Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only OR MIT
   2/*
   3 * Bluetooth HCI driver for Broadcom 4377/4378/4387/4388 devices attached via PCIe
   4 *
   5 * Copyright (C) The Asahi Linux Contributors
   6 */
   7
   8#include <linux/async.h>
   9#include <linux/bitfield.h>
  10#include <linux/completion.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmi.h>
  13#include <linux/firmware.h>
  14#include <linux/module.h>
  15#include <linux/msi.h>
  16#include <linux/of.h>
  17#include <linux/pci.h>
  18#include <linux/printk.h>
  19
  20#include <linux/unaligned.h>
  21
  22#include <net/bluetooth/bluetooth.h>
  23#include <net/bluetooth/hci_core.h>
  24
  25enum bcm4377_chip {
  26	BCM4377 = 0,
  27	BCM4378,
  28	BCM4387,
  29	BCM4388,
  30};
  31
  32#define BCM4377_DEVICE_ID 0x5fa0
  33#define BCM4378_DEVICE_ID 0x5f69
  34#define BCM4387_DEVICE_ID 0x5f71
  35#define BCM4388_DEVICE_ID 0x5f72
  36
  37#define BCM4377_TIMEOUT msecs_to_jiffies(1000)
  38#define BCM4377_BOOT_TIMEOUT msecs_to_jiffies(5000)
  39
  40/*
  41 * These devices only support DMA transactions inside a 32bit window
  42 * (possibly to avoid 64 bit arithmetic). The window size cannot exceed
  43 * 0xffffffff but is always aligned down to the previous 0x200 byte boundary
  44 * which effectively limits the window to [start, start+0xfffffe00].
  45 * We just limit the DMA window to [0, 0xfffffe00] to make sure we don't
  46 * run into this limitation.
  47 */
  48#define BCM4377_DMA_MASK 0xfffffe00
  49
  50#define BCM4377_PCIECFG_BAR0_WINDOW1	   0x80
  51#define BCM4377_PCIECFG_BAR0_WINDOW2	   0x70
  52#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1 0x74
  53#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW2 0x78
  54#define BCM4377_PCIECFG_BAR2_WINDOW	   0x84
  55
  56#define BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT 0x18011000
  57#define BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT	   0x19000000
  58
  59#define BCM4377_PCIECFG_SUBSYSTEM_CTRL 0x88
  60
  61#define BCM4377_BAR0_FW_DOORBELL 0x140
  62#define BCM4377_BAR0_RTI_CONTROL 0x144
  63
  64#define BCM4377_BAR0_SLEEP_CONTROL	      0x150
  65#define BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE  0
  66#define BCM4377_BAR0_SLEEP_CONTROL_AWAKE      2
  67#define BCM4377_BAR0_SLEEP_CONTROL_QUIESCE    3
  68
  69#define BCM4377_BAR0_DOORBELL	    0x174
  70#define BCM4377_BAR0_DOORBELL_VALUE GENMASK(31, 16)
  71#define BCM4377_BAR0_DOORBELL_IDX   GENMASK(15, 8)
  72#define BCM4377_BAR0_DOORBELL_RING  BIT(5)
  73
  74#define BCM4377_BAR0_HOST_WINDOW_LO   0x590
  75#define BCM4377_BAR0_HOST_WINDOW_HI   0x594
  76#define BCM4377_BAR0_HOST_WINDOW_SIZE 0x598
  77
  78#define BCM4377_BAR2_BOOTSTAGE 0x200454
  79
  80#define BCM4377_BAR2_FW_LO   0x200478
  81#define BCM4377_BAR2_FW_HI   0x20047c
  82#define BCM4377_BAR2_FW_SIZE 0x200480
  83
  84#define BCM4377_BAR2_CONTEXT_ADDR_LO 0x20048c
  85#define BCM4377_BAR2_CONTEXT_ADDR_HI 0x200450
  86
  87#define BCM4377_BAR2_RTI_STATUS	     0x20045c
  88#define BCM4377_BAR2_RTI_WINDOW_LO   0x200494
  89#define BCM4377_BAR2_RTI_WINDOW_HI   0x200498
  90#define BCM4377_BAR2_RTI_WINDOW_SIZE 0x20049c
  91
  92#define BCM4377_OTP_SIZE	  0xe0
  93#define BCM4377_OTP_SYS_VENDOR	  0x15
  94#define BCM4377_OTP_CIS		  0x80
  95#define BCM4377_OTP_VENDOR_HDR	  0x00000008
  96#define BCM4377_OTP_MAX_PARAM_LEN 16
  97
  98#define BCM4377_N_TRANSFER_RINGS   9
  99#define BCM4377_N_COMPLETION_RINGS 6
 100
 101#define BCM4377_MAX_RING_SIZE 256
 102
 103#define BCM4377_MSGID_GENERATION GENMASK(15, 8)
 104#define BCM4377_MSGID_ID	 GENMASK(7, 0)
 105
 106#define BCM4377_RING_N_ENTRIES 128
 107
 108#define BCM4377_CONTROL_MSG_SIZE		   0x34
 109#define BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE (4 * 0xff)
 110
 111#define MAX_ACL_PAYLOAD_SIZE   (HCI_MAX_FRAME_SIZE + HCI_ACL_HDR_SIZE)
 112#define MAX_SCO_PAYLOAD_SIZE   (HCI_MAX_SCO_SIZE + HCI_SCO_HDR_SIZE)
 113#define MAX_EVENT_PAYLOAD_SIZE (HCI_MAX_EVENT_SIZE + HCI_EVENT_HDR_SIZE)
 114
 115enum bcm4377_otp_params_type {
 116	BCM4377_OTP_BOARD_PARAMS,
 117	BCM4377_OTP_CHIP_PARAMS
 118};
 119
 120enum bcm4377_transfer_ring_id {
 121	BCM4377_XFER_RING_CONTROL = 0,
 122	BCM4377_XFER_RING_HCI_H2D = 1,
 123	BCM4377_XFER_RING_HCI_D2H = 2,
 124	BCM4377_XFER_RING_SCO_H2D = 3,
 125	BCM4377_XFER_RING_SCO_D2H = 4,
 126	BCM4377_XFER_RING_ACL_H2D = 5,
 127	BCM4377_XFER_RING_ACL_D2H = 6,
 128};
 129
 130enum bcm4377_completion_ring_id {
 131	BCM4377_ACK_RING_CONTROL = 0,
 132	BCM4377_ACK_RING_HCI_ACL = 1,
 133	BCM4377_EVENT_RING_HCI_ACL = 2,
 134	BCM4377_ACK_RING_SCO = 3,
 135	BCM4377_EVENT_RING_SCO = 4,
 136};
 137
 138enum bcm4377_doorbell {
 139	BCM4377_DOORBELL_CONTROL = 0,
 140	BCM4377_DOORBELL_HCI_H2D = 1,
 141	BCM4377_DOORBELL_HCI_D2H = 2,
 142	BCM4377_DOORBELL_ACL_H2D = 3,
 143	BCM4377_DOORBELL_ACL_D2H = 4,
 144	BCM4377_DOORBELL_SCO = 6,
 145};
 146
 147/*
 148 * Transfer ring entry
 149 *
 150 * flags: Flags to indicate if the payload is appended or mapped
 151 * len: Payload length
 152 * payload: Optional payload DMA address
 153 * id: Message id to recognize the answer in the completion ring entry
 154 */
 155struct bcm4377_xfer_ring_entry {
 156#define BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED	 BIT(0)
 157#define BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER BIT(1)
 158	u8 flags;
 159	__le16 len;
 160	u8 _unk0;
 161	__le64 payload;
 162	__le16 id;
 163	u8 _unk1[2];
 164} __packed;
 165static_assert(sizeof(struct bcm4377_xfer_ring_entry) == 0x10);
 166
 167/*
 168 * Completion ring entry
 169 *
 170 * flags: Flags to indicate if the payload is appended or mapped. If the payload
 171 *        is mapped it can be found in the buffer of the corresponding transfer
 172 *        ring message.
 173 * ring_id: Transfer ring ID which required this message
 174 * msg_id: Message ID specified in transfer ring entry
 175 * len: Payload length
 176 */
 177struct bcm4377_completion_ring_entry {
 178	u8 flags;
 179	u8 _unk0;
 180	__le16 ring_id;
 181	__le16 msg_id;
 182	__le32 len;
 183	u8 _unk1[6];
 184} __packed;
 185static_assert(sizeof(struct bcm4377_completion_ring_entry) == 0x10);
 186
 187enum bcm4377_control_message_type {
 188	BCM4377_CONTROL_MSG_CREATE_XFER_RING = 1,
 189	BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING = 2,
 190	BCM4377_CONTROL_MSG_DESTROY_XFER_RING = 3,
 191	BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING = 4,
 192};
 193
 194/*
 195 * Control message used to create a completion ring
 196 *
 197 * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING
 198 * header_size: Unknown, but probably reserved space in front of the entry
 199 * footer_size: Number of 32 bit words reserved for payloads after the entry
 200 * id/id_again: Completion ring index
 201 * ring_iova: DMA address of the ring buffer
 202 * n_elements: Number of elements inside the ring buffer
 203 * msi: MSI index, doesn't work for all rings though and should be zero
 204 * intmod_delay: Unknown delay
 205 * intmod_bytes: Unknown
 206 */
 207struct bcm4377_create_completion_ring_msg {
 208	u8 msg_type;
 209	u8 header_size;
 210	u8 footer_size;
 211	u8 _unk0;
 212	__le16 id;
 213	__le16 id_again;
 214	__le64 ring_iova;
 215	__le16 n_elements;
 216	__le32 unk;
 217	u8 _unk1[6];
 218	__le16 msi;
 219	__le16 intmod_delay;
 220	__le32 intmod_bytes;
 221	__le16 _unk2;
 222	__le32 _unk3;
 223	u8 _unk4[10];
 224} __packed;
 225static_assert(sizeof(struct bcm4377_create_completion_ring_msg) ==
 226	      BCM4377_CONTROL_MSG_SIZE);
 227
 228/*
 229 * Control ring message used to destroy a completion ring
 230 *
 231 * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING
 232 * ring_id: Completion ring to be destroyed
 233 */
 234struct bcm4377_destroy_completion_ring_msg {
 235	u8 msg_type;
 236	u8 _pad0;
 237	__le16 ring_id;
 238	u8 _pad1[48];
 239} __packed;
 240static_assert(sizeof(struct bcm4377_destroy_completion_ring_msg) ==
 241	      BCM4377_CONTROL_MSG_SIZE);
 242
 243/*
 244 * Control message used to create a transfer ring
 245 *
 246 * msg_type: Must be BCM4377_CONTROL_MSG_CREATE_XFER_RING
 247 * header_size: Number of 32 bit words reserved for unknown content before the
 248 *              entry
 249 * footer_size: Number of 32 bit words reserved for payloads after the entry
 250 * ring_id/ring_id_again: Transfer ring index
 251 * ring_iova: DMA address of the ring buffer
 252 * n_elements: Number of elements inside the ring buffer
 253 * completion_ring_id: Completion ring index for acknowledgements and events
 254 * doorbell: Doorbell index used to notify device of new entries
 255 * flags: Transfer ring flags
 256 *          - virtual: set if there is no associated shared memory and only the
 257 *                     corresponding completion ring is used
 258 *          - sync: only set for the SCO rings
 259 */
 260struct bcm4377_create_transfer_ring_msg {
 261	u8 msg_type;
 262	u8 header_size;
 263	u8 footer_size;
 264	u8 _unk0;
 265	__le16 ring_id;
 266	__le16 ring_id_again;
 267	__le64 ring_iova;
 268	u8 _unk1[8];
 269	__le16 n_elements;
 270	__le16 completion_ring_id;
 271	__le16 doorbell;
 272#define BCM4377_XFER_RING_FLAG_VIRTUAL BIT(7)
 273#define BCM4377_XFER_RING_FLAG_SYNC    BIT(8)
 274	__le16 flags;
 275	u8 _unk2[20];
 276} __packed;
 277static_assert(sizeof(struct bcm4377_create_transfer_ring_msg) ==
 278	      BCM4377_CONTROL_MSG_SIZE);
 279
 280/*
 281 * Control ring message used to destroy a transfer ring
 282 *
 283 * msg_type: Must be BCM4377_CONTROL_MSG_DESTROY_XFER_RING
 284 * ring_id: Transfer ring to be destroyed
 285 */
 286struct bcm4377_destroy_transfer_ring_msg {
 287	u8 msg_type;
 288	u8 _pad0;
 289	__le16 ring_id;
 290	u8 _pad1[48];
 291} __packed;
 292static_assert(sizeof(struct bcm4377_destroy_transfer_ring_msg) ==
 293	      BCM4377_CONTROL_MSG_SIZE);
 294
 295/*
 296 * "Converged IPC" context struct used to make the device aware of all other
 297 * shared memory structures. A pointer to this structure is configured inside a
 298 * MMIO register.
 299 *
 300 * version: Protocol version, must be 2.
 301 * size: Size of this structure, must be 0x68.
 302 * enabled_caps: Enabled capabilities. Unknown bitfield but should be 2.
 303 * peripheral_info_addr: DMA address for a 0x20 buffer to which the device will
 304 *                       write unknown contents
 305 * {completion,xfer}_ring_{tails,heads}_addr: DMA pointers to ring heads/tails
 306 * n_completion_rings: Number of completion rings, the firmware only works if
 307 *                     this is set to BCM4377_N_COMPLETION_RINGS.
 308 * n_xfer_rings: Number of transfer rings, the firmware only works if
 309 *               this is set to BCM4377_N_TRANSFER_RINGS.
 310 * control_completion_ring_addr: Control completion ring buffer DMA address
 311 * control_xfer_ring_addr: Control transfer ring buffer DMA address
 312 * control_xfer_ring_n_entries: Number of control transfer ring entries
 313 * control_completion_ring_n_entries: Number of control completion ring entries
 314 * control_xfer_ring_doorbell: Control transfer ring doorbell
 315 * control_completion_ring_doorbell: Control completion ring doorbell,
 316 *                                   must be set to 0xffff
 317 * control_xfer_ring_msi: Control completion ring MSI index, must be 0
 318 * control_completion_ring_msi: Control completion ring MSI index, must be 0.
 319 * control_xfer_ring_header_size: Number of 32 bit words reserved in front of
 320 *                                every control transfer ring entry
 321 * control_xfer_ring_footer_size: Number of 32 bit words reserved after every
 322 *                                control transfer ring entry
 323 * control_completion_ring_header_size: Number of 32 bit words reserved in front
 324 *                                      of every control completion ring entry
 325 * control_completion_ring_footer_size: Number of 32 bit words reserved after
 326 *                                      every control completion ring entry
 327 * scratch_pad: Optional scratch pad DMA address
 328 * scratch_pad_size: Scratch pad size
 329 */
 330struct bcm4377_context {
 331	__le16 version;
 332	__le16 size;
 333	__le32 enabled_caps;
 334
 335	__le64 peripheral_info_addr;
 336
 337	/* ring heads and tails */
 338	__le64 completion_ring_heads_addr;
 339	__le64 xfer_ring_tails_addr;
 340	__le64 completion_ring_tails_addr;
 341	__le64 xfer_ring_heads_addr;
 342	__le16 n_completion_rings;
 343	__le16 n_xfer_rings;
 344
 345	/* control ring configuration */
 346	__le64 control_completion_ring_addr;
 347	__le64 control_xfer_ring_addr;
 348	__le16 control_xfer_ring_n_entries;
 349	__le16 control_completion_ring_n_entries;
 350	__le16 control_xfer_ring_doorbell;
 351	__le16 control_completion_ring_doorbell;
 352	__le16 control_xfer_ring_msi;
 353	__le16 control_completion_ring_msi;
 354	u8 control_xfer_ring_header_size;
 355	u8 control_xfer_ring_footer_size;
 356	u8 control_completion_ring_header_size;
 357	u8 control_completion_ring_footer_size;
 358
 359	__le16 _unk0;
 360	__le16 _unk1;
 361
 362	__le64 scratch_pad;
 363	__le32 scratch_pad_size;
 364
 365	__le32 _unk3;
 366} __packed;
 367static_assert(sizeof(struct bcm4377_context) == 0x68);
 368
 369#define BCM4378_CALIBRATION_CHUNK_SIZE 0xe6
 370struct bcm4378_hci_send_calibration_cmd {
 371	u8 unk;
 372	__le16 blocks_left;
 373	u8 data[BCM4378_CALIBRATION_CHUNK_SIZE];
 374} __packed;
 375
 376#define BCM4378_PTB_CHUNK_SIZE 0xcf
 377struct bcm4378_hci_send_ptb_cmd {
 378	__le16 blocks_left;
 379	u8 data[BCM4378_PTB_CHUNK_SIZE];
 380} __packed;
 381
 382/*
 383 * Shared memory structure used to store the ring head and tail pointers.
 384 */
 385struct bcm4377_ring_state {
 386	__le16 completion_ring_head[BCM4377_N_COMPLETION_RINGS];
 387	__le16 completion_ring_tail[BCM4377_N_COMPLETION_RINGS];
 388	__le16 xfer_ring_head[BCM4377_N_TRANSFER_RINGS];
 389	__le16 xfer_ring_tail[BCM4377_N_TRANSFER_RINGS];
 390};
 391
 392/*
 393 * A transfer ring can be used in two configurations:
 394 *  1) Send control or HCI messages to the device which are then acknowledged
 395 *     in the corresponding completion ring
 396 *  2) Receiving HCI frames from the devices. In this case the transfer ring
 397 *     itself contains empty messages that are acknowledged once data is
 398 *     available from the device. If the payloads fit inside the footers
 399 *     of the completion ring the transfer ring can be configured to be
 400 *     virtual such that it has no ring buffer.
 401 *
 402 * ring_id: ring index hardcoded in the firmware
 403 * doorbell: doorbell index to notify device of new entries
 404 * payload_size: optional in-place payload size
 405 * mapped_payload_size: optional out-of-place payload size
 406 * completion_ring: index of corresponding completion ring
 407 * n_entries: number of entries inside this ring
 408 * generation: ring generation; incremented on hci_open to detect stale messages
 409 * sync: set to true for SCO rings
 410 * virtual: set to true if this ring has no entries and is just required to
 411 *          setup a corresponding completion ring for device->host messages
 412 * d2h_buffers_only: set to true if this ring is only used to provide large
 413 *                   buffers used by device->host messages in the completion
 414 *                   ring
 415 * allow_wait: allow to wait for messages to be acknowledged
 416 * enabled: true once the ring has been created and can be used
 417 * ring: ring buffer for entries (struct bcm4377_xfer_ring_entry)
 418 * ring_dma: DMA address for ring entry buffer
 419 * payloads: payload buffer for mapped_payload_size payloads
 420 * payloads_dma:DMA address for payload buffer
 421 * events: pointer to array of completions if waiting is allowed
 422 * msgids: bitmap to keep track of used message ids
 423 * lock: Spinlock to protect access to ring structurs used in the irq handler
 424 */
 425struct bcm4377_transfer_ring {
 426	enum bcm4377_transfer_ring_id ring_id;
 427	enum bcm4377_doorbell doorbell;
 428	size_t payload_size;
 429	size_t mapped_payload_size;
 430	u8 completion_ring;
 431	u16 n_entries;
 432	u8 generation;
 433
 434	bool sync;
 435	bool virtual;
 436	bool d2h_buffers_only;
 437	bool allow_wait;
 438	bool enabled;
 439
 440	void *ring;
 441	dma_addr_t ring_dma;
 442
 443	void *payloads;
 444	dma_addr_t payloads_dma;
 445
 446	struct completion **events;
 447	DECLARE_BITMAP(msgids, BCM4377_MAX_RING_SIZE);
 448	spinlock_t lock;
 449};
 450
 451/*
 452 * A completion ring can be either used to either acknowledge messages sent in
 453 * the corresponding transfer ring or to receive messages associated with the
 454 * transfer ring. When used to receive messages the transfer ring either
 455 * has no ring buffer and is only advanced ("virtual transfer ring") or it
 456 * only contains empty DMA buffers to be used for the payloads.
 457 *
 458 * ring_id: completion ring id, hardcoded in firmware
 459 * payload_size: optional payload size after each entry
 460 * delay: unknown delay
 461 * n_entries: number of entries in this ring
 462 * enabled: true once the ring has been created and can be used
 463 * ring: ring buffer for entries (struct bcm4377_completion_ring_entry)
 464 * ring_dma: DMA address of ring buffer
 465 * transfer_rings: bitmap of corresponding transfer ring ids
 466 */
 467struct bcm4377_completion_ring {
 468	enum bcm4377_completion_ring_id ring_id;
 469	u16 payload_size;
 470	u16 delay;
 471	u16 n_entries;
 472	bool enabled;
 473
 474	void *ring;
 475	dma_addr_t ring_dma;
 476
 477	unsigned long transfer_rings;
 478};
 479
 480struct bcm4377_data;
 481
 482/*
 483 * Chip-specific configuration struct
 484 *
 485 * id: Chip id (e.g. 0x4377 for BCM4377)
 486 * otp_offset: Offset to the start of the OTP inside BAR0
 487 * bar0_window1: Backplane address mapped to the first window in BAR0
 488 * bar0_window2: Backplane address mapped to the second window in BAR0
 489 * bar0_core2_window2: Optional backplane address mapped to the second core's
 490 *                     second window in BAR0
 491 * has_bar0_core2_window2: Set to true if this chip requires the second core's
 492 *                         second window to be configured
 493 * bar2_offset: Offset to the start of the variables in BAR2
 494 * clear_pciecfg_subsystem_ctrl_bit19: Set to true if bit 19 in the
 495 *                                     vendor-specific subsystem control
 496 *                                     register has to be cleared
 497 * disable_aspm: Set to true if ASPM must be disabled due to hardware errata
 498 * broken_ext_scan: Set to true if the chip erroneously claims to support
 499 *                  extended scanning
 500 * broken_mws_transport_config: Set to true if the chip erroneously claims to
 501 *                              support MWS Transport Configuration
 502 * broken_le_ext_adv_report_phy: Set to true if this chip stuffs flags inside
 503 *                               reserved bits of Primary/Secondary_PHY inside
 504 *                               LE Extended Advertising Report events which
 505 *                               have to be ignored
 506 * send_calibration: Optional callback to send calibration data
 507 * send_ptb: Callback to send "PTB" regulatory/calibration data
 508 */
 509struct bcm4377_hw {
 510	unsigned int id;
 511
 512	u32 otp_offset;
 513
 514	u32 bar0_window1;
 515	u32 bar0_window2;
 516	u32 bar0_core2_window2;
 517	u32 bar2_offset;
 518
 519	unsigned long has_bar0_core2_window2 : 1;
 520	unsigned long clear_pciecfg_subsystem_ctrl_bit19 : 1;
 521	unsigned long disable_aspm : 1;
 522	unsigned long broken_ext_scan : 1;
 523	unsigned long broken_mws_transport_config : 1;
 524	unsigned long broken_le_coded : 1;
 525	unsigned long broken_le_ext_adv_report_phy : 1;
 526
 527	int (*send_calibration)(struct bcm4377_data *bcm4377);
 528	int (*send_ptb)(struct bcm4377_data *bcm4377,
 529			const struct firmware *fw);
 530};
 531
 532static const struct bcm4377_hw bcm4377_hw_variants[];
 533static const struct dmi_system_id bcm4377_dmi_board_table[];
 534
 535/*
 536 * Private struct associated with each device containing global state
 537 *
 538 * pdev: Pointer to associated struct pci_dev
 539 * hdev: Pointer to associated strucy hci_dev
 540 * bar0: iomem pointing to BAR0
 541 * bar1: iomem pointing to BAR2
 542 * bootstage: Current value of the bootstage
 543 * rti_status: Current "RTI" status value
 544 * hw: Pointer to chip-specific struct bcm4377_hw
 545 * taurus_cal_blob: "Taurus" calibration blob used for some chips
 546 * taurus_cal_size: "Taurus" calibration blob size
 547 * taurus_beamforming_cal_blob: "Taurus" beamforming calibration blob used for
 548 *                              some chips
 549 * taurus_beamforming_cal_size: "Taurus" beamforming calibration blob size
 550 * stepping: Chip stepping read from OTP; used for firmware selection
 551 * vendor: Antenna vendor read from OTP; used for firmware selection
 552 * board_type: Board type from FDT or DMI match; used for firmware selection
 553 * event: Event for changed bootstage or rti_status; used for booting firmware
 554 * ctx: "Converged IPC" context
 555 * ctx_dma: "Converged IPC" context DMA address
 556 * ring_state: Shared memory buffer containing ring head and tail indexes
 557 * ring_state_dma: DMA address for ring_state
 558 * {control,hci_acl,sco}_ack_ring: Completion rings used to acknowledge messages
 559 * {hci_acl,sco}_event_ring: Completion rings used for device->host messages
 560 * control_h2d_ring: Transfer ring used for control messages
 561 * {hci,sco,acl}_h2d_ring: Transfer ring used to transfer HCI frames
 562 * {hci,sco,acl}_d2h_ring: Transfer ring used to receive HCI frames in the
 563 *                         corresponding completion ring
 564 */
 565struct bcm4377_data {
 566	struct pci_dev *pdev;
 567	struct hci_dev *hdev;
 568
 569	void __iomem *bar0;
 570	void __iomem *bar2;
 571
 572	u32 bootstage;
 573	u32 rti_status;
 574
 575	const struct bcm4377_hw *hw;
 576
 577	const void *taurus_cal_blob;
 578	int taurus_cal_size;
 579	const void *taurus_beamforming_cal_blob;
 580	int taurus_beamforming_cal_size;
 581
 582	char stepping[BCM4377_OTP_MAX_PARAM_LEN];
 583	char vendor[BCM4377_OTP_MAX_PARAM_LEN];
 584	const char *board_type;
 585
 586	struct completion event;
 587
 588	struct bcm4377_context *ctx;
 589	dma_addr_t ctx_dma;
 590
 591	struct bcm4377_ring_state *ring_state;
 592	dma_addr_t ring_state_dma;
 593
 594	/*
 595	 * The HCI and ACL rings have to be merged because this structure is
 596	 * hardcoded in the firmware.
 597	 */
 598	struct bcm4377_completion_ring control_ack_ring;
 599	struct bcm4377_completion_ring hci_acl_ack_ring;
 600	struct bcm4377_completion_ring hci_acl_event_ring;
 601	struct bcm4377_completion_ring sco_ack_ring;
 602	struct bcm4377_completion_ring sco_event_ring;
 603
 604	struct bcm4377_transfer_ring control_h2d_ring;
 605	struct bcm4377_transfer_ring hci_h2d_ring;
 606	struct bcm4377_transfer_ring hci_d2h_ring;
 607	struct bcm4377_transfer_ring sco_h2d_ring;
 608	struct bcm4377_transfer_ring sco_d2h_ring;
 609	struct bcm4377_transfer_ring acl_h2d_ring;
 610	struct bcm4377_transfer_ring acl_d2h_ring;
 611};
 612
 613static void bcm4377_ring_doorbell(struct bcm4377_data *bcm4377, u8 doorbell,
 614				  u16 val)
 615{
 616	u32 db = 0;
 617
 618	db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_VALUE, val);
 619	db |= FIELD_PREP(BCM4377_BAR0_DOORBELL_IDX, doorbell);
 620	db |= BCM4377_BAR0_DOORBELL_RING;
 621
 622	dev_dbg(&bcm4377->pdev->dev, "write %d to doorbell #%d (0x%x)\n", val,
 623		doorbell, db);
 624	iowrite32(db, bcm4377->bar0 + BCM4377_BAR0_DOORBELL);
 625}
 626
 627static int bcm4377_extract_msgid(struct bcm4377_data *bcm4377,
 628				 struct bcm4377_transfer_ring *ring,
 629				 u16 raw_msgid, u8 *msgid)
 630{
 631	u8 generation = FIELD_GET(BCM4377_MSGID_GENERATION, raw_msgid);
 632	*msgid = FIELD_GET(BCM4377_MSGID_ID, raw_msgid);
 633
 634	if (generation != ring->generation) {
 635		dev_warn(
 636			&bcm4377->pdev->dev,
 637			"invalid message generation %d should be %d in entry for ring %d\n",
 638			generation, ring->generation, ring->ring_id);
 639		return -EINVAL;
 640	}
 641
 642	if (*msgid >= ring->n_entries) {
 643		dev_warn(&bcm4377->pdev->dev,
 644			 "invalid message id in entry for ring %d: %d > %d\n",
 645			 ring->ring_id, *msgid, ring->n_entries);
 646		return -EINVAL;
 647	}
 648
 649	return 0;
 650}
 651
 652static void bcm4377_handle_event(struct bcm4377_data *bcm4377,
 653				 struct bcm4377_transfer_ring *ring,
 654				 u16 raw_msgid, u8 entry_flags, u8 type,
 655				 void *payload, size_t len)
 656{
 657	struct sk_buff *skb;
 658	u16 head;
 659	u8 msgid;
 660	unsigned long flags;
 661
 662	spin_lock_irqsave(&ring->lock, flags);
 663	if (!ring->enabled) {
 664		dev_warn(&bcm4377->pdev->dev,
 665			 "event for disabled transfer ring %d\n",
 666			 ring->ring_id);
 667		goto out;
 668	}
 669
 670	if (ring->d2h_buffers_only &&
 671	    entry_flags & BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED) {
 672		if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
 673			goto out;
 674
 675		if (len > ring->mapped_payload_size) {
 676			dev_warn(
 677				&bcm4377->pdev->dev,
 678				"invalid payload len in event for ring %d: %zu > %zu\n",
 679				ring->ring_id, len, ring->mapped_payload_size);
 680			goto out;
 681		}
 682
 683		payload = ring->payloads + msgid * ring->mapped_payload_size;
 684	}
 685
 686	skb = bt_skb_alloc(len, GFP_ATOMIC);
 687	if (!skb)
 688		goto out;
 689
 690	memcpy(skb_put(skb, len), payload, len);
 691	hci_skb_pkt_type(skb) = type;
 692	hci_recv_frame(bcm4377->hdev, skb);
 693
 694out:
 695	head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
 696	head = (head + 1) % ring->n_entries;
 697	bcm4377->ring_state->xfer_ring_head[ring->ring_id] = cpu_to_le16(head);
 698
 699	bcm4377_ring_doorbell(bcm4377, ring->doorbell, head);
 700
 701	spin_unlock_irqrestore(&ring->lock, flags);
 702}
 703
 704static void bcm4377_handle_ack(struct bcm4377_data *bcm4377,
 705			       struct bcm4377_transfer_ring *ring,
 706			       u16 raw_msgid)
 707{
 708	unsigned long flags;
 709	u8 msgid;
 710
 711	spin_lock_irqsave(&ring->lock, flags);
 712
 713	if (bcm4377_extract_msgid(bcm4377, ring, raw_msgid, &msgid))
 714		goto unlock;
 715
 716	if (!test_bit(msgid, ring->msgids)) {
 717		dev_warn(
 718			&bcm4377->pdev->dev,
 719			"invalid message id in ack for ring %d: %d is not used\n",
 720			ring->ring_id, msgid);
 721		goto unlock;
 722	}
 723
 724	if (ring->allow_wait && ring->events[msgid]) {
 725		complete(ring->events[msgid]);
 726		ring->events[msgid] = NULL;
 727	}
 728
 729	bitmap_release_region(ring->msgids, msgid, 0);
 730
 731unlock:
 732	spin_unlock_irqrestore(&ring->lock, flags);
 733}
 734
 735static void bcm4377_handle_completion(struct bcm4377_data *bcm4377,
 736				      struct bcm4377_completion_ring *ring,
 737				      u16 pos)
 738{
 739	struct bcm4377_completion_ring_entry *entry;
 740	u16 msg_id, transfer_ring;
 741	size_t entry_size, data_len;
 742	void *data;
 743
 744	if (pos >= ring->n_entries) {
 745		dev_warn(&bcm4377->pdev->dev,
 746			 "invalid offset %d for completion ring %d\n", pos,
 747			 ring->ring_id);
 748		return;
 749	}
 750
 751	entry_size = sizeof(*entry) + ring->payload_size;
 752	entry = ring->ring + pos * entry_size;
 753	data = ring->ring + pos * entry_size + sizeof(*entry);
 754	data_len = le32_to_cpu(entry->len);
 755	msg_id = le16_to_cpu(entry->msg_id);
 756	transfer_ring = le16_to_cpu(entry->ring_id);
 757
 758	if ((ring->transfer_rings & BIT(transfer_ring)) == 0) {
 759		dev_warn(
 760			&bcm4377->pdev->dev,
 761			"invalid entry at offset %d for transfer ring %d in completion ring %d\n",
 762			pos, transfer_ring, ring->ring_id);
 763		return;
 764	}
 765
 766	dev_dbg(&bcm4377->pdev->dev,
 767		"entry in completion ring %d for transfer ring %d with msg_id %d\n",
 768		ring->ring_id, transfer_ring, msg_id);
 769
 770	switch (transfer_ring) {
 771	case BCM4377_XFER_RING_CONTROL:
 772		bcm4377_handle_ack(bcm4377, &bcm4377->control_h2d_ring, msg_id);
 773		break;
 774	case BCM4377_XFER_RING_HCI_H2D:
 775		bcm4377_handle_ack(bcm4377, &bcm4377->hci_h2d_ring, msg_id);
 776		break;
 777	case BCM4377_XFER_RING_SCO_H2D:
 778		bcm4377_handle_ack(bcm4377, &bcm4377->sco_h2d_ring, msg_id);
 779		break;
 780	case BCM4377_XFER_RING_ACL_H2D:
 781		bcm4377_handle_ack(bcm4377, &bcm4377->acl_h2d_ring, msg_id);
 782		break;
 783
 784	case BCM4377_XFER_RING_HCI_D2H:
 785		bcm4377_handle_event(bcm4377, &bcm4377->hci_d2h_ring, msg_id,
 786				     entry->flags, HCI_EVENT_PKT, data,
 787				     data_len);
 788		break;
 789	case BCM4377_XFER_RING_SCO_D2H:
 790		bcm4377_handle_event(bcm4377, &bcm4377->sco_d2h_ring, msg_id,
 791				     entry->flags, HCI_SCODATA_PKT, data,
 792				     data_len);
 793		break;
 794	case BCM4377_XFER_RING_ACL_D2H:
 795		bcm4377_handle_event(bcm4377, &bcm4377->acl_d2h_ring, msg_id,
 796				     entry->flags, HCI_ACLDATA_PKT, data,
 797				     data_len);
 798		break;
 799
 800	default:
 801		dev_warn(
 802			&bcm4377->pdev->dev,
 803			"entry in completion ring %d for unknown transfer ring %d with msg_id %d\n",
 804			ring->ring_id, transfer_ring, msg_id);
 805	}
 806}
 807
 808static void bcm4377_poll_completion_ring(struct bcm4377_data *bcm4377,
 809					 struct bcm4377_completion_ring *ring)
 810{
 811	u16 tail;
 812	__le16 *heads = bcm4377->ring_state->completion_ring_head;
 813	__le16 *tails = bcm4377->ring_state->completion_ring_tail;
 814
 815	if (!ring->enabled)
 816		return;
 817
 818	tail = le16_to_cpu(tails[ring->ring_id]);
 819	dev_dbg(&bcm4377->pdev->dev,
 820		"completion ring #%d: head: %d, tail: %d\n", ring->ring_id,
 821		le16_to_cpu(heads[ring->ring_id]), tail);
 822
 823	while (tail != le16_to_cpu(READ_ONCE(heads[ring->ring_id]))) {
 824		/*
 825		 * ensure the CPU doesn't speculate through the comparison.
 826		 * otherwise it might already read the (empty) queue entry
 827		 * before the updated head has been loaded and checked.
 828		 */
 829		dma_rmb();
 830
 831		bcm4377_handle_completion(bcm4377, ring, tail);
 832
 833		tail = (tail + 1) % ring->n_entries;
 834		tails[ring->ring_id] = cpu_to_le16(tail);
 835	}
 836}
 837
 838static irqreturn_t bcm4377_irq(int irq, void *data)
 839{
 840	struct bcm4377_data *bcm4377 = data;
 841	u32 bootstage, rti_status;
 842
 843	bootstage = ioread32(bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_BOOTSTAGE);
 844	rti_status = ioread32(bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_STATUS);
 845
 846	if (bootstage != bcm4377->bootstage ||
 847	    rti_status != bcm4377->rti_status) {
 848		dev_dbg(&bcm4377->pdev->dev,
 849			"bootstage = %d -> %d, rti state = %d -> %d\n",
 850			bcm4377->bootstage, bootstage, bcm4377->rti_status,
 851			rti_status);
 852		complete(&bcm4377->event);
 853		bcm4377->bootstage = bootstage;
 854		bcm4377->rti_status = rti_status;
 855	}
 856
 857	if (rti_status > 2)
 858		dev_err(&bcm4377->pdev->dev, "RTI status is %d\n", rti_status);
 859
 860	bcm4377_poll_completion_ring(bcm4377, &bcm4377->control_ack_ring);
 861	bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
 862	bcm4377_poll_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
 863	bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
 864	bcm4377_poll_completion_ring(bcm4377, &bcm4377->sco_event_ring);
 865
 866	return IRQ_HANDLED;
 867}
 868
 869static int bcm4377_enqueue(struct bcm4377_data *bcm4377,
 870			   struct bcm4377_transfer_ring *ring, void *data,
 871			   size_t len, bool wait)
 872{
 873	unsigned long flags;
 874	struct bcm4377_xfer_ring_entry *entry;
 875	void *payload;
 876	size_t offset;
 877	u16 head, tail, new_head;
 878	u16 raw_msgid;
 879	int ret, msgid;
 880	DECLARE_COMPLETION_ONSTACK(event);
 881
 882	if (len > ring->payload_size && len > ring->mapped_payload_size) {
 883		dev_warn(
 884			&bcm4377->pdev->dev,
 885			"payload len %zu is too large for ring %d (max is %zu or %zu)\n",
 886			len, ring->ring_id, ring->payload_size,
 887			ring->mapped_payload_size);
 888		return -EINVAL;
 889	}
 890	if (wait && !ring->allow_wait)
 891		return -EINVAL;
 892	if (ring->virtual)
 893		return -EINVAL;
 894
 895	spin_lock_irqsave(&ring->lock, flags);
 896
 897	head = le16_to_cpu(bcm4377->ring_state->xfer_ring_head[ring->ring_id]);
 898	tail = le16_to_cpu(bcm4377->ring_state->xfer_ring_tail[ring->ring_id]);
 899
 900	new_head = (head + 1) % ring->n_entries;
 901
 902	if (new_head == tail) {
 903		dev_warn(&bcm4377->pdev->dev,
 904			 "can't send message because ring %d is full\n",
 905			 ring->ring_id);
 906		ret = -EINVAL;
 907		goto out;
 908	}
 909
 910	msgid = bitmap_find_free_region(ring->msgids, ring->n_entries, 0);
 911	if (msgid < 0) {
 912		dev_warn(&bcm4377->pdev->dev,
 913			 "can't find message id for ring %d\n", ring->ring_id);
 914		ret = -EINVAL;
 915		goto out;
 916	}
 917
 918	raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION, ring->generation);
 919	raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, msgid);
 920
 921	offset = head * (sizeof(*entry) + ring->payload_size);
 922	entry = ring->ring + offset;
 923
 924	memset(entry, 0, sizeof(*entry));
 925	entry->id = cpu_to_le16(raw_msgid);
 926	entry->len = cpu_to_le16(len);
 927
 928	if (len <= ring->payload_size) {
 929		entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_IN_FOOTER;
 930		payload = ring->ring + offset + sizeof(*entry);
 931	} else {
 932		entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
 933		entry->payload = cpu_to_le64(ring->payloads_dma +
 934					     msgid * ring->mapped_payload_size);
 935		payload = ring->payloads + msgid * ring->mapped_payload_size;
 936	}
 937
 938	memcpy(payload, data, len);
 939
 940	if (wait)
 941		ring->events[msgid] = &event;
 942
 943	/*
 944	 * The 4377 chips stop responding to any commands as soon as they
 945	 * have been idle for a while. Poking the sleep control register here
 946	 * makes them come alive again.
 947	 */
 948	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_AWAKE,
 949		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
 950
 951	dev_dbg(&bcm4377->pdev->dev,
 952		"updating head for transfer queue #%d to %d\n", ring->ring_id,
 953		new_head);
 954	bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
 955		cpu_to_le16(new_head);
 956
 957	if (!ring->sync)
 958		bcm4377_ring_doorbell(bcm4377, ring->doorbell, new_head);
 959	ret = 0;
 960
 961out:
 962	spin_unlock_irqrestore(&ring->lock, flags);
 963
 964	if (ret == 0 && wait) {
 965		ret = wait_for_completion_interruptible_timeout(
 966			&event, BCM4377_TIMEOUT);
 967		if (ret == 0)
 968			ret = -ETIMEDOUT;
 969		else if (ret > 0)
 970			ret = 0;
 971
 972		spin_lock_irqsave(&ring->lock, flags);
 973		ring->events[msgid] = NULL;
 974		spin_unlock_irqrestore(&ring->lock, flags);
 975	}
 976
 977	return ret;
 978}
 979
 980static int bcm4377_create_completion_ring(struct bcm4377_data *bcm4377,
 981					  struct bcm4377_completion_ring *ring)
 982{
 983	struct bcm4377_create_completion_ring_msg msg;
 984	int ret;
 985
 986	if (ring->enabled) {
 987		dev_warn(&bcm4377->pdev->dev,
 988			 "completion ring %d already enabled\n", ring->ring_id);
 989		return 0;
 990	}
 991
 992	memset(ring->ring, 0,
 993	       ring->n_entries * (sizeof(struct bcm4377_completion_ring_entry) +
 994				  ring->payload_size));
 995	memset(&msg, 0, sizeof(msg));
 996	msg.msg_type = BCM4377_CONTROL_MSG_CREATE_COMPLETION_RING;
 997	msg.id = cpu_to_le16(ring->ring_id);
 998	msg.id_again = cpu_to_le16(ring->ring_id);
 999	msg.ring_iova = cpu_to_le64(ring->ring_dma);
1000	msg.n_elements = cpu_to_le16(ring->n_entries);
1001	msg.intmod_bytes = cpu_to_le32(0xffffffff);
1002	msg.unk = cpu_to_le32(0xffffffff);
1003	msg.intmod_delay = cpu_to_le16(ring->delay);
1004	msg.footer_size = ring->payload_size / 4;
1005
1006	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1007			      sizeof(msg), true);
1008	if (!ret)
1009		ring->enabled = true;
1010
1011	return ret;
1012}
1013
1014static int bcm4377_destroy_completion_ring(struct bcm4377_data *bcm4377,
1015					   struct bcm4377_completion_ring *ring)
1016{
1017	struct bcm4377_destroy_completion_ring_msg msg;
1018	int ret;
1019
1020	memset(&msg, 0, sizeof(msg));
1021	msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_COMPLETION_RING;
1022	msg.ring_id = cpu_to_le16(ring->ring_id);
1023
1024	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1025			      sizeof(msg), true);
1026	if (ret)
1027		dev_warn(&bcm4377->pdev->dev,
1028			 "failed to destroy completion ring %d\n",
1029			 ring->ring_id);
1030
1031	ring->enabled = false;
1032	return ret;
1033}
1034
1035static int bcm4377_create_transfer_ring(struct bcm4377_data *bcm4377,
1036					struct bcm4377_transfer_ring *ring)
1037{
1038	struct bcm4377_create_transfer_ring_msg msg;
1039	u16 flags = 0;
1040	int ret, i;
1041	unsigned long spinlock_flags;
1042
1043	if (ring->virtual)
1044		flags |= BCM4377_XFER_RING_FLAG_VIRTUAL;
1045	if (ring->sync)
1046		flags |= BCM4377_XFER_RING_FLAG_SYNC;
1047
1048	spin_lock_irqsave(&ring->lock, spinlock_flags);
1049	memset(&msg, 0, sizeof(msg));
1050	msg.msg_type = BCM4377_CONTROL_MSG_CREATE_XFER_RING;
1051	msg.ring_id = cpu_to_le16(ring->ring_id);
1052	msg.ring_id_again = cpu_to_le16(ring->ring_id);
1053	msg.ring_iova = cpu_to_le64(ring->ring_dma);
1054	msg.n_elements = cpu_to_le16(ring->n_entries);
1055	msg.completion_ring_id = cpu_to_le16(ring->completion_ring);
1056	msg.doorbell = cpu_to_le16(ring->doorbell);
1057	msg.flags = cpu_to_le16(flags);
1058	msg.footer_size = ring->payload_size / 4;
1059
1060	bcm4377->ring_state->xfer_ring_head[ring->ring_id] = 0;
1061	bcm4377->ring_state->xfer_ring_tail[ring->ring_id] = 0;
1062	ring->generation++;
1063	spin_unlock_irqrestore(&ring->lock, spinlock_flags);
1064
1065	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1066			      sizeof(msg), true);
1067
1068	spin_lock_irqsave(&ring->lock, spinlock_flags);
1069
1070	if (ring->d2h_buffers_only) {
1071		for (i = 0; i < ring->n_entries; ++i) {
1072			struct bcm4377_xfer_ring_entry *entry =
1073				ring->ring + i * sizeof(*entry);
1074			u16 raw_msgid = FIELD_PREP(BCM4377_MSGID_GENERATION,
1075						   ring->generation);
1076			raw_msgid |= FIELD_PREP(BCM4377_MSGID_ID, i);
1077
1078			memset(entry, 0, sizeof(*entry));
1079			entry->id = cpu_to_le16(raw_msgid);
1080			entry->len = cpu_to_le16(ring->mapped_payload_size);
1081			entry->flags = BCM4377_XFER_RING_FLAG_PAYLOAD_MAPPED;
1082			entry->payload =
1083				cpu_to_le64(ring->payloads_dma +
1084					    i * ring->mapped_payload_size);
1085		}
1086	}
1087
1088	/*
1089	 * send some messages if this is a device->host ring to allow the device
1090	 * to reply by acknowledging them in the completion ring
1091	 */
1092	if (ring->virtual || ring->d2h_buffers_only) {
1093		bcm4377->ring_state->xfer_ring_head[ring->ring_id] =
1094			cpu_to_le16(0xf);
1095		bcm4377_ring_doorbell(bcm4377, ring->doorbell, 0xf);
1096	}
1097
1098	ring->enabled = true;
1099	spin_unlock_irqrestore(&ring->lock, spinlock_flags);
1100
1101	return ret;
1102}
1103
1104static int bcm4377_destroy_transfer_ring(struct bcm4377_data *bcm4377,
1105					 struct bcm4377_transfer_ring *ring)
1106{
1107	struct bcm4377_destroy_transfer_ring_msg msg;
1108	int ret;
1109
1110	memset(&msg, 0, sizeof(msg));
1111	msg.msg_type = BCM4377_CONTROL_MSG_DESTROY_XFER_RING;
1112	msg.ring_id = cpu_to_le16(ring->ring_id);
1113
1114	ret = bcm4377_enqueue(bcm4377, &bcm4377->control_h2d_ring, &msg,
1115			      sizeof(msg), true);
1116	if (ret)
1117		dev_warn(&bcm4377->pdev->dev,
1118			 "failed to destroy transfer ring %d\n", ring->ring_id);
1119
1120	ring->enabled = false;
1121	return ret;
1122}
1123
1124static int __bcm4378_send_calibration_chunk(struct bcm4377_data *bcm4377,
1125					    const void *data, size_t data_len,
1126					    u16 blocks_left)
1127{
1128	struct bcm4378_hci_send_calibration_cmd cmd;
1129	struct sk_buff *skb;
1130
1131	if (data_len > sizeof(cmd.data))
1132		return -EINVAL;
1133
1134	memset(&cmd, 0, sizeof(cmd));
1135	cmd.unk = 0x03;
1136	cmd.blocks_left = cpu_to_le16(blocks_left);
1137	memcpy(cmd.data, data, data_len);
1138
1139	skb = __hci_cmd_sync(bcm4377->hdev, 0xfd97, sizeof(cmd), &cmd,
1140			     HCI_INIT_TIMEOUT);
1141	if (IS_ERR(skb))
1142		return PTR_ERR(skb);
1143
1144	kfree_skb(skb);
1145	return 0;
1146}
1147
1148static int __bcm4378_send_calibration(struct bcm4377_data *bcm4377,
1149				      const void *data, size_t data_size)
1150{
1151	int ret;
1152	size_t i, left, transfer_len;
1153	size_t blocks =
1154		DIV_ROUND_UP(data_size, (size_t)BCM4378_CALIBRATION_CHUNK_SIZE);
1155
1156	if (!data) {
1157		dev_err(&bcm4377->pdev->dev,
1158			"no calibration data available.\n");
1159		return -ENOENT;
1160	}
1161
1162	for (i = 0, left = data_size; i < blocks; ++i, left -= transfer_len) {
1163		transfer_len =
1164			min_t(size_t, left, BCM4378_CALIBRATION_CHUNK_SIZE);
1165
1166		ret = __bcm4378_send_calibration_chunk(
1167			bcm4377, data + i * BCM4378_CALIBRATION_CHUNK_SIZE,
1168			transfer_len, blocks - i - 1);
1169		if (ret) {
1170			dev_err(&bcm4377->pdev->dev,
1171				"send calibration chunk failed with %d\n", ret);
1172			return ret;
1173		}
1174	}
1175
1176	return 0;
1177}
1178
1179static int bcm4378_send_calibration(struct bcm4377_data *bcm4377)
1180{
1181	if ((strcmp(bcm4377->stepping, "b1") == 0) ||
1182	    strcmp(bcm4377->stepping, "b3") == 0)
1183		return __bcm4378_send_calibration(
1184			bcm4377, bcm4377->taurus_beamforming_cal_blob,
1185			bcm4377->taurus_beamforming_cal_size);
1186	else
1187		return __bcm4378_send_calibration(bcm4377,
1188						  bcm4377->taurus_cal_blob,
1189						  bcm4377->taurus_cal_size);
1190}
1191
1192static int bcm4387_send_calibration(struct bcm4377_data *bcm4377)
1193{
1194	if (strcmp(bcm4377->stepping, "c2") == 0)
1195		return __bcm4378_send_calibration(
1196			bcm4377, bcm4377->taurus_beamforming_cal_blob,
1197			bcm4377->taurus_beamforming_cal_size);
1198	else
1199		return __bcm4378_send_calibration(bcm4377,
1200						  bcm4377->taurus_cal_blob,
1201						  bcm4377->taurus_cal_size);
1202}
1203
1204static int bcm4388_send_calibration(struct bcm4377_data *bcm4377)
1205{
1206	/* BCM4388 always uses beamforming */
1207	return __bcm4378_send_calibration(
1208		bcm4377, bcm4377->taurus_beamforming_cal_blob,
1209		bcm4377->taurus_beamforming_cal_size);
1210}
1211
1212static const struct firmware *bcm4377_request_blob(struct bcm4377_data *bcm4377,
1213						   const char *suffix)
1214{
1215	const struct firmware *fw;
1216	char name0[64], name1[64];
1217	int ret;
1218
1219	snprintf(name0, sizeof(name0), "brcm/brcmbt%04x%s-%s-%s.%s",
1220		 bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
1221		 bcm4377->vendor, suffix);
1222	snprintf(name1, sizeof(name1), "brcm/brcmbt%04x%s-%s.%s",
1223		 bcm4377->hw->id, bcm4377->stepping, bcm4377->board_type,
1224		 suffix);
1225	dev_dbg(&bcm4377->pdev->dev, "Trying to load firmware: '%s' or '%s'\n",
1226		name0, name1);
1227
1228	ret = firmware_request_nowarn(&fw, name0, &bcm4377->pdev->dev);
1229	if (!ret)
1230		return fw;
1231	ret = firmware_request_nowarn(&fw, name1, &bcm4377->pdev->dev);
1232	if (!ret)
1233		return fw;
1234
1235	dev_err(&bcm4377->pdev->dev,
1236		"Unable to load firmware; tried '%s' and '%s'\n", name0, name1);
1237	return NULL;
1238}
1239
1240static int bcm4377_send_ptb(struct bcm4377_data *bcm4377,
1241			    const struct firmware *fw)
1242{
1243	struct sk_buff *skb;
1244
1245	skb = __hci_cmd_sync(bcm4377->hdev, 0xfd98, fw->size, fw->data,
1246			     HCI_INIT_TIMEOUT);
1247	/*
1248	 * This command seems to always fail on more recent firmware versions
1249	 * (even in traces taken from the macOS driver). It's unclear why this
1250	 * happens but because the PTB file contains calibration and/or
1251	 * regulatory data and may be required on older firmware we still try to
1252	 * send it here just in case and just ignore if it fails.
1253	 */
1254	if (!IS_ERR(skb))
1255		kfree_skb(skb);
1256	return 0;
1257}
1258
1259static int bcm4378_send_ptb_chunk(struct bcm4377_data *bcm4377,
1260				  const void *data, size_t data_len,
1261				  u16 blocks_left)
1262{
1263	struct bcm4378_hci_send_ptb_cmd cmd;
1264	struct sk_buff *skb;
1265
1266	if (data_len > BCM4378_PTB_CHUNK_SIZE)
1267		return -EINVAL;
1268
1269	memset(&cmd, 0, sizeof(cmd));
1270	cmd.blocks_left = cpu_to_le16(blocks_left);
1271	memcpy(cmd.data, data, data_len);
1272
1273	skb = __hci_cmd_sync(bcm4377->hdev, 0xfe0d, sizeof(cmd), &cmd,
1274			     HCI_INIT_TIMEOUT);
1275	if (IS_ERR(skb))
1276		return PTR_ERR(skb);
1277
1278	kfree_skb(skb);
1279	return 0;
1280}
1281
1282static int bcm4378_send_ptb(struct bcm4377_data *bcm4377,
1283			    const struct firmware *fw)
1284{
1285	size_t chunks = DIV_ROUND_UP(fw->size, (size_t)BCM4378_PTB_CHUNK_SIZE);
1286	size_t i, left, transfer_len;
1287	int ret;
1288
1289	for (i = 0, left = fw->size; i < chunks; ++i, left -= transfer_len) {
1290		transfer_len = min_t(size_t, left, BCM4378_PTB_CHUNK_SIZE);
1291
1292		dev_dbg(&bcm4377->pdev->dev, "sending ptb chunk %zu/%zu\n",
1293			i + 1, chunks);
1294		ret = bcm4378_send_ptb_chunk(
1295			bcm4377, fw->data + i * BCM4378_PTB_CHUNK_SIZE,
1296			transfer_len, chunks - i - 1);
1297		if (ret) {
1298			dev_err(&bcm4377->pdev->dev,
1299				"sending ptb chunk %zu failed (%d)", i, ret);
1300			return ret;
1301		}
1302	}
1303
1304	return 0;
1305}
1306
1307static int bcm4377_hci_open(struct hci_dev *hdev)
1308{
1309	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1310	int ret;
1311
1312	dev_dbg(&bcm4377->pdev->dev, "creating rings\n");
1313
1314	ret = bcm4377_create_completion_ring(bcm4377,
1315					     &bcm4377->hci_acl_ack_ring);
1316	if (ret)
1317		return ret;
1318	ret = bcm4377_create_completion_ring(bcm4377,
1319					     &bcm4377->hci_acl_event_ring);
1320	if (ret)
1321		goto destroy_hci_acl_ack;
1322	ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1323	if (ret)
1324		goto destroy_hci_acl_event;
1325	ret = bcm4377_create_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1326	if (ret)
1327		goto destroy_sco_ack;
1328	dev_dbg(&bcm4377->pdev->dev,
1329		"all completion rings successfully created!\n");
1330
1331	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1332	if (ret)
1333		goto destroy_sco_event;
1334	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1335	if (ret)
1336		goto destroy_hci_h2d;
1337	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1338	if (ret)
1339		goto destroy_hci_d2h;
1340	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1341	if (ret)
1342		goto destroy_sco_h2d;
1343	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1344	if (ret)
1345		goto destroy_sco_d2h;
1346	ret = bcm4377_create_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1347	if (ret)
1348		goto destroy_acl_h2d;
1349	dev_dbg(&bcm4377->pdev->dev,
1350		"all transfer rings successfully created!\n");
1351
1352	return 0;
1353
1354destroy_acl_h2d:
1355	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1356destroy_sco_d2h:
1357	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1358destroy_sco_h2d:
1359	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1360destroy_hci_d2h:
1361	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1362destroy_hci_h2d:
1363	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1364destroy_sco_event:
1365	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1366destroy_sco_ack:
1367	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1368destroy_hci_acl_event:
1369	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
1370destroy_hci_acl_ack:
1371	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
1372
1373	dev_err(&bcm4377->pdev->dev, "Creating rings failed with %d\n", ret);
1374	return ret;
1375}
1376
1377static int bcm4377_hci_close(struct hci_dev *hdev)
1378{
1379	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1380
1381	dev_dbg(&bcm4377->pdev->dev, "destroying rings in hci_close\n");
1382
1383	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1384	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1385	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1386	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1387	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1388	bcm4377_destroy_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1389
1390	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1391	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1392	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_event_ring);
1393	bcm4377_destroy_completion_ring(bcm4377, &bcm4377->hci_acl_ack_ring);
1394
1395	return 0;
1396}
1397
1398static bool bcm4377_is_valid_bdaddr(struct bcm4377_data *bcm4377,
1399				    bdaddr_t *addr)
1400{
1401	if (addr->b[0] != 0x93)
1402		return true;
1403	if (addr->b[1] != 0x76)
1404		return true;
1405	if (addr->b[2] != 0x00)
1406		return true;
1407	if (addr->b[4] != (bcm4377->hw->id & 0xff))
1408		return true;
1409	if (addr->b[5] != (bcm4377->hw->id >> 8))
1410		return true;
1411	return false;
1412}
1413
1414static int bcm4377_check_bdaddr(struct bcm4377_data *bcm4377)
1415{
1416	struct hci_rp_read_bd_addr *bda;
1417	struct sk_buff *skb;
1418
1419	skb = __hci_cmd_sync(bcm4377->hdev, HCI_OP_READ_BD_ADDR, 0, NULL,
1420			     HCI_INIT_TIMEOUT);
1421	if (IS_ERR(skb)) {
1422		int err = PTR_ERR(skb);
1423
1424		dev_err(&bcm4377->pdev->dev, "HCI_OP_READ_BD_ADDR failed (%d)",
1425			err);
1426		return err;
1427	}
1428
1429	if (skb->len != sizeof(*bda)) {
1430		dev_err(&bcm4377->pdev->dev,
1431			"HCI_OP_READ_BD_ADDR reply length invalid");
1432		kfree_skb(skb);
1433		return -EIO;
1434	}
1435
1436	bda = (struct hci_rp_read_bd_addr *)skb->data;
1437	if (!bcm4377_is_valid_bdaddr(bcm4377, &bda->bdaddr))
1438		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &bcm4377->hdev->quirks);
1439
1440	kfree_skb(skb);
1441	return 0;
1442}
1443
1444static int bcm4377_hci_setup(struct hci_dev *hdev)
1445{
1446	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1447	const struct firmware *fw;
1448	int ret;
1449
1450	if (bcm4377->hw->send_calibration) {
1451		ret = bcm4377->hw->send_calibration(bcm4377);
1452		if (ret)
1453			return ret;
1454	}
1455
1456	fw = bcm4377_request_blob(bcm4377, "ptb");
1457	if (!fw) {
1458		dev_err(&bcm4377->pdev->dev, "failed to load PTB data");
1459		return -ENOENT;
1460	}
1461
1462	ret = bcm4377->hw->send_ptb(bcm4377, fw);
1463	release_firmware(fw);
1464	if (ret)
1465		return ret;
1466
1467	return bcm4377_check_bdaddr(bcm4377);
1468}
1469
1470static int bcm4377_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
1471{
1472	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1473	struct bcm4377_transfer_ring *ring;
1474	int ret;
1475
1476	switch (hci_skb_pkt_type(skb)) {
1477	case HCI_COMMAND_PKT:
1478		hdev->stat.cmd_tx++;
1479		ring = &bcm4377->hci_h2d_ring;
1480		break;
1481
1482	case HCI_ACLDATA_PKT:
1483		hdev->stat.acl_tx++;
1484		ring = &bcm4377->acl_h2d_ring;
1485		break;
1486
1487	case HCI_SCODATA_PKT:
1488		hdev->stat.sco_tx++;
1489		ring = &bcm4377->sco_h2d_ring;
1490		break;
1491
1492	default:
1493		return -EILSEQ;
1494	}
1495
1496	ret = bcm4377_enqueue(bcm4377, ring, skb->data, skb->len, false);
1497	if (ret < 0) {
1498		hdev->stat.err_tx++;
1499		return ret;
1500	}
1501
1502	hdev->stat.byte_tx += skb->len;
1503	kfree_skb(skb);
1504	return ret;
1505}
1506
1507static int bcm4377_hci_set_bdaddr(struct hci_dev *hdev, const bdaddr_t *bdaddr)
1508{
1509	struct bcm4377_data *bcm4377 = hci_get_drvdata(hdev);
1510	struct sk_buff *skb;
1511	int err;
1512
1513	skb = __hci_cmd_sync(hdev, 0xfc01, 6, bdaddr, HCI_INIT_TIMEOUT);
1514	if (IS_ERR(skb)) {
1515		err = PTR_ERR(skb);
1516		dev_err(&bcm4377->pdev->dev,
1517			"Change address command failed (%d)", err);
1518		return err;
1519	}
1520	kfree_skb(skb);
1521
1522	return 0;
1523}
1524
1525static int bcm4377_alloc_transfer_ring(struct bcm4377_data *bcm4377,
1526				       struct bcm4377_transfer_ring *ring)
1527{
1528	size_t entry_size;
1529
1530	spin_lock_init(&ring->lock);
1531	ring->payload_size = ALIGN(ring->payload_size, 4);
1532	ring->mapped_payload_size = ALIGN(ring->mapped_payload_size, 4);
1533
1534	if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
1535		return -EINVAL;
1536	if (ring->n_entries > BCM4377_MAX_RING_SIZE)
1537		return -EINVAL;
1538	if (ring->virtual && ring->allow_wait)
1539		return -EINVAL;
1540
1541	if (ring->d2h_buffers_only) {
1542		if (ring->virtual)
1543			return -EINVAL;
1544		if (ring->payload_size)
1545			return -EINVAL;
1546		if (!ring->mapped_payload_size)
1547			return -EINVAL;
1548	}
1549	if (ring->virtual)
1550		return 0;
1551
1552	entry_size =
1553		ring->payload_size + sizeof(struct bcm4377_xfer_ring_entry);
1554	ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
1555					 ring->n_entries * entry_size,
1556					 &ring->ring_dma, GFP_KERNEL);
1557	if (!ring->ring)
1558		return -ENOMEM;
1559
1560	if (ring->allow_wait) {
1561		ring->events = devm_kcalloc(&bcm4377->pdev->dev,
1562					    ring->n_entries,
1563					    sizeof(*ring->events), GFP_KERNEL);
1564		if (!ring->events)
1565			return -ENOMEM;
1566	}
1567
1568	if (ring->mapped_payload_size) {
1569		ring->payloads = dmam_alloc_coherent(
1570			&bcm4377->pdev->dev,
1571			ring->n_entries * ring->mapped_payload_size,
1572			&ring->payloads_dma, GFP_KERNEL);
1573		if (!ring->payloads)
1574			return -ENOMEM;
1575	}
1576
1577	return 0;
1578}
1579
1580static int bcm4377_alloc_completion_ring(struct bcm4377_data *bcm4377,
1581					 struct bcm4377_completion_ring *ring)
1582{
1583	size_t entry_size;
1584
1585	ring->payload_size = ALIGN(ring->payload_size, 4);
1586	if (ring->payload_size > BCM4377_XFER_RING_MAX_INPLACE_PAYLOAD_SIZE)
1587		return -EINVAL;
1588	if (ring->n_entries > BCM4377_MAX_RING_SIZE)
1589		return -EINVAL;
1590
1591	entry_size = ring->payload_size +
1592		     sizeof(struct bcm4377_completion_ring_entry);
1593
1594	ring->ring = dmam_alloc_coherent(&bcm4377->pdev->dev,
1595					 ring->n_entries * entry_size,
1596					 &ring->ring_dma, GFP_KERNEL);
1597	if (!ring->ring)
1598		return -ENOMEM;
1599	return 0;
1600}
1601
1602static int bcm4377_init_context(struct bcm4377_data *bcm4377)
1603{
1604	struct device *dev = &bcm4377->pdev->dev;
1605	dma_addr_t peripheral_info_dma;
1606
1607	bcm4377->ctx = dmam_alloc_coherent(dev, sizeof(*bcm4377->ctx),
1608					   &bcm4377->ctx_dma, GFP_KERNEL);
1609	if (!bcm4377->ctx)
1610		return -ENOMEM;
1611	memset(bcm4377->ctx, 0, sizeof(*bcm4377->ctx));
1612
1613	bcm4377->ring_state =
1614		dmam_alloc_coherent(dev, sizeof(*bcm4377->ring_state),
1615				    &bcm4377->ring_state_dma, GFP_KERNEL);
1616	if (!bcm4377->ring_state)
1617		return -ENOMEM;
1618	memset(bcm4377->ring_state, 0, sizeof(*bcm4377->ring_state));
1619
1620	bcm4377->ctx->version = cpu_to_le16(1);
1621	bcm4377->ctx->size = cpu_to_le16(sizeof(*bcm4377->ctx));
1622	bcm4377->ctx->enabled_caps = cpu_to_le32(2);
1623
1624	/*
1625	 * The BT device will write 0x20 bytes of data to this buffer but
1626	 * the exact contents are unknown. It only needs to exist for BT
1627	 * to work such that we can just allocate and then ignore it.
1628	 */
1629	if (!dmam_alloc_coherent(&bcm4377->pdev->dev, 0x20,
1630				 &peripheral_info_dma, GFP_KERNEL))
1631		return -ENOMEM;
1632	bcm4377->ctx->peripheral_info_addr = cpu_to_le64(peripheral_info_dma);
1633
1634	bcm4377->ctx->xfer_ring_heads_addr = cpu_to_le64(
1635		bcm4377->ring_state_dma +
1636		offsetof(struct bcm4377_ring_state, xfer_ring_head));
1637	bcm4377->ctx->xfer_ring_tails_addr = cpu_to_le64(
1638		bcm4377->ring_state_dma +
1639		offsetof(struct bcm4377_ring_state, xfer_ring_tail));
1640	bcm4377->ctx->completion_ring_heads_addr = cpu_to_le64(
1641		bcm4377->ring_state_dma +
1642		offsetof(struct bcm4377_ring_state, completion_ring_head));
1643	bcm4377->ctx->completion_ring_tails_addr = cpu_to_le64(
1644		bcm4377->ring_state_dma +
1645		offsetof(struct bcm4377_ring_state, completion_ring_tail));
1646
1647	bcm4377->ctx->n_completion_rings =
1648		cpu_to_le16(BCM4377_N_COMPLETION_RINGS);
1649	bcm4377->ctx->n_xfer_rings = cpu_to_le16(BCM4377_N_TRANSFER_RINGS);
1650
1651	bcm4377->ctx->control_completion_ring_addr =
1652		cpu_to_le64(bcm4377->control_ack_ring.ring_dma);
1653	bcm4377->ctx->control_completion_ring_n_entries =
1654		cpu_to_le16(bcm4377->control_ack_ring.n_entries);
1655	bcm4377->ctx->control_completion_ring_doorbell = cpu_to_le16(0xffff);
1656	bcm4377->ctx->control_completion_ring_msi = 0;
1657	bcm4377->ctx->control_completion_ring_header_size = 0;
1658	bcm4377->ctx->control_completion_ring_footer_size = 0;
1659
1660	bcm4377->ctx->control_xfer_ring_addr =
1661		cpu_to_le64(bcm4377->control_h2d_ring.ring_dma);
1662	bcm4377->ctx->control_xfer_ring_n_entries =
1663		cpu_to_le16(bcm4377->control_h2d_ring.n_entries);
1664	bcm4377->ctx->control_xfer_ring_doorbell =
1665		cpu_to_le16(bcm4377->control_h2d_ring.doorbell);
1666	bcm4377->ctx->control_xfer_ring_msi = 0;
1667	bcm4377->ctx->control_xfer_ring_header_size = 0;
1668	bcm4377->ctx->control_xfer_ring_footer_size =
1669		bcm4377->control_h2d_ring.payload_size / 4;
1670
1671	dev_dbg(&bcm4377->pdev->dev, "context initialized at IOVA %pad",
1672		&bcm4377->ctx_dma);
1673
1674	return 0;
1675}
1676
1677static int bcm4377_prepare_rings(struct bcm4377_data *bcm4377)
1678{
1679	int ret;
1680
1681	/*
1682	 * Even though many of these settings appear to be configurable
1683	 * when sending the "create ring" messages most of these are
1684	 * actually hardcoded in some (and quite possibly all) firmware versions
1685	 * and changing them on the host has no effect.
1686	 * Specifically, this applies to at least the doorbells, the transfer
1687	 * and completion ring ids and their mapping (e.g. both HCI and ACL
1688	 * entries will always be queued in completion rings 1 and 2 no matter
1689	 * what we configure here).
1690	 */
1691	bcm4377->control_ack_ring.ring_id = BCM4377_ACK_RING_CONTROL;
1692	bcm4377->control_ack_ring.n_entries = 32;
1693	bcm4377->control_ack_ring.transfer_rings =
1694		BIT(BCM4377_XFER_RING_CONTROL);
1695
1696	bcm4377->hci_acl_ack_ring.ring_id = BCM4377_ACK_RING_HCI_ACL;
1697	bcm4377->hci_acl_ack_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
1698	bcm4377->hci_acl_ack_ring.transfer_rings =
1699		BIT(BCM4377_XFER_RING_HCI_H2D) | BIT(BCM4377_XFER_RING_ACL_H2D);
1700	bcm4377->hci_acl_ack_ring.delay = 1000;
1701
1702	/*
1703	 * A payload size of MAX_EVENT_PAYLOAD_SIZE is enough here since large
1704	 * ACL packets will be transmitted inside buffers mapped via
1705	 * acl_d2h_ring anyway.
1706	 */
1707	bcm4377->hci_acl_event_ring.ring_id = BCM4377_EVENT_RING_HCI_ACL;
1708	bcm4377->hci_acl_event_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
1709	bcm4377->hci_acl_event_ring.n_entries = 2 * BCM4377_RING_N_ENTRIES;
1710	bcm4377->hci_acl_event_ring.transfer_rings =
1711		BIT(BCM4377_XFER_RING_HCI_D2H) | BIT(BCM4377_XFER_RING_ACL_D2H);
1712	bcm4377->hci_acl_event_ring.delay = 1000;
1713
1714	bcm4377->sco_ack_ring.ring_id = BCM4377_ACK_RING_SCO;
1715	bcm4377->sco_ack_ring.n_entries = BCM4377_RING_N_ENTRIES;
1716	bcm4377->sco_ack_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_H2D);
1717
1718	bcm4377->sco_event_ring.ring_id = BCM4377_EVENT_RING_SCO;
1719	bcm4377->sco_event_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
1720	bcm4377->sco_event_ring.n_entries = BCM4377_RING_N_ENTRIES;
1721	bcm4377->sco_event_ring.transfer_rings = BIT(BCM4377_XFER_RING_SCO_D2H);
1722
1723	bcm4377->control_h2d_ring.ring_id = BCM4377_XFER_RING_CONTROL;
1724	bcm4377->control_h2d_ring.doorbell = BCM4377_DOORBELL_CONTROL;
1725	bcm4377->control_h2d_ring.payload_size = BCM4377_CONTROL_MSG_SIZE;
1726	bcm4377->control_h2d_ring.completion_ring = BCM4377_ACK_RING_CONTROL;
1727	bcm4377->control_h2d_ring.allow_wait = true;
1728	bcm4377->control_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1729
1730	bcm4377->hci_h2d_ring.ring_id = BCM4377_XFER_RING_HCI_H2D;
1731	bcm4377->hci_h2d_ring.doorbell = BCM4377_DOORBELL_HCI_H2D;
1732	bcm4377->hci_h2d_ring.payload_size = MAX_EVENT_PAYLOAD_SIZE;
1733	bcm4377->hci_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
1734	bcm4377->hci_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1735
1736	bcm4377->hci_d2h_ring.ring_id = BCM4377_XFER_RING_HCI_D2H;
1737	bcm4377->hci_d2h_ring.doorbell = BCM4377_DOORBELL_HCI_D2H;
1738	bcm4377->hci_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
1739	bcm4377->hci_d2h_ring.virtual = true;
1740	bcm4377->hci_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1741
1742	bcm4377->sco_h2d_ring.ring_id = BCM4377_XFER_RING_SCO_H2D;
1743	bcm4377->sco_h2d_ring.doorbell = BCM4377_DOORBELL_SCO;
1744	bcm4377->sco_h2d_ring.payload_size = MAX_SCO_PAYLOAD_SIZE;
1745	bcm4377->sco_h2d_ring.completion_ring = BCM4377_ACK_RING_SCO;
1746	bcm4377->sco_h2d_ring.sync = true;
1747	bcm4377->sco_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1748
1749	bcm4377->sco_d2h_ring.ring_id = BCM4377_XFER_RING_SCO_D2H;
1750	bcm4377->sco_d2h_ring.doorbell = BCM4377_DOORBELL_SCO;
1751	bcm4377->sco_d2h_ring.completion_ring = BCM4377_EVENT_RING_SCO;
1752	bcm4377->sco_d2h_ring.virtual = true;
1753	bcm4377->sco_d2h_ring.sync = true;
1754	bcm4377->sco_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1755
1756	/*
1757	 * This ring has to use mapped_payload_size because the largest ACL
1758	 * packet doesn't fit inside the largest possible footer
1759	 */
1760	bcm4377->acl_h2d_ring.ring_id = BCM4377_XFER_RING_ACL_H2D;
1761	bcm4377->acl_h2d_ring.doorbell = BCM4377_DOORBELL_ACL_H2D;
1762	bcm4377->acl_h2d_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
1763	bcm4377->acl_h2d_ring.completion_ring = BCM4377_ACK_RING_HCI_ACL;
1764	bcm4377->acl_h2d_ring.n_entries = BCM4377_RING_N_ENTRIES;
1765
1766	/*
1767	 * This ring only contains empty buffers to be used by incoming
1768	 * ACL packets that do not fit inside the footer of hci_acl_event_ring
1769	 */
1770	bcm4377->acl_d2h_ring.ring_id = BCM4377_XFER_RING_ACL_D2H;
1771	bcm4377->acl_d2h_ring.doorbell = BCM4377_DOORBELL_ACL_D2H;
1772	bcm4377->acl_d2h_ring.completion_ring = BCM4377_EVENT_RING_HCI_ACL;
1773	bcm4377->acl_d2h_ring.d2h_buffers_only = true;
1774	bcm4377->acl_d2h_ring.mapped_payload_size = MAX_ACL_PAYLOAD_SIZE;
1775	bcm4377->acl_d2h_ring.n_entries = BCM4377_RING_N_ENTRIES;
1776
1777	/*
1778	 * no need for any cleanup since this is only called from _probe
1779	 * and only devres-managed allocations are used
1780	 */
1781	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->control_h2d_ring);
1782	if (ret)
1783		return ret;
1784	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_h2d_ring);
1785	if (ret)
1786		return ret;
1787	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->hci_d2h_ring);
1788	if (ret)
1789		return ret;
1790	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_h2d_ring);
1791	if (ret)
1792		return ret;
1793	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->sco_d2h_ring);
1794	if (ret)
1795		return ret;
1796	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_h2d_ring);
1797	if (ret)
1798		return ret;
1799	ret = bcm4377_alloc_transfer_ring(bcm4377, &bcm4377->acl_d2h_ring);
1800	if (ret)
1801		return ret;
1802
1803	ret = bcm4377_alloc_completion_ring(bcm4377,
1804					    &bcm4377->control_ack_ring);
1805	if (ret)
1806		return ret;
1807	ret = bcm4377_alloc_completion_ring(bcm4377,
1808					    &bcm4377->hci_acl_ack_ring);
1809	if (ret)
1810		return ret;
1811	ret = bcm4377_alloc_completion_ring(bcm4377,
1812					    &bcm4377->hci_acl_event_ring);
1813	if (ret)
1814		return ret;
1815	ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_ack_ring);
1816	if (ret)
1817		return ret;
1818	ret = bcm4377_alloc_completion_ring(bcm4377, &bcm4377->sco_event_ring);
1819	if (ret)
1820		return ret;
1821
1822	dev_dbg(&bcm4377->pdev->dev, "all rings allocated and prepared\n");
1823
1824	return 0;
1825}
1826
1827static int bcm4377_boot(struct bcm4377_data *bcm4377)
1828{
1829	const struct firmware *fw;
1830	void *bfr;
1831	dma_addr_t fw_dma;
1832	int ret = 0;
1833	u32 bootstage, rti_status;
1834
1835	bootstage = ioread32(bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_BOOTSTAGE);
1836	rti_status = ioread32(bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_STATUS);
1837
1838	if (bootstage != 0) {
1839		dev_err(&bcm4377->pdev->dev, "bootstage is %d and not 0\n",
1840			bootstage);
1841		return -EINVAL;
1842	}
1843
1844	if (rti_status != 0) {
1845		dev_err(&bcm4377->pdev->dev, "RTI status is %d and not 0\n",
1846			rti_status);
1847		return -EINVAL;
1848	}
1849
1850	fw = bcm4377_request_blob(bcm4377, "bin");
1851	if (!fw) {
1852		dev_err(&bcm4377->pdev->dev, "Failed to load firmware\n");
1853		return -ENOENT;
1854	}
1855
1856	bfr = dma_alloc_coherent(&bcm4377->pdev->dev, fw->size, &fw_dma,
1857				 GFP_KERNEL);
1858	if (!bfr) {
1859		ret = -ENOMEM;
1860		goto out_release_fw;
1861	}
1862
1863	memcpy(bfr, fw->data, fw->size);
1864
1865	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_LO);
1866	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_HI);
1867	iowrite32(BCM4377_DMA_MASK,
1868		  bcm4377->bar0 + BCM4377_BAR0_HOST_WINDOW_SIZE);
1869
1870	iowrite32(lower_32_bits(fw_dma),
1871		  bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_FW_LO);
1872	iowrite32(upper_32_bits(fw_dma),
1873		  bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_FW_HI);
1874	iowrite32(fw->size,
1875		  bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_FW_SIZE);
1876	iowrite32(0, bcm4377->bar0 + BCM4377_BAR0_FW_DOORBELL);
1877
1878	dev_dbg(&bcm4377->pdev->dev, "waiting for firmware to boot\n");
1879
1880	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1881							BCM4377_BOOT_TIMEOUT);
1882	if (ret == 0) {
1883		ret = -ETIMEDOUT;
1884		goto out_dma_free;
1885	} else if (ret < 0) {
1886		goto out_dma_free;
1887	}
1888
1889	if (bcm4377->bootstage != 2) {
1890		dev_err(&bcm4377->pdev->dev, "boostage %d != 2\n",
1891			bcm4377->bootstage);
1892		ret = -ENXIO;
1893		goto out_dma_free;
1894	}
1895
1896	dev_dbg(&bcm4377->pdev->dev, "firmware has booted (stage = %x)\n",
1897		bcm4377->bootstage);
1898	ret = 0;
1899
1900out_dma_free:
1901	dma_free_coherent(&bcm4377->pdev->dev, fw->size, bfr, fw_dma);
1902out_release_fw:
1903	release_firmware(fw);
1904	return ret;
1905}
1906
1907static int bcm4377_setup_rti(struct bcm4377_data *bcm4377)
1908{
1909	int ret;
1910
1911	dev_dbg(&bcm4377->pdev->dev, "starting RTI\n");
1912	iowrite32(1, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
1913
1914	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1915							BCM4377_TIMEOUT);
1916	if (ret == 0) {
1917		dev_err(&bcm4377->pdev->dev,
1918			"timed out while waiting for RTI to transition to state 1");
1919		return -ETIMEDOUT;
1920	} else if (ret < 0) {
1921		return ret;
1922	}
1923
1924	if (bcm4377->rti_status != 1) {
1925		dev_err(&bcm4377->pdev->dev, "RTI did not ack state 1 (%d)\n",
1926			bcm4377->rti_status);
1927		return -ENODEV;
1928	}
1929	dev_dbg(&bcm4377->pdev->dev, "RTI is in state 1\n");
1930
1931	/* allow access to the entire IOVA space again */
1932	iowrite32(0, bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_WINDOW_LO);
1933	iowrite32(0, bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_WINDOW_HI);
1934	iowrite32(BCM4377_DMA_MASK,
1935		  bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_RTI_WINDOW_SIZE);
1936
1937	/* setup "Converged IPC" context */
1938	iowrite32(lower_32_bits(bcm4377->ctx_dma),
1939		  bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_CONTEXT_ADDR_LO);
1940	iowrite32(upper_32_bits(bcm4377->ctx_dma),
1941		  bcm4377->bar2 + bcm4377->hw->bar2_offset + BCM4377_BAR2_CONTEXT_ADDR_HI);
1942	iowrite32(2, bcm4377->bar0 + BCM4377_BAR0_RTI_CONTROL);
1943
1944	ret = wait_for_completion_interruptible_timeout(&bcm4377->event,
1945							BCM4377_TIMEOUT);
1946	if (ret == 0) {
1947		dev_err(&bcm4377->pdev->dev,
1948			"timed out while waiting for RTI to transition to state 2");
1949		return -ETIMEDOUT;
1950	} else if (ret < 0) {
1951		return ret;
1952	}
1953
1954	if (bcm4377->rti_status != 2) {
1955		dev_err(&bcm4377->pdev->dev, "RTI did not ack state 2 (%d)\n",
1956			bcm4377->rti_status);
1957		return -ENODEV;
1958	}
1959
1960	dev_dbg(&bcm4377->pdev->dev,
1961		"RTI is in state 2; control ring is ready\n");
1962	bcm4377->control_ack_ring.enabled = true;
1963
1964	return 0;
1965}
1966
1967static int bcm4377_parse_otp_board_params(struct bcm4377_data *bcm4377,
1968					  char tag, const char *val, size_t len)
1969{
1970	if (tag != 'V')
1971		return 0;
1972	if (len >= sizeof(bcm4377->vendor))
1973		return -EINVAL;
1974
1975	strscpy(bcm4377->vendor, val, len + 1);
1976	return 0;
1977}
1978
1979static int bcm4377_parse_otp_chip_params(struct bcm4377_data *bcm4377, char tag,
1980					 const char *val, size_t len)
1981{
1982	size_t idx = 0;
1983
1984	if (tag != 's')
1985		return 0;
1986	if (len >= sizeof(bcm4377->stepping))
1987		return -EINVAL;
1988
1989	while (len != 0) {
1990		bcm4377->stepping[idx] = tolower(val[idx]);
1991		if (val[idx] == '\0')
1992			return 0;
1993
1994		idx++;
1995		len--;
1996	}
1997
1998	bcm4377->stepping[idx] = '\0';
1999	return 0;
2000}
2001
2002static int bcm4377_parse_otp_str(struct bcm4377_data *bcm4377, const u8 *str,
2003				 enum bcm4377_otp_params_type type)
2004{
2005	const char *p;
2006	int ret;
2007
2008	p = skip_spaces(str);
2009	while (*p) {
2010		char tag = *p++;
2011		const char *end;
2012		size_t len;
2013
2014		if (*p++ != '=') /* implicit NUL check */
2015			return -EINVAL;
2016
2017		/* *p might be NUL here, if so end == p and len == 0 */
2018		end = strchrnul(p, ' ');
2019		len = end - p;
2020
2021		/* leave 1 byte for NUL in destination string */
2022		if (len > (BCM4377_OTP_MAX_PARAM_LEN - 1))
2023			return -EINVAL;
2024
2025		switch (type) {
2026		case BCM4377_OTP_BOARD_PARAMS:
2027			ret = bcm4377_parse_otp_board_params(bcm4377, tag, p,
2028							     len);
2029			break;
2030		case BCM4377_OTP_CHIP_PARAMS:
2031			ret = bcm4377_parse_otp_chip_params(bcm4377, tag, p,
2032							    len);
2033			break;
2034		default:
2035			ret = -EINVAL;
2036			break;
2037		}
2038
2039		if (ret)
2040			return ret;
2041
2042		/* Skip to next arg, if any */
2043		p = skip_spaces(end);
2044	}
2045
2046	return 0;
2047}
2048
2049static int bcm4377_parse_otp_sys_vendor(struct bcm4377_data *bcm4377, u8 *otp,
2050					size_t size)
2051{
2052	int idx = 4;
2053	const char *chip_params;
2054	const char *board_params;
2055	int ret;
2056
2057	/* 4-byte header and two empty strings */
2058	if (size < 6)
2059		return -EINVAL;
2060
2061	if (get_unaligned_le32(otp) != BCM4377_OTP_VENDOR_HDR)
2062		return -EINVAL;
2063
2064	chip_params = &otp[idx];
2065
2066	/* Skip first string, including terminator */
2067	idx += strnlen(chip_params, size - idx) + 1;
2068	if (idx >= size)
2069		return -EINVAL;
2070
2071	board_params = &otp[idx];
2072
2073	/* Skip to terminator of second string */
2074	idx += strnlen(board_params, size - idx);
2075	if (idx >= size)
2076		return -EINVAL;
2077
2078	/* At this point both strings are guaranteed NUL-terminated */
2079	dev_dbg(&bcm4377->pdev->dev,
2080		"OTP: chip_params='%s' board_params='%s'\n", chip_params,
2081		board_params);
2082
2083	ret = bcm4377_parse_otp_str(bcm4377, chip_params,
2084				    BCM4377_OTP_CHIP_PARAMS);
2085	if (ret)
2086		return ret;
2087
2088	ret = bcm4377_parse_otp_str(bcm4377, board_params,
2089				    BCM4377_OTP_BOARD_PARAMS);
2090	if (ret)
2091		return ret;
2092
2093	if (!bcm4377->stepping[0] || !bcm4377->vendor[0])
2094		return -EINVAL;
2095
2096	dev_dbg(&bcm4377->pdev->dev, "OTP: stepping=%s, vendor=%s\n",
2097		bcm4377->stepping, bcm4377->vendor);
2098	return 0;
2099}
2100
2101static int bcm4377_parse_otp(struct bcm4377_data *bcm4377)
2102{
2103	u8 *otp;
2104	int i;
2105	int ret = -ENOENT;
2106
2107	otp = kzalloc(BCM4377_OTP_SIZE, GFP_KERNEL);
2108	if (!otp)
2109		return -ENOMEM;
2110
2111	for (i = 0; i < BCM4377_OTP_SIZE; ++i)
2112		otp[i] = ioread8(bcm4377->bar0 + bcm4377->hw->otp_offset + i);
2113
2114	i = 0;
2115	while (i < (BCM4377_OTP_SIZE - 1)) {
2116		u8 type = otp[i];
2117		u8 length = otp[i + 1];
2118
2119		if (type == 0)
2120			break;
2121
2122		if ((i + 2 + length) > BCM4377_OTP_SIZE)
2123			break;
2124
2125		switch (type) {
2126		case BCM4377_OTP_SYS_VENDOR:
2127			dev_dbg(&bcm4377->pdev->dev,
2128				"OTP @ 0x%x (%d): SYS_VENDOR", i, length);
2129			ret = bcm4377_parse_otp_sys_vendor(bcm4377, &otp[i + 2],
2130							   length);
2131			break;
2132		case BCM4377_OTP_CIS:
2133			dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): CIS", i,
2134				length);
2135			break;
2136		default:
2137			dev_dbg(&bcm4377->pdev->dev, "OTP @ 0x%x (%d): unknown",
2138				i, length);
2139			break;
2140		}
2141
2142		i += 2 + length;
2143	}
2144
2145	kfree(otp);
2146	return ret;
2147}
2148
2149static int bcm4377_init_cfg(struct bcm4377_data *bcm4377)
2150{
2151	int ret;
2152	u32 ctrl;
2153
2154	ret = pci_write_config_dword(bcm4377->pdev,
2155				     BCM4377_PCIECFG_BAR0_WINDOW1,
2156				     bcm4377->hw->bar0_window1);
2157	if (ret)
2158		return ret;
2159
2160	ret = pci_write_config_dword(bcm4377->pdev,
2161				     BCM4377_PCIECFG_BAR0_WINDOW2,
2162				     bcm4377->hw->bar0_window2);
2163	if (ret)
2164		return ret;
2165
2166	ret = pci_write_config_dword(
2167		bcm4377->pdev, BCM4377_PCIECFG_BAR0_CORE2_WINDOW1,
2168		BCM4377_PCIECFG_BAR0_CORE2_WINDOW1_DEFAULT);
2169	if (ret)
2170		return ret;
2171
2172	if (bcm4377->hw->has_bar0_core2_window2) {
2173		ret = pci_write_config_dword(bcm4377->pdev,
2174					     BCM4377_PCIECFG_BAR0_CORE2_WINDOW2,
2175					     bcm4377->hw->bar0_core2_window2);
2176		if (ret)
2177			return ret;
2178	}
2179
2180	ret = pci_write_config_dword(bcm4377->pdev, BCM4377_PCIECFG_BAR2_WINDOW,
2181				     BCM4377_PCIECFG_BAR2_WINDOW_DEFAULT);
2182	if (ret)
2183		return ret;
2184
2185	ret = pci_read_config_dword(bcm4377->pdev,
2186				    BCM4377_PCIECFG_SUBSYSTEM_CTRL, &ctrl);
2187	if (ret)
2188		return ret;
2189
2190	if (bcm4377->hw->clear_pciecfg_subsystem_ctrl_bit19)
2191		ctrl &= ~BIT(19);
2192	ctrl |= BIT(16);
2193
2194	return pci_write_config_dword(bcm4377->pdev,
2195				      BCM4377_PCIECFG_SUBSYSTEM_CTRL, ctrl);
2196}
2197
2198static int bcm4377_probe_dmi(struct bcm4377_data *bcm4377)
2199{
2200	const struct dmi_system_id *board_type_dmi_id;
2201
2202	board_type_dmi_id = dmi_first_match(bcm4377_dmi_board_table);
2203	if (board_type_dmi_id && board_type_dmi_id->driver_data) {
2204		bcm4377->board_type = board_type_dmi_id->driver_data;
2205		dev_dbg(&bcm4377->pdev->dev,
2206			"found board type via DMI match: %s\n",
2207			bcm4377->board_type);
2208	}
2209
2210	return 0;
2211}
2212
2213static int bcm4377_probe_of(struct bcm4377_data *bcm4377)
2214{
2215	struct device_node *np = bcm4377->pdev->dev.of_node;
2216	int ret;
2217
2218	if (!np)
2219		return 0;
2220
2221	ret = of_property_read_string(np, "brcm,board-type",
2222				      &bcm4377->board_type);
2223	if (ret) {
2224		dev_err(&bcm4377->pdev->dev, "no brcm,board-type property\n");
2225		return ret;
2226	}
2227
2228	bcm4377->taurus_beamforming_cal_blob =
2229		of_get_property(np, "brcm,taurus-bf-cal-blob",
2230				&bcm4377->taurus_beamforming_cal_size);
2231	if (!bcm4377->taurus_beamforming_cal_blob) {
2232		dev_err(&bcm4377->pdev->dev,
2233			"no brcm,taurus-bf-cal-blob property\n");
2234		return -ENOENT;
2235	}
2236	bcm4377->taurus_cal_blob = of_get_property(np, "brcm,taurus-cal-blob",
2237						   &bcm4377->taurus_cal_size);
2238	if (!bcm4377->taurus_cal_blob) {
2239		dev_err(&bcm4377->pdev->dev,
2240			"no brcm,taurus-cal-blob property\n");
2241		return -ENOENT;
2242	}
2243
2244	return 0;
2245}
2246
2247static void bcm4377_disable_aspm(struct bcm4377_data *bcm4377)
2248{
2249	pci_disable_link_state(bcm4377->pdev,
2250			       PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1);
2251
2252	/*
2253	 * pci_disable_link_state can fail if either CONFIG_PCIEASPM is disabled
2254	 * or if the BIOS hasn't handed over control to us. We must *always*
2255	 * disable ASPM for this device due to hardware errata though.
2256	 */
2257	pcie_capability_clear_word(bcm4377->pdev, PCI_EXP_LNKCTL,
2258				   PCI_EXP_LNKCTL_ASPMC);
2259}
2260
2261static void bcm4377_pci_free_irq_vectors(void *data)
2262{
2263	pci_free_irq_vectors(data);
2264}
2265
2266static void bcm4377_hci_free_dev(void *data)
2267{
2268	hci_free_dev(data);
2269}
2270
2271static void bcm4377_hci_unregister_dev(void *data)
2272{
2273	hci_unregister_dev(data);
2274}
2275
2276static int bcm4377_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2277{
2278	struct bcm4377_data *bcm4377;
2279	struct hci_dev *hdev;
2280	int ret, irq;
2281
2282	ret = dma_set_mask_and_coherent(&pdev->dev, BCM4377_DMA_MASK);
2283	if (ret)
2284		return ret;
2285
2286	bcm4377 = devm_kzalloc(&pdev->dev, sizeof(*bcm4377), GFP_KERNEL);
2287	if (!bcm4377)
2288		return -ENOMEM;
2289
2290	bcm4377->pdev = pdev;
2291	bcm4377->hw = &bcm4377_hw_variants[id->driver_data];
2292	init_completion(&bcm4377->event);
2293
2294	ret = bcm4377_prepare_rings(bcm4377);
2295	if (ret)
2296		return ret;
2297
2298	ret = bcm4377_init_context(bcm4377);
2299	if (ret)
2300		return ret;
2301
2302	ret = bcm4377_probe_dmi(bcm4377);
2303	if (ret)
2304		return ret;
2305	ret = bcm4377_probe_of(bcm4377);
2306	if (ret)
2307		return ret;
2308	if (!bcm4377->board_type) {
2309		dev_err(&pdev->dev, "unable to determine board type\n");
2310		return -ENODEV;
2311	}
2312
2313	if (bcm4377->hw->disable_aspm)
2314		bcm4377_disable_aspm(bcm4377);
2315
2316	ret = pci_reset_function_locked(pdev);
2317	if (ret)
2318		dev_warn(
2319			&pdev->dev,
2320			"function level reset failed with %d; trying to continue anyway\n",
2321			ret);
2322
2323	/*
2324	 * If this number is too low and we try to access any BAR too
2325	 * early the device will crash. Experiments have shown that
2326	 * approximately 50 msec is the minimum amount we have to wait.
2327	 * Let's double that to be safe.
2328	 */
2329	msleep(100);
2330
2331	ret = pcim_enable_device(pdev);
2332	if (ret)
2333		return ret;
2334	pci_set_master(pdev);
2335
2336	ret = bcm4377_init_cfg(bcm4377);
2337	if (ret)
2338		return ret;
2339
2340	bcm4377->bar0 = pcim_iomap(pdev, 0, 0);
2341	if (!bcm4377->bar0)
2342		return -EBUSY;
2343	bcm4377->bar2 = pcim_iomap(pdev, 2, 0);
2344	if (!bcm4377->bar2)
2345		return -EBUSY;
2346
2347	ret = bcm4377_parse_otp(bcm4377);
2348	if (ret) {
2349		dev_err(&pdev->dev, "Reading OTP failed with %d\n", ret);
2350		return ret;
2351	}
2352
2353	/*
2354	 * Legacy interrupts result in an IRQ storm because we don't know where
2355	 * the interrupt mask and status registers for these chips are.
2356	 * MSIs are acked automatically instead.
2357	 */
2358	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
2359	if (ret < 0)
2360		return -ENODEV;
2361	ret = devm_add_action_or_reset(&pdev->dev, bcm4377_pci_free_irq_vectors,
2362				       pdev);
2363	if (ret)
2364		return ret;
2365
2366	irq = pci_irq_vector(pdev, 0);
2367	if (irq <= 0)
2368		return -ENODEV;
2369
2370	ret = devm_request_irq(&pdev->dev, irq, bcm4377_irq, 0, "bcm4377",
2371			       bcm4377);
2372	if (ret)
2373		return ret;
2374
2375	hdev = hci_alloc_dev();
2376	if (!hdev)
2377		return -ENOMEM;
2378	ret = devm_add_action_or_reset(&pdev->dev, bcm4377_hci_free_dev, hdev);
2379	if (ret)
2380		return ret;
2381
2382	bcm4377->hdev = hdev;
2383
2384	hdev->bus = HCI_PCI;
2385	hdev->open = bcm4377_hci_open;
2386	hdev->close = bcm4377_hci_close;
2387	hdev->send = bcm4377_hci_send_frame;
2388	hdev->set_bdaddr = bcm4377_hci_set_bdaddr;
2389	hdev->setup = bcm4377_hci_setup;
2390
2391	if (bcm4377->hw->broken_mws_transport_config)
2392		set_bit(HCI_QUIRK_BROKEN_MWS_TRANSPORT_CONFIG, &hdev->quirks);
2393	if (bcm4377->hw->broken_ext_scan)
2394		set_bit(HCI_QUIRK_BROKEN_EXT_SCAN, &hdev->quirks);
2395	if (bcm4377->hw->broken_le_coded)
2396		set_bit(HCI_QUIRK_BROKEN_LE_CODED, &hdev->quirks);
2397	if (bcm4377->hw->broken_le_ext_adv_report_phy)
2398		set_bit(HCI_QUIRK_FIXUP_LE_EXT_ADV_REPORT_PHY, &hdev->quirks);
2399
2400	pci_set_drvdata(pdev, bcm4377);
2401	hci_set_drvdata(hdev, bcm4377);
2402	SET_HCIDEV_DEV(hdev, &pdev->dev);
2403
2404	ret = bcm4377_boot(bcm4377);
2405	if (ret)
2406		return ret;
2407
2408	ret = bcm4377_setup_rti(bcm4377);
2409	if (ret)
2410		return ret;
2411
2412	ret = hci_register_dev(hdev);
2413	if (ret)
2414		return ret;
2415	return devm_add_action_or_reset(&pdev->dev, bcm4377_hci_unregister_dev,
2416					hdev);
2417}
2418
2419static int bcm4377_suspend(struct pci_dev *pdev, pm_message_t state)
2420{
2421	struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
2422	int ret;
2423
2424	ret = hci_suspend_dev(bcm4377->hdev);
2425	if (ret)
2426		return ret;
2427
2428	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_QUIESCE,
2429		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
2430
2431	return 0;
2432}
2433
2434static int bcm4377_resume(struct pci_dev *pdev)
2435{
2436	struct bcm4377_data *bcm4377 = pci_get_drvdata(pdev);
2437
2438	iowrite32(BCM4377_BAR0_SLEEP_CONTROL_UNQUIESCE,
2439		  bcm4377->bar0 + BCM4377_BAR0_SLEEP_CONTROL);
2440
2441	return hci_resume_dev(bcm4377->hdev);
2442}
2443
2444static const struct dmi_system_id bcm4377_dmi_board_table[] = {
2445	{
2446		.matches = {
2447			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2448			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookAir9,1"),
2449		},
2450		.driver_data = "apple,formosa",
2451	},
2452	{
2453		.matches = {
2454			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2455			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro15,4"),
2456		},
2457		.driver_data = "apple,formosa",
2458	},
2459	{
2460		.matches = {
2461			DMI_MATCH(DMI_BOARD_VENDOR, "Apple Inc."),
2462			DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro16,3"),
2463		},
2464		.driver_data = "apple,formosa",
2465	},
2466	{}
2467};
2468
2469static const struct bcm4377_hw bcm4377_hw_variants[] = {
2470	[BCM4377] = {
2471		.id = 0x4377,
2472		.otp_offset = 0x4120,
2473		.bar0_window1 = 0x1800b000,
2474		.bar0_window2 = 0x1810c000,
2475		.disable_aspm = true,
2476		.broken_ext_scan = true,
2477		.send_ptb = bcm4377_send_ptb,
2478	},
2479
2480	[BCM4378] = {
2481		.id = 0x4378,
2482		.otp_offset = 0x4120,
2483		.bar0_window1 = 0x18002000,
2484		.bar0_window2 = 0x1810a000,
2485		.bar0_core2_window2 = 0x18107000,
2486		.has_bar0_core2_window2 = true,
2487		.broken_mws_transport_config = true,
2488		.broken_le_coded = true,
2489		.send_calibration = bcm4378_send_calibration,
2490		.send_ptb = bcm4378_send_ptb,
2491	},
2492
2493	[BCM4387] = {
2494		.id = 0x4387,
2495		.otp_offset = 0x413c,
2496		.bar0_window1 = 0x18002000,
2497		.bar0_window2 = 0x18109000,
2498		.bar0_core2_window2 = 0x18106000,
2499		.has_bar0_core2_window2 = true,
2500		.clear_pciecfg_subsystem_ctrl_bit19 = true,
2501		.broken_mws_transport_config = true,
2502		.broken_le_coded = true,
2503		.broken_le_ext_adv_report_phy = true,
2504		.send_calibration = bcm4387_send_calibration,
2505		.send_ptb = bcm4378_send_ptb,
2506	},
2507
2508	[BCM4388] = {
2509		.id = 0x4388,
2510		.otp_offset = 0x415c,
2511		.bar2_offset = 0x200000,
2512		.bar0_window1 = 0x18002000,
2513		.bar0_window2 = 0x18109000,
2514		.bar0_core2_window2 = 0x18106000,
2515		.has_bar0_core2_window2 = true,
2516		.broken_mws_transport_config = true,
2517		.broken_le_coded = true,
2518		.broken_le_ext_adv_report_phy = true,
2519		.send_calibration = bcm4388_send_calibration,
2520		.send_ptb = bcm4378_send_ptb,
2521	},
2522};
2523
2524#define BCM4377_DEVID_ENTRY(id)                                             \
2525	{                                                                   \
2526		PCI_VENDOR_ID_BROADCOM, BCM##id##_DEVICE_ID, PCI_ANY_ID,    \
2527			PCI_ANY_ID, PCI_CLASS_NETWORK_OTHER << 8, 0xffff00, \
2528			BCM##id                                             \
2529	}
2530
2531static const struct pci_device_id bcm4377_devid_table[] = {
2532	BCM4377_DEVID_ENTRY(4377),
2533	BCM4377_DEVID_ENTRY(4378),
2534	BCM4377_DEVID_ENTRY(4387),
2535	BCM4377_DEVID_ENTRY(4388),
2536	{},
2537};
2538MODULE_DEVICE_TABLE(pci, bcm4377_devid_table);
2539
2540static struct pci_driver bcm4377_pci_driver = {
2541	.name = "hci_bcm4377",
2542	.id_table = bcm4377_devid_table,
2543	.probe = bcm4377_probe,
2544	.suspend = bcm4377_suspend,
2545	.resume = bcm4377_resume,
2546};
2547module_pci_driver(bcm4377_pci_driver);
2548
2549MODULE_AUTHOR("Sven Peter <sven@svenpeter.dev>");
2550MODULE_DESCRIPTION("Bluetooth support for Broadcom 4377/4378/4387/4388 devices");
2551MODULE_LICENSE("Dual MIT/GPL");
2552MODULE_FIRMWARE("brcm/brcmbt4377*.bin");
2553MODULE_FIRMWARE("brcm/brcmbt4377*.ptb");
2554MODULE_FIRMWARE("brcm/brcmbt4378*.bin");
2555MODULE_FIRMWARE("brcm/brcmbt4378*.ptb");
2556MODULE_FIRMWARE("brcm/brcmbt4387*.bin");
2557MODULE_FIRMWARE("brcm/brcmbt4387*.ptb");
2558MODULE_FIRMWARE("brcm/brcmbt4388*.bin");
2559MODULE_FIRMWARE("brcm/brcmbt4388*.ptb");