Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/clocksource/arm_global_timer.c
4 *
5 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
6 * Author: Stuart Menefy <stuart.menefy@st.com>
7 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
8 */
9
10#include <linux/init.h>
11#include <linux/interrupt.h>
12#include <linux/bitfield.h>
13#include <linux/clocksource.h>
14#include <linux/clockchips.h>
15#include <linux/cpu.h>
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/io.h>
20#include <linux/of.h>
21#include <linux/of_irq.h>
22#include <linux/of_address.h>
23#include <linux/sched_clock.h>
24
25#include <asm/cputype.h>
26
27#define GT_COUNTER0 0x00
28#define GT_COUNTER1 0x04
29
30#define GT_CONTROL 0x08
31#define GT_CONTROL_TIMER_ENABLE BIT(0) /* this bit is NOT banked */
32#define GT_CONTROL_COMP_ENABLE BIT(1) /* banked */
33#define GT_CONTROL_IRQ_ENABLE BIT(2) /* banked */
34#define GT_CONTROL_AUTO_INC BIT(3) /* banked */
35#define GT_CONTROL_PRESCALER_MASK GENMASK(15, 8)
36
37#define GT_INT_STATUS 0x0c
38#define GT_INT_STATUS_EVENT_FLAG BIT(0)
39
40#define GT_COMP0 0x10
41#define GT_COMP1 0x14
42#define GT_AUTO_INC 0x18
43
44#define MAX_F_ERR 50
45/*
46 * We are expecting to be clocked by the ARM peripheral clock.
47 *
48 * Note: it is assumed we are using a prescaler value of zero, so this is
49 * the units for all operations.
50 */
51static void __iomem *gt_base;
52static struct notifier_block gt_clk_rate_change_nb;
53static u32 gt_psv_new, gt_psv_bck;
54static unsigned long gt_target_rate;
55static int gt_ppi;
56static struct clock_event_device __percpu *gt_evt;
57
58/*
59 * To get the value from the Global Timer Counter register proceed as follows:
60 * 1. Read the upper 32-bit timer counter register
61 * 2. Read the lower 32-bit timer counter register
62 * 3. Read the upper 32-bit timer counter register again. If the value is
63 * different to the 32-bit upper value read previously, go back to step 2.
64 * Otherwise the 64-bit timer counter value is correct.
65 */
66static u64 notrace _gt_counter_read(void)
67{
68 u64 counter;
69 u32 lower;
70 u32 upper, old_upper;
71
72 upper = readl_relaxed(gt_base + GT_COUNTER1);
73 do {
74 old_upper = upper;
75 lower = readl_relaxed(gt_base + GT_COUNTER0);
76 upper = readl_relaxed(gt_base + GT_COUNTER1);
77 } while (upper != old_upper);
78
79 counter = upper;
80 counter <<= 32;
81 counter |= lower;
82 return counter;
83}
84
85static u64 gt_counter_read(void)
86{
87 return _gt_counter_read();
88}
89
90/*
91 * To ensure that updates to comparator value register do not set the
92 * Interrupt Status Register proceed as follows:
93 * 1. Clear the Comp Enable bit in the Timer Control Register.
94 * 2. Write the lower 32-bit Comparator Value Register.
95 * 3. Write the upper 32-bit Comparator Value Register.
96 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
97 */
98static void gt_compare_set(unsigned long delta, int periodic)
99{
100 u64 counter = gt_counter_read();
101 unsigned long ctrl;
102
103 counter += delta;
104 ctrl = readl(gt_base + GT_CONTROL);
105 ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
106 GT_CONTROL_AUTO_INC);
107 ctrl |= GT_CONTROL_TIMER_ENABLE;
108 writel_relaxed(ctrl, gt_base + GT_CONTROL);
109 writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
110 writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
111
112 if (periodic) {
113 writel_relaxed(delta, gt_base + GT_AUTO_INC);
114 ctrl |= GT_CONTROL_AUTO_INC;
115 }
116
117 ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
118 writel_relaxed(ctrl, gt_base + GT_CONTROL);
119}
120
121static int gt_clockevent_shutdown(struct clock_event_device *evt)
122{
123 unsigned long ctrl;
124
125 ctrl = readl(gt_base + GT_CONTROL);
126 ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
127 GT_CONTROL_AUTO_INC);
128 writel(ctrl, gt_base + GT_CONTROL);
129 return 0;
130}
131
132static int gt_clockevent_set_periodic(struct clock_event_device *evt)
133{
134 gt_compare_set(DIV_ROUND_CLOSEST(gt_target_rate, HZ), 1);
135 return 0;
136}
137
138static int gt_clockevent_set_next_event(unsigned long evt,
139 struct clock_event_device *unused)
140{
141 gt_compare_set(evt, 0);
142 return 0;
143}
144
145static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
146{
147 struct clock_event_device *evt = dev_id;
148
149 if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
150 GT_INT_STATUS_EVENT_FLAG))
151 return IRQ_NONE;
152
153 /**
154 * ERRATA 740657( Global Timer can send 2 interrupts for
155 * the same event in single-shot mode)
156 * Workaround:
157 * Either disable single-shot mode.
158 * Or
159 * Modify the Interrupt Handler to avoid the
160 * offending sequence. This is achieved by clearing
161 * the Global Timer flag _after_ having incremented
162 * the Comparator register value to a higher value.
163 */
164 if (clockevent_state_oneshot(evt))
165 gt_compare_set(ULONG_MAX, 0);
166
167 writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
168 evt->event_handler(evt);
169
170 return IRQ_HANDLED;
171}
172
173static int gt_starting_cpu(unsigned int cpu)
174{
175 struct clock_event_device *clk = this_cpu_ptr(gt_evt);
176
177 clk->name = "arm_global_timer";
178 clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
179 CLOCK_EVT_FEAT_PERCPU;
180 clk->set_state_shutdown = gt_clockevent_shutdown;
181 clk->set_state_periodic = gt_clockevent_set_periodic;
182 clk->set_state_oneshot = gt_clockevent_shutdown;
183 clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
184 clk->set_next_event = gt_clockevent_set_next_event;
185 clk->cpumask = cpumask_of(cpu);
186 clk->rating = 300;
187 clk->irq = gt_ppi;
188 clockevents_config_and_register(clk, gt_target_rate,
189 1, 0xffffffff);
190 enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
191 return 0;
192}
193
194static int gt_dying_cpu(unsigned int cpu)
195{
196 struct clock_event_device *clk = this_cpu_ptr(gt_evt);
197
198 disable_percpu_irq(clk->irq);
199 return 0;
200}
201
202static u64 gt_clocksource_read(struct clocksource *cs)
203{
204 return gt_counter_read();
205}
206
207static void gt_resume(struct clocksource *cs)
208{
209 unsigned long ctrl;
210
211 ctrl = readl(gt_base + GT_CONTROL);
212 if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
213 /* re-enable timer on resume */
214 writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
215}
216
217static struct clocksource gt_clocksource = {
218 .name = "arm_global_timer",
219 .rating = 300,
220 .read = gt_clocksource_read,
221 .mask = CLOCKSOURCE_MASK(64),
222 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
223 .resume = gt_resume,
224};
225
226#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
227static u64 notrace gt_sched_clock_read(void)
228{
229 return _gt_counter_read();
230}
231#endif
232
233static unsigned long gt_read_long(void)
234{
235 return readl_relaxed(gt_base + GT_COUNTER0);
236}
237
238static struct delay_timer gt_delay_timer = {
239 .read_current_timer = gt_read_long,
240};
241
242static void gt_write_presc(u32 psv)
243{
244 u32 reg;
245
246 reg = readl(gt_base + GT_CONTROL);
247 reg &= ~GT_CONTROL_PRESCALER_MASK;
248 reg |= FIELD_PREP(GT_CONTROL_PRESCALER_MASK, psv);
249 writel(reg, gt_base + GT_CONTROL);
250}
251
252static u32 gt_read_presc(void)
253{
254 u32 reg;
255
256 reg = readl(gt_base + GT_CONTROL);
257 return FIELD_GET(GT_CONTROL_PRESCALER_MASK, reg);
258}
259
260static void __init gt_delay_timer_init(void)
261{
262 gt_delay_timer.freq = gt_target_rate;
263 register_current_timer_delay(>_delay_timer);
264}
265
266static int __init gt_clocksource_init(void)
267{
268 writel(0, gt_base + GT_CONTROL);
269 writel(0, gt_base + GT_COUNTER0);
270 writel(0, gt_base + GT_COUNTER1);
271 /* set prescaler and enable timer on all the cores */
272 writel(FIELD_PREP(GT_CONTROL_PRESCALER_MASK,
273 CONFIG_ARM_GT_INITIAL_PRESCALER_VAL - 1) |
274 GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
275
276#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
277 sched_clock_register(gt_sched_clock_read, 64, gt_target_rate);
278#endif
279 return clocksource_register_hz(>_clocksource, gt_target_rate);
280}
281
282static int gt_clk_rate_change_cb(struct notifier_block *nb,
283 unsigned long event, void *data)
284{
285 struct clk_notifier_data *ndata = data;
286
287 switch (event) {
288 case PRE_RATE_CHANGE:
289 {
290 unsigned long psv;
291
292 psv = DIV_ROUND_CLOSEST(ndata->new_rate, gt_target_rate);
293 if (!psv ||
294 abs(gt_target_rate - (ndata->new_rate / psv)) > MAX_F_ERR)
295 return NOTIFY_BAD;
296
297 psv--;
298
299 /* prescaler within legal range? */
300 if (!FIELD_FIT(GT_CONTROL_PRESCALER_MASK, psv))
301 return NOTIFY_BAD;
302
303 /*
304 * store timer clock ctrl register so we can restore it in case
305 * of an abort.
306 */
307 gt_psv_bck = gt_read_presc();
308 gt_psv_new = psv;
309 /* scale down: adjust divider in post-change notification */
310 if (ndata->new_rate < ndata->old_rate)
311 return NOTIFY_DONE;
312
313 /* scale up: adjust divider now - before frequency change */
314 gt_write_presc(psv);
315 break;
316 }
317 case POST_RATE_CHANGE:
318 /* scale up: pre-change notification did the adjustment */
319 if (ndata->new_rate > ndata->old_rate)
320 return NOTIFY_OK;
321
322 /* scale down: adjust divider now - after frequency change */
323 gt_write_presc(gt_psv_new);
324 break;
325
326 case ABORT_RATE_CHANGE:
327 /* we have to undo the adjustment in case we scale up */
328 if (ndata->new_rate < ndata->old_rate)
329 return NOTIFY_OK;
330
331 /* restore original register value */
332 gt_write_presc(gt_psv_bck);
333 break;
334 default:
335 return NOTIFY_DONE;
336 }
337
338 return NOTIFY_DONE;
339}
340
341static int __init global_timer_of_register(struct device_node *np)
342{
343 struct clk *gt_clk;
344 static unsigned long gt_clk_rate;
345 int err;
346
347 /*
348 * In A9 r2p0 the comparators for each processor with the global timer
349 * fire when the timer value is greater than or equal to. In previous
350 * revisions the comparators fired when the timer value was equal to.
351 */
352 if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
353 && (read_cpuid_id() & 0xf0000f) < 0x200000) {
354 pr_warn("global-timer: non support for this cpu version.\n");
355 return -ENOSYS;
356 }
357
358 gt_ppi = irq_of_parse_and_map(np, 0);
359 if (!gt_ppi) {
360 pr_warn("global-timer: unable to parse irq\n");
361 return -EINVAL;
362 }
363
364 gt_base = of_iomap(np, 0);
365 if (!gt_base) {
366 pr_warn("global-timer: invalid base address\n");
367 return -ENXIO;
368 }
369
370 gt_clk = of_clk_get(np, 0);
371 if (!IS_ERR(gt_clk)) {
372 err = clk_prepare_enable(gt_clk);
373 if (err)
374 goto out_unmap;
375 } else {
376 pr_warn("global-timer: clk not found\n");
377 err = -EINVAL;
378 goto out_unmap;
379 }
380
381 gt_clk_rate = clk_get_rate(gt_clk);
382 gt_target_rate = gt_clk_rate / CONFIG_ARM_GT_INITIAL_PRESCALER_VAL;
383 gt_clk_rate_change_nb.notifier_call =
384 gt_clk_rate_change_cb;
385 err = clk_notifier_register(gt_clk, >_clk_rate_change_nb);
386 if (err) {
387 pr_warn("Unable to register clock notifier\n");
388 goto out_clk;
389 }
390
391 gt_evt = alloc_percpu(struct clock_event_device);
392 if (!gt_evt) {
393 pr_warn("global-timer: can't allocate memory\n");
394 err = -ENOMEM;
395 goto out_clk_nb;
396 }
397
398 err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
399 "gt", gt_evt);
400 if (err) {
401 pr_warn("global-timer: can't register interrupt %d (%d)\n",
402 gt_ppi, err);
403 goto out_free;
404 }
405
406 /* Register and immediately configure the timer on the boot CPU */
407 err = gt_clocksource_init();
408 if (err)
409 goto out_irq;
410
411 err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
412 "clockevents/arm/global_timer:starting",
413 gt_starting_cpu, gt_dying_cpu);
414 if (err)
415 goto out_irq;
416
417 gt_delay_timer_init();
418
419 return 0;
420
421out_irq:
422 free_percpu_irq(gt_ppi, gt_evt);
423out_free:
424 free_percpu(gt_evt);
425out_clk_nb:
426 clk_notifier_unregister(gt_clk, >_clk_rate_change_nb);
427out_clk:
428 clk_disable_unprepare(gt_clk);
429out_unmap:
430 iounmap(gt_base);
431 WARN(err, "ARM Global timer register failed (%d)\n", err);
432
433 return err;
434}
435
436/* Only tested on r2p2 and r3p0 */
437TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
438 global_timer_of_register);
1/*
2 * drivers/clocksource/arm_global_timer.c
3 *
4 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
5 * Author: Stuart Menefy <stuart.menefy@st.com>
6 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/clocksource.h>
16#include <linux/clockchips.h>
17#include <linux/cpu.h>
18#include <linux/clk.h>
19#include <linux/err.h>
20#include <linux/io.h>
21#include <linux/of.h>
22#include <linux/of_irq.h>
23#include <linux/of_address.h>
24#include <linux/sched_clock.h>
25
26#include <asm/cputype.h>
27
28#define GT_COUNTER0 0x00
29#define GT_COUNTER1 0x04
30
31#define GT_CONTROL 0x08
32#define GT_CONTROL_TIMER_ENABLE BIT(0) /* this bit is NOT banked */
33#define GT_CONTROL_COMP_ENABLE BIT(1) /* banked */
34#define GT_CONTROL_IRQ_ENABLE BIT(2) /* banked */
35#define GT_CONTROL_AUTO_INC BIT(3) /* banked */
36
37#define GT_INT_STATUS 0x0c
38#define GT_INT_STATUS_EVENT_FLAG BIT(0)
39
40#define GT_COMP0 0x10
41#define GT_COMP1 0x14
42#define GT_AUTO_INC 0x18
43
44/*
45 * We are expecting to be clocked by the ARM peripheral clock.
46 *
47 * Note: it is assumed we are using a prescaler value of zero, so this is
48 * the units for all operations.
49 */
50static void __iomem *gt_base;
51static unsigned long gt_clk_rate;
52static int gt_ppi;
53static struct clock_event_device __percpu *gt_evt;
54
55/*
56 * To get the value from the Global Timer Counter register proceed as follows:
57 * 1. Read the upper 32-bit timer counter register
58 * 2. Read the lower 32-bit timer counter register
59 * 3. Read the upper 32-bit timer counter register again. If the value is
60 * different to the 32-bit upper value read previously, go back to step 2.
61 * Otherwise the 64-bit timer counter value is correct.
62 */
63static u64 gt_counter_read(void)
64{
65 u64 counter;
66 u32 lower;
67 u32 upper, old_upper;
68
69 upper = readl_relaxed(gt_base + GT_COUNTER1);
70 do {
71 old_upper = upper;
72 lower = readl_relaxed(gt_base + GT_COUNTER0);
73 upper = readl_relaxed(gt_base + GT_COUNTER1);
74 } while (upper != old_upper);
75
76 counter = upper;
77 counter <<= 32;
78 counter |= lower;
79 return counter;
80}
81
82/**
83 * To ensure that updates to comparator value register do not set the
84 * Interrupt Status Register proceed as follows:
85 * 1. Clear the Comp Enable bit in the Timer Control Register.
86 * 2. Write the lower 32-bit Comparator Value Register.
87 * 3. Write the upper 32-bit Comparator Value Register.
88 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
89 */
90static void gt_compare_set(unsigned long delta, int periodic)
91{
92 u64 counter = gt_counter_read();
93 unsigned long ctrl;
94
95 counter += delta;
96 ctrl = GT_CONTROL_TIMER_ENABLE;
97 writel(ctrl, gt_base + GT_CONTROL);
98 writel(lower_32_bits(counter), gt_base + GT_COMP0);
99 writel(upper_32_bits(counter), gt_base + GT_COMP1);
100
101 if (periodic) {
102 writel(delta, gt_base + GT_AUTO_INC);
103 ctrl |= GT_CONTROL_AUTO_INC;
104 }
105
106 ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
107 writel(ctrl, gt_base + GT_CONTROL);
108}
109
110static void gt_clockevent_set_mode(enum clock_event_mode mode,
111 struct clock_event_device *clk)
112{
113 unsigned long ctrl;
114
115 switch (mode) {
116 case CLOCK_EVT_MODE_PERIODIC:
117 gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
118 break;
119 case CLOCK_EVT_MODE_ONESHOT:
120 case CLOCK_EVT_MODE_UNUSED:
121 case CLOCK_EVT_MODE_SHUTDOWN:
122 ctrl = readl(gt_base + GT_CONTROL);
123 ctrl &= ~(GT_CONTROL_COMP_ENABLE |
124 GT_CONTROL_IRQ_ENABLE | GT_CONTROL_AUTO_INC);
125 writel(ctrl, gt_base + GT_CONTROL);
126 break;
127 default:
128 break;
129 }
130}
131
132static int gt_clockevent_set_next_event(unsigned long evt,
133 struct clock_event_device *unused)
134{
135 gt_compare_set(evt, 0);
136 return 0;
137}
138
139static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
140{
141 struct clock_event_device *evt = dev_id;
142
143 if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
144 GT_INT_STATUS_EVENT_FLAG))
145 return IRQ_NONE;
146
147 /**
148 * ERRATA 740657( Global Timer can send 2 interrupts for
149 * the same event in single-shot mode)
150 * Workaround:
151 * Either disable single-shot mode.
152 * Or
153 * Modify the Interrupt Handler to avoid the
154 * offending sequence. This is achieved by clearing
155 * the Global Timer flag _after_ having incremented
156 * the Comparator register value to a higher value.
157 */
158 if (evt->mode == CLOCK_EVT_MODE_ONESHOT)
159 gt_compare_set(ULONG_MAX, 0);
160
161 writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
162 evt->event_handler(evt);
163
164 return IRQ_HANDLED;
165}
166
167static int gt_clockevents_init(struct clock_event_device *clk)
168{
169 int cpu = smp_processor_id();
170
171 clk->name = "arm_global_timer";
172 clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
173 CLOCK_EVT_FEAT_PERCPU;
174 clk->set_mode = gt_clockevent_set_mode;
175 clk->set_next_event = gt_clockevent_set_next_event;
176 clk->cpumask = cpumask_of(cpu);
177 clk->rating = 300;
178 clk->irq = gt_ppi;
179 clockevents_config_and_register(clk, gt_clk_rate,
180 1, 0xffffffff);
181 enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
182 return 0;
183}
184
185static void gt_clockevents_stop(struct clock_event_device *clk)
186{
187 gt_clockevent_set_mode(CLOCK_EVT_MODE_UNUSED, clk);
188 disable_percpu_irq(clk->irq);
189}
190
191static cycle_t gt_clocksource_read(struct clocksource *cs)
192{
193 return gt_counter_read();
194}
195
196static struct clocksource gt_clocksource = {
197 .name = "arm_global_timer",
198 .rating = 300,
199 .read = gt_clocksource_read,
200 .mask = CLOCKSOURCE_MASK(64),
201 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
202};
203
204#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
205static u64 notrace gt_sched_clock_read(void)
206{
207 return gt_counter_read();
208}
209#endif
210
211static void __init gt_clocksource_init(void)
212{
213 writel(0, gt_base + GT_CONTROL);
214 writel(0, gt_base + GT_COUNTER0);
215 writel(0, gt_base + GT_COUNTER1);
216 /* enables timer on all the cores */
217 writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
218
219#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
220 sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
221#endif
222 clocksource_register_hz(>_clocksource, gt_clk_rate);
223}
224
225static int gt_cpu_notify(struct notifier_block *self, unsigned long action,
226 void *hcpu)
227{
228 switch (action & ~CPU_TASKS_FROZEN) {
229 case CPU_STARTING:
230 gt_clockevents_init(this_cpu_ptr(gt_evt));
231 break;
232 case CPU_DYING:
233 gt_clockevents_stop(this_cpu_ptr(gt_evt));
234 break;
235 }
236
237 return NOTIFY_OK;
238}
239static struct notifier_block gt_cpu_nb = {
240 .notifier_call = gt_cpu_notify,
241};
242
243static void __init global_timer_of_register(struct device_node *np)
244{
245 struct clk *gt_clk;
246 int err = 0;
247
248 /*
249 * In r2p0 the comparators for each processor with the global timer
250 * fire when the timer value is greater than or equal to. In previous
251 * revisions the comparators fired when the timer value was equal to.
252 */
253 if ((read_cpuid_id() & 0xf0000f) < 0x200000) {
254 pr_warn("global-timer: non support for this cpu version.\n");
255 return;
256 }
257
258 gt_ppi = irq_of_parse_and_map(np, 0);
259 if (!gt_ppi) {
260 pr_warn("global-timer: unable to parse irq\n");
261 return;
262 }
263
264 gt_base = of_iomap(np, 0);
265 if (!gt_base) {
266 pr_warn("global-timer: invalid base address\n");
267 return;
268 }
269
270 gt_clk = of_clk_get(np, 0);
271 if (!IS_ERR(gt_clk)) {
272 err = clk_prepare_enable(gt_clk);
273 if (err)
274 goto out_unmap;
275 } else {
276 pr_warn("global-timer: clk not found\n");
277 err = -EINVAL;
278 goto out_unmap;
279 }
280
281 gt_clk_rate = clk_get_rate(gt_clk);
282 gt_evt = alloc_percpu(struct clock_event_device);
283 if (!gt_evt) {
284 pr_warn("global-timer: can't allocate memory\n");
285 err = -ENOMEM;
286 goto out_clk;
287 }
288
289 err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
290 "gt", gt_evt);
291 if (err) {
292 pr_warn("global-timer: can't register interrupt %d (%d)\n",
293 gt_ppi, err);
294 goto out_free;
295 }
296
297 err = register_cpu_notifier(>_cpu_nb);
298 if (err) {
299 pr_warn("global-timer: unable to register cpu notifier.\n");
300 goto out_irq;
301 }
302
303 /* Immediately configure the timer on the boot CPU */
304 gt_clocksource_init();
305 gt_clockevents_init(this_cpu_ptr(gt_evt));
306
307 return;
308
309out_irq:
310 free_percpu_irq(gt_ppi, gt_evt);
311out_free:
312 free_percpu(gt_evt);
313out_clk:
314 clk_disable_unprepare(gt_clk);
315out_unmap:
316 iounmap(gt_base);
317 WARN(err, "ARM Global timer register failed (%d)\n", err);
318}
319
320/* Only tested on r2p2 and r3p0 */
321CLOCKSOURCE_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
322 global_timer_of_register);