Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SHA-256 routines supporting the Power 7+ Nest Accelerators driver
  4 *
  5 * Copyright (C) 2011-2012 International Business Machines Inc.
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Author: Kent Yoder <yoder1@us.ibm.com>
  8 */
  9
 10#include <crypto/internal/hash.h>
 11#include <crypto/sha2.h>
 12#include <linux/module.h>
 13#include <asm/vio.h>
 14#include <asm/byteorder.h>
 15
 16#include "nx_csbcpb.h"
 17#include "nx.h"
 18
 19struct sha256_state_be {
 20	__be32 state[SHA256_DIGEST_SIZE / 4];
 21	u64 count;
 22	u8 buf[SHA256_BLOCK_SIZE];
 23};
 24
 25static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm)
 26{
 27	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
 28	int err;
 29
 30	err = nx_crypto_ctx_sha_init(tfm);
 31	if (err)
 32		return err;
 33
 34	nx_ctx_init(nx_ctx, HCOP_FC_SHA);
 35
 
 
 36	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
 37
 38	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
 39
 40	return 0;
 41}
 42
 43static int nx_sha256_init(struct shash_desc *desc) {
 44	struct sha256_state_be *sctx = shash_desc_ctx(desc);
 45
 46	memset(sctx, 0, sizeof *sctx);
 47
 48	sctx->state[0] = __cpu_to_be32(SHA256_H0);
 49	sctx->state[1] = __cpu_to_be32(SHA256_H1);
 50	sctx->state[2] = __cpu_to_be32(SHA256_H2);
 51	sctx->state[3] = __cpu_to_be32(SHA256_H3);
 52	sctx->state[4] = __cpu_to_be32(SHA256_H4);
 53	sctx->state[5] = __cpu_to_be32(SHA256_H5);
 54	sctx->state[6] = __cpu_to_be32(SHA256_H6);
 55	sctx->state[7] = __cpu_to_be32(SHA256_H7);
 56	sctx->count = 0;
 57
 58	return 0;
 59}
 60
 61static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
 62			    unsigned int len)
 63{
 64	struct sha256_state_be *sctx = shash_desc_ctx(desc);
 65	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 66	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
 67	struct nx_sg *out_sg;
 68	u64 to_process = 0, leftover, total;
 
 69	unsigned long irq_flags;
 70	int rc = 0;
 71	int data_len;
 72	u32 max_sg_len;
 73	u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
 74
 75	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
 76
 77	/* 2 cases for total data len:
 78	 *  1: < SHA256_BLOCK_SIZE: copy into state, return 0
 79	 *  2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
 80	 */
 81	total = (sctx->count % SHA256_BLOCK_SIZE) + len;
 82	if (total < SHA256_BLOCK_SIZE) {
 83		memcpy(sctx->buf + buf_len, data, len);
 84		sctx->count += len;
 85		goto out;
 86	}
 87
 88	memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
 89	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
 90	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
 91
 92	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
 93			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
 94	max_sg_len = min_t(u64, max_sg_len,
 95			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
 96
 97	data_len = SHA256_DIGEST_SIZE;
 98	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
 99				  &data_len, max_sg_len);
100	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
101
102	if (data_len != SHA256_DIGEST_SIZE) {
103		rc = -EINVAL;
104		goto out;
105	}
106
107	do {
108		int used_sgs = 0;
109		struct nx_sg *in_sg = nx_ctx->in_sg;
 
 
 
 
 
 
 
 
110
111		if (buf_len) {
112			data_len = buf_len;
113			in_sg = nx_build_sg_list(in_sg,
114						 (u8 *) sctx->buf,
115						 &data_len,
116						 max_sg_len);
117
118			if (data_len != buf_len) {
119				rc = -EINVAL;
120				goto out;
121			}
122			used_sgs = in_sg - nx_ctx->in_sg;
123		}
124
125		/* to_process: SHA256_BLOCK_SIZE aligned chunk to be
126		 * processed in this iteration. This value is restricted
127		 * by sg list limits and number of sgs we already used
128		 * for leftover data. (see above)
129		 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
130		 * but because data may not be aligned, we need to account
131		 * for that too. */
132		to_process = min_t(u64, total,
133			(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
134		to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
135
136		data_len = to_process - buf_len;
137		in_sg = nx_build_sg_list(in_sg, (u8 *) data,
138					 &data_len, max_sg_len);
139
140		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
141
142		to_process = data_len + buf_len;
143		leftover = total - to_process;
144
145		/*
146		 * we've hit the nx chip previously and we're updating
147		 * again, so copy over the partial digest.
148		 */
149		memcpy(csbcpb->cpb.sha256.input_partial_digest,
150			       csbcpb->cpb.sha256.message_digest,
151			       SHA256_DIGEST_SIZE);
 
152
 
153		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
154			rc = -EINVAL;
155			goto out;
156		}
157
158		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
 
159		if (rc)
160			goto out;
161
162		atomic_inc(&(nx_ctx->stats->sha256_ops));
 
 
163
164		total -= to_process;
165		data += to_process - buf_len;
166		buf_len = 0;
167
 
 
 
 
168	} while (leftover >= SHA256_BLOCK_SIZE);
169
170	/* copy the leftover back into the state struct */
171	if (leftover)
172		memcpy(sctx->buf, data, leftover);
173
174	sctx->count += len;
175	memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
176out:
177	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
178	return rc;
179}
180
181static int nx_sha256_final(struct shash_desc *desc, u8 *out)
182{
183	struct sha256_state_be *sctx = shash_desc_ctx(desc);
184	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
185	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
186	struct nx_sg *in_sg, *out_sg;
187	unsigned long irq_flags;
188	u32 max_sg_len;
189	int rc = 0;
190	int len;
191
192	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
193
194	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
195			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
196	max_sg_len = min_t(u64, max_sg_len,
197			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
198
199	/* final is represented by continuing the operation and indicating that
200	 * this is not an intermediate operation */
201	if (sctx->count >= SHA256_BLOCK_SIZE) {
202		/* we've hit the nx chip previously, now we're finalizing,
203		 * so copy over the partial digest */
204		memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
205		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
206		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
207	} else {
208		NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
209		NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
210	}
211
212	csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
213
214	len = sctx->count & (SHA256_BLOCK_SIZE - 1);
215	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf,
216				 &len, max_sg_len);
217
218	if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) {
219		rc = -EINVAL;
220		goto out;
221	}
222
223	len = SHA256_DIGEST_SIZE;
224	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len, max_sg_len);
 
225
226	if (len != SHA256_DIGEST_SIZE) {
227		rc = -EINVAL;
228		goto out;
229	}
230
 
 
 
 
231	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
232	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 
233	if (!nx_ctx->op.outlen) {
234		rc = -EINVAL;
235		goto out;
236	}
237
238	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
 
239	if (rc)
240		goto out;
241
242	atomic_inc(&(nx_ctx->stats->sha256_ops));
243
244	atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes));
 
245	memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
246out:
247	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
248	return rc;
249}
250
251static int nx_sha256_export(struct shash_desc *desc, void *out)
252{
253	struct sha256_state_be *sctx = shash_desc_ctx(desc);
 
 
 
 
254
255	memcpy(out, sctx, sizeof(*sctx));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
256
 
257	return 0;
258}
259
260static int nx_sha256_import(struct shash_desc *desc, const void *in)
261{
262	struct sha256_state_be *sctx = shash_desc_ctx(desc);
 
 
 
 
 
 
 
 
263
264	memcpy(sctx, in, sizeof(*sctx));
 
265
 
 
 
 
 
 
 
 
 
266	return 0;
267}
268
269struct shash_alg nx_shash_sha256_alg = {
270	.digestsize = SHA256_DIGEST_SIZE,
271	.init       = nx_sha256_init,
272	.update     = nx_sha256_update,
273	.final      = nx_sha256_final,
274	.export     = nx_sha256_export,
275	.import     = nx_sha256_import,
276	.descsize   = sizeof(struct sha256_state_be),
277	.statesize  = sizeof(struct sha256_state_be),
278	.base       = {
279		.cra_name        = "sha256",
280		.cra_driver_name = "sha256-nx",
281		.cra_priority    = 300,
 
282		.cra_blocksize   = SHA256_BLOCK_SIZE,
283		.cra_module      = THIS_MODULE,
284		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
285		.cra_init        = nx_crypto_ctx_sha256_init,
286		.cra_exit        = nx_crypto_ctx_exit,
287	}
288};
v3.15
  1/**
 
  2 * SHA-256 routines supporting the Power 7+ Nest Accelerators driver
  3 *
  4 * Copyright (C) 2011-2012 International Business Machines Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; version 2 only.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 18 *
 19 * Author: Kent Yoder <yoder1@us.ibm.com>
 20 */
 21
 22#include <crypto/internal/hash.h>
 23#include <crypto/sha.h>
 24#include <linux/module.h>
 25#include <asm/vio.h>
 
 26
 27#include "nx_csbcpb.h"
 28#include "nx.h"
 29
 
 
 
 
 
 30
 31static int nx_sha256_init(struct shash_desc *desc)
 32{
 33	struct sha256_state *sctx = shash_desc_ctx(desc);
 34	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 35	struct nx_sg *out_sg;
 
 
 
 36
 37	nx_ctx_init(nx_ctx, HCOP_FC_SHA);
 38
 39	memset(sctx, 0, sizeof *sctx);
 40
 41	nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
 42
 43	NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
 44	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
 45				  SHA256_DIGEST_SIZE, nx_ctx->ap->sglen);
 46	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 48	return 0;
 49}
 50
 51static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
 52			    unsigned int len)
 53{
 54	struct sha256_state *sctx = shash_desc_ctx(desc);
 55	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
 56	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
 57	struct nx_sg *in_sg;
 58	u64 to_process, leftover, total;
 59	u32 max_sg_len;
 60	unsigned long irq_flags;
 61	int rc = 0;
 
 
 
 62
 63	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
 64
 65	/* 2 cases for total data len:
 66	 *  1: < SHA256_BLOCK_SIZE: copy into state, return 0
 67	 *  2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
 68	 */
 69	total = sctx->count + len;
 70	if (total < SHA256_BLOCK_SIZE) {
 71		memcpy(sctx->buf + sctx->count, data, len);
 72		sctx->count += len;
 73		goto out;
 74	}
 75
 76	in_sg = nx_ctx->in_sg;
 77	max_sg_len = min_t(u32, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
 78			   nx_ctx->ap->sglen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79
 80	do {
 81		/*
 82		 * to_process: the SHA256_BLOCK_SIZE data chunk to process in
 83		 * this update. This value is also restricted by the sg list
 84		 * limits.
 85		 */
 86		to_process = min_t(u64, total, nx_ctx->ap->databytelen);
 87		to_process = min_t(u64, to_process,
 88				   NX_PAGE_SIZE * (max_sg_len - 1));
 89		to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
 90		leftover = total - to_process;
 91
 92		if (sctx->count) {
 93			in_sg = nx_build_sg_list(nx_ctx->in_sg,
 
 94						 (u8 *) sctx->buf,
 95						 sctx->count, max_sg_len);
 
 
 
 
 
 
 
 96		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 97		in_sg = nx_build_sg_list(in_sg, (u8 *) data,
 98					 to_process - sctx->count,
 99					 max_sg_len);
100		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
101					sizeof(struct nx_sg);
102
103		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
104			/*
105			 * we've hit the nx chip previously and we're updating
106			 * again, so copy over the partial digest.
107			 */
108			memcpy(csbcpb->cpb.sha256.input_partial_digest,
 
109			       csbcpb->cpb.sha256.message_digest,
110			       SHA256_DIGEST_SIZE);
111		}
112
113		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
114		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
115			rc = -EINVAL;
116			goto out;
117		}
118
119		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
120				   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
121		if (rc)
122			goto out;
123
124		atomic_inc(&(nx_ctx->stats->sha256_ops));
125		csbcpb->cpb.sha256.message_bit_length += (u64)
126			(csbcpb->cpb.sha256.spbc * 8);
127
128		/* everything after the first update is continuation */
129		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
 
130
131		total -= to_process;
132		data += to_process - sctx->count;
133		sctx->count = 0;
134		in_sg = nx_ctx->in_sg;
135	} while (leftover >= SHA256_BLOCK_SIZE);
136
137	/* copy the leftover back into the state struct */
138	if (leftover)
139		memcpy(sctx->buf, data, leftover);
140	sctx->count = leftover;
 
 
141out:
142	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
143	return rc;
144}
145
146static int nx_sha256_final(struct shash_desc *desc, u8 *out)
147{
148	struct sha256_state *sctx = shash_desc_ctx(desc);
149	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
150	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
151	struct nx_sg *in_sg, *out_sg;
 
152	u32 max_sg_len;
153	unsigned long irq_flags;
154	int rc;
155
156	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
157
158	max_sg_len = min_t(u32, nx_driver.of.max_sg_len, nx_ctx->ap->sglen);
 
 
 
159
160	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
 
 
161		/* we've hit the nx chip previously, now we're finalizing,
162		 * so copy over the partial digest */
163		memcpy(csbcpb->cpb.sha256.input_partial_digest,
164		       csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165	}
166
167	/* final is represented by continuing the operation and indicating that
168	 * this is not an intermediate operation */
169	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
170
171	csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8);
 
 
 
172
173	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
174				 sctx->count, max_sg_len);
175	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE,
176				  max_sg_len);
177	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
178	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
179
180	if (!nx_ctx->op.outlen) {
181		rc = -EINVAL;
182		goto out;
183	}
184
185	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
186			   desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
187	if (rc)
188		goto out;
189
190	atomic_inc(&(nx_ctx->stats->sha256_ops));
191
192	atomic64_add(csbcpb->cpb.sha256.message_bit_length / 8,
193		     &(nx_ctx->stats->sha256_bytes));
194	memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
195out:
196	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
197	return rc;
198}
199
200static int nx_sha256_export(struct shash_desc *desc, void *out)
201{
202	struct sha256_state *sctx = shash_desc_ctx(desc);
203	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
204	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
205	struct sha256_state *octx = out;
206	unsigned long irq_flags;
207
208	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
209
210	octx->count = sctx->count +
211		      (csbcpb->cpb.sha256.message_bit_length / 8);
212	memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
213
214	/* if no data has been processed yet, we need to export SHA256's
215	 * initial data, in case this context gets imported into a software
216	 * context */
217	if (csbcpb->cpb.sha256.message_bit_length)
218		memcpy(octx->state, csbcpb->cpb.sha256.message_digest,
219		       SHA256_DIGEST_SIZE);
220	else {
221		octx->state[0] = SHA256_H0;
222		octx->state[1] = SHA256_H1;
223		octx->state[2] = SHA256_H2;
224		octx->state[3] = SHA256_H3;
225		octx->state[4] = SHA256_H4;
226		octx->state[5] = SHA256_H5;
227		octx->state[6] = SHA256_H6;
228		octx->state[7] = SHA256_H7;
229	}
230
231	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
232	return 0;
233}
234
235static int nx_sha256_import(struct shash_desc *desc, const void *in)
236{
237	struct sha256_state *sctx = shash_desc_ctx(desc);
238	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
239	struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
240	const struct sha256_state *ictx = in;
241	unsigned long irq_flags;
242
243	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
244
245	memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
246
247	sctx->count = ictx->count & 0x3f;
248	csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8;
249
250	if (csbcpb->cpb.sha256.message_bit_length) {
251		memcpy(csbcpb->cpb.sha256.message_digest, ictx->state,
252		       SHA256_DIGEST_SIZE);
253
254		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
255		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
256	}
257
258	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
259	return 0;
260}
261
262struct shash_alg nx_shash_sha256_alg = {
263	.digestsize = SHA256_DIGEST_SIZE,
264	.init       = nx_sha256_init,
265	.update     = nx_sha256_update,
266	.final      = nx_sha256_final,
267	.export     = nx_sha256_export,
268	.import     = nx_sha256_import,
269	.descsize   = sizeof(struct sha256_state),
270	.statesize  = sizeof(struct sha256_state),
271	.base       = {
272		.cra_name        = "sha256",
273		.cra_driver_name = "sha256-nx",
274		.cra_priority    = 300,
275		.cra_flags       = CRYPTO_ALG_TYPE_SHASH,
276		.cra_blocksize   = SHA256_BLOCK_SIZE,
277		.cra_module      = THIS_MODULE,
278		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
279		.cra_init        = nx_crypto_ctx_sha_init,
280		.cra_exit        = nx_crypto_ctx_exit,
281	}
282};