Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/ioremap.c
  4 *
  5 * Re-map IO memory to kernel address space so that we can access it.
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 *
  9 * Hacked for ARM by Phil Blundell <philb@gnu.org>
 10 * Hacked to allow all architectures to build, and various cleanups
 11 * by Russell King
 12 *
 13 * This allows a driver to remap an arbitrary region of bus memory into
 14 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 15 * so on with such remapped areas.
 16 *
 17 * Because the ARM only has a 32-bit address space we can't address the
 18 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 19 * allows us to circumvent this restriction by splitting PCI space into
 20 * two 2GB chunks and mapping only one at a time into processor memory.
 21 * We use MMU protection domains to trap any attempt to access the bank
 22 * that is not currently mapped.  (This isn't fully implemented yet.)
 23 */
 24#include <linux/module.h>
 25#include <linux/errno.h>
 26#include <linux/kasan.h>
 27#include <linux/mm.h>
 28#include <linux/vmalloc.h>
 29#include <linux/io.h>
 30#include <linux/sizes.h>
 31#include <linux/memblock.h>
 32
 33#include <asm/cp15.h>
 34#include <asm/cputype.h>
 35#include <asm/cacheflush.h>
 36#include <asm/early_ioremap.h>
 37#include <asm/mmu_context.h>
 38#include <asm/pgalloc.h>
 39#include <asm/tlbflush.h>
 40#include <asm/set_memory.h>
 41#include <asm/system_info.h>
 42
 43#include <asm/mach/map.h>
 44#include <asm/mach/pci.h>
 45#include "mm.h"
 46
 47
 48LIST_HEAD(static_vmlist);
 49
 50static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
 51			size_t size, unsigned int mtype)
 52{
 53	struct static_vm *svm;
 54	struct vm_struct *vm;
 55
 56	list_for_each_entry(svm, &static_vmlist, list) {
 57		vm = &svm->vm;
 58		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
 59			continue;
 60		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
 61			continue;
 62
 63		if (vm->phys_addr > paddr ||
 64			paddr + size - 1 > vm->phys_addr + vm->size - 1)
 65			continue;
 66
 67		return svm;
 68	}
 69
 70	return NULL;
 71}
 72
 73struct static_vm *find_static_vm_vaddr(void *vaddr)
 74{
 75	struct static_vm *svm;
 76	struct vm_struct *vm;
 77
 78	list_for_each_entry(svm, &static_vmlist, list) {
 79		vm = &svm->vm;
 80
 81		/* static_vmlist is ascending order */
 82		if (vm->addr > vaddr)
 83			break;
 84
 85		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
 86			return svm;
 87	}
 88
 89	return NULL;
 90}
 91
 92void __init add_static_vm_early(struct static_vm *svm)
 93{
 94	struct static_vm *curr_svm;
 95	struct vm_struct *vm;
 96	void *vaddr;
 97
 98	vm = &svm->vm;
 99	vm_area_add_early(vm);
100	vaddr = vm->addr;
101
102	list_for_each_entry(curr_svm, &static_vmlist, list) {
103		vm = &curr_svm->vm;
104
105		if (vm->addr > vaddr)
106			break;
107	}
108	list_add_tail(&svm->list, &curr_svm->list);
109}
110
111int ioremap_page(unsigned long virt, unsigned long phys,
112		 const struct mem_type *mtype)
113{
114	return vmap_page_range(virt, virt + PAGE_SIZE, phys,
115			       __pgprot(mtype->prot_pte));
116}
117EXPORT_SYMBOL(ioremap_page);
118
119#ifdef CONFIG_KASAN
120static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
121{
122	return (unsigned long)kasan_mem_to_shadow((void *)addr);
123}
124#else
125static unsigned long arm_kasan_mem_to_shadow(unsigned long addr)
126{
127	return 0;
128}
129#endif
130
131static void memcpy_pgd(struct mm_struct *mm, unsigned long start,
132		       unsigned long end)
133{
134	end = ALIGN(end, PGDIR_SIZE);
135	memcpy(pgd_offset(mm, start), pgd_offset_k(start),
136	       sizeof(pgd_t) * (pgd_index(end) - pgd_index(start)));
137}
138
139void __check_vmalloc_seq(struct mm_struct *mm)
140{
141	int seq;
142
143	do {
144		seq = atomic_read_acquire(&init_mm.context.vmalloc_seq);
145		memcpy_pgd(mm, VMALLOC_START, VMALLOC_END);
146		if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) {
147			unsigned long start =
148				arm_kasan_mem_to_shadow(VMALLOC_START);
149			unsigned long end =
150				arm_kasan_mem_to_shadow(VMALLOC_END);
151			memcpy_pgd(mm, start, end);
152		}
153		/*
154		 * Use a store-release so that other CPUs that observe the
155		 * counter's new value are guaranteed to see the results of the
156		 * memcpy as well.
157		 */
158		atomic_set_release(&mm->context.vmalloc_seq, seq);
159	} while (seq != atomic_read(&init_mm.context.vmalloc_seq));
160}
161
162#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
163/*
164 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
165 * the other CPUs will not see this change until their next context switch.
166 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
167 * which requires the new ioremap'd region to be referenced, the CPU will
168 * reference the _old_ region.
169 *
170 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
171 * mask the size back to 1MB aligned or we will overflow in the loop below.
172 */
173static void unmap_area_sections(unsigned long virt, unsigned long size)
174{
175	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
176	pmd_t *pmdp = pmd_off_k(addr);
177
 
 
 
 
 
 
178	do {
179		pmd_t pmd = *pmdp;
180
181		if (!pmd_none(pmd)) {
182			/*
183			 * Clear the PMD from the page table, and
184			 * increment the vmalloc sequence so others
185			 * notice this change.
186			 *
187			 * Note: this is still racy on SMP machines.
188			 */
189			pmd_clear(pmdp);
190			atomic_inc_return_release(&init_mm.context.vmalloc_seq);
191
192			/*
193			 * Free the page table, if there was one.
194			 */
195			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
196				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
197		}
198
199		addr += PMD_SIZE;
200		pmdp += 2;
201	} while (addr < end);
202
203	/*
204	 * Ensure that the active_mm is up to date - we want to
205	 * catch any use-after-iounmap cases.
206	 */
207	check_vmalloc_seq(current->active_mm);
 
208
209	flush_tlb_kernel_range(virt, end);
210}
211
212static int
213remap_area_sections(unsigned long virt, unsigned long pfn,
214		    size_t size, const struct mem_type *type)
215{
216	unsigned long addr = virt, end = virt + size;
217	pmd_t *pmd = pmd_off_k(addr);
 
 
218
219	/*
220	 * Remove and free any PTE-based mapping, and
221	 * sync the current kernel mapping.
222	 */
223	unmap_area_sections(virt, size);
224
 
 
 
225	do {
226		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
227		pfn += SZ_1M >> PAGE_SHIFT;
228		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
229		pfn += SZ_1M >> PAGE_SHIFT;
230		flush_pmd_entry(pmd);
231
232		addr += PMD_SIZE;
233		pmd += 2;
234	} while (addr < end);
235
236	return 0;
237}
238
239static int
240remap_area_supersections(unsigned long virt, unsigned long pfn,
241			 size_t size, const struct mem_type *type)
242{
243	unsigned long addr = virt, end = virt + size;
244	pmd_t *pmd = pmd_off_k(addr);
 
 
245
246	/*
247	 * Remove and free any PTE-based mapping, and
248	 * sync the current kernel mapping.
249	 */
250	unmap_area_sections(virt, size);
 
 
 
 
251	do {
252		unsigned long super_pmd_val, i;
253
254		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
255				PMD_SECT_SUPER;
256		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
257
258		for (i = 0; i < 8; i++) {
259			pmd[0] = __pmd(super_pmd_val);
260			pmd[1] = __pmd(super_pmd_val);
261			flush_pmd_entry(pmd);
262
263			addr += PMD_SIZE;
264			pmd += 2;
265		}
266
267		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
268	} while (addr < end);
269
270	return 0;
271}
272#endif
273
274static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
275	unsigned long offset, size_t size, unsigned int mtype, void *caller)
276{
277	const struct mem_type *type;
278	int err;
279	unsigned long addr;
280	struct vm_struct *area;
281	phys_addr_t paddr = __pfn_to_phys(pfn);
282
283#ifndef CONFIG_ARM_LPAE
284	/*
285	 * High mappings must be supersection aligned
286	 */
287	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
288		return NULL;
289#endif
290
291	type = get_mem_type(mtype);
292	if (!type)
293		return NULL;
294
295	/*
296	 * Page align the mapping size, taking account of any offset.
297	 */
298	size = PAGE_ALIGN(offset + size);
299
300	/*
301	 * Try to reuse one of the static mapping whenever possible.
302	 */
303	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
304		struct static_vm *svm;
305
306		svm = find_static_vm_paddr(paddr, size, mtype);
307		if (svm) {
308			addr = (unsigned long)svm->vm.addr;
309			addr += paddr - svm->vm.phys_addr;
310			return (void __iomem *) (offset + addr);
311		}
312	}
313
314	/*
315	 * Don't allow RAM to be mapped with mismatched attributes - this
316	 * causes problems with ARMv6+
317	 */
318	if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
319		    mtype != MT_MEMORY_RW))
320		return NULL;
321
322	area = get_vm_area_caller(size, VM_IOREMAP, caller);
323 	if (!area)
324 		return NULL;
325 	addr = (unsigned long)area->addr;
326	area->phys_addr = paddr;
327
328#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
329	if (DOMAIN_IO == 0 &&
330	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
331	       cpu_is_xsc3()) && pfn >= 0x100000 &&
332	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
333		area->flags |= VM_ARM_SECTION_MAPPING;
334		err = remap_area_supersections(addr, pfn, size, type);
335	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
336		area->flags |= VM_ARM_SECTION_MAPPING;
337		err = remap_area_sections(addr, pfn, size, type);
338	} else
339#endif
340		err = ioremap_page_range(addr, addr + size, paddr,
341					 __pgprot(type->prot_pte));
342
343	if (err) {
344 		vunmap((void *)addr);
345 		return NULL;
346 	}
347
348	flush_cache_vmap(addr, addr + size);
349	return (void __iomem *) (offset + addr);
350}
351
352void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
353	unsigned int mtype, void *caller)
354{
355	phys_addr_t last_addr;
356 	unsigned long offset = phys_addr & ~PAGE_MASK;
357 	unsigned long pfn = __phys_to_pfn(phys_addr);
358
359 	/*
360 	 * Don't allow wraparound or zero size
361	 */
362	last_addr = phys_addr + size - 1;
363	if (!size || last_addr < phys_addr)
364		return NULL;
365
366	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
367			caller);
368}
369
370/*
371 * Remap an arbitrary physical address space into the kernel virtual
372 * address space. Needed when the kernel wants to access high addresses
373 * directly.
374 *
375 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
376 * have to convert them into an offset in a page-aligned mapping, but the
377 * caller shouldn't need to know that small detail.
378 */
379void __iomem *
380__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
381		  unsigned int mtype)
382{
383	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
384					__builtin_return_address(0));
385}
386EXPORT_SYMBOL(__arm_ioremap_pfn);
387
388void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
389				      unsigned int, void *) =
390	__arm_ioremap_caller;
391
392void __iomem *ioremap(resource_size_t res_cookie, size_t size)
393{
394	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
395				   __builtin_return_address(0));
396}
397EXPORT_SYMBOL(ioremap);
398
399void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
400{
401	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
402				   __builtin_return_address(0));
403}
404EXPORT_SYMBOL(ioremap_cache);
405
406void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
407{
408	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
409				   __builtin_return_address(0));
410}
411EXPORT_SYMBOL(ioremap_wc);
412
413/*
414 * Remap an arbitrary physical address space into the kernel virtual
415 * address space as memory. Needed when the kernel wants to execute
416 * code in external memory. This is needed for reprogramming source
417 * clocks that would affect normal memory for example. Please see
418 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
419 */
420void __iomem *
421__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
422{
423	unsigned int mtype;
424
425	if (cached)
426		mtype = MT_MEMORY_RWX;
427	else
428		mtype = MT_MEMORY_RWX_NONCACHED;
429
430	return __arm_ioremap_caller(phys_addr, size, mtype,
431			__builtin_return_address(0));
432}
433
434void __arm_iomem_set_ro(void __iomem *ptr, size_t size)
435{
436	set_memory_ro((unsigned long)ptr, PAGE_ALIGN(size) / PAGE_SIZE);
437}
438
439void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
440{
441	return (__force void *)arch_ioremap_caller(phys_addr, size,
442						   MT_MEMORY_RW,
443						   __builtin_return_address(0));
444}
445
446void iounmap(volatile void __iomem *io_addr)
447{
448	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
449	struct static_vm *svm;
450
451	/* If this is a static mapping, we must leave it alone */
452	svm = find_static_vm_vaddr(addr);
453	if (svm)
454		return;
455
456#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
457	{
458		struct vm_struct *vm;
459
460		vm = find_vm_area(addr);
461
462		/*
463		 * If this is a section based mapping we need to handle it
464		 * specially as the VM subsystem does not know how to handle
465		 * such a beast.
466		 */
467		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
468			unmap_area_sections((unsigned long)vm->addr, vm->size);
469	}
470#endif
471
472	vunmap(addr);
473}
474EXPORT_SYMBOL(iounmap);
475
476#if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA)
477static int pci_ioremap_mem_type = MT_DEVICE;
478
479void pci_ioremap_set_mem_type(int mem_type)
480{
481	pci_ioremap_mem_type = mem_type;
482}
 
483
484int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
 
485{
486	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
487
488	if (!(res->flags & IORESOURCE_IO))
489		return -EINVAL;
490
491	if (res->end > IO_SPACE_LIMIT)
492		return -EINVAL;
493
494	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
495			       __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
 
 
496}
497EXPORT_SYMBOL(pci_remap_iospace);
498
499void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
500{
501	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
502				   __builtin_return_address(0));
503}
504EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
505#endif
506
507/*
508 * Must be called after early_fixmap_init
509 */
510void __init early_ioremap_init(void)
511{
512	early_ioremap_setup();
513}
514
515bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
516				 unsigned long flags)
517{
518	unsigned long pfn = PHYS_PFN(offset);
519
520	return memblock_is_map_memory(pfn);
521}
v3.15
 
  1/*
  2 *  linux/arch/arm/mm/ioremap.c
  3 *
  4 * Re-map IO memory to kernel address space so that we can access it.
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 *
  8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
  9 * Hacked to allow all architectures to build, and various cleanups
 10 * by Russell King
 11 *
 12 * This allows a driver to remap an arbitrary region of bus memory into
 13 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 14 * so on with such remapped areas.
 15 *
 16 * Because the ARM only has a 32-bit address space we can't address the
 17 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 18 * allows us to circumvent this restriction by splitting PCI space into
 19 * two 2GB chunks and mapping only one at a time into processor memory.
 20 * We use MMU protection domains to trap any attempt to access the bank
 21 * that is not currently mapped.  (This isn't fully implemented yet.)
 22 */
 23#include <linux/module.h>
 24#include <linux/errno.h>
 
 25#include <linux/mm.h>
 26#include <linux/vmalloc.h>
 27#include <linux/io.h>
 28#include <linux/sizes.h>
 
 29
 30#include <asm/cp15.h>
 31#include <asm/cputype.h>
 32#include <asm/cacheflush.h>
 
 33#include <asm/mmu_context.h>
 34#include <asm/pgalloc.h>
 35#include <asm/tlbflush.h>
 
 36#include <asm/system_info.h>
 37
 38#include <asm/mach/map.h>
 39#include <asm/mach/pci.h>
 40#include "mm.h"
 41
 42
 43LIST_HEAD(static_vmlist);
 44
 45static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
 46			size_t size, unsigned int mtype)
 47{
 48	struct static_vm *svm;
 49	struct vm_struct *vm;
 50
 51	list_for_each_entry(svm, &static_vmlist, list) {
 52		vm = &svm->vm;
 53		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
 54			continue;
 55		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
 56			continue;
 57
 58		if (vm->phys_addr > paddr ||
 59			paddr + size - 1 > vm->phys_addr + vm->size - 1)
 60			continue;
 61
 62		return svm;
 63	}
 64
 65	return NULL;
 66}
 67
 68struct static_vm *find_static_vm_vaddr(void *vaddr)
 69{
 70	struct static_vm *svm;
 71	struct vm_struct *vm;
 72
 73	list_for_each_entry(svm, &static_vmlist, list) {
 74		vm = &svm->vm;
 75
 76		/* static_vmlist is ascending order */
 77		if (vm->addr > vaddr)
 78			break;
 79
 80		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
 81			return svm;
 82	}
 83
 84	return NULL;
 85}
 86
 87void __init add_static_vm_early(struct static_vm *svm)
 88{
 89	struct static_vm *curr_svm;
 90	struct vm_struct *vm;
 91	void *vaddr;
 92
 93	vm = &svm->vm;
 94	vm_area_add_early(vm);
 95	vaddr = vm->addr;
 96
 97	list_for_each_entry(curr_svm, &static_vmlist, list) {
 98		vm = &curr_svm->vm;
 99
100		if (vm->addr > vaddr)
101			break;
102	}
103	list_add_tail(&svm->list, &curr_svm->list);
104}
105
106int ioremap_page(unsigned long virt, unsigned long phys,
107		 const struct mem_type *mtype)
108{
109	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
110				  __pgprot(mtype->prot_pte));
111}
112EXPORT_SYMBOL(ioremap_page);
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114void __check_vmalloc_seq(struct mm_struct *mm)
115{
116	unsigned int seq;
117
118	do {
119		seq = init_mm.context.vmalloc_seq;
120		memcpy(pgd_offset(mm, VMALLOC_START),
121		       pgd_offset_k(VMALLOC_START),
122		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
123					pgd_index(VMALLOC_START)));
124		mm->context.vmalloc_seq = seq;
125	} while (seq != init_mm.context.vmalloc_seq);
 
 
 
 
 
 
 
 
 
126}
127
128#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
129/*
130 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
131 * the other CPUs will not see this change until their next context switch.
132 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
133 * which requires the new ioremap'd region to be referenced, the CPU will
134 * reference the _old_ region.
135 *
136 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
137 * mask the size back to 1MB aligned or we will overflow in the loop below.
138 */
139static void unmap_area_sections(unsigned long virt, unsigned long size)
140{
141	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
142	pgd_t *pgd;
143	pud_t *pud;
144	pmd_t *pmdp;
145
146	flush_cache_vunmap(addr, end);
147	pgd = pgd_offset_k(addr);
148	pud = pud_offset(pgd, addr);
149	pmdp = pmd_offset(pud, addr);
150	do {
151		pmd_t pmd = *pmdp;
152
153		if (!pmd_none(pmd)) {
154			/*
155			 * Clear the PMD from the page table, and
156			 * increment the vmalloc sequence so others
157			 * notice this change.
158			 *
159			 * Note: this is still racy on SMP machines.
160			 */
161			pmd_clear(pmdp);
162			init_mm.context.vmalloc_seq++;
163
164			/*
165			 * Free the page table, if there was one.
166			 */
167			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
168				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
169		}
170
171		addr += PMD_SIZE;
172		pmdp += 2;
173	} while (addr < end);
174
175	/*
176	 * Ensure that the active_mm is up to date - we want to
177	 * catch any use-after-iounmap cases.
178	 */
179	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
180		__check_vmalloc_seq(current->active_mm);
181
182	flush_tlb_kernel_range(virt, end);
183}
184
185static int
186remap_area_sections(unsigned long virt, unsigned long pfn,
187		    size_t size, const struct mem_type *type)
188{
189	unsigned long addr = virt, end = virt + size;
190	pgd_t *pgd;
191	pud_t *pud;
192	pmd_t *pmd;
193
194	/*
195	 * Remove and free any PTE-based mapping, and
196	 * sync the current kernel mapping.
197	 */
198	unmap_area_sections(virt, size);
199
200	pgd = pgd_offset_k(addr);
201	pud = pud_offset(pgd, addr);
202	pmd = pmd_offset(pud, addr);
203	do {
204		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
205		pfn += SZ_1M >> PAGE_SHIFT;
206		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
207		pfn += SZ_1M >> PAGE_SHIFT;
208		flush_pmd_entry(pmd);
209
210		addr += PMD_SIZE;
211		pmd += 2;
212	} while (addr < end);
213
214	return 0;
215}
216
217static int
218remap_area_supersections(unsigned long virt, unsigned long pfn,
219			 size_t size, const struct mem_type *type)
220{
221	unsigned long addr = virt, end = virt + size;
222	pgd_t *pgd;
223	pud_t *pud;
224	pmd_t *pmd;
225
226	/*
227	 * Remove and free any PTE-based mapping, and
228	 * sync the current kernel mapping.
229	 */
230	unmap_area_sections(virt, size);
231
232	pgd = pgd_offset_k(virt);
233	pud = pud_offset(pgd, addr);
234	pmd = pmd_offset(pud, addr);
235	do {
236		unsigned long super_pmd_val, i;
237
238		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
239				PMD_SECT_SUPER;
240		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
241
242		for (i = 0; i < 8; i++) {
243			pmd[0] = __pmd(super_pmd_val);
244			pmd[1] = __pmd(super_pmd_val);
245			flush_pmd_entry(pmd);
246
247			addr += PMD_SIZE;
248			pmd += 2;
249		}
250
251		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
252	} while (addr < end);
253
254	return 0;
255}
256#endif
257
258void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
259	unsigned long offset, size_t size, unsigned int mtype, void *caller)
260{
261	const struct mem_type *type;
262	int err;
263	unsigned long addr;
264	struct vm_struct *area;
265	phys_addr_t paddr = __pfn_to_phys(pfn);
266
267#ifndef CONFIG_ARM_LPAE
268	/*
269	 * High mappings must be supersection aligned
270	 */
271	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
272		return NULL;
273#endif
274
275	type = get_mem_type(mtype);
276	if (!type)
277		return NULL;
278
279	/*
280	 * Page align the mapping size, taking account of any offset.
281	 */
282	size = PAGE_ALIGN(offset + size);
283
284	/*
285	 * Try to reuse one of the static mapping whenever possible.
286	 */
287	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
288		struct static_vm *svm;
289
290		svm = find_static_vm_paddr(paddr, size, mtype);
291		if (svm) {
292			addr = (unsigned long)svm->vm.addr;
293			addr += paddr - svm->vm.phys_addr;
294			return (void __iomem *) (offset + addr);
295		}
296	}
297
298	/*
299	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
 
300	 */
301	if (WARN_ON(pfn_valid(pfn)))
 
302		return NULL;
303
304	area = get_vm_area_caller(size, VM_IOREMAP, caller);
305 	if (!area)
306 		return NULL;
307 	addr = (unsigned long)area->addr;
308	area->phys_addr = paddr;
309
310#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
311	if (DOMAIN_IO == 0 &&
312	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
313	       cpu_is_xsc3()) && pfn >= 0x100000 &&
314	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
315		area->flags |= VM_ARM_SECTION_MAPPING;
316		err = remap_area_supersections(addr, pfn, size, type);
317	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
318		area->flags |= VM_ARM_SECTION_MAPPING;
319		err = remap_area_sections(addr, pfn, size, type);
320	} else
321#endif
322		err = ioremap_page_range(addr, addr + size, paddr,
323					 __pgprot(type->prot_pte));
324
325	if (err) {
326 		vunmap((void *)addr);
327 		return NULL;
328 	}
329
330	flush_cache_vmap(addr, addr + size);
331	return (void __iomem *) (offset + addr);
332}
333
334void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
335	unsigned int mtype, void *caller)
336{
337	phys_addr_t last_addr;
338 	unsigned long offset = phys_addr & ~PAGE_MASK;
339 	unsigned long pfn = __phys_to_pfn(phys_addr);
340
341 	/*
342 	 * Don't allow wraparound or zero size
343	 */
344	last_addr = phys_addr + size - 1;
345	if (!size || last_addr < phys_addr)
346		return NULL;
347
348	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
349			caller);
350}
351
352/*
353 * Remap an arbitrary physical address space into the kernel virtual
354 * address space. Needed when the kernel wants to access high addresses
355 * directly.
356 *
357 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
358 * have to convert them into an offset in a page-aligned mapping, but the
359 * caller shouldn't need to know that small detail.
360 */
361void __iomem *
362__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
363		  unsigned int mtype)
364{
365	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
366			__builtin_return_address(0));
367}
368EXPORT_SYMBOL(__arm_ioremap_pfn);
369
370void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
371				      unsigned int, void *) =
372	__arm_ioremap_caller;
373
374void __iomem *
375__arm_ioremap(phys_addr_t phys_addr, size_t size, unsigned int mtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
376{
377	return arch_ioremap_caller(phys_addr, size, mtype,
378		__builtin_return_address(0));
379}
380EXPORT_SYMBOL(__arm_ioremap);
381
382/*
383 * Remap an arbitrary physical address space into the kernel virtual
384 * address space as memory. Needed when the kernel wants to execute
385 * code in external memory. This is needed for reprogramming source
386 * clocks that would affect normal memory for example. Please see
387 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
388 */
389void __iomem *
390__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
391{
392	unsigned int mtype;
393
394	if (cached)
395		mtype = MT_MEMORY_RWX;
396	else
397		mtype = MT_MEMORY_RWX_NONCACHED;
398
399	return __arm_ioremap_caller(phys_addr, size, mtype,
400			__builtin_return_address(0));
401}
402
403void __iounmap(volatile void __iomem *io_addr)
 
 
 
 
 
 
 
 
 
 
 
 
404{
405	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
406	struct static_vm *svm;
407
408	/* If this is a static mapping, we must leave it alone */
409	svm = find_static_vm_vaddr(addr);
410	if (svm)
411		return;
412
413#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
414	{
415		struct vm_struct *vm;
416
417		vm = find_vm_area(addr);
418
419		/*
420		 * If this is a section based mapping we need to handle it
421		 * specially as the VM subsystem does not know how to handle
422		 * such a beast.
423		 */
424		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
425			unmap_area_sections((unsigned long)vm->addr, vm->size);
426	}
427#endif
428
429	vunmap(addr);
430}
 
431
432void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
 
433
434void __arm_iounmap(volatile void __iomem *io_addr)
435{
436	arch_iounmap(io_addr);
437}
438EXPORT_SYMBOL(__arm_iounmap);
439
440#ifdef CONFIG_PCI
441int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
442{
443	BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
 
 
 
 
 
 
444
445	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
446				  PCI_IO_VIRT_BASE + offset + SZ_64K,
447				  phys_addr,
448				  __pgprot(get_mem_type(MT_DEVICE)->prot_pte));
449}
450EXPORT_SYMBOL_GPL(pci_ioremap_io);
 
 
 
 
 
 
 
451#endif