Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/cpu.h>
  20#include <linux/cpu_pm.h>
  21#include <linux/errno.h>
  22#include <linux/err.h>
  23#include <linux/kvm_host.h>
  24#include <linux/module.h>
  25#include <linux/vmalloc.h>
  26#include <linux/fs.h>
  27#include <linux/mman.h>
  28#include <linux/sched.h>
  29#include <linux/kvm.h>
  30#include <trace/events/kvm.h>
  31
  32#define CREATE_TRACE_POINTS
  33#include "trace.h"
  34
  35#include <asm/uaccess.h>
  36#include <asm/ptrace.h>
  37#include <asm/mman.h>
  38#include <asm/tlbflush.h>
  39#include <asm/cacheflush.h>
  40#include <asm/virt.h>
  41#include <asm/kvm_arm.h>
  42#include <asm/kvm_asm.h>
  43#include <asm/kvm_mmu.h>
  44#include <asm/kvm_emulate.h>
  45#include <asm/kvm_coproc.h>
  46#include <asm/kvm_psci.h>
  47
  48#ifdef REQUIRES_VIRT
  49__asm__(".arch_extension	virt");
  50#endif
  51
  52static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  53static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
  54static unsigned long hyp_default_vectors;
  55
  56/* Per-CPU variable containing the currently running vcpu. */
  57static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  58
  59/* The VMID used in the VTTBR */
  60static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  61static u8 kvm_next_vmid;
  62static DEFINE_SPINLOCK(kvm_vmid_lock);
  63
  64static bool vgic_present;
  65
  66static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  67{
  68	BUG_ON(preemptible());
  69	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
  70}
  71
  72/**
  73 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  74 * Must be called from non-preemptible context
  75 */
  76struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  77{
  78	BUG_ON(preemptible());
  79	return __this_cpu_read(kvm_arm_running_vcpu);
  80}
  81
  82/**
  83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  84 */
  85struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
  86{
  87	return &kvm_arm_running_vcpu;
  88}
  89
  90int kvm_arch_hardware_enable(void *garbage)
  91{
  92	return 0;
  93}
  94
  95int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  96{
  97	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  98}
  99
 100void kvm_arch_hardware_disable(void *garbage)
 101{
 102}
 103
 104int kvm_arch_hardware_setup(void)
 105{
 106	return 0;
 107}
 108
 109void kvm_arch_hardware_unsetup(void)
 110{
 111}
 112
 113void kvm_arch_check_processor_compat(void *rtn)
 114{
 115	*(int *)rtn = 0;
 116}
 117
 118void kvm_arch_sync_events(struct kvm *kvm)
 119{
 120}
 121
 122/**
 123 * kvm_arch_init_vm - initializes a VM data structure
 124 * @kvm:	pointer to the KVM struct
 125 */
 126int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 127{
 128	int ret = 0;
 129
 130	if (type)
 131		return -EINVAL;
 132
 133	ret = kvm_alloc_stage2_pgd(kvm);
 134	if (ret)
 135		goto out_fail_alloc;
 136
 137	ret = create_hyp_mappings(kvm, kvm + 1);
 138	if (ret)
 139		goto out_free_stage2_pgd;
 140
 141	kvm_timer_init(kvm);
 142
 143	/* Mark the initial VMID generation invalid */
 144	kvm->arch.vmid_gen = 0;
 145
 146	return ret;
 147out_free_stage2_pgd:
 148	kvm_free_stage2_pgd(kvm);
 149out_fail_alloc:
 150	return ret;
 151}
 152
 153int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 154{
 155	return VM_FAULT_SIGBUS;
 156}
 157
 158void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 159			   struct kvm_memory_slot *dont)
 160{
 161}
 162
 163int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 164			    unsigned long npages)
 165{
 166	return 0;
 167}
 168
 169/**
 170 * kvm_arch_destroy_vm - destroy the VM data structure
 171 * @kvm:	pointer to the KVM struct
 172 */
 173void kvm_arch_destroy_vm(struct kvm *kvm)
 174{
 175	int i;
 176
 177	kvm_free_stage2_pgd(kvm);
 178
 179	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 180		if (kvm->vcpus[i]) {
 181			kvm_arch_vcpu_free(kvm->vcpus[i]);
 182			kvm->vcpus[i] = NULL;
 183		}
 184	}
 185}
 186
 187int kvm_dev_ioctl_check_extension(long ext)
 188{
 189	int r;
 190	switch (ext) {
 191	case KVM_CAP_IRQCHIP:
 192		r = vgic_present;
 193		break;
 194	case KVM_CAP_DEVICE_CTRL:
 195	case KVM_CAP_USER_MEMORY:
 196	case KVM_CAP_SYNC_MMU:
 197	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 198	case KVM_CAP_ONE_REG:
 199	case KVM_CAP_ARM_PSCI:
 200		r = 1;
 201		break;
 202	case KVM_CAP_COALESCED_MMIO:
 203		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 204		break;
 205	case KVM_CAP_ARM_SET_DEVICE_ADDR:
 206		r = 1;
 207		break;
 208	case KVM_CAP_NR_VCPUS:
 209		r = num_online_cpus();
 210		break;
 211	case KVM_CAP_MAX_VCPUS:
 212		r = KVM_MAX_VCPUS;
 213		break;
 214	default:
 215		r = kvm_arch_dev_ioctl_check_extension(ext);
 216		break;
 217	}
 218	return r;
 219}
 220
 221long kvm_arch_dev_ioctl(struct file *filp,
 222			unsigned int ioctl, unsigned long arg)
 223{
 224	return -EINVAL;
 225}
 226
 227void kvm_arch_memslots_updated(struct kvm *kvm)
 228{
 229}
 230
 231int kvm_arch_prepare_memory_region(struct kvm *kvm,
 232				   struct kvm_memory_slot *memslot,
 233				   struct kvm_userspace_memory_region *mem,
 234				   enum kvm_mr_change change)
 235{
 236	return 0;
 237}
 238
 239void kvm_arch_commit_memory_region(struct kvm *kvm,
 240				   struct kvm_userspace_memory_region *mem,
 241				   const struct kvm_memory_slot *old,
 242				   enum kvm_mr_change change)
 243{
 244}
 245
 246void kvm_arch_flush_shadow_all(struct kvm *kvm)
 247{
 248}
 249
 250void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 251				   struct kvm_memory_slot *slot)
 252{
 253}
 254
 255struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 256{
 257	int err;
 258	struct kvm_vcpu *vcpu;
 259
 260	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 261	if (!vcpu) {
 262		err = -ENOMEM;
 263		goto out;
 264	}
 265
 266	err = kvm_vcpu_init(vcpu, kvm, id);
 267	if (err)
 268		goto free_vcpu;
 269
 270	err = create_hyp_mappings(vcpu, vcpu + 1);
 271	if (err)
 272		goto vcpu_uninit;
 273
 274	return vcpu;
 275vcpu_uninit:
 276	kvm_vcpu_uninit(vcpu);
 277free_vcpu:
 278	kmem_cache_free(kvm_vcpu_cache, vcpu);
 279out:
 280	return ERR_PTR(err);
 281}
 282
 283int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 284{
 285	return 0;
 286}
 287
 288void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 289{
 290	kvm_mmu_free_memory_caches(vcpu);
 291	kvm_timer_vcpu_terminate(vcpu);
 292	kmem_cache_free(kvm_vcpu_cache, vcpu);
 293}
 294
 295void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 296{
 297	kvm_arch_vcpu_free(vcpu);
 298}
 299
 300int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 301{
 302	return 0;
 303}
 304
 305int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 306{
 307	int ret;
 308
 309	/* Force users to call KVM_ARM_VCPU_INIT */
 310	vcpu->arch.target = -1;
 311
 312	/* Set up VGIC */
 313	ret = kvm_vgic_vcpu_init(vcpu);
 314	if (ret)
 315		return ret;
 316
 317	/* Set up the timer */
 318	kvm_timer_vcpu_init(vcpu);
 319
 320	return 0;
 321}
 322
 323void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
 324{
 325}
 326
 327void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 328{
 329	vcpu->cpu = cpu;
 330	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
 331
 332	/*
 333	 * Check whether this vcpu requires the cache to be flushed on
 334	 * this physical CPU. This is a consequence of doing dcache
 335	 * operations by set/way on this vcpu. We do it here to be in
 336	 * a non-preemptible section.
 337	 */
 338	if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
 339		flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
 340
 341	kvm_arm_set_running_vcpu(vcpu);
 342}
 343
 344void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 345{
 346	/*
 347	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
 348	 * if the vcpu is no longer assigned to a cpu.  This is used for the
 349	 * optimized make_all_cpus_request path.
 350	 */
 351	vcpu->cpu = -1;
 352
 353	kvm_arm_set_running_vcpu(NULL);
 354}
 355
 356int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 357					struct kvm_guest_debug *dbg)
 358{
 359	return -EINVAL;
 360}
 361
 362
 363int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 364				    struct kvm_mp_state *mp_state)
 365{
 366	return -EINVAL;
 367}
 368
 369int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 370				    struct kvm_mp_state *mp_state)
 371{
 372	return -EINVAL;
 373}
 374
 375/**
 376 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 377 * @v:		The VCPU pointer
 378 *
 379 * If the guest CPU is not waiting for interrupts or an interrupt line is
 380 * asserted, the CPU is by definition runnable.
 381 */
 382int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 383{
 384	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
 385}
 386
 387/* Just ensure a guest exit from a particular CPU */
 388static void exit_vm_noop(void *info)
 389{
 390}
 391
 392void force_vm_exit(const cpumask_t *mask)
 393{
 394	smp_call_function_many(mask, exit_vm_noop, NULL, true);
 395}
 396
 397/**
 398 * need_new_vmid_gen - check that the VMID is still valid
 399 * @kvm: The VM's VMID to checkt
 400 *
 401 * return true if there is a new generation of VMIDs being used
 402 *
 403 * The hardware supports only 256 values with the value zero reserved for the
 404 * host, so we check if an assigned value belongs to a previous generation,
 405 * which which requires us to assign a new value. If we're the first to use a
 406 * VMID for the new generation, we must flush necessary caches and TLBs on all
 407 * CPUs.
 408 */
 409static bool need_new_vmid_gen(struct kvm *kvm)
 410{
 411	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
 412}
 413
 414/**
 415 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 416 * @kvm	The guest that we are about to run
 417 *
 418 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 419 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 420 * caches and TLBs.
 421 */
 422static void update_vttbr(struct kvm *kvm)
 423{
 424	phys_addr_t pgd_phys;
 425	u64 vmid;
 426
 427	if (!need_new_vmid_gen(kvm))
 428		return;
 429
 430	spin_lock(&kvm_vmid_lock);
 431
 432	/*
 433	 * We need to re-check the vmid_gen here to ensure that if another vcpu
 434	 * already allocated a valid vmid for this vm, then this vcpu should
 435	 * use the same vmid.
 436	 */
 437	if (!need_new_vmid_gen(kvm)) {
 438		spin_unlock(&kvm_vmid_lock);
 439		return;
 440	}
 441
 442	/* First user of a new VMID generation? */
 443	if (unlikely(kvm_next_vmid == 0)) {
 444		atomic64_inc(&kvm_vmid_gen);
 445		kvm_next_vmid = 1;
 446
 447		/*
 448		 * On SMP we know no other CPUs can use this CPU's or each
 449		 * other's VMID after force_vm_exit returns since the
 450		 * kvm_vmid_lock blocks them from reentry to the guest.
 451		 */
 452		force_vm_exit(cpu_all_mask);
 453		/*
 454		 * Now broadcast TLB + ICACHE invalidation over the inner
 455		 * shareable domain to make sure all data structures are
 456		 * clean.
 457		 */
 458		kvm_call_hyp(__kvm_flush_vm_context);
 459	}
 460
 461	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
 462	kvm->arch.vmid = kvm_next_vmid;
 463	kvm_next_vmid++;
 464
 465	/* update vttbr to be used with the new vmid */
 466	pgd_phys = virt_to_phys(kvm->arch.pgd);
 467	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
 468	kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
 469	kvm->arch.vttbr |= vmid;
 470
 471	spin_unlock(&kvm_vmid_lock);
 472}
 473
 474static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 475{
 476	int ret;
 477
 478	if (likely(vcpu->arch.has_run_once))
 479		return 0;
 480
 481	vcpu->arch.has_run_once = true;
 482
 483	/*
 484	 * Initialize the VGIC before running a vcpu the first time on
 485	 * this VM.
 486	 */
 487	if (unlikely(!vgic_initialized(vcpu->kvm))) {
 488		ret = kvm_vgic_init(vcpu->kvm);
 489		if (ret)
 490			return ret;
 491	}
 492
 493	return 0;
 494}
 495
 496static void vcpu_pause(struct kvm_vcpu *vcpu)
 497{
 498	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
 499
 500	wait_event_interruptible(*wq, !vcpu->arch.pause);
 501}
 502
 503static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 504{
 505	return vcpu->arch.target >= 0;
 506}
 507
 508/**
 509 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 510 * @vcpu:	The VCPU pointer
 511 * @run:	The kvm_run structure pointer used for userspace state exchange
 512 *
 513 * This function is called through the VCPU_RUN ioctl called from user space. It
 514 * will execute VM code in a loop until the time slice for the process is used
 515 * or some emulation is needed from user space in which case the function will
 516 * return with return value 0 and with the kvm_run structure filled in with the
 517 * required data for the requested emulation.
 518 */
 519int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 520{
 521	int ret;
 522	sigset_t sigsaved;
 523
 524	if (unlikely(!kvm_vcpu_initialized(vcpu)))
 525		return -ENOEXEC;
 526
 527	ret = kvm_vcpu_first_run_init(vcpu);
 528	if (ret)
 529		return ret;
 530
 531	if (run->exit_reason == KVM_EXIT_MMIO) {
 532		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 533		if (ret)
 534			return ret;
 535	}
 536
 537	if (vcpu->sigset_active)
 538		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 539
 540	ret = 1;
 541	run->exit_reason = KVM_EXIT_UNKNOWN;
 542	while (ret > 0) {
 543		/*
 544		 * Check conditions before entering the guest
 545		 */
 546		cond_resched();
 547
 548		update_vttbr(vcpu->kvm);
 549
 550		if (vcpu->arch.pause)
 551			vcpu_pause(vcpu);
 552
 553		kvm_vgic_flush_hwstate(vcpu);
 554		kvm_timer_flush_hwstate(vcpu);
 555
 556		local_irq_disable();
 557
 558		/*
 559		 * Re-check atomic conditions
 560		 */
 561		if (signal_pending(current)) {
 562			ret = -EINTR;
 563			run->exit_reason = KVM_EXIT_INTR;
 564		}
 565
 566		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
 567			local_irq_enable();
 568			kvm_timer_sync_hwstate(vcpu);
 569			kvm_vgic_sync_hwstate(vcpu);
 570			continue;
 571		}
 572
 573		/**************************************************************
 574		 * Enter the guest
 575		 */
 576		trace_kvm_entry(*vcpu_pc(vcpu));
 577		kvm_guest_enter();
 578		vcpu->mode = IN_GUEST_MODE;
 579
 580		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 581
 582		vcpu->mode = OUTSIDE_GUEST_MODE;
 583		vcpu->arch.last_pcpu = smp_processor_id();
 584		kvm_guest_exit();
 585		trace_kvm_exit(*vcpu_pc(vcpu));
 586		/*
 587		 * We may have taken a host interrupt in HYP mode (ie
 588		 * while executing the guest). This interrupt is still
 589		 * pending, as we haven't serviced it yet!
 590		 *
 591		 * We're now back in SVC mode, with interrupts
 592		 * disabled.  Enabling the interrupts now will have
 593		 * the effect of taking the interrupt again, in SVC
 594		 * mode this time.
 595		 */
 596		local_irq_enable();
 597
 598		/*
 599		 * Back from guest
 600		 *************************************************************/
 601
 602		kvm_timer_sync_hwstate(vcpu);
 603		kvm_vgic_sync_hwstate(vcpu);
 604
 605		ret = handle_exit(vcpu, run, ret);
 606	}
 607
 608	if (vcpu->sigset_active)
 609		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 610	return ret;
 611}
 612
 613static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 614{
 615	int bit_index;
 616	bool set;
 617	unsigned long *ptr;
 618
 619	if (number == KVM_ARM_IRQ_CPU_IRQ)
 620		bit_index = __ffs(HCR_VI);
 621	else /* KVM_ARM_IRQ_CPU_FIQ */
 622		bit_index = __ffs(HCR_VF);
 623
 624	ptr = (unsigned long *)&vcpu->arch.irq_lines;
 625	if (level)
 626		set = test_and_set_bit(bit_index, ptr);
 627	else
 628		set = test_and_clear_bit(bit_index, ptr);
 629
 630	/*
 631	 * If we didn't change anything, no need to wake up or kick other CPUs
 632	 */
 633	if (set == level)
 634		return 0;
 635
 636	/*
 637	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 638	 * trigger a world-switch round on the running physical CPU to set the
 639	 * virtual IRQ/FIQ fields in the HCR appropriately.
 640	 */
 641	kvm_vcpu_kick(vcpu);
 642
 643	return 0;
 644}
 645
 646int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 647			  bool line_status)
 648{
 649	u32 irq = irq_level->irq;
 650	unsigned int irq_type, vcpu_idx, irq_num;
 651	int nrcpus = atomic_read(&kvm->online_vcpus);
 652	struct kvm_vcpu *vcpu = NULL;
 653	bool level = irq_level->level;
 654
 655	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 656	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 657	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 658
 659	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 660
 661	switch (irq_type) {
 662	case KVM_ARM_IRQ_TYPE_CPU:
 663		if (irqchip_in_kernel(kvm))
 664			return -ENXIO;
 665
 666		if (vcpu_idx >= nrcpus)
 667			return -EINVAL;
 668
 669		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 670		if (!vcpu)
 671			return -EINVAL;
 672
 673		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 674			return -EINVAL;
 675
 676		return vcpu_interrupt_line(vcpu, irq_num, level);
 677	case KVM_ARM_IRQ_TYPE_PPI:
 678		if (!irqchip_in_kernel(kvm))
 679			return -ENXIO;
 680
 681		if (vcpu_idx >= nrcpus)
 682			return -EINVAL;
 683
 684		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 685		if (!vcpu)
 686			return -EINVAL;
 687
 688		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 689			return -EINVAL;
 690
 691		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
 692	case KVM_ARM_IRQ_TYPE_SPI:
 693		if (!irqchip_in_kernel(kvm))
 694			return -ENXIO;
 695
 696		if (irq_num < VGIC_NR_PRIVATE_IRQS ||
 697		    irq_num > KVM_ARM_IRQ_GIC_MAX)
 698			return -EINVAL;
 699
 700		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
 701	}
 702
 703	return -EINVAL;
 704}
 705
 706static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
 707					 struct kvm_vcpu_init *init)
 708{
 709	int ret;
 710
 711	ret = kvm_vcpu_set_target(vcpu, init);
 712	if (ret)
 713		return ret;
 714
 715	/*
 716	 * Handle the "start in power-off" case by marking the VCPU as paused.
 717	 */
 718	if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
 719		vcpu->arch.pause = true;
 720
 721	return 0;
 722}
 723
 724long kvm_arch_vcpu_ioctl(struct file *filp,
 725			 unsigned int ioctl, unsigned long arg)
 726{
 727	struct kvm_vcpu *vcpu = filp->private_data;
 728	void __user *argp = (void __user *)arg;
 729
 730	switch (ioctl) {
 731	case KVM_ARM_VCPU_INIT: {
 732		struct kvm_vcpu_init init;
 733
 734		if (copy_from_user(&init, argp, sizeof(init)))
 735			return -EFAULT;
 736
 737		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
 738	}
 739	case KVM_SET_ONE_REG:
 740	case KVM_GET_ONE_REG: {
 741		struct kvm_one_reg reg;
 742
 743		if (unlikely(!kvm_vcpu_initialized(vcpu)))
 744			return -ENOEXEC;
 745
 746		if (copy_from_user(&reg, argp, sizeof(reg)))
 747			return -EFAULT;
 748		if (ioctl == KVM_SET_ONE_REG)
 749			return kvm_arm_set_reg(vcpu, &reg);
 750		else
 751			return kvm_arm_get_reg(vcpu, &reg);
 752	}
 753	case KVM_GET_REG_LIST: {
 754		struct kvm_reg_list __user *user_list = argp;
 755		struct kvm_reg_list reg_list;
 756		unsigned n;
 757
 758		if (unlikely(!kvm_vcpu_initialized(vcpu)))
 759			return -ENOEXEC;
 760
 761		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 762			return -EFAULT;
 763		n = reg_list.n;
 764		reg_list.n = kvm_arm_num_regs(vcpu);
 765		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 766			return -EFAULT;
 767		if (n < reg_list.n)
 768			return -E2BIG;
 769		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
 770	}
 771	default:
 772		return -EINVAL;
 773	}
 774}
 775
 776int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 777{
 778	return -EINVAL;
 779}
 780
 781static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
 782					struct kvm_arm_device_addr *dev_addr)
 783{
 784	unsigned long dev_id, type;
 785
 786	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
 787		KVM_ARM_DEVICE_ID_SHIFT;
 788	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
 789		KVM_ARM_DEVICE_TYPE_SHIFT;
 790
 791	switch (dev_id) {
 792	case KVM_ARM_DEVICE_VGIC_V2:
 793		if (!vgic_present)
 794			return -ENXIO;
 795		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
 796	default:
 797		return -ENODEV;
 798	}
 799}
 800
 801long kvm_arch_vm_ioctl(struct file *filp,
 802		       unsigned int ioctl, unsigned long arg)
 803{
 804	struct kvm *kvm = filp->private_data;
 805	void __user *argp = (void __user *)arg;
 806
 807	switch (ioctl) {
 808	case KVM_CREATE_IRQCHIP: {
 809		if (vgic_present)
 810			return kvm_vgic_create(kvm);
 811		else
 812			return -ENXIO;
 813	}
 814	case KVM_ARM_SET_DEVICE_ADDR: {
 815		struct kvm_arm_device_addr dev_addr;
 816
 817		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
 818			return -EFAULT;
 819		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
 820	}
 821	case KVM_ARM_PREFERRED_TARGET: {
 822		int err;
 823		struct kvm_vcpu_init init;
 824
 825		err = kvm_vcpu_preferred_target(&init);
 826		if (err)
 827			return err;
 828
 829		if (copy_to_user(argp, &init, sizeof(init)))
 830			return -EFAULT;
 831
 832		return 0;
 833	}
 834	default:
 835		return -EINVAL;
 836	}
 837}
 838
 839static void cpu_init_hyp_mode(void *dummy)
 840{
 841	phys_addr_t boot_pgd_ptr;
 842	phys_addr_t pgd_ptr;
 843	unsigned long hyp_stack_ptr;
 844	unsigned long stack_page;
 845	unsigned long vector_ptr;
 846
 847	/* Switch from the HYP stub to our own HYP init vector */
 848	__hyp_set_vectors(kvm_get_idmap_vector());
 849
 850	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
 851	pgd_ptr = kvm_mmu_get_httbr();
 852	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
 853	hyp_stack_ptr = stack_page + PAGE_SIZE;
 854	vector_ptr = (unsigned long)__kvm_hyp_vector;
 855
 856	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
 857}
 858
 859static int hyp_init_cpu_notify(struct notifier_block *self,
 860			       unsigned long action, void *cpu)
 861{
 862	switch (action) {
 863	case CPU_STARTING:
 864	case CPU_STARTING_FROZEN:
 865		cpu_init_hyp_mode(NULL);
 866		break;
 867	}
 868
 869	return NOTIFY_OK;
 870}
 871
 872static struct notifier_block hyp_init_cpu_nb = {
 873	.notifier_call = hyp_init_cpu_notify,
 874};
 875
 876#ifdef CONFIG_CPU_PM
 877static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
 878				    unsigned long cmd,
 879				    void *v)
 880{
 881	if (cmd == CPU_PM_EXIT &&
 882	    __hyp_get_vectors() == hyp_default_vectors) {
 883		cpu_init_hyp_mode(NULL);
 884		return NOTIFY_OK;
 885	}
 886
 887	return NOTIFY_DONE;
 888}
 889
 890static struct notifier_block hyp_init_cpu_pm_nb = {
 891	.notifier_call = hyp_init_cpu_pm_notifier,
 892};
 893
 894static void __init hyp_cpu_pm_init(void)
 895{
 896	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
 897}
 898#else
 899static inline void hyp_cpu_pm_init(void)
 900{
 901}
 902#endif
 903
 904/**
 905 * Inits Hyp-mode on all online CPUs
 906 */
 907static int init_hyp_mode(void)
 908{
 909	int cpu;
 910	int err = 0;
 911
 912	/*
 913	 * Allocate Hyp PGD and setup Hyp identity mapping
 914	 */
 915	err = kvm_mmu_init();
 916	if (err)
 917		goto out_err;
 918
 919	/*
 920	 * It is probably enough to obtain the default on one
 921	 * CPU. It's unlikely to be different on the others.
 922	 */
 923	hyp_default_vectors = __hyp_get_vectors();
 924
 925	/*
 926	 * Allocate stack pages for Hypervisor-mode
 927	 */
 928	for_each_possible_cpu(cpu) {
 929		unsigned long stack_page;
 930
 931		stack_page = __get_free_page(GFP_KERNEL);
 932		if (!stack_page) {
 933			err = -ENOMEM;
 934			goto out_free_stack_pages;
 935		}
 936
 937		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
 938	}
 939
 940	/*
 941	 * Map the Hyp-code called directly from the host
 942	 */
 943	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
 944	if (err) {
 945		kvm_err("Cannot map world-switch code\n");
 946		goto out_free_mappings;
 947	}
 948
 949	/*
 950	 * Map the Hyp stack pages
 951	 */
 952	for_each_possible_cpu(cpu) {
 953		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
 954		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
 955
 956		if (err) {
 957			kvm_err("Cannot map hyp stack\n");
 958			goto out_free_mappings;
 959		}
 960	}
 961
 962	/*
 963	 * Map the host CPU structures
 964	 */
 965	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
 966	if (!kvm_host_cpu_state) {
 967		err = -ENOMEM;
 968		kvm_err("Cannot allocate host CPU state\n");
 969		goto out_free_mappings;
 970	}
 971
 972	for_each_possible_cpu(cpu) {
 973		kvm_cpu_context_t *cpu_ctxt;
 974
 975		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
 976		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
 977
 978		if (err) {
 979			kvm_err("Cannot map host CPU state: %d\n", err);
 980			goto out_free_context;
 981		}
 982	}
 983
 984	/*
 985	 * Execute the init code on each CPU.
 986	 */
 987	on_each_cpu(cpu_init_hyp_mode, NULL, 1);
 988
 989	/*
 990	 * Init HYP view of VGIC
 991	 */
 992	err = kvm_vgic_hyp_init();
 993	if (err)
 994		goto out_free_context;
 995
 996#ifdef CONFIG_KVM_ARM_VGIC
 997		vgic_present = true;
 998#endif
 999
1000	/*
1001	 * Init HYP architected timer support
1002	 */
1003	err = kvm_timer_hyp_init();
1004	if (err)
1005		goto out_free_mappings;
1006
1007#ifndef CONFIG_HOTPLUG_CPU
1008	free_boot_hyp_pgd();
1009#endif
1010
1011	kvm_perf_init();
1012
1013	kvm_info("Hyp mode initialized successfully\n");
1014
1015	return 0;
1016out_free_context:
1017	free_percpu(kvm_host_cpu_state);
1018out_free_mappings:
1019	free_hyp_pgds();
1020out_free_stack_pages:
1021	for_each_possible_cpu(cpu)
1022		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1023out_err:
1024	kvm_err("error initializing Hyp mode: %d\n", err);
1025	return err;
1026}
1027
1028static void check_kvm_target_cpu(void *ret)
1029{
1030	*(int *)ret = kvm_target_cpu();
1031}
1032
1033/**
1034 * Initialize Hyp-mode and memory mappings on all CPUs.
1035 */
1036int kvm_arch_init(void *opaque)
1037{
1038	int err;
1039	int ret, cpu;
1040
1041	if (!is_hyp_mode_available()) {
1042		kvm_err("HYP mode not available\n");
1043		return -ENODEV;
1044	}
1045
1046	for_each_online_cpu(cpu) {
1047		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1048		if (ret < 0) {
1049			kvm_err("Error, CPU %d not supported!\n", cpu);
1050			return -ENODEV;
1051		}
1052	}
1053
1054	cpu_notifier_register_begin();
1055
1056	err = init_hyp_mode();
1057	if (err)
1058		goto out_err;
1059
1060	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1061	if (err) {
1062		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1063		goto out_err;
1064	}
1065
1066	cpu_notifier_register_done();
1067
1068	hyp_cpu_pm_init();
1069
1070	kvm_coproc_table_init();
1071	return 0;
1072out_err:
1073	cpu_notifier_register_done();
1074	return err;
1075}
1076
1077/* NOP: Compiling as a module not supported */
1078void kvm_arch_exit(void)
1079{
1080	kvm_perf_teardown();
1081}
1082
1083static int arm_init(void)
1084{
1085	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1086	return rc;
1087}
1088
1089module_init(arm_init);