Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * acpi-cpufreq.c - ACPI Processor P-States Driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/init.h>
  16#include <linux/smp.h>
  17#include <linux/sched.h>
  18#include <linux/cpufreq.h>
  19#include <linux/compiler.h>
  20#include <linux/dmi.h>
  21#include <linux/slab.h>
  22#include <linux/string_helpers.h>
  23#include <linux/platform_device.h>
  24
  25#include <linux/acpi.h>
  26#include <linux/io.h>
  27#include <linux/delay.h>
  28#include <linux/uaccess.h>
  29
  30#include <acpi/processor.h>
  31#include <acpi/cppc_acpi.h>
  32
  33#include <asm/msr.h>
  34#include <asm/processor.h>
  35#include <asm/cpufeature.h>
  36#include <asm/cpu_device_id.h>
  37
  38MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  39MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  40MODULE_LICENSE("GPL");
  41
 
 
  42enum {
  43	UNDEFINED_CAPABLE = 0,
  44	SYSTEM_INTEL_MSR_CAPABLE,
  45	SYSTEM_AMD_MSR_CAPABLE,
  46	SYSTEM_IO_CAPABLE,
  47};
  48
  49#define INTEL_MSR_RANGE		(0xffff)
  50#define AMD_MSR_RANGE		(0x7)
  51#define HYGON_MSR_RANGE		(0x7)
 
  52
  53struct acpi_cpufreq_data {
 
 
  54	unsigned int resume;
  55	unsigned int cpu_feature;
  56	unsigned int acpi_perf_cpu;
  57	cpumask_var_t freqdomain_cpus;
  58	void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
  59	u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
  60};
  61
 
 
  62/* acpi_perf_data is a pointer to percpu data. */
  63static struct acpi_processor_performance __percpu *acpi_perf_data;
  64
  65static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
  66{
  67	return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
  68}
  69
  70static struct cpufreq_driver acpi_cpufreq_driver;
  71
  72static unsigned int acpi_pstate_strict;
 
  73
  74static bool boost_state(unsigned int cpu)
  75{
 
  76	u64 msr;
  77
  78	switch (boot_cpu_data.x86_vendor) {
  79	case X86_VENDOR_INTEL:
  80	case X86_VENDOR_CENTAUR:
  81	case X86_VENDOR_ZHAOXIN:
  82		rdmsrl_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &msr);
  83		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
  84	case X86_VENDOR_HYGON:
  85	case X86_VENDOR_AMD:
  86		rdmsrl_on_cpu(cpu, MSR_K7_HWCR, &msr);
 
  87		return !(msr & MSR_K7_HWCR_CPB_DIS);
  88	}
  89	return false;
  90}
  91
  92static int boost_set_msr(bool enable)
  93{
 
  94	u32 msr_addr;
  95	u64 msr_mask, val;
  96
  97	switch (boot_cpu_data.x86_vendor) {
  98	case X86_VENDOR_INTEL:
  99	case X86_VENDOR_CENTAUR:
 100	case X86_VENDOR_ZHAOXIN:
 101		msr_addr = MSR_IA32_MISC_ENABLE;
 102		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
 103		break;
 104	case X86_VENDOR_HYGON:
 105	case X86_VENDOR_AMD:
 106		msr_addr = MSR_K7_HWCR;
 107		msr_mask = MSR_K7_HWCR_CPB_DIS;
 108		break;
 109	default:
 110		return -EINVAL;
 111	}
 112
 113	rdmsrl(msr_addr, val);
 114
 115	if (enable)
 116		val &= ~msr_mask;
 117	else
 118		val |= msr_mask;
 119
 120	wrmsrl(msr_addr, val);
 121	return 0;
 122}
 123
 124static void boost_set_msr_each(void *p_en)
 125{
 126	bool enable = (bool) p_en;
 127
 128	boost_set_msr(enable);
 129}
 130
 131static int set_boost(struct cpufreq_policy *policy, int val)
 132{
 133	on_each_cpu_mask(policy->cpus, boost_set_msr_each,
 134			 (void *)(long)val, 1);
 135	pr_debug("CPU %*pbl: Core Boosting %s.\n",
 136		 cpumask_pr_args(policy->cpus), str_enabled_disabled(val));
 137
 138	return 0;
 139}
 140
 141static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
 142{
 143	struct acpi_cpufreq_data *data = policy->driver_data;
 144
 145	if (unlikely(!data))
 146		return -ENODEV;
 147
 148	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
 149}
 150
 151cpufreq_freq_attr_ro(freqdomain_cpus);
 152
 153#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 154static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
 155			 size_t count)
 156{
 157	int ret;
 158	unsigned int val = 0;
 159
 160	if (!acpi_cpufreq_driver.set_boost)
 161		return -EINVAL;
 162
 163	ret = kstrtouint(buf, 10, &val);
 164	if (ret || val > 1)
 165		return -EINVAL;
 166
 167	cpus_read_lock();
 168	set_boost(policy, val);
 169	cpus_read_unlock();
 170
 171	return count;
 172}
 173
 
 
 
 
 
 
 174static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
 175{
 176	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
 177}
 178
 179cpufreq_freq_attr_rw(cpb);
 180#endif
 181
 182static int check_est_cpu(unsigned int cpuid)
 183{
 184	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 185
 186	return cpu_has(cpu, X86_FEATURE_EST);
 187}
 188
 189static int check_amd_hwpstate_cpu(unsigned int cpuid)
 190{
 191	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 192
 193	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
 194}
 195
 196static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
 197{
 198	struct acpi_cpufreq_data *data = policy->driver_data;
 199	struct acpi_processor_performance *perf;
 200	int i;
 201
 202	perf = to_perf_data(data);
 203
 204	for (i = 0; i < perf->state_count; i++) {
 205		if (value == perf->states[i].status)
 206			return policy->freq_table[i].frequency;
 207	}
 208	return 0;
 209}
 210
 211static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
 212{
 213	struct acpi_cpufreq_data *data = policy->driver_data;
 214	struct cpufreq_frequency_table *pos;
 215	struct acpi_processor_performance *perf;
 216
 217	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 218		msr &= AMD_MSR_RANGE;
 219	else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
 220		msr &= HYGON_MSR_RANGE;
 221	else
 222		msr &= INTEL_MSR_RANGE;
 223
 224	perf = to_perf_data(data);
 225
 226	cpufreq_for_each_entry(pos, policy->freq_table)
 227		if (msr == perf->states[pos->driver_data].status)
 228			return pos->frequency;
 229	return policy->freq_table[0].frequency;
 
 230}
 231
 232static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
 233{
 234	struct acpi_cpufreq_data *data = policy->driver_data;
 235
 236	switch (data->cpu_feature) {
 237	case SYSTEM_INTEL_MSR_CAPABLE:
 238	case SYSTEM_AMD_MSR_CAPABLE:
 239		return extract_msr(policy, val);
 240	case SYSTEM_IO_CAPABLE:
 241		return extract_io(policy, val);
 242	default:
 243		return 0;
 244	}
 245}
 246
 247static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
 248{
 249	u32 val, dummy __always_unused;
 250
 251	rdmsr(MSR_IA32_PERF_CTL, val, dummy);
 252	return val;
 253}
 254
 255static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
 256{
 257	u32 lo, hi;
 258
 259	rdmsr(MSR_IA32_PERF_CTL, lo, hi);
 260	lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
 261	wrmsr(MSR_IA32_PERF_CTL, lo, hi);
 262}
 263
 264static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
 265{
 266	u32 val, dummy __always_unused;
 267
 268	rdmsr(MSR_AMD_PERF_CTL, val, dummy);
 269	return val;
 270}
 271
 272static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
 273{
 274	wrmsr(MSR_AMD_PERF_CTL, val, 0);
 275}
 276
 277static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
 278{
 279	u32 val;
 280
 281	acpi_os_read_port(reg->address, &val, reg->bit_width);
 282	return val;
 283}
 284
 285static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
 286{
 287	acpi_os_write_port(reg->address, val, reg->bit_width);
 288}
 289
 290struct drv_cmd {
 291	struct acpi_pct_register *reg;
 292	u32 val;
 293	union {
 294		void (*write)(struct acpi_pct_register *reg, u32 val);
 295		u32 (*read)(struct acpi_pct_register *reg);
 296	} func;
 
 297};
 298
 299/* Called via smp_call_function_single(), on the target CPU */
 300static void do_drv_read(void *_cmd)
 301{
 302	struct drv_cmd *cmd = _cmd;
 
 303
 304	cmd->val = cmd->func.read(cmd->reg);
 
 
 
 
 
 
 
 
 
 
 
 
 305}
 306
 307static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
 
 308{
 309	struct acpi_processor_performance *perf = to_perf_data(data);
 310	struct drv_cmd cmd = {
 311		.reg = &perf->control_register,
 312		.func.read = data->cpu_freq_read,
 313	};
 314	int err;
 315
 316	err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
 317	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
 318	return cmd.val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319}
 320
 321/* Called via smp_call_function_many(), on the target CPUs */
 322static void do_drv_write(void *_cmd)
 323{
 324	struct drv_cmd *cmd = _cmd;
 
 325
 326	cmd->func.write(cmd->reg, cmd->val);
 
 327}
 328
 329static void drv_write(struct acpi_cpufreq_data *data,
 330		      const struct cpumask *mask, u32 val)
 331{
 332	struct acpi_processor_performance *perf = to_perf_data(data);
 333	struct drv_cmd cmd = {
 334		.reg = &perf->control_register,
 335		.val = val,
 336		.func.write = data->cpu_freq_write,
 337	};
 338	int this_cpu;
 339
 340	this_cpu = get_cpu();
 341	if (cpumask_test_cpu(this_cpu, mask))
 342		do_drv_write(&cmd);
 343
 344	smp_call_function_many(mask, do_drv_write, &cmd, 1);
 345	put_cpu();
 346}
 347
 348static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
 349{
 350	u32 val;
 
 351
 352	if (unlikely(cpumask_empty(mask)))
 353		return 0;
 354
 355	val = drv_read(data, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356
 357	pr_debug("%s = %u\n", __func__, val);
 358
 359	return val;
 360}
 361
 362static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
 363{
 364	struct acpi_cpufreq_data *data;
 365	struct cpufreq_policy *policy;
 366	unsigned int freq;
 367	unsigned int cached_freq;
 368
 369	pr_debug("%s (%d)\n", __func__, cpu);
 370
 371	policy = cpufreq_cpu_get_raw(cpu);
 372	if (unlikely(!policy))
 373		return 0;
 374
 375	data = policy->driver_data;
 376	if (unlikely(!data || !policy->freq_table))
 377		return 0;
 
 378
 379	cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
 380	freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
 381	if (freq != cached_freq) {
 382		/*
 383		 * The dreaded BIOS frequency change behind our back.
 384		 * Force set the frequency on next target call.
 385		 */
 386		data->resume = 1;
 387	}
 388
 389	pr_debug("cur freq = %u\n", freq);
 390
 391	return freq;
 392}
 393
 394static unsigned int check_freqs(struct cpufreq_policy *policy,
 395				const struct cpumask *mask, unsigned int freq)
 396{
 397	struct acpi_cpufreq_data *data = policy->driver_data;
 398	unsigned int cur_freq;
 399	unsigned int i;
 400
 401	for (i = 0; i < 100; i++) {
 402		cur_freq = extract_freq(policy, get_cur_val(mask, data));
 403		if (cur_freq == freq)
 404			return 1;
 405		udelay(10);
 406	}
 407	return 0;
 408}
 409
 410static int acpi_cpufreq_target(struct cpufreq_policy *policy,
 411			       unsigned int index)
 412{
 413	struct acpi_cpufreq_data *data = policy->driver_data;
 414	struct acpi_processor_performance *perf;
 415	const struct cpumask *mask;
 416	unsigned int next_perf_state = 0; /* Index into perf table */
 417	int result = 0;
 418
 419	if (unlikely(!data)) {
 
 420		return -ENODEV;
 421	}
 422
 423	perf = to_perf_data(data);
 424	next_perf_state = policy->freq_table[index].driver_data;
 425	if (perf->state == next_perf_state) {
 426		if (unlikely(data->resume)) {
 427			pr_debug("Called after resume, resetting to P%d\n",
 428				next_perf_state);
 429			data->resume = 0;
 430		} else {
 431			pr_debug("Already at target state (P%d)\n",
 432				next_perf_state);
 433			return 0;
 434		}
 435	}
 436
 437	/*
 438	 * The core won't allow CPUs to go away until the governor has been
 439	 * stopped, so we can rely on the stability of policy->cpus.
 440	 */
 441	mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
 442		cpumask_of(policy->cpu) : policy->cpus;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444	drv_write(data, mask, perf->states[next_perf_state].control);
 445
 446	if (acpi_pstate_strict) {
 447		if (!check_freqs(policy, mask,
 448				 policy->freq_table[index].frequency)) {
 449			pr_debug("%s (%d)\n", __func__, policy->cpu);
 
 450			result = -EAGAIN;
 451		}
 452	}
 453
 454	if (!result)
 455		perf->state = next_perf_state;
 456
 
 457	return result;
 458}
 459
 460static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
 461					     unsigned int target_freq)
 462{
 463	struct acpi_cpufreq_data *data = policy->driver_data;
 464	struct acpi_processor_performance *perf;
 465	struct cpufreq_frequency_table *entry;
 466	unsigned int next_perf_state, next_freq, index;
 467
 468	/*
 469	 * Find the closest frequency above target_freq.
 470	 */
 471	if (policy->cached_target_freq == target_freq)
 472		index = policy->cached_resolved_idx;
 473	else
 474		index = cpufreq_table_find_index_dl(policy, target_freq,
 475						    false);
 476
 477	entry = &policy->freq_table[index];
 478	next_freq = entry->frequency;
 479	next_perf_state = entry->driver_data;
 480
 481	perf = to_perf_data(data);
 482	if (perf->state == next_perf_state) {
 483		if (unlikely(data->resume))
 484			data->resume = 0;
 485		else
 486			return next_freq;
 487	}
 488
 489	data->cpu_freq_write(&perf->control_register,
 490			     perf->states[next_perf_state].control);
 491	perf->state = next_perf_state;
 492	return next_freq;
 493}
 494
 495static unsigned long
 496acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 497{
 498	struct acpi_processor_performance *perf;
 499
 500	perf = to_perf_data(data);
 501	if (cpu_khz) {
 502		/* search the closest match to cpu_khz */
 503		unsigned int i;
 504		unsigned long freq;
 505		unsigned long freqn = perf->states[0].core_frequency * 1000;
 506
 507		for (i = 0; i < (perf->state_count-1); i++) {
 508			freq = freqn;
 509			freqn = perf->states[i+1].core_frequency * 1000;
 510			if ((2 * cpu_khz) > (freqn + freq)) {
 511				perf->state = i;
 512				return freq;
 513			}
 514		}
 515		perf->state = perf->state_count-1;
 516		return freqn;
 517	} else {
 518		/* assume CPU is at P0... */
 519		perf->state = 0;
 520		return perf->states[0].core_frequency * 1000;
 521	}
 522}
 523
 524static void free_acpi_perf_data(void)
 525{
 526	unsigned int i;
 527
 528	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
 529	for_each_possible_cpu(i)
 530		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
 531				 ->shared_cpu_map);
 532	free_percpu(acpi_perf_data);
 533}
 534
 535static int cpufreq_boost_down_prep(unsigned int cpu)
 
 536{
 
 
 
 
 
 537	/*
 538	 * Clear the boost-disable bit on the CPU_DOWN path so that
 539	 * this cpu cannot block the remaining ones from boosting.
 
 
 540	 */
 541	return boost_set_msr(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542}
 543
 
 
 
 
 
 544/*
 545 * acpi_cpufreq_early_init - initialize ACPI P-States library
 546 *
 547 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
 548 * in order to determine correct frequency and voltage pairings. We can
 549 * do _PDC and _PSD and find out the processor dependency for the
 550 * actual init that will happen later...
 551 */
 552static int __init acpi_cpufreq_early_init(void)
 553{
 554	unsigned int i;
 555	pr_debug("%s\n", __func__);
 556
 557	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
 558	if (!acpi_perf_data) {
 559		pr_debug("Memory allocation error for acpi_perf_data.\n");
 560		return -ENOMEM;
 561	}
 562	for_each_possible_cpu(i) {
 563		if (!zalloc_cpumask_var_node(
 564			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
 565			GFP_KERNEL, cpu_to_node(i))) {
 566
 567			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
 568			free_acpi_perf_data();
 569			return -ENOMEM;
 570		}
 571	}
 572
 573	/* Do initialization in ACPI core */
 574	acpi_processor_preregister_performance(acpi_perf_data);
 575	return 0;
 576}
 577
 578#ifdef CONFIG_SMP
 579/*
 580 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
 581 * or do it in BIOS firmware and won't inform about it to OS. If not
 582 * detected, this has a side effect of making CPU run at a different speed
 583 * than OS intended it to run at. Detect it and handle it cleanly.
 584 */
 585static int bios_with_sw_any_bug;
 586
 587static int sw_any_bug_found(const struct dmi_system_id *d)
 588{
 589	bios_with_sw_any_bug = 1;
 590	return 0;
 591}
 592
 593static const struct dmi_system_id sw_any_bug_dmi_table[] = {
 594	{
 595		.callback = sw_any_bug_found,
 596		.ident = "Supermicro Server X6DLP",
 597		.matches = {
 598			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
 599			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
 600			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
 601		},
 602	},
 603	{ }
 604};
 605
 606static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
 607{
 608	/* Intel Xeon Processor 7100 Series Specification Update
 609	 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
 610	 * AL30: A Machine Check Exception (MCE) Occurring during an
 611	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
 612	 * Both Processor Cores to Lock Up. */
 613	if (c->x86_vendor == X86_VENDOR_INTEL) {
 614		if ((c->x86 == 15) &&
 615		    (c->x86_model == 6) &&
 616		    (c->x86_stepping == 8)) {
 617			pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
 
 
 
 618			return -ENODEV;
 619		    }
 620		}
 621	return 0;
 622}
 623#endif
 624
 625#ifdef CONFIG_ACPI_CPPC_LIB
 626/*
 627 * get_max_boost_ratio: Computes the max_boost_ratio as the ratio
 628 * between the highest_perf and the nominal_perf.
 629 *
 630 * Returns the max_boost_ratio for @cpu. Returns the CPPC nominal
 631 * frequency via @nominal_freq if it is non-NULL pointer.
 632 */
 633static u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq)
 634{
 635	struct cppc_perf_caps perf_caps;
 636	u64 highest_perf, nominal_perf;
 637	int ret;
 638
 639	if (acpi_pstate_strict)
 640		return 0;
 641
 642	ret = cppc_get_perf_caps(cpu, &perf_caps);
 643	if (ret) {
 644		pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
 645			 cpu, ret);
 646		return 0;
 647	}
 648
 649	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
 650		ret = amd_get_boost_ratio_numerator(cpu, &highest_perf);
 651		if (ret) {
 652			pr_debug("CPU%d: Unable to get boost ratio numerator (%d)\n",
 653				 cpu, ret);
 654			return 0;
 655		}
 656	} else {
 657		highest_perf = perf_caps.highest_perf;
 658	}
 659
 660	nominal_perf = perf_caps.nominal_perf;
 661
 662	if (nominal_freq)
 663		*nominal_freq = perf_caps.nominal_freq;
 664
 665	if (!highest_perf || !nominal_perf) {
 666		pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
 667		return 0;
 668	}
 669
 670	if (highest_perf < nominal_perf) {
 671		pr_debug("CPU%d: nominal performance above highest\n", cpu);
 672		return 0;
 673	}
 674
 675	return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
 676}
 677
 678#else
 679static inline u64 get_max_boost_ratio(unsigned int cpu, u64 *nominal_freq)
 680{
 681	return 0;
 682}
 683#endif
 684
 685static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 686{
 687	struct cpufreq_frequency_table *freq_table;
 688	struct acpi_processor_performance *perf;
 689	struct acpi_cpufreq_data *data;
 690	unsigned int cpu = policy->cpu;
 691	struct cpuinfo_x86 *c = &cpu_data(cpu);
 692	u64 max_boost_ratio, nominal_freq = 0;
 693	unsigned int valid_states = 0;
 
 
 694	unsigned int result = 0;
 695	unsigned int i;
 
 696#ifdef CONFIG_SMP
 697	static int blacklisted;
 698#endif
 699
 700	pr_debug("%s\n", __func__);
 701
 702#ifdef CONFIG_SMP
 703	if (blacklisted)
 704		return blacklisted;
 705	blacklisted = acpi_cpufreq_blacklist(c);
 706	if (blacklisted)
 707		return blacklisted;
 708#endif
 709
 710	data = kzalloc(sizeof(*data), GFP_KERNEL);
 711	if (!data)
 712		return -ENOMEM;
 713
 714	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
 715		result = -ENOMEM;
 716		goto err_free;
 717	}
 718
 719	perf = per_cpu_ptr(acpi_perf_data, cpu);
 720	data->acpi_perf_cpu = cpu;
 721	policy->driver_data = data;
 722
 723	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
 724		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 725
 726	result = acpi_processor_register_performance(perf, cpu);
 727	if (result)
 728		goto err_free_mask;
 729
 
 730	policy->shared_type = perf->shared_type;
 731
 732	/*
 733	 * Will let policy->cpus know about dependency only when software
 734	 * coordination is required.
 735	 */
 736	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
 737	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 738		cpumask_copy(policy->cpus, perf->shared_cpu_map);
 739	}
 740	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
 741
 742#ifdef CONFIG_SMP
 743	dmi_check_system(sw_any_bug_dmi_table);
 744	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
 745		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 746		cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
 747	}
 748
 749	if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
 750	    !acpi_pstate_strict) {
 751		cpumask_clear(policy->cpus);
 752		cpumask_set_cpu(cpu, policy->cpus);
 753		cpumask_copy(data->freqdomain_cpus,
 754			     topology_sibling_cpumask(cpu));
 755		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
 756		pr_info_once("overriding BIOS provided _PSD data\n");
 757	}
 758#endif
 759
 760	/* capability check */
 761	if (perf->state_count <= 1) {
 762		pr_debug("No P-States\n");
 763		result = -ENODEV;
 764		goto err_unreg;
 765	}
 766
 767	if (perf->control_register.space_id != perf->status_register.space_id) {
 768		result = -ENODEV;
 769		goto err_unreg;
 770	}
 771
 772	switch (perf->control_register.space_id) {
 773	case ACPI_ADR_SPACE_SYSTEM_IO:
 774		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
 775		    boot_cpu_data.x86 == 0xf) {
 776			pr_debug("AMD K8 systems must use native drivers.\n");
 777			result = -ENODEV;
 778			goto err_unreg;
 779		}
 780		pr_debug("SYSTEM IO addr space\n");
 781		data->cpu_feature = SYSTEM_IO_CAPABLE;
 782		data->cpu_freq_read = cpu_freq_read_io;
 783		data->cpu_freq_write = cpu_freq_write_io;
 784		break;
 785	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 786		pr_debug("HARDWARE addr space\n");
 787		if (check_est_cpu(cpu)) {
 788			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
 789			data->cpu_freq_read = cpu_freq_read_intel;
 790			data->cpu_freq_write = cpu_freq_write_intel;
 791			break;
 792		}
 793		if (check_amd_hwpstate_cpu(cpu)) {
 794			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
 795			data->cpu_freq_read = cpu_freq_read_amd;
 796			data->cpu_freq_write = cpu_freq_write_amd;
 797			break;
 798		}
 799		result = -ENODEV;
 800		goto err_unreg;
 801	default:
 802		pr_debug("Unknown addr space %d\n",
 803			(u32) (perf->control_register.space_id));
 804		result = -ENODEV;
 805		goto err_unreg;
 806	}
 807
 808	freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
 809			     GFP_KERNEL);
 810	if (!freq_table) {
 811		result = -ENOMEM;
 812		goto err_unreg;
 813	}
 814
 815	/* detect transition latency */
 816	policy->cpuinfo.transition_latency = 0;
 817	for (i = 0; i < perf->state_count; i++) {
 818		if ((perf->states[i].transition_latency * 1000) >
 819		    policy->cpuinfo.transition_latency)
 820			policy->cpuinfo.transition_latency =
 821			    perf->states[i].transition_latency * 1000;
 822	}
 823
 824	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
 825	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
 826	    policy->cpuinfo.transition_latency > 20 * 1000) {
 827		policy->cpuinfo.transition_latency = 20 * 1000;
 828		pr_info_once("P-state transition latency capped at 20 uS\n");
 
 829	}
 830
 831	/* table init */
 832	for (i = 0; i < perf->state_count; i++) {
 833		if (i > 0 && perf->states[i].core_frequency >=
 834		    freq_table[valid_states-1].frequency / 1000)
 835			continue;
 836
 837		freq_table[valid_states].driver_data = i;
 838		freq_table[valid_states].frequency =
 839		    perf->states[i].core_frequency * 1000;
 840		valid_states++;
 841	}
 842	freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 843
 844	max_boost_ratio = get_max_boost_ratio(cpu, &nominal_freq);
 845	if (max_boost_ratio) {
 846		unsigned int freq = nominal_freq;
 847
 848		/*
 849		 * The loop above sorts the freq_table entries in the
 850		 * descending order. If ACPI CPPC has not advertised
 851		 * the nominal frequency (this is possible in CPPC
 852		 * revisions prior to 3), then use the first entry in
 853		 * the pstate table as a proxy for nominal frequency.
 854		 */
 855		if (!freq)
 856			freq = freq_table[0].frequency;
 857
 858		policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
 859	} else {
 860		/*
 861		 * If the maximum "boost" frequency is unknown, ask the arch
 862		 * scale-invariance code to use the "nominal" performance for
 863		 * CPU utilization scaling so as to prevent the schedutil
 864		 * governor from selecting inadequate CPU frequencies.
 865		 */
 866		arch_set_max_freq_ratio(true);
 867	}
 868
 869	policy->freq_table = freq_table;
 870	perf->state = 0;
 871
 872	switch (perf->control_register.space_id) {
 873	case ACPI_ADR_SPACE_SYSTEM_IO:
 874		/*
 875		 * The core will not set policy->cur, because
 876		 * cpufreq_driver->get is NULL, so we need to set it here.
 877		 * However, we have to guess it, because the current speed is
 878		 * unknown and not detectable via IO ports.
 879		 */
 880		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
 881		break;
 882	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 883		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 884		break;
 885	default:
 886		break;
 887	}
 888
 889	/* notify BIOS that we exist */
 890	acpi_processor_notify_smm(THIS_MODULE);
 891
 892	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
 893	for (i = 0; i < perf->state_count; i++)
 894		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
 895			(i == perf->state ? '*' : ' '), i,
 896			(u32) perf->states[i].core_frequency,
 897			(u32) perf->states[i].power,
 898			(u32) perf->states[i].transition_latency);
 899
 900	/*
 901	 * the first call to ->target() should result in us actually
 902	 * writing something to the appropriate registers.
 903	 */
 904	data->resume = 1;
 905
 906	policy->fast_switch_possible = !acpi_pstate_strict &&
 907		!(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
 908
 909	if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
 910		pr_warn(FW_WARN "P-state 0 is not max freq\n");
 911
 912	if (acpi_cpufreq_driver.set_boost) {
 913		set_boost(policy, acpi_cpufreq_driver.boost_enabled);
 914		policy->boost_enabled = acpi_cpufreq_driver.boost_enabled;
 915	}
 916
 917	return result;
 918
 
 
 919err_unreg:
 920	acpi_processor_unregister_performance(cpu);
 921err_free_mask:
 922	free_cpumask_var(data->freqdomain_cpus);
 923err_free:
 924	kfree(data);
 925	policy->driver_data = NULL;
 926
 927	return result;
 928}
 929
 930static void acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 931{
 932	struct acpi_cpufreq_data *data = policy->driver_data;
 933
 934	pr_debug("%s\n", __func__);
 935
 936	cpufreq_boost_down_prep(policy->cpu);
 937	policy->fast_switch_possible = false;
 938	policy->driver_data = NULL;
 939	acpi_processor_unregister_performance(data->acpi_perf_cpu);
 940	free_cpumask_var(data->freqdomain_cpus);
 941	kfree(policy->freq_table);
 942	kfree(data);
 
 
 
 943}
 944
 945static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 946{
 947	struct acpi_cpufreq_data *data = policy->driver_data;
 948
 949	pr_debug("%s\n", __func__);
 950
 951	data->resume = 1;
 952
 953	return 0;
 954}
 955
 956static struct freq_attr *acpi_cpufreq_attr[] = {
 957	&cpufreq_freq_attr_scaling_available_freqs,
 958	&freqdomain_cpus,
 959#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 960	&cpb,
 961#endif
 962	NULL,
 963};
 964
 965static struct cpufreq_driver acpi_cpufreq_driver = {
 966	.verify		= cpufreq_generic_frequency_table_verify,
 967	.target_index	= acpi_cpufreq_target,
 968	.fast_switch	= acpi_cpufreq_fast_switch,
 969	.bios_limit	= acpi_processor_get_bios_limit,
 970	.init		= acpi_cpufreq_cpu_init,
 971	.exit		= acpi_cpufreq_cpu_exit,
 972	.resume		= acpi_cpufreq_resume,
 973	.name		= "acpi-cpufreq",
 974	.attr		= acpi_cpufreq_attr,
 
 975};
 976
 977static void __init acpi_cpufreq_boost_init(void)
 978{
 979	if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
 980		pr_debug("Boost capabilities not present in the processor\n");
 981		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982	}
 
 
 
 
 
 
 983
 984	acpi_cpufreq_driver.set_boost = set_boost;
 985	acpi_cpufreq_driver.boost_enabled = boost_state(0);
 
 986}
 987
 988static int __init acpi_cpufreq_probe(struct platform_device *pdev)
 989{
 990	int ret;
 991
 992	if (acpi_disabled)
 993		return -ENODEV;
 994
 995	/* don't keep reloading if cpufreq_driver exists */
 996	if (cpufreq_get_current_driver())
 997		return -ENODEV;
 998
 999	pr_debug("%s\n", __func__);
1000
1001	ret = acpi_cpufreq_early_init();
1002	if (ret)
1003		return ret;
1004
1005#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1006	/* this is a sysfs file with a strange name and an even stranger
1007	 * semantic - per CPU instantiation, but system global effect.
1008	 * Lets enable it only on AMD CPUs for compatibility reasons and
1009	 * only if configured. This is considered legacy code, which
1010	 * will probably be removed at some point in the future.
1011	 */
1012	if (!check_amd_hwpstate_cpu(0)) {
1013		struct freq_attr **attr;
1014
1015		pr_debug("CPB unsupported, do not expose it\n");
1016
1017		for (attr = acpi_cpufreq_attr; *attr; attr++)
1018			if (*attr == &cpb) {
1019				*attr = NULL;
1020				break;
1021			}
 
1022	}
1023#endif
1024	acpi_cpufreq_boost_init();
1025
1026	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1027	if (ret) {
1028		free_acpi_perf_data();
 
1029	}
1030	return ret;
1031}
1032
1033static void acpi_cpufreq_remove(struct platform_device *pdev)
1034{
1035	pr_debug("%s\n", __func__);
 
 
1036
1037	cpufreq_unregister_driver(&acpi_cpufreq_driver);
1038
1039	free_acpi_perf_data();
1040}
1041
1042static struct platform_driver acpi_cpufreq_platdrv = {
1043	.driver = {
1044		.name	= "acpi-cpufreq",
1045	},
1046	.remove = acpi_cpufreq_remove,
1047};
1048
1049static int __init acpi_cpufreq_init(void)
1050{
1051	return platform_driver_probe(&acpi_cpufreq_platdrv, acpi_cpufreq_probe);
1052}
1053
1054static void __exit acpi_cpufreq_exit(void)
1055{
1056	platform_driver_unregister(&acpi_cpufreq_platdrv);
1057}
1058
1059module_param(acpi_pstate_strict, uint, 0644);
1060MODULE_PARM_DESC(acpi_pstate_strict,
1061	"value 0 or non-zero. non-zero -> strict ACPI checks are "
1062	"performed during frequency changes.");
1063
1064late_initcall(acpi_cpufreq_init);
1065module_exit(acpi_cpufreq_exit);
1066
1067MODULE_ALIAS("platform:acpi-cpufreq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.15
 
   1/*
   2 * acpi-cpufreq.c - ACPI Processor P-States Driver
   3 *
   4 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   5 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   6 *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
   7 *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
   8 *
   9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10 *
  11 *  This program is free software; you can redistribute it and/or modify
  12 *  it under the terms of the GNU General Public License as published by
  13 *  the Free Software Foundation; either version 2 of the License, or (at
  14 *  your option) any later version.
  15 *
  16 *  This program is distributed in the hope that it will be useful, but
  17 *  WITHOUT ANY WARRANTY; without even the implied warranty of
  18 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 *  General Public License for more details.
  20 *
  21 *  You should have received a copy of the GNU General Public License along
  22 *  with this program; if not, write to the Free Software Foundation, Inc.,
  23 *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  24 *
  25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  26 */
  27
 
 
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/init.h>
  31#include <linux/smp.h>
  32#include <linux/sched.h>
  33#include <linux/cpufreq.h>
  34#include <linux/compiler.h>
  35#include <linux/dmi.h>
  36#include <linux/slab.h>
 
 
  37
  38#include <linux/acpi.h>
  39#include <linux/io.h>
  40#include <linux/delay.h>
  41#include <linux/uaccess.h>
  42
  43#include <acpi/processor.h>
 
  44
  45#include <asm/msr.h>
  46#include <asm/processor.h>
  47#include <asm/cpufeature.h>
 
  48
  49MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  50MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  51MODULE_LICENSE("GPL");
  52
  53#define PFX "acpi-cpufreq: "
  54
  55enum {
  56	UNDEFINED_CAPABLE = 0,
  57	SYSTEM_INTEL_MSR_CAPABLE,
  58	SYSTEM_AMD_MSR_CAPABLE,
  59	SYSTEM_IO_CAPABLE,
  60};
  61
  62#define INTEL_MSR_RANGE		(0xffff)
  63#define AMD_MSR_RANGE		(0x7)
  64
  65#define MSR_K7_HWCR_CPB_DIS	(1ULL << 25)
  66
  67struct acpi_cpufreq_data {
  68	struct acpi_processor_performance *acpi_data;
  69	struct cpufreq_frequency_table *freq_table;
  70	unsigned int resume;
  71	unsigned int cpu_feature;
 
  72	cpumask_var_t freqdomain_cpus;
 
 
  73};
  74
  75static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
  76
  77/* acpi_perf_data is a pointer to percpu data. */
  78static struct acpi_processor_performance __percpu *acpi_perf_data;
  79
 
 
 
 
 
  80static struct cpufreq_driver acpi_cpufreq_driver;
  81
  82static unsigned int acpi_pstate_strict;
  83static struct msr __percpu *msrs;
  84
  85static bool boost_state(unsigned int cpu)
  86{
  87	u32 lo, hi;
  88	u64 msr;
  89
  90	switch (boot_cpu_data.x86_vendor) {
  91	case X86_VENDOR_INTEL:
  92		rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
  93		msr = lo | ((u64)hi << 32);
 
  94		return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
 
  95	case X86_VENDOR_AMD:
  96		rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
  97		msr = lo | ((u64)hi << 32);
  98		return !(msr & MSR_K7_HWCR_CPB_DIS);
  99	}
 100	return false;
 101}
 102
 103static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
 104{
 105	u32 cpu;
 106	u32 msr_addr;
 107	u64 msr_mask;
 108
 109	switch (boot_cpu_data.x86_vendor) {
 110	case X86_VENDOR_INTEL:
 
 
 111		msr_addr = MSR_IA32_MISC_ENABLE;
 112		msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
 113		break;
 
 114	case X86_VENDOR_AMD:
 115		msr_addr = MSR_K7_HWCR;
 116		msr_mask = MSR_K7_HWCR_CPB_DIS;
 117		break;
 118	default:
 119		return;
 120	}
 121
 122	rdmsr_on_cpus(cpumask, msr_addr, msrs);
 123
 124	for_each_cpu(cpu, cpumask) {
 125		struct msr *reg = per_cpu_ptr(msrs, cpu);
 126		if (enable)
 127			reg->q &= ~msr_mask;
 128		else
 129			reg->q |= msr_mask;
 130	}
 
 
 
 
 
 131
 132	wrmsr_on_cpus(cpumask, msr_addr, msrs);
 133}
 134
 135static int _store_boost(int val)
 136{
 137	get_online_cpus();
 138	boost_set_msrs(val, cpu_online_mask);
 139	put_online_cpus();
 140	pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
 141
 142	return 0;
 143}
 144
 145static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
 146{
 147	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
 
 
 
 148
 149	return cpufreq_show_cpus(data->freqdomain_cpus, buf);
 150}
 151
 152cpufreq_freq_attr_ro(freqdomain_cpus);
 153
 154#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 155static ssize_t store_boost(const char *buf, size_t count)
 
 156{
 157	int ret;
 158	unsigned long val = 0;
 159
 160	if (!acpi_cpufreq_driver.boost_supported)
 161		return -EINVAL;
 162
 163	ret = kstrtoul(buf, 10, &val);
 164	if (ret || (val > 1))
 165		return -EINVAL;
 166
 167	_store_boost((int) val);
 
 
 168
 169	return count;
 170}
 171
 172static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
 173			 size_t count)
 174{
 175	return store_boost(buf, count);
 176}
 177
 178static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
 179{
 180	return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
 181}
 182
 183cpufreq_freq_attr_rw(cpb);
 184#endif
 185
 186static int check_est_cpu(unsigned int cpuid)
 187{
 188	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 189
 190	return cpu_has(cpu, X86_FEATURE_EST);
 191}
 192
 193static int check_amd_hwpstate_cpu(unsigned int cpuid)
 194{
 195	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 196
 197	return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
 198}
 199
 200static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
 201{
 
 202	struct acpi_processor_performance *perf;
 203	int i;
 204
 205	perf = data->acpi_data;
 206
 207	for (i = 0; i < perf->state_count; i++) {
 208		if (value == perf->states[i].status)
 209			return data->freq_table[i].frequency;
 210	}
 211	return 0;
 212}
 213
 214static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
 215{
 216	int i;
 
 217	struct acpi_processor_performance *perf;
 218
 219	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
 220		msr &= AMD_MSR_RANGE;
 
 
 221	else
 222		msr &= INTEL_MSR_RANGE;
 223
 224	perf = data->acpi_data;
 225
 226	for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
 227		if (msr == perf->states[data->freq_table[i].driver_data].status)
 228			return data->freq_table[i].frequency;
 229	}
 230	return data->freq_table[0].frequency;
 231}
 232
 233static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
 234{
 
 
 235	switch (data->cpu_feature) {
 236	case SYSTEM_INTEL_MSR_CAPABLE:
 237	case SYSTEM_AMD_MSR_CAPABLE:
 238		return extract_msr(val, data);
 239	case SYSTEM_IO_CAPABLE:
 240		return extract_io(val, data);
 241	default:
 242		return 0;
 243	}
 244}
 245
 246struct msr_addr {
 247	u32 reg;
 248};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249
 250struct io_addr {
 251	u16 port;
 252	u8 bit_width;
 253};
 254
 255struct drv_cmd {
 256	unsigned int type;
 257	const struct cpumask *mask;
 258	union {
 259		struct msr_addr msr;
 260		struct io_addr io;
 261	} addr;
 262	u32 val;
 263};
 264
 265/* Called via smp_call_function_single(), on the target CPU */
 266static void do_drv_read(void *_cmd)
 267{
 268	struct drv_cmd *cmd = _cmd;
 269	u32 h;
 270
 271	switch (cmd->type) {
 272	case SYSTEM_INTEL_MSR_CAPABLE:
 273	case SYSTEM_AMD_MSR_CAPABLE:
 274		rdmsr(cmd->addr.msr.reg, cmd->val, h);
 275		break;
 276	case SYSTEM_IO_CAPABLE:
 277		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
 278				&cmd->val,
 279				(u32)cmd->addr.io.bit_width);
 280		break;
 281	default:
 282		break;
 283	}
 284}
 285
 286/* Called via smp_call_function_many(), on the target CPUs */
 287static void do_drv_write(void *_cmd)
 288{
 289	struct drv_cmd *cmd = _cmd;
 290	u32 lo, hi;
 
 
 
 
 291
 292	switch (cmd->type) {
 293	case SYSTEM_INTEL_MSR_CAPABLE:
 294		rdmsr(cmd->addr.msr.reg, lo, hi);
 295		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
 296		wrmsr(cmd->addr.msr.reg, lo, hi);
 297		break;
 298	case SYSTEM_AMD_MSR_CAPABLE:
 299		wrmsr(cmd->addr.msr.reg, cmd->val, 0);
 300		break;
 301	case SYSTEM_IO_CAPABLE:
 302		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
 303				cmd->val,
 304				(u32)cmd->addr.io.bit_width);
 305		break;
 306	default:
 307		break;
 308	}
 309}
 310
 311static void drv_read(struct drv_cmd *cmd)
 
 312{
 313	int err;
 314	cmd->val = 0;
 315
 316	err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
 317	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
 318}
 319
 320static void drv_write(struct drv_cmd *cmd)
 
 321{
 
 
 
 
 
 
 322	int this_cpu;
 323
 324	this_cpu = get_cpu();
 325	if (cpumask_test_cpu(this_cpu, cmd->mask))
 326		do_drv_write(cmd);
 327	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
 
 328	put_cpu();
 329}
 330
 331static u32 get_cur_val(const struct cpumask *mask)
 332{
 333	struct acpi_processor_performance *perf;
 334	struct drv_cmd cmd;
 335
 336	if (unlikely(cpumask_empty(mask)))
 337		return 0;
 338
 339	switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
 340	case SYSTEM_INTEL_MSR_CAPABLE:
 341		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
 342		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
 343		break;
 344	case SYSTEM_AMD_MSR_CAPABLE:
 345		cmd.type = SYSTEM_AMD_MSR_CAPABLE;
 346		cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
 347		break;
 348	case SYSTEM_IO_CAPABLE:
 349		cmd.type = SYSTEM_IO_CAPABLE;
 350		perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
 351		cmd.addr.io.port = perf->control_register.address;
 352		cmd.addr.io.bit_width = perf->control_register.bit_width;
 353		break;
 354	default:
 355		return 0;
 356	}
 357
 358	cmd.mask = mask;
 359	drv_read(&cmd);
 360
 361	pr_debug("get_cur_val = %u\n", cmd.val);
 362
 363	return cmd.val;
 364}
 365
 366static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
 367{
 368	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
 
 369	unsigned int freq;
 370	unsigned int cached_freq;
 371
 372	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
 
 
 
 
 373
 374	if (unlikely(data == NULL ||
 375		     data->acpi_data == NULL || data->freq_table == NULL)) {
 376		return 0;
 377	}
 378
 379	cached_freq = data->freq_table[data->acpi_data->state].frequency;
 380	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
 381	if (freq != cached_freq) {
 382		/*
 383		 * The dreaded BIOS frequency change behind our back.
 384		 * Force set the frequency on next target call.
 385		 */
 386		data->resume = 1;
 387	}
 388
 389	pr_debug("cur freq = %u\n", freq);
 390
 391	return freq;
 392}
 393
 394static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
 395				struct acpi_cpufreq_data *data)
 396{
 
 397	unsigned int cur_freq;
 398	unsigned int i;
 399
 400	for (i = 0; i < 100; i++) {
 401		cur_freq = extract_freq(get_cur_val(mask), data);
 402		if (cur_freq == freq)
 403			return 1;
 404		udelay(10);
 405	}
 406	return 0;
 407}
 408
 409static int acpi_cpufreq_target(struct cpufreq_policy *policy,
 410			       unsigned int index)
 411{
 412	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
 413	struct acpi_processor_performance *perf;
 414	struct drv_cmd cmd;
 415	unsigned int next_perf_state = 0; /* Index into perf table */
 416	int result = 0;
 417
 418	if (unlikely(data == NULL ||
 419	     data->acpi_data == NULL || data->freq_table == NULL)) {
 420		return -ENODEV;
 421	}
 422
 423	perf = data->acpi_data;
 424	next_perf_state = data->freq_table[index].driver_data;
 425	if (perf->state == next_perf_state) {
 426		if (unlikely(data->resume)) {
 427			pr_debug("Called after resume, resetting to P%d\n",
 428				next_perf_state);
 429			data->resume = 0;
 430		} else {
 431			pr_debug("Already at target state (P%d)\n",
 432				next_perf_state);
 433			goto out;
 434		}
 435	}
 436
 437	switch (data->cpu_feature) {
 438	case SYSTEM_INTEL_MSR_CAPABLE:
 439		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
 440		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
 441		cmd.val = (u32) perf->states[next_perf_state].control;
 442		break;
 443	case SYSTEM_AMD_MSR_CAPABLE:
 444		cmd.type = SYSTEM_AMD_MSR_CAPABLE;
 445		cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
 446		cmd.val = (u32) perf->states[next_perf_state].control;
 447		break;
 448	case SYSTEM_IO_CAPABLE:
 449		cmd.type = SYSTEM_IO_CAPABLE;
 450		cmd.addr.io.port = perf->control_register.address;
 451		cmd.addr.io.bit_width = perf->control_register.bit_width;
 452		cmd.val = (u32) perf->states[next_perf_state].control;
 453		break;
 454	default:
 455		result = -ENODEV;
 456		goto out;
 457	}
 458
 459	/* cpufreq holds the hotplug lock, so we are safe from here on */
 460	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
 461		cmd.mask = policy->cpus;
 462	else
 463		cmd.mask = cpumask_of(policy->cpu);
 464
 465	drv_write(&cmd);
 466
 467	if (acpi_pstate_strict) {
 468		if (!check_freqs(cmd.mask, data->freq_table[index].frequency,
 469					data)) {
 470			pr_debug("acpi_cpufreq_target failed (%d)\n",
 471				policy->cpu);
 472			result = -EAGAIN;
 473		}
 474	}
 475
 476	if (!result)
 477		perf->state = next_perf_state;
 478
 479out:
 480	return result;
 481}
 482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483static unsigned long
 484acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 485{
 486	struct acpi_processor_performance *perf = data->acpi_data;
 487
 
 488	if (cpu_khz) {
 489		/* search the closest match to cpu_khz */
 490		unsigned int i;
 491		unsigned long freq;
 492		unsigned long freqn = perf->states[0].core_frequency * 1000;
 493
 494		for (i = 0; i < (perf->state_count-1); i++) {
 495			freq = freqn;
 496			freqn = perf->states[i+1].core_frequency * 1000;
 497			if ((2 * cpu_khz) > (freqn + freq)) {
 498				perf->state = i;
 499				return freq;
 500			}
 501		}
 502		perf->state = perf->state_count-1;
 503		return freqn;
 504	} else {
 505		/* assume CPU is at P0... */
 506		perf->state = 0;
 507		return perf->states[0].core_frequency * 1000;
 508	}
 509}
 510
 511static void free_acpi_perf_data(void)
 512{
 513	unsigned int i;
 514
 515	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
 516	for_each_possible_cpu(i)
 517		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
 518				 ->shared_cpu_map);
 519	free_percpu(acpi_perf_data);
 520}
 521
 522static int boost_notify(struct notifier_block *nb, unsigned long action,
 523		      void *hcpu)
 524{
 525	unsigned cpu = (long)hcpu;
 526	const struct cpumask *cpumask;
 527
 528	cpumask = get_cpu_mask(cpu);
 529
 530	/*
 531	 * Clear the boost-disable bit on the CPU_DOWN path so that
 532	 * this cpu cannot block the remaining ones from boosting. On
 533	 * the CPU_UP path we simply keep the boost-disable flag in
 534	 * sync with the current global state.
 535	 */
 536
 537	switch (action) {
 538	case CPU_UP_PREPARE:
 539	case CPU_UP_PREPARE_FROZEN:
 540		boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
 541		break;
 542
 543	case CPU_DOWN_PREPARE:
 544	case CPU_DOWN_PREPARE_FROZEN:
 545		boost_set_msrs(1, cpumask);
 546		break;
 547
 548	default:
 549		break;
 550	}
 551
 552	return NOTIFY_OK;
 553}
 554
 555
 556static struct notifier_block boost_nb = {
 557	.notifier_call          = boost_notify,
 558};
 559
 560/*
 561 * acpi_cpufreq_early_init - initialize ACPI P-States library
 562 *
 563 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
 564 * in order to determine correct frequency and voltage pairings. We can
 565 * do _PDC and _PSD and find out the processor dependency for the
 566 * actual init that will happen later...
 567 */
 568static int __init acpi_cpufreq_early_init(void)
 569{
 570	unsigned int i;
 571	pr_debug("acpi_cpufreq_early_init\n");
 572
 573	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
 574	if (!acpi_perf_data) {
 575		pr_debug("Memory allocation error for acpi_perf_data.\n");
 576		return -ENOMEM;
 577	}
 578	for_each_possible_cpu(i) {
 579		if (!zalloc_cpumask_var_node(
 580			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
 581			GFP_KERNEL, cpu_to_node(i))) {
 582
 583			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
 584			free_acpi_perf_data();
 585			return -ENOMEM;
 586		}
 587	}
 588
 589	/* Do initialization in ACPI core */
 590	acpi_processor_preregister_performance(acpi_perf_data);
 591	return 0;
 592}
 593
 594#ifdef CONFIG_SMP
 595/*
 596 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
 597 * or do it in BIOS firmware and won't inform about it to OS. If not
 598 * detected, this has a side effect of making CPU run at a different speed
 599 * than OS intended it to run at. Detect it and handle it cleanly.
 600 */
 601static int bios_with_sw_any_bug;
 602
 603static int sw_any_bug_found(const struct dmi_system_id *d)
 604{
 605	bios_with_sw_any_bug = 1;
 606	return 0;
 607}
 608
 609static const struct dmi_system_id sw_any_bug_dmi_table[] = {
 610	{
 611		.callback = sw_any_bug_found,
 612		.ident = "Supermicro Server X6DLP",
 613		.matches = {
 614			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
 615			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
 616			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
 617		},
 618	},
 619	{ }
 620};
 621
 622static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
 623{
 624	/* Intel Xeon Processor 7100 Series Specification Update
 625	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
 626	 * AL30: A Machine Check Exception (MCE) Occurring during an
 627	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
 628	 * Both Processor Cores to Lock Up. */
 629	if (c->x86_vendor == X86_VENDOR_INTEL) {
 630		if ((c->x86 == 15) &&
 631		    (c->x86_model == 6) &&
 632		    (c->x86_mask == 8)) {
 633			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
 634			    "Xeon(R) 7100 Errata AL30, processors may "
 635			    "lock up on frequency changes: disabling "
 636			    "acpi-cpufreq.\n");
 637			return -ENODEV;
 638		    }
 639		}
 640	return 0;
 641}
 642#endif
 643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 644static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 645{
 646	unsigned int i;
 
 
 
 
 
 647	unsigned int valid_states = 0;
 648	unsigned int cpu = policy->cpu;
 649	struct acpi_cpufreq_data *data;
 650	unsigned int result = 0;
 651	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
 652	struct acpi_processor_performance *perf;
 653#ifdef CONFIG_SMP
 654	static int blacklisted;
 655#endif
 656
 657	pr_debug("acpi_cpufreq_cpu_init\n");
 658
 659#ifdef CONFIG_SMP
 660	if (blacklisted)
 661		return blacklisted;
 662	blacklisted = acpi_cpufreq_blacklist(c);
 663	if (blacklisted)
 664		return blacklisted;
 665#endif
 666
 667	data = kzalloc(sizeof(*data), GFP_KERNEL);
 668	if (!data)
 669		return -ENOMEM;
 670
 671	if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
 672		result = -ENOMEM;
 673		goto err_free;
 674	}
 675
 676	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
 677	per_cpu(acfreq_data, cpu) = data;
 
 678
 679	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
 680		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 681
 682	result = acpi_processor_register_performance(data->acpi_data, cpu);
 683	if (result)
 684		goto err_free_mask;
 685
 686	perf = data->acpi_data;
 687	policy->shared_type = perf->shared_type;
 688
 689	/*
 690	 * Will let policy->cpus know about dependency only when software
 691	 * coordination is required.
 692	 */
 693	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
 694	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 695		cpumask_copy(policy->cpus, perf->shared_cpu_map);
 696	}
 697	cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
 698
 699#ifdef CONFIG_SMP
 700	dmi_check_system(sw_any_bug_dmi_table);
 701	if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
 702		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 703		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
 704	}
 705
 706	if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
 
 707		cpumask_clear(policy->cpus);
 708		cpumask_set_cpu(cpu, policy->cpus);
 709		cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu));
 
 710		policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
 711		pr_info_once(PFX "overriding BIOS provided _PSD data\n");
 712	}
 713#endif
 714
 715	/* capability check */
 716	if (perf->state_count <= 1) {
 717		pr_debug("No P-States\n");
 718		result = -ENODEV;
 719		goto err_unreg;
 720	}
 721
 722	if (perf->control_register.space_id != perf->status_register.space_id) {
 723		result = -ENODEV;
 724		goto err_unreg;
 725	}
 726
 727	switch (perf->control_register.space_id) {
 728	case ACPI_ADR_SPACE_SYSTEM_IO:
 729		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
 730		    boot_cpu_data.x86 == 0xf) {
 731			pr_debug("AMD K8 systems must use native drivers.\n");
 732			result = -ENODEV;
 733			goto err_unreg;
 734		}
 735		pr_debug("SYSTEM IO addr space\n");
 736		data->cpu_feature = SYSTEM_IO_CAPABLE;
 
 
 737		break;
 738	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 739		pr_debug("HARDWARE addr space\n");
 740		if (check_est_cpu(cpu)) {
 741			data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
 
 
 742			break;
 743		}
 744		if (check_amd_hwpstate_cpu(cpu)) {
 745			data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
 
 
 746			break;
 747		}
 748		result = -ENODEV;
 749		goto err_unreg;
 750	default:
 751		pr_debug("Unknown addr space %d\n",
 752			(u32) (perf->control_register.space_id));
 753		result = -ENODEV;
 754		goto err_unreg;
 755	}
 756
 757	data->freq_table = kzalloc(sizeof(*data->freq_table) *
 758		    (perf->state_count+1), GFP_KERNEL);
 759	if (!data->freq_table) {
 760		result = -ENOMEM;
 761		goto err_unreg;
 762	}
 763
 764	/* detect transition latency */
 765	policy->cpuinfo.transition_latency = 0;
 766	for (i = 0; i < perf->state_count; i++) {
 767		if ((perf->states[i].transition_latency * 1000) >
 768		    policy->cpuinfo.transition_latency)
 769			policy->cpuinfo.transition_latency =
 770			    perf->states[i].transition_latency * 1000;
 771	}
 772
 773	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
 774	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
 775	    policy->cpuinfo.transition_latency > 20 * 1000) {
 776		policy->cpuinfo.transition_latency = 20 * 1000;
 777		printk_once(KERN_INFO
 778			    "P-state transition latency capped at 20 uS\n");
 779	}
 780
 781	/* table init */
 782	for (i = 0; i < perf->state_count; i++) {
 783		if (i > 0 && perf->states[i].core_frequency >=
 784		    data->freq_table[valid_states-1].frequency / 1000)
 785			continue;
 786
 787		data->freq_table[valid_states].driver_data = i;
 788		data->freq_table[valid_states].frequency =
 789		    perf->states[i].core_frequency * 1000;
 790		valid_states++;
 791	}
 792	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 793	perf->state = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 794
 795	result = cpufreq_table_validate_and_show(policy, data->freq_table);
 796	if (result)
 797		goto err_freqfree;
 
 
 
 
 
 
 
 798
 799	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
 800		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
 801
 802	switch (perf->control_register.space_id) {
 803	case ACPI_ADR_SPACE_SYSTEM_IO:
 804		/*
 805		 * The core will not set policy->cur, because
 806		 * cpufreq_driver->get is NULL, so we need to set it here.
 807		 * However, we have to guess it, because the current speed is
 808		 * unknown and not detectable via IO ports.
 809		 */
 810		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
 811		break;
 812	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 813		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 814		break;
 815	default:
 816		break;
 817	}
 818
 819	/* notify BIOS that we exist */
 820	acpi_processor_notify_smm(THIS_MODULE);
 821
 822	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
 823	for (i = 0; i < perf->state_count; i++)
 824		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
 825			(i == perf->state ? '*' : ' '), i,
 826			(u32) perf->states[i].core_frequency,
 827			(u32) perf->states[i].power,
 828			(u32) perf->states[i].transition_latency);
 829
 830	/*
 831	 * the first call to ->target() should result in us actually
 832	 * writing something to the appropriate registers.
 833	 */
 834	data->resume = 1;
 835
 
 
 
 
 
 
 
 
 
 
 
 836	return result;
 837
 838err_freqfree:
 839	kfree(data->freq_table);
 840err_unreg:
 841	acpi_processor_unregister_performance(perf, cpu);
 842err_free_mask:
 843	free_cpumask_var(data->freqdomain_cpus);
 844err_free:
 845	kfree(data);
 846	per_cpu(acfreq_data, cpu) = NULL;
 847
 848	return result;
 849}
 850
 851static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 852{
 853	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
 854
 855	pr_debug("acpi_cpufreq_cpu_exit\n");
 856
 857	if (data) {
 858		per_cpu(acfreq_data, policy->cpu) = NULL;
 859		acpi_processor_unregister_performance(data->acpi_data,
 860						      policy->cpu);
 861		free_cpumask_var(data->freqdomain_cpus);
 862		kfree(data->freq_table);
 863		kfree(data);
 864	}
 865
 866	return 0;
 867}
 868
 869static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 870{
 871	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
 872
 873	pr_debug("acpi_cpufreq_resume\n");
 874
 875	data->resume = 1;
 876
 877	return 0;
 878}
 879
 880static struct freq_attr *acpi_cpufreq_attr[] = {
 881	&cpufreq_freq_attr_scaling_available_freqs,
 882	&freqdomain_cpus,
 883	NULL,	/* this is a placeholder for cpb, do not remove */
 
 
 884	NULL,
 885};
 886
 887static struct cpufreq_driver acpi_cpufreq_driver = {
 888	.verify		= cpufreq_generic_frequency_table_verify,
 889	.target_index	= acpi_cpufreq_target,
 
 890	.bios_limit	= acpi_processor_get_bios_limit,
 891	.init		= acpi_cpufreq_cpu_init,
 892	.exit		= acpi_cpufreq_cpu_exit,
 893	.resume		= acpi_cpufreq_resume,
 894	.name		= "acpi-cpufreq",
 895	.attr		= acpi_cpufreq_attr,
 896	.set_boost      = _store_boost,
 897};
 898
 899static void __init acpi_cpufreq_boost_init(void)
 900{
 901	if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
 902		msrs = msrs_alloc();
 903
 904		if (!msrs)
 905			return;
 906
 907		acpi_cpufreq_driver.boost_supported = true;
 908		acpi_cpufreq_driver.boost_enabled = boost_state(0);
 909
 910		cpu_notifier_register_begin();
 911
 912		/* Force all MSRs to the same value */
 913		boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
 914			       cpu_online_mask);
 915
 916		__register_cpu_notifier(&boost_nb);
 917
 918		cpu_notifier_register_done();
 919	}
 920}
 921
 922static void acpi_cpufreq_boost_exit(void)
 923{
 924	if (msrs) {
 925		unregister_cpu_notifier(&boost_nb);
 926
 927		msrs_free(msrs);
 928		msrs = NULL;
 929	}
 930}
 931
 932static int __init acpi_cpufreq_init(void)
 933{
 934	int ret;
 935
 936	if (acpi_disabled)
 937		return -ENODEV;
 938
 939	/* don't keep reloading if cpufreq_driver exists */
 940	if (cpufreq_get_current_driver())
 941		return -EEXIST;
 942
 943	pr_debug("acpi_cpufreq_init\n");
 944
 945	ret = acpi_cpufreq_early_init();
 946	if (ret)
 947		return ret;
 948
 949#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
 950	/* this is a sysfs file with a strange name and an even stranger
 951	 * semantic - per CPU instantiation, but system global effect.
 952	 * Lets enable it only on AMD CPUs for compatibility reasons and
 953	 * only if configured. This is considered legacy code, which
 954	 * will probably be removed at some point in the future.
 955	 */
 956	if (check_amd_hwpstate_cpu(0)) {
 957		struct freq_attr **iter;
 958
 959		pr_debug("adding sysfs entry for cpb\n");
 960
 961		for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
 962			;
 963
 964		/* make sure there is a terminator behind it */
 965		if (iter[1] == NULL)
 966			*iter = &cpb;
 967	}
 968#endif
 969	acpi_cpufreq_boost_init();
 970
 971	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
 972	if (ret) {
 973		free_acpi_perf_data();
 974		acpi_cpufreq_boost_exit();
 975	}
 976	return ret;
 977}
 978
 979static void __exit acpi_cpufreq_exit(void)
 980{
 981	pr_debug("acpi_cpufreq_exit\n");
 982
 983	acpi_cpufreq_boost_exit();
 984
 985	cpufreq_unregister_driver(&acpi_cpufreq_driver);
 986
 987	free_acpi_perf_data();
 988}
 989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990module_param(acpi_pstate_strict, uint, 0644);
 991MODULE_PARM_DESC(acpi_pstate_strict,
 992	"value 0 or non-zero. non-zero -> strict ACPI checks are "
 993	"performed during frequency changes.");
 994
 995late_initcall(acpi_cpufreq_init);
 996module_exit(acpi_cpufreq_exit);
 997
 998static const struct x86_cpu_id acpi_cpufreq_ids[] = {
 999	X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1000	X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1001	{}
1002};
1003MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1004
1005static const struct acpi_device_id processor_device_ids[] = {
1006	{ACPI_PROCESSOR_OBJECT_HID, },
1007	{ACPI_PROCESSOR_DEVICE_HID, },
1008	{},
1009};
1010MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1011
1012MODULE_ALIAS("acpi");