Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*  KVM paravirtual clock driver. A clocksource implementation
  3    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4*/
  5
  6#include <linux/clocksource.h>
  7#include <linux/kvm_para.h>
  8#include <asm/pvclock.h>
  9#include <asm/msr.h>
 10#include <asm/apic.h>
 11#include <linux/percpu.h>
 12#include <linux/hardirq.h>
 13#include <linux/cpuhotplug.h>
 14#include <linux/sched.h>
 15#include <linux/sched/clock.h>
 16#include <linux/mm.h>
 17#include <linux/slab.h>
 18#include <linux/set_memory.h>
 19#include <linux/cc_platform.h>
 20
 21#include <asm/hypervisor.h>
 22#include <asm/x86_init.h>
 23#include <asm/kvmclock.h>
 24
 25static int kvmclock __initdata = 1;
 26static int kvmclock_vsyscall __initdata = 1;
 27static int msr_kvm_system_time __ro_after_init;
 28static int msr_kvm_wall_clock __ro_after_init;
 29static u64 kvm_sched_clock_offset __ro_after_init;
 30
 31static int __init parse_no_kvmclock(char *arg)
 32{
 33	kvmclock = 0;
 34	return 0;
 35}
 36early_param("no-kvmclock", parse_no_kvmclock);
 37
 38static int __init parse_no_kvmclock_vsyscall(char *arg)
 39{
 40	kvmclock_vsyscall = 0;
 41	return 0;
 42}
 43early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
 44
 45/* Aligned to page sizes to match what's mapped via vsyscalls to userspace */
 46#define HVC_BOOT_ARRAY_SIZE \
 47	(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
 48
 49static struct pvclock_vsyscall_time_info
 50			hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
 51static struct pvclock_wall_clock wall_clock __bss_decrypted;
 52static struct pvclock_vsyscall_time_info *hvclock_mem;
 53DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
 54EXPORT_PER_CPU_SYMBOL_GPL(hv_clock_per_cpu);
 55
 56/*
 57 * The wallclock is the time of day when we booted. Since then, some time may
 58 * have elapsed since the hypervisor wrote the data. So we try to account for
 59 * that with system time
 60 */
 61static void kvm_get_wallclock(struct timespec64 *now)
 62{
 63	wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
 
 
 
 
 
 
 
 
 64	preempt_disable();
 65	pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
 
 
 
 
 66	preempt_enable();
 67}
 68
 69static int kvm_set_wallclock(const struct timespec64 *now)
 70{
 71	return -ENODEV;
 72}
 73
 74static u64 kvm_clock_read(void)
 75{
 76	u64 ret;
 
 
 77
 78	preempt_disable_notrace();
 79	ret = pvclock_clocksource_read_nowd(this_cpu_pvti());
 
 
 80	preempt_enable_notrace();
 81	return ret;
 82}
 83
 84static u64 kvm_clock_get_cycles(struct clocksource *cs)
 85{
 86	return kvm_clock_read();
 87}
 88
 89static noinstr u64 kvm_sched_clock_read(void)
 90{
 91	return pvclock_clocksource_read_nowd(this_cpu_pvti()) - kvm_sched_clock_offset;
 92}
 93
 94static inline void kvm_sched_clock_init(bool stable)
 95{
 96	if (!stable)
 97		clear_sched_clock_stable();
 98	kvm_sched_clock_offset = kvm_clock_read();
 99	paravirt_set_sched_clock(kvm_sched_clock_read);
100
101	pr_info("kvm-clock: using sched offset of %llu cycles",
102		kvm_sched_clock_offset);
103
104	BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
105		sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
106}
107
108/*
109 * If we don't do that, there is the possibility that the guest
110 * will calibrate under heavy load - thus, getting a lower lpj -
111 * and execute the delays themselves without load. This is wrong,
112 * because no delay loop can finish beforehand.
113 * Any heuristics is subject to fail, because ultimately, a large
114 * poll of guests can be running and trouble each other. So we preset
115 * lpj here
116 */
117static unsigned long kvm_get_tsc_khz(void)
118{
119	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
120	return pvclock_tsc_khz(this_cpu_pvti());
 
 
 
 
 
 
 
 
121}
122
123static void __init kvm_get_preset_lpj(void)
124{
125	unsigned long khz;
126	u64 lpj;
127
128	khz = kvm_get_tsc_khz();
129
130	lpj = ((u64)khz * 1000);
131	do_div(lpj, HZ);
132	preset_lpj = lpj;
133}
134
135bool kvm_check_and_clear_guest_paused(void)
136{
137	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
138	bool ret = false;
 
 
139
140	if (!src)
141		return ret;
142
143	if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
144		src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
 
145		pvclock_touch_watchdogs();
146		ret = true;
147	}
148	return ret;
149}
150
151static int kvm_cs_enable(struct clocksource *cs)
152{
153	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
154	return 0;
155}
156
157static struct clocksource kvm_clock = {
158	.name	= "kvm-clock",
159	.read	= kvm_clock_get_cycles,
160	.rating	= 400,
161	.mask	= CLOCKSOURCE_MASK(64),
162	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
163	.id     = CSID_X86_KVM_CLK,
164	.enable	= kvm_cs_enable,
165};
166
167static void kvm_register_clock(char *txt)
168{
169	struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
170	u64 pa;
 
171
172	if (!src)
173		return;
 
 
 
 
 
 
 
174
175	pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
176	wrmsrl(msr_kvm_system_time, pa);
177	pr_debug("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
178}
179
180static void kvm_save_sched_clock_state(void)
181{
182}
183
184static void kvm_restore_sched_clock_state(void)
185{
186	kvm_register_clock("primary cpu clock, resume");
187}
188
189#ifdef CONFIG_X86_LOCAL_APIC
190static void kvm_setup_secondary_clock(void)
191{
192	kvm_register_clock("secondary cpu clock");
 
 
 
 
193}
194#endif
195
196void kvmclock_disable(void)
 
 
 
 
 
 
 
 
 
197{
198	if (msr_kvm_system_time)
199		native_write_msr(msr_kvm_system_time, 0, 0);
 
200}
 
201
202static void __init kvmclock_init_mem(void)
203{
204	unsigned long ncpus;
205	unsigned int order;
206	struct page *p;
207	int r;
208
209	if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
210		return;
 
 
211
212	ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
213	order = get_order(ncpus * sizeof(*hvclock_mem));
214
215	p = alloc_pages(GFP_KERNEL, order);
216	if (!p) {
217		pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
218		return;
219	}
220
221	hvclock_mem = page_address(p);
222
223	/*
224	 * hvclock is shared between the guest and the hypervisor, must
225	 * be mapped decrypted.
226	 */
227	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
228		r = set_memory_decrypted((unsigned long) hvclock_mem,
229					 1UL << order);
230		if (r) {
231			__free_pages(p, order);
232			hvclock_mem = NULL;
233			pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
234			return;
235		}
236	}
237
238	memset(hvclock_mem, 0, PAGE_SIZE << order);
239}
240
241static int __init kvm_setup_vsyscall_timeinfo(void)
242{
243	if (!kvm_para_available() || !kvmclock || nopv)
244		return 0;
245
246	kvmclock_init_mem();
247
248#ifdef CONFIG_X86_64
249	if (per_cpu(hv_clock_per_cpu, 0) && kvmclock_vsyscall) {
250		u8 flags;
251
252		flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
253		if (!(flags & PVCLOCK_TSC_STABLE_BIT))
254			return 0;
 
 
255
256		kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
 
 
 
257	}
 
 
 
 
 
 
 
258#endif
 
 
 
 
 
 
 
 
 
 
259
260	return 0;
 
261}
262early_initcall(kvm_setup_vsyscall_timeinfo);
263
264static int kvmclock_setup_percpu(unsigned int cpu)
265{
266	struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
 
 
 
 
 
267
268	/*
269	 * The per cpu area setup replicates CPU0 data to all cpu
270	 * pointers. So carefully check. CPU0 has been set up in init
271	 * already.
272	 */
273	if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
274		return 0;
275
276	/* Use the static page for the first CPUs, allocate otherwise */
277	if (cpu < HVC_BOOT_ARRAY_SIZE)
278		p = &hv_clock_boot[cpu];
279	else if (hvclock_mem)
280		p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
281	else
282		return -ENOMEM;
283
284	per_cpu(hv_clock_per_cpu, cpu) = p;
285	return p ? 0 : -ENOMEM;
286}
287
288void __init kvmclock_init(void)
289{
290	u8 flags;
291
292	if (!kvm_para_available() || !kvmclock)
293		return;
294
295	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
296		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
297		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
298	} else if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
299		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
300		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
301	} else {
302		return;
303	}
304
305	if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
306			      kvmclock_setup_percpu, NULL) < 0) {
307		return;
308	}
309
310	pr_info("kvm-clock: Using msrs %x and %x",
311		msr_kvm_system_time, msr_kvm_wall_clock);
312
313	this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
314	kvm_register_clock("primary cpu clock");
315	pvclock_set_pvti_cpu0_va(hv_clock_boot);
316
317	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
318		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
319
320	flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
321	kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
322
323	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
324	x86_platform.calibrate_cpu = kvm_get_tsc_khz;
325	x86_platform.get_wallclock = kvm_get_wallclock;
326	x86_platform.set_wallclock = kvm_set_wallclock;
327#ifdef CONFIG_X86_LOCAL_APIC
328	x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
329#endif
330	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
331	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
332	kvm_get_preset_lpj();
333
334	/*
335	 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
336	 * with P/T states and does not stop in deep C-states.
337	 *
338	 * Invariant TSC exposed by host means kvmclock is not necessary:
339	 * can use TSC as clocksource.
340	 *
341	 */
342	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
343	    boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
344	    !check_tsc_unstable())
345		kvm_clock.rating = 299;
346
347	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
348	pv_info.name = "KVM";
349}
v3.15
 
  1/*  KVM paravirtual clock driver. A clocksource implementation
  2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
  3
  4    This program is free software; you can redistribute it and/or modify
  5    it under the terms of the GNU General Public License as published by
  6    the Free Software Foundation; either version 2 of the License, or
  7    (at your option) any later version.
  8
  9    This program is distributed in the hope that it will be useful,
 10    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12    GNU General Public License for more details.
 13
 14    You should have received a copy of the GNU General Public License
 15    along with this program; if not, write to the Free Software
 16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17*/
 18
 19#include <linux/clocksource.h>
 20#include <linux/kvm_para.h>
 21#include <asm/pvclock.h>
 22#include <asm/msr.h>
 23#include <asm/apic.h>
 24#include <linux/percpu.h>
 25#include <linux/hardirq.h>
 26#include <linux/memblock.h>
 
 
 
 
 
 
 27
 
 28#include <asm/x86_init.h>
 29#include <asm/reboot.h>
 30
 31static int kvmclock = 1;
 32static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
 33static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
 
 
 34
 35static int parse_no_kvmclock(char *arg)
 36{
 37	kvmclock = 0;
 38	return 0;
 39}
 40early_param("no-kvmclock", parse_no_kvmclock);
 41
 42/* The hypervisor will put information about time periodically here */
 43static struct pvclock_vsyscall_time_info *hv_clock;
 44static struct pvclock_wall_clock wall_clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 45
 46/*
 47 * The wallclock is the time of day when we booted. Since then, some time may
 48 * have elapsed since the hypervisor wrote the data. So we try to account for
 49 * that with system time
 50 */
 51static void kvm_get_wallclock(struct timespec *now)
 52{
 53	struct pvclock_vcpu_time_info *vcpu_time;
 54	int low, high;
 55	int cpu;
 56
 57	low = (int)__pa_symbol(&wall_clock);
 58	high = ((u64)__pa_symbol(&wall_clock) >> 32);
 59
 60	native_write_msr(msr_kvm_wall_clock, low, high);
 61
 62	preempt_disable();
 63	cpu = smp_processor_id();
 64
 65	vcpu_time = &hv_clock[cpu].pvti;
 66	pvclock_read_wallclock(&wall_clock, vcpu_time, now);
 67
 68	preempt_enable();
 69}
 70
 71static int kvm_set_wallclock(const struct timespec *now)
 72{
 73	return -1;
 74}
 75
 76static cycle_t kvm_clock_read(void)
 77{
 78	struct pvclock_vcpu_time_info *src;
 79	cycle_t ret;
 80	int cpu;
 81
 82	preempt_disable_notrace();
 83	cpu = smp_processor_id();
 84	src = &hv_clock[cpu].pvti;
 85	ret = pvclock_clocksource_read(src);
 86	preempt_enable_notrace();
 87	return ret;
 88}
 89
 90static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
 91{
 92	return kvm_clock_read();
 93}
 94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95/*
 96 * If we don't do that, there is the possibility that the guest
 97 * will calibrate under heavy load - thus, getting a lower lpj -
 98 * and execute the delays themselves without load. This is wrong,
 99 * because no delay loop can finish beforehand.
100 * Any heuristics is subject to fail, because ultimately, a large
101 * poll of guests can be running and trouble each other. So we preset
102 * lpj here
103 */
104static unsigned long kvm_get_tsc_khz(void)
105{
106	struct pvclock_vcpu_time_info *src;
107	int cpu;
108	unsigned long tsc_khz;
109
110	preempt_disable();
111	cpu = smp_processor_id();
112	src = &hv_clock[cpu].pvti;
113	tsc_khz = pvclock_tsc_khz(src);
114	preempt_enable();
115	return tsc_khz;
116}
117
118static void kvm_get_preset_lpj(void)
119{
120	unsigned long khz;
121	u64 lpj;
122
123	khz = kvm_get_tsc_khz();
124
125	lpj = ((u64)khz * 1000);
126	do_div(lpj, HZ);
127	preset_lpj = lpj;
128}
129
130bool kvm_check_and_clear_guest_paused(void)
131{
 
132	bool ret = false;
133	struct pvclock_vcpu_time_info *src;
134	int cpu = smp_processor_id();
135
136	if (!hv_clock)
137		return ret;
138
139	src = &hv_clock[cpu].pvti;
140	if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
141		src->flags &= ~PVCLOCK_GUEST_STOPPED;
142		pvclock_touch_watchdogs();
143		ret = true;
144	}
 
 
145
146	return ret;
 
 
 
147}
148
149static struct clocksource kvm_clock = {
150	.name = "kvm-clock",
151	.read = kvm_clock_get_cycles,
152	.rating = 400,
153	.mask = CLOCKSOURCE_MASK(64),
154	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 
 
155};
156
157int kvm_register_clock(char *txt)
158{
159	int cpu = smp_processor_id();
160	int low, high, ret;
161	struct pvclock_vcpu_time_info *src;
162
163	if (!hv_clock)
164		return 0;
165
166	src = &hv_clock[cpu].pvti;
167	low = (int)slow_virt_to_phys(src) | 1;
168	high = ((u64)slow_virt_to_phys(src) >> 32);
169	ret = native_write_msr_safe(msr_kvm_system_time, low, high);
170	printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
171	       cpu, high, low, txt);
172
173	return ret;
 
 
174}
175
176static void kvm_save_sched_clock_state(void)
177{
178}
179
180static void kvm_restore_sched_clock_state(void)
181{
182	kvm_register_clock("primary cpu clock, resume");
183}
184
185#ifdef CONFIG_X86_LOCAL_APIC
186static void kvm_setup_secondary_clock(void)
187{
188	/*
189	 * Now that the first cpu already had this clocksource initialized,
190	 * we shouldn't fail.
191	 */
192	WARN_ON(kvm_register_clock("secondary cpu clock"));
193}
194#endif
195
196/*
197 * After the clock is registered, the host will keep writing to the
198 * registered memory location. If the guest happens to shutdown, this memory
199 * won't be valid. In cases like kexec, in which you install a new kernel, this
200 * means a random memory location will be kept being written. So before any
201 * kind of shutdown from our side, we unregister the clock by writting anything
202 * that does not have the 'enable' bit set in the msr
203 */
204#ifdef CONFIG_KEXEC
205static void kvm_crash_shutdown(struct pt_regs *regs)
206{
207	native_write_msr(msr_kvm_system_time, 0, 0);
208	kvm_disable_steal_time();
209	native_machine_crash_shutdown(regs);
210}
211#endif
212
213static void kvm_shutdown(void)
214{
215	native_write_msr(msr_kvm_system_time, 0, 0);
216	kvm_disable_steal_time();
217	native_machine_shutdown();
218}
219
220void __init kvmclock_init(void)
221{
222	unsigned long mem;
223	int size;
224
225	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
 
226
227	if (!kvm_para_available())
 
 
228		return;
 
 
 
229
230	if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
231		msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
232		msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
233	} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
234		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235
236	printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
237		msr_kvm_system_time, msr_kvm_wall_clock);
 
238
239	mem = memblock_alloc(size, PAGE_SIZE);
240	if (!mem)
241		return;
242	hv_clock = __va(mem);
243	memset(hv_clock, 0, size);
244
245	if (kvm_register_clock("primary cpu clock")) {
246		hv_clock = NULL;
247		memblock_free(mem, size);
248		return;
249	}
250	pv_time_ops.sched_clock = kvm_clock_read;
251	x86_platform.calibrate_tsc = kvm_get_tsc_khz;
252	x86_platform.get_wallclock = kvm_get_wallclock;
253	x86_platform.set_wallclock = kvm_set_wallclock;
254#ifdef CONFIG_X86_LOCAL_APIC
255	x86_cpuinit.early_percpu_clock_init =
256		kvm_setup_secondary_clock;
257#endif
258	x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
259	x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
260	machine_ops.shutdown  = kvm_shutdown;
261#ifdef CONFIG_KEXEC
262	machine_ops.crash_shutdown  = kvm_crash_shutdown;
263#endif
264	kvm_get_preset_lpj();
265	clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
266	pv_info.paravirt_enabled = 1;
267	pv_info.name = "KVM";
268
269	if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
270		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
271}
 
272
273int __init kvm_setup_vsyscall_timeinfo(void)
274{
275#ifdef CONFIG_X86_64
276	int cpu;
277	int ret;
278	u8 flags;
279	struct pvclock_vcpu_time_info *vcpu_time;
280	unsigned int size;
281
282	if (!hv_clock)
 
 
 
 
 
283		return 0;
284
285	size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
 
 
 
 
 
 
286
287	preempt_disable();
288	cpu = smp_processor_id();
 
 
 
 
 
289
290	vcpu_time = &hv_clock[cpu].pvti;
291	flags = pvclock_read_flags(vcpu_time);
292
293	if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
294		preempt_enable();
295		return 1;
 
 
 
 
 
296	}
297
298	if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
299		preempt_enable();
300		return ret;
301	}
302
303	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
304
305	kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
 
 
 
 
 
306#endif
307	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308}