Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core IEEE1394 transaction logic
   4 *
   5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/bug.h>
   9#include <linux/completion.h>
  10#include <linux/device.h>
  11#include <linux/errno.h>
  12#include <linux/firewire.h>
  13#include <linux/firewire-constants.h>
  14#include <linux/fs.h>
  15#include <linux/init.h>
 
  16#include <linux/jiffies.h>
  17#include <linux/kernel.h>
  18#include <linux/list.h>
  19#include <linux/module.h>
  20#include <linux/rculist.h>
  21#include <linux/slab.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/timer.h>
  25#include <linux/types.h>
  26#include <linux/workqueue.h>
  27
  28#include <asm/byteorder.h>
  29
  30#include "core.h"
  31#include "packet-header-definitions.h"
  32#include "phy-packet-definitions.h"
  33#include <trace/events/firewire.h>
  34
  35#define HEADER_DESTINATION_IS_BROADCAST(header) \
  36	((async_header_get_destination(header) & 0x3f) == 0x3f)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38/* returns 0 if the split timeout handler is already running */
  39static int try_cancel_split_timeout(struct fw_transaction *t)
  40{
  41	if (t->is_split_transaction)
  42		return del_timer(&t->split_timeout_timer);
  43	else
  44		return 1;
  45}
  46
  47static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
  48			     u32 response_tstamp)
  49{
  50	struct fw_transaction *t = NULL, *iter;
 
  51
  52	scoped_guard(spinlock_irqsave, &card->lock) {
  53		list_for_each_entry(iter, &card->transaction_list, link) {
  54			if (iter == transaction) {
  55				if (try_cancel_split_timeout(iter)) {
  56					list_del_init(&iter->link);
  57					card->tlabel_mask &= ~(1ULL << iter->tlabel);
  58					t = iter;
  59				}
  60				break;
  61			}
 
 
 
  62		}
  63	}
 
  64
  65	if (!t)
  66		return -ENOENT;
  67
  68	if (!t->with_tstamp) {
  69		t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
  70	} else {
  71		t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0,
  72					t->callback_data);
  73	}
  74
  75	return 0;
 
  76}
  77
  78/*
  79 * Only valid for transactions that are potentially pending (ie have
  80 * been sent).
  81 */
  82int fw_cancel_transaction(struct fw_card *card,
  83			  struct fw_transaction *transaction)
  84{
  85	u32 tstamp;
  86
  87	/*
  88	 * Cancel the packet transmission if it's still queued.  That
  89	 * will call the packet transmission callback which cancels
  90	 * the transaction.
  91	 */
  92
  93	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
  94		return 0;
  95
  96	/*
  97	 * If the request packet has already been sent, we need to see
  98	 * if the transaction is still pending and remove it in that case.
  99	 */
 100
 101	if (transaction->packet.ack == 0) {
 102		// The timestamp is reused since it was just read now.
 103		tstamp = transaction->packet.timestamp;
 104	} else {
 105		u32 curr_cycle_time = 0;
 106
 107		(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 108		tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 109	}
 110
 111	return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
 112}
 113EXPORT_SYMBOL(fw_cancel_transaction);
 114
 115static void split_transaction_timeout_callback(struct timer_list *timer)
 116{
 117	struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
 118	struct fw_card *card = t->card;
 
 119
 120	scoped_guard(spinlock_irqsave, &card->lock) {
 121		if (list_empty(&t->link))
 122			return;
 123		list_del(&t->link);
 124		card->tlabel_mask &= ~(1ULL << t->tlabel);
 125	}
 
 
 
 126
 127	if (!t->with_tstamp) {
 128		t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 129	} else {
 130		t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
 131					t->split_timeout_cycle, NULL, 0, t->callback_data);
 132	}
 133}
 134
 135static void start_split_transaction_timeout(struct fw_transaction *t,
 136					    struct fw_card *card)
 137{
 138	guard(spinlock_irqsave)(&card->lock);
 139
 140	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction))
 
 
 
 141		return;
 
 142
 143	t->is_split_transaction = true;
 144	mod_timer(&t->split_timeout_timer,
 145		  jiffies + card->split_timeout_jiffies);
 146}
 147
 148static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
 
 149
 150static void transmit_complete_callback(struct fw_packet *packet,
 151				       struct fw_card *card, int status)
 152{
 153	struct fw_transaction *t =
 154	    container_of(packet, struct fw_transaction, packet);
 155
 156	trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation,
 157					      packet->speed, status, packet->timestamp);
 158
 159	switch (status) {
 160	case ACK_COMPLETE:
 161		close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
 162		break;
 163	case ACK_PENDING:
 164	{
 165		t->split_timeout_cycle =
 166			compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
 167		start_split_transaction_timeout(t, card);
 168		break;
 169	}
 170	case ACK_BUSY_X:
 171	case ACK_BUSY_A:
 172	case ACK_BUSY_B:
 173		close_transaction(t, card, RCODE_BUSY, packet->timestamp);
 174		break;
 175	case ACK_DATA_ERROR:
 176		close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
 177		break;
 178	case ACK_TYPE_ERROR:
 179		close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
 180		break;
 181	default:
 182		/*
 183		 * In this case the ack is really a juju specific
 184		 * rcode, so just forward that to the callback.
 185		 */
 186		close_transaction(t, card, status, packet->timestamp);
 187		break;
 188	}
 189}
 190
 191static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 192		int destination_id, int source_id, int generation, int speed,
 193		unsigned long long offset, void *payload, size_t length)
 194{
 195	int ext_tcode;
 196
 197	if (tcode == TCODE_STREAM_DATA) {
 198		// The value of destination_id argument should include tag, channel, and sy fields
 199		// as isochronous packet header has.
 200		packet->header[0] = destination_id;
 201		isoc_header_set_data_length(packet->header, length);
 202		isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA);
 203		packet->header_length = 4;
 204		packet->payload = payload;
 205		packet->payload_length = length;
 206
 207		goto common;
 208	}
 209
 210	if (tcode > 0x10) {
 211		ext_tcode = tcode & ~0x10;
 212		tcode = TCODE_LOCK_REQUEST;
 213	} else
 214		ext_tcode = 0;
 215
 216	async_header_set_retry(packet->header, RETRY_X);
 217	async_header_set_tlabel(packet->header, tlabel);
 218	async_header_set_tcode(packet->header, tcode);
 219	async_header_set_destination(packet->header, destination_id);
 220	async_header_set_source(packet->header, source_id);
 221	async_header_set_offset(packet->header, offset);
 
 
 
 222
 223	switch (tcode) {
 224	case TCODE_WRITE_QUADLET_REQUEST:
 225		async_header_set_quadlet_data(packet->header, *(u32 *)payload);
 226		packet->header_length = 16;
 227		packet->payload_length = 0;
 228		break;
 229
 230	case TCODE_LOCK_REQUEST:
 231	case TCODE_WRITE_BLOCK_REQUEST:
 232		async_header_set_data_length(packet->header, length);
 233		async_header_set_extended_tcode(packet->header, ext_tcode);
 
 234		packet->header_length = 16;
 235		packet->payload = payload;
 236		packet->payload_length = length;
 237		break;
 238
 239	case TCODE_READ_QUADLET_REQUEST:
 240		packet->header_length = 12;
 241		packet->payload_length = 0;
 242		break;
 243
 244	case TCODE_READ_BLOCK_REQUEST:
 245		async_header_set_data_length(packet->header, length);
 246		async_header_set_extended_tcode(packet->header, ext_tcode);
 
 247		packet->header_length = 16;
 248		packet->payload_length = 0;
 249		break;
 250
 251	default:
 252		WARN(1, "wrong tcode %d\n", tcode);
 253	}
 254 common:
 255	packet->speed = speed;
 256	packet->generation = generation;
 257	packet->ack = 0;
 258	packet->payload_mapped = false;
 259}
 260
 261static int allocate_tlabel(struct fw_card *card)
 262{
 263	int tlabel;
 264
 265	tlabel = card->current_tlabel;
 266	while (card->tlabel_mask & (1ULL << tlabel)) {
 267		tlabel = (tlabel + 1) & 0x3f;
 268		if (tlabel == card->current_tlabel)
 269			return -EBUSY;
 270	}
 271
 272	card->current_tlabel = (tlabel + 1) & 0x3f;
 273	card->tlabel_mask |= 1ULL << tlabel;
 274
 275	return tlabel;
 276}
 277
 278/**
 279 * __fw_send_request() - submit a request packet for transmission to generate callback for response
 280 *			 subaction with or without time stamp.
 281 * @card:		interface to send the request at
 282 * @t:			transaction instance to which the request belongs
 283 * @tcode:		transaction code
 284 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 285 * @generation:		bus generation in which request and response are valid
 286 * @speed:		transmission speed
 287 * @offset:		48bit wide offset into destination's address space
 288 * @payload:		data payload for the request subaction
 289 * @length:		length of the payload, in bytes
 290 * @callback:		union of two functions whether to receive time stamp or not for response
 291 *			subaction.
 292 * @with_tstamp:	Whether to receive time stamp or not for response subaction.
 293 * @callback_data:	data to be passed to the transaction completion callback
 294 *
 295 * Submit a request packet into the asynchronous request transmission queue.
 296 * Can be called from atomic context.  If you prefer a blocking API, use
 297 * fw_run_transaction() in a context that can sleep.
 298 *
 299 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 300 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 301 *
 302 * Make sure that the value in @destination_id is not older than the one in
 303 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 304 *
 305 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 306 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 307 * It will contain tag, channel, and sy data instead of a node ID then.
 308 *
 309 * The payload buffer at @data is going to be DMA-mapped except in case of
 310 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 311 * buffer complies with the restrictions of the streaming DMA mapping API.
 312 * @payload must not be freed before the @callback is called.
 313 *
 314 * In case of request types without payload, @data is NULL and @length is 0.
 315 *
 316 * After the transaction is completed successfully or unsuccessfully, the
 317 * @callback will be called.  Among its parameters is the response code which
 318 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 319 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 320 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 321 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 322 * generation, or missing ACK respectively.
 323 *
 324 * Note some timing corner cases:  fw_send_request() may complete much earlier
 325 * than when the request packet actually hits the wire.  On the other hand,
 326 * transaction completion and hence execution of @callback may happen even
 327 * before fw_send_request() returns.
 328 */
 329void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 330		int destination_id, int generation, int speed, unsigned long long offset,
 331		void *payload, size_t length, union fw_transaction_callback callback,
 332		bool with_tstamp, void *callback_data)
 333{
 334	unsigned long flags;
 335	int tlabel;
 336
 337	/*
 338	 * Allocate tlabel from the bitmap and put the transaction on
 339	 * the list while holding the card spinlock.
 340	 */
 341
 342	spin_lock_irqsave(&card->lock, flags);
 343
 344	tlabel = allocate_tlabel(card);
 345	if (tlabel < 0) {
 346		spin_unlock_irqrestore(&card->lock, flags);
 347		if (!with_tstamp) {
 348			callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 349		} else {
 350			// Timestamping on behalf of hardware.
 351			u32 curr_cycle_time = 0;
 352			u32 tstamp;
 353
 354			(void)fw_card_read_cycle_time(card, &curr_cycle_time);
 355			tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
 356
 357			callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
 358					     callback_data);
 359		}
 360		return;
 361	}
 362
 363	t->node_id = destination_id;
 364	t->tlabel = tlabel;
 365	t->card = card;
 366	t->is_split_transaction = false;
 367	timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
 
 368	t->callback = callback;
 369	t->with_tstamp = with_tstamp;
 370	t->callback_data = callback_data;
 371
 372	fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
 
 373			speed, offset, payload, length);
 374	t->packet.callback = transmit_complete_callback;
 375
 376	list_add_tail(&t->link, &card->transaction_list);
 377
 378	spin_unlock_irqrestore(&card->lock, flags);
 379
 380	trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed,
 381					      t->packet.header, payload,
 382					      tcode_is_read_request(tcode) ? 0 : length / 4);
 383
 384	card->driver->send_request(card, &t->packet);
 385}
 386EXPORT_SYMBOL_GPL(__fw_send_request);
 387
 388struct transaction_callback_data {
 389	struct completion done;
 390	void *payload;
 391	int rcode;
 392};
 393
 394static void transaction_callback(struct fw_card *card, int rcode,
 395				 void *payload, size_t length, void *data)
 396{
 397	struct transaction_callback_data *d = data;
 398
 399	if (rcode == RCODE_COMPLETE)
 400		memcpy(d->payload, payload, length);
 401	d->rcode = rcode;
 402	complete(&d->done);
 403}
 404
 405/**
 406 * fw_run_transaction() - send request and sleep until transaction is completed
 407 * @card:		card interface for this request
 408 * @tcode:		transaction code
 409 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 410 * @generation:		bus generation in which request and response are valid
 411 * @speed:		transmission speed
 412 * @offset:		48bit wide offset into destination's address space
 413 * @payload:		data payload for the request subaction
 414 * @length:		length of the payload, in bytes
 415 *
 416 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 417 * Unlike fw_send_request(), @data points to the payload of the request or/and
 418 * to the payload of the response.  DMA mapping restrictions apply to outbound
 419 * request payloads of >= 8 bytes but not to inbound response payloads.
 420 */
 421int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 422		       int generation, int speed, unsigned long long offset,
 423		       void *payload, size_t length)
 424{
 425	struct transaction_callback_data d;
 426	struct fw_transaction t;
 427
 428	timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
 429	init_completion(&d.done);
 430	d.payload = payload;
 431	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 432			offset, payload, length, transaction_callback, &d);
 433	wait_for_completion(&d.done);
 434	destroy_timer_on_stack(&t.split_timeout_timer);
 435
 436	return d.rcode;
 437}
 438EXPORT_SYMBOL(fw_run_transaction);
 439
 440static DEFINE_MUTEX(phy_config_mutex);
 441static DECLARE_COMPLETION(phy_config_done);
 442
 443static void transmit_phy_packet_callback(struct fw_packet *packet,
 444					 struct fw_card *card, int status)
 445{
 446	trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status,
 447					  packet->timestamp);
 448	complete(&phy_config_done);
 449}
 450
 451static struct fw_packet phy_config_packet = {
 452	.header_length	= 12,
 
 453	.payload_length	= 0,
 454	.speed		= SCODE_100,
 455	.callback	= transmit_phy_packet_callback,
 456};
 457
 458void fw_send_phy_config(struct fw_card *card,
 459			int node_id, int generation, int gap_count)
 460{
 461	long timeout = DIV_ROUND_UP(HZ, 10);
 462	u32 data = 0;
 463
 464	phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG);
 465
 466	if (node_id != FW_PHY_CONFIG_NO_NODE_ID) {
 467		phy_packet_phy_config_set_root_id(&data, node_id);
 468		phy_packet_phy_config_set_force_root_node(&data, true);
 469	}
 470
 471	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 472		gap_count = card->driver->read_phy_reg(card, 1);
 473		if (gap_count < 0)
 474			return;
 475
 476		gap_count &= 63;
 477		if (gap_count == 63)
 478			return;
 479	}
 480	phy_packet_phy_config_set_gap_count(&data, gap_count);
 481	phy_packet_phy_config_set_gap_count_optimization(&data, true);
 482
 483	guard(mutex)(&phy_config_mutex);
 484
 485	async_header_set_tcode(phy_config_packet.header, TCODE_LINK_INTERNAL);
 486	phy_config_packet.header[1] = data;
 487	phy_config_packet.header[2] = ~data;
 488	phy_config_packet.generation = generation;
 489	reinit_completion(&phy_config_done);
 490
 491	trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index,
 492					  phy_config_packet.generation, phy_config_packet.header[1],
 493					  phy_config_packet.header[2]);
 494
 495	card->driver->send_request(card, &phy_config_packet);
 496	wait_for_completion_timeout(&phy_config_done, timeout);
 
 
 497}
 498
 499static struct fw_address_handler *lookup_overlapping_address_handler(
 500	struct list_head *list, unsigned long long offset, size_t length)
 501{
 502	struct fw_address_handler *handler;
 503
 504	list_for_each_entry_rcu(handler, list, link) {
 505		if (handler->offset < offset + length &&
 506		    offset < handler->offset + handler->length)
 507			return handler;
 508	}
 509
 510	return NULL;
 511}
 512
 513static bool is_enclosing_handler(struct fw_address_handler *handler,
 514				 unsigned long long offset, size_t length)
 515{
 516	return handler->offset <= offset &&
 517		offset + length <= handler->offset + handler->length;
 518}
 519
 520static struct fw_address_handler *lookup_enclosing_address_handler(
 521	struct list_head *list, unsigned long long offset, size_t length)
 522{
 523	struct fw_address_handler *handler;
 524
 525	list_for_each_entry_rcu(handler, list, link) {
 526		if (is_enclosing_handler(handler, offset, length))
 527			return handler;
 528	}
 529
 530	return NULL;
 531}
 532
 533static DEFINE_SPINLOCK(address_handler_list_lock);
 534static LIST_HEAD(address_handler_list);
 535
 536const struct fw_address_region fw_high_memory_region =
 537	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 538EXPORT_SYMBOL(fw_high_memory_region);
 539
 540static const struct fw_address_region low_memory_region =
 541	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 542
 543#if 0
 544const struct fw_address_region fw_private_region =
 545	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 546const struct fw_address_region fw_csr_region =
 547	{ .start = CSR_REGISTER_BASE,
 548	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 549const struct fw_address_region fw_unit_space_region =
 550	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 551#endif  /*  0  */
 552
 
 
 
 
 
 
 553/**
 554 * fw_core_add_address_handler() - register for incoming requests
 555 * @handler:	callback
 556 * @region:	region in the IEEE 1212 node space address range
 557 *
 558 * region->start, ->end, and handler->length have to be quadlet-aligned.
 559 *
 560 * When a request is received that falls within the specified address range,
 561 * the specified callback is invoked.  The parameters passed to the callback
 562 * give the details of the particular request.
 563 *
 564 * To be called in process context.
 565 * Return value:  0 on success, non-zero otherwise.
 566 *
 567 * The start offset of the handler's address region is determined by
 568 * fw_core_add_address_handler() and is returned in handler->offset.
 569 *
 570 * Address allocations are exclusive, except for the FCP registers.
 571 */
 572int fw_core_add_address_handler(struct fw_address_handler *handler,
 573				const struct fw_address_region *region)
 574{
 575	struct fw_address_handler *other;
 576	int ret = -EBUSY;
 577
 578	if (region->start & 0xffff000000000003ULL ||
 579	    region->start >= region->end ||
 580	    region->end   > 0x0001000000000000ULL ||
 581	    handler->length & 3 ||
 582	    handler->length == 0)
 583		return -EINVAL;
 584
 585	guard(spinlock)(&address_handler_list_lock);
 586
 587	handler->offset = region->start;
 588	while (handler->offset + handler->length <= region->end) {
 589		if (is_in_fcp_region(handler->offset, handler->length))
 590			other = NULL;
 591		else
 592			other = lookup_overlapping_address_handler
 593					(&address_handler_list,
 594					 handler->offset, handler->length);
 595		if (other != NULL) {
 596			handler->offset += other->length;
 597		} else {
 598			list_add_tail_rcu(&handler->link, &address_handler_list);
 599			ret = 0;
 600			break;
 601		}
 602	}
 603
 
 
 604	return ret;
 605}
 606EXPORT_SYMBOL(fw_core_add_address_handler);
 607
 608/**
 609 * fw_core_remove_address_handler() - unregister an address handler
 610 * @handler: callback
 611 *
 612 * To be called in process context.
 613 *
 614 * When fw_core_remove_address_handler() returns, @handler->callback() is
 615 * guaranteed to not run on any CPU anymore.
 616 */
 617void fw_core_remove_address_handler(struct fw_address_handler *handler)
 618{
 619	scoped_guard(spinlock, &address_handler_list_lock)
 620		list_del_rcu(&handler->link);
 621
 622	synchronize_rcu();
 623}
 624EXPORT_SYMBOL(fw_core_remove_address_handler);
 625
 626struct fw_request {
 627	struct kref kref;
 628	struct fw_packet response;
 629	u32 request_header[ASYNC_HEADER_QUADLET_COUNT];
 630	int ack;
 631	u32 timestamp;
 632	u32 length;
 633	u32 data[];
 634};
 635
 636void fw_request_get(struct fw_request *request)
 637{
 638	kref_get(&request->kref);
 639}
 640
 641static void release_request(struct kref *kref)
 642{
 643	struct fw_request *request = container_of(kref, struct fw_request, kref);
 644
 645	kfree(request);
 646}
 647
 648void fw_request_put(struct fw_request *request)
 649{
 650	kref_put(&request->kref, release_request);
 651}
 652
 653static void free_response_callback(struct fw_packet *packet,
 654				   struct fw_card *card, int status)
 655{
 656	struct fw_request *request = container_of(packet, struct fw_request, response);
 657
 658	trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation,
 659					       packet->speed, status, packet->timestamp);
 660
 661	// Decrease the reference count since not at in-flight.
 662	fw_request_put(request);
 663
 664	// Decrease the reference count to release the object.
 665	fw_request_put(request);
 666}
 667
 668int fw_get_response_length(struct fw_request *r)
 669{
 670	int tcode, ext_tcode, data_length;
 671
 672	tcode = async_header_get_tcode(r->request_header);
 673
 674	switch (tcode) {
 675	case TCODE_WRITE_QUADLET_REQUEST:
 676	case TCODE_WRITE_BLOCK_REQUEST:
 677		return 0;
 678
 679	case TCODE_READ_QUADLET_REQUEST:
 680		return 4;
 681
 682	case TCODE_READ_BLOCK_REQUEST:
 683		data_length = async_header_get_data_length(r->request_header);
 684		return data_length;
 685
 686	case TCODE_LOCK_REQUEST:
 687		ext_tcode = async_header_get_extended_tcode(r->request_header);
 688		data_length = async_header_get_data_length(r->request_header);
 689		switch (ext_tcode) {
 690		case EXTCODE_FETCH_ADD:
 691		case EXTCODE_LITTLE_ADD:
 692			return data_length;
 693		default:
 694			return data_length / 2;
 695		}
 696
 697	default:
 698		WARN(1, "wrong tcode %d\n", tcode);
 699		return 0;
 700	}
 701}
 702
 703void fw_fill_response(struct fw_packet *response, u32 *request_header,
 704		      int rcode, void *payload, size_t length)
 705{
 706	int tcode, tlabel, extended_tcode, source, destination;
 707
 708	tcode = async_header_get_tcode(request_header);
 709	tlabel = async_header_get_tlabel(request_header);
 710	source = async_header_get_destination(request_header); // Exchange.
 711	destination = async_header_get_source(request_header); // Exchange.
 712	extended_tcode = async_header_get_extended_tcode(request_header);
 713
 714	async_header_set_retry(response->header, RETRY_1);
 715	async_header_set_tlabel(response->header, tlabel);
 716	async_header_set_destination(response->header, destination);
 717	async_header_set_source(response->header, source);
 718	async_header_set_rcode(response->header, rcode);
 719	response->header[2] = 0;	// The field is reserved.
 
 
 720
 721	switch (tcode) {
 722	case TCODE_WRITE_QUADLET_REQUEST:
 723	case TCODE_WRITE_BLOCK_REQUEST:
 724		async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE);
 725		response->header_length = 12;
 726		response->payload_length = 0;
 727		break;
 728
 729	case TCODE_READ_QUADLET_REQUEST:
 730		async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE);
 
 731		if (payload != NULL)
 732			async_header_set_quadlet_data(response->header, *(u32 *)payload);
 733		else
 734			async_header_set_quadlet_data(response->header, 0);
 735		response->header_length = 16;
 736		response->payload_length = 0;
 737		break;
 738
 739	case TCODE_READ_BLOCK_REQUEST:
 740	case TCODE_LOCK_REQUEST:
 741		async_header_set_tcode(response->header, tcode + 2);
 742		async_header_set_data_length(response->header, length);
 743		async_header_set_extended_tcode(response->header, extended_tcode);
 
 744		response->header_length = 16;
 745		response->payload = payload;
 746		response->payload_length = length;
 747		break;
 748
 749	default:
 750		WARN(1, "wrong tcode %d\n", tcode);
 751	}
 752
 753	response->payload_mapped = false;
 754}
 755EXPORT_SYMBOL(fw_fill_response);
 756
 757static u32 compute_split_timeout_timestamp(struct fw_card *card,
 758					   u32 request_timestamp)
 759{
 760	unsigned int cycles;
 761	u32 timestamp;
 762
 763	cycles = card->split_timeout_cycles;
 764	cycles += request_timestamp & 0x1fff;
 765
 766	timestamp = request_timestamp & ~0x1fff;
 767	timestamp += (cycles / 8000) << 13;
 768	timestamp |= cycles % 8000;
 769
 770	return timestamp;
 771}
 772
 773static struct fw_request *allocate_request(struct fw_card *card,
 774					   struct fw_packet *p)
 775{
 776	struct fw_request *request;
 777	u32 *data, length;
 778	int request_tcode;
 779
 780	request_tcode = async_header_get_tcode(p->header);
 781	switch (request_tcode) {
 782	case TCODE_WRITE_QUADLET_REQUEST:
 783		data = &p->header[3];
 784		length = 4;
 785		break;
 786
 787	case TCODE_WRITE_BLOCK_REQUEST:
 788	case TCODE_LOCK_REQUEST:
 789		data = p->payload;
 790		length = async_header_get_data_length(p->header);
 791		break;
 792
 793	case TCODE_READ_QUADLET_REQUEST:
 794		data = NULL;
 795		length = 4;
 796		break;
 797
 798	case TCODE_READ_BLOCK_REQUEST:
 799		data = NULL;
 800		length = async_header_get_data_length(p->header);
 801		break;
 802
 803	default:
 804		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 805			 p->header[0], p->header[1], p->header[2]);
 806		return NULL;
 807	}
 808
 809	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 810	if (request == NULL)
 811		return NULL;
 812	kref_init(&request->kref);
 813
 814	request->response.speed = p->speed;
 815	request->response.timestamp =
 816			compute_split_timeout_timestamp(card, p->timestamp);
 817	request->response.generation = p->generation;
 818	request->response.ack = 0;
 819	request->response.callback = free_response_callback;
 820	request->ack = p->ack;
 821	request->timestamp = p->timestamp;
 822	request->length = length;
 823	if (data)
 824		memcpy(request->data, data, length);
 825
 826	memcpy(request->request_header, p->header, sizeof(p->header));
 827
 828	return request;
 829}
 830
 831/**
 832 * fw_send_response: - send response packet for asynchronous transaction.
 833 * @card:	interface to send the response at.
 834 * @request:	firewire request data for the transaction.
 835 * @rcode:	response code to send.
 836 *
 837 * Submit a response packet into the asynchronous response transmission queue. The @request
 838 * is going to be released when the transmission successfully finishes later.
 839 */
 840void fw_send_response(struct fw_card *card,
 841		      struct fw_request *request, int rcode)
 842{
 843	u32 *data = NULL;
 844	unsigned int data_length = 0;
 845
 846	/* unified transaction or broadcast transaction: don't respond */
 847	if (request->ack != ACK_PENDING ||
 848	    HEADER_DESTINATION_IS_BROADCAST(request->request_header)) {
 849		fw_request_put(request);
 850		return;
 851	}
 852
 853	if (rcode == RCODE_COMPLETE) {
 854		data = request->data;
 855		data_length = fw_get_response_length(request);
 856	}
 857
 858	fw_fill_response(&request->response, request->request_header, rcode, data, data_length);
 859
 860	// Increase the reference count so that the object is kept during in-flight.
 861	fw_request_get(request);
 862
 863	trace_async_response_outbound_initiate((uintptr_t)request, card->index,
 864					       request->response.generation, request->response.speed,
 865					       request->response.header, data,
 866					       data ? data_length / 4 : 0);
 867
 868	card->driver->send_response(card, &request->response);
 869}
 870EXPORT_SYMBOL(fw_send_response);
 871
 872/**
 873 * fw_get_request_speed() - returns speed at which the @request was received
 874 * @request: firewire request data
 875 */
 876int fw_get_request_speed(struct fw_request *request)
 877{
 878	return request->response.speed;
 879}
 880EXPORT_SYMBOL(fw_get_request_speed);
 881
 882/**
 883 * fw_request_get_timestamp: Get timestamp of the request.
 884 * @request: The opaque pointer to request structure.
 885 *
 886 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
 887 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
 888 * field of isochronous cycle time register.
 889 *
 890 * Returns: timestamp of the request.
 891 */
 892u32 fw_request_get_timestamp(const struct fw_request *request)
 893{
 894	return request->timestamp;
 895}
 896EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
 897
 898static void handle_exclusive_region_request(struct fw_card *card,
 899					    struct fw_packet *p,
 900					    struct fw_request *request,
 901					    unsigned long long offset)
 902{
 903	struct fw_address_handler *handler;
 904	int tcode, destination, source;
 905
 906	destination = async_header_get_destination(p->header);
 907	source = async_header_get_source(p->header);
 908	tcode = async_header_get_tcode(p->header);
 909	if (tcode == TCODE_LOCK_REQUEST)
 910		tcode = 0x10 + async_header_get_extended_tcode(p->header);
 911
 912	scoped_guard(rcu) {
 913		handler = lookup_enclosing_address_handler(&address_handler_list, offset,
 914							   request->length);
 915		if (handler)
 916			handler->address_callback(card, request, tcode, destination, source,
 917						  p->generation, offset, request->data,
 918						  request->length, handler->callback_data);
 919	}
 
 
 920
 921	if (!handler)
 922		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 923}
 924
 925static void handle_fcp_region_request(struct fw_card *card,
 926				      struct fw_packet *p,
 927				      struct fw_request *request,
 928				      unsigned long long offset)
 929{
 930	struct fw_address_handler *handler;
 931	int tcode, destination, source;
 932
 933	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 934	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 935	    request->length > 0x200) {
 936		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 937
 938		return;
 939	}
 940
 941	tcode = async_header_get_tcode(p->header);
 942	destination = async_header_get_destination(p->header);
 943	source = async_header_get_source(p->header);
 944
 945	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 946	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 947		fw_send_response(card, request, RCODE_TYPE_ERROR);
 948
 949		return;
 950	}
 951
 952	scoped_guard(rcu) {
 953		list_for_each_entry_rcu(handler, &address_handler_list, link) {
 954			if (is_enclosing_handler(handler, offset, request->length))
 955				handler->address_callback(card, request, tcode, destination, source,
 956							  p->generation, offset, request->data,
 957							  request->length, handler->callback_data);
 958		}
 
 
 959	}
 
 960
 961	fw_send_response(card, request, RCODE_COMPLETE);
 962}
 963
 964void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 965{
 966	struct fw_request *request;
 967	unsigned long long offset;
 968	unsigned int tcode;
 969
 970	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 971		return;
 972
 973	tcode = async_header_get_tcode(p->header);
 974	if (tcode_is_link_internal(tcode)) {
 975		trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp,
 976					 p->header[1], p->header[2]);
 977		fw_cdev_handle_phy_packet(card, p);
 978		return;
 979	}
 980
 981	request = allocate_request(card, p);
 982	if (request == NULL) {
 983		/* FIXME: send statically allocated busy packet. */
 984		return;
 985	}
 986
 987	trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed,
 988				    p->ack, p->timestamp, p->header, request->data,
 989				    tcode_is_read_request(tcode) ? 0 : request->length / 4);
 990
 991	offset = async_header_get_offset(p->header);
 992
 993	if (!is_in_fcp_region(offset, request->length))
 994		handle_exclusive_region_request(card, p, request, offset);
 995	else
 996		handle_fcp_region_request(card, p, request, offset);
 997
 998}
 999EXPORT_SYMBOL(fw_core_handle_request);
1000
1001void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1002{
1003	struct fw_transaction *t = NULL, *iter;
 
1004	u32 *data;
1005	size_t data_length;
1006	int tcode, tlabel, source, rcode;
1007
1008	tcode = async_header_get_tcode(p->header);
1009	tlabel = async_header_get_tlabel(p->header);
1010	source = async_header_get_source(p->header);
1011	rcode = async_header_get_rcode(p->header);
1012
1013	// FIXME: sanity check packet, is length correct, does tcodes
1014	// and addresses match to the transaction request queried later.
1015	//
1016	// For the tracepoints event, let us decode the header here against the concern.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017
1018	switch (tcode) {
1019	case TCODE_READ_QUADLET_RESPONSE:
1020		data = (u32 *) &p->header[3];
1021		data_length = 4;
1022		break;
1023
1024	case TCODE_WRITE_RESPONSE:
1025		data = NULL;
1026		data_length = 0;
1027		break;
1028
1029	case TCODE_READ_BLOCK_RESPONSE:
1030	case TCODE_LOCK_RESPONSE:
1031		data = p->payload;
1032		data_length = async_header_get_data_length(p->header);
1033		break;
1034
1035	default:
1036		/* Should never happen, this is just to shut up gcc. */
1037		data = NULL;
1038		data_length = 0;
1039		break;
1040	}
1041
1042	scoped_guard(spinlock_irqsave, &card->lock) {
1043		list_for_each_entry(iter, &card->transaction_list, link) {
1044			if (iter->node_id == source && iter->tlabel == tlabel) {
1045				if (try_cancel_split_timeout(iter)) {
1046					list_del_init(&iter->link);
1047					card->tlabel_mask &= ~(1ULL << iter->tlabel);
1048					t = iter;
1049				}
1050				break;
1051			}
1052		}
1053	}
1054
1055	trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack,
1056				     p->timestamp, p->header, data, data_length / 4);
1057
1058	if (!t) {
1059		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1060			  source, tlabel);
1061		return;
1062	}
1063
1064	/*
1065	 * The response handler may be executed while the request handler
1066	 * is still pending.  Cancel the request handler.
1067	 */
1068	card->driver->cancel_packet(card, &t->packet);
1069
1070	if (!t->with_tstamp) {
1071		t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1072	} else {
1073		t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1074					data_length, t->callback_data);
1075	}
1076}
1077EXPORT_SYMBOL(fw_core_handle_response);
1078
1079/**
1080 * fw_rcode_string - convert a firewire result code to an error description
1081 * @rcode: the result code
1082 */
1083const char *fw_rcode_string(int rcode)
1084{
1085	static const char *const names[] = {
1086		[RCODE_COMPLETE]       = "no error",
1087		[RCODE_CONFLICT_ERROR] = "conflict error",
1088		[RCODE_DATA_ERROR]     = "data error",
1089		[RCODE_TYPE_ERROR]     = "type error",
1090		[RCODE_ADDRESS_ERROR]  = "address error",
1091		[RCODE_SEND_ERROR]     = "send error",
1092		[RCODE_CANCELLED]      = "timeout",
1093		[RCODE_BUSY]           = "busy",
1094		[RCODE_GENERATION]     = "bus reset",
1095		[RCODE_NO_ACK]         = "no ack",
1096	};
1097
1098	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1099		return names[rcode];
1100	else
1101		return "unknown";
1102}
1103EXPORT_SYMBOL(fw_rcode_string);
1104
1105static const struct fw_address_region topology_map_region =
1106	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1107	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1108
1109static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1110		int tcode, int destination, int source, int generation,
1111		unsigned long long offset, void *payload, size_t length,
1112		void *callback_data)
1113{
1114	int start;
1115
1116	if (!tcode_is_read_request(tcode)) {
1117		fw_send_response(card, request, RCODE_TYPE_ERROR);
1118		return;
1119	}
1120
1121	if ((offset & 3) > 0 || (length & 3) > 0) {
1122		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1123		return;
1124	}
1125
1126	start = (offset - topology_map_region.start) / 4;
1127	memcpy(payload, &card->topology_map[start], length);
1128
1129	fw_send_response(card, request, RCODE_COMPLETE);
1130}
1131
1132static struct fw_address_handler topology_map = {
1133	.length			= 0x400,
1134	.address_callback	= handle_topology_map,
1135};
1136
1137static const struct fw_address_region registers_region =
1138	{ .start = CSR_REGISTER_BASE,
1139	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1140
1141static void update_split_timeout(struct fw_card *card)
1142{
1143	unsigned int cycles;
1144
1145	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1146
1147	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1148	cycles = clamp(cycles, 800u, 3u * 8000u);
1149
1150	card->split_timeout_cycles = cycles;
1151	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1152}
1153
1154static void handle_registers(struct fw_card *card, struct fw_request *request,
1155		int tcode, int destination, int source, int generation,
1156		unsigned long long offset, void *payload, size_t length,
1157		void *callback_data)
1158{
1159	int reg = offset & ~CSR_REGISTER_BASE;
1160	__be32 *data = payload;
1161	int rcode = RCODE_COMPLETE;
 
1162
1163	switch (reg) {
1164	case CSR_PRIORITY_BUDGET:
1165		if (!card->priority_budget_implemented) {
1166			rcode = RCODE_ADDRESS_ERROR;
1167			break;
1168		}
1169		fallthrough;
1170
1171	case CSR_NODE_IDS:
1172		/*
1173		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1174		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1175		 */
1176		fallthrough;
1177
1178	case CSR_STATE_CLEAR:
1179	case CSR_STATE_SET:
1180	case CSR_CYCLE_TIME:
1181	case CSR_BUS_TIME:
1182	case CSR_BUSY_TIMEOUT:
1183		if (tcode == TCODE_READ_QUADLET_REQUEST)
1184			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1185		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1186			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1187		else
1188			rcode = RCODE_TYPE_ERROR;
1189		break;
1190
1191	case CSR_RESET_START:
1192		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1193			card->driver->write_csr(card, CSR_STATE_CLEAR,
1194						CSR_STATE_BIT_ABDICATE);
1195		else
1196			rcode = RCODE_TYPE_ERROR;
1197		break;
1198
1199	case CSR_SPLIT_TIMEOUT_HI:
1200		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1201			*data = cpu_to_be32(card->split_timeout_hi);
1202		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1203			guard(spinlock_irqsave)(&card->lock);
1204
1205			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1206			update_split_timeout(card);
 
1207		} else {
1208			rcode = RCODE_TYPE_ERROR;
1209		}
1210		break;
1211
1212	case CSR_SPLIT_TIMEOUT_LO:
1213		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1214			*data = cpu_to_be32(card->split_timeout_lo);
1215		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1216			guard(spinlock_irqsave)(&card->lock);
1217
1218			card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000;
1219			update_split_timeout(card);
 
1220		} else {
1221			rcode = RCODE_TYPE_ERROR;
1222		}
1223		break;
1224
1225	case CSR_MAINT_UTILITY:
1226		if (tcode == TCODE_READ_QUADLET_REQUEST)
1227			*data = card->maint_utility_register;
1228		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1229			card->maint_utility_register = *data;
1230		else
1231			rcode = RCODE_TYPE_ERROR;
1232		break;
1233
1234	case CSR_BROADCAST_CHANNEL:
1235		if (tcode == TCODE_READ_QUADLET_REQUEST)
1236			*data = cpu_to_be32(card->broadcast_channel);
1237		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1238			card->broadcast_channel =
1239			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1240			    BROADCAST_CHANNEL_INITIAL;
1241		else
1242			rcode = RCODE_TYPE_ERROR;
1243		break;
1244
1245	case CSR_BUS_MANAGER_ID:
1246	case CSR_BANDWIDTH_AVAILABLE:
1247	case CSR_CHANNELS_AVAILABLE_HI:
1248	case CSR_CHANNELS_AVAILABLE_LO:
1249		/*
1250		 * FIXME: these are handled by the OHCI hardware and
1251		 * the stack never sees these request. If we add
1252		 * support for a new type of controller that doesn't
1253		 * handle this in hardware we need to deal with these
1254		 * transactions.
1255		 */
1256		BUG();
1257		break;
1258
1259	default:
1260		rcode = RCODE_ADDRESS_ERROR;
1261		break;
1262	}
1263
1264	fw_send_response(card, request, rcode);
1265}
1266
1267static struct fw_address_handler registers = {
1268	.length			= 0x400,
1269	.address_callback	= handle_registers,
1270};
1271
1272static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1273		int tcode, int destination, int source, int generation,
1274		unsigned long long offset, void *payload, size_t length,
1275		void *callback_data)
1276{
1277	/*
1278	 * This catches requests not handled by the physical DMA unit,
1279	 * i.e., wrong transaction types or unauthorized source nodes.
1280	 */
1281	fw_send_response(card, request, RCODE_TYPE_ERROR);
1282}
1283
1284static struct fw_address_handler low_memory = {
1285	.length			= FW_MAX_PHYSICAL_RANGE,
1286	.address_callback	= handle_low_memory,
1287};
1288
1289MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1290MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1291MODULE_LICENSE("GPL");
1292
1293static const u32 vendor_textual_descriptor[] = {
1294	/* textual descriptor leaf () */
1295	0x00060000,
1296	0x00000000,
1297	0x00000000,
1298	0x4c696e75,		/* L i n u */
1299	0x78204669,		/* x   F i */
1300	0x72657769,		/* r e w i */
1301	0x72650000,		/* r e     */
1302};
1303
1304static const u32 model_textual_descriptor[] = {
1305	/* model descriptor leaf () */
1306	0x00030000,
1307	0x00000000,
1308	0x00000000,
1309	0x4a756a75,		/* J u j u */
1310};
1311
1312static struct fw_descriptor vendor_id_descriptor = {
1313	.length = ARRAY_SIZE(vendor_textual_descriptor),
1314	.immediate = 0x03001f11,
1315	.key = 0x81000000,
1316	.data = vendor_textual_descriptor,
1317};
1318
1319static struct fw_descriptor model_id_descriptor = {
1320	.length = ARRAY_SIZE(model_textual_descriptor),
1321	.immediate = 0x17023901,
1322	.key = 0x81000000,
1323	.data = model_textual_descriptor,
1324};
1325
1326static int __init fw_core_init(void)
1327{
1328	int ret;
1329
1330	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1331	if (!fw_workqueue)
1332		return -ENOMEM;
1333
1334	ret = bus_register(&fw_bus_type);
1335	if (ret < 0) {
1336		destroy_workqueue(fw_workqueue);
1337		return ret;
1338	}
1339
1340	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1341	if (fw_cdev_major < 0) {
1342		bus_unregister(&fw_bus_type);
1343		destroy_workqueue(fw_workqueue);
1344		return fw_cdev_major;
1345	}
1346
1347	fw_core_add_address_handler(&topology_map, &topology_map_region);
1348	fw_core_add_address_handler(&registers, &registers_region);
1349	fw_core_add_address_handler(&low_memory, &low_memory_region);
1350	fw_core_add_descriptor(&vendor_id_descriptor);
1351	fw_core_add_descriptor(&model_id_descriptor);
1352
1353	return 0;
1354}
1355
1356static void __exit fw_core_cleanup(void)
1357{
1358	unregister_chrdev(fw_cdev_major, "firewire");
1359	bus_unregister(&fw_bus_type);
1360	destroy_workqueue(fw_workqueue);
1361	xa_destroy(&fw_device_xa);
1362}
1363
1364module_init(fw_core_init);
1365module_exit(fw_core_cleanup);
v3.15
 
   1/*
   2 * Core IEEE1394 transaction logic
   3 *
   4 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software Foundation,
  18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21#include <linux/bug.h>
  22#include <linux/completion.h>
  23#include <linux/device.h>
  24#include <linux/errno.h>
  25#include <linux/firewire.h>
  26#include <linux/firewire-constants.h>
  27#include <linux/fs.h>
  28#include <linux/init.h>
  29#include <linux/idr.h>
  30#include <linux/jiffies.h>
  31#include <linux/kernel.h>
  32#include <linux/list.h>
  33#include <linux/module.h>
  34#include <linux/rculist.h>
  35#include <linux/slab.h>
  36#include <linux/spinlock.h>
  37#include <linux/string.h>
  38#include <linux/timer.h>
  39#include <linux/types.h>
  40#include <linux/workqueue.h>
  41
  42#include <asm/byteorder.h>
  43
  44#include "core.h"
 
 
 
  45
  46#define HEADER_PRI(pri)			((pri) << 0)
  47#define HEADER_TCODE(tcode)		((tcode) << 4)
  48#define HEADER_RETRY(retry)		((retry) << 8)
  49#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
  50#define HEADER_DESTINATION(destination)	((destination) << 16)
  51#define HEADER_SOURCE(source)		((source) << 16)
  52#define HEADER_RCODE(rcode)		((rcode) << 12)
  53#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
  54#define HEADER_DATA_LENGTH(length)	((length) << 16)
  55#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)
  56
  57#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
  58#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
  59#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
  60#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
  61#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
  62#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
  63#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
  64#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
  65
  66#define HEADER_DESTINATION_IS_BROADCAST(q) \
  67	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
  68
  69#define PHY_PACKET_CONFIG	0x0
  70#define PHY_PACKET_LINK_ON	0x1
  71#define PHY_PACKET_SELF_ID	0x2
  72
  73#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
  74#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
  75#define PHY_IDENTIFIER(id)		((id) << 30)
  76
  77/* returns 0 if the split timeout handler is already running */
  78static int try_cancel_split_timeout(struct fw_transaction *t)
  79{
  80	if (t->is_split_transaction)
  81		return del_timer(&t->split_timeout_timer);
  82	else
  83		return 1;
  84}
  85
  86static int close_transaction(struct fw_transaction *transaction,
  87			     struct fw_card *card, int rcode)
  88{
  89	struct fw_transaction *t;
  90	unsigned long flags;
  91
  92	spin_lock_irqsave(&card->lock, flags);
  93	list_for_each_entry(t, &card->transaction_list, link) {
  94		if (t == transaction) {
  95			if (!try_cancel_split_timeout(t)) {
  96				spin_unlock_irqrestore(&card->lock, flags);
  97				goto timed_out;
 
 
 
  98			}
  99			list_del_init(&t->link);
 100			card->tlabel_mask &= ~(1ULL << t->tlabel);
 101			break;
 102		}
 103	}
 104	spin_unlock_irqrestore(&card->lock, flags);
 105
 106	if (&t->link != &card->transaction_list) {
 107		t->callback(card, rcode, NULL, 0, t->callback_data);
 108		return 0;
 
 
 
 
 
 109	}
 110
 111 timed_out:
 112	return -ENOENT;
 113}
 114
 115/*
 116 * Only valid for transactions that are potentially pending (ie have
 117 * been sent).
 118 */
 119int fw_cancel_transaction(struct fw_card *card,
 120			  struct fw_transaction *transaction)
 121{
 
 
 122	/*
 123	 * Cancel the packet transmission if it's still queued.  That
 124	 * will call the packet transmission callback which cancels
 125	 * the transaction.
 126	 */
 127
 128	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
 129		return 0;
 130
 131	/*
 132	 * If the request packet has already been sent, we need to see
 133	 * if the transaction is still pending and remove it in that case.
 134	 */
 135
 136	return close_transaction(transaction, card, RCODE_CANCELLED);
 
 
 
 
 
 
 
 
 
 
 137}
 138EXPORT_SYMBOL(fw_cancel_transaction);
 139
 140static void split_transaction_timeout_callback(unsigned long data)
 141{
 142	struct fw_transaction *t = (struct fw_transaction *)data;
 143	struct fw_card *card = t->card;
 144	unsigned long flags;
 145
 146	spin_lock_irqsave(&card->lock, flags);
 147	if (list_empty(&t->link)) {
 148		spin_unlock_irqrestore(&card->lock, flags);
 149		return;
 
 150	}
 151	list_del(&t->link);
 152	card->tlabel_mask &= ~(1ULL << t->tlabel);
 153	spin_unlock_irqrestore(&card->lock, flags);
 154
 155	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
 
 
 
 
 
 156}
 157
 158static void start_split_transaction_timeout(struct fw_transaction *t,
 159					    struct fw_card *card)
 160{
 161	unsigned long flags;
 162
 163	spin_lock_irqsave(&card->lock, flags);
 164
 165	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
 166		spin_unlock_irqrestore(&card->lock, flags);
 167		return;
 168	}
 169
 170	t->is_split_transaction = true;
 171	mod_timer(&t->split_timeout_timer,
 172		  jiffies + card->split_timeout_jiffies);
 
 173
 174	spin_unlock_irqrestore(&card->lock, flags);
 175}
 176
 177static void transmit_complete_callback(struct fw_packet *packet,
 178				       struct fw_card *card, int status)
 179{
 180	struct fw_transaction *t =
 181	    container_of(packet, struct fw_transaction, packet);
 182
 
 
 
 183	switch (status) {
 184	case ACK_COMPLETE:
 185		close_transaction(t, card, RCODE_COMPLETE);
 186		break;
 187	case ACK_PENDING:
 
 
 
 188		start_split_transaction_timeout(t, card);
 189		break;
 
 190	case ACK_BUSY_X:
 191	case ACK_BUSY_A:
 192	case ACK_BUSY_B:
 193		close_transaction(t, card, RCODE_BUSY);
 194		break;
 195	case ACK_DATA_ERROR:
 196		close_transaction(t, card, RCODE_DATA_ERROR);
 197		break;
 198	case ACK_TYPE_ERROR:
 199		close_transaction(t, card, RCODE_TYPE_ERROR);
 200		break;
 201	default:
 202		/*
 203		 * In this case the ack is really a juju specific
 204		 * rcode, so just forward that to the callback.
 205		 */
 206		close_transaction(t, card, status);
 207		break;
 208	}
 209}
 210
 211static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
 212		int destination_id, int source_id, int generation, int speed,
 213		unsigned long long offset, void *payload, size_t length)
 214{
 215	int ext_tcode;
 216
 217	if (tcode == TCODE_STREAM_DATA) {
 218		packet->header[0] =
 219			HEADER_DATA_LENGTH(length) |
 220			destination_id |
 221			HEADER_TCODE(TCODE_STREAM_DATA);
 
 222		packet->header_length = 4;
 223		packet->payload = payload;
 224		packet->payload_length = length;
 225
 226		goto common;
 227	}
 228
 229	if (tcode > 0x10) {
 230		ext_tcode = tcode & ~0x10;
 231		tcode = TCODE_LOCK_REQUEST;
 232	} else
 233		ext_tcode = 0;
 234
 235	packet->header[0] =
 236		HEADER_RETRY(RETRY_X) |
 237		HEADER_TLABEL(tlabel) |
 238		HEADER_TCODE(tcode) |
 239		HEADER_DESTINATION(destination_id);
 240	packet->header[1] =
 241		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
 242	packet->header[2] =
 243		offset;
 244
 245	switch (tcode) {
 246	case TCODE_WRITE_QUADLET_REQUEST:
 247		packet->header[3] = *(u32 *)payload;
 248		packet->header_length = 16;
 249		packet->payload_length = 0;
 250		break;
 251
 252	case TCODE_LOCK_REQUEST:
 253	case TCODE_WRITE_BLOCK_REQUEST:
 254		packet->header[3] =
 255			HEADER_DATA_LENGTH(length) |
 256			HEADER_EXTENDED_TCODE(ext_tcode);
 257		packet->header_length = 16;
 258		packet->payload = payload;
 259		packet->payload_length = length;
 260		break;
 261
 262	case TCODE_READ_QUADLET_REQUEST:
 263		packet->header_length = 12;
 264		packet->payload_length = 0;
 265		break;
 266
 267	case TCODE_READ_BLOCK_REQUEST:
 268		packet->header[3] =
 269			HEADER_DATA_LENGTH(length) |
 270			HEADER_EXTENDED_TCODE(ext_tcode);
 271		packet->header_length = 16;
 272		packet->payload_length = 0;
 273		break;
 274
 275	default:
 276		WARN(1, "wrong tcode %d\n", tcode);
 277	}
 278 common:
 279	packet->speed = speed;
 280	packet->generation = generation;
 281	packet->ack = 0;
 282	packet->payload_mapped = false;
 283}
 284
 285static int allocate_tlabel(struct fw_card *card)
 286{
 287	int tlabel;
 288
 289	tlabel = card->current_tlabel;
 290	while (card->tlabel_mask & (1ULL << tlabel)) {
 291		tlabel = (tlabel + 1) & 0x3f;
 292		if (tlabel == card->current_tlabel)
 293			return -EBUSY;
 294	}
 295
 296	card->current_tlabel = (tlabel + 1) & 0x3f;
 297	card->tlabel_mask |= 1ULL << tlabel;
 298
 299	return tlabel;
 300}
 301
 302/**
 303 * fw_send_request() - submit a request packet for transmission
 
 304 * @card:		interface to send the request at
 305 * @t:			transaction instance to which the request belongs
 306 * @tcode:		transaction code
 307 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 308 * @generation:		bus generation in which request and response are valid
 309 * @speed:		transmission speed
 310 * @offset:		48bit wide offset into destination's address space
 311 * @payload:		data payload for the request subaction
 312 * @length:		length of the payload, in bytes
 313 * @callback:		function to be called when the transaction is completed
 
 
 314 * @callback_data:	data to be passed to the transaction completion callback
 315 *
 316 * Submit a request packet into the asynchronous request transmission queue.
 317 * Can be called from atomic context.  If you prefer a blocking API, use
 318 * fw_run_transaction() in a context that can sleep.
 319 *
 320 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 321 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 322 *
 323 * Make sure that the value in @destination_id is not older than the one in
 324 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 325 *
 326 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 327 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 328 * It will contain tag, channel, and sy data instead of a node ID then.
 329 *
 330 * The payload buffer at @data is going to be DMA-mapped except in case of
 331 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 332 * buffer complies with the restrictions of the streaming DMA mapping API.
 333 * @payload must not be freed before the @callback is called.
 334 *
 335 * In case of request types without payload, @data is NULL and @length is 0.
 336 *
 337 * After the transaction is completed successfully or unsuccessfully, the
 338 * @callback will be called.  Among its parameters is the response code which
 339 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 340 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 341 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 342 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 343 * generation, or missing ACK respectively.
 344 *
 345 * Note some timing corner cases:  fw_send_request() may complete much earlier
 346 * than when the request packet actually hits the wire.  On the other hand,
 347 * transaction completion and hence execution of @callback may happen even
 348 * before fw_send_request() returns.
 349 */
 350void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
 351		     int destination_id, int generation, int speed,
 352		     unsigned long long offset, void *payload, size_t length,
 353		     fw_transaction_callback_t callback, void *callback_data)
 354{
 355	unsigned long flags;
 356	int tlabel;
 357
 358	/*
 359	 * Allocate tlabel from the bitmap and put the transaction on
 360	 * the list while holding the card spinlock.
 361	 */
 362
 363	spin_lock_irqsave(&card->lock, flags);
 364
 365	tlabel = allocate_tlabel(card);
 366	if (tlabel < 0) {
 367		spin_unlock_irqrestore(&card->lock, flags);
 368		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
 
 
 
 
 
 
 
 
 
 
 
 
 369		return;
 370	}
 371
 372	t->node_id = destination_id;
 373	t->tlabel = tlabel;
 374	t->card = card;
 375	t->is_split_transaction = false;
 376	setup_timer(&t->split_timeout_timer,
 377		    split_transaction_timeout_callback, (unsigned long)t);
 378	t->callback = callback;
 
 379	t->callback_data = callback_data;
 380
 381	fw_fill_request(&t->packet, tcode, t->tlabel,
 382			destination_id, card->node_id, generation,
 383			speed, offset, payload, length);
 384	t->packet.callback = transmit_complete_callback;
 385
 386	list_add_tail(&t->link, &card->transaction_list);
 387
 388	spin_unlock_irqrestore(&card->lock, flags);
 389
 
 
 
 
 390	card->driver->send_request(card, &t->packet);
 391}
 392EXPORT_SYMBOL(fw_send_request);
 393
 394struct transaction_callback_data {
 395	struct completion done;
 396	void *payload;
 397	int rcode;
 398};
 399
 400static void transaction_callback(struct fw_card *card, int rcode,
 401				 void *payload, size_t length, void *data)
 402{
 403	struct transaction_callback_data *d = data;
 404
 405	if (rcode == RCODE_COMPLETE)
 406		memcpy(d->payload, payload, length);
 407	d->rcode = rcode;
 408	complete(&d->done);
 409}
 410
 411/**
 412 * fw_run_transaction() - send request and sleep until transaction is completed
 
 
 
 
 
 
 
 
 413 *
 414 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 415 * Unlike fw_send_request(), @data points to the payload of the request or/and
 416 * to the payload of the response.  DMA mapping restrictions apply to outbound
 417 * request payloads of >= 8 bytes but not to inbound response payloads.
 418 */
 419int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
 420		       int generation, int speed, unsigned long long offset,
 421		       void *payload, size_t length)
 422{
 423	struct transaction_callback_data d;
 424	struct fw_transaction t;
 425
 426	init_timer_on_stack(&t.split_timeout_timer);
 427	init_completion(&d.done);
 428	d.payload = payload;
 429	fw_send_request(card, &t, tcode, destination_id, generation, speed,
 430			offset, payload, length, transaction_callback, &d);
 431	wait_for_completion(&d.done);
 432	destroy_timer_on_stack(&t.split_timeout_timer);
 433
 434	return d.rcode;
 435}
 436EXPORT_SYMBOL(fw_run_transaction);
 437
 438static DEFINE_MUTEX(phy_config_mutex);
 439static DECLARE_COMPLETION(phy_config_done);
 440
 441static void transmit_phy_packet_callback(struct fw_packet *packet,
 442					 struct fw_card *card, int status)
 443{
 
 
 444	complete(&phy_config_done);
 445}
 446
 447static struct fw_packet phy_config_packet = {
 448	.header_length	= 12,
 449	.header[0]	= TCODE_LINK_INTERNAL << 4,
 450	.payload_length	= 0,
 451	.speed		= SCODE_100,
 452	.callback	= transmit_phy_packet_callback,
 453};
 454
 455void fw_send_phy_config(struct fw_card *card,
 456			int node_id, int generation, int gap_count)
 457{
 458	long timeout = DIV_ROUND_UP(HZ, 10);
 459	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
 
 
 460
 461	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
 462		data |= PHY_CONFIG_ROOT_ID(node_id);
 
 
 463
 464	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
 465		gap_count = card->driver->read_phy_reg(card, 1);
 466		if (gap_count < 0)
 467			return;
 468
 469		gap_count &= 63;
 470		if (gap_count == 63)
 471			return;
 472	}
 473	data |= PHY_CONFIG_GAP_COUNT(gap_count);
 
 474
 475	mutex_lock(&phy_config_mutex);
 476
 
 477	phy_config_packet.header[1] = data;
 478	phy_config_packet.header[2] = ~data;
 479	phy_config_packet.generation = generation;
 480	reinit_completion(&phy_config_done);
 481
 
 
 
 
 482	card->driver->send_request(card, &phy_config_packet);
 483	wait_for_completion_timeout(&phy_config_done, timeout);
 484
 485	mutex_unlock(&phy_config_mutex);
 486}
 487
 488static struct fw_address_handler *lookup_overlapping_address_handler(
 489	struct list_head *list, unsigned long long offset, size_t length)
 490{
 491	struct fw_address_handler *handler;
 492
 493	list_for_each_entry_rcu(handler, list, link) {
 494		if (handler->offset < offset + length &&
 495		    offset < handler->offset + handler->length)
 496			return handler;
 497	}
 498
 499	return NULL;
 500}
 501
 502static bool is_enclosing_handler(struct fw_address_handler *handler,
 503				 unsigned long long offset, size_t length)
 504{
 505	return handler->offset <= offset &&
 506		offset + length <= handler->offset + handler->length;
 507}
 508
 509static struct fw_address_handler *lookup_enclosing_address_handler(
 510	struct list_head *list, unsigned long long offset, size_t length)
 511{
 512	struct fw_address_handler *handler;
 513
 514	list_for_each_entry_rcu(handler, list, link) {
 515		if (is_enclosing_handler(handler, offset, length))
 516			return handler;
 517	}
 518
 519	return NULL;
 520}
 521
 522static DEFINE_SPINLOCK(address_handler_list_lock);
 523static LIST_HEAD(address_handler_list);
 524
 525const struct fw_address_region fw_high_memory_region =
 526	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
 527EXPORT_SYMBOL(fw_high_memory_region);
 528
 529static const struct fw_address_region low_memory_region =
 530	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
 531
 532#if 0
 533const struct fw_address_region fw_private_region =
 534	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
 535const struct fw_address_region fw_csr_region =
 536	{ .start = CSR_REGISTER_BASE,
 537	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
 538const struct fw_address_region fw_unit_space_region =
 539	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
 540#endif  /*  0  */
 541
 542static bool is_in_fcp_region(u64 offset, size_t length)
 543{
 544	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 545		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
 546}
 547
 548/**
 549 * fw_core_add_address_handler() - register for incoming requests
 550 * @handler:	callback
 551 * @region:	region in the IEEE 1212 node space address range
 552 *
 553 * region->start, ->end, and handler->length have to be quadlet-aligned.
 554 *
 555 * When a request is received that falls within the specified address range,
 556 * the specified callback is invoked.  The parameters passed to the callback
 557 * give the details of the particular request.
 558 *
 559 * To be called in process context.
 560 * Return value:  0 on success, non-zero otherwise.
 561 *
 562 * The start offset of the handler's address region is determined by
 563 * fw_core_add_address_handler() and is returned in handler->offset.
 564 *
 565 * Address allocations are exclusive, except for the FCP registers.
 566 */
 567int fw_core_add_address_handler(struct fw_address_handler *handler,
 568				const struct fw_address_region *region)
 569{
 570	struct fw_address_handler *other;
 571	int ret = -EBUSY;
 572
 573	if (region->start & 0xffff000000000003ULL ||
 574	    region->start >= region->end ||
 575	    region->end   > 0x0001000000000000ULL ||
 576	    handler->length & 3 ||
 577	    handler->length == 0)
 578		return -EINVAL;
 579
 580	spin_lock(&address_handler_list_lock);
 581
 582	handler->offset = region->start;
 583	while (handler->offset + handler->length <= region->end) {
 584		if (is_in_fcp_region(handler->offset, handler->length))
 585			other = NULL;
 586		else
 587			other = lookup_overlapping_address_handler
 588					(&address_handler_list,
 589					 handler->offset, handler->length);
 590		if (other != NULL) {
 591			handler->offset += other->length;
 592		} else {
 593			list_add_tail_rcu(&handler->link, &address_handler_list);
 594			ret = 0;
 595			break;
 596		}
 597	}
 598
 599	spin_unlock(&address_handler_list_lock);
 600
 601	return ret;
 602}
 603EXPORT_SYMBOL(fw_core_add_address_handler);
 604
 605/**
 606 * fw_core_remove_address_handler() - unregister an address handler
 
 607 *
 608 * To be called in process context.
 609 *
 610 * When fw_core_remove_address_handler() returns, @handler->callback() is
 611 * guaranteed to not run on any CPU anymore.
 612 */
 613void fw_core_remove_address_handler(struct fw_address_handler *handler)
 614{
 615	spin_lock(&address_handler_list_lock);
 616	list_del_rcu(&handler->link);
 617	spin_unlock(&address_handler_list_lock);
 618	synchronize_rcu();
 619}
 620EXPORT_SYMBOL(fw_core_remove_address_handler);
 621
 622struct fw_request {
 
 623	struct fw_packet response;
 624	u32 request_header[4];
 625	int ack;
 
 626	u32 length;
 627	u32 data[0];
 628};
 629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630static void free_response_callback(struct fw_packet *packet,
 631				   struct fw_card *card, int status)
 632{
 633	struct fw_request *request;
 
 
 
 
 
 
 634
 635	request = container_of(packet, struct fw_request, response);
 636	kfree(request);
 637}
 638
 639int fw_get_response_length(struct fw_request *r)
 640{
 641	int tcode, ext_tcode, data_length;
 642
 643	tcode = HEADER_GET_TCODE(r->request_header[0]);
 644
 645	switch (tcode) {
 646	case TCODE_WRITE_QUADLET_REQUEST:
 647	case TCODE_WRITE_BLOCK_REQUEST:
 648		return 0;
 649
 650	case TCODE_READ_QUADLET_REQUEST:
 651		return 4;
 652
 653	case TCODE_READ_BLOCK_REQUEST:
 654		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 655		return data_length;
 656
 657	case TCODE_LOCK_REQUEST:
 658		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
 659		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
 660		switch (ext_tcode) {
 661		case EXTCODE_FETCH_ADD:
 662		case EXTCODE_LITTLE_ADD:
 663			return data_length;
 664		default:
 665			return data_length / 2;
 666		}
 667
 668	default:
 669		WARN(1, "wrong tcode %d\n", tcode);
 670		return 0;
 671	}
 672}
 673
 674void fw_fill_response(struct fw_packet *response, u32 *request_header,
 675		      int rcode, void *payload, size_t length)
 676{
 677	int tcode, tlabel, extended_tcode, source, destination;
 678
 679	tcode          = HEADER_GET_TCODE(request_header[0]);
 680	tlabel         = HEADER_GET_TLABEL(request_header[0]);
 681	source         = HEADER_GET_DESTINATION(request_header[0]);
 682	destination    = HEADER_GET_SOURCE(request_header[1]);
 683	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
 684
 685	response->header[0] =
 686		HEADER_RETRY(RETRY_1) |
 687		HEADER_TLABEL(tlabel) |
 688		HEADER_DESTINATION(destination);
 689	response->header[1] =
 690		HEADER_SOURCE(source) |
 691		HEADER_RCODE(rcode);
 692	response->header[2] = 0;
 693
 694	switch (tcode) {
 695	case TCODE_WRITE_QUADLET_REQUEST:
 696	case TCODE_WRITE_BLOCK_REQUEST:
 697		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
 698		response->header_length = 12;
 699		response->payload_length = 0;
 700		break;
 701
 702	case TCODE_READ_QUADLET_REQUEST:
 703		response->header[0] |=
 704			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
 705		if (payload != NULL)
 706			response->header[3] = *(u32 *)payload;
 707		else
 708			response->header[3] = 0;
 709		response->header_length = 16;
 710		response->payload_length = 0;
 711		break;
 712
 713	case TCODE_READ_BLOCK_REQUEST:
 714	case TCODE_LOCK_REQUEST:
 715		response->header[0] |= HEADER_TCODE(tcode + 2);
 716		response->header[3] =
 717			HEADER_DATA_LENGTH(length) |
 718			HEADER_EXTENDED_TCODE(extended_tcode);
 719		response->header_length = 16;
 720		response->payload = payload;
 721		response->payload_length = length;
 722		break;
 723
 724	default:
 725		WARN(1, "wrong tcode %d\n", tcode);
 726	}
 727
 728	response->payload_mapped = false;
 729}
 730EXPORT_SYMBOL(fw_fill_response);
 731
 732static u32 compute_split_timeout_timestamp(struct fw_card *card,
 733					   u32 request_timestamp)
 734{
 735	unsigned int cycles;
 736	u32 timestamp;
 737
 738	cycles = card->split_timeout_cycles;
 739	cycles += request_timestamp & 0x1fff;
 740
 741	timestamp = request_timestamp & ~0x1fff;
 742	timestamp += (cycles / 8000) << 13;
 743	timestamp |= cycles % 8000;
 744
 745	return timestamp;
 746}
 747
 748static struct fw_request *allocate_request(struct fw_card *card,
 749					   struct fw_packet *p)
 750{
 751	struct fw_request *request;
 752	u32 *data, length;
 753	int request_tcode;
 754
 755	request_tcode = HEADER_GET_TCODE(p->header[0]);
 756	switch (request_tcode) {
 757	case TCODE_WRITE_QUADLET_REQUEST:
 758		data = &p->header[3];
 759		length = 4;
 760		break;
 761
 762	case TCODE_WRITE_BLOCK_REQUEST:
 763	case TCODE_LOCK_REQUEST:
 764		data = p->payload;
 765		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 766		break;
 767
 768	case TCODE_READ_QUADLET_REQUEST:
 769		data = NULL;
 770		length = 4;
 771		break;
 772
 773	case TCODE_READ_BLOCK_REQUEST:
 774		data = NULL;
 775		length = HEADER_GET_DATA_LENGTH(p->header[3]);
 776		break;
 777
 778	default:
 779		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
 780			 p->header[0], p->header[1], p->header[2]);
 781		return NULL;
 782	}
 783
 784	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
 785	if (request == NULL)
 786		return NULL;
 
 787
 788	request->response.speed = p->speed;
 789	request->response.timestamp =
 790			compute_split_timeout_timestamp(card, p->timestamp);
 791	request->response.generation = p->generation;
 792	request->response.ack = 0;
 793	request->response.callback = free_response_callback;
 794	request->ack = p->ack;
 
 795	request->length = length;
 796	if (data)
 797		memcpy(request->data, data, length);
 798
 799	memcpy(request->request_header, p->header, sizeof(p->header));
 800
 801	return request;
 802}
 803
 
 
 
 
 
 
 
 
 
 804void fw_send_response(struct fw_card *card,
 805		      struct fw_request *request, int rcode)
 806{
 807	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
 808		return;
 809
 810	/* unified transaction or broadcast transaction: don't respond */
 811	if (request->ack != ACK_PENDING ||
 812	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
 813		kfree(request);
 814		return;
 815	}
 816
 817	if (rcode == RCODE_COMPLETE)
 818		fw_fill_response(&request->response, request->request_header,
 819				 rcode, request->data,
 820				 fw_get_response_length(request));
 821	else
 822		fw_fill_response(&request->response, request->request_header,
 823				 rcode, NULL, 0);
 
 
 
 
 
 
 
 824
 825	card->driver->send_response(card, &request->response);
 826}
 827EXPORT_SYMBOL(fw_send_response);
 828
 829/**
 830 * fw_get_request_speed() - returns speed at which the @request was received
 
 831 */
 832int fw_get_request_speed(struct fw_request *request)
 833{
 834	return request->response.speed;
 835}
 836EXPORT_SYMBOL(fw_get_request_speed);
 837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838static void handle_exclusive_region_request(struct fw_card *card,
 839					    struct fw_packet *p,
 840					    struct fw_request *request,
 841					    unsigned long long offset)
 842{
 843	struct fw_address_handler *handler;
 844	int tcode, destination, source;
 845
 846	destination = HEADER_GET_DESTINATION(p->header[0]);
 847	source      = HEADER_GET_SOURCE(p->header[1]);
 848	tcode       = HEADER_GET_TCODE(p->header[0]);
 849	if (tcode == TCODE_LOCK_REQUEST)
 850		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
 851
 852	rcu_read_lock();
 853	handler = lookup_enclosing_address_handler(&address_handler_list,
 854						   offset, request->length);
 855	if (handler)
 856		handler->address_callback(card, request,
 857					  tcode, destination, source,
 858					  p->generation, offset,
 859					  request->data, request->length,
 860					  handler->callback_data);
 861	rcu_read_unlock();
 862
 863	if (!handler)
 864		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 865}
 866
 867static void handle_fcp_region_request(struct fw_card *card,
 868				      struct fw_packet *p,
 869				      struct fw_request *request,
 870				      unsigned long long offset)
 871{
 872	struct fw_address_handler *handler;
 873	int tcode, destination, source;
 874
 875	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
 876	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
 877	    request->length > 0x200) {
 878		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
 879
 880		return;
 881	}
 882
 883	tcode       = HEADER_GET_TCODE(p->header[0]);
 884	destination = HEADER_GET_DESTINATION(p->header[0]);
 885	source      = HEADER_GET_SOURCE(p->header[1]);
 886
 887	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
 888	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
 889		fw_send_response(card, request, RCODE_TYPE_ERROR);
 890
 891		return;
 892	}
 893
 894	rcu_read_lock();
 895	list_for_each_entry_rcu(handler, &address_handler_list, link) {
 896		if (is_enclosing_handler(handler, offset, request->length))
 897			handler->address_callback(card, NULL, tcode,
 898						  destination, source,
 899						  p->generation, offset,
 900						  request->data,
 901						  request->length,
 902						  handler->callback_data);
 903	}
 904	rcu_read_unlock();
 905
 906	fw_send_response(card, request, RCODE_COMPLETE);
 907}
 908
 909void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
 910{
 911	struct fw_request *request;
 912	unsigned long long offset;
 
 913
 914	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
 915		return;
 916
 917	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
 
 
 
 918		fw_cdev_handle_phy_packet(card, p);
 919		return;
 920	}
 921
 922	request = allocate_request(card, p);
 923	if (request == NULL) {
 924		/* FIXME: send statically allocated busy packet. */
 925		return;
 926	}
 927
 928	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
 929		p->header[2];
 
 
 
 930
 931	if (!is_in_fcp_region(offset, request->length))
 932		handle_exclusive_region_request(card, p, request, offset);
 933	else
 934		handle_fcp_region_request(card, p, request, offset);
 935
 936}
 937EXPORT_SYMBOL(fw_core_handle_request);
 938
 939void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
 940{
 941	struct fw_transaction *t;
 942	unsigned long flags;
 943	u32 *data;
 944	size_t data_length;
 945	int tcode, tlabel, source, rcode;
 946
 947	tcode	= HEADER_GET_TCODE(p->header[0]);
 948	tlabel	= HEADER_GET_TLABEL(p->header[0]);
 949	source	= HEADER_GET_SOURCE(p->header[1]);
 950	rcode	= HEADER_GET_RCODE(p->header[1]);
 951
 952	spin_lock_irqsave(&card->lock, flags);
 953	list_for_each_entry(t, &card->transaction_list, link) {
 954		if (t->node_id == source && t->tlabel == tlabel) {
 955			if (!try_cancel_split_timeout(t)) {
 956				spin_unlock_irqrestore(&card->lock, flags);
 957				goto timed_out;
 958			}
 959			list_del_init(&t->link);
 960			card->tlabel_mask &= ~(1ULL << t->tlabel);
 961			break;
 962		}
 963	}
 964	spin_unlock_irqrestore(&card->lock, flags);
 965
 966	if (&t->link == &card->transaction_list) {
 967 timed_out:
 968		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
 969			  source, tlabel);
 970		return;
 971	}
 972
 973	/*
 974	 * FIXME: sanity check packet, is length correct, does tcodes
 975	 * and addresses match.
 976	 */
 977
 978	switch (tcode) {
 979	case TCODE_READ_QUADLET_RESPONSE:
 980		data = (u32 *) &p->header[3];
 981		data_length = 4;
 982		break;
 983
 984	case TCODE_WRITE_RESPONSE:
 985		data = NULL;
 986		data_length = 0;
 987		break;
 988
 989	case TCODE_READ_BLOCK_RESPONSE:
 990	case TCODE_LOCK_RESPONSE:
 991		data = p->payload;
 992		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
 993		break;
 994
 995	default:
 996		/* Should never happen, this is just to shut up gcc. */
 997		data = NULL;
 998		data_length = 0;
 999		break;
1000	}
1001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002	/*
1003	 * The response handler may be executed while the request handler
1004	 * is still pending.  Cancel the request handler.
1005	 */
1006	card->driver->cancel_packet(card, &t->packet);
1007
1008	t->callback(card, rcode, data, data_length, t->callback_data);
 
 
 
 
 
1009}
1010EXPORT_SYMBOL(fw_core_handle_response);
1011
1012/**
1013 * fw_rcode_string - convert a firewire result code to an error description
1014 * @rcode: the result code
1015 */
1016const char *fw_rcode_string(int rcode)
1017{
1018	static const char *const names[] = {
1019		[RCODE_COMPLETE]       = "no error",
1020		[RCODE_CONFLICT_ERROR] = "conflict error",
1021		[RCODE_DATA_ERROR]     = "data error",
1022		[RCODE_TYPE_ERROR]     = "type error",
1023		[RCODE_ADDRESS_ERROR]  = "address error",
1024		[RCODE_SEND_ERROR]     = "send error",
1025		[RCODE_CANCELLED]      = "timeout",
1026		[RCODE_BUSY]           = "busy",
1027		[RCODE_GENERATION]     = "bus reset",
1028		[RCODE_NO_ACK]         = "no ack",
1029	};
1030
1031	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1032		return names[rcode];
1033	else
1034		return "unknown";
1035}
1036EXPORT_SYMBOL(fw_rcode_string);
1037
1038static const struct fw_address_region topology_map_region =
1039	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1040	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1041
1042static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1043		int tcode, int destination, int source, int generation,
1044		unsigned long long offset, void *payload, size_t length,
1045		void *callback_data)
1046{
1047	int start;
1048
1049	if (!TCODE_IS_READ_REQUEST(tcode)) {
1050		fw_send_response(card, request, RCODE_TYPE_ERROR);
1051		return;
1052	}
1053
1054	if ((offset & 3) > 0 || (length & 3) > 0) {
1055		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1056		return;
1057	}
1058
1059	start = (offset - topology_map_region.start) / 4;
1060	memcpy(payload, &card->topology_map[start], length);
1061
1062	fw_send_response(card, request, RCODE_COMPLETE);
1063}
1064
1065static struct fw_address_handler topology_map = {
1066	.length			= 0x400,
1067	.address_callback	= handle_topology_map,
1068};
1069
1070static const struct fw_address_region registers_region =
1071	{ .start = CSR_REGISTER_BASE,
1072	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1073
1074static void update_split_timeout(struct fw_card *card)
1075{
1076	unsigned int cycles;
1077
1078	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1079
1080	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1081	cycles = clamp(cycles, 800u, 3u * 8000u);
1082
1083	card->split_timeout_cycles = cycles;
1084	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1085}
1086
1087static void handle_registers(struct fw_card *card, struct fw_request *request,
1088		int tcode, int destination, int source, int generation,
1089		unsigned long long offset, void *payload, size_t length,
1090		void *callback_data)
1091{
1092	int reg = offset & ~CSR_REGISTER_BASE;
1093	__be32 *data = payload;
1094	int rcode = RCODE_COMPLETE;
1095	unsigned long flags;
1096
1097	switch (reg) {
1098	case CSR_PRIORITY_BUDGET:
1099		if (!card->priority_budget_implemented) {
1100			rcode = RCODE_ADDRESS_ERROR;
1101			break;
1102		}
1103		/* else fall through */
1104
1105	case CSR_NODE_IDS:
1106		/*
1107		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1108		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1109		 */
1110		/* fall through */
1111
1112	case CSR_STATE_CLEAR:
1113	case CSR_STATE_SET:
1114	case CSR_CYCLE_TIME:
1115	case CSR_BUS_TIME:
1116	case CSR_BUSY_TIMEOUT:
1117		if (tcode == TCODE_READ_QUADLET_REQUEST)
1118			*data = cpu_to_be32(card->driver->read_csr(card, reg));
1119		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1120			card->driver->write_csr(card, reg, be32_to_cpu(*data));
1121		else
1122			rcode = RCODE_TYPE_ERROR;
1123		break;
1124
1125	case CSR_RESET_START:
1126		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1127			card->driver->write_csr(card, CSR_STATE_CLEAR,
1128						CSR_STATE_BIT_ABDICATE);
1129		else
1130			rcode = RCODE_TYPE_ERROR;
1131		break;
1132
1133	case CSR_SPLIT_TIMEOUT_HI:
1134		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1135			*data = cpu_to_be32(card->split_timeout_hi);
1136		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1137			spin_lock_irqsave(&card->lock, flags);
 
1138			card->split_timeout_hi = be32_to_cpu(*data) & 7;
1139			update_split_timeout(card);
1140			spin_unlock_irqrestore(&card->lock, flags);
1141		} else {
1142			rcode = RCODE_TYPE_ERROR;
1143		}
1144		break;
1145
1146	case CSR_SPLIT_TIMEOUT_LO:
1147		if (tcode == TCODE_READ_QUADLET_REQUEST) {
1148			*data = cpu_to_be32(card->split_timeout_lo);
1149		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1150			spin_lock_irqsave(&card->lock, flags);
1151			card->split_timeout_lo =
1152					be32_to_cpu(*data) & 0xfff80000;
1153			update_split_timeout(card);
1154			spin_unlock_irqrestore(&card->lock, flags);
1155		} else {
1156			rcode = RCODE_TYPE_ERROR;
1157		}
1158		break;
1159
1160	case CSR_MAINT_UTILITY:
1161		if (tcode == TCODE_READ_QUADLET_REQUEST)
1162			*data = card->maint_utility_register;
1163		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1164			card->maint_utility_register = *data;
1165		else
1166			rcode = RCODE_TYPE_ERROR;
1167		break;
1168
1169	case CSR_BROADCAST_CHANNEL:
1170		if (tcode == TCODE_READ_QUADLET_REQUEST)
1171			*data = cpu_to_be32(card->broadcast_channel);
1172		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1173			card->broadcast_channel =
1174			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1175			    BROADCAST_CHANNEL_INITIAL;
1176		else
1177			rcode = RCODE_TYPE_ERROR;
1178		break;
1179
1180	case CSR_BUS_MANAGER_ID:
1181	case CSR_BANDWIDTH_AVAILABLE:
1182	case CSR_CHANNELS_AVAILABLE_HI:
1183	case CSR_CHANNELS_AVAILABLE_LO:
1184		/*
1185		 * FIXME: these are handled by the OHCI hardware and
1186		 * the stack never sees these request. If we add
1187		 * support for a new type of controller that doesn't
1188		 * handle this in hardware we need to deal with these
1189		 * transactions.
1190		 */
1191		BUG();
1192		break;
1193
1194	default:
1195		rcode = RCODE_ADDRESS_ERROR;
1196		break;
1197	}
1198
1199	fw_send_response(card, request, rcode);
1200}
1201
1202static struct fw_address_handler registers = {
1203	.length			= 0x400,
1204	.address_callback	= handle_registers,
1205};
1206
1207static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1208		int tcode, int destination, int source, int generation,
1209		unsigned long long offset, void *payload, size_t length,
1210		void *callback_data)
1211{
1212	/*
1213	 * This catches requests not handled by the physical DMA unit,
1214	 * i.e., wrong transaction types or unauthorized source nodes.
1215	 */
1216	fw_send_response(card, request, RCODE_TYPE_ERROR);
1217}
1218
1219static struct fw_address_handler low_memory = {
1220	.length			= FW_MAX_PHYSICAL_RANGE,
1221	.address_callback	= handle_low_memory,
1222};
1223
1224MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1225MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1226MODULE_LICENSE("GPL");
1227
1228static const u32 vendor_textual_descriptor[] = {
1229	/* textual descriptor leaf () */
1230	0x00060000,
1231	0x00000000,
1232	0x00000000,
1233	0x4c696e75,		/* L i n u */
1234	0x78204669,		/* x   F i */
1235	0x72657769,		/* r e w i */
1236	0x72650000,		/* r e     */
1237};
1238
1239static const u32 model_textual_descriptor[] = {
1240	/* model descriptor leaf () */
1241	0x00030000,
1242	0x00000000,
1243	0x00000000,
1244	0x4a756a75,		/* J u j u */
1245};
1246
1247static struct fw_descriptor vendor_id_descriptor = {
1248	.length = ARRAY_SIZE(vendor_textual_descriptor),
1249	.immediate = 0x03d00d1e,
1250	.key = 0x81000000,
1251	.data = vendor_textual_descriptor,
1252};
1253
1254static struct fw_descriptor model_id_descriptor = {
1255	.length = ARRAY_SIZE(model_textual_descriptor),
1256	.immediate = 0x17000001,
1257	.key = 0x81000000,
1258	.data = model_textual_descriptor,
1259};
1260
1261static int __init fw_core_init(void)
1262{
1263	int ret;
1264
1265	fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1266	if (!fw_workqueue)
1267		return -ENOMEM;
1268
1269	ret = bus_register(&fw_bus_type);
1270	if (ret < 0) {
1271		destroy_workqueue(fw_workqueue);
1272		return ret;
1273	}
1274
1275	fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1276	if (fw_cdev_major < 0) {
1277		bus_unregister(&fw_bus_type);
1278		destroy_workqueue(fw_workqueue);
1279		return fw_cdev_major;
1280	}
1281
1282	fw_core_add_address_handler(&topology_map, &topology_map_region);
1283	fw_core_add_address_handler(&registers, &registers_region);
1284	fw_core_add_address_handler(&low_memory, &low_memory_region);
1285	fw_core_add_descriptor(&vendor_id_descriptor);
1286	fw_core_add_descriptor(&model_id_descriptor);
1287
1288	return 0;
1289}
1290
1291static void __exit fw_core_cleanup(void)
1292{
1293	unregister_chrdev(fw_cdev_major, "firewire");
1294	bus_unregister(&fw_bus_type);
1295	destroy_workqueue(fw_workqueue);
1296	idr_destroy(&fw_device_idr);
1297}
1298
1299module_init(fw_core_init);
1300module_exit(fw_core_cleanup);