Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
 
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-map-ops.h>
  19#include <linux/highmem.h>
  20#include <linux/memblock.h>
  21#include <linux/slab.h>
  22#include <linux/iommu.h>
  23#include <linux/io.h>
  24#include <linux/vmalloc.h>
  25#include <linux/sizes.h>
  26#include <linux/cma.h>
  27
  28#include <asm/page.h>
  29#include <asm/highmem.h>
  30#include <asm/cacheflush.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <asm/xen/xen-ops.h>
  37
  38#include "dma.h"
  39#include "mm.h"
  40
  41struct arm_dma_alloc_args {
  42	struct device *dev;
  43	size_t size;
  44	gfp_t gfp;
  45	pgprot_t prot;
  46	const void *caller;
  47	bool want_vaddr;
  48	int coherent_flag;
  49};
 
 
 
 
 
 
 
  50
  51struct arm_dma_free_args {
  52	struct device *dev;
  53	size_t size;
  54	void *cpu_addr;
  55	struct page *page;
  56	bool want_vaddr;
  57};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59#define NORMAL	    0
  60#define COHERENT    1
 
 
 
 
  61
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72};
 
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
 
 
 
 
 
 
  88		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 
 
 
 
 
 
 
 106
 107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 
 
 
 108{
 109	/*
 110	 * Ensure that the allocated pages are zeroed, and that any data
 111	 * lurking in the kernel direct-mapped region is invalidated.
 112	 */
 113	if (PageHighMem(page)) {
 114		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 115		phys_addr_t end = base + size;
 116		while (size > 0) {
 117			void *ptr = kmap_atomic(page);
 118			memset(ptr, 0, PAGE_SIZE);
 119			if (coherent_flag != COHERENT)
 120				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 121			kunmap_atomic(ptr);
 122			page++;
 123			size -= PAGE_SIZE;
 124		}
 125		if (coherent_flag != COHERENT)
 126			outer_flush_range(base, end);
 127	} else {
 128		void *ptr = page_address(page);
 129		memset(ptr, 0, size);
 130		if (coherent_flag != COHERENT) {
 131			dmac_flush_range(ptr, ptr + size);
 132			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 133		}
 134	}
 135}
 136
 137/*
 138 * Allocate a DMA buffer for 'dev' of size 'size' using the
 139 * specified gfp mask.  Note that 'size' must be page aligned.
 140 */
 141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 142				       gfp_t gfp, int coherent_flag)
 143{
 144	unsigned long order = get_order(size);
 145	struct page *page, *p, *e;
 146
 147	page = alloc_pages(gfp, order);
 148	if (!page)
 149		return NULL;
 150
 151	/*
 152	 * Now split the huge page and free the excess pages
 153	 */
 154	split_page(page, order);
 155	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 156		__free_page(p);
 157
 158	__dma_clear_buffer(page, size, coherent_flag);
 159
 160	return page;
 161}
 162
 163/*
 164 * Free a DMA buffer.  'size' must be page aligned.
 165 */
 166static void __dma_free_buffer(struct page *page, size_t size)
 167{
 168	struct page *e = page + (size >> PAGE_SHIFT);
 169
 170	while (page < e) {
 171		__free_page(page);
 172		page++;
 173	}
 174}
 175
 
 
 176static void *__alloc_from_contiguous(struct device *dev, size_t size,
 177				     pgprot_t prot, struct page **ret_page,
 178				     const void *caller, bool want_vaddr,
 179				     int coherent_flag, gfp_t gfp);
 180
 181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 182				 pgprot_t prot, struct page **ret_page,
 183				 const void *caller, bool want_vaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184
 185#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 186static struct gen_pool *atomic_pool __ro_after_init;
 187
 188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 189
 190static int __init early_coherent_pool(char *p)
 191{
 192	atomic_pool_size = memparse(p, &p);
 193	return 0;
 194}
 195early_param("coherent_pool", early_coherent_pool);
 196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197/*
 198 * Initialise the coherent pool for atomic allocations.
 199 */
 200static int __init atomic_pool_init(void)
 201{
 
 202	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 203	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 
 
 204	struct page *page;
 
 205	void *ptr;
 
 206
 207	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 208	if (!atomic_pool)
 209		goto out;
 210	/*
 211	 * The atomic pool is only used for non-coherent allocations
 212	 * so we must pass NORMAL for coherent_flag.
 213	 */
 214	if (dev_get_cma_area(NULL))
 215		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 216				      &page, atomic_pool_init, true, NORMAL,
 217				      GFP_KERNEL);
 218	else
 219		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 220					   &page, atomic_pool_init, true);
 221	if (ptr) {
 222		int ret;
 
 
 
 223
 224		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 225					page_to_phys(page),
 226					atomic_pool_size, -1);
 227		if (ret)
 228			goto destroy_genpool;
 229
 230		gen_pool_set_algo(atomic_pool,
 231				gen_pool_first_fit_order_align,
 232				NULL);
 233		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 234		       atomic_pool_size / 1024);
 235		return 0;
 236	}
 237
 238destroy_genpool:
 239	gen_pool_destroy(atomic_pool);
 240	atomic_pool = NULL;
 241out:
 242	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 243	       atomic_pool_size / 1024);
 244	return -ENOMEM;
 245}
 246/*
 247 * CMA is activated by core_initcall, so we must be called after it.
 248 */
 249postcore_initcall(atomic_pool_init);
 250
 251#ifdef CONFIG_CMA_AREAS
 252struct dma_contig_early_reserve {
 253	phys_addr_t base;
 254	unsigned long size;
 255};
 256
 257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 258
 259static int dma_mmu_remap_num __initdata;
 260
 261#ifdef CONFIG_DMA_CMA
 262void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 263{
 264	dma_mmu_remap[dma_mmu_remap_num].base = base;
 265	dma_mmu_remap[dma_mmu_remap_num].size = size;
 266	dma_mmu_remap_num++;
 267}
 268#endif
 269
 270void __init dma_contiguous_remap(void)
 271{
 272	int i;
 273	for (i = 0; i < dma_mmu_remap_num; i++) {
 274		phys_addr_t start = dma_mmu_remap[i].base;
 275		phys_addr_t end = start + dma_mmu_remap[i].size;
 276		struct map_desc map;
 277		unsigned long addr;
 278
 279		if (end > arm_lowmem_limit)
 280			end = arm_lowmem_limit;
 281		if (start >= end)
 282			continue;
 283
 284		map.pfn = __phys_to_pfn(start);
 285		map.virtual = __phys_to_virt(start);
 286		map.length = end - start;
 287		map.type = MT_MEMORY_DMA_READY;
 288
 289		/*
 290		 * Clear previous low-memory mapping to ensure that the
 291		 * TLB does not see any conflicting entries, then flush
 292		 * the TLB of the old entries before creating new mappings.
 293		 *
 294		 * This ensures that any speculatively loaded TLB entries
 295		 * (even though they may be rare) can not cause any problems,
 296		 * and ensures that this code is architecturally compliant.
 297		 */
 298		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 299		     addr += PMD_SIZE)
 300			pmd_clear(pmd_off_k(addr));
 301
 302		flush_tlb_kernel_range(__phys_to_virt(start),
 303				       __phys_to_virt(end));
 304
 305		iotable_init(&map, 1);
 306	}
 307}
 308#endif
 309
 310static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 
 311{
 312	struct page *page = virt_to_page((void *)addr);
 313	pgprot_t prot = *(pgprot_t *)data;
 314
 315	set_pte_ext(pte, mk_pte(page, prot), 0);
 316	return 0;
 317}
 318
 319static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 320{
 321	unsigned long start = (unsigned long) page_address(page);
 322	unsigned end = start + size;
 323
 324	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 325	flush_tlb_kernel_range(start, end);
 326}
 327
 328static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 329				 pgprot_t prot, struct page **ret_page,
 330				 const void *caller, bool want_vaddr)
 331{
 332	struct page *page;
 333	void *ptr = NULL;
 334	/*
 335	 * __alloc_remap_buffer is only called when the device is
 336	 * non-coherent
 337	 */
 338	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 339	if (!page)
 340		return NULL;
 341	if (!want_vaddr)
 342		goto out;
 343
 344	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 345	if (!ptr) {
 346		__dma_free_buffer(page, size);
 347		return NULL;
 348	}
 349
 350 out:
 351	*ret_page = page;
 352	return ptr;
 353}
 354
 355static void *__alloc_from_pool(size_t size, struct page **ret_page)
 356{
 357	unsigned long val;
 
 
 
 358	void *ptr = NULL;
 
 359
 360	if (!atomic_pool) {
 361		WARN(1, "coherent pool not initialised!\n");
 362		return NULL;
 363	}
 364
 365	val = gen_pool_alloc(atomic_pool, size);
 366	if (val) {
 367		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 
 
 
 368
 369		*ret_page = phys_to_page(phys);
 370		ptr = (void *)val;
 
 
 
 
 
 
 
 
 
 371	}
 
 372
 373	return ptr;
 374}
 375
 376static bool __in_atomic_pool(void *start, size_t size)
 377{
 378	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379}
 380
 381static int __free_from_pool(void *start, size_t size)
 382{
 
 
 
 
 383	if (!__in_atomic_pool(start, size))
 384		return 0;
 385
 386	gen_pool_free(atomic_pool, (unsigned long)start, size);
 
 
 
 
 
 387
 388	return 1;
 389}
 390
 391static void *__alloc_from_contiguous(struct device *dev, size_t size,
 392				     pgprot_t prot, struct page **ret_page,
 393				     const void *caller, bool want_vaddr,
 394				     int coherent_flag, gfp_t gfp)
 395{
 396	unsigned long order = get_order(size);
 397	size_t count = size >> PAGE_SHIFT;
 398	struct page *page;
 399	void *ptr = NULL;
 400
 401	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 402	if (!page)
 403		return NULL;
 404
 405	__dma_clear_buffer(page, size, coherent_flag);
 406
 407	if (!want_vaddr)
 408		goto out;
 409
 410	if (PageHighMem(page)) {
 411		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 412		if (!ptr) {
 413			dma_release_from_contiguous(dev, page, count);
 414			return NULL;
 415		}
 416	} else {
 417		__dma_remap(page, size, prot);
 418		ptr = page_address(page);
 419	}
 420
 421 out:
 422	*ret_page = page;
 423	return ptr;
 424}
 425
 426static void __free_from_contiguous(struct device *dev, struct page *page,
 427				   void *cpu_addr, size_t size, bool want_vaddr)
 428{
 429	if (want_vaddr) {
 430		if (PageHighMem(page))
 431			dma_common_free_remap(cpu_addr, size);
 432		else
 433			__dma_remap(page, size, PAGE_KERNEL);
 434	}
 435	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 436}
 437
 438static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 439{
 440	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 441			pgprot_writecombine(prot) :
 442			pgprot_dmacoherent(prot);
 443	return prot;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 447				   struct page **ret_page)
 448{
 449	struct page *page;
 450	/* __alloc_simple_buffer is only called when the device is coherent */
 451	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 452	if (!page)
 453		return NULL;
 454
 455	*ret_page = page;
 456	return page_address(page);
 457}
 458
 459static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 460				    struct page **ret_page)
 461{
 462	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 463				     ret_page);
 464}
 465
 466static void simple_allocator_free(struct arm_dma_free_args *args)
 467{
 468	__dma_free_buffer(args->page, args->size);
 469}
 470
 471static struct arm_dma_allocator simple_allocator = {
 472	.alloc = simple_allocator_alloc,
 473	.free = simple_allocator_free,
 474};
 475
 476static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 477				 struct page **ret_page)
 478{
 479	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 480				       ret_page, args->caller,
 481				       args->want_vaddr, args->coherent_flag,
 482				       args->gfp);
 483}
 484
 485static void cma_allocator_free(struct arm_dma_free_args *args)
 486{
 487	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 488			       args->size, args->want_vaddr);
 489}
 490
 491static struct arm_dma_allocator cma_allocator = {
 492	.alloc = cma_allocator_alloc,
 493	.free = cma_allocator_free,
 494};
 495
 496static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 497				  struct page **ret_page)
 498{
 499	return __alloc_from_pool(args->size, ret_page);
 500}
 501
 502static void pool_allocator_free(struct arm_dma_free_args *args)
 503{
 504	__free_from_pool(args->cpu_addr, args->size);
 505}
 506
 507static struct arm_dma_allocator pool_allocator = {
 508	.alloc = pool_allocator_alloc,
 509	.free = pool_allocator_free,
 510};
 511
 512static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 513				   struct page **ret_page)
 514{
 515	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 516				    args->prot, ret_page, args->caller,
 517				    args->want_vaddr);
 518}
 519
 520static void remap_allocator_free(struct arm_dma_free_args *args)
 521{
 522	if (args->want_vaddr)
 523		dma_common_free_remap(args->cpu_addr, args->size);
 524
 525	__dma_free_buffer(args->page, args->size);
 526}
 527
 528static struct arm_dma_allocator remap_allocator = {
 529	.alloc = remap_allocator_alloc,
 530	.free = remap_allocator_free,
 531};
 532
 533static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 534			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 535			 unsigned long attrs, const void *caller)
 536{
 537	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 538	struct page *page = NULL;
 539	void *addr;
 540	bool allowblock, cma;
 541	struct arm_dma_buffer *buf;
 542	struct arm_dma_alloc_args args = {
 543		.dev = dev,
 544		.size = PAGE_ALIGN(size),
 545		.gfp = gfp,
 546		.prot = prot,
 547		.caller = caller,
 548		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 549		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 550	};
 551
 552#ifdef CONFIG_DMA_API_DEBUG
 553	u64 limit = (mask + 1) & ~mask;
 554	if (limit && size >= limit) {
 555		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 556			size, mask);
 557		return NULL;
 558	}
 559#endif
 560
 561	buf = kzalloc(sizeof(*buf),
 562		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 563	if (!buf)
 564		return NULL;
 565
 566	if (mask < 0xffffffffULL)
 567		gfp |= GFP_DMA;
 568
 569	args.gfp = gfp;
 
 
 
 
 
 
 
 570
 571	*handle = DMA_MAPPING_ERROR;
 572	allowblock = gfpflags_allow_blocking(gfp);
 573	cma = allowblock ? dev_get_cma_area(dev) : NULL;
 574
 575	if (cma)
 576		buf->allocator = &cma_allocator;
 577	else if (is_coherent)
 578		buf->allocator = &simple_allocator;
 579	else if (allowblock)
 580		buf->allocator = &remap_allocator;
 581	else
 582		buf->allocator = &pool_allocator;
 583
 584	addr = buf->allocator->alloc(&args, &page);
 
 585
 586	if (page) {
 587		unsigned long flags;
 588
 589		*handle = phys_to_dma(dev, page_to_phys(page));
 590		buf->virt = args.want_vaddr ? addr : page;
 
 
 
 
 
 
 
 591
 592		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 593		list_add(&buf->list, &arm_dma_bufs);
 594		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 595	} else {
 596		kfree(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597	}
 
 598
 599	return args.want_vaddr ? addr : page;
 600}
 601
 602/*
 603 * Free a buffer as defined by the above mapping.
 604 */
 605static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 606			   dma_addr_t handle, unsigned long attrs,
 607			   bool is_coherent)
 608{
 609	struct page *page = phys_to_page(dma_to_phys(dev, handle));
 610	struct arm_dma_buffer *buf;
 611	struct arm_dma_free_args args = {
 612		.dev = dev,
 613		.size = PAGE_ALIGN(size),
 614		.cpu_addr = cpu_addr,
 615		.page = page,
 616		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 617	};
 618
 619	buf = arm_dma_buffer_find(cpu_addr);
 620	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 621		return;
 622
 623	buf->allocator->free(&args);
 624	kfree(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625}
 626
 627static void dma_cache_maint_page(struct page *page, unsigned long offset,
 628	size_t size, enum dma_data_direction dir,
 629	void (*op)(const void *, size_t, int))
 630{
 631	unsigned long pfn;
 632	size_t left = size;
 633
 634	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 635	offset %= PAGE_SIZE;
 636
 637	/*
 638	 * A single sg entry may refer to multiple physically contiguous
 639	 * pages.  But we still need to process highmem pages individually.
 640	 * If highmem is not configured then the bulk of this loop gets
 641	 * optimized out.
 642	 */
 643	do {
 644		size_t len = left;
 645		void *vaddr;
 646
 647		page = pfn_to_page(pfn);
 648
 649		if (PageHighMem(page)) {
 650			if (len + offset > PAGE_SIZE)
 651				len = PAGE_SIZE - offset;
 652
 653			if (cache_is_vipt_nonaliasing()) {
 654				vaddr = kmap_atomic(page);
 655				op(vaddr + offset, len, dir);
 656				kunmap_atomic(vaddr);
 657			} else {
 658				vaddr = kmap_high_get(page);
 659				if (vaddr) {
 660					op(vaddr + offset, len, dir);
 661					kunmap_high(page);
 662				}
 663			}
 664		} else {
 665			vaddr = page_address(page) + offset;
 666			op(vaddr, len, dir);
 667		}
 668		offset = 0;
 669		pfn++;
 670		left -= len;
 671	} while (left);
 672}
 673
 674/*
 675 * Make an area consistent for devices.
 676 * Note: Drivers should NOT use this function directly.
 
 677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 678 */
 679static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 680	size_t size, enum dma_data_direction dir)
 681{
 682	phys_addr_t paddr;
 683
 684	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 685
 686	paddr = page_to_phys(page) + off;
 687	if (dir == DMA_FROM_DEVICE) {
 688		outer_inv_range(paddr, paddr + size);
 689	} else {
 690		outer_clean_range(paddr, paddr + size);
 691	}
 692	/* FIXME: non-speculating: flush on bidirectional mappings? */
 693}
 694
 695static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 696	size_t size, enum dma_data_direction dir)
 697{
 698	phys_addr_t paddr = page_to_phys(page) + off;
 699
 700	/* FIXME: non-speculating: not required */
 701	/* in any case, don't bother invalidating if DMA to device */
 702	if (dir != DMA_TO_DEVICE) {
 703		outer_inv_range(paddr, paddr + size);
 704
 705		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 706	}
 707
 708	/*
 709	 * Mark the D-cache clean for these pages to avoid extra flushing.
 710	 */
 711	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 712		struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
 713		size_t offset = offset_in_folio(folio, paddr);
 714
 715		for (;;) {
 716			size_t sz = folio_size(folio) - offset;
 717
 718			if (size < sz)
 719				break;
 720			if (!offset)
 721				set_bit(PG_dcache_clean, &folio->flags);
 722			offset = 0;
 723			size -= sz;
 724			if (!size)
 725				break;
 726			folio = folio_next(folio);
 727		}
 728	}
 729}
 730
 731#ifdef CONFIG_ARM_DMA_USE_IOMMU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734{
 735	int prot = 0;
 
 
 736
 737	if (attrs & DMA_ATTR_PRIVILEGED)
 738		prot |= IOMMU_PRIV;
 
 
 739
 740	switch (dir) {
 741	case DMA_BIDIRECTIONAL:
 742		return prot | IOMMU_READ | IOMMU_WRITE;
 743	case DMA_TO_DEVICE:
 744		return prot | IOMMU_READ;
 745	case DMA_FROM_DEVICE:
 746		return prot | IOMMU_WRITE;
 747	default:
 748		return prot;
 749	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750}
 
 
 
 751
 752/* IOMMU */
 753
 754static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
 755
 756static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
 757				      size_t size)
 758{
 759	unsigned int order = get_order(size);
 760	unsigned int align = 0;
 761	unsigned int count, start;
 762	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 763	unsigned long flags;
 764	dma_addr_t iova;
 765	int i;
 766
 767	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
 768		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
 769
 770	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 771	align = (1 << order) - 1;
 772
 773	spin_lock_irqsave(&mapping->lock, flags);
 774	for (i = 0; i < mapping->nr_bitmaps; i++) {
 775		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 776				mapping->bits, 0, count, align);
 777
 778		if (start > mapping->bits)
 779			continue;
 780
 781		bitmap_set(mapping->bitmaps[i], start, count);
 782		break;
 783	}
 784
 785	/*
 786	 * No unused range found. Try to extend the existing mapping
 787	 * and perform a second attempt to reserve an IO virtual
 788	 * address range of size bytes.
 789	 */
 790	if (i == mapping->nr_bitmaps) {
 791		if (extend_iommu_mapping(mapping)) {
 792			spin_unlock_irqrestore(&mapping->lock, flags);
 793			return DMA_MAPPING_ERROR;
 794		}
 795
 796		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
 797				mapping->bits, 0, count, align);
 798
 799		if (start > mapping->bits) {
 800			spin_unlock_irqrestore(&mapping->lock, flags);
 801			return DMA_MAPPING_ERROR;
 802		}
 803
 804		bitmap_set(mapping->bitmaps[i], start, count);
 805	}
 806	spin_unlock_irqrestore(&mapping->lock, flags);
 807
 808	iova = mapping->base + (mapping_size * i);
 809	iova += start << PAGE_SHIFT;
 810
 811	return iova;
 812}
 813
 814static inline void __free_iova(struct dma_iommu_mapping *mapping,
 815			       dma_addr_t addr, size_t size)
 816{
 817	unsigned int start, count;
 818	size_t mapping_size = mapping->bits << PAGE_SHIFT;
 819	unsigned long flags;
 820	dma_addr_t bitmap_base;
 821	u32 bitmap_index;
 822
 823	if (!size)
 824		return;
 825
 826	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
 827	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
 828
 829	bitmap_base = mapping->base + mapping_size * bitmap_index;
 830
 831	start = (addr - bitmap_base) >>	PAGE_SHIFT;
 832
 833	if (addr + size > bitmap_base + mapping_size) {
 834		/*
 835		 * The address range to be freed reaches into the iova
 836		 * range of the next bitmap. This should not happen as
 837		 * we don't allow this in __alloc_iova (at the
 838		 * moment).
 839		 */
 840		BUG();
 841	} else
 842		count = size >> PAGE_SHIFT;
 843
 844	spin_lock_irqsave(&mapping->lock, flags);
 845	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
 846	spin_unlock_irqrestore(&mapping->lock, flags);
 847}
 848
 849/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
 850static const int iommu_order_array[] = { 9, 8, 4, 0 };
 851
 852static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
 853					  gfp_t gfp, unsigned long attrs,
 854					  int coherent_flag)
 855{
 856	struct page **pages;
 857	int count = size >> PAGE_SHIFT;
 858	int array_size = count * sizeof(struct page *);
 859	int i = 0;
 860	int order_idx = 0;
 861
 862	pages = kvzalloc(array_size, GFP_KERNEL);
 
 
 
 863	if (!pages)
 864		return NULL;
 865
 866	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
 867	{
 868		unsigned long order = get_order(size);
 869		struct page *page;
 870
 871		page = dma_alloc_from_contiguous(dev, count, order,
 872						 gfp & __GFP_NOWARN);
 873		if (!page)
 874			goto error;
 875
 876		__dma_clear_buffer(page, size, coherent_flag);
 877
 878		for (i = 0; i < count; i++)
 879			pages[i] = page + i;
 880
 881		return pages;
 882	}
 883
 884	/* Go straight to 4K chunks if caller says it's OK. */
 885	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 886		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
 887
 888	/*
 889	 * IOMMU can map any pages, so himem can also be used here
 890	 */
 891	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 892
 893	while (count) {
 894		int j, order;
 895
 896		order = iommu_order_array[order_idx];
 897
 898		/* Drop down when we get small */
 899		if (__fls(count) < order) {
 900			order_idx++;
 901			continue;
 902		}
 903
 904		if (order) {
 905			/* See if it's easy to allocate a high-order chunk */
 906			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
 907
 908			/* Go down a notch at first sign of pressure */
 909			if (!pages[i]) {
 910				order_idx++;
 911				continue;
 912			}
 913		} else {
 914			pages[i] = alloc_pages(gfp, 0);
 915			if (!pages[i])
 916				goto error;
 917		}
 918
 919		if (order) {
 920			split_page(pages[i], order);
 921			j = 1 << order;
 922			while (--j)
 923				pages[i + j] = pages[i] + j;
 924		}
 925
 926		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
 927		i += 1 << order;
 928		count -= 1 << order;
 929	}
 930
 931	return pages;
 932error:
 933	while (i--)
 934		if (pages[i])
 935			__free_pages(pages[i], 0);
 936	kvfree(pages);
 
 
 
 937	return NULL;
 938}
 939
 940static int __iommu_free_buffer(struct device *dev, struct page **pages,
 941			       size_t size, unsigned long attrs)
 942{
 943	int count = size >> PAGE_SHIFT;
 
 944	int i;
 945
 946	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
 947		dma_release_from_contiguous(dev, pages[0], count);
 948	} else {
 949		for (i = 0; i < count; i++)
 950			if (pages[i])
 951				__free_pages(pages[i], 0);
 952	}
 953
 954	kvfree(pages);
 
 
 
 955	return 0;
 956}
 957
 958/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959 * Create a mapping in device IO address space for specified pages
 960 */
 961static dma_addr_t
 962__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
 963		       unsigned long attrs)
 964{
 965	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
 966	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 967	dma_addr_t dma_addr, iova;
 968	int i;
 969
 970	dma_addr = __alloc_iova(mapping, size);
 971	if (dma_addr == DMA_MAPPING_ERROR)
 972		return dma_addr;
 973
 974	iova = dma_addr;
 975	for (i = 0; i < count; ) {
 976		int ret;
 977
 978		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
 979		phys_addr_t phys = page_to_phys(pages[i]);
 980		unsigned int len, j;
 981
 982		for (j = i + 1; j < count; j++, next_pfn++)
 983			if (page_to_pfn(pages[j]) != next_pfn)
 984				break;
 985
 986		len = (j - i) << PAGE_SHIFT;
 987		ret = iommu_map(mapping->domain, iova, phys, len,
 988				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
 989				GFP_KERNEL);
 990		if (ret < 0)
 991			goto fail;
 992		iova += len;
 993		i = j;
 994	}
 995	return dma_addr;
 996fail:
 997	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
 998	__free_iova(mapping, dma_addr, size);
 999	return DMA_MAPPING_ERROR;
1000}
1001
1002static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003{
1004	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1005
1006	/*
1007	 * add optional in-page offset from iova to size and align
1008	 * result to page size
1009	 */
1010	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011	iova &= PAGE_MASK;
1012
1013	iommu_unmap(mapping->domain, iova, size);
1014	__free_iova(mapping, iova, size);
1015	return 0;
1016}
1017
1018static struct page **__atomic_get_pages(void *addr)
1019{
1020	struct page *page;
1021	phys_addr_t phys;
1022
1023	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024	page = phys_to_page(phys);
1025
1026	return (struct page **)page;
1027}
1028
1029static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1030{
 
 
1031	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032		return __atomic_get_pages(cpu_addr);
1033
1034	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1035		return cpu_addr;
1036
1037	return dma_common_find_pages(cpu_addr);
 
 
 
1038}
1039
1040static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1041				  dma_addr_t *handle, int coherent_flag,
1042				  unsigned long attrs)
1043{
1044	struct page *page;
1045	void *addr;
1046
1047	if (coherent_flag  == COHERENT)
1048		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049	else
1050		addr = __alloc_from_pool(size, &page);
1051	if (!addr)
1052		return NULL;
1053
1054	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1055	if (*handle == DMA_MAPPING_ERROR)
1056		goto err_mapping;
1057
1058	return addr;
1059
1060err_mapping:
1061	__free_from_pool(addr, size);
1062	return NULL;
1063}
1064
1065static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1066			dma_addr_t handle, size_t size, int coherent_flag)
1067{
1068	__iommu_remove_mapping(dev, handle, size);
1069	if (coherent_flag == COHERENT)
1070		__dma_free_buffer(virt_to_page(cpu_addr), size);
1071	else
1072		__free_from_pool(cpu_addr, size);
1073}
1074
1075static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1077{
1078	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1079	struct page **pages;
1080	void *addr = NULL;
1081	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1082
1083	*handle = DMA_MAPPING_ERROR;
1084	size = PAGE_ALIGN(size);
1085
1086	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1087		return __iommu_alloc_simple(dev, size, gfp, handle,
1088					    coherent_flag, attrs);
 
 
 
 
 
 
 
 
1089
1090	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1091	if (!pages)
1092		return NULL;
1093
1094	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1095	if (*handle == DMA_MAPPING_ERROR)
1096		goto err_buffer;
1097
1098	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1099		return pages;
1100
1101	addr = dma_common_pages_remap(pages, size, prot,
1102				   __builtin_return_address(0));
1103	if (!addr)
1104		goto err_mapping;
1105
1106	return addr;
1107
1108err_mapping:
1109	__iommu_remove_mapping(dev, *handle, size);
1110err_buffer:
1111	__iommu_free_buffer(dev, pages, size, attrs);
1112	return NULL;
1113}
1114
1115static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1116		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1117		    unsigned long attrs)
1118{
 
 
1119	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1120	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1121	int err;
1122
1123	if (!pages)
1124		return -ENXIO;
1125
1126	if (vma->vm_pgoff >= nr_pages)
1127		return -ENXIO;
1128
1129	if (!dev->dma_coherent)
1130		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
1132	err = vm_map_pages(vma, pages, nr_pages);
1133	if (err)
1134		pr_err("Remapping memory failed: %d\n", err);
 
 
 
1135
1136	return err;
1137}
1138
1139/*
1140 * free a page as defined by the above mapping.
1141 * Must not be called with IRQs disabled.
1142 */
1143static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144	dma_addr_t handle, unsigned long attrs)
1145{
1146	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1147	struct page **pages;
1148	size = PAGE_ALIGN(size);
1149
1150	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1152		return;
1153	}
1154
1155	pages = __iommu_get_pages(cpu_addr, attrs);
1156	if (!pages) {
1157		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1158		return;
1159	}
1160
1161	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1162		dma_common_free_remap(cpu_addr, size);
 
 
1163
1164	__iommu_remove_mapping(dev, handle, size);
1165	__iommu_free_buffer(dev, pages, size, attrs);
1166}
1167
1168static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169				 void *cpu_addr, dma_addr_t dma_addr,
1170				 size_t size, unsigned long attrs)
1171{
1172	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175	if (!pages)
1176		return -ENXIO;
1177
1178	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179					 GFP_KERNEL);
1180}
1181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182/*
1183 * Map a part of the scatter-gather list into contiguous io address space
1184 */
1185static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186			  size_t size, dma_addr_t *handle,
1187			  enum dma_data_direction dir, unsigned long attrs)
 
1188{
1189	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1190	dma_addr_t iova, iova_base;
1191	int ret = 0;
1192	unsigned int count;
1193	struct scatterlist *s;
1194	int prot;
1195
1196	size = PAGE_ALIGN(size);
1197	*handle = DMA_MAPPING_ERROR;
1198
1199	iova_base = iova = __alloc_iova(mapping, size);
1200	if (iova == DMA_MAPPING_ERROR)
1201		return -ENOMEM;
1202
1203	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1204		phys_addr_t phys = page_to_phys(sg_page(s));
1205		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
1207		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 
1208			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
1210		prot = __dma_info_to_prot(dir, attrs);
1211
1212		ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213				GFP_KERNEL);
1214		if (ret < 0)
1215			goto fail;
1216		count += len >> PAGE_SHIFT;
1217		iova += len;
1218	}
1219	*handle = iova_base;
1220
1221	return 0;
1222fail:
1223	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224	__free_iova(mapping, iova_base, size);
1225	return ret;
1226}
1227
1228/**
1229 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230 * @dev: valid struct device pointer
1231 * @sg: list of buffers
1232 * @nents: number of buffers to map
1233 * @dir: DMA transfer direction
1234 *
1235 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236 * The scatter gather list elements are merged together (if possible) and
1237 * tagged with the appropriate dma address and length. They are obtained via
1238 * sg_dma_{address,length}.
1239 */
1240static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241		int nents, enum dma_data_direction dir, unsigned long attrs)
1242{
1243	struct scatterlist *s = sg, *dma = sg, *start = sg;
1244	int i, count = 0, ret;
1245	unsigned int offset = s->offset;
1246	unsigned int size = s->offset + s->length;
1247	unsigned int max = dma_get_max_seg_size(dev);
1248
1249	for (i = 1; i < nents; i++) {
1250		s = sg_next(s);
1251
 
1252		s->dma_length = 0;
1253
1254		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1255			ret = __map_sg_chunk(dev, start, size,
1256					     &dma->dma_address, dir, attrs);
1257			if (ret < 0)
1258				goto bad_mapping;
1259
1260			dma->dma_address += offset;
1261			dma->dma_length = size - offset;
1262
1263			size = offset = s->offset;
1264			start = s;
1265			dma = sg_next(dma);
1266			count += 1;
1267		}
1268		size += s->length;
1269	}
1270	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1271	if (ret < 0)
1272		goto bad_mapping;
1273
1274	dma->dma_address += offset;
1275	dma->dma_length = size - offset;
1276
1277	return count+1;
1278
1279bad_mapping:
1280	for_each_sg(sg, s, count, i)
1281		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1282	if (ret == -ENOMEM)
1283		return ret;
1284	return -EINVAL;
1285}
1286
1287/**
1288 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1289 * @dev: valid struct device pointer
1290 * @sg: list of buffers
1291 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1293 *
1294 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1295 * rules concerning calls here are the same as for dma_unmap_single().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296 */
1297static void arm_iommu_unmap_sg(struct device *dev,
1298			       struct scatterlist *sg, int nents,
1299			       enum dma_data_direction dir,
1300			       unsigned long attrs)
 
 
 
 
 
1301{
1302	struct scatterlist *s;
1303	int i;
1304
1305	for_each_sg(sg, s, nents, i) {
1306		if (sg_dma_len(s))
1307			__iommu_remove_mapping(dev, sg_dma_address(s),
1308					       sg_dma_len(s));
1309		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 
1310			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1311					      s->length, dir);
1312	}
1313}
1314
1315/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316 * arm_iommu_sync_sg_for_cpu
1317 * @dev: valid struct device pointer
1318 * @sg: list of buffers
1319 * @nents: number of buffers to map (returned from dma_map_sg)
1320 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321 */
1322static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323			struct scatterlist *sg,
1324			int nents, enum dma_data_direction dir)
1325{
1326	struct scatterlist *s;
1327	int i;
1328
1329	if (dev->dma_coherent)
1330		return;
1331
1332	for_each_sg(sg, s, nents, i)
1333		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1334
1335}
1336
1337/**
1338 * arm_iommu_sync_sg_for_device
1339 * @dev: valid struct device pointer
1340 * @sg: list of buffers
1341 * @nents: number of buffers to map (returned from dma_map_sg)
1342 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 */
1344static void arm_iommu_sync_sg_for_device(struct device *dev,
1345			struct scatterlist *sg,
1346			int nents, enum dma_data_direction dir)
1347{
1348	struct scatterlist *s;
1349	int i;
1350
1351	if (dev->dma_coherent)
1352		return;
1353
1354	for_each_sg(sg, s, nents, i)
1355		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1356}
1357
 
1358/**
1359 * arm_iommu_map_page
1360 * @dev: valid struct device pointer
1361 * @page: page that buffer resides in
1362 * @offset: offset into page for start of buffer
1363 * @size: size of buffer to map
1364 * @dir: DMA transfer direction
1365 *
1366 * IOMMU aware version of arm_dma_map_page()
1367 */
1368static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1369	     unsigned long offset, size_t size, enum dma_data_direction dir,
1370	     unsigned long attrs)
1371{
1372	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1373	dma_addr_t dma_addr;
1374	int ret, prot, len = PAGE_ALIGN(size + offset);
1375
1376	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377		__dma_page_cpu_to_dev(page, offset, size, dir);
1378
1379	dma_addr = __alloc_iova(mapping, len);
1380	if (dma_addr == DMA_MAPPING_ERROR)
1381		return dma_addr;
1382
1383	prot = __dma_info_to_prot(dir, attrs);
1384
1385	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386			prot, GFP_KERNEL);
1387	if (ret < 0)
1388		goto fail;
1389
1390	return dma_addr + offset;
1391fail:
1392	__free_iova(mapping, dma_addr, len);
1393	return DMA_MAPPING_ERROR;
1394}
1395
1396/**
1397 * arm_iommu_unmap_page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398 * @dev: valid struct device pointer
1399 * @handle: DMA address of buffer
1400 * @size: size of buffer (same as passed to dma_map_page)
1401 * @dir: DMA transfer direction (same as passed to dma_map_page)
1402 *
1403 * IOMMU aware version of arm_dma_unmap_page()
1404 */
1405static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1406		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1407{
1408	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1409	dma_addr_t iova = handle & PAGE_MASK;
1410	struct page *page;
1411	int offset = handle & ~PAGE_MASK;
1412	int len = PAGE_ALIGN(size + offset);
1413
1414	if (!iova)
1415		return;
1416
1417	if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418		page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1419		__dma_page_dev_to_cpu(page, offset, size, dir);
1420	}
1421
1422	iommu_unmap(mapping->domain, iova, len);
1423	__free_iova(mapping, iova, len);
1424}
1425
1426/**
1427 * arm_iommu_map_resource - map a device resource for DMA
1428 * @dev: valid struct device pointer
1429 * @phys_addr: physical address of resource
1430 * @size: size of resource to map
1431 * @dir: DMA transfer direction
1432 */
1433static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434		phys_addr_t phys_addr, size_t size,
1435		enum dma_data_direction dir, unsigned long attrs)
1436{
1437	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438	dma_addr_t dma_addr;
1439	int ret, prot;
1440	phys_addr_t addr = phys_addr & PAGE_MASK;
1441	unsigned int offset = phys_addr & ~PAGE_MASK;
1442	size_t len = PAGE_ALIGN(size + offset);
1443
1444	dma_addr = __alloc_iova(mapping, len);
1445	if (dma_addr == DMA_MAPPING_ERROR)
1446		return dma_addr;
1447
1448	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1449
1450	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1451	if (ret < 0)
1452		goto fail;
1453
1454	return dma_addr + offset;
1455fail:
1456	__free_iova(mapping, dma_addr, len);
1457	return DMA_MAPPING_ERROR;
1458}
1459
1460/**
1461 * arm_iommu_unmap_resource - unmap a device DMA resource
1462 * @dev: valid struct device pointer
1463 * @dma_handle: DMA address to resource
1464 * @size: size of resource to map
1465 * @dir: DMA transfer direction
 
 
1466 */
1467static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468		size_t size, enum dma_data_direction dir,
1469		unsigned long attrs)
1470{
1471	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472	dma_addr_t iova = dma_handle & PAGE_MASK;
1473	unsigned int offset = dma_handle & ~PAGE_MASK;
1474	size_t len = PAGE_ALIGN(size + offset);
 
1475
1476	if (!iova)
1477		return;
1478
 
 
 
1479	iommu_unmap(mapping->domain, iova, len);
1480	__free_iova(mapping, iova, len);
1481}
1482
1483static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485{
1486	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1487	dma_addr_t iova = handle & PAGE_MASK;
1488	struct page *page;
1489	unsigned int offset = handle & ~PAGE_MASK;
1490
1491	if (dev->dma_coherent || !iova)
1492		return;
1493
1494	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1495	__dma_page_dev_to_cpu(page, offset, size, dir);
1496}
1497
1498static void arm_iommu_sync_single_for_device(struct device *dev,
1499		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500{
1501	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1502	dma_addr_t iova = handle & PAGE_MASK;
1503	struct page *page;
1504	unsigned int offset = handle & ~PAGE_MASK;
1505
1506	if (dev->dma_coherent || !iova)
1507		return;
1508
1509	page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1510	__dma_page_cpu_to_dev(page, offset, size, dir);
1511}
1512
1513static const struct dma_map_ops iommu_ops = {
1514	.alloc		= arm_iommu_alloc_attrs,
1515	.free		= arm_iommu_free_attrs,
1516	.mmap		= arm_iommu_mmap_attrs,
1517	.get_sgtable	= arm_iommu_get_sgtable,
1518
1519	.map_page		= arm_iommu_map_page,
1520	.unmap_page		= arm_iommu_unmap_page,
1521	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1522	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1523
1524	.map_sg			= arm_iommu_map_sg,
1525	.unmap_sg		= arm_iommu_unmap_sg,
1526	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1527	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1528
1529	.map_resource		= arm_iommu_map_resource,
1530	.unmap_resource		= arm_iommu_unmap_resource,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531};
1532
1533/**
1534 * arm_iommu_create_mapping
1535 * @dev: pointer to the client device (for IOMMU calls)
1536 * @base: start address of the valid IO address space
1537 * @size: maximum size of the valid IO address space
1538 *
1539 * Creates a mapping structure which holds information about used/unused
1540 * IO address ranges, which is required to perform memory allocation and
1541 * mapping with IOMMU aware functions.
1542 *
1543 * The client device need to be attached to the mapping with
1544 * arm_iommu_attach_device function.
1545 */
1546struct dma_iommu_mapping *
1547arm_iommu_create_mapping(struct device *dev, dma_addr_t base, u64 size)
1548{
1549	unsigned int bits = size >> PAGE_SHIFT;
1550	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1551	struct dma_iommu_mapping *mapping;
1552	int extensions = 1;
1553	int err = -ENOMEM;
1554
1555	/* currently only 32-bit DMA address space is supported */
1556	if (size > DMA_BIT_MASK(32) + 1)
1557		return ERR_PTR(-ERANGE);
1558
1559	if (!bitmap_size)
1560		return ERR_PTR(-EINVAL);
1561
1562	if (bitmap_size > PAGE_SIZE) {
1563		extensions = bitmap_size / PAGE_SIZE;
1564		bitmap_size = PAGE_SIZE;
1565	}
1566
1567	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568	if (!mapping)
1569		goto err;
1570
1571	mapping->bitmap_size = bitmap_size;
1572	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573				   GFP_KERNEL);
1574	if (!mapping->bitmaps)
1575		goto err2;
1576
1577	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1578	if (!mapping->bitmaps[0])
1579		goto err3;
1580
1581	mapping->nr_bitmaps = 1;
1582	mapping->extensions = extensions;
1583	mapping->base = base;
1584	mapping->bits = BITS_PER_BYTE * bitmap_size;
 
1585
1586	spin_lock_init(&mapping->lock);
1587
1588	mapping->domain = iommu_paging_domain_alloc(dev);
1589	if (IS_ERR(mapping->domain)) {
1590		err = PTR_ERR(mapping->domain);
1591		goto err4;
1592	}
1593
1594	kref_init(&mapping->kref);
1595	return mapping;
1596err4:
1597	kfree(mapping->bitmaps[0]);
1598err3:
1599	kfree(mapping->bitmaps);
1600err2:
1601	kfree(mapping);
1602err:
1603	return ERR_PTR(err);
1604}
1605EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1606
1607static void release_iommu_mapping(struct kref *kref)
1608{
1609	int i;
1610	struct dma_iommu_mapping *mapping =
1611		container_of(kref, struct dma_iommu_mapping, kref);
1612
1613	iommu_domain_free(mapping->domain);
1614	for (i = 0; i < mapping->nr_bitmaps; i++)
1615		kfree(mapping->bitmaps[i]);
1616	kfree(mapping->bitmaps);
1617	kfree(mapping);
1618}
1619
1620static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1621{
1622	int next_bitmap;
1623
1624	if (mapping->nr_bitmaps >= mapping->extensions)
1625		return -EINVAL;
1626
1627	next_bitmap = mapping->nr_bitmaps;
1628	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1629						GFP_ATOMIC);
1630	if (!mapping->bitmaps[next_bitmap])
1631		return -ENOMEM;
1632
1633	mapping->nr_bitmaps++;
1634
1635	return 0;
1636}
1637
1638void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1639{
1640	if (mapping)
1641		kref_put(&mapping->kref, release_iommu_mapping);
1642}
1643EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1644
1645static int __arm_iommu_attach_device(struct device *dev,
1646				     struct dma_iommu_mapping *mapping)
1647{
1648	int err;
1649
1650	err = iommu_attach_device(mapping->domain, dev);
1651	if (err)
1652		return err;
1653
1654	kref_get(&mapping->kref);
1655	to_dma_iommu_mapping(dev) = mapping;
1656
1657	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1658	return 0;
1659}
1660
1661/**
1662 * arm_iommu_attach_device
1663 * @dev: valid struct device pointer
1664 * @mapping: io address space mapping structure (returned from
1665 *	arm_iommu_create_mapping)
1666 *
1667 * Attaches specified io address space mapping to the provided device.
1668 * This replaces the dma operations (dma_map_ops pointer) with the
1669 * IOMMU aware version.
1670 *
1671 * More than one client might be attached to the same io address space
1672 * mapping.
1673 */
1674int arm_iommu_attach_device(struct device *dev,
1675			    struct dma_iommu_mapping *mapping)
1676{
1677	int err;
1678
1679	err = __arm_iommu_attach_device(dev, mapping);
1680	if (err)
1681		return err;
1682
 
 
1683	set_dma_ops(dev, &iommu_ops);
 
 
1684	return 0;
1685}
1686EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1687
1688/**
1689 * arm_iommu_detach_device
1690 * @dev: valid struct device pointer
1691 *
1692 * Detaches the provided device from a previously attached map.
1693 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1694 */
1695void arm_iommu_detach_device(struct device *dev)
1696{
1697	struct dma_iommu_mapping *mapping;
1698
1699	mapping = to_dma_iommu_mapping(dev);
1700	if (!mapping) {
1701		dev_warn(dev, "Not attached\n");
1702		return;
1703	}
1704
1705	iommu_detach_device(mapping->domain, dev);
1706	kref_put(&mapping->kref, release_iommu_mapping);
1707	to_dma_iommu_mapping(dev) = NULL;
1708	set_dma_ops(dev, NULL);
1709
1710	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1711}
1712EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1713
1714static void arm_setup_iommu_dma_ops(struct device *dev)
1715{
1716	struct dma_iommu_mapping *mapping;
1717	u64 dma_base = 0, size = 1ULL << 32;
1718
1719	if (dev->dma_range_map) {
1720		dma_base = dma_range_map_min(dev->dma_range_map);
1721		size = dma_range_map_max(dev->dma_range_map) - dma_base;
1722	}
1723	mapping = arm_iommu_create_mapping(dev, dma_base, size);
1724	if (IS_ERR(mapping)) {
1725		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1726				size, dev_name(dev));
1727		return;
1728	}
1729
1730	if (__arm_iommu_attach_device(dev, mapping)) {
1731		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1732				dev_name(dev));
1733		arm_iommu_release_mapping(mapping);
1734		return;
1735	}
1736
1737	set_dma_ops(dev, &iommu_ops);
1738}
1739
1740static void arm_teardown_iommu_dma_ops(struct device *dev)
1741{
1742	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1743
1744	if (!mapping)
1745		return;
1746
1747	arm_iommu_detach_device(dev);
1748	arm_iommu_release_mapping(mapping);
1749}
1750
1751#else
1752
1753static void arm_setup_iommu_dma_ops(struct device *dev)
1754{
1755}
1756
1757static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1758
1759#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1760
1761void arch_setup_dma_ops(struct device *dev, bool coherent)
1762{
1763	/*
1764	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1765	 * notifier we can't just assign coherent to the ->dma_coherent flag
1766	 * here, but instead have to make sure we only set but never clear it
1767	 * for now.
1768	 */
1769	if (coherent)
1770		dev->dma_coherent = true;
1771
1772	/*
1773	 * Don't override the dma_ops if they have already been set. Ideally
1774	 * this should be the only location where dma_ops are set, remove this
1775	 * check when all other callers of set_dma_ops will have disappeared.
1776	 */
1777	if (dev->dma_ops)
1778		return;
1779
1780	if (device_iommu_mapped(dev))
1781		arm_setup_iommu_dma_ops(dev);
1782
1783	xen_setup_dma_ops(dev);
1784	dev->archdata.dma_ops_setup = true;
1785}
1786
1787void arch_teardown_dma_ops(struct device *dev)
1788{
1789	if (!dev->archdata.dma_ops_setup)
1790		return;
1791
1792	arm_teardown_iommu_dma_ops(dev);
1793	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1794	set_dma_ops(dev, NULL);
1795}
1796
1797void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1798		enum dma_data_direction dir)
1799{
1800	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1801			      size, dir);
1802}
1803
1804void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1805		enum dma_data_direction dir)
1806{
1807	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1808			      size, dir);
1809}
1810
1811void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1812		gfp_t gfp, unsigned long attrs)
1813{
1814	return __dma_alloc(dev, size, dma_handle, gfp,
1815			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1816			   attrs, __builtin_return_address(0));
1817}
1818
1819void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1820		dma_addr_t dma_handle, unsigned long attrs)
1821{
1822	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1823}
v3.15
 
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/bootmem.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
 
  15#include <linux/gfp.h>
  16#include <linux/errno.h>
  17#include <linux/list.h>
  18#include <linux/init.h>
  19#include <linux/device.h>
  20#include <linux/dma-mapping.h>
  21#include <linux/dma-contiguous.h>
  22#include <linux/highmem.h>
  23#include <linux/memblock.h>
  24#include <linux/slab.h>
  25#include <linux/iommu.h>
  26#include <linux/io.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sizes.h>
 
  29
  30#include <asm/memory.h>
  31#include <asm/highmem.h>
  32#include <asm/cacheflush.h>
  33#include <asm/tlbflush.h>
  34#include <asm/mach/arch.h>
  35#include <asm/dma-iommu.h>
  36#include <asm/mach/map.h>
  37#include <asm/system_info.h>
  38#include <asm/dma-contiguous.h>
  39
 
  40#include "mm.h"
  41
  42/*
  43 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  44 * is either exclusively owned by the CPU (and therefore may be accessed
  45 * by it) or exclusively owned by the DMA device.  These helper functions
  46 * represent the transitions between these two ownership states.
  47 *
  48 * Note, however, that on later ARMs, this notion does not work due to
  49 * speculative prefetches.  We model our approach on the assumption that
  50 * the CPU does do speculative prefetches, which means we clean caches
  51 * before transfers and delay cache invalidation until transfer completion.
  52 *
  53 */
  54static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  55		size_t, enum dma_data_direction);
  56static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  57		size_t, enum dma_data_direction);
  58
  59/**
  60 * arm_dma_map_page - map a portion of a page for streaming DMA
  61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  62 * @page: page that buffer resides in
  63 * @offset: offset into page for start of buffer
  64 * @size: size of buffer to map
  65 * @dir: DMA transfer direction
  66 *
  67 * Ensure that any data held in the cache is appropriately discarded
  68 * or written back.
  69 *
  70 * The device owns this memory once this call has completed.  The CPU
  71 * can regain ownership by calling dma_unmap_page().
  72 */
  73static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  74	     unsigned long offset, size_t size, enum dma_data_direction dir,
  75	     struct dma_attrs *attrs)
  76{
  77	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  78		__dma_page_cpu_to_dev(page, offset, size, dir);
  79	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  80}
  81
  82static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  83	     unsigned long offset, size_t size, enum dma_data_direction dir,
  84	     struct dma_attrs *attrs)
  85{
  86	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  87}
  88
  89/**
  90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  92 * @handle: DMA address of buffer
  93 * @size: size of buffer (same as passed to dma_map_page)
  94 * @dir: DMA transfer direction (same as passed to dma_map_page)
  95 *
  96 * Unmap a page streaming mode DMA translation.  The handle and size
  97 * must match what was provided in the previous dma_map_page() call.
  98 * All other usages are undefined.
  99 *
 100 * After this call, reads by the CPU to the buffer are guaranteed to see
 101 * whatever the device wrote there.
 102 */
 103static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 104		size_t size, enum dma_data_direction dir,
 105		struct dma_attrs *attrs)
 106{
 107	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 108		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 109				      handle & ~PAGE_MASK, size, dir);
 110}
 111
 112static void arm_dma_sync_single_for_cpu(struct device *dev,
 113		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 114{
 115	unsigned int offset = handle & (PAGE_SIZE - 1);
 116	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 117	__dma_page_dev_to_cpu(page, offset, size, dir);
 118}
 119
 120static void arm_dma_sync_single_for_device(struct device *dev,
 121		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 122{
 123	unsigned int offset = handle & (PAGE_SIZE - 1);
 124	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 125	__dma_page_cpu_to_dev(page, offset, size, dir);
 126}
 127
 128struct dma_map_ops arm_dma_ops = {
 129	.alloc			= arm_dma_alloc,
 130	.free			= arm_dma_free,
 131	.mmap			= arm_dma_mmap,
 132	.get_sgtable		= arm_dma_get_sgtable,
 133	.map_page		= arm_dma_map_page,
 134	.unmap_page		= arm_dma_unmap_page,
 135	.map_sg			= arm_dma_map_sg,
 136	.unmap_sg		= arm_dma_unmap_sg,
 137	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 138	.sync_single_for_device	= arm_dma_sync_single_for_device,
 139	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 140	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 141	.set_dma_mask		= arm_dma_set_mask,
 142};
 143EXPORT_SYMBOL(arm_dma_ops);
 144
 145static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 146	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 147static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 148				  dma_addr_t handle, struct dma_attrs *attrs);
 149
 150struct dma_map_ops arm_coherent_dma_ops = {
 151	.alloc			= arm_coherent_dma_alloc,
 152	.free			= arm_coherent_dma_free,
 153	.mmap			= arm_dma_mmap,
 154	.get_sgtable		= arm_dma_get_sgtable,
 155	.map_page		= arm_coherent_dma_map_page,
 156	.map_sg			= arm_dma_map_sg,
 157	.set_dma_mask		= arm_dma_set_mask,
 158};
 159EXPORT_SYMBOL(arm_coherent_dma_ops);
 160
 161static int __dma_supported(struct device *dev, u64 mask, bool warn)
 162{
 163	unsigned long max_dma_pfn;
 
 164
 165	/*
 166	 * If the mask allows for more memory than we can address,
 167	 * and we actually have that much memory, then we must
 168	 * indicate that DMA to this device is not supported.
 169	 */
 170	if (sizeof(mask) != sizeof(dma_addr_t) &&
 171	    mask > (dma_addr_t)~0 &&
 172	    dma_to_pfn(dev, ~0) < max_pfn) {
 173		if (warn) {
 174			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 175				 mask);
 176			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 177		}
 178		return 0;
 179	}
 180
 181	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 182
 183	/*
 184	 * Translate the device's DMA mask to a PFN limit.  This
 185	 * PFN number includes the page which we can DMA to.
 186	 */
 187	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 188		if (warn)
 189			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 190				 mask,
 191				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 192				 max_dma_pfn + 1);
 193		return 0;
 194	}
 195
 196	return 1;
 197}
 198
 199static u64 get_coherent_dma_mask(struct device *dev)
 200{
 201	u64 mask = (u64)DMA_BIT_MASK(32);
 202
 203	if (dev) {
 204		mask = dev->coherent_dma_mask;
 205
 206		/*
 207		 * Sanity check the DMA mask - it must be non-zero, and
 208		 * must be able to be satisfied by a DMA allocation.
 209		 */
 210		if (mask == 0) {
 211			dev_warn(dev, "coherent DMA mask is unset\n");
 212			return 0;
 213		}
 214
 215		if (!__dma_supported(dev, mask, true))
 216			return 0;
 217	}
 218
 219	return mask;
 220}
 221
 222static void __dma_clear_buffer(struct page *page, size_t size)
 223{
 224	/*
 225	 * Ensure that the allocated pages are zeroed, and that any data
 226	 * lurking in the kernel direct-mapped region is invalidated.
 227	 */
 228	if (PageHighMem(page)) {
 229		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 230		phys_addr_t end = base + size;
 231		while (size > 0) {
 232			void *ptr = kmap_atomic(page);
 233			memset(ptr, 0, PAGE_SIZE);
 234			dmac_flush_range(ptr, ptr + PAGE_SIZE);
 
 235			kunmap_atomic(ptr);
 236			page++;
 237			size -= PAGE_SIZE;
 238		}
 239		outer_flush_range(base, end);
 
 240	} else {
 241		void *ptr = page_address(page);
 242		memset(ptr, 0, size);
 243		dmac_flush_range(ptr, ptr + size);
 244		outer_flush_range(__pa(ptr), __pa(ptr) + size);
 
 
 245	}
 246}
 247
 248/*
 249 * Allocate a DMA buffer for 'dev' of size 'size' using the
 250 * specified gfp mask.  Note that 'size' must be page aligned.
 251 */
 252static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 253{
 254	unsigned long order = get_order(size);
 255	struct page *page, *p, *e;
 256
 257	page = alloc_pages(gfp, order);
 258	if (!page)
 259		return NULL;
 260
 261	/*
 262	 * Now split the huge page and free the excess pages
 263	 */
 264	split_page(page, order);
 265	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 266		__free_page(p);
 267
 268	__dma_clear_buffer(page, size);
 269
 270	return page;
 271}
 272
 273/*
 274 * Free a DMA buffer.  'size' must be page aligned.
 275 */
 276static void __dma_free_buffer(struct page *page, size_t size)
 277{
 278	struct page *e = page + (size >> PAGE_SHIFT);
 279
 280	while (page < e) {
 281		__free_page(page);
 282		page++;
 283	}
 284}
 285
 286#ifdef CONFIG_MMU
 287
 288static void *__alloc_from_contiguous(struct device *dev, size_t size,
 289				     pgprot_t prot, struct page **ret_page,
 290				     const void *caller);
 
 291
 292static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 293				 pgprot_t prot, struct page **ret_page,
 294				 const void *caller);
 295
 296static void *
 297__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 298	const void *caller)
 299{
 300	struct vm_struct *area;
 301	unsigned long addr;
 302
 303	/*
 304	 * DMA allocation can be mapped to user space, so lets
 305	 * set VM_USERMAP flags too.
 306	 */
 307	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 308				  caller);
 309	if (!area)
 310		return NULL;
 311	addr = (unsigned long)area->addr;
 312	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
 313
 314	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
 315		vunmap((void *)addr);
 316		return NULL;
 317	}
 318	return (void *)addr;
 319}
 320
 321static void __dma_free_remap(void *cpu_addr, size_t size)
 322{
 323	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
 324	struct vm_struct *area = find_vm_area(cpu_addr);
 325	if (!area || (area->flags & flags) != flags) {
 326		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
 327		return;
 328	}
 329	unmap_kernel_range((unsigned long)cpu_addr, size);
 330	vunmap(cpu_addr);
 331}
 332
 333#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 
 334
 335struct dma_pool {
 336	size_t size;
 337	spinlock_t lock;
 338	unsigned long *bitmap;
 339	unsigned long nr_pages;
 340	void *vaddr;
 341	struct page **pages;
 342};
 343
 344static struct dma_pool atomic_pool = {
 345	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
 346};
 347
 348static int __init early_coherent_pool(char *p)
 349{
 350	atomic_pool.size = memparse(p, &p);
 351	return 0;
 352}
 353early_param("coherent_pool", early_coherent_pool);
 354
 355void __init init_dma_coherent_pool_size(unsigned long size)
 356{
 357	/*
 358	 * Catch any attempt to set the pool size too late.
 359	 */
 360	BUG_ON(atomic_pool.vaddr);
 361
 362	/*
 363	 * Set architecture specific coherent pool size only if
 364	 * it has not been changed by kernel command line parameter.
 365	 */
 366	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 367		atomic_pool.size = size;
 368}
 369
 370/*
 371 * Initialise the coherent pool for atomic allocations.
 372 */
 373static int __init atomic_pool_init(void)
 374{
 375	struct dma_pool *pool = &atomic_pool;
 376	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 377	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 378	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
 379	unsigned long *bitmap;
 380	struct page *page;
 381	struct page **pages;
 382	void *ptr;
 383	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
 384
 385	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 386	if (!bitmap)
 387		goto no_bitmap;
 388
 389	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
 390	if (!pages)
 391		goto no_pages;
 392
 393	if (IS_ENABLED(CONFIG_DMA_CMA))
 394		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
 395					      atomic_pool_init);
 396	else
 397		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
 398					   atomic_pool_init);
 399	if (ptr) {
 400		int i;
 401
 402		for (i = 0; i < nr_pages; i++)
 403			pages[i] = page + i;
 404
 405		spin_lock_init(&pool->lock);
 406		pool->vaddr = ptr;
 407		pool->pages = pages;
 408		pool->bitmap = bitmap;
 409		pool->nr_pages = nr_pages;
 410		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 411		       (unsigned)pool->size / 1024);
 
 
 
 
 412		return 0;
 413	}
 414
 415	kfree(pages);
 416no_pages:
 417	kfree(bitmap);
 418no_bitmap:
 419	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 420	       (unsigned)pool->size / 1024);
 421	return -ENOMEM;
 422}
 423/*
 424 * CMA is activated by core_initcall, so we must be called after it.
 425 */
 426postcore_initcall(atomic_pool_init);
 427
 
 428struct dma_contig_early_reserve {
 429	phys_addr_t base;
 430	unsigned long size;
 431};
 432
 433static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 434
 435static int dma_mmu_remap_num __initdata;
 436
 
 437void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 438{
 439	dma_mmu_remap[dma_mmu_remap_num].base = base;
 440	dma_mmu_remap[dma_mmu_remap_num].size = size;
 441	dma_mmu_remap_num++;
 442}
 
 443
 444void __init dma_contiguous_remap(void)
 445{
 446	int i;
 447	for (i = 0; i < dma_mmu_remap_num; i++) {
 448		phys_addr_t start = dma_mmu_remap[i].base;
 449		phys_addr_t end = start + dma_mmu_remap[i].size;
 450		struct map_desc map;
 451		unsigned long addr;
 452
 453		if (end > arm_lowmem_limit)
 454			end = arm_lowmem_limit;
 455		if (start >= end)
 456			continue;
 457
 458		map.pfn = __phys_to_pfn(start);
 459		map.virtual = __phys_to_virt(start);
 460		map.length = end - start;
 461		map.type = MT_MEMORY_DMA_READY;
 462
 463		/*
 464		 * Clear previous low-memory mapping
 
 
 
 
 
 
 465		 */
 466		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 467		     addr += PMD_SIZE)
 468			pmd_clear(pmd_off_k(addr));
 469
 
 
 
 470		iotable_init(&map, 1);
 471	}
 472}
 
 473
 474static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 475			    void *data)
 476{
 477	struct page *page = virt_to_page(addr);
 478	pgprot_t prot = *(pgprot_t *)data;
 479
 480	set_pte_ext(pte, mk_pte(page, prot), 0);
 481	return 0;
 482}
 483
 484static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 485{
 486	unsigned long start = (unsigned long) page_address(page);
 487	unsigned end = start + size;
 488
 489	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 490	flush_tlb_kernel_range(start, end);
 491}
 492
 493static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 494				 pgprot_t prot, struct page **ret_page,
 495				 const void *caller)
 496{
 497	struct page *page;
 498	void *ptr;
 499	page = __dma_alloc_buffer(dev, size, gfp);
 
 
 
 
 500	if (!page)
 501		return NULL;
 
 
 502
 503	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 504	if (!ptr) {
 505		__dma_free_buffer(page, size);
 506		return NULL;
 507	}
 508
 
 509	*ret_page = page;
 510	return ptr;
 511}
 512
 513static void *__alloc_from_pool(size_t size, struct page **ret_page)
 514{
 515	struct dma_pool *pool = &atomic_pool;
 516	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 517	unsigned int pageno;
 518	unsigned long flags;
 519	void *ptr = NULL;
 520	unsigned long align_mask;
 521
 522	if (!pool->vaddr) {
 523		WARN(1, "coherent pool not initialised!\n");
 524		return NULL;
 525	}
 526
 527	/*
 528	 * Align the region allocation - allocations from pool are rather
 529	 * small, so align them to their order in pages, minimum is a page
 530	 * size. This helps reduce fragmentation of the DMA space.
 531	 */
 532	align_mask = (1 << get_order(size)) - 1;
 533
 534	spin_lock_irqsave(&pool->lock, flags);
 535	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
 536					    0, count, align_mask);
 537	if (pageno < pool->nr_pages) {
 538		bitmap_set(pool->bitmap, pageno, count);
 539		ptr = pool->vaddr + PAGE_SIZE * pageno;
 540		*ret_page = pool->pages[pageno];
 541	} else {
 542		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
 543			    "Please increase it with coherent_pool= kernel parameter!\n",
 544			    (unsigned)pool->size / 1024);
 545	}
 546	spin_unlock_irqrestore(&pool->lock, flags);
 547
 548	return ptr;
 549}
 550
 551static bool __in_atomic_pool(void *start, size_t size)
 552{
 553	struct dma_pool *pool = &atomic_pool;
 554	void *end = start + size;
 555	void *pool_start = pool->vaddr;
 556	void *pool_end = pool->vaddr + pool->size;
 557
 558	if (start < pool_start || start >= pool_end)
 559		return false;
 560
 561	if (end <= pool_end)
 562		return true;
 563
 564	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
 565	     start, end - 1, pool_start, pool_end - 1);
 566
 567	return false;
 568}
 569
 570static int __free_from_pool(void *start, size_t size)
 571{
 572	struct dma_pool *pool = &atomic_pool;
 573	unsigned long pageno, count;
 574	unsigned long flags;
 575
 576	if (!__in_atomic_pool(start, size))
 577		return 0;
 578
 579	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
 580	count = size >> PAGE_SHIFT;
 581
 582	spin_lock_irqsave(&pool->lock, flags);
 583	bitmap_clear(pool->bitmap, pageno, count);
 584	spin_unlock_irqrestore(&pool->lock, flags);
 585
 586	return 1;
 587}
 588
 589static void *__alloc_from_contiguous(struct device *dev, size_t size,
 590				     pgprot_t prot, struct page **ret_page,
 591				     const void *caller)
 
 592{
 593	unsigned long order = get_order(size);
 594	size_t count = size >> PAGE_SHIFT;
 595	struct page *page;
 596	void *ptr;
 597
 598	page = dma_alloc_from_contiguous(dev, count, order);
 599	if (!page)
 600		return NULL;
 601
 602	__dma_clear_buffer(page, size);
 
 
 
 603
 604	if (PageHighMem(page)) {
 605		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 606		if (!ptr) {
 607			dma_release_from_contiguous(dev, page, count);
 608			return NULL;
 609		}
 610	} else {
 611		__dma_remap(page, size, prot);
 612		ptr = page_address(page);
 613	}
 
 
 614	*ret_page = page;
 615	return ptr;
 616}
 617
 618static void __free_from_contiguous(struct device *dev, struct page *page,
 619				   void *cpu_addr, size_t size)
 620{
 621	if (PageHighMem(page))
 622		__dma_free_remap(cpu_addr, size);
 623	else
 624		__dma_remap(page, size, PAGE_KERNEL);
 
 
 625	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 626}
 627
 628static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 629{
 630	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 631			    pgprot_writecombine(prot) :
 632			    pgprot_dmacoherent(prot);
 633	return prot;
 634}
 635
 636#define nommu() 0
 637
 638#else	/* !CONFIG_MMU */
 639
 640#define nommu() 1
 641
 642#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
 643#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
 644#define __alloc_from_pool(size, ret_page)			NULL
 645#define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
 646#define __free_from_pool(cpu_addr, size)			0
 647#define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
 648#define __dma_free_remap(cpu_addr, size)			do { } while (0)
 649
 650#endif	/* CONFIG_MMU */
 651
 652static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 653				   struct page **ret_page)
 654{
 655	struct page *page;
 656	page = __dma_alloc_buffer(dev, size, gfp);
 
 657	if (!page)
 658		return NULL;
 659
 660	*ret_page = page;
 661	return page_address(page);
 662}
 663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 667			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
 
 668{
 669	u64 mask = get_coherent_dma_mask(dev);
 670	struct page *page = NULL;
 671	void *addr;
 
 
 
 
 
 
 
 
 
 
 
 672
 673#ifdef CONFIG_DMA_API_DEBUG
 674	u64 limit = (mask + 1) & ~mask;
 675	if (limit && size >= limit) {
 676		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 677			size, mask);
 678		return NULL;
 679	}
 680#endif
 681
 682	if (!mask)
 
 
 683		return NULL;
 684
 685	if (mask < 0xffffffffULL)
 686		gfp |= GFP_DMA;
 687
 688	/*
 689	 * Following is a work-around (a.k.a. hack) to prevent pages
 690	 * with __GFP_COMP being passed to split_page() which cannot
 691	 * handle them.  The real problem is that this flag probably
 692	 * should be 0 on ARM as it is not supported on this
 693	 * platform; see CONFIG_HUGETLBFS.
 694	 */
 695	gfp &= ~(__GFP_COMP);
 696
 697	*handle = DMA_ERROR_CODE;
 698	size = PAGE_ALIGN(size);
 699
 700	if (is_coherent || nommu())
 701		addr = __alloc_simple_buffer(dev, size, gfp, &page);
 702	else if (!(gfp & __GFP_WAIT))
 703		addr = __alloc_from_pool(size, &page);
 704	else if (!IS_ENABLED(CONFIG_DMA_CMA))
 705		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 
 706	else
 707		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
 708
 709	if (addr)
 710		*handle = pfn_to_dma(dev, page_to_pfn(page));
 711
 712	return addr;
 713}
 714
 715/*
 716 * Allocate DMA-coherent memory space and return both the kernel remapped
 717 * virtual and bus address for that space.
 718 */
 719void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 720		    gfp_t gfp, struct dma_attrs *attrs)
 721{
 722	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 723	void *memory;
 724
 725	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 726		return memory;
 727
 728	return __dma_alloc(dev, size, handle, gfp, prot, false,
 729			   __builtin_return_address(0));
 730}
 731
 732static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 733	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 734{
 735	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 736	void *memory;
 737
 738	if (dma_alloc_from_coherent(dev, size, handle, &memory))
 739		return memory;
 740
 741	return __dma_alloc(dev, size, handle, gfp, prot, true,
 742			   __builtin_return_address(0));
 743}
 744
 745/*
 746 * Create userspace mapping for the DMA-coherent memory.
 747 */
 748int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 749		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 750		 struct dma_attrs *attrs)
 751{
 752	int ret = -ENXIO;
 753#ifdef CONFIG_MMU
 754	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 755	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 756	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 757	unsigned long off = vma->vm_pgoff;
 758
 759	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 760
 761	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 762		return ret;
 763
 764	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 765		ret = remap_pfn_range(vma, vma->vm_start,
 766				      pfn + off,
 767				      vma->vm_end - vma->vm_start,
 768				      vma->vm_page_prot);
 769	}
 770#endif	/* CONFIG_MMU */
 771
 772	return ret;
 773}
 774
 775/*
 776 * Free a buffer as defined by the above mapping.
 777 */
 778static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 779			   dma_addr_t handle, struct dma_attrs *attrs,
 780			   bool is_coherent)
 781{
 782	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 
 
 
 
 
 
 
 
 783
 784	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 
 785		return;
 786
 787	size = PAGE_ALIGN(size);
 788
 789	if (is_coherent || nommu()) {
 790		__dma_free_buffer(page, size);
 791	} else if (__free_from_pool(cpu_addr, size)) {
 792		return;
 793	} else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
 794		__dma_free_remap(cpu_addr, size);
 795		__dma_free_buffer(page, size);
 796	} else {
 797		/*
 798		 * Non-atomic allocations cannot be freed with IRQs disabled
 799		 */
 800		WARN_ON(irqs_disabled());
 801		__free_from_contiguous(dev, page, cpu_addr, size);
 802	}
 803}
 804
 805void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 806		  dma_addr_t handle, struct dma_attrs *attrs)
 807{
 808	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 809}
 810
 811static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 812				  dma_addr_t handle, struct dma_attrs *attrs)
 813{
 814	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 815}
 816
 817int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 818		 void *cpu_addr, dma_addr_t handle, size_t size,
 819		 struct dma_attrs *attrs)
 820{
 821	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 822	int ret;
 823
 824	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 825	if (unlikely(ret))
 826		return ret;
 827
 828	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 829	return 0;
 830}
 831
 832static void dma_cache_maint_page(struct page *page, unsigned long offset,
 833	size_t size, enum dma_data_direction dir,
 834	void (*op)(const void *, size_t, int))
 835{
 836	unsigned long pfn;
 837	size_t left = size;
 838
 839	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 840	offset %= PAGE_SIZE;
 841
 842	/*
 843	 * A single sg entry may refer to multiple physically contiguous
 844	 * pages.  But we still need to process highmem pages individually.
 845	 * If highmem is not configured then the bulk of this loop gets
 846	 * optimized out.
 847	 */
 848	do {
 849		size_t len = left;
 850		void *vaddr;
 851
 852		page = pfn_to_page(pfn);
 853
 854		if (PageHighMem(page)) {
 855			if (len + offset > PAGE_SIZE)
 856				len = PAGE_SIZE - offset;
 857
 858			if (cache_is_vipt_nonaliasing()) {
 859				vaddr = kmap_atomic(page);
 860				op(vaddr + offset, len, dir);
 861				kunmap_atomic(vaddr);
 862			} else {
 863				vaddr = kmap_high_get(page);
 864				if (vaddr) {
 865					op(vaddr + offset, len, dir);
 866					kunmap_high(page);
 867				}
 868			}
 869		} else {
 870			vaddr = page_address(page) + offset;
 871			op(vaddr, len, dir);
 872		}
 873		offset = 0;
 874		pfn++;
 875		left -= len;
 876	} while (left);
 877}
 878
 879/*
 880 * Make an area consistent for devices.
 881 * Note: Drivers should NOT use this function directly, as it will break
 882 * platforms with CONFIG_DMABOUNCE.
 883 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 884 */
 885static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 886	size_t size, enum dma_data_direction dir)
 887{
 888	unsigned long paddr;
 889
 890	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 891
 892	paddr = page_to_phys(page) + off;
 893	if (dir == DMA_FROM_DEVICE) {
 894		outer_inv_range(paddr, paddr + size);
 895	} else {
 896		outer_clean_range(paddr, paddr + size);
 897	}
 898	/* FIXME: non-speculating: flush on bidirectional mappings? */
 899}
 900
 901static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 902	size_t size, enum dma_data_direction dir)
 903{
 904	unsigned long paddr = page_to_phys(page) + off;
 905
 906	/* FIXME: non-speculating: not required */
 907	/* don't bother invalidating if DMA to device */
 908	if (dir != DMA_TO_DEVICE)
 909		outer_inv_range(paddr, paddr + size);
 910
 911	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 
 912
 913	/*
 914	 * Mark the D-cache clean for these pages to avoid extra flushing.
 915	 */
 916	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 917		unsigned long pfn;
 918		size_t left = size;
 919
 920		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 921		off %= PAGE_SIZE;
 922		if (off) {
 923			pfn++;
 924			left -= PAGE_SIZE - off;
 925		}
 926		while (left >= PAGE_SIZE) {
 927			page = pfn_to_page(pfn++);
 928			set_bit(PG_dcache_clean, &page->flags);
 929			left -= PAGE_SIZE;
 
 
 930		}
 931	}
 932}
 933
 934/**
 935 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 936 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 937 * @sg: list of buffers
 938 * @nents: number of buffers to map
 939 * @dir: DMA transfer direction
 940 *
 941 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 942 * This is the scatter-gather version of the dma_map_single interface.
 943 * Here the scatter gather list elements are each tagged with the
 944 * appropriate dma address and length.  They are obtained via
 945 * sg_dma_{address,length}.
 946 *
 947 * Device ownership issues as mentioned for dma_map_single are the same
 948 * here.
 949 */
 950int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 951		enum dma_data_direction dir, struct dma_attrs *attrs)
 952{
 953	struct dma_map_ops *ops = get_dma_ops(dev);
 954	struct scatterlist *s;
 955	int i, j;
 956
 957	for_each_sg(sg, s, nents, i) {
 958#ifdef CONFIG_NEED_SG_DMA_LENGTH
 959		s->dma_length = s->length;
 960#endif
 961		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 962						s->length, dir, attrs);
 963		if (dma_mapping_error(dev, s->dma_address))
 964			goto bad_mapping;
 965	}
 966	return nents;
 967
 968 bad_mapping:
 969	for_each_sg(sg, s, i, j)
 970		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 971	return 0;
 972}
 973
 974/**
 975 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 976 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 977 * @sg: list of buffers
 978 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 979 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 980 *
 981 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 982 * rules concerning calls here are the same as for dma_unmap_single().
 983 */
 984void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 985		enum dma_data_direction dir, struct dma_attrs *attrs)
 986{
 987	struct dma_map_ops *ops = get_dma_ops(dev);
 988	struct scatterlist *s;
 989
 990	int i;
 991
 992	for_each_sg(sg, s, nents, i)
 993		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 994}
 995
 996/**
 997 * arm_dma_sync_sg_for_cpu
 998 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 999 * @sg: list of buffers
1000 * @nents: number of buffers to map (returned from dma_map_sg)
1001 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1002 */
1003void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1004			int nents, enum dma_data_direction dir)
1005{
1006	struct dma_map_ops *ops = get_dma_ops(dev);
1007	struct scatterlist *s;
1008	int i;
1009
1010	for_each_sg(sg, s, nents, i)
1011		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1012					 dir);
1013}
1014
1015/**
1016 * arm_dma_sync_sg_for_device
1017 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1018 * @sg: list of buffers
1019 * @nents: number of buffers to map (returned from dma_map_sg)
1020 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1021 */
1022void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1023			int nents, enum dma_data_direction dir)
1024{
1025	struct dma_map_ops *ops = get_dma_ops(dev);
1026	struct scatterlist *s;
1027	int i;
1028
1029	for_each_sg(sg, s, nents, i)
1030		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1031					    dir);
1032}
1033
1034/*
1035 * Return whether the given device DMA address mask can be supported
1036 * properly.  For example, if your device can only drive the low 24-bits
1037 * during bus mastering, then you would pass 0x00ffffff as the mask
1038 * to this function.
1039 */
1040int dma_supported(struct device *dev, u64 mask)
1041{
1042	return __dma_supported(dev, mask, false);
1043}
1044EXPORT_SYMBOL(dma_supported);
1045
1046int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1047{
1048	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1049		return -EIO;
1050
1051	*dev->dma_mask = dma_mask;
1052
1053	return 0;
1054}
1055
1056#define PREALLOC_DMA_DEBUG_ENTRIES	4096
1057
1058static int __init dma_debug_do_init(void)
1059{
1060	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1061	return 0;
1062}
1063fs_initcall(dma_debug_do_init);
1064
1065#ifdef CONFIG_ARM_DMA_USE_IOMMU
1066
1067/* IOMMU */
1068
1069static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1070
1071static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1072				      size_t size)
1073{
1074	unsigned int order = get_order(size);
1075	unsigned int align = 0;
1076	unsigned int count, start;
 
1077	unsigned long flags;
1078	dma_addr_t iova;
1079	int i;
1080
1081	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1082		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1083
1084	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1085	align = (1 << order) - 1;
1086
1087	spin_lock_irqsave(&mapping->lock, flags);
1088	for (i = 0; i < mapping->nr_bitmaps; i++) {
1089		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1090				mapping->bits, 0, count, align);
1091
1092		if (start > mapping->bits)
1093			continue;
1094
1095		bitmap_set(mapping->bitmaps[i], start, count);
1096		break;
1097	}
1098
1099	/*
1100	 * No unused range found. Try to extend the existing mapping
1101	 * and perform a second attempt to reserve an IO virtual
1102	 * address range of size bytes.
1103	 */
1104	if (i == mapping->nr_bitmaps) {
1105		if (extend_iommu_mapping(mapping)) {
1106			spin_unlock_irqrestore(&mapping->lock, flags);
1107			return DMA_ERROR_CODE;
1108		}
1109
1110		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1111				mapping->bits, 0, count, align);
1112
1113		if (start > mapping->bits) {
1114			spin_unlock_irqrestore(&mapping->lock, flags);
1115			return DMA_ERROR_CODE;
1116		}
1117
1118		bitmap_set(mapping->bitmaps[i], start, count);
1119	}
1120	spin_unlock_irqrestore(&mapping->lock, flags);
1121
1122	iova = mapping->base + (mapping->size * i);
1123	iova += start << PAGE_SHIFT;
1124
1125	return iova;
1126}
1127
1128static inline void __free_iova(struct dma_iommu_mapping *mapping,
1129			       dma_addr_t addr, size_t size)
1130{
1131	unsigned int start, count;
 
1132	unsigned long flags;
1133	dma_addr_t bitmap_base;
1134	u32 bitmap_index;
1135
1136	if (!size)
1137		return;
1138
1139	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping->size;
1140	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1141
1142	bitmap_base = mapping->base + mapping->size * bitmap_index;
1143
1144	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1145
1146	if (addr + size > bitmap_base + mapping->size) {
1147		/*
1148		 * The address range to be freed reaches into the iova
1149		 * range of the next bitmap. This should not happen as
1150		 * we don't allow this in __alloc_iova (at the
1151		 * moment).
1152		 */
1153		BUG();
1154	} else
1155		count = size >> PAGE_SHIFT;
1156
1157	spin_lock_irqsave(&mapping->lock, flags);
1158	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1159	spin_unlock_irqrestore(&mapping->lock, flags);
1160}
1161
 
 
 
1162static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1163					  gfp_t gfp, struct dma_attrs *attrs)
 
1164{
1165	struct page **pages;
1166	int count = size >> PAGE_SHIFT;
1167	int array_size = count * sizeof(struct page *);
1168	int i = 0;
 
1169
1170	if (array_size <= PAGE_SIZE)
1171		pages = kzalloc(array_size, gfp);
1172	else
1173		pages = vzalloc(array_size);
1174	if (!pages)
1175		return NULL;
1176
1177	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1178	{
1179		unsigned long order = get_order(size);
1180		struct page *page;
1181
1182		page = dma_alloc_from_contiguous(dev, count, order);
 
1183		if (!page)
1184			goto error;
1185
1186		__dma_clear_buffer(page, size);
1187
1188		for (i = 0; i < count; i++)
1189			pages[i] = page + i;
1190
1191		return pages;
1192	}
1193
 
 
 
 
1194	/*
1195	 * IOMMU can map any pages, so himem can also be used here
1196	 */
1197	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1198
1199	while (count) {
1200		int j, order = __fls(count);
 
 
 
 
 
 
 
 
 
 
 
 
1201
1202		pages[i] = alloc_pages(gfp, order);
1203		while (!pages[i] && order)
1204			pages[i] = alloc_pages(gfp, --order);
1205		if (!pages[i])
1206			goto error;
 
 
 
 
 
1207
1208		if (order) {
1209			split_page(pages[i], order);
1210			j = 1 << order;
1211			while (--j)
1212				pages[i + j] = pages[i] + j;
1213		}
1214
1215		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1216		i += 1 << order;
1217		count -= 1 << order;
1218	}
1219
1220	return pages;
1221error:
1222	while (i--)
1223		if (pages[i])
1224			__free_pages(pages[i], 0);
1225	if (array_size <= PAGE_SIZE)
1226		kfree(pages);
1227	else
1228		vfree(pages);
1229	return NULL;
1230}
1231
1232static int __iommu_free_buffer(struct device *dev, struct page **pages,
1233			       size_t size, struct dma_attrs *attrs)
1234{
1235	int count = size >> PAGE_SHIFT;
1236	int array_size = count * sizeof(struct page *);
1237	int i;
1238
1239	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1240		dma_release_from_contiguous(dev, pages[0], count);
1241	} else {
1242		for (i = 0; i < count; i++)
1243			if (pages[i])
1244				__free_pages(pages[i], 0);
1245	}
1246
1247	if (array_size <= PAGE_SIZE)
1248		kfree(pages);
1249	else
1250		vfree(pages);
1251	return 0;
1252}
1253
1254/*
1255 * Create a CPU mapping for a specified pages
1256 */
1257static void *
1258__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1259		    const void *caller)
1260{
1261	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1262	struct vm_struct *area;
1263	unsigned long p;
1264
1265	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1266				  caller);
1267	if (!area)
1268		return NULL;
1269
1270	area->pages = pages;
1271	area->nr_pages = nr_pages;
1272	p = (unsigned long)area->addr;
1273
1274	for (i = 0; i < nr_pages; i++) {
1275		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1276		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1277			goto err;
1278		p += PAGE_SIZE;
1279	}
1280	return area->addr;
1281err:
1282	unmap_kernel_range((unsigned long)area->addr, size);
1283	vunmap(area->addr);
1284	return NULL;
1285}
1286
1287/*
1288 * Create a mapping in device IO address space for specified pages
1289 */
1290static dma_addr_t
1291__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 
1292{
1293	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1294	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1295	dma_addr_t dma_addr, iova;
1296	int i, ret = DMA_ERROR_CODE;
1297
1298	dma_addr = __alloc_iova(mapping, size);
1299	if (dma_addr == DMA_ERROR_CODE)
1300		return dma_addr;
1301
1302	iova = dma_addr;
1303	for (i = 0; i < count; ) {
 
 
1304		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1305		phys_addr_t phys = page_to_phys(pages[i]);
1306		unsigned int len, j;
1307
1308		for (j = i + 1; j < count; j++, next_pfn++)
1309			if (page_to_pfn(pages[j]) != next_pfn)
1310				break;
1311
1312		len = (j - i) << PAGE_SHIFT;
1313		ret = iommu_map(mapping->domain, iova, phys, len,
1314				IOMMU_READ|IOMMU_WRITE);
 
1315		if (ret < 0)
1316			goto fail;
1317		iova += len;
1318		i = j;
1319	}
1320	return dma_addr;
1321fail:
1322	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1323	__free_iova(mapping, dma_addr, size);
1324	return DMA_ERROR_CODE;
1325}
1326
1327static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1328{
1329	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1330
1331	/*
1332	 * add optional in-page offset from iova to size and align
1333	 * result to page size
1334	 */
1335	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1336	iova &= PAGE_MASK;
1337
1338	iommu_unmap(mapping->domain, iova, size);
1339	__free_iova(mapping, iova, size);
1340	return 0;
1341}
1342
1343static struct page **__atomic_get_pages(void *addr)
1344{
1345	struct dma_pool *pool = &atomic_pool;
1346	struct page **pages = pool->pages;
1347	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
 
 
1348
1349	return pages + offs;
1350}
1351
1352static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1353{
1354	struct vm_struct *area;
1355
1356	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1357		return __atomic_get_pages(cpu_addr);
1358
1359	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1360		return cpu_addr;
1361
1362	area = find_vm_area(cpu_addr);
1363	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1364		return area->pages;
1365	return NULL;
1366}
1367
1368static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1369				  dma_addr_t *handle)
 
1370{
1371	struct page *page;
1372	void *addr;
1373
1374	addr = __alloc_from_pool(size, &page);
 
 
 
1375	if (!addr)
1376		return NULL;
1377
1378	*handle = __iommu_create_mapping(dev, &page, size);
1379	if (*handle == DMA_ERROR_CODE)
1380		goto err_mapping;
1381
1382	return addr;
1383
1384err_mapping:
1385	__free_from_pool(addr, size);
1386	return NULL;
1387}
1388
1389static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1390				dma_addr_t handle, size_t size)
1391{
1392	__iommu_remove_mapping(dev, handle, size);
1393	__free_from_pool(cpu_addr, size);
 
 
 
1394}
1395
1396static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1397	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1398{
1399	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1400	struct page **pages;
1401	void *addr = NULL;
 
1402
1403	*handle = DMA_ERROR_CODE;
1404	size = PAGE_ALIGN(size);
1405
1406	if (!(gfp & __GFP_WAIT))
1407		return __iommu_alloc_atomic(dev, size, handle);
1408
1409	/*
1410	 * Following is a work-around (a.k.a. hack) to prevent pages
1411	 * with __GFP_COMP being passed to split_page() which cannot
1412	 * handle them.  The real problem is that this flag probably
1413	 * should be 0 on ARM as it is not supported on this
1414	 * platform; see CONFIG_HUGETLBFS.
1415	 */
1416	gfp &= ~(__GFP_COMP);
1417
1418	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1419	if (!pages)
1420		return NULL;
1421
1422	*handle = __iommu_create_mapping(dev, pages, size);
1423	if (*handle == DMA_ERROR_CODE)
1424		goto err_buffer;
1425
1426	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1427		return pages;
1428
1429	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1430				   __builtin_return_address(0));
1431	if (!addr)
1432		goto err_mapping;
1433
1434	return addr;
1435
1436err_mapping:
1437	__iommu_remove_mapping(dev, *handle, size);
1438err_buffer:
1439	__iommu_free_buffer(dev, pages, size, attrs);
1440	return NULL;
1441}
1442
1443static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1444		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1445		    struct dma_attrs *attrs)
1446{
1447	unsigned long uaddr = vma->vm_start;
1448	unsigned long usize = vma->vm_end - vma->vm_start;
1449	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
 
 
1450
1451	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 
1452
1453	if (!pages)
1454		return -ENXIO;
1455
1456	do {
1457		int ret = vm_insert_page(vma, uaddr, *pages++);
1458		if (ret) {
1459			pr_err("Remapping memory failed: %d\n", ret);
1460			return ret;
1461		}
1462		uaddr += PAGE_SIZE;
1463		usize -= PAGE_SIZE;
1464	} while (usize > 0);
1465
1466	return 0;
1467}
1468
1469/*
1470 * free a page as defined by the above mapping.
1471 * Must not be called with IRQs disabled.
1472 */
1473void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1474			  dma_addr_t handle, struct dma_attrs *attrs)
1475{
 
1476	struct page **pages;
1477	size = PAGE_ALIGN(size);
1478
1479	if (__in_atomic_pool(cpu_addr, size)) {
1480		__iommu_free_atomic(dev, cpu_addr, handle, size);
1481		return;
1482	}
1483
1484	pages = __iommu_get_pages(cpu_addr, attrs);
1485	if (!pages) {
1486		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1487		return;
1488	}
1489
1490	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1491		unmap_kernel_range((unsigned long)cpu_addr, size);
1492		vunmap(cpu_addr);
1493	}
1494
1495	__iommu_remove_mapping(dev, handle, size);
1496	__iommu_free_buffer(dev, pages, size, attrs);
1497}
1498
1499static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1500				 void *cpu_addr, dma_addr_t dma_addr,
1501				 size_t size, struct dma_attrs *attrs)
1502{
1503	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1504	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1505
1506	if (!pages)
1507		return -ENXIO;
1508
1509	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1510					 GFP_KERNEL);
1511}
1512
1513static int __dma_direction_to_prot(enum dma_data_direction dir)
1514{
1515	int prot;
1516
1517	switch (dir) {
1518	case DMA_BIDIRECTIONAL:
1519		prot = IOMMU_READ | IOMMU_WRITE;
1520		break;
1521	case DMA_TO_DEVICE:
1522		prot = IOMMU_READ;
1523		break;
1524	case DMA_FROM_DEVICE:
1525		prot = IOMMU_WRITE;
1526		break;
1527	default:
1528		prot = 0;
1529	}
1530
1531	return prot;
1532}
1533
1534/*
1535 * Map a part of the scatter-gather list into contiguous io address space
1536 */
1537static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1538			  size_t size, dma_addr_t *handle,
1539			  enum dma_data_direction dir, struct dma_attrs *attrs,
1540			  bool is_coherent)
1541{
1542	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1543	dma_addr_t iova, iova_base;
1544	int ret = 0;
1545	unsigned int count;
1546	struct scatterlist *s;
1547	int prot;
1548
1549	size = PAGE_ALIGN(size);
1550	*handle = DMA_ERROR_CODE;
1551
1552	iova_base = iova = __alloc_iova(mapping, size);
1553	if (iova == DMA_ERROR_CODE)
1554		return -ENOMEM;
1555
1556	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1557		phys_addr_t phys = page_to_phys(sg_page(s));
1558		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1559
1560		if (!is_coherent &&
1561			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1562			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1563
1564		prot = __dma_direction_to_prot(dir);
1565
1566		ret = iommu_map(mapping->domain, iova, phys, len, prot);
 
1567		if (ret < 0)
1568			goto fail;
1569		count += len >> PAGE_SHIFT;
1570		iova += len;
1571	}
1572	*handle = iova_base;
1573
1574	return 0;
1575fail:
1576	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1577	__free_iova(mapping, iova_base, size);
1578	return ret;
1579}
1580
1581static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1582		     enum dma_data_direction dir, struct dma_attrs *attrs,
1583		     bool is_coherent)
 
 
 
 
 
 
 
 
 
 
 
1584{
1585	struct scatterlist *s = sg, *dma = sg, *start = sg;
1586	int i, count = 0;
1587	unsigned int offset = s->offset;
1588	unsigned int size = s->offset + s->length;
1589	unsigned int max = dma_get_max_seg_size(dev);
1590
1591	for (i = 1; i < nents; i++) {
1592		s = sg_next(s);
1593
1594		s->dma_address = DMA_ERROR_CODE;
1595		s->dma_length = 0;
1596
1597		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1598			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1599			    dir, attrs, is_coherent) < 0)
 
1600				goto bad_mapping;
1601
1602			dma->dma_address += offset;
1603			dma->dma_length = size - offset;
1604
1605			size = offset = s->offset;
1606			start = s;
1607			dma = sg_next(dma);
1608			count += 1;
1609		}
1610		size += s->length;
1611	}
1612	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1613		is_coherent) < 0)
1614		goto bad_mapping;
1615
1616	dma->dma_address += offset;
1617	dma->dma_length = size - offset;
1618
1619	return count+1;
1620
1621bad_mapping:
1622	for_each_sg(sg, s, count, i)
1623		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1624	return 0;
 
 
1625}
1626
1627/**
1628 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1629 * @dev: valid struct device pointer
1630 * @sg: list of buffers
1631 * @nents: number of buffers to map
1632 * @dir: DMA transfer direction
1633 *
1634 * Map a set of i/o coherent buffers described by scatterlist in streaming
1635 * mode for DMA. The scatter gather list elements are merged together (if
1636 * possible) and tagged with the appropriate dma address and length. They are
1637 * obtained via sg_dma_{address,length}.
1638 */
1639int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1640		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641{
1642	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1643}
1644
1645/**
1646 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1647 * @dev: valid struct device pointer
1648 * @sg: list of buffers
1649 * @nents: number of buffers to map
1650 * @dir: DMA transfer direction
1651 *
1652 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1653 * The scatter gather list elements are merged together (if possible) and
1654 * tagged with the appropriate dma address and length. They are obtained via
1655 * sg_dma_{address,length}.
1656 */
1657int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1658		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1659{
1660	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1661}
1662
1663static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1664		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1665		bool is_coherent)
1666{
1667	struct scatterlist *s;
1668	int i;
1669
1670	for_each_sg(sg, s, nents, i) {
1671		if (sg_dma_len(s))
1672			__iommu_remove_mapping(dev, sg_dma_address(s),
1673					       sg_dma_len(s));
1674		if (!is_coherent &&
1675		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1676			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1677					      s->length, dir);
1678	}
1679}
1680
1681/**
1682 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1683 * @dev: valid struct device pointer
1684 * @sg: list of buffers
1685 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1686 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1687 *
1688 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1689 * rules concerning calls here are the same as for dma_unmap_single().
1690 */
1691void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1692		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1693{
1694	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1695}
1696
1697/**
1698 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1699 * @dev: valid struct device pointer
1700 * @sg: list of buffers
1701 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1703 *
1704 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1705 * rules concerning calls here are the same as for dma_unmap_single().
1706 */
1707void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1708			enum dma_data_direction dir, struct dma_attrs *attrs)
1709{
1710	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1711}
1712
1713/**
1714 * arm_iommu_sync_sg_for_cpu
1715 * @dev: valid struct device pointer
1716 * @sg: list of buffers
1717 * @nents: number of buffers to map (returned from dma_map_sg)
1718 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1719 */
1720void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 
1721			int nents, enum dma_data_direction dir)
1722{
1723	struct scatterlist *s;
1724	int i;
1725
 
 
 
1726	for_each_sg(sg, s, nents, i)
1727		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1728
1729}
1730
1731/**
1732 * arm_iommu_sync_sg_for_device
1733 * @dev: valid struct device pointer
1734 * @sg: list of buffers
1735 * @nents: number of buffers to map (returned from dma_map_sg)
1736 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1737 */
1738void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 
1739			int nents, enum dma_data_direction dir)
1740{
1741	struct scatterlist *s;
1742	int i;
1743
 
 
 
1744	for_each_sg(sg, s, nents, i)
1745		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1746}
1747
1748
1749/**
1750 * arm_coherent_iommu_map_page
1751 * @dev: valid struct device pointer
1752 * @page: page that buffer resides in
1753 * @offset: offset into page for start of buffer
1754 * @size: size of buffer to map
1755 * @dir: DMA transfer direction
1756 *
1757 * Coherent IOMMU aware version of arm_dma_map_page()
1758 */
1759static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1760	     unsigned long offset, size_t size, enum dma_data_direction dir,
1761	     struct dma_attrs *attrs)
1762{
1763	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1764	dma_addr_t dma_addr;
1765	int ret, prot, len = PAGE_ALIGN(size + offset);
1766
 
 
 
1767	dma_addr = __alloc_iova(mapping, len);
1768	if (dma_addr == DMA_ERROR_CODE)
1769		return dma_addr;
1770
1771	prot = __dma_direction_to_prot(dir);
1772
1773	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
 
1774	if (ret < 0)
1775		goto fail;
1776
1777	return dma_addr + offset;
1778fail:
1779	__free_iova(mapping, dma_addr, len);
1780	return DMA_ERROR_CODE;
1781}
1782
1783/**
1784 * arm_iommu_map_page
1785 * @dev: valid struct device pointer
1786 * @page: page that buffer resides in
1787 * @offset: offset into page for start of buffer
1788 * @size: size of buffer to map
1789 * @dir: DMA transfer direction
1790 *
1791 * IOMMU aware version of arm_dma_map_page()
1792 */
1793static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1794	     unsigned long offset, size_t size, enum dma_data_direction dir,
1795	     struct dma_attrs *attrs)
1796{
1797	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1798		__dma_page_cpu_to_dev(page, offset, size, dir);
1799
1800	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1801}
1802
1803/**
1804 * arm_coherent_iommu_unmap_page
1805 * @dev: valid struct device pointer
1806 * @handle: DMA address of buffer
1807 * @size: size of buffer (same as passed to dma_map_page)
1808 * @dir: DMA transfer direction (same as passed to dma_map_page)
1809 *
1810 * Coherent IOMMU aware version of arm_dma_unmap_page()
1811 */
1812static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1813		size_t size, enum dma_data_direction dir,
1814		struct dma_attrs *attrs)
1815{
1816	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1817	dma_addr_t iova = handle & PAGE_MASK;
 
1818	int offset = handle & ~PAGE_MASK;
1819	int len = PAGE_ALIGN(size + offset);
1820
1821	if (!iova)
1822		return;
1823
 
 
 
 
 
1824	iommu_unmap(mapping->domain, iova, len);
1825	__free_iova(mapping, iova, len);
1826}
1827
1828/**
1829 * arm_iommu_unmap_page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830 * @dev: valid struct device pointer
1831 * @handle: DMA address of buffer
1832 * @size: size of buffer (same as passed to dma_map_page)
1833 * @dir: DMA transfer direction (same as passed to dma_map_page)
1834 *
1835 * IOMMU aware version of arm_dma_unmap_page()
1836 */
1837static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1838		size_t size, enum dma_data_direction dir,
1839		struct dma_attrs *attrs)
1840{
1841	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1842	dma_addr_t iova = handle & PAGE_MASK;
1843	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844	int offset = handle & ~PAGE_MASK;
1845	int len = PAGE_ALIGN(size + offset);
1846
1847	if (!iova)
1848		return;
1849
1850	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1851		__dma_page_dev_to_cpu(page, offset, size, dir);
1852
1853	iommu_unmap(mapping->domain, iova, len);
1854	__free_iova(mapping, iova, len);
1855}
1856
1857static void arm_iommu_sync_single_for_cpu(struct device *dev,
1858		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1859{
1860	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1861	dma_addr_t iova = handle & PAGE_MASK;
1862	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1863	unsigned int offset = handle & ~PAGE_MASK;
1864
1865	if (!iova)
1866		return;
1867
 
1868	__dma_page_dev_to_cpu(page, offset, size, dir);
1869}
1870
1871static void arm_iommu_sync_single_for_device(struct device *dev,
1872		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1873{
1874	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1875	dma_addr_t iova = handle & PAGE_MASK;
1876	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1877	unsigned int offset = handle & ~PAGE_MASK;
1878
1879	if (!iova)
1880		return;
1881
 
1882	__dma_page_cpu_to_dev(page, offset, size, dir);
1883}
1884
1885struct dma_map_ops iommu_ops = {
1886	.alloc		= arm_iommu_alloc_attrs,
1887	.free		= arm_iommu_free_attrs,
1888	.mmap		= arm_iommu_mmap_attrs,
1889	.get_sgtable	= arm_iommu_get_sgtable,
1890
1891	.map_page		= arm_iommu_map_page,
1892	.unmap_page		= arm_iommu_unmap_page,
1893	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1894	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1895
1896	.map_sg			= arm_iommu_map_sg,
1897	.unmap_sg		= arm_iommu_unmap_sg,
1898	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1899	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1900
1901	.set_dma_mask		= arm_dma_set_mask,
1902};
1903
1904struct dma_map_ops iommu_coherent_ops = {
1905	.alloc		= arm_iommu_alloc_attrs,
1906	.free		= arm_iommu_free_attrs,
1907	.mmap		= arm_iommu_mmap_attrs,
1908	.get_sgtable	= arm_iommu_get_sgtable,
1909
1910	.map_page	= arm_coherent_iommu_map_page,
1911	.unmap_page	= arm_coherent_iommu_unmap_page,
1912
1913	.map_sg		= arm_coherent_iommu_map_sg,
1914	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1915
1916	.set_dma_mask	= arm_dma_set_mask,
1917};
1918
1919/**
1920 * arm_iommu_create_mapping
1921 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1922 * @base: start address of the valid IO address space
1923 * @size: maximum size of the valid IO address space
1924 *
1925 * Creates a mapping structure which holds information about used/unused
1926 * IO address ranges, which is required to perform memory allocation and
1927 * mapping with IOMMU aware functions.
1928 *
1929 * The client device need to be attached to the mapping with
1930 * arm_iommu_attach_device function.
1931 */
1932struct dma_iommu_mapping *
1933arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1934{
1935	unsigned int bits = size >> PAGE_SHIFT;
1936	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1937	struct dma_iommu_mapping *mapping;
1938	int extensions = 1;
1939	int err = -ENOMEM;
1940
 
 
 
 
1941	if (!bitmap_size)
1942		return ERR_PTR(-EINVAL);
1943
1944	if (bitmap_size > PAGE_SIZE) {
1945		extensions = bitmap_size / PAGE_SIZE;
1946		bitmap_size = PAGE_SIZE;
1947	}
1948
1949	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1950	if (!mapping)
1951		goto err;
1952
1953	mapping->bitmap_size = bitmap_size;
1954	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1955				GFP_KERNEL);
1956	if (!mapping->bitmaps)
1957		goto err2;
1958
1959	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1960	if (!mapping->bitmaps[0])
1961		goto err3;
1962
1963	mapping->nr_bitmaps = 1;
1964	mapping->extensions = extensions;
1965	mapping->base = base;
1966	mapping->bits = BITS_PER_BYTE * bitmap_size;
1967	mapping->size = mapping->bits << PAGE_SHIFT;
1968
1969	spin_lock_init(&mapping->lock);
1970
1971	mapping->domain = iommu_domain_alloc(bus);
1972	if (!mapping->domain)
 
1973		goto err4;
 
1974
1975	kref_init(&mapping->kref);
1976	return mapping;
1977err4:
1978	kfree(mapping->bitmaps[0]);
1979err3:
1980	kfree(mapping->bitmaps);
1981err2:
1982	kfree(mapping);
1983err:
1984	return ERR_PTR(err);
1985}
1986EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1987
1988static void release_iommu_mapping(struct kref *kref)
1989{
1990	int i;
1991	struct dma_iommu_mapping *mapping =
1992		container_of(kref, struct dma_iommu_mapping, kref);
1993
1994	iommu_domain_free(mapping->domain);
1995	for (i = 0; i < mapping->nr_bitmaps; i++)
1996		kfree(mapping->bitmaps[i]);
1997	kfree(mapping->bitmaps);
1998	kfree(mapping);
1999}
2000
2001static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2002{
2003	int next_bitmap;
2004
2005	if (mapping->nr_bitmaps > mapping->extensions)
2006		return -EINVAL;
2007
2008	next_bitmap = mapping->nr_bitmaps;
2009	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2010						GFP_ATOMIC);
2011	if (!mapping->bitmaps[next_bitmap])
2012		return -ENOMEM;
2013
2014	mapping->nr_bitmaps++;
2015
2016	return 0;
2017}
2018
2019void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2020{
2021	if (mapping)
2022		kref_put(&mapping->kref, release_iommu_mapping);
2023}
2024EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026/**
2027 * arm_iommu_attach_device
2028 * @dev: valid struct device pointer
2029 * @mapping: io address space mapping structure (returned from
2030 *	arm_iommu_create_mapping)
2031 *
2032 * Attaches specified io address space mapping to the provided device,
2033 * this replaces the dma operations (dma_map_ops pointer) with the
2034 * IOMMU aware version. More than one client might be attached to
2035 * the same io address space mapping.
 
 
2036 */
2037int arm_iommu_attach_device(struct device *dev,
2038			    struct dma_iommu_mapping *mapping)
2039{
2040	int err;
2041
2042	err = iommu_attach_device(mapping->domain, dev);
2043	if (err)
2044		return err;
2045
2046	kref_get(&mapping->kref);
2047	dev->archdata.mapping = mapping;
2048	set_dma_ops(dev, &iommu_ops);
2049
2050	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2051	return 0;
2052}
2053EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2054
2055/**
2056 * arm_iommu_detach_device
2057 * @dev: valid struct device pointer
2058 *
2059 * Detaches the provided device from a previously attached map.
2060 * This voids the dma operations (dma_map_ops pointer)
2061 */
2062void arm_iommu_detach_device(struct device *dev)
2063{
2064	struct dma_iommu_mapping *mapping;
2065
2066	mapping = to_dma_iommu_mapping(dev);
2067	if (!mapping) {
2068		dev_warn(dev, "Not attached\n");
2069		return;
2070	}
2071
2072	iommu_detach_device(mapping->domain, dev);
2073	kref_put(&mapping->kref, release_iommu_mapping);
2074	dev->archdata.mapping = NULL;
2075	set_dma_ops(dev, NULL);
2076
2077	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2078}
2079EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2080
2081#endif