Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1--------------------------------------------------------------------------------
   2+ ABSTRACT
   3--------------------------------------------------------------------------------
   4
   5This file documents the mmap() facility available with the PACKET
   6socket interface on 2.4/2.6/3.x kernels. This type of sockets is used for
   7i) capture network traffic with utilities like tcpdump, ii) transmit network
   8traffic, or any other that needs raw access to network interface.
   9
  10You can find the latest version of this document at:
  11    http://wiki.ipxwarzone.com/index.php5?title=Linux_packet_mmap
  12
  13Howto can be found at:
  14    http://wiki.gnu-log.net (packet_mmap)
  15
  16Please send your comments to
  17    Ulisses Alonso CamarĂ³ <uaca@i.hate.spam.alumni.uv.es>
  18    Johann Baudy <johann.baudy@gnu-log.net>
  19
  20-------------------------------------------------------------------------------
  21+ Why use PACKET_MMAP
  22--------------------------------------------------------------------------------
  23
  24In Linux 2.4/2.6/3.x if PACKET_MMAP is not enabled, the capture process is very
  25inefficient. It uses very limited buffers and requires one system call to
  26capture each packet, it requires two if you want to get packet's timestamp
  27(like libpcap always does).
  28
  29In the other hand PACKET_MMAP is very efficient. PACKET_MMAP provides a size 
  30configurable circular buffer mapped in user space that can be used to either
  31send or receive packets. This way reading packets just needs to wait for them,
  32most of the time there is no need to issue a single system call. Concerning
  33transmission, multiple packets can be sent through one system call to get the
  34highest bandwidth. By using a shared buffer between the kernel and the user
  35also has the benefit of minimizing packet copies.
  36
  37It's fine to use PACKET_MMAP to improve the performance of the capture and
  38transmission process, but it isn't everything. At least, if you are capturing
  39at high speeds (this is relative to the cpu speed), you should check if the
  40device driver of your network interface card supports some sort of interrupt
  41load mitigation or (even better) if it supports NAPI, also make sure it is
  42enabled. For transmission, check the MTU (Maximum Transmission Unit) used and
  43supported by devices of your network. CPU IRQ pinning of your network interface
  44card can also be an advantage.
  45
  46--------------------------------------------------------------------------------
  47+ How to use mmap() to improve capture process
  48--------------------------------------------------------------------------------
  49
  50From the user standpoint, you should use the higher level libpcap library, which
  51is a de facto standard, portable across nearly all operating systems
  52including Win32. 
  53
  54Said that, at time of this writing, official libpcap 0.8.1 is out and doesn't include
  55support for PACKET_MMAP, and also probably the libpcap included in your distribution. 
  56
  57I'm aware of two implementations of PACKET_MMAP in libpcap:
  58
  59    http://wiki.ipxwarzone.com/		     (by Simon Patarin, based on libpcap 0.6.2)
  60    http://public.lanl.gov/cpw/              (by Phil Wood, based on lastest libpcap)
  61
  62The rest of this document is intended for people who want to understand
  63the low level details or want to improve libpcap by including PACKET_MMAP
  64support.
  65
  66--------------------------------------------------------------------------------
  67+ How to use mmap() directly to improve capture process
  68--------------------------------------------------------------------------------
  69
  70From the system calls stand point, the use of PACKET_MMAP involves
  71the following process:
  72
  73
  74[setup]     socket() -------> creation of the capture socket
  75            setsockopt() ---> allocation of the circular buffer (ring)
  76                              option: PACKET_RX_RING
  77            mmap() ---------> mapping of the allocated buffer to the
  78                              user process
  79
  80[capture]   poll() ---------> to wait for incoming packets
  81
  82[shutdown]  close() --------> destruction of the capture socket and
  83                              deallocation of all associated 
  84                              resources.
  85
  86
  87socket creation and destruction is straight forward, and is done 
  88the same way with or without PACKET_MMAP:
  89
  90 int fd = socket(PF_PACKET, mode, htons(ETH_P_ALL));
  91
  92where mode is SOCK_RAW for the raw interface were link level
  93information can be captured or SOCK_DGRAM for the cooked
  94interface where link level information capture is not 
  95supported and a link level pseudo-header is provided 
  96by the kernel.
  97
  98The destruction of the socket and all associated resources
  99is done by a simple call to close(fd).
 100
 101Similarly as without PACKET_MMAP, it is possible to use one socket
 102for capture and transmission. This can be done by mapping the
 103allocated RX and TX buffer ring with a single mmap() call.
 104See "Mapping and use of the circular buffer (ring)".
 105
 106Next I will describe PACKET_MMAP settings and its constraints,
 107also the mapping of the circular buffer in the user process and 
 108the use of this buffer.
 109
 110--------------------------------------------------------------------------------
 111+ How to use mmap() directly to improve transmission process
 112--------------------------------------------------------------------------------
 113Transmission process is similar to capture as shown below.
 114
 115[setup]          socket() -------> creation of the transmission socket
 116                 setsockopt() ---> allocation of the circular buffer (ring)
 117                                   option: PACKET_TX_RING
 118                 bind() ---------> bind transmission socket with a network interface
 119                 mmap() ---------> mapping of the allocated buffer to the
 120                                   user process
 121
 122[transmission]   poll() ---------> wait for free packets (optional)
 123                 send() ---------> send all packets that are set as ready in
 124                                   the ring
 125                                   The flag MSG_DONTWAIT can be used to return
 126                                   before end of transfer.
 127
 128[shutdown]  close() --------> destruction of the transmission socket and
 129                              deallocation of all associated resources.
 130
 131Socket creation and destruction is also straight forward, and is done
 132the same way as in capturing described in the previous paragraph:
 133
 134 int fd = socket(PF_PACKET, mode, 0);
 135
 136The protocol can optionally be 0 in case we only want to transmit
 137via this socket, which avoids an expensive call to packet_rcv().
 138In this case, you also need to bind(2) the TX_RING with sll_protocol = 0
 139set. Otherwise, htons(ETH_P_ALL) or any other protocol, for example.
 140
 141Binding the socket to your network interface is mandatory (with zero copy) to
 142know the header size of frames used in the circular buffer.
 143
 144As capture, each frame contains two parts:
 145
 146 --------------------
 147| struct tpacket_hdr | Header. It contains the status of
 148|                    | of this frame
 149|--------------------|
 150| data buffer        |
 151.                    .  Data that will be sent over the network interface.
 152.                    .
 153 --------------------
 154
 155 bind() associates the socket to your network interface thanks to
 156 sll_ifindex parameter of struct sockaddr_ll.
 157
 158 Initialization example:
 159
 160 struct sockaddr_ll my_addr;
 161 struct ifreq s_ifr;
 162 ...
 163
 164 strncpy (s_ifr.ifr_name, "eth0", sizeof(s_ifr.ifr_name));
 165
 166 /* get interface index of eth0 */
 167 ioctl(this->socket, SIOCGIFINDEX, &s_ifr);
 168
 169 /* fill sockaddr_ll struct to prepare binding */
 170 my_addr.sll_family = AF_PACKET;
 171 my_addr.sll_protocol = htons(ETH_P_ALL);
 172 my_addr.sll_ifindex =  s_ifr.ifr_ifindex;
 173
 174 /* bind socket to eth0 */
 175 bind(this->socket, (struct sockaddr *)&my_addr, sizeof(struct sockaddr_ll));
 176
 177 A complete tutorial is available at: http://wiki.gnu-log.net/
 178
 179By default, the user should put data at :
 180 frame base + TPACKET_HDRLEN - sizeof(struct sockaddr_ll)
 181
 182So, whatever you choose for the socket mode (SOCK_DGRAM or SOCK_RAW),
 183the beginning of the user data will be at :
 184 frame base + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
 185
 186If you wish to put user data at a custom offset from the beginning of
 187the frame (for payload alignment with SOCK_RAW mode for instance) you
 188can set tp_net (with SOCK_DGRAM) or tp_mac (with SOCK_RAW). In order
 189to make this work it must be enabled previously with setsockopt()
 190and the PACKET_TX_HAS_OFF option.
 191
 192--------------------------------------------------------------------------------
 193+ PACKET_MMAP settings
 194--------------------------------------------------------------------------------
 195
 196To setup PACKET_MMAP from user level code is done with a call like
 197
 198 - Capture process
 199     setsockopt(fd, SOL_PACKET, PACKET_RX_RING, (void *) &req, sizeof(req))
 200 - Transmission process
 201     setsockopt(fd, SOL_PACKET, PACKET_TX_RING, (void *) &req, sizeof(req))
 202
 203The most significant argument in the previous call is the req parameter, 
 204this parameter must to have the following structure:
 205
 206    struct tpacket_req
 207    {
 208        unsigned int    tp_block_size;  /* Minimal size of contiguous block */
 209        unsigned int    tp_block_nr;    /* Number of blocks */
 210        unsigned int    tp_frame_size;  /* Size of frame */
 211        unsigned int    tp_frame_nr;    /* Total number of frames */
 212    };
 213
 214This structure is defined in /usr/include/linux/if_packet.h and establishes a 
 215circular buffer (ring) of unswappable memory.
 216Being mapped in the capture process allows reading the captured frames and 
 217related meta-information like timestamps without requiring a system call.
 218
 219Frames are grouped in blocks. Each block is a physically contiguous
 220region of memory and holds tp_block_size/tp_frame_size frames. The total number 
 221of blocks is tp_block_nr. Note that tp_frame_nr is a redundant parameter because
 222
 223    frames_per_block = tp_block_size/tp_frame_size
 224
 225indeed, packet_set_ring checks that the following condition is true
 226
 227    frames_per_block * tp_block_nr == tp_frame_nr
 228
 229Lets see an example, with the following values:
 230
 231     tp_block_size= 4096
 232     tp_frame_size= 2048
 233     tp_block_nr  = 4
 234     tp_frame_nr  = 8
 235
 236we will get the following buffer structure:
 237
 238        block #1                 block #2         
 239+---------+---------+    +---------+---------+    
 240| frame 1 | frame 2 |    | frame 3 | frame 4 |    
 241+---------+---------+    +---------+---------+    
 242
 243        block #3                 block #4
 244+---------+---------+    +---------+---------+
 245| frame 5 | frame 6 |    | frame 7 | frame 8 |
 246+---------+---------+    +---------+---------+
 247
 248A frame can be of any size with the only condition it can fit in a block. A block
 249can only hold an integer number of frames, or in other words, a frame cannot 
 250be spawned across two blocks, so there are some details you have to take into 
 251account when choosing the frame_size. See "Mapping and use of the circular 
 252buffer (ring)".
 253
 254--------------------------------------------------------------------------------
 255+ PACKET_MMAP setting constraints
 256--------------------------------------------------------------------------------
 257
 258In kernel versions prior to 2.4.26 (for the 2.4 branch) and 2.6.5 (2.6 branch),
 259the PACKET_MMAP buffer could hold only 32768 frames in a 32 bit architecture or
 26016384 in a 64 bit architecture. For information on these kernel versions
 261see http://pusa.uv.es/~ulisses/packet_mmap/packet_mmap.pre-2.4.26_2.6.5.txt
 262
 263 Block size limit
 264------------------
 265
 266As stated earlier, each block is a contiguous physical region of memory. These 
 267memory regions are allocated with calls to the __get_free_pages() function. As 
 268the name indicates, this function allocates pages of memory, and the second
 269argument is "order" or a power of two number of pages, that is 
 270(for PAGE_SIZE == 4096) order=0 ==> 4096 bytes, order=1 ==> 8192 bytes, 
 271order=2 ==> 16384 bytes, etc. The maximum size of a 
 272region allocated by __get_free_pages is determined by the MAX_ORDER macro. More 
 273precisely the limit can be calculated as:
 274
 275   PAGE_SIZE << MAX_ORDER
 276
 277   In a i386 architecture PAGE_SIZE is 4096 bytes 
 278   In a 2.4/i386 kernel MAX_ORDER is 10
 279   In a 2.6/i386 kernel MAX_ORDER is 11
 280
 281So get_free_pages can allocate as much as 4MB or 8MB in a 2.4/2.6 kernel 
 282respectively, with an i386 architecture.
 283
 284User space programs can include /usr/include/sys/user.h and 
 285/usr/include/linux/mmzone.h to get PAGE_SIZE MAX_ORDER declarations.
 286
 287The pagesize can also be determined dynamically with the getpagesize (2) 
 288system call. 
 289
 290 Block number limit
 291--------------------
 292
 293To understand the constraints of PACKET_MMAP, we have to see the structure 
 294used to hold the pointers to each block.
 295
 296Currently, this structure is a dynamically allocated vector with kmalloc 
 297called pg_vec, its size limits the number of blocks that can be allocated.
 298
 299    +---+---+---+---+
 300    | x | x | x | x |
 301    +---+---+---+---+
 302      |   |   |   |
 303      |   |   |   v
 304      |   |   v  block #4
 305      |   v  block #3
 306      v  block #2
 307     block #1
 308
 309kmalloc allocates any number of bytes of physically contiguous memory from 
 310a pool of pre-determined sizes. This pool of memory is maintained by the slab 
 311allocator which is at the end the responsible for doing the allocation and 
 312hence which imposes the maximum memory that kmalloc can allocate. 
 313
 314In a 2.4/2.6 kernel and the i386 architecture, the limit is 131072 bytes. The 
 315predetermined sizes that kmalloc uses can be checked in the "size-<bytes>" 
 316entries of /proc/slabinfo
 317
 318In a 32 bit architecture, pointers are 4 bytes long, so the total number of 
 319pointers to blocks is
 320
 321     131072/4 = 32768 blocks
 322
 323 PACKET_MMAP buffer size calculator
 324------------------------------------
 325
 326Definitions:
 327
 328<size-max>    : is the maximum size of allocable with kmalloc (see /proc/slabinfo)
 329<pointer size>: depends on the architecture -- sizeof(void *)
 330<page size>   : depends on the architecture -- PAGE_SIZE or getpagesize (2)
 331<max-order>   : is the value defined with MAX_ORDER
 332<frame size>  : it's an upper bound of frame's capture size (more on this later)
 333
 334from these definitions we will derive 
 335
 336	<block number> = <size-max>/<pointer size>
 337	<block size> = <pagesize> << <max-order>
 338
 339so, the max buffer size is
 340
 341	<block number> * <block size>
 342
 343and, the number of frames be
 344
 345	<block number> * <block size> / <frame size>
 346
 347Suppose the following parameters, which apply for 2.6 kernel and an
 348i386 architecture:
 349
 350	<size-max> = 131072 bytes
 351	<pointer size> = 4 bytes
 352	<pagesize> = 4096 bytes
 353	<max-order> = 11
 354
 355and a value for <frame size> of 2048 bytes. These parameters will yield
 356
 357	<block number> = 131072/4 = 32768 blocks
 358	<block size> = 4096 << 11 = 8 MiB.
 359
 360and hence the buffer will have a 262144 MiB size. So it can hold 
 361262144 MiB / 2048 bytes = 134217728 frames
 362
 363Actually, this buffer size is not possible with an i386 architecture. 
 364Remember that the memory is allocated in kernel space, in the case of 
 365an i386 kernel's memory size is limited to 1GiB.
 366
 367All memory allocations are not freed until the socket is closed. The memory 
 368allocations are done with GFP_KERNEL priority, this basically means that 
 369the allocation can wait and swap other process' memory in order to allocate 
 370the necessary memory, so normally limits can be reached.
 371
 372 Other constraints
 373-------------------
 374
 375If you check the source code you will see that what I draw here as a frame
 376is not only the link level frame. At the beginning of each frame there is a 
 377header called struct tpacket_hdr used in PACKET_MMAP to hold link level's frame
 378meta information like timestamp. So what we draw here a frame it's really 
 379the following (from include/linux/if_packet.h):
 380
 381/*
 382   Frame structure:
 383
 384   - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
 385   - struct tpacket_hdr
 386   - pad to TPACKET_ALIGNMENT=16
 387   - struct sockaddr_ll
 388   - Gap, chosen so that packet data (Start+tp_net) aligns to 
 389     TPACKET_ALIGNMENT=16
 390   - Start+tp_mac: [ Optional MAC header ]
 391   - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
 392   - Pad to align to TPACKET_ALIGNMENT=16
 393 */
 394 
 395 The following are conditions that are checked in packet_set_ring
 396
 397   tp_block_size must be a multiple of PAGE_SIZE (1)
 398   tp_frame_size must be greater than TPACKET_HDRLEN (obvious)
 399   tp_frame_size must be a multiple of TPACKET_ALIGNMENT
 400   tp_frame_nr   must be exactly frames_per_block*tp_block_nr
 401
 402Note that tp_block_size should be chosen to be a power of two or there will
 403be a waste of memory.
 404
 405--------------------------------------------------------------------------------
 406+ Mapping and use of the circular buffer (ring)
 407--------------------------------------------------------------------------------
 408
 409The mapping of the buffer in the user process is done with the conventional 
 410mmap function. Even the circular buffer is compound of several physically
 411discontiguous blocks of memory, they are contiguous to the user space, hence
 412just one call to mmap is needed:
 413
 414    mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 415
 416If tp_frame_size is a divisor of tp_block_size frames will be 
 417contiguously spaced by tp_frame_size bytes. If not, each
 418tp_block_size/tp_frame_size frames there will be a gap between 
 419the frames. This is because a frame cannot be spawn across two
 420blocks. 
 421
 422To use one socket for capture and transmission, the mapping of both the
 423RX and TX buffer ring has to be done with one call to mmap:
 424
 425    ...
 426    setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &foo, sizeof(foo));
 427    setsockopt(fd, SOL_PACKET, PACKET_TX_RING, &bar, sizeof(bar));
 428    ...
 429    rx_ring = mmap(0, size * 2, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 430    tx_ring = rx_ring + size;
 431
 432RX must be the first as the kernel maps the TX ring memory right
 433after the RX one.
 434
 435At the beginning of each frame there is an status field (see 
 436struct tpacket_hdr). If this field is 0 means that the frame is ready
 437to be used for the kernel, If not, there is a frame the user can read 
 438and the following flags apply:
 439
 440+++ Capture process:
 441     from include/linux/if_packet.h
 442
 443     #define TP_STATUS_COPY          2 
 444     #define TP_STATUS_LOSING        4 
 445     #define TP_STATUS_CSUMNOTREADY  8 
 446
 447TP_STATUS_COPY        : This flag indicates that the frame (and associated
 448                        meta information) has been truncated because it's 
 449                        larger than tp_frame_size. This packet can be 
 450                        read entirely with recvfrom().
 451                        
 452                        In order to make this work it must to be
 453                        enabled previously with setsockopt() and 
 454                        the PACKET_COPY_THRESH option. 
 455
 456                        The number of frames that can be buffered to
 457                        be read with recvfrom is limited like a normal socket.
 458                        See the SO_RCVBUF option in the socket (7) man page.
 459
 460TP_STATUS_LOSING      : indicates there were packet drops from last time 
 461                        statistics where checked with getsockopt() and
 462                        the PACKET_STATISTICS option.
 463
 464TP_STATUS_CSUMNOTREADY: currently it's used for outgoing IP packets which 
 465                        its checksum will be done in hardware. So while
 466                        reading the packet we should not try to check the 
 467                        checksum. 
 468
 469for convenience there are also the following defines:
 470
 471     #define TP_STATUS_KERNEL        0
 472     #define TP_STATUS_USER          1
 473
 474The kernel initializes all frames to TP_STATUS_KERNEL, when the kernel
 475receives a packet it puts in the buffer and updates the status with
 476at least the TP_STATUS_USER flag. Then the user can read the packet,
 477once the packet is read the user must zero the status field, so the kernel 
 478can use again that frame buffer.
 479
 480The user can use poll (any other variant should apply too) to check if new
 481packets are in the ring:
 482
 483    struct pollfd pfd;
 484
 485    pfd.fd = fd;
 486    pfd.revents = 0;
 487    pfd.events = POLLIN|POLLRDNORM|POLLERR;
 488
 489    if (status == TP_STATUS_KERNEL)
 490        retval = poll(&pfd, 1, timeout);
 491
 492It doesn't incur in a race condition to first check the status value and 
 493then poll for frames.
 494
 495++ Transmission process
 496Those defines are also used for transmission:
 497
 498     #define TP_STATUS_AVAILABLE        0 // Frame is available
 499     #define TP_STATUS_SEND_REQUEST     1 // Frame will be sent on next send()
 500     #define TP_STATUS_SENDING          2 // Frame is currently in transmission
 501     #define TP_STATUS_WRONG_FORMAT     4 // Frame format is not correct
 502
 503First, the kernel initializes all frames to TP_STATUS_AVAILABLE. To send a
 504packet, the user fills a data buffer of an available frame, sets tp_len to
 505current data buffer size and sets its status field to TP_STATUS_SEND_REQUEST.
 506This can be done on multiple frames. Once the user is ready to transmit, it
 507calls send(). Then all buffers with status equal to TP_STATUS_SEND_REQUEST are
 508forwarded to the network device. The kernel updates each status of sent
 509frames with TP_STATUS_SENDING until the end of transfer.
 510At the end of each transfer, buffer status returns to TP_STATUS_AVAILABLE.
 511
 512    header->tp_len = in_i_size;
 513    header->tp_status = TP_STATUS_SEND_REQUEST;
 514    retval = send(this->socket, NULL, 0, 0);
 515
 516The user can also use poll() to check if a buffer is available:
 517(status == TP_STATUS_SENDING)
 518
 519    struct pollfd pfd;
 520    pfd.fd = fd;
 521    pfd.revents = 0;
 522    pfd.events = POLLOUT;
 523    retval = poll(&pfd, 1, timeout);
 524
 525-------------------------------------------------------------------------------
 526+ What TPACKET versions are available and when to use them?
 527-------------------------------------------------------------------------------
 528
 529 int val = tpacket_version;
 530 setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
 531 getsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val));
 532
 533where 'tpacket_version' can be TPACKET_V1 (default), TPACKET_V2, TPACKET_V3.
 534
 535TPACKET_V1:
 536	- Default if not otherwise specified by setsockopt(2)
 537	- RX_RING, TX_RING available
 538
 539TPACKET_V1 --> TPACKET_V2:
 540	- Made 64 bit clean due to unsigned long usage in TPACKET_V1
 541	  structures, thus this also works on 64 bit kernel with 32 bit
 542	  userspace and the like
 543	- Timestamp resolution in nanoseconds instead of microseconds
 544	- RX_RING, TX_RING available
 545	- VLAN metadata information available for packets
 546	  (TP_STATUS_VLAN_VALID, TP_STATUS_VLAN_TPID_VALID),
 547	  in the tpacket2_hdr structure:
 548		- TP_STATUS_VLAN_VALID bit being set into the tp_status field indicates
 549		  that the tp_vlan_tci field has valid VLAN TCI value
 550		- TP_STATUS_VLAN_TPID_VALID bit being set into the tp_status field
 551		  indicates that the tp_vlan_tpid field has valid VLAN TPID value
 552	- How to switch to TPACKET_V2:
 553		1. Replace struct tpacket_hdr by struct tpacket2_hdr
 554		2. Query header len and save
 555		3. Set protocol version to 2, set up ring as usual
 556		4. For getting the sockaddr_ll,
 557		   use (void *)hdr + TPACKET_ALIGN(hdrlen) instead of
 558		   (void *)hdr + TPACKET_ALIGN(sizeof(struct tpacket_hdr))
 559
 560TPACKET_V2 --> TPACKET_V3:
 561	- Flexible buffer implementation:
 562		1. Blocks can be configured with non-static frame-size
 563		2. Read/poll is at a block-level (as opposed to packet-level)
 564		3. Added poll timeout to avoid indefinite user-space wait
 565		   on idle links
 566		4. Added user-configurable knobs:
 567			4.1 block::timeout
 568			4.2 tpkt_hdr::sk_rxhash
 569	- RX Hash data available in user space
 570	- Currently only RX_RING available
 571
 572-------------------------------------------------------------------------------
 573+ AF_PACKET fanout mode
 574-------------------------------------------------------------------------------
 575
 576In the AF_PACKET fanout mode, packet reception can be load balanced among
 577processes. This also works in combination with mmap(2) on packet sockets.
 578
 579Currently implemented fanout policies are:
 580
 581  - PACKET_FANOUT_HASH: schedule to socket by skb's packet hash
 582  - PACKET_FANOUT_LB: schedule to socket by round-robin
 583  - PACKET_FANOUT_CPU: schedule to socket by CPU packet arrives on
 584  - PACKET_FANOUT_RND: schedule to socket by random selection
 585  - PACKET_FANOUT_ROLLOVER: if one socket is full, rollover to another
 586  - PACKET_FANOUT_QM: schedule to socket by skbs recorded queue_mapping
 587
 588Minimal example code by David S. Miller (try things like "./test eth0 hash",
 589"./test eth0 lb", etc.):
 590
 591#include <stddef.h>
 592#include <stdlib.h>
 593#include <stdio.h>
 594#include <string.h>
 595
 596#include <sys/types.h>
 597#include <sys/wait.h>
 598#include <sys/socket.h>
 599#include <sys/ioctl.h>
 600
 601#include <unistd.h>
 602
 603#include <linux/if_ether.h>
 604#include <linux/if_packet.h>
 605
 606#include <net/if.h>
 607
 608static const char *device_name;
 609static int fanout_type;
 610static int fanout_id;
 611
 612#ifndef PACKET_FANOUT
 613# define PACKET_FANOUT			18
 614# define PACKET_FANOUT_HASH		0
 615# define PACKET_FANOUT_LB		1
 616#endif
 617
 618static int setup_socket(void)
 619{
 620	int err, fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_IP));
 621	struct sockaddr_ll ll;
 622	struct ifreq ifr;
 623	int fanout_arg;
 624
 625	if (fd < 0) {
 626		perror("socket");
 627		return EXIT_FAILURE;
 628	}
 629
 630	memset(&ifr, 0, sizeof(ifr));
 631	strcpy(ifr.ifr_name, device_name);
 632	err = ioctl(fd, SIOCGIFINDEX, &ifr);
 633	if (err < 0) {
 634		perror("SIOCGIFINDEX");
 635		return EXIT_FAILURE;
 636	}
 637
 638	memset(&ll, 0, sizeof(ll));
 639	ll.sll_family = AF_PACKET;
 640	ll.sll_ifindex = ifr.ifr_ifindex;
 641	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
 642	if (err < 0) {
 643		perror("bind");
 644		return EXIT_FAILURE;
 645	}
 646
 647	fanout_arg = (fanout_id | (fanout_type << 16));
 648	err = setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
 649			 &fanout_arg, sizeof(fanout_arg));
 650	if (err) {
 651		perror("setsockopt");
 652		return EXIT_FAILURE;
 653	}
 654
 655	return fd;
 656}
 657
 658static void fanout_thread(void)
 659{
 660	int fd = setup_socket();
 661	int limit = 10000;
 662
 663	if (fd < 0)
 664		exit(fd);
 665
 666	while (limit-- > 0) {
 667		char buf[1600];
 668		int err;
 669
 670		err = read(fd, buf, sizeof(buf));
 671		if (err < 0) {
 672			perror("read");
 673			exit(EXIT_FAILURE);
 674		}
 675		if ((limit % 10) == 0)
 676			fprintf(stdout, "(%d) \n", getpid());
 677	}
 678
 679	fprintf(stdout, "%d: Received 10000 packets\n", getpid());
 680
 681	close(fd);
 682	exit(0);
 683}
 684
 685int main(int argc, char **argp)
 686{
 687	int fd, err;
 688	int i;
 689
 690	if (argc != 3) {
 691		fprintf(stderr, "Usage: %s INTERFACE {hash|lb}\n", argp[0]);
 692		return EXIT_FAILURE;
 693	}
 694
 695	if (!strcmp(argp[2], "hash"))
 696		fanout_type = PACKET_FANOUT_HASH;
 697	else if (!strcmp(argp[2], "lb"))
 698		fanout_type = PACKET_FANOUT_LB;
 699	else {
 700		fprintf(stderr, "Unknown fanout type [%s]\n", argp[2]);
 701		exit(EXIT_FAILURE);
 702	}
 703
 704	device_name = argp[1];
 705	fanout_id = getpid() & 0xffff;
 706
 707	for (i = 0; i < 4; i++) {
 708		pid_t pid = fork();
 709
 710		switch (pid) {
 711		case 0:
 712			fanout_thread();
 713
 714		case -1:
 715			perror("fork");
 716			exit(EXIT_FAILURE);
 717		}
 718	}
 719
 720	for (i = 0; i < 4; i++) {
 721		int status;
 722
 723		wait(&status);
 724	}
 725
 726	return 0;
 727}
 728
 729-------------------------------------------------------------------------------
 730+ AF_PACKET TPACKET_V3 example
 731-------------------------------------------------------------------------------
 732
 733AF_PACKET's TPACKET_V3 ring buffer can be configured to use non-static frame
 734sizes by doing it's own memory management. It is based on blocks where polling
 735works on a per block basis instead of per ring as in TPACKET_V2 and predecessor.
 736
 737It is said that TPACKET_V3 brings the following benefits:
 738 *) ~15 - 20% reduction in CPU-usage
 739 *) ~20% increase in packet capture rate
 740 *) ~2x increase in packet density
 741 *) Port aggregation analysis
 742 *) Non static frame size to capture entire packet payload
 743
 744So it seems to be a good candidate to be used with packet fanout.
 745
 746Minimal example code by Daniel Borkmann based on Chetan Loke's lolpcap (compile
 747it with gcc -Wall -O2 blob.c, and try things like "./a.out eth0", etc.):
 748
 749/* Written from scratch, but kernel-to-user space API usage
 750 * dissected from lolpcap:
 751 *  Copyright 2011, Chetan Loke <loke.chetan@gmail.com>
 752 *  License: GPL, version 2.0
 753 */
 754
 755#include <stdio.h>
 756#include <stdlib.h>
 757#include <stdint.h>
 758#include <string.h>
 759#include <assert.h>
 760#include <net/if.h>
 761#include <arpa/inet.h>
 762#include <netdb.h>
 763#include <poll.h>
 764#include <unistd.h>
 765#include <signal.h>
 766#include <inttypes.h>
 767#include <sys/socket.h>
 768#include <sys/mman.h>
 769#include <linux/if_packet.h>
 770#include <linux/if_ether.h>
 771#include <linux/ip.h>
 772
 773#ifndef likely
 774# define likely(x)		__builtin_expect(!!(x), 1)
 775#endif
 776#ifndef unlikely
 777# define unlikely(x)		__builtin_expect(!!(x), 0)
 778#endif
 779
 780struct block_desc {
 781	uint32_t version;
 782	uint32_t offset_to_priv;
 783	struct tpacket_hdr_v1 h1;
 784};
 785
 786struct ring {
 787	struct iovec *rd;
 788	uint8_t *map;
 789	struct tpacket_req3 req;
 790};
 791
 792static unsigned long packets_total = 0, bytes_total = 0;
 793static sig_atomic_t sigint = 0;
 794
 795static void sighandler(int num)
 796{
 797	sigint = 1;
 798}
 799
 800static int setup_socket(struct ring *ring, char *netdev)
 801{
 802	int err, i, fd, v = TPACKET_V3;
 803	struct sockaddr_ll ll;
 804	unsigned int blocksiz = 1 << 22, framesiz = 1 << 11;
 805	unsigned int blocknum = 64;
 806
 807	fd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
 808	if (fd < 0) {
 809		perror("socket");
 810		exit(1);
 811	}
 812
 813	err = setsockopt(fd, SOL_PACKET, PACKET_VERSION, &v, sizeof(v));
 814	if (err < 0) {
 815		perror("setsockopt");
 816		exit(1);
 817	}
 818
 819	memset(&ring->req, 0, sizeof(ring->req));
 820	ring->req.tp_block_size = blocksiz;
 821	ring->req.tp_frame_size = framesiz;
 822	ring->req.tp_block_nr = blocknum;
 823	ring->req.tp_frame_nr = (blocksiz * blocknum) / framesiz;
 824	ring->req.tp_retire_blk_tov = 60;
 825	ring->req.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH;
 826
 827	err = setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &ring->req,
 828			 sizeof(ring->req));
 829	if (err < 0) {
 830		perror("setsockopt");
 831		exit(1);
 832	}
 833
 834	ring->map = mmap(NULL, ring->req.tp_block_size * ring->req.tp_block_nr,
 835			 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_LOCKED, fd, 0);
 836	if (ring->map == MAP_FAILED) {
 837		perror("mmap");
 838		exit(1);
 839	}
 840
 841	ring->rd = malloc(ring->req.tp_block_nr * sizeof(*ring->rd));
 842	assert(ring->rd);
 843	for (i = 0; i < ring->req.tp_block_nr; ++i) {
 844		ring->rd[i].iov_base = ring->map + (i * ring->req.tp_block_size);
 845		ring->rd[i].iov_len = ring->req.tp_block_size;
 846	}
 847
 848	memset(&ll, 0, sizeof(ll));
 849	ll.sll_family = PF_PACKET;
 850	ll.sll_protocol = htons(ETH_P_ALL);
 851	ll.sll_ifindex = if_nametoindex(netdev);
 852	ll.sll_hatype = 0;
 853	ll.sll_pkttype = 0;
 854	ll.sll_halen = 0;
 855
 856	err = bind(fd, (struct sockaddr *) &ll, sizeof(ll));
 857	if (err < 0) {
 858		perror("bind");
 859		exit(1);
 860	}
 861
 862	return fd;
 863}
 864
 865static void display(struct tpacket3_hdr *ppd)
 866{
 867	struct ethhdr *eth = (struct ethhdr *) ((uint8_t *) ppd + ppd->tp_mac);
 868	struct iphdr *ip = (struct iphdr *) ((uint8_t *) eth + ETH_HLEN);
 869
 870	if (eth->h_proto == htons(ETH_P_IP)) {
 871		struct sockaddr_in ss, sd;
 872		char sbuff[NI_MAXHOST], dbuff[NI_MAXHOST];
 873
 874		memset(&ss, 0, sizeof(ss));
 875		ss.sin_family = PF_INET;
 876		ss.sin_addr.s_addr = ip->saddr;
 877		getnameinfo((struct sockaddr *) &ss, sizeof(ss),
 878			    sbuff, sizeof(sbuff), NULL, 0, NI_NUMERICHOST);
 879
 880		memset(&sd, 0, sizeof(sd));
 881		sd.sin_family = PF_INET;
 882		sd.sin_addr.s_addr = ip->daddr;
 883		getnameinfo((struct sockaddr *) &sd, sizeof(sd),
 884			    dbuff, sizeof(dbuff), NULL, 0, NI_NUMERICHOST);
 885
 886		printf("%s -> %s, ", sbuff, dbuff);
 887	}
 888
 889	printf("rxhash: 0x%x\n", ppd->hv1.tp_rxhash);
 890}
 891
 892static void walk_block(struct block_desc *pbd, const int block_num)
 893{
 894	int num_pkts = pbd->h1.num_pkts, i;
 895	unsigned long bytes = 0;
 896	struct tpacket3_hdr *ppd;
 897
 898	ppd = (struct tpacket3_hdr *) ((uint8_t *) pbd +
 899				       pbd->h1.offset_to_first_pkt);
 900	for (i = 0; i < num_pkts; ++i) {
 901		bytes += ppd->tp_snaplen;
 902		display(ppd);
 903
 904		ppd = (struct tpacket3_hdr *) ((uint8_t *) ppd +
 905					       ppd->tp_next_offset);
 906	}
 907
 908	packets_total += num_pkts;
 909	bytes_total += bytes;
 910}
 911
 912static void flush_block(struct block_desc *pbd)
 913{
 914	pbd->h1.block_status = TP_STATUS_KERNEL;
 915}
 916
 917static void teardown_socket(struct ring *ring, int fd)
 918{
 919	munmap(ring->map, ring->req.tp_block_size * ring->req.tp_block_nr);
 920	free(ring->rd);
 921	close(fd);
 922}
 923
 924int main(int argc, char **argp)
 925{
 926	int fd, err;
 927	socklen_t len;
 928	struct ring ring;
 929	struct pollfd pfd;
 930	unsigned int block_num = 0, blocks = 64;
 931	struct block_desc *pbd;
 932	struct tpacket_stats_v3 stats;
 933
 934	if (argc != 2) {
 935		fprintf(stderr, "Usage: %s INTERFACE\n", argp[0]);
 936		return EXIT_FAILURE;
 937	}
 938
 939	signal(SIGINT, sighandler);
 940
 941	memset(&ring, 0, sizeof(ring));
 942	fd = setup_socket(&ring, argp[argc - 1]);
 943	assert(fd > 0);
 944
 945	memset(&pfd, 0, sizeof(pfd));
 946	pfd.fd = fd;
 947	pfd.events = POLLIN | POLLERR;
 948	pfd.revents = 0;
 949
 950	while (likely(!sigint)) {
 951		pbd = (struct block_desc *) ring.rd[block_num].iov_base;
 952
 953		if ((pbd->h1.block_status & TP_STATUS_USER) == 0) {
 954			poll(&pfd, 1, -1);
 955			continue;
 956		}
 957
 958		walk_block(pbd, block_num);
 959		flush_block(pbd);
 960		block_num = (block_num + 1) % blocks;
 961	}
 962
 963	len = sizeof(stats);
 964	err = getsockopt(fd, SOL_PACKET, PACKET_STATISTICS, &stats, &len);
 965	if (err < 0) {
 966		perror("getsockopt");
 967		exit(1);
 968	}
 969
 970	fflush(stdout);
 971	printf("\nReceived %u packets, %lu bytes, %u dropped, freeze_q_cnt: %u\n",
 972	       stats.tp_packets, bytes_total, stats.tp_drops,
 973	       stats.tp_freeze_q_cnt);
 974
 975	teardown_socket(&ring, fd);
 976	return 0;
 977}
 978
 979-------------------------------------------------------------------------------
 980+ PACKET_QDISC_BYPASS
 981-------------------------------------------------------------------------------
 982
 983If there is a requirement to load the network with many packets in a similar
 984fashion as pktgen does, you might set the following option after socket
 985creation:
 986
 987    int one = 1;
 988    setsockopt(fd, SOL_PACKET, PACKET_QDISC_BYPASS, &one, sizeof(one));
 989
 990This has the side-effect, that packets sent through PF_PACKET will bypass the
 991kernel's qdisc layer and are forcedly pushed to the driver directly. Meaning,
 992packet are not buffered, tc disciplines are ignored, increased loss can occur
 993and such packets are also not visible to other PF_PACKET sockets anymore. So,
 994you have been warned; generally, this can be useful for stress testing various
 995components of a system.
 996
 997On default, PACKET_QDISC_BYPASS is disabled and needs to be explicitly enabled
 998on PF_PACKET sockets.
 999
1000-------------------------------------------------------------------------------
1001+ PACKET_TIMESTAMP
1002-------------------------------------------------------------------------------
1003
1004The PACKET_TIMESTAMP setting determines the source of the timestamp in
1005the packet meta information for mmap(2)ed RX_RING and TX_RINGs.  If your
1006NIC is capable of timestamping packets in hardware, you can request those
1007hardware timestamps to be used. Note: you may need to enable the generation
1008of hardware timestamps with SIOCSHWTSTAMP (see related information from
1009Documentation/networking/timestamping.txt).
1010
1011PACKET_TIMESTAMP accepts the same integer bit field as
1012SO_TIMESTAMPING.  However, only the SOF_TIMESTAMPING_SYS_HARDWARE
1013and SOF_TIMESTAMPING_RAW_HARDWARE values are recognized by
1014PACKET_TIMESTAMP.  SOF_TIMESTAMPING_SYS_HARDWARE takes precedence over
1015SOF_TIMESTAMPING_RAW_HARDWARE if both bits are set.
1016
1017    int req = 0;
1018    req |= SOF_TIMESTAMPING_SYS_HARDWARE;
1019    setsockopt(fd, SOL_PACKET, PACKET_TIMESTAMP, (void *) &req, sizeof(req))
1020
1021For the mmap(2)ed ring buffers, such timestamps are stored in the
1022tpacket{,2,3}_hdr structure's tp_sec and tp_{n,u}sec members. To determine
1023what kind of timestamp has been reported, the tp_status field is binary |'ed
1024with the following possible bits ...
1025
1026    TP_STATUS_TS_SYS_HARDWARE
1027    TP_STATUS_TS_RAW_HARDWARE
1028    TP_STATUS_TS_SOFTWARE
1029
1030... that are equivalent to its SOF_TIMESTAMPING_* counterparts. For the
1031RX_RING, if none of those 3 are set (i.e. PACKET_TIMESTAMP is not set),
1032then this means that a software fallback was invoked *within* PF_PACKET's
1033processing code (less precise).
1034
1035Getting timestamps for the TX_RING works as follows: i) fill the ring frames,
1036ii) call sendto() e.g. in blocking mode, iii) wait for status of relevant
1037frames to be updated resp. the frame handed over to the application, iv) walk
1038through the frames to pick up the individual hw/sw timestamps.
1039
1040Only (!) if transmit timestamping is enabled, then these bits are combined
1041with binary | with TP_STATUS_AVAILABLE, so you must check for that in your
1042application (e.g. !(tp_status & (TP_STATUS_SEND_REQUEST | TP_STATUS_SENDING))
1043in a first step to see if the frame belongs to the application, and then
1044one can extract the type of timestamp in a second step from tp_status)!
1045
1046If you don't care about them, thus having it disabled, checking for
1047TP_STATUS_AVAILABLE resp. TP_STATUS_WRONG_FORMAT is sufficient. If in the
1048TX_RING part only TP_STATUS_AVAILABLE is set, then the tp_sec and tp_{n,u}sec
1049members do not contain a valid value. For TX_RINGs, by default no timestamp
1050is generated!
1051
1052See include/linux/net_tstamp.h and Documentation/networking/timestamping
1053for more information on hardware timestamps.
1054
1055-------------------------------------------------------------------------------
1056+ Miscellaneous bits
1057-------------------------------------------------------------------------------
1058
1059- Packet sockets work well together with Linux socket filters, thus you also
1060  might want to have a look at Documentation/networking/filter.txt
1061
1062--------------------------------------------------------------------------------
1063+ THANKS
1064--------------------------------------------------------------------------------
1065   
1066   Jesse Brandeburg, for fixing my grammathical/spelling errors
1067