Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Bit operations for the Hexagon architecture
  4 *
  5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7
  8#ifndef _ASM_BITOPS_H
  9#define _ASM_BITOPS_H
 10
 11#include <linux/compiler.h>
 12#include <asm/byteorder.h>
 13#include <asm/atomic.h>
 14#include <asm/barrier.h>
 15
 16#ifdef __KERNEL__
 17
 
 
 
 18/*
 19 * The offset calculations for these are based on BITS_PER_LONG == 32
 20 * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
 21 * mask by 0x0000001F)
 22 *
 23 * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
 24 */
 25
 26/**
 27 * test_and_clear_bit - clear a bit and return its old value
 28 * @nr:  bit number to clear
 29 * @addr:  pointer to memory
 30 */
 31static inline int test_and_clear_bit(int nr, volatile void *addr)
 32{
 33	int oldval;
 34
 35	__asm__ __volatile__ (
 36	"	{R10 = %1; R11 = asr(%2,#5); }\n"
 37	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
 38	"1:	R12 = memw_locked(R10);\n"
 39	"	{ P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
 40	"	memw_locked(R10,P1) = R12;\n"
 41	"	{if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
 42	: "=&r" (oldval)
 43	: "r" (addr), "r" (nr)
 44	: "r10", "r11", "r12", "p0", "p1", "memory"
 45	);
 46
 47	return oldval;
 48}
 49
 50/**
 51 * test_and_set_bit - set a bit and return its old value
 52 * @nr:  bit number to set
 53 * @addr:  pointer to memory
 54 */
 55static inline int test_and_set_bit(int nr, volatile void *addr)
 56{
 57	int oldval;
 58
 59	__asm__ __volatile__ (
 60	"	{R10 = %1; R11 = asr(%2,#5); }\n"
 61	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
 62	"1:	R12 = memw_locked(R10);\n"
 63	"	{ P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
 64	"	memw_locked(R10,P1) = R12;\n"
 65	"	{if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
 66	: "=&r" (oldval)
 67	: "r" (addr), "r" (nr)
 68	: "r10", "r11", "r12", "p0", "p1", "memory"
 69	);
 70
 71
 72	return oldval;
 73
 74}
 75
 76/**
 77 * test_and_change_bit - toggle a bit and return its old value
 78 * @nr:  bit number to set
 79 * @addr:  pointer to memory
 80 */
 81static inline int test_and_change_bit(int nr, volatile void *addr)
 82{
 83	int oldval;
 84
 85	__asm__ __volatile__ (
 86	"	{R10 = %1; R11 = asr(%2,#5); }\n"
 87	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
 88	"1:	R12 = memw_locked(R10);\n"
 89	"	{ P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
 90	"	memw_locked(R10,P1) = R12;\n"
 91	"	{if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
 92	: "=&r" (oldval)
 93	: "r" (addr), "r" (nr)
 94	: "r10", "r11", "r12", "p0", "p1", "memory"
 95	);
 96
 97	return oldval;
 98
 99}
100
101/*
102 * Atomic, but doesn't care about the return value.
103 * Rewrite later to save a cycle or two.
104 */
105
106static inline void clear_bit(int nr, volatile void *addr)
107{
108	test_and_clear_bit(nr, addr);
109}
110
111static inline void set_bit(int nr, volatile void *addr)
112{
113	test_and_set_bit(nr, addr);
114}
115
116static inline void change_bit(int nr, volatile void *addr)
117{
118	test_and_change_bit(nr, addr);
119}
120
121
122/*
123 * These are allowed to be non-atomic.  In fact the generic flavors are
124 * in non-atomic.h.  Would it be better to use intrinsics for this?
125 *
126 * OK, writes in our architecture do not invalidate LL/SC, so this has to
127 * be atomic, particularly for things like slab_lock and slab_unlock.
128 *
129 */
130static __always_inline void
131arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
132{
133	test_and_clear_bit(nr, addr);
134}
135
136static __always_inline void
137arch___set_bit(unsigned long nr, volatile unsigned long *addr)
138{
139	test_and_set_bit(nr, addr);
140}
141
142static __always_inline void
143arch___change_bit(unsigned long nr, volatile unsigned long *addr)
144{
145	test_and_change_bit(nr, addr);
146}
147
148/*  Apparently, at least some of these are allowed to be non-atomic  */
149static __always_inline bool
150arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
151{
152	return test_and_clear_bit(nr, addr);
153}
154
155static __always_inline bool
156arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
157{
158	return test_and_set_bit(nr, addr);
159}
160
161static __always_inline bool
162arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
163{
164	return test_and_change_bit(nr, addr);
165}
166
167static __always_inline bool
168arch_test_bit(unsigned long nr, const volatile unsigned long *addr)
169{
170	int retval;
171
172	asm volatile(
173	"{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
174	: "=&r" (retval)
175	: "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
176	: "p0"
177	);
178
179	return retval;
180}
181
182static __always_inline bool
183arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr)
184{
185	int retval;
186
187	asm volatile(
188	"{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
189	: "=&r" (retval)
190	: "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
191	: "p0", "memory"
192	);
193
194	return retval;
195}
196
197/*
198 * ffz - find first zero in word.
199 * @word: The word to search
200 *
201 * Undefined if no zero exists, so code should check against ~0UL first.
202 */
203static inline long ffz(int x)
204{
205	int r;
206
207	asm("%0 = ct1(%1);\n"
208		: "=&r" (r)
209		: "r" (x));
210	return r;
211}
212
213/*
214 * fls - find last (most-significant) bit set
215 * @x: the word to search
216 *
217 * This is defined the same way as ffs.
218 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
219 */
220static inline int fls(unsigned int x)
221{
222	int r;
223
224	asm("{ %0 = cl0(%1);}\n"
225		"%0 = sub(#32,%0);\n"
226		: "=&r" (r)
227		: "r" (x)
228		: "p0");
229
230	return r;
231}
232
233/*
234 * ffs - find first bit set
235 * @x: the word to search
236 *
237 * This is defined the same way as
238 * the libc and compiler builtin ffs routines, therefore
239 * differs in spirit from the above ffz (man ffs).
240 */
241static inline int ffs(int x)
242{
243	int r;
244
245	asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
246		"{ if (P0) %0 = #0; if (!P0) %0 = add(%0,#1);}\n"
247		: "=&r" (r)
248		: "r" (x)
249		: "p0");
250
251	return r;
252}
253
254/*
255 * __ffs - find first bit in word.
256 * @word: The word to search
257 *
258 * Undefined if no bit exists, so code should check against 0 first.
259 *
260 * bits_per_long assumed to be 32
261 * numbering starts at 0 I think (instead of 1 like ffs)
262 */
263static inline unsigned long __ffs(unsigned long word)
264{
265	int num;
266
267	asm("%0 = ct0(%1);\n"
268		: "=&r" (num)
269		: "r" (word));
270
271	return num;
272}
273
274/*
275 * __fls - find last (most-significant) set bit in a long word
276 * @word: the word to search
277 *
278 * Undefined if no set bit exists, so code should check against 0 first.
279 * bits_per_long assumed to be 32
280 */
281static inline unsigned long __fls(unsigned long word)
282{
283	int num;
284
285	asm("%0 = cl0(%1);\n"
286		"%0 = sub(#31,%0);\n"
287		: "=&r" (num)
288		: "r" (word));
289
290	return num;
291}
292
293#include <asm-generic/bitops/lock.h>
294#include <asm-generic/bitops/non-instrumented-non-atomic.h>
295
296#include <asm-generic/bitops/fls64.h>
297#include <asm-generic/bitops/sched.h>
298#include <asm-generic/bitops/hweight.h>
299
300#include <asm-generic/bitops/le.h>
301#include <asm-generic/bitops/ext2-atomic.h>
302
303#endif /* __KERNEL__ */
304#endif
v3.15
 
  1/*
  2 * Bit operations for the Hexagon architecture
  3 *
  4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
  5 *
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 and
  9 * only version 2 as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program; if not, write to the Free Software
 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 19 * 02110-1301, USA.
 20 */
 21
 22#ifndef _ASM_BITOPS_H
 23#define _ASM_BITOPS_H
 24
 25#include <linux/compiler.h>
 26#include <asm/byteorder.h>
 27#include <asm/atomic.h>
 
 28
 29#ifdef __KERNEL__
 30
 31#define smp_mb__before_clear_bit()	barrier()
 32#define smp_mb__after_clear_bit()	barrier()
 33
 34/*
 35 * The offset calculations for these are based on BITS_PER_LONG == 32
 36 * (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
 37 * mask by 0x0000001F)
 38 *
 39 * Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
 40 */
 41
 42/**
 43 * test_and_clear_bit - clear a bit and return its old value
 44 * @nr:  bit number to clear
 45 * @addr:  pointer to memory
 46 */
 47static inline int test_and_clear_bit(int nr, volatile void *addr)
 48{
 49	int oldval;
 50
 51	__asm__ __volatile__ (
 52	"	{R10 = %1; R11 = asr(%2,#5); }\n"
 53	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
 54	"1:	R12 = memw_locked(R10);\n"
 55	"	{ P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
 56	"	memw_locked(R10,P1) = R12;\n"
 57	"	{if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
 58	: "=&r" (oldval)
 59	: "r" (addr), "r" (nr)
 60	: "r10", "r11", "r12", "p0", "p1", "memory"
 61	);
 62
 63	return oldval;
 64}
 65
 66/**
 67 * test_and_set_bit - set a bit and return its old value
 68 * @nr:  bit number to set
 69 * @addr:  pointer to memory
 70 */
 71static inline int test_and_set_bit(int nr, volatile void *addr)
 72{
 73	int oldval;
 74
 75	__asm__ __volatile__ (
 76	"	{R10 = %1; R11 = asr(%2,#5); }\n"
 77	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
 78	"1:	R12 = memw_locked(R10);\n"
 79	"	{ P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
 80	"	memw_locked(R10,P1) = R12;\n"
 81	"	{if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
 82	: "=&r" (oldval)
 83	: "r" (addr), "r" (nr)
 84	: "r10", "r11", "r12", "p0", "p1", "memory"
 85	);
 86
 87
 88	return oldval;
 89
 90}
 91
 92/**
 93 * test_and_change_bit - toggle a bit and return its old value
 94 * @nr:  bit number to set
 95 * @addr:  pointer to memory
 96 */
 97static inline int test_and_change_bit(int nr, volatile void *addr)
 98{
 99	int oldval;
100
101	__asm__ __volatile__ (
102	"	{R10 = %1; R11 = asr(%2,#5); }\n"
103	"	{R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
104	"1:	R12 = memw_locked(R10);\n"
105	"	{ P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
106	"	memw_locked(R10,P1) = R12;\n"
107	"	{if !P1 jump 1b; %0 = mux(P0,#1,#0);}\n"
108	: "=&r" (oldval)
109	: "r" (addr), "r" (nr)
110	: "r10", "r11", "r12", "p0", "p1", "memory"
111	);
112
113	return oldval;
114
115}
116
117/*
118 * Atomic, but doesn't care about the return value.
119 * Rewrite later to save a cycle or two.
120 */
121
122static inline void clear_bit(int nr, volatile void *addr)
123{
124	test_and_clear_bit(nr, addr);
125}
126
127static inline void set_bit(int nr, volatile void *addr)
128{
129	test_and_set_bit(nr, addr);
130}
131
132static inline void change_bit(int nr, volatile void *addr)
133{
134	test_and_change_bit(nr, addr);
135}
136
137
138/*
139 * These are allowed to be non-atomic.  In fact the generic flavors are
140 * in non-atomic.h.  Would it be better to use intrinsics for this?
141 *
142 * OK, writes in our architecture do not invalidate LL/SC, so this has to
143 * be atomic, particularly for things like slab_lock and slab_unlock.
144 *
145 */
146static inline void __clear_bit(int nr, volatile unsigned long *addr)
 
147{
148	test_and_clear_bit(nr, addr);
149}
150
151static inline void __set_bit(int nr, volatile unsigned long *addr)
 
152{
153	test_and_set_bit(nr, addr);
154}
155
156static inline void __change_bit(int nr, volatile unsigned long *addr)
 
157{
158	test_and_change_bit(nr, addr);
159}
160
161/*  Apparently, at least some of these are allowed to be non-atomic  */
162static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
 
163{
164	return test_and_clear_bit(nr, addr);
165}
166
167static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
 
168{
169	return test_and_set_bit(nr, addr);
170}
171
172static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
 
173{
174	return test_and_change_bit(nr, addr);
175}
176
177static inline int __test_bit(int nr, const volatile unsigned long *addr)
 
178{
179	int retval;
180
181	asm volatile(
182	"{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
183	: "=&r" (retval)
184	: "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
185	: "p0"
186	);
187
188	return retval;
189}
190
191#define test_bit(nr, addr) __test_bit(nr, addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
192
193/*
194 * ffz - find first zero in word.
195 * @word: The word to search
196 *
197 * Undefined if no zero exists, so code should check against ~0UL first.
198 */
199static inline long ffz(int x)
200{
201	int r;
202
203	asm("%0 = ct1(%1);\n"
204		: "=&r" (r)
205		: "r" (x));
206	return r;
207}
208
209/*
210 * fls - find last (most-significant) bit set
211 * @x: the word to search
212 *
213 * This is defined the same way as ffs.
214 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
215 */
216static inline long fls(int x)
217{
218	int r;
219
220	asm("{ %0 = cl0(%1);}\n"
221		"%0 = sub(#32,%0);\n"
222		: "=&r" (r)
223		: "r" (x)
224		: "p0");
225
226	return r;
227}
228
229/*
230 * ffs - find first bit set
231 * @x: the word to search
232 *
233 * This is defined the same way as
234 * the libc and compiler builtin ffs routines, therefore
235 * differs in spirit from the above ffz (man ffs).
236 */
237static inline long ffs(int x)
238{
239	int r;
240
241	asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
242		"{ if P0 %0 = #0; if !P0 %0 = add(%0,#1);}\n"
243		: "=&r" (r)
244		: "r" (x)
245		: "p0");
246
247	return r;
248}
249
250/*
251 * __ffs - find first bit in word.
252 * @word: The word to search
253 *
254 * Undefined if no bit exists, so code should check against 0 first.
255 *
256 * bits_per_long assumed to be 32
257 * numbering starts at 0 I think (instead of 1 like ffs)
258 */
259static inline unsigned long __ffs(unsigned long word)
260{
261	int num;
262
263	asm("%0 = ct0(%1);\n"
264		: "=&r" (num)
265		: "r" (word));
266
267	return num;
268}
269
270/*
271 * __fls - find last (most-significant) set bit in a long word
272 * @word: the word to search
273 *
274 * Undefined if no set bit exists, so code should check against 0 first.
275 * bits_per_long assumed to be 32
276 */
277static inline unsigned long __fls(unsigned long word)
278{
279	int num;
280
281	asm("%0 = cl0(%1);\n"
282		"%0 = sub(#31,%0);\n"
283		: "=&r" (num)
284		: "r" (word));
285
286	return num;
287}
288
289#include <asm-generic/bitops/lock.h>
290#include <asm-generic/bitops/find.h>
291
292#include <asm-generic/bitops/fls64.h>
293#include <asm-generic/bitops/sched.h>
294#include <asm-generic/bitops/hweight.h>
295
296#include <asm-generic/bitops/le.h>
297#include <asm-generic/bitops/ext2-atomic.h>
298
299#endif /* __KERNEL__ */
300#endif