 550
 551		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
 552			break;
 553
 554		col_start = hole_start;
 555		col_end = hole_end;
 556		if (mm->color_adjust)
 557			mm->color_adjust(hole, color, &col_start, &col_end);
 558
 559		adj_start = max(col_start, range_start);
 560		adj_end = min(col_end, range_end);
 561
 562		if (adj_end <= adj_start || adj_end - adj_start < size)
 563			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565		if (mode == DRM_MM_INSERT_HIGH)
 566			adj_start = adj_end - size;
 567
 568		if (alignment) {
 569			u64 rem;
 570
 571			if (likely(remainder_mask))
 572				rem = adj_start & remainder_mask;
 
 
 
 573			else
 574				div64_u64_rem(adj_start, alignment, &rem);
 575			if (rem) {
 576				adj_start -= rem;
 577				if (mode != DRM_MM_INSERT_HIGH)
 578					adj_start += alignment;
 579
 580				if (adj_start < max(col_start, range_start) ||
 581				    min(col_end, range_end) - adj_start < size)
 582					continue;
 583
 584				if (adj_end <= adj_start ||
 585				    adj_end - adj_start < size)
 586					continue;
 587			}
 588		}
 
 589
 590		node->mm = mm;
 591		node->size = size;
 592		node->start = adj_start;
 593		node->color = color;
 594		node->hole_size = 0;
 595
 596		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 597		list_add(&node->node_list, &hole->node_list);
 598		drm_mm_interval_tree_add_node(hole, node);
 
 
 599
 600		rm_hole(hole);
 601		if (adj_start > hole_start)
 602			add_hole(hole);
 603		if (adj_start + size < hole_end)
 604			add_hole(node);
 605
 606		save_stack(node);
 607		return 0;
 608	}
 
 609
 610	return -ENOSPC;
 
 
 
 
 611}
 612EXPORT_SYMBOL(drm_mm_insert_node_in_range);
 613
 614static inline __maybe_unused bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
 615{
 616	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617}
 
 618
 619/**
 620 * drm_mm_remove_node - Remove a memory node from the allocator.
 621 * @node: drm_mm_node to remove
 622 *
 623 * This just removes a node from its drm_mm allocator. The node does not need to
 624 * be cleared again before it can be re-inserted into this or any other drm_mm
 625 * allocator. It is a bug to call this function on a unallocated node.
 626 */
 627void drm_mm_remove_node(struct drm_mm_node *node)
 628{
 629	struct drm_mm *mm = node->mm;
 630	struct drm_mm_node *prev_node;
 631
 632	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
 633	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
 
 
 
 634
 635	prev_node = list_prev_entry(node, node_list);
 
 636
 637	if (drm_mm_hole_follows(node))
 638		rm_hole(node);
 
 
 
 
 
 
 
 
 
 
 
 
 639
 640	drm_mm_interval_tree_remove(node, &mm->interval_tree);
 641	list_del(&node->node_list);
 
 
 
 
 
 
 
 
 
 642
 643	if (drm_mm_hole_follows(prev_node))
 644		rm_hole(prev_node);
 645	add_hole(prev_node);
 
 
 646
 647	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648}
 649EXPORT_SYMBOL(drm_mm_remove_node);
 650
 651/**
 652 * DOC: lru scan roster
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653 *
 654 * Very often GPUs need to have continuous allocations for a given object. When
 655 * evicting objects to make space for a new one it is therefore not most
 656 * efficient when we simply start to select all objects from the tail of an LRU
 657 * until there's a suitable hole: Especially for big objects or nodes that
 658 * otherwise have special allocation constraints there's a good chance we evict
 659 * lots of (smaller) objects unnecessarily.
 660 *
 661 * The DRM range allocator supports this use-case through the scanning
 662 * interfaces. First a scan operation needs to be initialized with
 663 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
 664 * objects to the roster, probably by walking an LRU list, but this can be
 665 * freely implemented. Eviction candidates are added using
 666 * drm_mm_scan_add_block() until a suitable hole is found or there are no
 667 * further evictable objects. Eviction roster metadata is tracked in &struct
 668 * drm_mm_scan.
 669 *
 670 * The driver must walk through all objects again in exactly the reverse
 671 * order to restore the allocator state. Note that while the allocator is used
 672 * in the scan mode no other operation is allowed.
 673 *
 674 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
 675 * reported true) in the scan, and any overlapping nodes after color adjustment
 676 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
 677 * since freeing a node is also O(1) the overall complexity is
 678 * O(scanned_objects). So like the free stack which needs to be walked before a
 679 * scan operation even begins this is linear in the number of objects. It
 680 * doesn't seem to hurt too badly.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682
 683/**
 684 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
 685 * @scan: scan state
 686 * @mm: drm_mm to scan
 687 * @size: size of the allocation
 688 * @alignment: alignment of the allocation
 689 * @color: opaque tag value to use for the allocation
 690 * @start: start of the allowed range for the allocation
 691 * @end: end of the allowed range for the allocation
 692 * @mode: fine-tune the allocation search and placement
 693 *
 694 * This simply sets up the scanning routines with the parameters for the desired
 695 * hole.
 
 696 *
 697 * Warning:
 698 * As long as the scan list is non-empty, no other operations than
 699 * adding/removing nodes to/from the scan list are allowed.
 700 */
 701void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
 702				 struct drm_mm *mm,
 703				 u64 size,
 704				 u64 alignment,
 705				 unsigned long color,
 706				 u64 start,
 707				 u64 end,
 708				 enum drm_mm_insert_mode mode)
 709{
 710	DRM_MM_BUG_ON(start >= end);
 711	DRM_MM_BUG_ON(!size || size > end - start);
 712	DRM_MM_BUG_ON(mm->scan_active);
 713
 714	scan->mm = mm;
 715
 716	if (alignment <= 1)
 717		alignment = 0;
 718
 719	scan->color = color;
 720	scan->alignment = alignment;
 721	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 722	scan->size = size;
 723	scan->mode = mode;
 724
 725	DRM_MM_BUG_ON(end <= start);
 726	scan->range_start = start;
 727	scan->range_end = end;
 728
 729	scan->hit_start = U64_MAX;
 730	scan->hit_end = 0;
 731}
 732EXPORT_SYMBOL(drm_mm_scan_init_with_range);
 733
 734/**
 735 * drm_mm_scan_add_block - add a node to the scan list
 736 * @scan: the active drm_mm scanner
 737 * @node: drm_mm_node to add
 738 *
 739 * Add a node to the scan list that might be freed to make space for the desired
 740 * hole.
 741 *
 742 * Returns:
 743 * True if a hole has been found, false otherwise.
 744 */
 745bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
 746			   struct drm_mm_node *node)
 747{
 748	struct drm_mm *mm = scan->mm;
 749	struct drm_mm_node *hole;
 750	u64 hole_start, hole_end;
 751	u64 col_start, col_end;
 752	u64 adj_start, adj_end;
 753
 754	DRM_MM_BUG_ON(node->mm != mm);
 755	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
 756	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
 757	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 758	mm->scan_active++;
 759
 760	/* Remove this block from the node_list so that we enlarge the hole
 761	 * (distance between the end of our previous node and the start of
 762	 * or next), without poisoning the link so that we can restore it
 763	 * later in drm_mm_scan_remove_block().
 764	 */
 765	hole = list_prev_entry(node, node_list);
 766	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
 767	__list_del_entry(&node->node_list);
 768
 769	hole_start = __drm_mm_hole_node_start(hole);
 770	hole_end = __drm_mm_hole_node_end(hole);
 771
 772	col_start = hole_start;
 773	col_end = hole_end;
 774	if (mm->color_adjust)
 775		mm->color_adjust(hole, scan->color, &col_start, &col_end);
 776
 777	adj_start = max(col_start, scan->range_start);
 778	adj_end = min(col_end, scan->range_end);
 779	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
 780		return false;
 781
 782	if (scan->mode == DRM_MM_INSERT_HIGH)
 783		adj_start = adj_end - scan->size;
 784
 785	if (scan->alignment) {
 786		u64 rem;
 787
 788		if (likely(scan->remainder_mask))
 789			rem = adj_start & scan->remainder_mask;
 790		else
 791			div64_u64_rem(adj_start, scan->alignment, &rem);
 792		if (rem) {
 793			adj_start -= rem;
 794			if (scan->mode != DRM_MM_INSERT_HIGH)
 795				adj_start += scan->alignment;
 796			if (adj_start < max(col_start, scan->range_start) ||
 797			    min(col_end, scan->range_end) - adj_start < scan->size)
 798				return false;
 799
 800			if (adj_end <= adj_start ||
 801			    adj_end - adj_start < scan->size)
 802				return false;
 803		}
 804	}
 805
 806	scan->hit_start = adj_start;
 807	scan->hit_end = adj_start + scan->size;
 
 808
 809	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
 810	DRM_MM_BUG_ON(scan->hit_start < hole_start);
 811	DRM_MM_BUG_ON(scan->hit_end > hole_end);
 
 
 
 812
 813	return true;
 814}
 815EXPORT_SYMBOL(drm_mm_scan_add_block);
 816
 817/**
 818 * drm_mm_scan_remove_block - remove a node from the scan list
 819 * @scan: the active drm_mm scanner
 820 * @node: drm_mm_node to remove
 821 *
 822 * Nodes **must** be removed in exactly the reverse order from the scan list as
 823 * they have been added (e.g. using list_add() as they are added and then
 824 * list_for_each() over that eviction list to remove), otherwise the internal
 825 * state of the memory manager will be corrupted.
 826 *
 827 * When the scan list is empty, the selected memory nodes can be freed. An
 828 * immediately following drm_mm_insert_node_in_range_generic() or one of the
 829 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
 830 * the just freed block (because it's at the top of the free_stack list).
 831 *
 832 * Returns:
 833 * True if this block should be evicted, false otherwise. Will always
 834 * return false when no hole has been found.
 835 */
 836bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
 837			      struct drm_mm_node *node)
 838{
 
 839	struct drm_mm_node *prev_node;
 840
 841	DRM_MM_BUG_ON(node->mm != scan->mm);
 842	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
 843	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 844
 845	DRM_MM_BUG_ON(!node->mm->scan_active);
 846	node->mm->scan_active--;
 847
 848	/* During drm_mm_scan_add_block() we decoupled this node leaving
 849	 * its pointers intact. Now that the caller is walking back along
 850	 * the eviction list we can restore this block into its rightful
 851	 * place on the full node_list. To confirm that the caller is walking
 852	 * backwards correctly we check that prev_node->next == node->next,
 853	 * i.e. both believe the same node should be on the other side of the
 854	 * hole.
 855	 */
 856	prev_node = list_prev_entry(node, node_list);
 857	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
 858		      list_next_entry(node, node_list));
 859	list_add(&node->node_list, &prev_node->node_list);
 860
 861	return (node->start + node->size > scan->hit_start &&
 862		node->start < scan->hit_end);
 863}
 864EXPORT_SYMBOL(drm_mm_scan_remove_block);
 865
 866/**
 867 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
 868 * @scan: drm_mm scan with target hole
 869 *
 870 * After completing an eviction scan and removing the selected nodes, we may
 871 * need to remove a few more nodes from either side of the target hole if
 872 * mm.color_adjust is being used.
 873 *
 874 * Returns:
 875 * A node to evict, or NULL if there are no overlapping nodes.
 
 876 */
 877struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
 878{
 879	struct drm_mm *mm = scan->mm;
 880	struct drm_mm_node *hole;
 881	u64 hole_start, hole_end;
 882
 883	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
 884
 885	if (!mm->color_adjust)
 886		return NULL;
 887
 888	/*
 889	 * The hole found during scanning should ideally be the first element
 890	 * in the hole_stack list, but due to side-effects in the driver it
 891	 * may not be.
 892	 */
 893	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
 894		hole_start = __drm_mm_hole_node_start(hole);
 895		hole_end = hole_start + hole->hole_size;
 896
 897		if (hole_start <= scan->hit_start &&
 898		    hole_end >= scan->hit_end)
 899			break;
 900	}
 901
 902	/* We should only be called after we found the hole previously */
 903	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
 904	if (unlikely(&hole->hole_stack == &mm->hole_stack))
 905		return NULL;
 906
 907	DRM_MM_BUG_ON(hole_start > scan->hit_start);
 908	DRM_MM_BUG_ON(hole_end < scan->hit_end);
 909
 910	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
 911	if (hole_start > scan->hit_start)
 912		return hole;
 913	if (hole_end < scan->hit_end)
 914		return list_next_entry(hole, node_list);
 915
 916	return NULL;
 917}
 918EXPORT_SYMBOL(drm_mm_scan_color_evict);
 919
 920/**
 921 * drm_mm_init - initialize a drm-mm allocator
 922 * @mm: the drm_mm structure to initialize
 923 * @start: start of the range managed by @mm
 924 * @size: end of the range managed by @mm
 925 *
 926 * Note that @mm must be cleared to 0 before calling this function.
 927 */
 928void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
 929{
 930	DRM_MM_BUG_ON(start + size <= start);
 931
 932	mm->color_adjust = NULL;
 933
 934	INIT_LIST_HEAD(&mm->hole_stack);
 935	mm->interval_tree = RB_ROOT_CACHED;
 936	mm->holes_size = RB_ROOT_CACHED;
 937	mm->holes_addr = RB_ROOT;
 938
 939	/* Clever trick to avoid a special case in the free hole tracking. */
 940	INIT_LIST_HEAD(&mm->head_node.node_list);
 941	mm->head_node.flags = 0;
 
 
 
 
 942	mm->head_node.mm = mm;
 943	mm->head_node.start = start + size;
 944	mm->head_node.size = -size;
 945	add_hole(&mm->head_node);
 946
 947	mm->scan_active = 0;
 948
 949#ifdef CONFIG_DRM_DEBUG_MM
 950	stack_depot_init();
 951#endif
 952}
 953EXPORT_SYMBOL(drm_mm_init);
 954
 955/**
 956 * drm_mm_takedown - clean up a drm_mm allocator
 957 * @mm: drm_mm allocator to clean up
 958 *
 959 * Note that it is a bug to call this function on an allocator which is not
 960 * clean.
 961 */
 962void drm_mm_takedown(struct drm_mm *mm)
 963{
 964	if (WARN(!drm_mm_clean(mm),
 965		 "Memory manager not clean during takedown.\n"))
 966		show_leaks(mm);
 967}
 968EXPORT_SYMBOL(drm_mm_takedown);
 969
 970static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971{
 972	u64 start, size;
 
 
 
 973
 974	size = entry->hole_size;
 975	if (size) {
 976		start = drm_mm_hole_node_start(entry);
 977		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
 978			   start, start + size, size);
 
 979	}
 
 980
 981	return size;
 
 982}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983/**
 984 * drm_mm_print - print allocator state
 985 * @mm: drm_mm allocator to print
 986 * @p: DRM printer to use
 987 */
 988void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
 989{
 990	const struct drm_mm_node *entry;
 991	u64 total_used = 0, total_free = 0, total = 0;
 992
 993	total_free += drm_mm_dump_hole(p, &mm->head_node);
 994
 995	drm_mm_for_each_node(entry, mm) {
 996		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
 997			   entry->start + entry->size, entry->size);
 
 998		total_used += entry->size;
 999		total_free += drm_mm_dump_hole(p, entry);
1000	}
1001	total = total_free + total_used;
1002
1003	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
1004		   total_used, total_free);
1005}
1006EXPORT_SYMBOL(drm_mm_print);
 
v3.15
  1/**************************************************************************
  2 *
  3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
 
  4 * All Rights Reserved.
  5 *
  6 * Permission is hereby granted, free of charge, to any person obtaining a
  7 * copy of this software and associated documentation files (the
  8 * "Software"), to deal in the Software without restriction, including
  9 * without limitation the rights to use, copy, modify, merge, publish,
 10 * distribute, sub license, and/or sell copies of the Software, and to
 11 * permit persons to whom the Software is furnished to do so, subject to
 12 * the following conditions:
 13 *
 14 * The above copyright notice and this permission notice (including the
 15 * next paragraph) shall be included in all copies or substantial portions
 16 * of the Software.
 17 *
 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 25 *
 26 *
 27 **************************************************************************/
 28
 29/*
 30 * Generic simple memory manager implementation. Intended to be used as a base
 31 * class implementation for more advanced memory managers.
 32 *
 33 * Note that the algorithm used is quite simple and there might be substantial
 34 * performance gains if a smarter free list is implemented. Currently it is just an
 35 * unordered stack of free regions. This could easily be improved if an RB-tree
 36 * is used instead. At least if we expect heavy fragmentation.
 37 *
 38 * Aligned allocations can also see improvement.
 39 *
 40 * Authors:
 41 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
 42 */
 43
 44#include <drm/drmP.h>
 
 
 
 
 
 45#include <drm/drm_mm.h>
 46#include <linux/slab.h>
 47#include <linux/seq_file.h>
 48#include <linux/export.h>
 49
 50/**
 51 * DOC: Overview
 52 *
 53 * drm_mm provides a simple range allocator. The drivers are free to use the
 54 * resource allocator from the linux core if it suits them, the upside of drm_mm
 55 * is that it's in the DRM core. Which means that it's easier to extend for
 56 * some of the crazier special purpose needs of gpus.
 57 *
 58 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
 59 * Drivers are free to embed either of them into their own suitable
 60 * datastructures. drm_mm itself will not do any allocations of its own, so if
 61 * drivers choose not to embed nodes they need to still allocate them
 62 * themselves.
 63 *
 64 * The range allocator also supports reservation of preallocated blocks. This is
 65 * useful for taking over initial mode setting configurations from the firmware,
 66 * where an object needs to be created which exactly matches the firmware's
 67 * scanout target. As long as the range is still free it can be inserted anytime
 68 * after the allocator is initialized, which helps with avoiding looped
 69 * depencies in the driver load sequence.
 70 *
 71 * drm_mm maintains a stack of most recently freed holes, which of all
 72 * simplistic datastructures seems to be a fairly decent approach to clustering
 73 * allocations and avoiding too much fragmentation. This means free space
 74 * searches are O(num_holes). Given that all the fancy features drm_mm supports
 75 * something better would be fairly complex and since gfx thrashing is a fairly
 76 * steep cliff not a real concern. Removing a node again is O(1).
 77 *
 78 * drm_mm supports a few features: Alignment and range restrictions can be
 79 * supplied. Further more every &drm_mm_node has a color value (which is just an
 80 * opaqua unsigned long) which in conjunction with a driver callback can be used
 81 * to implement sophisticated placement restrictions. The i915 DRM driver uses
 82 * this to implement guard pages between incompatible caching domains in the
 83 * graphics TT.
 84 *
 85 * Two behaviors are supported for searching and allocating: bottom-up and top-down.
 86 * The default is bottom-up. Top-down allocation can be used if the memory area
 87 * has different restrictions, or just to reduce fragmentation.
 88 *
 89 * Finally iteration helpers to walk all nodes and all holes are provided as are
 90 * some basic allocator dumpers for debugging.
 
 
 
 
 
 91 */
 92
 93static struct drm_mm_node *drm_mm_search_free_generic(const struct drm_mm *mm,
 94						unsigned long size,
 95						unsigned alignment,
 96						unsigned long color,
 97						enum drm_mm_search_flags flags);
 98static struct drm_mm_node *drm_mm_search_free_in_range_generic(const struct drm_mm *mm,
 99						unsigned long size,
100						unsigned alignment,
101						unsigned long color,
102						unsigned long start,
103						unsigned long end,
104						enum drm_mm_search_flags flags);
105
106static void drm_mm_insert_helper(struct drm_mm_node *hole_node,
107				 struct drm_mm_node *node,
108				 unsigned long size, unsigned alignment,
109				 unsigned long color,
110				 enum drm_mm_allocator_flags flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111{
112	struct drm_mm *mm = hole_node->mm;
113	unsigned long hole_start = drm_mm_hole_node_start(hole_node);
114	unsigned long hole_end = drm_mm_hole_node_end(hole_node);
115	unsigned long adj_start = hole_start;
116	unsigned long adj_end = hole_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
118	BUG_ON(node->allocated);
 
119
120	if (mm->color_adjust)
121		mm->color_adjust(hole_node, color, &adj_start, &adj_end);
 
 
 
 
 
 
 
 
 
 
 
 
122
123	if (flags & DRM_MM_CREATE_TOP)
124		adj_start = adj_end - size;
 
125
126	if (alignment) {
127		unsigned tmp = adj_start % alignment;
128		if (tmp) {
129			if (flags & DRM_MM_CREATE_TOP)
130				adj_start -= tmp;
131			else
132				adj_start += alignment - tmp;
133		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134	}
135
136	BUG_ON(adj_start < hole_start);
137	BUG_ON(adj_end > hole_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
139	if (adj_start == hole_start) {
140		hole_node->hole_follows = 0;
141		list_del(&hole_node->hole_stack);
 
142	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
144	node->start = adj_start;
145	node->size = size;
146	node->mm = mm;
147	node->color = color;
148	node->allocated = 1;
 
 
 
 
 
149
150	INIT_LIST_HEAD(&node->hole_stack);
151	list_add(&node->node_list, &hole_node->node_list);
152
153	BUG_ON(node->start + node->size > adj_end);
 
154
155	node->hole_follows = 0;
156	if (__drm_mm_hole_node_start(node) < hole_end) {
157		list_add(&node->hole_stack, &mm->hole_stack);
158		node->hole_follows = 1;
159	}
160}
161
162/**
163 * drm_mm_reserve_node - insert an pre-initialized node
164 * @mm: drm_mm allocator to insert @node into
165 * @node: drm_mm_node to insert
166 *
167 * This functions inserts an already set-up drm_mm_node into the allocator,
168 * meaning that start, size and color must be set by the caller. This is useful
169 * to initialize the allocator with preallocated objects which must be set-up
170 * before the range allocator can be set-up, e.g. when taking over a firmware
171 * framebuffer.
172 *
173 * Returns:
174 * 0 on success, -ENOSPC if there's no hole where @node is.
175 */
176int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
177{
178	struct drm_mm_node *hole;
179	unsigned long end = node->start + node->size;
180	unsigned long hole_start;
181	unsigned long hole_end;
182
183	BUG_ON(node == NULL);
 
 
184
185	/* Find the relevant hole to add our node to */
186	drm_mm_for_each_hole(hole, mm, hole_start, hole_end) {
187		if (hole_start > node->start || hole_end < end)
188			continue;
189
190		node->mm = mm;
191		node->allocated = 1;
192
193		INIT_LIST_HEAD(&node->hole_stack);
194		list_add(&node->node_list, &hole->node_list);
195
196		if (node->start == hole_start) {
197			hole->hole_follows = 0;
198			list_del_init(&hole->hole_stack);
199		}
200
201		node->hole_follows = 0;
202		if (end != hole_end) {
203			list_add(&node->hole_stack, &mm->hole_stack);
204			node->hole_follows = 1;
205		}
206
207		return 0;
208	}
 
 
 
 
 
 
 
 
209
210	return -ENOSPC;
 
211}
212EXPORT_SYMBOL(drm_mm_reserve_node);
213
 
 
 
 
 
214/**
215 * drm_mm_insert_node_generic - search for space and insert @node
216 * @mm: drm_mm to allocate from
217 * @node: preallocate node to insert
218 * @size: size of the allocation
219 * @alignment: alignment of the allocation
220 * @color: opaque tag value to use for this node
221 * @sflags: flags to fine-tune the allocation search
222 * @aflags: flags to fine-tune the allocation behavior
 
223 *
224 * The preallocated node must be cleared to 0.
225 *
226 * Returns:
227 * 0 on success, -ENOSPC if there's no suitable hole.
228 */
229int drm_mm_insert_node_generic(struct drm_mm *mm, struct drm_mm_node *node,
230			       unsigned long size, unsigned alignment,
231			       unsigned long color,
232			       enum drm_mm_search_flags sflags,
233			       enum drm_mm_allocator_flags aflags)
234{
235	struct drm_mm_node *hole_node;
236
237	hole_node = drm_mm_search_free_generic(mm, size, alignment,
238					       color, sflags);
239	if (!hole_node)
 
 
 
 
 
 
240		return -ENOSPC;
241
242	drm_mm_insert_helper(hole_node, node, size, alignment, color, aflags);
243	return 0;
244}
245EXPORT_SYMBOL(drm_mm_insert_node_generic);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
247static void drm_mm_insert_helper_range(struct drm_mm_node *hole_node,
248				       struct drm_mm_node *node,
249				       unsigned long size, unsigned alignment,
250				       unsigned long color,
251				       unsigned long start, unsigned long end,
252				       enum drm_mm_allocator_flags flags)
253{
254	struct drm_mm *mm = hole_node->mm;
255	unsigned long hole_start = drm_mm_hole_node_start(hole_node);
256	unsigned long hole_end = drm_mm_hole_node_end(hole_node);
257	unsigned long adj_start = hole_start;
258	unsigned long adj_end = hole_end;
259
260	BUG_ON(!hole_node->hole_follows || node->allocated);
261
262	if (adj_start < start)
263		adj_start = start;
264	if (adj_end > end)
265		adj_end = end;
266
267	if (flags & DRM_MM_CREATE_TOP)
268		adj_start = adj_end - size;
269
270	if (mm->color_adjust)
271		mm->color_adjust(hole_node, color, &adj_start, &adj_end);
272
273	if (alignment) {
274		unsigned tmp = adj_start % alignment;
275		if (tmp) {
276			if (flags & DRM_MM_CREATE_TOP)
277				adj_start -= tmp;
278			else
279				adj_start += alignment - tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
280		}
281	}
282
283	if (adj_start == hole_start) {
284		hole_node->hole_follows = 0;
285		list_del(&hole_node->hole_stack);
286	}
 
287
288	node->start = adj_start;
289	node->size = size;
290	node->mm = mm;
291	node->color = color;
292	node->allocated = 1;
293
294	INIT_LIST_HEAD(&node->hole_stack);
295	list_add(&node->node_list, &hole_node->node_list);
 
 
 
296
297	BUG_ON(node->start < start);
298	BUG_ON(node->start < adj_start);
299	BUG_ON(node->start + node->size > adj_end);
300	BUG_ON(node->start + node->size > end);
301
302	node->hole_follows = 0;
303	if (__drm_mm_hole_node_start(node) < hole_end) {
304		list_add(&node->hole_stack, &mm->hole_stack);
305		node->hole_follows = 1;
306	}
307}
 
308
309/**
310 * drm_mm_insert_node_in_range_generic - ranged search for space and insert @node
311 * @mm: drm_mm to allocate from
312 * @node: preallocate node to insert
313 * @size: size of the allocation
314 * @alignment: alignment of the allocation
315 * @color: opaque tag value to use for this node
316 * @start: start of the allowed range for this node
317 * @end: end of the allowed range for this node
318 * @sflags: flags to fine-tune the allocation search
319 * @aflags: flags to fine-tune the allocation behavior
320 *
321 * The preallocated node must be cleared to 0.
322 *
323 * Returns:
324 * 0 on success, -ENOSPC if there's no suitable hole.
325 */
326int drm_mm_insert_node_in_range_generic(struct drm_mm *mm, struct drm_mm_node *node,
327					unsigned long size, unsigned alignment,
328					unsigned long color,
329					unsigned long start, unsigned long end,
330					enum drm_mm_search_flags sflags,
331					enum drm_mm_allocator_flags aflags)
332{
333	struct drm_mm_node *hole_node;
334
335	hole_node = drm_mm_search_free_in_range_generic(mm,
336							size, alignment, color,
337							start, end, sflags);
338	if (!hole_node)
339		return -ENOSPC;
340
341	drm_mm_insert_helper_range(hole_node, node,
342				   size, alignment, color,
343				   start, end, aflags);
344	return 0;
345}
346EXPORT_SYMBOL(drm_mm_insert_node_in_range_generic);
347
348/**
349 * drm_mm_remove_node - Remove a memory node from the allocator.
350 * @node: drm_mm_node to remove
351 *
352 * This just removes a node from its drm_mm allocator. The node does not need to
353 * be cleared again before it can be re-inserted into this or any other drm_mm
354 * allocator. It is a bug to call this function on a un-allocated node.
355 */
356void drm_mm_remove_node(struct drm_mm_node *node)
357{
358	struct drm_mm *mm = node->mm;
359	struct drm_mm_node *prev_node;
360
361	if (WARN_ON(!node->allocated))
362		return;
363
364	BUG_ON(node->scanned_block || node->scanned_prev_free
365				   || node->scanned_next_free);
366
367	prev_node =
368	    list_entry(node->node_list.prev, struct drm_mm_node, node_list);
369
370	if (node->hole_follows) {
371		BUG_ON(__drm_mm_hole_node_start(node) ==
372		       __drm_mm_hole_node_end(node));
373		list_del(&node->hole_stack);
374	} else
375		BUG_ON(__drm_mm_hole_node_start(node) !=
376		       __drm_mm_hole_node_end(node));
377
378
379	if (!prev_node->hole_follows) {
380		prev_node->hole_follows = 1;
381		list_add(&prev_node->hole_stack, &mm->hole_stack);
382	} else
383		list_move(&prev_node->hole_stack, &mm->hole_stack);
384
 
385	list_del(&node->node_list);
386	node->allocated = 0;
387}
388EXPORT_SYMBOL(drm_mm_remove_node);
389
390static int check_free_hole(unsigned long start, unsigned long end,
391			   unsigned long size, unsigned alignment)
392{
393	if (end - start < size)
394		return 0;
395
396	if (alignment) {
397		unsigned tmp = start % alignment;
398		if (tmp)
399			start += alignment - tmp;
400	}
401
402	return end >= start + size;
403}
404
405static struct drm_mm_node *drm_mm_search_free_generic(const struct drm_mm *mm,
406						      unsigned long size,
407						      unsigned alignment,
408						      unsigned long color,
409						      enum drm_mm_search_flags flags)
410{
411	struct drm_mm_node *entry;
412	struct drm_mm_node *best;
413	unsigned long adj_start;
414	unsigned long adj_end;
415	unsigned long best_size;
416
417	BUG_ON(mm->scanned_blocks);
418
419	best = NULL;
420	best_size = ~0UL;
421
422	__drm_mm_for_each_hole(entry, mm, adj_start, adj_end,
423			       flags & DRM_MM_SEARCH_BELOW) {
424		unsigned long hole_size = adj_end - adj_start;
425
426		if (mm->color_adjust) {
427			mm->color_adjust(entry, color, &adj_start, &adj_end);
428			if (adj_end <= adj_start)
429				continue;
430		}
431
432		if (!check_free_hole(adj_start, adj_end, size, alignment))
433			continue;
434
435		if (!(flags & DRM_MM_SEARCH_BEST))
436			return entry;
437
438		if (hole_size < best_size) {
439			best = entry;
440			best_size = hole_size;
441		}
442	}
443
444	return best;
445}
446
447static struct drm_mm_node *drm_mm_search_free_in_range_generic(const struct drm_mm *mm,
448							unsigned long size,
449							unsigned alignment,
450							unsigned long color,
451							unsigned long start,
452							unsigned long end,
453							enum drm_mm_search_flags flags)
454{
455	struct drm_mm_node *entry;
456	struct drm_mm_node *best;
457	unsigned long adj_start;
458	unsigned long adj_end;
459	unsigned long best_size;
460
461	BUG_ON(mm->scanned_blocks);
462
463	best = NULL;
464	best_size = ~0UL;
465
466	__drm_mm_for_each_hole(entry, mm, adj_start, adj_end,
467			       flags & DRM_MM_SEARCH_BELOW) {
468		unsigned long hole_size = adj_end - adj_start;
469
470		if (adj_start < start)
471			adj_start = start;
472		if (adj_end > end)
473			adj_end = end;
474
475		if (mm->color_adjust) {
476			mm->color_adjust(entry, color, &adj_start, &adj_end);
477			if (adj_end <= adj_start)
478				continue;
479		}
480
481		if (!check_free_hole(adj_start, adj_end, size, alignment))
482			continue;
483
484		if (!(flags & DRM_MM_SEARCH_BEST))
485			return entry;
486
487		if (hole_size < best_size) {
488			best = entry;
489			best_size = hole_size;
490		}
491	}
492
493	return best;
494}
 
495
496/**
497 * drm_mm_replace_node - move an allocation from @old to @new
498 * @old: drm_mm_node to remove from the allocator
499 * @new: drm_mm_node which should inherit @old's allocation
500 *
501 * This is useful for when drivers embed the drm_mm_node structure and hence
502 * can't move allocations by reassigning pointers. It's a combination of remove
503 * and insert with the guarantee that the allocation start will match.
504 */
505void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
506{
507	list_replace(&old->node_list, &new->node_list);
508	list_replace(&old->hole_stack, &new->hole_stack);
509	new->hole_follows = old->hole_follows;
510	new->mm = old->mm;
511	new->start = old->start;
512	new->size = old->size;
513	new->color = old->color;
514
515	old->allocated = 0;
516	new->allocated = 1;
517}
518EXPORT_SYMBOL(drm_mm_replace_node);
519
520/**
521 * DOC: lru scan roaster
522 *
523 * Very often GPUs need to have continuous allocations for a given object. When
524 * evicting objects to make space for a new one it is therefore not most
525 * efficient when we simply start to select all objects from the tail of an LRU
526 * until there's a suitable hole: Especially for big objects or nodes that
527 * otherwise have special allocation constraints there's a good chance we evict
528 * lots of (smaller) objects unecessarily.
529 *
530 * The DRM range allocator supports this use-case through the scanning
531 * interfaces. First a scan operation needs to be initialized with
532 * drm_mm_init_scan() or drm_mm_init_scan_with_range(). The the driver adds
533 * objects to the roaster (probably by walking an LRU list, but this can be
534 * freely implemented) until a suitable hole is found or there's no further
535 * evitable object.
 
 
536 *
537 * The the driver must walk through all objects again in exactly the reverse
538 * order to restore the allocator state. Note that while the allocator is used
539 * in the scan mode no other operation is allowed.
540 *
541 * Finally the driver evicts all objects selected in the scan. Adding and
542 * removing an object is O(1), and since freeing a node is also O(1) the overall
543 * complexity is O(scanned_objects). So like the free stack which needs to be
544 * walked before a scan operation even begins this is linear in the number of
545 * objects. It doesn't seem to hurt badly.
546 */
547
548/**
549 * drm_mm_init_scan - initialize lru scanning
550 * @mm: drm_mm to scan
551 * @size: size of the allocation
552 * @alignment: alignment of the allocation
553 * @color: opaque tag value to use for the allocation
554 *
555 * This simply sets up the scanning routines with the parameters for the desired
556 * hole. Note that there's no need to specify allocation flags, since they only
557 * change the place a node is allocated from within a suitable hole.
558 *
559 * Warning:
560 * As long as the scan list is non-empty, no other operations than
561 * adding/removing nodes to/from the scan list are allowed.
562 */
563void drm_mm_init_scan(struct drm_mm *mm,
564		      unsigned long size,
565		      unsigned alignment,
566		      unsigned long color)
567{
568	mm->scan_color = color;
569	mm->scan_alignment = alignment;
570	mm->scan_size = size;
571	mm->scanned_blocks = 0;
572	mm->scan_hit_start = 0;
573	mm->scan_hit_end = 0;
574	mm->scan_check_range = 0;
575	mm->prev_scanned_node = NULL;
576}
577EXPORT_SYMBOL(drm_mm_init_scan);
578
579/**
580 * drm_mm_init_scan - initialize range-restricted lru scanning
 
581 * @mm: drm_mm to scan
582 * @size: size of the allocation
583 * @alignment: alignment of the allocation
584 * @color: opaque tag value to use for the allocation
585 * @start: start of the allowed range for the allocation
586 * @end: end of the allowed range for the allocation
 
587 *
588 * This simply sets up the scanning routines with the parameters for the desired
589 * hole. Note that there's no need to specify allocation flags, since they only
590 * change the place a node is allocated from within a suitable hole.
591 *
592 * Warning:
593 * As long as the scan list is non-empty, no other operations than
594 * adding/removing nodes to/from the scan list are allowed.
595 */
596void drm_mm_init_scan_with_range(struct drm_mm *mm,
597				 unsigned long size,
598				 unsigned alignment,
 
599				 unsigned long color,
600				 unsigned long start,
601				 unsigned long end)
 
602{
603	mm->scan_color = color;
604	mm->scan_alignment = alignment;
605	mm->scan_size = size;
606	mm->scanned_blocks = 0;
607	mm->scan_hit_start = 0;
608	mm->scan_hit_end = 0;
609	mm->scan_start = start;
610	mm->scan_end = end;
611	mm->scan_check_range = 1;
612	mm->prev_scanned_node = NULL;
 
 
 
 
 
 
 
 
 
 
 
613}
614EXPORT_SYMBOL(drm_mm_init_scan_with_range);
615
616/**
617 * drm_mm_scan_add_block - add a node to the scan list
 
618 * @node: drm_mm_node to add
619 *
620 * Add a node to the scan list that might be freed to make space for the desired
621 * hole.
622 *
623 * Returns:
624 * True if a hole has been found, false otherwise.
625 */
626bool drm_mm_scan_add_block(struct drm_mm_node *node)
 
627{
628	struct drm_mm *mm = node->mm;
629	struct drm_mm_node *prev_node;
630	unsigned long hole_start, hole_end;
631	unsigned long adj_start, adj_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
632
633	mm->scanned_blocks++;
 
634
635	BUG_ON(node->scanned_block);
636	node->scanned_block = 1;
 
 
637
638	prev_node = list_entry(node->node_list.prev, struct drm_mm_node,
639			       node_list);
640
641	node->scanned_preceeds_hole = prev_node->hole_follows;
642	prev_node->hole_follows = 1;
643	list_del(&node->node_list);
644	node->node_list.prev = &prev_node->node_list;
645	node->node_list.next = &mm->prev_scanned_node->node_list;
646	mm->prev_scanned_node = node;
647
648	adj_start = hole_start = drm_mm_hole_node_start(prev_node);
649	adj_end = hole_end = drm_mm_hole_node_end(prev_node);
650
651	if (mm->scan_check_range) {
652		if (adj_start < mm->scan_start)
653			adj_start = mm->scan_start;
654		if (adj_end > mm->scan_end)
655			adj_end = mm->scan_end;
 
 
 
 
 
 
 
 
 
656	}
657
658	if (mm->color_adjust)
659		mm->color_adjust(prev_node, mm->scan_color,
660				 &adj_start, &adj_end);
661
662	if (check_free_hole(adj_start, adj_end,
663			    mm->scan_size, mm->scan_alignment)) {
664		mm->scan_hit_start = hole_start;
665		mm->scan_hit_end = hole_end;
666		return true;
667	}
668
669	return false;
670}
671EXPORT_SYMBOL(drm_mm_scan_add_block);
672
673/**
674 * drm_mm_scan_remove_block - remove a node from the scan list
 
675 * @node: drm_mm_node to remove
676 *
677 * Nodes _must_ be removed in the exact same order from the scan list as they
678 * have been added, otherwise the internal state of the memory manager will be
679 * corrupted.
 
680 *
681 * When the scan list is empty, the selected memory nodes can be freed. An
682 * immediately following drm_mm_search_free with !DRM_MM_SEARCH_BEST will then
683 * return the just freed block (because its at the top of the free_stack list).
 
684 *
685 * Returns:
686 * True if this block should be evicted, false otherwise. Will always
687 * return false when no hole has been found.
688 */
689bool drm_mm_scan_remove_block(struct drm_mm_node *node)
 
690{
691	struct drm_mm *mm = node->mm;
692	struct drm_mm_node *prev_node;
693
694	mm->scanned_blocks--;
695
696	BUG_ON(!node->scanned_block);
697	node->scanned_block = 0;
698
699	prev_node = list_entry(node->node_list.prev, struct drm_mm_node,
700			       node_list);
701
702	prev_node->hole_follows = node->scanned_preceeds_hole;
 
 
 
 
 
 
 
 
 
703	list_add(&node->node_list, &prev_node->node_list);
704
705	 return (drm_mm_hole_node_end(node) > mm->scan_hit_start &&
706		 node->start < mm->scan_hit_end);
707}
708EXPORT_SYMBOL(drm_mm_scan_remove_block);
709
710/**
711 * drm_mm_clean - checks whether an allocator is clean
712 * @mm: drm_mm allocator to check
 
 
 
 
713 *
714 * Returns:
715 * True if the allocator is completely free, false if there's still a node
716 * allocated in it.
717 */
718bool drm_mm_clean(struct drm_mm * mm)
719{
720	struct list_head *head = &mm->head_node.node_list;
 
 
 
 
 
 
 
721
722	return (head->next->next == head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723}
724EXPORT_SYMBOL(drm_mm_clean);
725
726/**
727 * drm_mm_init - initialize a drm-mm allocator
728 * @mm: the drm_mm structure to initialize
729 * @start: start of the range managed by @mm
730 * @size: end of the range managed by @mm
731 *
732 * Note that @mm must be cleared to 0 before calling this function.
733 */
734void drm_mm_init(struct drm_mm * mm, unsigned long start, unsigned long size)
735{
 
 
 
 
736	INIT_LIST_HEAD(&mm->hole_stack);
737	mm->scanned_blocks = 0;
 
 
738
739	/* Clever trick to avoid a special case in the free hole tracking. */
740	INIT_LIST_HEAD(&mm->head_node.node_list);
741	INIT_LIST_HEAD(&mm->head_node.hole_stack);
742	mm->head_node.hole_follows = 1;
743	mm->head_node.scanned_block = 0;
744	mm->head_node.scanned_prev_free = 0;
745	mm->head_node.scanned_next_free = 0;
746	mm->head_node.mm = mm;
747	mm->head_node.start = start + size;
748	mm->head_node.size = start - mm->head_node.start;
749	list_add_tail(&mm->head_node.hole_stack, &mm->hole_stack);
750
751	mm->color_adjust = NULL;
 
 
 
 
752}
753EXPORT_SYMBOL(drm_mm_init);
754
755/**
756 * drm_mm_takedown - clean up a drm_mm allocator
757 * @mm: drm_mm allocator to clean up
758 *
759 * Note that it is a bug to call this function on an allocator which is not
760 * clean.
761 */
762void drm_mm_takedown(struct drm_mm * mm)
763{
764	WARN(!list_empty(&mm->head_node.node_list),
765	     "Memory manager not clean during takedown.\n");
 
766}
767EXPORT_SYMBOL(drm_mm_takedown);
768
769static unsigned long drm_mm_debug_hole(struct drm_mm_node *entry,
770				       const char *prefix)
771{
772	unsigned long hole_start, hole_end, hole_size;
773
774	if (entry->hole_follows) {
775		hole_start = drm_mm_hole_node_start(entry);
776		hole_end = drm_mm_hole_node_end(entry);
777		hole_size = hole_end - hole_start;
778		printk(KERN_DEBUG "%s 0x%08lx-0x%08lx: %8lu: free\n",
779			prefix, hole_start, hole_end,
780			hole_size);
781		return hole_size;
782	}
783
784	return 0;
785}
786
787/**
788 * drm_mm_debug_table - dump allocator state to dmesg
789 * @mm: drm_mm allocator to dump
790 * @prefix: prefix to use for dumping to dmesg
791 */
792void drm_mm_debug_table(struct drm_mm *mm, const char *prefix)
793{
794	struct drm_mm_node *entry;
795	unsigned long total_used = 0, total_free = 0, total = 0;
796
797	total_free += drm_mm_debug_hole(&mm->head_node, prefix);
798
799	drm_mm_for_each_node(entry, mm) {
800		printk(KERN_DEBUG "%s 0x%08lx-0x%08lx: %8lu: used\n",
801			prefix, entry->start, entry->start + entry->size,
802			entry->size);
803		total_used += entry->size;
804		total_free += drm_mm_debug_hole(entry, prefix);
805	}
806	total = total_free + total_used;
807
808	printk(KERN_DEBUG "%s total: %lu, used %lu free %lu\n", prefix, total,
809		total_used, total_free);
810}
811EXPORT_SYMBOL(drm_mm_debug_table);
812
813#if defined(CONFIG_DEBUG_FS)
814static unsigned long drm_mm_dump_hole(struct seq_file *m, struct drm_mm_node *entry)
815{
816	unsigned long hole_start, hole_end, hole_size;
817
818	if (entry->hole_follows) {
819		hole_start = drm_mm_hole_node_start(entry);
820		hole_end = drm_mm_hole_node_end(entry);
821		hole_size = hole_end - hole_start;
822		seq_printf(m, "0x%08lx-0x%08lx: 0x%08lx: free\n",
823				hole_start, hole_end, hole_size);
824		return hole_size;
825	}
826
827	return 0;
828}
829
830/**
831 * drm_mm_dump_table - dump allocator state to a seq_file
832 * @m: seq_file to dump to
833 * @mm: drm_mm allocator to dump
834 */
835int drm_mm_dump_table(struct seq_file *m, struct drm_mm *mm)
836{
837	struct drm_mm_node *entry;
838	unsigned long total_used = 0, total_free = 0, total = 0;
839
840	total_free += drm_mm_dump_hole(m, &mm->head_node);
841
842	drm_mm_for_each_node(entry, mm) {
843		seq_printf(m, "0x%08lx-0x%08lx: 0x%08lx: used\n",
844				entry->start, entry->start + entry->size,
845				entry->size);
846		total_used += entry->size;
847		total_free += drm_mm_dump_hole(m, entry);
848	}
849	total = total_free + total_used;
850
851	seq_printf(m, "total: %lu, used %lu free %lu\n", total, total_used, total_free);
852	return 0;
853}
854EXPORT_SYMBOL(drm_mm_dump_table);
855#endif