Linux Audio

Check our new training course

Loading...
v6.13.7
  1/*
  2 * CCI cache coherent interconnect driver
  3 *
  4 * Copyright (C) 2013 ARM Ltd.
  5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 12 * kind, whether express or implied; without even the implied warranty
 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 */
 16
 17#include <linux/arm-cci.h>
 18#include <linux/io.h>
 19#include <linux/module.h>
 20#include <linux/of_address.h>
 
 21#include <linux/of_platform.h>
 22#include <linux/platform_device.h>
 23#include <linux/slab.h>
 
 24
 25#include <asm/cacheflush.h>
 
 
 26#include <asm/smp_plat.h>
 27
 28static void __iomem *cci_ctrl_base __ro_after_init;
 29static unsigned long cci_ctrl_phys __ro_after_init;
 
 
 
 
 
 
 
 30
 31#ifdef CONFIG_ARM_CCI400_PORT_CTRL
 32struct cci_nb_ports {
 33	unsigned int nb_ace;
 34	unsigned int nb_ace_lite;
 35};
 36
 37static const struct cci_nb_ports cci400_ports = {
 38	.nb_ace = 2,
 39	.nb_ace_lite = 3
 
 40};
 41
 42#define CCI400_PORTS_DATA	(&cci400_ports)
 43#else
 44#define CCI400_PORTS_DATA	(NULL)
 45#endif
 
 
 46
 47static const struct of_device_id arm_cci_matches[] = {
 48#ifdef CONFIG_ARM_CCI400_COMMON
 49	{.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
 50#endif
 51#ifdef CONFIG_ARM_CCI5xx_PMU
 52	{ .compatible = "arm,cci-500", },
 53	{ .compatible = "arm,cci-550", },
 54#endif
 55	{},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56};
 57
 58static const struct of_dev_auxdata arm_cci_auxdata[] = {
 59	OF_DEV_AUXDATA("arm,cci-400-pmu", 0, NULL, &cci_ctrl_base),
 60	OF_DEV_AUXDATA("arm,cci-400-pmu,r0", 0, NULL, &cci_ctrl_base),
 61	OF_DEV_AUXDATA("arm,cci-400-pmu,r1", 0, NULL, &cci_ctrl_base),
 62	OF_DEV_AUXDATA("arm,cci-500-pmu,r0", 0, NULL, &cci_ctrl_base),
 63	OF_DEV_AUXDATA("arm,cci-550-pmu,r0", 0, NULL, &cci_ctrl_base),
 64	{}
 
 
 
 
 
 
 65};
 66
 67#define DRIVER_NAME		"ARM-CCI"
 
 
 
 
 
 
 
 68
 69static int cci_platform_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 70{
 71	if (!cci_probed())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73
 74	return of_platform_populate(pdev->dev.of_node, NULL,
 75				    arm_cci_auxdata, &pdev->dev);
 
 
 76}
 77
 78static struct platform_driver cci_platform_driver = {
 79	.driver = {
 80		   .name = DRIVER_NAME,
 81		   .of_match_table = arm_cci_matches,
 82		  },
 83	.probe = cci_platform_probe,
 84};
 
 85
 86static int __init cci_platform_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87{
 88	return platform_driver_register(&cci_platform_driver);
 
 
 
 
 
 
 
 89}
 90
 91#ifdef CONFIG_ARM_CCI400_PORT_CTRL
 
 
 
 
 
 
 
 
 
 
 
 92
 93#define CCI_PORT_CTRL		0x0
 94#define CCI_CTRL_STATUS		0xc
 95
 96#define CCI_ENABLE_SNOOP_REQ	0x1
 97#define CCI_ENABLE_DVM_REQ	0x2
 98#define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
 99
100enum cci_ace_port_type {
101	ACE_INVALID_PORT = 0x0,
102	ACE_PORT,
103	ACE_LITE_PORT,
104};
105
106struct cci_ace_port {
107	void __iomem *base;
108	unsigned long phys;
109	enum cci_ace_port_type type;
110	struct device_node *dn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111};
112
113static struct cci_ace_port *ports;
114static unsigned int nb_cci_ports;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
116struct cpu_port {
117	u64 mpidr;
118	u32 port;
119};
120
121/*
122 * Use the port MSB as valid flag, shift can be made dynamic
123 * by computing number of bits required for port indexes.
124 * Code disabling CCI cpu ports runs with D-cache invalidated
125 * and SCTLR bit clear so data accesses must be kept to a minimum
126 * to improve performance; for now shift is left static to
127 * avoid one more data access while disabling the CCI port.
128 */
129#define PORT_VALID_SHIFT	31
130#define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
131
132static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
133{
134	port->port = PORT_VALID | index;
135	port->mpidr = mpidr;
136}
137
138static inline bool cpu_port_is_valid(struct cpu_port *port)
139{
140	return !!(port->port & PORT_VALID);
141}
142
143static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
144{
145	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
146}
147
148static struct cpu_port cpu_port[NR_CPUS];
149
150/**
151 * __cci_ace_get_port - Function to retrieve the port index connected to
152 *			a cpu or device.
153 *
154 * @dn: device node of the device to look-up
155 * @type: port type
156 *
157 * Return value:
158 *	- CCI port index if success
159 *	- -ENODEV if failure
160 */
161static int __cci_ace_get_port(struct device_node *dn, int type)
162{
163	int i;
164	bool ace_match;
165	struct device_node *cci_portn;
166
167	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
168	for (i = 0; i < nb_cci_ports; i++) {
169		ace_match = ports[i].type == type;
170		if (ace_match && cci_portn == ports[i].dn)
171			return i;
172	}
173	return -ENODEV;
174}
175
176int cci_ace_get_port(struct device_node *dn)
177{
178	return __cci_ace_get_port(dn, ACE_LITE_PORT);
179}
180EXPORT_SYMBOL_GPL(cci_ace_get_port);
181
182static void cci_ace_init_ports(void)
183{
184	int port, cpu;
185	struct device_node *cpun;
186
187	/*
188	 * Port index look-up speeds up the function disabling ports by CPU,
189	 * since the logical to port index mapping is done once and does
190	 * not change after system boot.
191	 * The stashed index array is initialized for all possible CPUs
192	 * at probe time.
193	 */
194	for_each_possible_cpu(cpu) {
195		/* too early to use cpu->of_node */
196		cpun = of_get_cpu_node(cpu, NULL);
197
198		if (WARN(!cpun, "Missing cpu device node\n"))
199			continue;
200
201		port = __cci_ace_get_port(cpun, ACE_PORT);
202		if (port < 0)
203			continue;
204
205		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
206	}
207
208	for_each_possible_cpu(cpu) {
209		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
210			"CPU %u does not have an associated CCI port\n",
211			cpu);
212	}
213}
214/*
215 * Functions to enable/disable a CCI interconnect slave port
216 *
217 * They are called by low-level power management code to disable slave
218 * interfaces snoops and DVM broadcast.
219 * Since they may execute with cache data allocation disabled and
220 * after the caches have been cleaned and invalidated the functions provide
221 * no explicit locking since they may run with D-cache disabled, so normal
222 * cacheable kernel locks based on ldrex/strex may not work.
223 * Locking has to be provided by BSP implementations to ensure proper
224 * operations.
225 */
226
227/**
228 * cci_port_control() - function to control a CCI port
229 *
230 * @port: index of the port to setup
231 * @enable: if true enables the port, if false disables it
232 */
233static void notrace cci_port_control(unsigned int port, bool enable)
234{
235	void __iomem *base = ports[port].base;
236
237	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
238	/*
239	 * This function is called from power down procedures
240	 * and must not execute any instruction that might
241	 * cause the processor to be put in a quiescent state
242	 * (eg wfi). Hence, cpu_relax() can not be added to this
243	 * read loop to optimize power, since it might hide possibly
244	 * disruptive operations.
245	 */
246	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
247			;
248}
249
250/**
251 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
252 *			       reference
253 *
254 * @mpidr: mpidr of the CPU whose CCI port should be disabled
255 *
256 * Disabling a CCI port for a CPU implies disabling the CCI port
257 * controlling that CPU cluster. Code disabling CPU CCI ports
258 * must make sure that the CPU running the code is the last active CPU
259 * in the cluster ie all other CPUs are quiescent in a low power state.
260 *
261 * Return:
262 *	0 on success
263 *	-ENODEV on port look-up failure
264 */
265int notrace cci_disable_port_by_cpu(u64 mpidr)
266{
267	int cpu;
268	bool is_valid;
269	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
270		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
271		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
272			cci_port_control(cpu_port[cpu].port, false);
273			return 0;
274		}
275	}
276	return -ENODEV;
277}
278EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
279
280/**
281 * cci_enable_port_for_self() - enable a CCI port for calling CPU
282 *
283 * Enabling a CCI port for the calling CPU implies enabling the CCI
284 * port controlling that CPU's cluster. Caller must make sure that the
285 * CPU running the code is the first active CPU in the cluster and all
286 * other CPUs are quiescent in a low power state  or waiting for this CPU
287 * to complete the CCI initialization.
288 *
289 * Because this is called when the MMU is still off and with no stack,
290 * the code must be position independent and ideally rely on callee
291 * clobbered registers only.  To achieve this we must code this function
292 * entirely in assembler.
293 *
294 * On success this returns with the proper CCI port enabled.  In case of
295 * any failure this never returns as the inability to enable the CCI is
296 * fatal and there is no possible recovery at this stage.
297 */
298asmlinkage void __naked cci_enable_port_for_self(void)
299{
300	asm volatile ("\n"
301"	.arch armv7-a\n"
302"	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
303"	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
304"	adr	r1, 5f \n"
305"	ldr	r2, [r1] \n"
306"	add	r1, r1, r2		@ &cpu_port \n"
307"	add	ip, r1, %[sizeof_cpu_port] \n"
308
309	/* Loop over the cpu_port array looking for a matching MPIDR */
310"1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
311"	cmp	r2, r0 			@ compare MPIDR \n"
312"	bne	2f \n"
313
314	/* Found a match, now test port validity */
315"	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
316"	tst	r3, #"__stringify(PORT_VALID)" \n"
317"	bne	3f \n"
318
319	/* no match, loop with the next cpu_port entry */
320"2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
321"	cmp	r1, ip			@ done? \n"
322"	blo	1b \n"
323
324	/* CCI port not found -- cheaply try to stall this CPU */
325"cci_port_not_found: \n"
326"	wfi \n"
327"	wfe \n"
328"	b	cci_port_not_found \n"
329
330	/* Use matched port index to look up the corresponding ports entry */
331"3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
332"	adr	r0, 6f \n"
333"	ldmia	r0, {r1, r2} \n"
334"	sub	r1, r1, r0 		@ virt - phys \n"
335"	ldr	r0, [r0, r2] 		@ *(&ports) \n"
336"	mov	r2, %[sizeof_struct_ace_port] \n"
337"	mla	r0, r2, r3, r0		@ &ports[index] \n"
338"	sub	r0, r0, r1		@ virt_to_phys() \n"
339
340	/* Enable the CCI port */
341"	ldr	r0, [r0, %[offsetof_port_phys]] \n"
342"	mov	r3, %[cci_enable_req]\n"		   
343"	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
344
345	/* poll the status reg for completion */
346"	adr	r1, 7f \n"
347"	ldr	r0, [r1] \n"
348"	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
349"4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
350"	tst	r1, %[cci_control_status_bits] \n"			
351"	bne	4b \n"
352
353"	mov	r0, #0 \n"
354"	bx	lr \n"
355
356"	.align	2 \n"
357"5:	.word	cpu_port - . \n"
358"6:	.word	. \n"
359"	.word	ports - 6b \n"
360"7:	.word	cci_ctrl_phys - . \n"
361	: :
362	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
363	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
364	[cci_control_status_bits] "i" cpu_to_le32(1),
365#ifndef __ARMEB__
366	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
367#else
368	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
369#endif
370	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
371	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
372	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
373	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
 
 
374}
375
376/**
377 * __cci_control_port_by_device() - function to control a CCI port by device
378 *				    reference
379 *
380 * @dn: device node pointer of the device whose CCI port should be
381 *      controlled
382 * @enable: if true enables the port, if false disables it
383 *
384 * Return:
385 *	0 on success
386 *	-ENODEV on port look-up failure
387 */
388int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
389{
390	int port;
391
392	if (!dn)
393		return -ENODEV;
394
395	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
396	if (WARN_ONCE(port < 0, "node %pOF ACE lite port look-up failure\n",
397				dn))
398		return -ENODEV;
399	cci_port_control(port, enable);
400	return 0;
401}
402EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
403
404/**
405 * __cci_control_port_by_index() - function to control a CCI port by port index
406 *
407 * @port: port index previously retrieved with cci_ace_get_port()
408 * @enable: if true enables the port, if false disables it
409 *
410 * Return:
411 *	0 on success
412 *	-ENODEV on port index out of range
413 *	-EPERM if operation carried out on an ACE PORT
414 */
415int notrace __cci_control_port_by_index(u32 port, bool enable)
416{
417	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
418		return -ENODEV;
419	/*
420	 * CCI control for ports connected to CPUS is extremely fragile
421	 * and must be made to go through a specific and controlled
422	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
423	 * indexing is therefore disabled for ACE ports.
424	 */
425	if (ports[port].type == ACE_PORT)
426		return -EPERM;
427
428	cci_port_control(port, enable);
429	return 0;
430}
431EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
432
 
 
 
 
 
 
 
 
 
 
433static const struct of_device_id arm_cci_ctrl_if_matches[] = {
434	{.compatible = "arm,cci-400-ctrl-if", },
435	{},
436};
437
438static int cci_probe_ports(struct device_node *np)
439{
440	struct cci_nb_ports const *cci_config;
441	int ret, i, nb_ace = 0, nb_ace_lite = 0;
442	struct device_node *cp;
443	struct resource res;
444	const char *match_str;
445	bool is_ace;
446
 
 
 
447
448	cci_config = of_match_node(arm_cci_matches, np)->data;
449	if (!cci_config)
450		return -ENODEV;
451
452	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
453
454	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
455	if (!ports)
456		return -ENOMEM;
457
458	for_each_available_child_of_node(np, cp) {
 
 
 
 
 
 
 
 
 
 
 
459		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
460			continue;
461
462		i = nb_ace + nb_ace_lite;
463
464		if (i >= nb_cci_ports)
465			break;
466
467		if (of_property_read_string(cp, "interface-type",
468					&match_str)) {
469			WARN(1, "node %pOF missing interface-type property\n",
470				  cp);
471			continue;
472		}
473		is_ace = strcmp(match_str, "ace") == 0;
474		if (!is_ace && strcmp(match_str, "ace-lite")) {
475			WARN(1, "node %pOF containing invalid interface-type property, skipping it\n",
476					cp);
477			continue;
478		}
479
480		ret = of_address_to_resource(cp, 0, &res);
481		if (!ret) {
482			ports[i].base = ioremap(res.start, resource_size(&res));
483			ports[i].phys = res.start;
484		}
485		if (ret || !ports[i].base) {
486			WARN(1, "unable to ioremap CCI port %d\n", i);
487			continue;
488		}
489
490		if (is_ace) {
491			if (WARN_ON(nb_ace >= cci_config->nb_ace))
492				continue;
493			ports[i].type = ACE_PORT;
494			++nb_ace;
495		} else {
496			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
497				continue;
498			ports[i].type = ACE_LITE_PORT;
499			++nb_ace_lite;
500		}
501		ports[i].dn = cp;
502	}
503
504	/*
505	 * If there is no CCI port that is under kernel control
506	 * return early and report probe status.
507	 */
508	if (!nb_ace && !nb_ace_lite)
509		return -ENODEV;
510
511	 /* initialize a stashed array of ACE ports to speed-up look-up */
512	cci_ace_init_ports();
513
514	/*
515	 * Multi-cluster systems may need this data when non-coherent, during
516	 * cluster power-up/power-down. Make sure it reaches main memory.
517	 */
518	sync_cache_w(&cci_ctrl_base);
519	sync_cache_w(&cci_ctrl_phys);
520	sync_cache_w(&ports);
521	sync_cache_w(&cpu_port);
522	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
523	pr_info("ARM CCI driver probed\n");
524
525	return 0;
526}
527#else /* !CONFIG_ARM_CCI400_PORT_CTRL */
528static inline int cci_probe_ports(struct device_node *np)
529{
530	return 0;
531}
532#endif /* CONFIG_ARM_CCI400_PORT_CTRL */
533
534static int cci_probe(void)
535{
536	int ret;
537	struct device_node *np;
538	struct resource res;
539
540	np = of_find_matching_node(NULL, arm_cci_matches);
541	if (!of_device_is_available(np))
542		return -ENODEV;
543
544	ret = of_address_to_resource(np, 0, &res);
545	if (!ret) {
546		cci_ctrl_base = ioremap(res.start, resource_size(&res));
547		cci_ctrl_phys =	res.start;
548	}
549	if (ret || !cci_ctrl_base) {
550		WARN(1, "unable to ioremap CCI ctrl\n");
551		return -ENXIO;
552	}
553
554	return cci_probe_ports(np);
555}
556
557static int cci_init_status = -EAGAIN;
558static DEFINE_MUTEX(cci_probing);
559
560static int cci_init(void)
561{
562	if (cci_init_status != -EAGAIN)
563		return cci_init_status;
564
565	mutex_lock(&cci_probing);
566	if (cci_init_status == -EAGAIN)
567		cci_init_status = cci_probe();
568	mutex_unlock(&cci_probing);
569	return cci_init_status;
570}
571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572/*
573 * To sort out early init calls ordering a helper function is provided to
574 * check if the CCI driver has beed initialized. Function check if the driver
575 * has been initialized, if not it calls the init function that probes
576 * the driver and updates the return value.
577 */
578bool cci_probed(void)
579{
580	return cci_init() == 0;
581}
582EXPORT_SYMBOL_GPL(cci_probed);
583
584early_initcall(cci_init);
585core_initcall(cci_platform_init);
586MODULE_LICENSE("GPL");
587MODULE_DESCRIPTION("ARM CCI support");
v3.15
   1/*
   2 * CCI cache coherent interconnect driver
   3 *
   4 * Copyright (C) 2013 ARM Ltd.
   5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  12 * kind, whether express or implied; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#include <linux/arm-cci.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/of_address.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_platform.h>
  23#include <linux/platform_device.h>
  24#include <linux/slab.h>
  25#include <linux/spinlock.h>
  26
  27#include <asm/cacheflush.h>
  28#include <asm/irq_regs.h>
  29#include <asm/pmu.h>
  30#include <asm/smp_plat.h>
  31
  32#define DRIVER_NAME		"CCI-400"
  33#define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
  34
  35#define CCI_PORT_CTRL		0x0
  36#define CCI_CTRL_STATUS		0xc
  37
  38#define CCI_ENABLE_SNOOP_REQ	0x1
  39#define CCI_ENABLE_DVM_REQ	0x2
  40#define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
  41
 
  42struct cci_nb_ports {
  43	unsigned int nb_ace;
  44	unsigned int nb_ace_lite;
  45};
  46
  47enum cci_ace_port_type {
  48	ACE_INVALID_PORT = 0x0,
  49	ACE_PORT,
  50	ACE_LITE_PORT,
  51};
  52
  53struct cci_ace_port {
  54	void __iomem *base;
  55	unsigned long phys;
  56	enum cci_ace_port_type type;
  57	struct device_node *dn;
  58};
  59
  60static struct cci_ace_port *ports;
  61static unsigned int nb_cci_ports;
  62
  63static void __iomem *cci_ctrl_base;
  64static unsigned long cci_ctrl_phys;
  65
  66#ifdef CONFIG_HW_PERF_EVENTS
  67
  68#define CCI_PMCR		0x0100
  69#define CCI_PID2		0x0fe8
  70
  71#define CCI_PMCR_CEN		0x00000001
  72#define CCI_PMCR_NCNT_MASK	0x0000f800
  73#define CCI_PMCR_NCNT_SHIFT	11
  74
  75#define CCI_PID2_REV_MASK	0xf0
  76#define CCI_PID2_REV_SHIFT	4
  77
  78/* Port ids */
  79#define CCI_PORT_S0	0
  80#define CCI_PORT_S1	1
  81#define CCI_PORT_S2	2
  82#define CCI_PORT_S3	3
  83#define CCI_PORT_S4	4
  84#define CCI_PORT_M0	5
  85#define CCI_PORT_M1	6
  86#define CCI_PORT_M2	7
  87
  88#define CCI_REV_R0		0
  89#define CCI_REV_R1		1
  90#define CCI_REV_R1_PX		5
  91
  92#define CCI_PMU_EVT_SEL		0x000
  93#define CCI_PMU_CNTR		0x004
  94#define CCI_PMU_CNTR_CTRL	0x008
  95#define CCI_PMU_OVRFLW		0x00c
  96
  97#define CCI_PMU_OVRFLW_FLAG	1
  98
  99#define CCI_PMU_CNTR_BASE(idx)	((idx) * SZ_4K)
 100
 101/*
 102 * Instead of an event id to monitor CCI cycles, a dedicated counter is
 103 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
 104 * make use of this event in hardware.
 105 */
 106enum cci400_perf_events {
 107	CCI_PMU_CYCLES = 0xff
 108};
 109
 110#define CCI_PMU_EVENT_MASK		0xff
 111#define CCI_PMU_EVENT_SOURCE(event)	((event >> 5) & 0x7)
 112#define CCI_PMU_EVENT_CODE(event)	(event & 0x1f)
 113
 114#define CCI_PMU_MAX_HW_EVENTS 5   /* CCI PMU has 4 counters + 1 cycle counter */
 115
 116#define CCI_PMU_CYCLE_CNTR_IDX		0
 117#define CCI_PMU_CNTR0_IDX		1
 118#define CCI_PMU_CNTR_LAST(cci_pmu)	(CCI_PMU_CYCLE_CNTR_IDX + cci_pmu->num_events - 1)
 119
 120/*
 121 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
 122 * ports and bits 4:0 are event codes. There are different event codes
 123 * associated with each port type.
 124 *
 125 * Additionally, the range of events associated with the port types changed
 126 * between Rev0 and Rev1.
 127 *
 128 * The constants below define the range of valid codes for each port type for
 129 * the different revisions and are used to validate the event to be monitored.
 130 */
 131
 132#define CCI_REV_R0_SLAVE_PORT_MIN_EV	0x00
 133#define CCI_REV_R0_SLAVE_PORT_MAX_EV	0x13
 134#define CCI_REV_R0_MASTER_PORT_MIN_EV	0x14
 135#define CCI_REV_R0_MASTER_PORT_MAX_EV	0x1a
 136
 137#define CCI_REV_R1_SLAVE_PORT_MIN_EV	0x00
 138#define CCI_REV_R1_SLAVE_PORT_MAX_EV	0x14
 139#define CCI_REV_R1_MASTER_PORT_MIN_EV	0x00
 140#define CCI_REV_R1_MASTER_PORT_MAX_EV	0x11
 141
 142struct pmu_port_event_ranges {
 143	u8 slave_min;
 144	u8 slave_max;
 145	u8 master_min;
 146	u8 master_max;
 147};
 148
 149static struct pmu_port_event_ranges port_event_range[] = {
 150	[CCI_REV_R0] = {
 151		.slave_min = CCI_REV_R0_SLAVE_PORT_MIN_EV,
 152		.slave_max = CCI_REV_R0_SLAVE_PORT_MAX_EV,
 153		.master_min = CCI_REV_R0_MASTER_PORT_MIN_EV,
 154		.master_max = CCI_REV_R0_MASTER_PORT_MAX_EV,
 155	},
 156	[CCI_REV_R1] = {
 157		.slave_min = CCI_REV_R1_SLAVE_PORT_MIN_EV,
 158		.slave_max = CCI_REV_R1_SLAVE_PORT_MAX_EV,
 159		.master_min = CCI_REV_R1_MASTER_PORT_MIN_EV,
 160		.master_max = CCI_REV_R1_MASTER_PORT_MAX_EV,
 161	},
 162};
 163
 164/*
 165 * Export different PMU names for the different revisions so userspace knows
 166 * because the event ids are different
 167 */
 168static char *const pmu_names[] = {
 169	[CCI_REV_R0] = "CCI_400",
 170	[CCI_REV_R1] = "CCI_400_r1",
 171};
 172
 173struct cci_pmu_drv_data {
 174	void __iomem *base;
 175	struct arm_pmu *cci_pmu;
 176	int nr_irqs;
 177	int irqs[CCI_PMU_MAX_HW_EVENTS];
 178	unsigned long active_irqs;
 179	struct perf_event *events[CCI_PMU_MAX_HW_EVENTS];
 180	unsigned long used_mask[BITS_TO_LONGS(CCI_PMU_MAX_HW_EVENTS)];
 181	struct pmu_port_event_ranges *port_ranges;
 182	struct pmu_hw_events hw_events;
 183};
 184static struct cci_pmu_drv_data *pmu;
 185
 186static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
 187{
 188	int i;
 189
 190	for (i = 0; i < nr_irqs; i++)
 191		if (irq == irqs[i])
 192			return true;
 193
 194	return false;
 195}
 196
 197static int probe_cci_revision(void)
 198{
 199	int rev;
 200	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
 201	rev >>= CCI_PID2_REV_SHIFT;
 202
 203	if (rev < CCI_REV_R1_PX)
 204		return CCI_REV_R0;
 205	else
 206		return CCI_REV_R1;
 207}
 208
 209static struct pmu_port_event_ranges *port_range_by_rev(void)
 210{
 211	int rev = probe_cci_revision();
 212
 213	return &port_event_range[rev];
 214}
 215
 216static int pmu_is_valid_slave_event(u8 ev_code)
 217{
 218	return pmu->port_ranges->slave_min <= ev_code &&
 219		ev_code <= pmu->port_ranges->slave_max;
 220}
 221
 222static int pmu_is_valid_master_event(u8 ev_code)
 223{
 224	return pmu->port_ranges->master_min <= ev_code &&
 225		ev_code <= pmu->port_ranges->master_max;
 226}
 227
 228static int pmu_validate_hw_event(u8 hw_event)
 229{
 230	u8 ev_source = CCI_PMU_EVENT_SOURCE(hw_event);
 231	u8 ev_code = CCI_PMU_EVENT_CODE(hw_event);
 232
 233	switch (ev_source) {
 234	case CCI_PORT_S0:
 235	case CCI_PORT_S1:
 236	case CCI_PORT_S2:
 237	case CCI_PORT_S3:
 238	case CCI_PORT_S4:
 239		/* Slave Interface */
 240		if (pmu_is_valid_slave_event(ev_code))
 241			return hw_event;
 242		break;
 243	case CCI_PORT_M0:
 244	case CCI_PORT_M1:
 245	case CCI_PORT_M2:
 246		/* Master Interface */
 247		if (pmu_is_valid_master_event(ev_code))
 248			return hw_event;
 249		break;
 250	}
 251
 252	return -ENOENT;
 253}
 254
 255static int pmu_is_valid_counter(struct arm_pmu *cci_pmu, int idx)
 256{
 257	return CCI_PMU_CYCLE_CNTR_IDX <= idx &&
 258		idx <= CCI_PMU_CNTR_LAST(cci_pmu);
 259}
 260
 261static u32 pmu_read_register(int idx, unsigned int offset)
 262{
 263	return readl_relaxed(pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
 264}
 265
 266static void pmu_write_register(u32 value, int idx, unsigned int offset)
 267{
 268	return writel_relaxed(value, pmu->base + CCI_PMU_CNTR_BASE(idx) + offset);
 269}
 270
 271static void pmu_disable_counter(int idx)
 272{
 273	pmu_write_register(0, idx, CCI_PMU_CNTR_CTRL);
 274}
 275
 276static void pmu_enable_counter(int idx)
 277{
 278	pmu_write_register(1, idx, CCI_PMU_CNTR_CTRL);
 279}
 280
 281static void pmu_set_event(int idx, unsigned long event)
 282{
 283	event &= CCI_PMU_EVENT_MASK;
 284	pmu_write_register(event, idx, CCI_PMU_EVT_SEL);
 285}
 286
 287static u32 pmu_get_max_counters(void)
 288{
 289	u32 n_cnts = (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
 290		      CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
 291
 292	/* add 1 for cycle counter */
 293	return n_cnts + 1;
 294}
 295
 296static struct pmu_hw_events *pmu_get_hw_events(void)
 297{
 298	return &pmu->hw_events;
 299}
 300
 301static int pmu_get_event_idx(struct pmu_hw_events *hw, struct perf_event *event)
 302{
 303	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
 304	struct hw_perf_event *hw_event = &event->hw;
 305	unsigned long cci_event = hw_event->config_base & CCI_PMU_EVENT_MASK;
 306	int idx;
 307
 308	if (cci_event == CCI_PMU_CYCLES) {
 309		if (test_and_set_bit(CCI_PMU_CYCLE_CNTR_IDX, hw->used_mask))
 310			return -EAGAIN;
 311
 312		return CCI_PMU_CYCLE_CNTR_IDX;
 313	}
 314
 315	for (idx = CCI_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
 316		if (!test_and_set_bit(idx, hw->used_mask))
 317			return idx;
 318
 319	/* No counters available */
 320	return -EAGAIN;
 321}
 322
 323static int pmu_map_event(struct perf_event *event)
 324{
 325	int mapping;
 326	u8 config = event->attr.config & CCI_PMU_EVENT_MASK;
 327
 328	if (event->attr.type < PERF_TYPE_MAX)
 329		return -ENOENT;
 330
 331	if (config == CCI_PMU_CYCLES)
 332		mapping = config;
 333	else
 334		mapping = pmu_validate_hw_event(config);
 335
 336	return mapping;
 337}
 338
 339static int pmu_request_irq(struct arm_pmu *cci_pmu, irq_handler_t handler)
 340{
 341	int i;
 342	struct platform_device *pmu_device = cci_pmu->plat_device;
 343
 344	if (unlikely(!pmu_device))
 345		return -ENODEV;
 346
 347	if (pmu->nr_irqs < 1) {
 348		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
 349		return -ENODEV;
 350	}
 351
 352	/*
 353	 * Register all available CCI PMU interrupts. In the interrupt handler
 354	 * we iterate over the counters checking for interrupt source (the
 355	 * overflowing counter) and clear it.
 356	 *
 357	 * This should allow handling of non-unique interrupt for the counters.
 358	 */
 359	for (i = 0; i < pmu->nr_irqs; i++) {
 360		int err = request_irq(pmu->irqs[i], handler, IRQF_SHARED,
 361				"arm-cci-pmu", cci_pmu);
 362		if (err) {
 363			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
 364				pmu->irqs[i]);
 365			return err;
 366		}
 367
 368		set_bit(i, &pmu->active_irqs);
 369	}
 370
 371	return 0;
 372}
 373
 374static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
 375{
 376	unsigned long flags;
 377	struct arm_pmu *cci_pmu = (struct arm_pmu *)dev;
 378	struct pmu_hw_events *events = cci_pmu->get_hw_events();
 379	struct perf_sample_data data;
 380	struct pt_regs *regs;
 381	int idx, handled = IRQ_NONE;
 382
 383	raw_spin_lock_irqsave(&events->pmu_lock, flags);
 384	regs = get_irq_regs();
 385	/*
 386	 * Iterate over counters and update the corresponding perf events.
 387	 * This should work regardless of whether we have per-counter overflow
 388	 * interrupt or a combined overflow interrupt.
 389	 */
 390	for (idx = CCI_PMU_CYCLE_CNTR_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
 391		struct perf_event *event = events->events[idx];
 392		struct hw_perf_event *hw_counter;
 393
 394		if (!event)
 395			continue;
 396
 397		hw_counter = &event->hw;
 398
 399		/* Did this counter overflow? */
 400		if (!pmu_read_register(idx, CCI_PMU_OVRFLW) & CCI_PMU_OVRFLW_FLAG)
 401			continue;
 402
 403		pmu_write_register(CCI_PMU_OVRFLW_FLAG, idx, CCI_PMU_OVRFLW);
 404
 405		handled = IRQ_HANDLED;
 406
 407		armpmu_event_update(event);
 408		perf_sample_data_init(&data, 0, hw_counter->last_period);
 409		if (!armpmu_event_set_period(event))
 410			continue;
 411
 412		if (perf_event_overflow(event, &data, regs))
 413			cci_pmu->disable(event);
 414	}
 415	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
 416
 417	return IRQ_RETVAL(handled);
 418}
 419
 420static void pmu_free_irq(struct arm_pmu *cci_pmu)
 421{
 422	int i;
 423
 424	for (i = 0; i < pmu->nr_irqs; i++) {
 425		if (!test_and_clear_bit(i, &pmu->active_irqs))
 426			continue;
 427
 428		free_irq(pmu->irqs[i], cci_pmu);
 429	}
 430}
 431
 432static void pmu_enable_event(struct perf_event *event)
 433{
 434	unsigned long flags;
 435	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
 436	struct pmu_hw_events *events = cci_pmu->get_hw_events();
 437	struct hw_perf_event *hw_counter = &event->hw;
 438	int idx = hw_counter->idx;
 439
 440	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
 441		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
 442		return;
 443	}
 444
 445	raw_spin_lock_irqsave(&events->pmu_lock, flags);
 
 446
 447	/* Configure the event to count, unless you are counting cycles */
 448	if (idx != CCI_PMU_CYCLE_CNTR_IDX)
 449		pmu_set_event(idx, hw_counter->config_base);
 450
 451	pmu_enable_counter(idx);
 
 
 
 
 452
 453	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
 454}
 455
 456static void pmu_disable_event(struct perf_event *event)
 457{
 458	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
 459	struct hw_perf_event *hw_counter = &event->hw;
 460	int idx = hw_counter->idx;
 461
 462	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
 463		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
 464		return;
 465	}
 466
 467	pmu_disable_counter(idx);
 468}
 469
 470static void pmu_start(struct arm_pmu *cci_pmu)
 471{
 472	u32 val;
 473	unsigned long flags;
 474	struct pmu_hw_events *events = cci_pmu->get_hw_events();
 475
 476	raw_spin_lock_irqsave(&events->pmu_lock, flags);
 477
 478	/* Enable all the PMU counters. */
 479	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
 480	writel(val, cci_ctrl_base + CCI_PMCR);
 481
 482	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
 483}
 484
 485static void pmu_stop(struct arm_pmu *cci_pmu)
 486{
 487	u32 val;
 488	unsigned long flags;
 489	struct pmu_hw_events *events = cci_pmu->get_hw_events();
 490
 491	raw_spin_lock_irqsave(&events->pmu_lock, flags);
 492
 493	/* Disable all the PMU counters. */
 494	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
 495	writel(val, cci_ctrl_base + CCI_PMCR);
 496
 497	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
 498}
 499
 500static u32 pmu_read_counter(struct perf_event *event)
 501{
 502	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
 503	struct hw_perf_event *hw_counter = &event->hw;
 504	int idx = hw_counter->idx;
 505	u32 value;
 506
 507	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
 508		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
 509		return 0;
 510	}
 511	value = pmu_read_register(idx, CCI_PMU_CNTR);
 512
 513	return value;
 514}
 515
 516static void pmu_write_counter(struct perf_event *event, u32 value)
 517{
 518	struct arm_pmu *cci_pmu = to_arm_pmu(event->pmu);
 519	struct hw_perf_event *hw_counter = &event->hw;
 520	int idx = hw_counter->idx;
 521
 522	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
 523		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
 524	else
 525		pmu_write_register(value, idx, CCI_PMU_CNTR);
 526}
 527
 528static int cci_pmu_init(struct arm_pmu *cci_pmu, struct platform_device *pdev)
 529{
 530	*cci_pmu = (struct arm_pmu){
 531		.name		  = pmu_names[probe_cci_revision()],
 532		.max_period       = (1LLU << 32) - 1,
 533		.get_hw_events    = pmu_get_hw_events,
 534		.get_event_idx    = pmu_get_event_idx,
 535		.map_event        = pmu_map_event,
 536		.request_irq      = pmu_request_irq,
 537		.handle_irq       = pmu_handle_irq,
 538		.free_irq         = pmu_free_irq,
 539		.enable           = pmu_enable_event,
 540		.disable          = pmu_disable_event,
 541		.start            = pmu_start,
 542		.stop             = pmu_stop,
 543		.read_counter     = pmu_read_counter,
 544		.write_counter    = pmu_write_counter,
 545	};
 546
 547	cci_pmu->plat_device = pdev;
 548	cci_pmu->num_events = pmu_get_max_counters();
 549
 550	return armpmu_register(cci_pmu, -1);
 551}
 552
 553static const struct of_device_id arm_cci_pmu_matches[] = {
 554	{
 555		.compatible = "arm,cci-400-pmu",
 556	},
 557	{},
 558};
 559
 560static int cci_pmu_probe(struct platform_device *pdev)
 561{
 562	struct resource *res;
 563	int i, ret, irq;
 564
 565	pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
 566	if (!pmu)
 567		return -ENOMEM;
 568
 569	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 570	pmu->base = devm_ioremap_resource(&pdev->dev, res);
 571	if (IS_ERR(pmu->base))
 572		return -ENOMEM;
 573
 574	/*
 575	 * CCI PMU has 5 overflow signals - one per counter; but some may be tied
 576	 * together to a common interrupt.
 577	 */
 578	pmu->nr_irqs = 0;
 579	for (i = 0; i < CCI_PMU_MAX_HW_EVENTS; i++) {
 580		irq = platform_get_irq(pdev, i);
 581		if (irq < 0)
 582			break;
 583
 584		if (is_duplicate_irq(irq, pmu->irqs, pmu->nr_irqs))
 585			continue;
 586
 587		pmu->irqs[pmu->nr_irqs++] = irq;
 588	}
 589
 590	/*
 591	 * Ensure that the device tree has as many interrupts as the number
 592	 * of counters.
 593	 */
 594	if (i < CCI_PMU_MAX_HW_EVENTS) {
 595		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
 596			i, CCI_PMU_MAX_HW_EVENTS);
 597		return -EINVAL;
 598	}
 599
 600	pmu->port_ranges = port_range_by_rev();
 601	if (!pmu->port_ranges) {
 602		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
 603		return -EINVAL;
 604	}
 605
 606	pmu->cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*(pmu->cci_pmu)), GFP_KERNEL);
 607	if (!pmu->cci_pmu)
 608		return -ENOMEM;
 609
 610	pmu->hw_events.events = pmu->events;
 611	pmu->hw_events.used_mask = pmu->used_mask;
 612	raw_spin_lock_init(&pmu->hw_events.pmu_lock);
 613
 614	ret = cci_pmu_init(pmu->cci_pmu, pdev);
 615	if (ret)
 616		return ret;
 617
 618	return 0;
 619}
 620
 621static int cci_platform_probe(struct platform_device *pdev)
 622{
 623	if (!cci_probed())
 624		return -ENODEV;
 625
 626	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
 627}
 628
 629#endif /* CONFIG_HW_PERF_EVENTS */
 630
 631struct cpu_port {
 632	u64 mpidr;
 633	u32 port;
 634};
 635
 636/*
 637 * Use the port MSB as valid flag, shift can be made dynamic
 638 * by computing number of bits required for port indexes.
 639 * Code disabling CCI cpu ports runs with D-cache invalidated
 640 * and SCTLR bit clear so data accesses must be kept to a minimum
 641 * to improve performance; for now shift is left static to
 642 * avoid one more data access while disabling the CCI port.
 643 */
 644#define PORT_VALID_SHIFT	31
 645#define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
 646
 647static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
 648{
 649	port->port = PORT_VALID | index;
 650	port->mpidr = mpidr;
 651}
 652
 653static inline bool cpu_port_is_valid(struct cpu_port *port)
 654{
 655	return !!(port->port & PORT_VALID);
 656}
 657
 658static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
 659{
 660	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
 661}
 662
 663static struct cpu_port cpu_port[NR_CPUS];
 664
 665/**
 666 * __cci_ace_get_port - Function to retrieve the port index connected to
 667 *			a cpu or device.
 668 *
 669 * @dn: device node of the device to look-up
 670 * @type: port type
 671 *
 672 * Return value:
 673 *	- CCI port index if success
 674 *	- -ENODEV if failure
 675 */
 676static int __cci_ace_get_port(struct device_node *dn, int type)
 677{
 678	int i;
 679	bool ace_match;
 680	struct device_node *cci_portn;
 681
 682	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
 683	for (i = 0; i < nb_cci_ports; i++) {
 684		ace_match = ports[i].type == type;
 685		if (ace_match && cci_portn == ports[i].dn)
 686			return i;
 687	}
 688	return -ENODEV;
 689}
 690
 691int cci_ace_get_port(struct device_node *dn)
 692{
 693	return __cci_ace_get_port(dn, ACE_LITE_PORT);
 694}
 695EXPORT_SYMBOL_GPL(cci_ace_get_port);
 696
 697static void cci_ace_init_ports(void)
 698{
 699	int port, cpu;
 700	struct device_node *cpun;
 701
 702	/*
 703	 * Port index look-up speeds up the function disabling ports by CPU,
 704	 * since the logical to port index mapping is done once and does
 705	 * not change after system boot.
 706	 * The stashed index array is initialized for all possible CPUs
 707	 * at probe time.
 708	 */
 709	for_each_possible_cpu(cpu) {
 710		/* too early to use cpu->of_node */
 711		cpun = of_get_cpu_node(cpu, NULL);
 712
 713		if (WARN(!cpun, "Missing cpu device node\n"))
 714			continue;
 715
 716		port = __cci_ace_get_port(cpun, ACE_PORT);
 717		if (port < 0)
 718			continue;
 719
 720		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
 721	}
 722
 723	for_each_possible_cpu(cpu) {
 724		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
 725			"CPU %u does not have an associated CCI port\n",
 726			cpu);
 727	}
 728}
 729/*
 730 * Functions to enable/disable a CCI interconnect slave port
 731 *
 732 * They are called by low-level power management code to disable slave
 733 * interfaces snoops and DVM broadcast.
 734 * Since they may execute with cache data allocation disabled and
 735 * after the caches have been cleaned and invalidated the functions provide
 736 * no explicit locking since they may run with D-cache disabled, so normal
 737 * cacheable kernel locks based on ldrex/strex may not work.
 738 * Locking has to be provided by BSP implementations to ensure proper
 739 * operations.
 740 */
 741
 742/**
 743 * cci_port_control() - function to control a CCI port
 744 *
 745 * @port: index of the port to setup
 746 * @enable: if true enables the port, if false disables it
 747 */
 748static void notrace cci_port_control(unsigned int port, bool enable)
 749{
 750	void __iomem *base = ports[port].base;
 751
 752	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
 753	/*
 754	 * This function is called from power down procedures
 755	 * and must not execute any instruction that might
 756	 * cause the processor to be put in a quiescent state
 757	 * (eg wfi). Hence, cpu_relax() can not be added to this
 758	 * read loop to optimize power, since it might hide possibly
 759	 * disruptive operations.
 760	 */
 761	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
 762			;
 763}
 764
 765/**
 766 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
 767 *			       reference
 768 *
 769 * @mpidr: mpidr of the CPU whose CCI port should be disabled
 770 *
 771 * Disabling a CCI port for a CPU implies disabling the CCI port
 772 * controlling that CPU cluster. Code disabling CPU CCI ports
 773 * must make sure that the CPU running the code is the last active CPU
 774 * in the cluster ie all other CPUs are quiescent in a low power state.
 775 *
 776 * Return:
 777 *	0 on success
 778 *	-ENODEV on port look-up failure
 779 */
 780int notrace cci_disable_port_by_cpu(u64 mpidr)
 781{
 782	int cpu;
 783	bool is_valid;
 784	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 785		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
 786		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
 787			cci_port_control(cpu_port[cpu].port, false);
 788			return 0;
 789		}
 790	}
 791	return -ENODEV;
 792}
 793EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
 794
 795/**
 796 * cci_enable_port_for_self() - enable a CCI port for calling CPU
 797 *
 798 * Enabling a CCI port for the calling CPU implies enabling the CCI
 799 * port controlling that CPU's cluster. Caller must make sure that the
 800 * CPU running the code is the first active CPU in the cluster and all
 801 * other CPUs are quiescent in a low power state  or waiting for this CPU
 802 * to complete the CCI initialization.
 803 *
 804 * Because this is called when the MMU is still off and with no stack,
 805 * the code must be position independent and ideally rely on callee
 806 * clobbered registers only.  To achieve this we must code this function
 807 * entirely in assembler.
 808 *
 809 * On success this returns with the proper CCI port enabled.  In case of
 810 * any failure this never returns as the inability to enable the CCI is
 811 * fatal and there is no possible recovery at this stage.
 812 */
 813asmlinkage void __naked cci_enable_port_for_self(void)
 814{
 815	asm volatile ("\n"
 816"	.arch armv7-a\n"
 817"	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
 818"	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
 819"	adr	r1, 5f \n"
 820"	ldr	r2, [r1] \n"
 821"	add	r1, r1, r2		@ &cpu_port \n"
 822"	add	ip, r1, %[sizeof_cpu_port] \n"
 823
 824	/* Loop over the cpu_port array looking for a matching MPIDR */
 825"1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
 826"	cmp	r2, r0 			@ compare MPIDR \n"
 827"	bne	2f \n"
 828
 829	/* Found a match, now test port validity */
 830"	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
 831"	tst	r3, #"__stringify(PORT_VALID)" \n"
 832"	bne	3f \n"
 833
 834	/* no match, loop with the next cpu_port entry */
 835"2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
 836"	cmp	r1, ip			@ done? \n"
 837"	blo	1b \n"
 838
 839	/* CCI port not found -- cheaply try to stall this CPU */
 840"cci_port_not_found: \n"
 841"	wfi \n"
 842"	wfe \n"
 843"	b	cci_port_not_found \n"
 844
 845	/* Use matched port index to look up the corresponding ports entry */
 846"3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
 847"	adr	r0, 6f \n"
 848"	ldmia	r0, {r1, r2} \n"
 849"	sub	r1, r1, r0 		@ virt - phys \n"
 850"	ldr	r0, [r0, r2] 		@ *(&ports) \n"
 851"	mov	r2, %[sizeof_struct_ace_port] \n"
 852"	mla	r0, r2, r3, r0		@ &ports[index] \n"
 853"	sub	r0, r0, r1		@ virt_to_phys() \n"
 854
 855	/* Enable the CCI port */
 856"	ldr	r0, [r0, %[offsetof_port_phys]] \n"
 857"	mov	r3, %[cci_enable_req]\n"		   
 858"	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
 859
 860	/* poll the status reg for completion */
 861"	adr	r1, 7f \n"
 862"	ldr	r0, [r1] \n"
 863"	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
 864"4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
 865"	tst	r1, %[cci_control_status_bits] \n"			
 866"	bne	4b \n"
 867
 868"	mov	r0, #0 \n"
 869"	bx	lr \n"
 870
 871"	.align	2 \n"
 872"5:	.word	cpu_port - . \n"
 873"6:	.word	. \n"
 874"	.word	ports - 6b \n"
 875"7:	.word	cci_ctrl_phys - . \n"
 876	: :
 877	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
 878	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
 879	[cci_control_status_bits] "i" cpu_to_le32(1),
 880#ifndef __ARMEB__
 881	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
 882#else
 883	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
 884#endif
 885	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
 886	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
 887	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
 888	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
 889
 890	unreachable();
 891}
 892
 893/**
 894 * __cci_control_port_by_device() - function to control a CCI port by device
 895 *				    reference
 896 *
 897 * @dn: device node pointer of the device whose CCI port should be
 898 *      controlled
 899 * @enable: if true enables the port, if false disables it
 900 *
 901 * Return:
 902 *	0 on success
 903 *	-ENODEV on port look-up failure
 904 */
 905int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
 906{
 907	int port;
 908
 909	if (!dn)
 910		return -ENODEV;
 911
 912	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
 913	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
 914				dn->full_name))
 915		return -ENODEV;
 916	cci_port_control(port, enable);
 917	return 0;
 918}
 919EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
 920
 921/**
 922 * __cci_control_port_by_index() - function to control a CCI port by port index
 923 *
 924 * @port: port index previously retrieved with cci_ace_get_port()
 925 * @enable: if true enables the port, if false disables it
 926 *
 927 * Return:
 928 *	0 on success
 929 *	-ENODEV on port index out of range
 930 *	-EPERM if operation carried out on an ACE PORT
 931 */
 932int notrace __cci_control_port_by_index(u32 port, bool enable)
 933{
 934	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
 935		return -ENODEV;
 936	/*
 937	 * CCI control for ports connected to CPUS is extremely fragile
 938	 * and must be made to go through a specific and controlled
 939	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
 940	 * indexing is therefore disabled for ACE ports.
 941	 */
 942	if (ports[port].type == ACE_PORT)
 943		return -EPERM;
 944
 945	cci_port_control(port, enable);
 946	return 0;
 947}
 948EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
 949
 950static const struct cci_nb_ports cci400_ports = {
 951	.nb_ace = 2,
 952	.nb_ace_lite = 3
 953};
 954
 955static const struct of_device_id arm_cci_matches[] = {
 956	{.compatible = "arm,cci-400", .data = &cci400_ports },
 957	{},
 958};
 959
 960static const struct of_device_id arm_cci_ctrl_if_matches[] = {
 961	{.compatible = "arm,cci-400-ctrl-if", },
 962	{},
 963};
 964
 965static int cci_probe(void)
 966{
 967	struct cci_nb_ports const *cci_config;
 968	int ret, i, nb_ace = 0, nb_ace_lite = 0;
 969	struct device_node *np, *cp;
 970	struct resource res;
 971	const char *match_str;
 972	bool is_ace;
 973
 974	np = of_find_matching_node(NULL, arm_cci_matches);
 975	if (!np)
 976		return -ENODEV;
 977
 978	cci_config = of_match_node(arm_cci_matches, np)->data;
 979	if (!cci_config)
 980		return -ENODEV;
 981
 982	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
 983
 984	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
 985	if (!ports)
 986		return -ENOMEM;
 987
 988	ret = of_address_to_resource(np, 0, &res);
 989	if (!ret) {
 990		cci_ctrl_base = ioremap(res.start, resource_size(&res));
 991		cci_ctrl_phys =	res.start;
 992	}
 993	if (ret || !cci_ctrl_base) {
 994		WARN(1, "unable to ioremap CCI ctrl\n");
 995		ret = -ENXIO;
 996		goto memalloc_err;
 997	}
 998
 999	for_each_child_of_node(np, cp) {
1000		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1001			continue;
1002
1003		i = nb_ace + nb_ace_lite;
1004
1005		if (i >= nb_cci_ports)
1006			break;
1007
1008		if (of_property_read_string(cp, "interface-type",
1009					&match_str)) {
1010			WARN(1, "node %s missing interface-type property\n",
1011				  cp->full_name);
1012			continue;
1013		}
1014		is_ace = strcmp(match_str, "ace") == 0;
1015		if (!is_ace && strcmp(match_str, "ace-lite")) {
1016			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1017					cp->full_name);
1018			continue;
1019		}
1020
1021		ret = of_address_to_resource(cp, 0, &res);
1022		if (!ret) {
1023			ports[i].base = ioremap(res.start, resource_size(&res));
1024			ports[i].phys = res.start;
1025		}
1026		if (ret || !ports[i].base) {
1027			WARN(1, "unable to ioremap CCI port %d\n", i);
1028			continue;
1029		}
1030
1031		if (is_ace) {
1032			if (WARN_ON(nb_ace >= cci_config->nb_ace))
1033				continue;
1034			ports[i].type = ACE_PORT;
1035			++nb_ace;
1036		} else {
1037			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
1038				continue;
1039			ports[i].type = ACE_LITE_PORT;
1040			++nb_ace_lite;
1041		}
1042		ports[i].dn = cp;
1043	}
1044
 
 
 
 
 
 
 
1045	 /* initialize a stashed array of ACE ports to speed-up look-up */
1046	cci_ace_init_ports();
1047
1048	/*
1049	 * Multi-cluster systems may need this data when non-coherent, during
1050	 * cluster power-up/power-down. Make sure it reaches main memory.
1051	 */
1052	sync_cache_w(&cci_ctrl_base);
1053	sync_cache_w(&cci_ctrl_phys);
1054	sync_cache_w(&ports);
1055	sync_cache_w(&cpu_port);
1056	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
1057	pr_info("ARM CCI driver probed\n");
 
1058	return 0;
 
 
 
 
 
 
 
1059
1060memalloc_err:
 
 
 
 
1061
1062	kfree(ports);
1063	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
1064}
1065
1066static int cci_init_status = -EAGAIN;
1067static DEFINE_MUTEX(cci_probing);
1068
1069static int cci_init(void)
1070{
1071	if (cci_init_status != -EAGAIN)
1072		return cci_init_status;
1073
1074	mutex_lock(&cci_probing);
1075	if (cci_init_status == -EAGAIN)
1076		cci_init_status = cci_probe();
1077	mutex_unlock(&cci_probing);
1078	return cci_init_status;
1079}
1080
1081#ifdef CONFIG_HW_PERF_EVENTS
1082static struct platform_driver cci_pmu_driver = {
1083	.driver = {
1084		   .name = DRIVER_NAME_PMU,
1085		   .of_match_table = arm_cci_pmu_matches,
1086		  },
1087	.probe = cci_pmu_probe,
1088};
1089
1090static struct platform_driver cci_platform_driver = {
1091	.driver = {
1092		   .name = DRIVER_NAME,
1093		   .of_match_table = arm_cci_matches,
1094		  },
1095	.probe = cci_platform_probe,
1096};
1097
1098static int __init cci_platform_init(void)
1099{
1100	int ret;
1101
1102	ret = platform_driver_register(&cci_pmu_driver);
1103	if (ret)
1104		return ret;
1105
1106	return platform_driver_register(&cci_platform_driver);
1107}
1108
1109#else
1110
1111static int __init cci_platform_init(void)
1112{
1113	return 0;
1114}
1115
1116#endif
1117/*
1118 * To sort out early init calls ordering a helper function is provided to
1119 * check if the CCI driver has beed initialized. Function check if the driver
1120 * has been initialized, if not it calls the init function that probes
1121 * the driver and updates the return value.
1122 */
1123bool cci_probed(void)
1124{
1125	return cci_init() == 0;
1126}
1127EXPORT_SYMBOL_GPL(cci_probed);
1128
1129early_initcall(cci_init);
1130core_initcall(cci_platform_init);
1131MODULE_LICENSE("GPL");
1132MODULE_DESCRIPTION("ARM CCI support");