Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* KVM paravirtual clock driver. A clocksource implementation
3 Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
4*/
5
6#include <linux/clocksource.h>
7#include <linux/kvm_para.h>
8#include <asm/pvclock.h>
9#include <asm/msr.h>
10#include <asm/apic.h>
11#include <linux/percpu.h>
12#include <linux/hardirq.h>
13#include <linux/cpuhotplug.h>
14#include <linux/sched.h>
15#include <linux/sched/clock.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/set_memory.h>
19#include <linux/cc_platform.h>
20
21#include <asm/hypervisor.h>
22#include <asm/x86_init.h>
23#include <asm/kvmclock.h>
24
25static int kvmclock __initdata = 1;
26static int kvmclock_vsyscall __initdata = 1;
27static int msr_kvm_system_time __ro_after_init;
28static int msr_kvm_wall_clock __ro_after_init;
29static u64 kvm_sched_clock_offset __ro_after_init;
30
31static int __init parse_no_kvmclock(char *arg)
32{
33 kvmclock = 0;
34 return 0;
35}
36early_param("no-kvmclock", parse_no_kvmclock);
37
38static int __init parse_no_kvmclock_vsyscall(char *arg)
39{
40 kvmclock_vsyscall = 0;
41 return 0;
42}
43early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
44
45/* Aligned to page sizes to match what's mapped via vsyscalls to userspace */
46#define HVC_BOOT_ARRAY_SIZE \
47 (PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
48
49static struct pvclock_vsyscall_time_info
50 hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE);
51static struct pvclock_wall_clock wall_clock __bss_decrypted;
52static struct pvclock_vsyscall_time_info *hvclock_mem;
53DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
54EXPORT_PER_CPU_SYMBOL_GPL(hv_clock_per_cpu);
55
56/*
57 * The wallclock is the time of day when we booted. Since then, some time may
58 * have elapsed since the hypervisor wrote the data. So we try to account for
59 * that with system time
60 */
61static void kvm_get_wallclock(struct timespec64 *now)
62{
63 wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
64 preempt_disable();
65 pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
66 preempt_enable();
67}
68
69static int kvm_set_wallclock(const struct timespec64 *now)
70{
71 return -ENODEV;
72}
73
74static u64 kvm_clock_read(void)
75{
76 u64 ret;
77
78 preempt_disable_notrace();
79 ret = pvclock_clocksource_read_nowd(this_cpu_pvti());
80 preempt_enable_notrace();
81 return ret;
82}
83
84static u64 kvm_clock_get_cycles(struct clocksource *cs)
85{
86 return kvm_clock_read();
87}
88
89static noinstr u64 kvm_sched_clock_read(void)
90{
91 return pvclock_clocksource_read_nowd(this_cpu_pvti()) - kvm_sched_clock_offset;
92}
93
94static inline void kvm_sched_clock_init(bool stable)
95{
96 if (!stable)
97 clear_sched_clock_stable();
98 kvm_sched_clock_offset = kvm_clock_read();
99 paravirt_set_sched_clock(kvm_sched_clock_read);
100
101 pr_info("kvm-clock: using sched offset of %llu cycles",
102 kvm_sched_clock_offset);
103
104 BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
105 sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
106}
107
108/*
109 * If we don't do that, there is the possibility that the guest
110 * will calibrate under heavy load - thus, getting a lower lpj -
111 * and execute the delays themselves without load. This is wrong,
112 * because no delay loop can finish beforehand.
113 * Any heuristics is subject to fail, because ultimately, a large
114 * poll of guests can be running and trouble each other. So we preset
115 * lpj here
116 */
117static unsigned long kvm_get_tsc_khz(void)
118{
119 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
120 return pvclock_tsc_khz(this_cpu_pvti());
121}
122
123static void __init kvm_get_preset_lpj(void)
124{
125 unsigned long khz;
126 u64 lpj;
127
128 khz = kvm_get_tsc_khz();
129
130 lpj = ((u64)khz * 1000);
131 do_div(lpj, HZ);
132 preset_lpj = lpj;
133}
134
135bool kvm_check_and_clear_guest_paused(void)
136{
137 struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
138 bool ret = false;
139
140 if (!src)
141 return ret;
142
143 if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
144 src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
145 pvclock_touch_watchdogs();
146 ret = true;
147 }
148 return ret;
149}
150
151static int kvm_cs_enable(struct clocksource *cs)
152{
153 vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
154 return 0;
155}
156
157static struct clocksource kvm_clock = {
158 .name = "kvm-clock",
159 .read = kvm_clock_get_cycles,
160 .rating = 400,
161 .mask = CLOCKSOURCE_MASK(64),
162 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
163 .id = CSID_X86_KVM_CLK,
164 .enable = kvm_cs_enable,
165};
166
167static void kvm_register_clock(char *txt)
168{
169 struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
170 u64 pa;
171
172 if (!src)
173 return;
174
175 pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
176 wrmsrl(msr_kvm_system_time, pa);
177 pr_debug("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
178}
179
180static void kvm_save_sched_clock_state(void)
181{
182}
183
184static void kvm_restore_sched_clock_state(void)
185{
186 kvm_register_clock("primary cpu clock, resume");
187}
188
189#ifdef CONFIG_X86_LOCAL_APIC
190static void kvm_setup_secondary_clock(void)
191{
192 kvm_register_clock("secondary cpu clock");
193}
194#endif
195
196void kvmclock_disable(void)
197{
198 if (msr_kvm_system_time)
199 native_write_msr(msr_kvm_system_time, 0, 0);
200}
201
202static void __init kvmclock_init_mem(void)
203{
204 unsigned long ncpus;
205 unsigned int order;
206 struct page *p;
207 int r;
208
209 if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus())
210 return;
211
212 ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE;
213 order = get_order(ncpus * sizeof(*hvclock_mem));
214
215 p = alloc_pages(GFP_KERNEL, order);
216 if (!p) {
217 pr_warn("%s: failed to alloc %d pages", __func__, (1U << order));
218 return;
219 }
220
221 hvclock_mem = page_address(p);
222
223 /*
224 * hvclock is shared between the guest and the hypervisor, must
225 * be mapped decrypted.
226 */
227 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
228 r = set_memory_decrypted((unsigned long) hvclock_mem,
229 1UL << order);
230 if (r) {
231 __free_pages(p, order);
232 hvclock_mem = NULL;
233 pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n");
234 return;
235 }
236 }
237
238 memset(hvclock_mem, 0, PAGE_SIZE << order);
239}
240
241static int __init kvm_setup_vsyscall_timeinfo(void)
242{
243 if (!kvm_para_available() || !kvmclock || nopv)
244 return 0;
245
246 kvmclock_init_mem();
247
248#ifdef CONFIG_X86_64
249 if (per_cpu(hv_clock_per_cpu, 0) && kvmclock_vsyscall) {
250 u8 flags;
251
252 flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
253 if (!(flags & PVCLOCK_TSC_STABLE_BIT))
254 return 0;
255
256 kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
257 }
258#endif
259
260 return 0;
261}
262early_initcall(kvm_setup_vsyscall_timeinfo);
263
264static int kvmclock_setup_percpu(unsigned int cpu)
265{
266 struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
267
268 /*
269 * The per cpu area setup replicates CPU0 data to all cpu
270 * pointers. So carefully check. CPU0 has been set up in init
271 * already.
272 */
273 if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
274 return 0;
275
276 /* Use the static page for the first CPUs, allocate otherwise */
277 if (cpu < HVC_BOOT_ARRAY_SIZE)
278 p = &hv_clock_boot[cpu];
279 else if (hvclock_mem)
280 p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE;
281 else
282 return -ENOMEM;
283
284 per_cpu(hv_clock_per_cpu, cpu) = p;
285 return p ? 0 : -ENOMEM;
286}
287
288void __init kvmclock_init(void)
289{
290 u8 flags;
291
292 if (!kvm_para_available() || !kvmclock)
293 return;
294
295 if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
296 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
297 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
298 } else if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
299 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
300 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
301 } else {
302 return;
303 }
304
305 if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
306 kvmclock_setup_percpu, NULL) < 0) {
307 return;
308 }
309
310 pr_info("kvm-clock: Using msrs %x and %x",
311 msr_kvm_system_time, msr_kvm_wall_clock);
312
313 this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
314 kvm_register_clock("primary cpu clock");
315 pvclock_set_pvti_cpu0_va(hv_clock_boot);
316
317 if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
318 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
319
320 flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
321 kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
322
323 x86_platform.calibrate_tsc = kvm_get_tsc_khz;
324 x86_platform.calibrate_cpu = kvm_get_tsc_khz;
325 x86_platform.get_wallclock = kvm_get_wallclock;
326 x86_platform.set_wallclock = kvm_set_wallclock;
327#ifdef CONFIG_X86_LOCAL_APIC
328 x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
329#endif
330 x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
331 x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
332 kvm_get_preset_lpj();
333
334 /*
335 * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate
336 * with P/T states and does not stop in deep C-states.
337 *
338 * Invariant TSC exposed by host means kvmclock is not necessary:
339 * can use TSC as clocksource.
340 *
341 */
342 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
343 boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
344 !check_tsc_unstable())
345 kvm_clock.rating = 299;
346
347 clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
348 pv_info.name = "KVM";
349}
1/* KVM paravirtual clock driver. A clocksource implementation
2 Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17*/
18
19#include <linux/clocksource.h>
20#include <linux/kvm_para.h>
21#include <asm/pvclock.h>
22#include <asm/msr.h>
23#include <asm/apic.h>
24#include <linux/percpu.h>
25#include <linux/hardirq.h>
26#include <linux/memblock.h>
27
28#include <asm/x86_init.h>
29#include <asm/reboot.h>
30
31static int kvmclock = 1;
32static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
33static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
34
35static int parse_no_kvmclock(char *arg)
36{
37 kvmclock = 0;
38 return 0;
39}
40early_param("no-kvmclock", parse_no_kvmclock);
41
42/* The hypervisor will put information about time periodically here */
43static struct pvclock_vsyscall_time_info *hv_clock;
44static struct pvclock_wall_clock wall_clock;
45
46/*
47 * The wallclock is the time of day when we booted. Since then, some time may
48 * have elapsed since the hypervisor wrote the data. So we try to account for
49 * that with system time
50 */
51static void kvm_get_wallclock(struct timespec *now)
52{
53 struct pvclock_vcpu_time_info *vcpu_time;
54 int low, high;
55 int cpu;
56
57 low = (int)__pa_symbol(&wall_clock);
58 high = ((u64)__pa_symbol(&wall_clock) >> 32);
59
60 native_write_msr(msr_kvm_wall_clock, low, high);
61
62 preempt_disable();
63 cpu = smp_processor_id();
64
65 vcpu_time = &hv_clock[cpu].pvti;
66 pvclock_read_wallclock(&wall_clock, vcpu_time, now);
67
68 preempt_enable();
69}
70
71static int kvm_set_wallclock(const struct timespec *now)
72{
73 return -1;
74}
75
76static cycle_t kvm_clock_read(void)
77{
78 struct pvclock_vcpu_time_info *src;
79 cycle_t ret;
80 int cpu;
81
82 preempt_disable_notrace();
83 cpu = smp_processor_id();
84 src = &hv_clock[cpu].pvti;
85 ret = pvclock_clocksource_read(src);
86 preempt_enable_notrace();
87 return ret;
88}
89
90static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
91{
92 return kvm_clock_read();
93}
94
95/*
96 * If we don't do that, there is the possibility that the guest
97 * will calibrate under heavy load - thus, getting a lower lpj -
98 * and execute the delays themselves without load. This is wrong,
99 * because no delay loop can finish beforehand.
100 * Any heuristics is subject to fail, because ultimately, a large
101 * poll of guests can be running and trouble each other. So we preset
102 * lpj here
103 */
104static unsigned long kvm_get_tsc_khz(void)
105{
106 struct pvclock_vcpu_time_info *src;
107 int cpu;
108 unsigned long tsc_khz;
109
110 preempt_disable();
111 cpu = smp_processor_id();
112 src = &hv_clock[cpu].pvti;
113 tsc_khz = pvclock_tsc_khz(src);
114 preempt_enable();
115 return tsc_khz;
116}
117
118static void kvm_get_preset_lpj(void)
119{
120 unsigned long khz;
121 u64 lpj;
122
123 khz = kvm_get_tsc_khz();
124
125 lpj = ((u64)khz * 1000);
126 do_div(lpj, HZ);
127 preset_lpj = lpj;
128}
129
130bool kvm_check_and_clear_guest_paused(void)
131{
132 bool ret = false;
133 struct pvclock_vcpu_time_info *src;
134 int cpu = smp_processor_id();
135
136 if (!hv_clock)
137 return ret;
138
139 src = &hv_clock[cpu].pvti;
140 if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
141 src->flags &= ~PVCLOCK_GUEST_STOPPED;
142 pvclock_touch_watchdogs();
143 ret = true;
144 }
145
146 return ret;
147}
148
149static struct clocksource kvm_clock = {
150 .name = "kvm-clock",
151 .read = kvm_clock_get_cycles,
152 .rating = 400,
153 .mask = CLOCKSOURCE_MASK(64),
154 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
155};
156
157int kvm_register_clock(char *txt)
158{
159 int cpu = smp_processor_id();
160 int low, high, ret;
161 struct pvclock_vcpu_time_info *src;
162
163 if (!hv_clock)
164 return 0;
165
166 src = &hv_clock[cpu].pvti;
167 low = (int)slow_virt_to_phys(src) | 1;
168 high = ((u64)slow_virt_to_phys(src) >> 32);
169 ret = native_write_msr_safe(msr_kvm_system_time, low, high);
170 printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
171 cpu, high, low, txt);
172
173 return ret;
174}
175
176static void kvm_save_sched_clock_state(void)
177{
178}
179
180static void kvm_restore_sched_clock_state(void)
181{
182 kvm_register_clock("primary cpu clock, resume");
183}
184
185#ifdef CONFIG_X86_LOCAL_APIC
186static void kvm_setup_secondary_clock(void)
187{
188 /*
189 * Now that the first cpu already had this clocksource initialized,
190 * we shouldn't fail.
191 */
192 WARN_ON(kvm_register_clock("secondary cpu clock"));
193}
194#endif
195
196/*
197 * After the clock is registered, the host will keep writing to the
198 * registered memory location. If the guest happens to shutdown, this memory
199 * won't be valid. In cases like kexec, in which you install a new kernel, this
200 * means a random memory location will be kept being written. So before any
201 * kind of shutdown from our side, we unregister the clock by writting anything
202 * that does not have the 'enable' bit set in the msr
203 */
204#ifdef CONFIG_KEXEC
205static void kvm_crash_shutdown(struct pt_regs *regs)
206{
207 native_write_msr(msr_kvm_system_time, 0, 0);
208 kvm_disable_steal_time();
209 native_machine_crash_shutdown(regs);
210}
211#endif
212
213static void kvm_shutdown(void)
214{
215 native_write_msr(msr_kvm_system_time, 0, 0);
216 kvm_disable_steal_time();
217 native_machine_shutdown();
218}
219
220void __init kvmclock_init(void)
221{
222 unsigned long mem;
223 int size;
224
225 size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
226
227 if (!kvm_para_available())
228 return;
229
230 if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
231 msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
232 msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
233 } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
234 return;
235
236 printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
237 msr_kvm_system_time, msr_kvm_wall_clock);
238
239 mem = memblock_alloc(size, PAGE_SIZE);
240 if (!mem)
241 return;
242 hv_clock = __va(mem);
243 memset(hv_clock, 0, size);
244
245 if (kvm_register_clock("primary cpu clock")) {
246 hv_clock = NULL;
247 memblock_free(mem, size);
248 return;
249 }
250 pv_time_ops.sched_clock = kvm_clock_read;
251 x86_platform.calibrate_tsc = kvm_get_tsc_khz;
252 x86_platform.get_wallclock = kvm_get_wallclock;
253 x86_platform.set_wallclock = kvm_set_wallclock;
254#ifdef CONFIG_X86_LOCAL_APIC
255 x86_cpuinit.early_percpu_clock_init =
256 kvm_setup_secondary_clock;
257#endif
258 x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
259 x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
260 machine_ops.shutdown = kvm_shutdown;
261#ifdef CONFIG_KEXEC
262 machine_ops.crash_shutdown = kvm_crash_shutdown;
263#endif
264 kvm_get_preset_lpj();
265 clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
266 pv_info.paravirt_enabled = 1;
267 pv_info.name = "KVM";
268
269 if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
270 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
271}
272
273int __init kvm_setup_vsyscall_timeinfo(void)
274{
275#ifdef CONFIG_X86_64
276 int cpu;
277 int ret;
278 u8 flags;
279 struct pvclock_vcpu_time_info *vcpu_time;
280 unsigned int size;
281
282 if (!hv_clock)
283 return 0;
284
285 size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
286
287 preempt_disable();
288 cpu = smp_processor_id();
289
290 vcpu_time = &hv_clock[cpu].pvti;
291 flags = pvclock_read_flags(vcpu_time);
292
293 if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
294 preempt_enable();
295 return 1;
296 }
297
298 if ((ret = pvclock_init_vsyscall(hv_clock, size))) {
299 preempt_enable();
300 return ret;
301 }
302
303 preempt_enable();
304
305 kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
306#endif
307 return 0;
308}