Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * drivers/clocksource/arm_global_timer.c
  4 *
  5 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
  6 * Author: Stuart Menefy <stuart.menefy@st.com>
  7 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
 
 
 
 
  8 */
  9
 10#include <linux/init.h>
 11#include <linux/interrupt.h>
 12#include <linux/bitfield.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 15#include <linux/cpu.h>
 16#include <linux/clk.h>
 17#include <linux/delay.h>
 18#include <linux/err.h>
 19#include <linux/io.h>
 20#include <linux/of.h>
 21#include <linux/of_irq.h>
 22#include <linux/of_address.h>
 23#include <linux/sched_clock.h>
 24
 25#include <asm/cputype.h>
 26
 27#define GT_COUNTER0	0x00
 28#define GT_COUNTER1	0x04
 29
 30#define GT_CONTROL	0x08
 31#define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
 32#define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
 33#define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
 34#define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
 35#define GT_CONTROL_PRESCALER_MASK	GENMASK(15, 8)
 36
 37#define GT_INT_STATUS	0x0c
 38#define GT_INT_STATUS_EVENT_FLAG	BIT(0)
 39
 40#define GT_COMP0	0x10
 41#define GT_COMP1	0x14
 42#define GT_AUTO_INC	0x18
 43
 44#define MAX_F_ERR 50
 45/*
 46 * We are expecting to be clocked by the ARM peripheral clock.
 47 *
 48 * Note: it is assumed we are using a prescaler value of zero, so this is
 49 * the units for all operations.
 50 */
 51static void __iomem *gt_base;
 52static struct notifier_block gt_clk_rate_change_nb;
 53static u32 gt_psv_new, gt_psv_bck;
 54static unsigned long gt_target_rate;
 55static int gt_ppi;
 56static struct clock_event_device __percpu *gt_evt;
 57
 58/*
 59 * To get the value from the Global Timer Counter register proceed as follows:
 60 * 1. Read the upper 32-bit timer counter register
 61 * 2. Read the lower 32-bit timer counter register
 62 * 3. Read the upper 32-bit timer counter register again. If the value is
 63 *  different to the 32-bit upper value read previously, go back to step 2.
 64 *  Otherwise the 64-bit timer counter value is correct.
 65 */
 66static u64 notrace _gt_counter_read(void)
 67{
 68	u64 counter;
 69	u32 lower;
 70	u32 upper, old_upper;
 71
 72	upper = readl_relaxed(gt_base + GT_COUNTER1);
 73	do {
 74		old_upper = upper;
 75		lower = readl_relaxed(gt_base + GT_COUNTER0);
 76		upper = readl_relaxed(gt_base + GT_COUNTER1);
 77	} while (upper != old_upper);
 78
 79	counter = upper;
 80	counter <<= 32;
 81	counter |= lower;
 82	return counter;
 83}
 84
 85static u64 gt_counter_read(void)
 86{
 87	return _gt_counter_read();
 88}
 89
 90/*
 91 * To ensure that updates to comparator value register do not set the
 92 * Interrupt Status Register proceed as follows:
 93 * 1. Clear the Comp Enable bit in the Timer Control Register.
 94 * 2. Write the lower 32-bit Comparator Value Register.
 95 * 3. Write the upper 32-bit Comparator Value Register.
 96 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
 97 */
 98static void gt_compare_set(unsigned long delta, int periodic)
 99{
100	u64 counter = gt_counter_read();
101	unsigned long ctrl;
102
103	counter += delta;
104	ctrl = readl(gt_base + GT_CONTROL);
105	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
106		  GT_CONTROL_AUTO_INC);
107	ctrl |= GT_CONTROL_TIMER_ENABLE;
108	writel_relaxed(ctrl, gt_base + GT_CONTROL);
109	writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
110	writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
111
112	if (periodic) {
113		writel_relaxed(delta, gt_base + GT_AUTO_INC);
114		ctrl |= GT_CONTROL_AUTO_INC;
115	}
116
117	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
118	writel_relaxed(ctrl, gt_base + GT_CONTROL);
119}
120
121static int gt_clockevent_shutdown(struct clock_event_device *evt)
 
122{
123	unsigned long ctrl;
124
125	ctrl = readl(gt_base + GT_CONTROL);
126	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
127		  GT_CONTROL_AUTO_INC);
128	writel(ctrl, gt_base + GT_CONTROL);
129	return 0;
130}
131
132static int gt_clockevent_set_periodic(struct clock_event_device *evt)
133{
134	gt_compare_set(DIV_ROUND_CLOSEST(gt_target_rate, HZ), 1);
135	return 0;
 
 
 
 
136}
137
138static int gt_clockevent_set_next_event(unsigned long evt,
139					struct clock_event_device *unused)
140{
141	gt_compare_set(evt, 0);
142	return 0;
143}
144
145static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
146{
147	struct clock_event_device *evt = dev_id;
148
149	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
150				GT_INT_STATUS_EVENT_FLAG))
151		return IRQ_NONE;
152
153	/**
154	 * ERRATA 740657( Global Timer can send 2 interrupts for
155	 * the same event in single-shot mode)
156	 * Workaround:
157	 *	Either disable single-shot mode.
158	 *	Or
159	 *	Modify the Interrupt Handler to avoid the
160	 *	offending sequence. This is achieved by clearing
161	 *	the Global Timer flag _after_ having incremented
162	 *	the Comparator register	value to a higher value.
163	 */
164	if (clockevent_state_oneshot(evt))
165		gt_compare_set(ULONG_MAX, 0);
166
167	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
168	evt->event_handler(evt);
169
170	return IRQ_HANDLED;
171}
172
173static int gt_starting_cpu(unsigned int cpu)
174{
175	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
176
177	clk->name = "arm_global_timer";
178	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
179		CLOCK_EVT_FEAT_PERCPU;
180	clk->set_state_shutdown = gt_clockevent_shutdown;
181	clk->set_state_periodic = gt_clockevent_set_periodic;
182	clk->set_state_oneshot = gt_clockevent_shutdown;
183	clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
184	clk->set_next_event = gt_clockevent_set_next_event;
185	clk->cpumask = cpumask_of(cpu);
186	clk->rating = 300;
187	clk->irq = gt_ppi;
188	clockevents_config_and_register(clk, gt_target_rate,
189					1, 0xffffffff);
190	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
191	return 0;
192}
193
194static int gt_dying_cpu(unsigned int cpu)
195{
196	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
197
198	disable_percpu_irq(clk->irq);
199	return 0;
200}
201
202static u64 gt_clocksource_read(struct clocksource *cs)
203{
204	return gt_counter_read();
205}
206
207static void gt_resume(struct clocksource *cs)
208{
209	unsigned long ctrl;
210
211	ctrl = readl(gt_base + GT_CONTROL);
212	if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
213		/* re-enable timer on resume */
214		writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
215}
216
217static struct clocksource gt_clocksource = {
218	.name	= "arm_global_timer",
219	.rating	= 300,
220	.read	= gt_clocksource_read,
221	.mask	= CLOCKSOURCE_MASK(64),
222	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
223	.resume = gt_resume,
224};
225
226#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
227static u64 notrace gt_sched_clock_read(void)
228{
229	return _gt_counter_read();
230}
231#endif
232
233static unsigned long gt_read_long(void)
234{
235	return readl_relaxed(gt_base + GT_COUNTER0);
236}
237
238static struct delay_timer gt_delay_timer = {
239	.read_current_timer = gt_read_long,
240};
241
242static void gt_write_presc(u32 psv)
243{
244	u32 reg;
245
246	reg = readl(gt_base + GT_CONTROL);
247	reg &= ~GT_CONTROL_PRESCALER_MASK;
248	reg |= FIELD_PREP(GT_CONTROL_PRESCALER_MASK, psv);
249	writel(reg, gt_base + GT_CONTROL);
250}
251
252static u32 gt_read_presc(void)
253{
254	u32 reg;
255
256	reg = readl(gt_base + GT_CONTROL);
257	return FIELD_GET(GT_CONTROL_PRESCALER_MASK, reg);
258}
259
260static void __init gt_delay_timer_init(void)
261{
262	gt_delay_timer.freq = gt_target_rate;
263	register_current_timer_delay(&gt_delay_timer);
264}
265
266static int __init gt_clocksource_init(void)
267{
268	writel(0, gt_base + GT_CONTROL);
269	writel(0, gt_base + GT_COUNTER0);
270	writel(0, gt_base + GT_COUNTER1);
271	/* set prescaler and enable timer on all the cores */
272	writel(FIELD_PREP(GT_CONTROL_PRESCALER_MASK,
273			  CONFIG_ARM_GT_INITIAL_PRESCALER_VAL - 1) |
274	       GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
275
276#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
277	sched_clock_register(gt_sched_clock_read, 64, gt_target_rate);
278#endif
279	return clocksource_register_hz(&gt_clocksource, gt_target_rate);
280}
281
282static int gt_clk_rate_change_cb(struct notifier_block *nb,
283				 unsigned long event, void *data)
284{
285	struct clk_notifier_data *ndata = data;
286
287	switch (event) {
288	case PRE_RATE_CHANGE:
289	{
290		unsigned long psv;
291
292		psv = DIV_ROUND_CLOSEST(ndata->new_rate, gt_target_rate);
293		if (!psv ||
294		    abs(gt_target_rate - (ndata->new_rate / psv)) > MAX_F_ERR)
295			return NOTIFY_BAD;
296
297		psv--;
298
299		/* prescaler within legal range? */
300		if (!FIELD_FIT(GT_CONTROL_PRESCALER_MASK, psv))
301			return NOTIFY_BAD;
302
303		/*
304		 * store timer clock ctrl register so we can restore it in case
305		 * of an abort.
306		 */
307		gt_psv_bck = gt_read_presc();
308		gt_psv_new = psv;
309		/* scale down: adjust divider in post-change notification */
310		if (ndata->new_rate < ndata->old_rate)
311			return NOTIFY_DONE;
312
313		/* scale up: adjust divider now - before frequency change */
314		gt_write_presc(psv);
315		break;
316	}
317	case POST_RATE_CHANGE:
318		/* scale up: pre-change notification did the adjustment */
319		if (ndata->new_rate > ndata->old_rate)
320			return NOTIFY_OK;
321
322		/* scale down: adjust divider now - after frequency change */
323		gt_write_presc(gt_psv_new);
324		break;
325
326	case ABORT_RATE_CHANGE:
327		/* we have to undo the adjustment in case we scale up */
328		if (ndata->new_rate < ndata->old_rate)
329			return NOTIFY_OK;
330
331		/* restore original register value */
332		gt_write_presc(gt_psv_bck);
333		break;
334	default:
335		return NOTIFY_DONE;
336	}
337
338	return NOTIFY_DONE;
339}
 
 
 
340
341static int __init global_timer_of_register(struct device_node *np)
342{
343	struct clk *gt_clk;
344	static unsigned long gt_clk_rate;
345	int err;
346
347	/*
348	 * In A9 r2p0 the comparators for each processor with the global timer
349	 * fire when the timer value is greater than or equal to. In previous
350	 * revisions the comparators fired when the timer value was equal to.
351	 */
352	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
353	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
354		pr_warn("global-timer: non support for this cpu version.\n");
355		return -ENOSYS;
356	}
357
358	gt_ppi = irq_of_parse_and_map(np, 0);
359	if (!gt_ppi) {
360		pr_warn("global-timer: unable to parse irq\n");
361		return -EINVAL;
362	}
363
364	gt_base = of_iomap(np, 0);
365	if (!gt_base) {
366		pr_warn("global-timer: invalid base address\n");
367		return -ENXIO;
368	}
369
370	gt_clk = of_clk_get(np, 0);
371	if (!IS_ERR(gt_clk)) {
372		err = clk_prepare_enable(gt_clk);
373		if (err)
374			goto out_unmap;
375	} else {
376		pr_warn("global-timer: clk not found\n");
377		err = -EINVAL;
378		goto out_unmap;
379	}
380
381	gt_clk_rate = clk_get_rate(gt_clk);
382	gt_target_rate = gt_clk_rate / CONFIG_ARM_GT_INITIAL_PRESCALER_VAL;
383	gt_clk_rate_change_nb.notifier_call =
384		gt_clk_rate_change_cb;
385	err = clk_notifier_register(gt_clk, &gt_clk_rate_change_nb);
386	if (err) {
387		pr_warn("Unable to register clock notifier\n");
388		goto out_clk;
389	}
390
391	gt_evt = alloc_percpu(struct clock_event_device);
392	if (!gt_evt) {
393		pr_warn("global-timer: can't allocate memory\n");
394		err = -ENOMEM;
395		goto out_clk_nb;
396	}
397
398	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
399				 "gt", gt_evt);
400	if (err) {
401		pr_warn("global-timer: can't register interrupt %d (%d)\n",
402			gt_ppi, err);
403		goto out_free;
404	}
405
406	/* Register and immediately configure the timer on the boot CPU */
407	err = gt_clocksource_init();
408	if (err)
409		goto out_irq;
410
411	err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
412				"clockevents/arm/global_timer:starting",
413				gt_starting_cpu, gt_dying_cpu);
414	if (err)
415		goto out_irq;
 
416
417	gt_delay_timer_init();
 
 
418
419	return 0;
420
421out_irq:
422	free_percpu_irq(gt_ppi, gt_evt);
423out_free:
424	free_percpu(gt_evt);
425out_clk_nb:
426	clk_notifier_unregister(gt_clk, &gt_clk_rate_change_nb);
427out_clk:
428	clk_disable_unprepare(gt_clk);
429out_unmap:
430	iounmap(gt_base);
431	WARN(err, "ARM Global timer register failed (%d)\n", err);
432
433	return err;
434}
435
436/* Only tested on r2p2 and r3p0  */
437TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
438			global_timer_of_register);
v3.15
 
  1/*
  2 * drivers/clocksource/arm_global_timer.c
  3 *
  4 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
  5 * Author: Stuart Menefy <stuart.menefy@st.com>
  6 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/init.h>
 14#include <linux/interrupt.h>
 
 15#include <linux/clocksource.h>
 16#include <linux/clockchips.h>
 17#include <linux/cpu.h>
 18#include <linux/clk.h>
 
 19#include <linux/err.h>
 20#include <linux/io.h>
 21#include <linux/of.h>
 22#include <linux/of_irq.h>
 23#include <linux/of_address.h>
 24#include <linux/sched_clock.h>
 25
 26#include <asm/cputype.h>
 27
 28#define GT_COUNTER0	0x00
 29#define GT_COUNTER1	0x04
 30
 31#define GT_CONTROL	0x08
 32#define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
 33#define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
 34#define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
 35#define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
 
 36
 37#define GT_INT_STATUS	0x0c
 38#define GT_INT_STATUS_EVENT_FLAG	BIT(0)
 39
 40#define GT_COMP0	0x10
 41#define GT_COMP1	0x14
 42#define GT_AUTO_INC	0x18
 43
 
 44/*
 45 * We are expecting to be clocked by the ARM peripheral clock.
 46 *
 47 * Note: it is assumed we are using a prescaler value of zero, so this is
 48 * the units for all operations.
 49 */
 50static void __iomem *gt_base;
 51static unsigned long gt_clk_rate;
 
 
 52static int gt_ppi;
 53static struct clock_event_device __percpu *gt_evt;
 54
 55/*
 56 * To get the value from the Global Timer Counter register proceed as follows:
 57 * 1. Read the upper 32-bit timer counter register
 58 * 2. Read the lower 32-bit timer counter register
 59 * 3. Read the upper 32-bit timer counter register again. If the value is
 60 *  different to the 32-bit upper value read previously, go back to step 2.
 61 *  Otherwise the 64-bit timer counter value is correct.
 62 */
 63static u64 gt_counter_read(void)
 64{
 65	u64 counter;
 66	u32 lower;
 67	u32 upper, old_upper;
 68
 69	upper = readl_relaxed(gt_base + GT_COUNTER1);
 70	do {
 71		old_upper = upper;
 72		lower = readl_relaxed(gt_base + GT_COUNTER0);
 73		upper = readl_relaxed(gt_base + GT_COUNTER1);
 74	} while (upper != old_upper);
 75
 76	counter = upper;
 77	counter <<= 32;
 78	counter |= lower;
 79	return counter;
 80}
 81
 82/**
 
 
 
 
 
 83 * To ensure that updates to comparator value register do not set the
 84 * Interrupt Status Register proceed as follows:
 85 * 1. Clear the Comp Enable bit in the Timer Control Register.
 86 * 2. Write the lower 32-bit Comparator Value Register.
 87 * 3. Write the upper 32-bit Comparator Value Register.
 88 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
 89 */
 90static void gt_compare_set(unsigned long delta, int periodic)
 91{
 92	u64 counter = gt_counter_read();
 93	unsigned long ctrl;
 94
 95	counter += delta;
 96	ctrl = GT_CONTROL_TIMER_ENABLE;
 97	writel(ctrl, gt_base + GT_CONTROL);
 98	writel(lower_32_bits(counter), gt_base + GT_COMP0);
 99	writel(upper_32_bits(counter), gt_base + GT_COMP1);
 
 
 
100
101	if (periodic) {
102		writel(delta, gt_base + GT_AUTO_INC);
103		ctrl |= GT_CONTROL_AUTO_INC;
104	}
105
106	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
107	writel(ctrl, gt_base + GT_CONTROL);
108}
109
110static void gt_clockevent_set_mode(enum clock_event_mode mode,
111				   struct clock_event_device *clk)
112{
113	unsigned long ctrl;
114
115	switch (mode) {
116	case CLOCK_EVT_MODE_PERIODIC:
117		gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
118		break;
119	case CLOCK_EVT_MODE_ONESHOT:
120	case CLOCK_EVT_MODE_UNUSED:
121	case CLOCK_EVT_MODE_SHUTDOWN:
122		ctrl = readl(gt_base + GT_CONTROL);
123		ctrl &= ~(GT_CONTROL_COMP_ENABLE |
124				GT_CONTROL_IRQ_ENABLE | GT_CONTROL_AUTO_INC);
125		writel(ctrl, gt_base + GT_CONTROL);
126		break;
127	default:
128		break;
129	}
130}
131
132static int gt_clockevent_set_next_event(unsigned long evt,
133					struct clock_event_device *unused)
134{
135	gt_compare_set(evt, 0);
136	return 0;
137}
138
139static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
140{
141	struct clock_event_device *evt = dev_id;
142
143	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
144				GT_INT_STATUS_EVENT_FLAG))
145		return IRQ_NONE;
146
147	/**
148	 * ERRATA 740657( Global Timer can send 2 interrupts for
149	 * the same event in single-shot mode)
150	 * Workaround:
151	 *	Either disable single-shot mode.
152	 *	Or
153	 *	Modify the Interrupt Handler to avoid the
154	 *	offending sequence. This is achieved by clearing
155	 *	the Global Timer flag _after_ having incremented
156	 *	the Comparator register	value to a higher value.
157	 */
158	if (evt->mode == CLOCK_EVT_MODE_ONESHOT)
159		gt_compare_set(ULONG_MAX, 0);
160
161	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
162	evt->event_handler(evt);
163
164	return IRQ_HANDLED;
165}
166
167static int gt_clockevents_init(struct clock_event_device *clk)
168{
169	int cpu = smp_processor_id();
170
171	clk->name = "arm_global_timer";
172	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
173		CLOCK_EVT_FEAT_PERCPU;
174	clk->set_mode = gt_clockevent_set_mode;
 
 
 
175	clk->set_next_event = gt_clockevent_set_next_event;
176	clk->cpumask = cpumask_of(cpu);
177	clk->rating = 300;
178	clk->irq = gt_ppi;
179	clockevents_config_and_register(clk, gt_clk_rate,
180					1, 0xffffffff);
181	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
182	return 0;
183}
184
185static void gt_clockevents_stop(struct clock_event_device *clk)
186{
187	gt_clockevent_set_mode(CLOCK_EVT_MODE_UNUSED, clk);
 
188	disable_percpu_irq(clk->irq);
 
189}
190
191static cycle_t gt_clocksource_read(struct clocksource *cs)
192{
193	return gt_counter_read();
194}
195
 
 
 
 
 
 
 
 
 
 
196static struct clocksource gt_clocksource = {
197	.name	= "arm_global_timer",
198	.rating	= 300,
199	.read	= gt_clocksource_read,
200	.mask	= CLOCKSOURCE_MASK(64),
201	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 
202};
203
204#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
205static u64 notrace gt_sched_clock_read(void)
206{
207	return gt_counter_read();
208}
209#endif
210
211static void __init gt_clocksource_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212{
213	writel(0, gt_base + GT_CONTROL);
214	writel(0, gt_base + GT_COUNTER0);
215	writel(0, gt_base + GT_COUNTER1);
216	/* enables timer on all the cores */
217	writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
 
 
218
219#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
220	sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
221#endif
222	clocksource_register_hz(&gt_clocksource, gt_clk_rate);
223}
224
225static int gt_cpu_notify(struct notifier_block *self, unsigned long action,
226			 void *hcpu)
227{
228	switch (action & ~CPU_TASKS_FROZEN) {
229	case CPU_STARTING:
230		gt_clockevents_init(this_cpu_ptr(gt_evt));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231		break;
232	case CPU_DYING:
233		gt_clockevents_stop(this_cpu_ptr(gt_evt));
 
 
 
 
 
 
234		break;
 
 
235	}
236
237	return NOTIFY_OK;
238}
239static struct notifier_block gt_cpu_nb = {
240	.notifier_call = gt_cpu_notify,
241};
242
243static void __init global_timer_of_register(struct device_node *np)
244{
245	struct clk *gt_clk;
246	int err = 0;
 
247
248	/*
249	 * In r2p0 the comparators for each processor with the global timer
250	 * fire when the timer value is greater than or equal to. In previous
251	 * revisions the comparators fired when the timer value was equal to.
252	 */
253	if ((read_cpuid_id() & 0xf0000f) < 0x200000) {
 
254		pr_warn("global-timer: non support for this cpu version.\n");
255		return;
256	}
257
258	gt_ppi = irq_of_parse_and_map(np, 0);
259	if (!gt_ppi) {
260		pr_warn("global-timer: unable to parse irq\n");
261		return;
262	}
263
264	gt_base = of_iomap(np, 0);
265	if (!gt_base) {
266		pr_warn("global-timer: invalid base address\n");
267		return;
268	}
269
270	gt_clk = of_clk_get(np, 0);
271	if (!IS_ERR(gt_clk)) {
272		err = clk_prepare_enable(gt_clk);
273		if (err)
274			goto out_unmap;
275	} else {
276		pr_warn("global-timer: clk not found\n");
277		err = -EINVAL;
278		goto out_unmap;
279	}
280
281	gt_clk_rate = clk_get_rate(gt_clk);
 
 
 
 
 
 
 
 
 
282	gt_evt = alloc_percpu(struct clock_event_device);
283	if (!gt_evt) {
284		pr_warn("global-timer: can't allocate memory\n");
285		err = -ENOMEM;
286		goto out_clk;
287	}
288
289	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
290				 "gt", gt_evt);
291	if (err) {
292		pr_warn("global-timer: can't register interrupt %d (%d)\n",
293			gt_ppi, err);
294		goto out_free;
295	}
296
297	err = register_cpu_notifier(&gt_cpu_nb);
298	if (err) {
299		pr_warn("global-timer: unable to register cpu notifier.\n");
 
 
 
 
 
 
300		goto out_irq;
301	}
302
303	/* Immediately configure the timer on the boot CPU */
304	gt_clocksource_init();
305	gt_clockevents_init(this_cpu_ptr(gt_evt));
306
307	return;
308
309out_irq:
310	free_percpu_irq(gt_ppi, gt_evt);
311out_free:
312	free_percpu(gt_evt);
 
 
313out_clk:
314	clk_disable_unprepare(gt_clk);
315out_unmap:
316	iounmap(gt_base);
317	WARN(err, "ARM Global timer register failed (%d)\n", err);
 
 
318}
319
320/* Only tested on r2p2 and r3p0  */
321CLOCKSOURCE_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
322			global_timer_of_register);