Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * net/sched/sch_generic.c	Generic packet scheduler routines.
   4 *
 
 
 
 
 
   5 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
   6 *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
   7 *              - Ingress support
   8 */
   9
  10#include <linux/bitops.h>
  11#include <linux/module.h>
  12#include <linux/types.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/string.h>
  16#include <linux/errno.h>
  17#include <linux/netdevice.h>
  18#include <linux/skbuff.h>
  19#include <linux/rtnetlink.h>
  20#include <linux/init.h>
  21#include <linux/rcupdate.h>
  22#include <linux/list.h>
  23#include <linux/slab.h>
  24#include <linux/if_vlan.h>
  25#include <linux/skb_array.h>
  26#include <linux/if_macvlan.h>
  27#include <net/sch_generic.h>
  28#include <net/pkt_sched.h>
  29#include <net/dst.h>
  30#include <net/hotdata.h>
  31#include <trace/events/qdisc.h>
  32#include <trace/events/net.h>
  33#include <net/xfrm.h>
  34
  35/* Qdisc to use by default */
  36const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
  37EXPORT_SYMBOL(default_qdisc_ops);
  38
  39static void qdisc_maybe_clear_missed(struct Qdisc *q,
  40				     const struct netdev_queue *txq)
  41{
  42	clear_bit(__QDISC_STATE_MISSED, &q->state);
  43
  44	/* Make sure the below netif_xmit_frozen_or_stopped()
  45	 * checking happens after clearing STATE_MISSED.
  46	 */
  47	smp_mb__after_atomic();
  48
  49	/* Checking netif_xmit_frozen_or_stopped() again to
  50	 * make sure STATE_MISSED is set if the STATE_MISSED
  51	 * set by netif_tx_wake_queue()'s rescheduling of
  52	 * net_tx_action() is cleared by the above clear_bit().
  53	 */
  54	if (!netif_xmit_frozen_or_stopped(txq))
  55		set_bit(__QDISC_STATE_MISSED, &q->state);
  56	else
  57		set_bit(__QDISC_STATE_DRAINING, &q->state);
  58}
  59
  60/* Main transmission queue. */
  61
  62/* Modifications to data participating in scheduling must be protected with
  63 * qdisc_lock(qdisc) spinlock.
  64 *
  65 * The idea is the following:
  66 * - enqueue, dequeue are serialized via qdisc root lock
  67 * - ingress filtering is also serialized via qdisc root lock
  68 * - updates to tree and tree walking are only done under the rtnl mutex.
  69 */
  70
  71#define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
  72
  73static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
  74{
  75	const struct netdev_queue *txq = q->dev_queue;
  76	spinlock_t *lock = NULL;
  77	struct sk_buff *skb;
  78
  79	if (q->flags & TCQ_F_NOLOCK) {
  80		lock = qdisc_lock(q);
  81		spin_lock(lock);
  82	}
  83
  84	skb = skb_peek(&q->skb_bad_txq);
  85	if (skb) {
  86		/* check the reason of requeuing without tx lock first */
  87		txq = skb_get_tx_queue(txq->dev, skb);
  88		if (!netif_xmit_frozen_or_stopped(txq)) {
  89			skb = __skb_dequeue(&q->skb_bad_txq);
  90			if (qdisc_is_percpu_stats(q)) {
  91				qdisc_qstats_cpu_backlog_dec(q, skb);
  92				qdisc_qstats_cpu_qlen_dec(q);
  93			} else {
  94				qdisc_qstats_backlog_dec(q, skb);
  95				q->q.qlen--;
  96			}
  97		} else {
  98			skb = SKB_XOFF_MAGIC;
  99			qdisc_maybe_clear_missed(q, txq);
 100		}
 101	}
 102
 103	if (lock)
 104		spin_unlock(lock);
 105
 106	return skb;
 107}
 108
 109static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
 110{
 111	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
 112
 113	if (unlikely(skb))
 114		skb = __skb_dequeue_bad_txq(q);
 
 115
 116	return skb;
 117}
 118
 119static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
 120					     struct sk_buff *skb)
 121{
 122	spinlock_t *lock = NULL;
 123
 124	if (q->flags & TCQ_F_NOLOCK) {
 125		lock = qdisc_lock(q);
 126		spin_lock(lock);
 127	}
 128
 129	__skb_queue_tail(&q->skb_bad_txq, skb);
 130
 131	if (qdisc_is_percpu_stats(q)) {
 132		qdisc_qstats_cpu_backlog_inc(q, skb);
 133		qdisc_qstats_cpu_qlen_inc(q);
 
 
 
 
 
 134	} else {
 135		qdisc_qstats_backlog_inc(q, skb);
 136		q->q.qlen++;
 137	}
 138
 139	if (lock)
 140		spin_unlock(lock);
 141}
 142
 143static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
 144{
 145	spinlock_t *lock = NULL;
 146
 147	if (q->flags & TCQ_F_NOLOCK) {
 148		lock = qdisc_lock(q);
 149		spin_lock(lock);
 150	}
 151
 152	while (skb) {
 153		struct sk_buff *next = skb->next;
 154
 155		__skb_queue_tail(&q->gso_skb, skb);
 156
 157		/* it's still part of the queue */
 158		if (qdisc_is_percpu_stats(q)) {
 159			qdisc_qstats_cpu_requeues_inc(q);
 160			qdisc_qstats_cpu_backlog_inc(q, skb);
 161			qdisc_qstats_cpu_qlen_inc(q);
 162		} else {
 163			q->qstats.requeues++;
 164			qdisc_qstats_backlog_inc(q, skb);
 165			q->q.qlen++;
 166		}
 167
 168		skb = next;
 169	}
 170
 171	if (lock) {
 172		spin_unlock(lock);
 173		set_bit(__QDISC_STATE_MISSED, &q->state);
 174	} else {
 175		__netif_schedule(q);
 176	}
 177}
 178
 179static void try_bulk_dequeue_skb(struct Qdisc *q,
 180				 struct sk_buff *skb,
 181				 const struct netdev_queue *txq,
 182				 int *packets)
 183{
 184	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
 185
 186	while (bytelimit > 0) {
 187		struct sk_buff *nskb = q->dequeue(q);
 188
 189		if (!nskb)
 190			break;
 191
 192		bytelimit -= nskb->len; /* covers GSO len */
 193		skb->next = nskb;
 194		skb = nskb;
 195		(*packets)++; /* GSO counts as one pkt */
 196	}
 197	skb_mark_not_on_list(skb);
 198}
 199
 200/* This variant of try_bulk_dequeue_skb() makes sure
 201 * all skbs in the chain are for the same txq
 202 */
 203static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
 204				      struct sk_buff *skb,
 205				      int *packets)
 206{
 207	int mapping = skb_get_queue_mapping(skb);
 208	struct sk_buff *nskb;
 209	int cnt = 0;
 210
 211	do {
 212		nskb = q->dequeue(q);
 213		if (!nskb)
 214			break;
 215		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
 216			qdisc_enqueue_skb_bad_txq(q, nskb);
 217			break;
 218		}
 219		skb->next = nskb;
 220		skb = nskb;
 221	} while (++cnt < 8);
 222	(*packets) += cnt;
 223	skb_mark_not_on_list(skb);
 224}
 225
 226/* Note that dequeue_skb can possibly return a SKB list (via skb->next).
 227 * A requeued skb (via q->gso_skb) can also be a SKB list.
 228 */
 229static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
 230				   int *packets)
 231{
 232	const struct netdev_queue *txq = q->dev_queue;
 233	struct sk_buff *skb = NULL;
 234
 235	*packets = 1;
 236	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
 237		spinlock_t *lock = NULL;
 238
 239		if (q->flags & TCQ_F_NOLOCK) {
 240			lock = qdisc_lock(q);
 241			spin_lock(lock);
 242		}
 243
 244		skb = skb_peek(&q->gso_skb);
 245
 246		/* skb may be null if another cpu pulls gso_skb off in between
 247		 * empty check and lock.
 248		 */
 249		if (!skb) {
 250			if (lock)
 251				spin_unlock(lock);
 252			goto validate;
 253		}
 254
 255		/* skb in gso_skb were already validated */
 256		*validate = false;
 257		if (xfrm_offload(skb))
 258			*validate = true;
 259		/* check the reason of requeuing without tx lock first */
 260		txq = skb_get_tx_queue(txq->dev, skb);
 261		if (!netif_xmit_frozen_or_stopped(txq)) {
 262			skb = __skb_dequeue(&q->gso_skb);
 263			if (qdisc_is_percpu_stats(q)) {
 264				qdisc_qstats_cpu_backlog_dec(q, skb);
 265				qdisc_qstats_cpu_qlen_dec(q);
 266			} else {
 267				qdisc_qstats_backlog_dec(q, skb);
 268				q->q.qlen--;
 269			}
 270		} else {
 271			skb = NULL;
 272			qdisc_maybe_clear_missed(q, txq);
 273		}
 274		if (lock)
 275			spin_unlock(lock);
 276		goto trace;
 277	}
 278validate:
 279	*validate = true;
 280
 281	if ((q->flags & TCQ_F_ONETXQUEUE) &&
 282	    netif_xmit_frozen_or_stopped(txq)) {
 283		qdisc_maybe_clear_missed(q, txq);
 284		return skb;
 285	}
 286
 287	skb = qdisc_dequeue_skb_bad_txq(q);
 288	if (unlikely(skb)) {
 289		if (skb == SKB_XOFF_MAGIC)
 290			return NULL;
 291		goto bulk;
 292	}
 293	skb = q->dequeue(q);
 294	if (skb) {
 295bulk:
 296		if (qdisc_may_bulk(q))
 297			try_bulk_dequeue_skb(q, skb, txq, packets);
 298		else
 299			try_bulk_dequeue_skb_slow(q, skb, packets);
 300	}
 301trace:
 302	trace_qdisc_dequeue(q, txq, *packets, skb);
 303	return skb;
 304}
 305
 306/*
 307 * Transmit possibly several skbs, and handle the return status as
 308 * required. Owning qdisc running bit guarantees that only one CPU
 309 * can execute this function.
 310 *
 311 * Returns to the caller:
 312 *				false  - hardware queue frozen backoff
 313 *				true   - feel free to send more pkts
 314 */
 315bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
 316		     struct net_device *dev, struct netdev_queue *txq,
 317		     spinlock_t *root_lock, bool validate)
 318{
 319	int ret = NETDEV_TX_BUSY;
 320	bool again = false;
 321
 322	/* And release qdisc */
 323	if (root_lock)
 324		spin_unlock(root_lock);
 325
 326	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
 327	if (validate)
 328		skb = validate_xmit_skb_list(skb, dev, &again);
 329
 330#ifdef CONFIG_XFRM_OFFLOAD
 331	if (unlikely(again)) {
 332		if (root_lock)
 333			spin_lock(root_lock);
 334
 335		dev_requeue_skb(skb, q);
 336		return false;
 337	}
 338#endif
 339
 340	if (likely(skb)) {
 341		HARD_TX_LOCK(dev, txq, smp_processor_id());
 342		if (!netif_xmit_frozen_or_stopped(txq))
 343			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
 344		else
 345			qdisc_maybe_clear_missed(q, txq);
 346
 347		HARD_TX_UNLOCK(dev, txq);
 
 
 
 
 
 348	} else {
 349		if (root_lock)
 350			spin_lock(root_lock);
 351		return true;
 352	}
 353
 354	if (root_lock)
 355		spin_lock(root_lock);
 356
 357	if (!dev_xmit_complete(ret)) {
 358		/* Driver returned NETDEV_TX_BUSY - requeue skb */
 359		if (unlikely(ret != NETDEV_TX_BUSY))
 360			net_warn_ratelimited("BUG %s code %d qlen %d\n",
 361					     dev->name, ret, q->q.qlen);
 362
 363		dev_requeue_skb(skb, q);
 364		return false;
 365	}
 366
 367	return true;
 
 
 
 368}
 369
 370/*
 371 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
 372 *
 373 * running seqcount guarantees only one CPU can process
 374 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
 375 * this queue.
 376 *
 377 *  netif_tx_lock serializes accesses to device driver.
 378 *
 379 *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
 380 *  if one is grabbed, another must be free.
 381 *
 382 * Note, that this procedure can be called by a watchdog timer
 383 *
 384 * Returns to the caller:
 385 *				0  - queue is empty or throttled.
 386 *				>0 - queue is not empty.
 387 *
 388 */
 389static inline bool qdisc_restart(struct Qdisc *q, int *packets)
 390{
 391	spinlock_t *root_lock = NULL;
 392	struct netdev_queue *txq;
 393	struct net_device *dev;
 
 394	struct sk_buff *skb;
 395	bool validate;
 396
 397	/* Dequeue packet */
 398	skb = dequeue_skb(q, &validate, packets);
 399	if (unlikely(!skb))
 400		return false;
 401
 402	if (!(q->flags & TCQ_F_NOLOCK))
 403		root_lock = qdisc_lock(q);
 404
 405	dev = qdisc_dev(q);
 406	txq = skb_get_tx_queue(dev, skb);
 407
 408	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
 409}
 410
 411void __qdisc_run(struct Qdisc *q)
 412{
 413	int quota = READ_ONCE(net_hotdata.dev_tx_weight);
 414	int packets;
 415
 416	while (qdisc_restart(q, &packets)) {
 417		quota -= packets;
 418		if (quota <= 0) {
 419			if (q->flags & TCQ_F_NOLOCK)
 420				set_bit(__QDISC_STATE_MISSED, &q->state);
 421			else
 422				__netif_schedule(q);
 423
 
 
 
 
 
 
 
 
 424			break;
 425		}
 426	}
 
 
 427}
 428
 429unsigned long dev_trans_start(struct net_device *dev)
 430{
 431	unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
 432	unsigned long val;
 433	unsigned int i;
 434
 435	for (i = 1; i < dev->num_tx_queues; i++) {
 436		val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
 
 
 
 437		if (val && time_after(val, res))
 438			res = val;
 439	}
 
 440
 441	return res;
 442}
 443EXPORT_SYMBOL(dev_trans_start);
 444
 445static void netif_freeze_queues(struct net_device *dev)
 446{
 447	unsigned int i;
 448	int cpu;
 449
 450	cpu = smp_processor_id();
 451	for (i = 0; i < dev->num_tx_queues; i++) {
 452		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
 453
 454		/* We are the only thread of execution doing a
 455		 * freeze, but we have to grab the _xmit_lock in
 456		 * order to synchronize with threads which are in
 457		 * the ->hard_start_xmit() handler and already
 458		 * checked the frozen bit.
 459		 */
 460		__netif_tx_lock(txq, cpu);
 461		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
 462		__netif_tx_unlock(txq);
 463	}
 464}
 465
 466void netif_tx_lock(struct net_device *dev)
 467{
 468	spin_lock(&dev->tx_global_lock);
 469	netif_freeze_queues(dev);
 470}
 471EXPORT_SYMBOL(netif_tx_lock);
 472
 473static void netif_unfreeze_queues(struct net_device *dev)
 474{
 475	unsigned int i;
 476
 477	for (i = 0; i < dev->num_tx_queues; i++) {
 478		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
 479
 480		/* No need to grab the _xmit_lock here.  If the
 481		 * queue is not stopped for another reason, we
 482		 * force a schedule.
 483		 */
 484		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
 485		netif_schedule_queue(txq);
 486	}
 487}
 488
 489void netif_tx_unlock(struct net_device *dev)
 490{
 491	netif_unfreeze_queues(dev);
 492	spin_unlock(&dev->tx_global_lock);
 493}
 494EXPORT_SYMBOL(netif_tx_unlock);
 495
 496static void dev_watchdog(struct timer_list *t)
 497{
 498	struct net_device *dev = from_timer(dev, t, watchdog_timer);
 499	bool release = true;
 500
 501	spin_lock(&dev->tx_global_lock);
 502	if (!qdisc_tx_is_noop(dev)) {
 503		if (netif_device_present(dev) &&
 504		    netif_running(dev) &&
 505		    netif_carrier_ok(dev)) {
 506			unsigned int timedout_ms = 0;
 507			unsigned int i;
 508			unsigned long trans_start;
 509			unsigned long oldest_start = jiffies;
 510
 511			for (i = 0; i < dev->num_tx_queues; i++) {
 512				struct netdev_queue *txq;
 513
 514				txq = netdev_get_tx_queue(dev, i);
 515				if (!netif_xmit_stopped(txq))
 516					continue;
 517
 518				/* Paired with WRITE_ONCE() + smp_mb...() in
 519				 * netdev_tx_sent_queue() and netif_tx_stop_queue().
 520				 */
 521				smp_mb();
 522				trans_start = READ_ONCE(txq->trans_start);
 523
 524				if (time_after(jiffies, trans_start + dev->watchdog_timeo)) {
 525					timedout_ms = jiffies_to_msecs(jiffies - trans_start);
 526					atomic_long_inc(&txq->trans_timeout);
 527					break;
 528				}
 529				if (time_after(oldest_start, trans_start))
 530					oldest_start = trans_start;
 531			}
 532
 533			if (unlikely(timedout_ms)) {
 534				trace_net_dev_xmit_timeout(dev, i);
 535				netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
 536					    raw_smp_processor_id(),
 537					    i, timedout_ms);
 538				netif_freeze_queues(dev);
 539				dev->netdev_ops->ndo_tx_timeout(dev, i);
 540				netif_unfreeze_queues(dev);
 541			}
 542			if (!mod_timer(&dev->watchdog_timer,
 543				       round_jiffies(oldest_start +
 544						     dev->watchdog_timeo)))
 545				release = false;
 546		}
 547	}
 548	spin_unlock(&dev->tx_global_lock);
 549
 550	if (release)
 551		netdev_put(dev, &dev->watchdog_dev_tracker);
 552}
 553
 554void __netdev_watchdog_up(struct net_device *dev)
 555{
 556	if (dev->netdev_ops->ndo_tx_timeout) {
 557		if (dev->watchdog_timeo <= 0)
 558			dev->watchdog_timeo = 5*HZ;
 559		if (!mod_timer(&dev->watchdog_timer,
 560			       round_jiffies(jiffies + dev->watchdog_timeo)))
 561			netdev_hold(dev, &dev->watchdog_dev_tracker,
 562				    GFP_ATOMIC);
 563	}
 564}
 565EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
 566
 567static void dev_watchdog_up(struct net_device *dev)
 568{
 569	__netdev_watchdog_up(dev);
 570}
 571
 572static void dev_watchdog_down(struct net_device *dev)
 573{
 574	netif_tx_lock_bh(dev);
 575	if (del_timer(&dev->watchdog_timer))
 576		netdev_put(dev, &dev->watchdog_dev_tracker);
 577	netif_tx_unlock_bh(dev);
 578}
 579
 580/**
 581 *	netif_carrier_on - set carrier
 582 *	@dev: network device
 583 *
 584 * Device has detected acquisition of carrier.
 585 */
 586void netif_carrier_on(struct net_device *dev)
 587{
 588	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
 589		if (dev->reg_state == NETREG_UNINITIALIZED)
 590			return;
 591		atomic_inc(&dev->carrier_up_count);
 592		linkwatch_fire_event(dev);
 593		if (netif_running(dev))
 594			__netdev_watchdog_up(dev);
 595	}
 596}
 597EXPORT_SYMBOL(netif_carrier_on);
 598
 599/**
 600 *	netif_carrier_off - clear carrier
 601 *	@dev: network device
 602 *
 603 * Device has detected loss of carrier.
 604 */
 605void netif_carrier_off(struct net_device *dev)
 606{
 607	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
 608		if (dev->reg_state == NETREG_UNINITIALIZED)
 609			return;
 610		atomic_inc(&dev->carrier_down_count);
 611		linkwatch_fire_event(dev);
 612	}
 613}
 614EXPORT_SYMBOL(netif_carrier_off);
 615
 616/**
 617 *	netif_carrier_event - report carrier state event
 618 *	@dev: network device
 619 *
 620 * Device has detected a carrier event but the carrier state wasn't changed.
 621 * Use in drivers when querying carrier state asynchronously, to avoid missing
 622 * events (link flaps) if link recovers before it's queried.
 623 */
 624void netif_carrier_event(struct net_device *dev)
 625{
 626	if (dev->reg_state == NETREG_UNINITIALIZED)
 627		return;
 628	atomic_inc(&dev->carrier_up_count);
 629	atomic_inc(&dev->carrier_down_count);
 630	linkwatch_fire_event(dev);
 631}
 632EXPORT_SYMBOL_GPL(netif_carrier_event);
 633
 634/* "NOOP" scheduler: the best scheduler, recommended for all interfaces
 635   under all circumstances. It is difficult to invent anything faster or
 636   cheaper.
 637 */
 638
 639static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
 640			struct sk_buff **to_free)
 641{
 642	dev_core_stats_tx_dropped_inc(skb->dev);
 643	__qdisc_drop(skb, to_free);
 644	return NET_XMIT_CN;
 645}
 646
 647static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
 648{
 649	return NULL;
 650}
 651
 652struct Qdisc_ops noop_qdisc_ops __read_mostly = {
 653	.id		=	"noop",
 654	.priv_size	=	0,
 655	.enqueue	=	noop_enqueue,
 656	.dequeue	=	noop_dequeue,
 657	.peek		=	noop_dequeue,
 658	.owner		=	THIS_MODULE,
 659};
 660
 661static struct netdev_queue noop_netdev_queue = {
 662	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
 663	RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
 664};
 665
 666struct Qdisc noop_qdisc = {
 667	.enqueue	=	noop_enqueue,
 668	.dequeue	=	noop_dequeue,
 669	.flags		=	TCQ_F_BUILTIN,
 670	.ops		=	&noop_qdisc_ops,
 
 671	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
 672	.dev_queue	=	&noop_netdev_queue,
 673	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
 674	.gso_skb = {
 675		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
 676		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
 677		.qlen = 0,
 678		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
 679	},
 680	.skb_bad_txq = {
 681		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
 682		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
 683		.qlen = 0,
 684		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
 685	},
 686	.owner = -1,
 687};
 688EXPORT_SYMBOL(noop_qdisc);
 689
 690static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
 691			struct netlink_ext_ack *extack)
 692{
 693	/* register_qdisc() assigns a default of noop_enqueue if unset,
 694	 * but __dev_queue_xmit() treats noqueue only as such
 695	 * if this is NULL - so clear it here. */
 696	qdisc->enqueue = NULL;
 697	return 0;
 698}
 699
 700struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
 701	.id		=	"noqueue",
 702	.priv_size	=	0,
 703	.init		=	noqueue_init,
 704	.enqueue	=	noop_enqueue,
 705	.dequeue	=	noop_dequeue,
 706	.peek		=	noop_dequeue,
 707	.owner		=	THIS_MODULE,
 708};
 709
 710const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
 711	1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712};
 713EXPORT_SYMBOL(sch_default_prio2band);
 714
 715/* 3-band FIFO queue: old style, but should be a bit faster than
 716   generic prio+fifo combination.
 717 */
 718
 719#define PFIFO_FAST_BANDS 3
 720
 721/*
 722 * Private data for a pfifo_fast scheduler containing:
 723 *	- rings for priority bands
 
 724 */
 725struct pfifo_fast_priv {
 726	struct skb_array q[PFIFO_FAST_BANDS];
 
 727};
 728
 729static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
 730					  int band)
 
 
 
 
 
 
 
 
 731{
 732	return &priv->q[band];
 733}
 734
 735static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
 736			      struct sk_buff **to_free)
 737{
 738	int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
 739	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 740	struct skb_array *q = band2list(priv, band);
 741	unsigned int pkt_len = qdisc_pkt_len(skb);
 742	int err;
 743
 744	err = skb_array_produce(q, skb);
 745
 746	if (unlikely(err)) {
 747		if (qdisc_is_percpu_stats(qdisc))
 748			return qdisc_drop_cpu(skb, qdisc, to_free);
 749		else
 750			return qdisc_drop(skb, qdisc, to_free);
 751	}
 752
 753	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
 754	return NET_XMIT_SUCCESS;
 755}
 756
 757static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
 758{
 759	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 760	struct sk_buff *skb = NULL;
 761	bool need_retry = true;
 762	int band;
 763
 764retry:
 765	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
 766		struct skb_array *q = band2list(priv, band);
 767
 768		if (__skb_array_empty(q))
 769			continue;
 770
 771		skb = __skb_array_consume(q);
 772	}
 773	if (likely(skb)) {
 774		qdisc_update_stats_at_dequeue(qdisc, skb);
 775	} else if (need_retry &&
 776		   READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
 777		/* Delay clearing the STATE_MISSED here to reduce
 778		 * the overhead of the second spin_trylock() in
 779		 * qdisc_run_begin() and __netif_schedule() calling
 780		 * in qdisc_run_end().
 781		 */
 782		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
 783		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
 784
 785		/* Make sure dequeuing happens after clearing
 786		 * STATE_MISSED.
 787		 */
 788		smp_mb__after_atomic();
 789
 790		need_retry = false;
 
 
 
 
 
 
 791
 792		goto retry;
 793	}
 794
 795	return skb;
 796}
 797
 798static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
 799{
 800	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 801	struct sk_buff *skb = NULL;
 802	int band;
 803
 804	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
 805		struct skb_array *q = band2list(priv, band);
 806
 807		skb = __skb_array_peek(q);
 808	}
 809
 810	return skb;
 811}
 812
 813static void pfifo_fast_reset(struct Qdisc *qdisc)
 814{
 815	int i, band;
 816	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 817
 818	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
 819		struct skb_array *q = band2list(priv, band);
 820		struct sk_buff *skb;
 821
 822		/* NULL ring is possible if destroy path is due to a failed
 823		 * skb_array_init() in pfifo_fast_init() case.
 824		 */
 825		if (!q->ring.queue)
 826			continue;
 827
 828		while ((skb = __skb_array_consume(q)) != NULL)
 829			kfree_skb(skb);
 830	}
 831
 832	if (qdisc_is_percpu_stats(qdisc)) {
 833		for_each_possible_cpu(i) {
 834			struct gnet_stats_queue *q;
 835
 836			q = per_cpu_ptr(qdisc->cpu_qstats, i);
 837			q->backlog = 0;
 838			q->qlen = 0;
 839		}
 840	}
 841}
 842
 843static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
 844{
 845	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
 846
 847	memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
 848	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
 849		goto nla_put_failure;
 850	return skb->len;
 851
 852nla_put_failure:
 853	return -1;
 854}
 855
 856static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
 857			   struct netlink_ext_ack *extack)
 858{
 859	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
 860	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
 861	int prio;
 
 862
 863	/* guard against zero length rings */
 864	if (!qlen)
 865		return -EINVAL;
 866
 867	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 868		struct skb_array *q = band2list(priv, prio);
 869		int err;
 870
 871		err = skb_array_init(q, qlen, GFP_KERNEL);
 872		if (err)
 873			return -ENOMEM;
 874	}
 875
 876	/* Can by-pass the queue discipline */
 877	qdisc->flags |= TCQ_F_CAN_BYPASS;
 878	return 0;
 879}
 880
 881static void pfifo_fast_destroy(struct Qdisc *sch)
 882{
 883	struct pfifo_fast_priv *priv = qdisc_priv(sch);
 884	int prio;
 885
 886	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 887		struct skb_array *q = band2list(priv, prio);
 888
 889		/* NULL ring is possible if destroy path is due to a failed
 890		 * skb_array_init() in pfifo_fast_init() case.
 891		 */
 892		if (!q->ring.queue)
 893			continue;
 894		/* Destroy ring but no need to kfree_skb because a call to
 895		 * pfifo_fast_reset() has already done that work.
 896		 */
 897		ptr_ring_cleanup(&q->ring, NULL);
 898	}
 899}
 900
 901static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
 902					  unsigned int new_len)
 903{
 904	struct pfifo_fast_priv *priv = qdisc_priv(sch);
 905	struct skb_array *bands[PFIFO_FAST_BANDS];
 906	int prio;
 907
 908	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
 909		struct skb_array *q = band2list(priv, prio);
 910
 911		bands[prio] = q;
 912	}
 913
 914	return skb_array_resize_multiple_bh(bands, PFIFO_FAST_BANDS, new_len,
 915					    GFP_KERNEL);
 916}
 917
 918struct Qdisc_ops pfifo_fast_ops __read_mostly = {
 919	.id		=	"pfifo_fast",
 920	.priv_size	=	sizeof(struct pfifo_fast_priv),
 921	.enqueue	=	pfifo_fast_enqueue,
 922	.dequeue	=	pfifo_fast_dequeue,
 923	.peek		=	pfifo_fast_peek,
 924	.init		=	pfifo_fast_init,
 925	.destroy	=	pfifo_fast_destroy,
 926	.reset		=	pfifo_fast_reset,
 927	.dump		=	pfifo_fast_dump,
 928	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
 929	.owner		=	THIS_MODULE,
 930	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
 931};
 932EXPORT_SYMBOL(pfifo_fast_ops);
 933
 934static struct lock_class_key qdisc_tx_busylock;
 935
 936struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
 937			  const struct Qdisc_ops *ops,
 938			  struct netlink_ext_ack *extack)
 939{
 
 940	struct Qdisc *sch;
 941	unsigned int size = sizeof(*sch) + ops->priv_size;
 942	int err = -ENOBUFS;
 943	struct net_device *dev;
 944
 945	if (!dev_queue) {
 946		NL_SET_ERR_MSG(extack, "No device queue given");
 947		err = -EINVAL;
 948		goto errout;
 949	}
 950
 951	dev = dev_queue->dev;
 952	sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
 953
 954	if (!sch)
 955		goto errout;
 956	__skb_queue_head_init(&sch->gso_skb);
 957	__skb_queue_head_init(&sch->skb_bad_txq);
 958	gnet_stats_basic_sync_init(&sch->bstats);
 959	lockdep_register_key(&sch->root_lock_key);
 960	spin_lock_init(&sch->q.lock);
 961	lockdep_set_class(&sch->q.lock, &sch->root_lock_key);
 962
 963	if (ops->static_flags & TCQ_F_CPUSTATS) {
 964		sch->cpu_bstats =
 965			netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
 966		if (!sch->cpu_bstats)
 967			goto errout1;
 968
 969		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
 970		if (!sch->cpu_qstats) {
 971			free_percpu(sch->cpu_bstats);
 972			goto errout1;
 973		}
 974	}
 
 
 975
 976	spin_lock_init(&sch->busylock);
 977	lockdep_set_class(&sch->busylock,
 978			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
 979
 980	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
 981	spin_lock_init(&sch->seqlock);
 982	lockdep_set_class(&sch->seqlock,
 983			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
 984
 985	sch->ops = ops;
 986	sch->flags = ops->static_flags;
 987	sch->enqueue = ops->enqueue;
 988	sch->dequeue = ops->dequeue;
 989	sch->dev_queue = dev_queue;
 990	sch->owner = -1;
 991	netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
 992	refcount_set(&sch->refcnt, 1);
 993
 994	return sch;
 995errout1:
 996	lockdep_unregister_key(&sch->root_lock_key);
 997	kfree(sch);
 998errout:
 999	return ERR_PTR(err);
1000}
1001
1002struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
1003				const struct Qdisc_ops *ops,
1004				unsigned int parentid,
1005				struct netlink_ext_ack *extack)
1006{
1007	struct Qdisc *sch;
1008
1009	if (!try_module_get(ops->owner)) {
1010		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
1011		return NULL;
1012	}
1013
1014	sch = qdisc_alloc(dev_queue, ops, extack);
1015	if (IS_ERR(sch)) {
1016		module_put(ops->owner);
1017		return NULL;
1018	}
1019	sch->parent = parentid;
1020
1021	if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1022		trace_qdisc_create(ops, dev_queue->dev, parentid);
1023		return sch;
1024	}
1025
1026	qdisc_put(sch);
 
1027	return NULL;
1028}
1029EXPORT_SYMBOL(qdisc_create_dflt);
1030
1031/* Under qdisc_lock(qdisc) and BH! */
1032
1033void qdisc_reset(struct Qdisc *qdisc)
1034{
1035	const struct Qdisc_ops *ops = qdisc->ops;
1036
1037	trace_qdisc_reset(qdisc);
1038
1039	if (ops->reset)
1040		ops->reset(qdisc);
1041
1042	__skb_queue_purge(&qdisc->gso_skb);
1043	__skb_queue_purge(&qdisc->skb_bad_txq);
1044
1045	qdisc->q.qlen = 0;
1046	qdisc->qstats.backlog = 0;
1047}
1048EXPORT_SYMBOL(qdisc_reset);
1049
1050void qdisc_free(struct Qdisc *qdisc)
1051{
1052	if (qdisc_is_percpu_stats(qdisc)) {
1053		free_percpu(qdisc->cpu_bstats);
1054		free_percpu(qdisc->cpu_qstats);
1055	}
1056
1057	kfree(qdisc);
1058}
 
1059
1060static void qdisc_free_cb(struct rcu_head *head)
1061{
1062	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1063
1064	qdisc_free(q);
1065}
1066
1067static void __qdisc_destroy(struct Qdisc *qdisc)
1068{
1069	const struct Qdisc_ops  *ops = qdisc->ops;
1070	struct net_device *dev = qdisc_dev(qdisc);
 
 
 
1071
1072#ifdef CONFIG_NET_SCHED
1073	qdisc_hash_del(qdisc);
1074
1075	qdisc_put_stab(rtnl_dereference(qdisc->stab));
1076#endif
1077	gen_kill_estimator(&qdisc->rate_est);
1078
1079	qdisc_reset(qdisc);
1080
1081
1082	if (ops->destroy)
1083		ops->destroy(qdisc);
1084
1085	lockdep_unregister_key(&qdisc->root_lock_key);
1086	module_put(ops->owner);
1087	netdev_put(dev, &qdisc->dev_tracker);
1088
1089	trace_qdisc_destroy(qdisc);
1090
1091	call_rcu(&qdisc->rcu, qdisc_free_cb);
1092}
1093
1094void qdisc_destroy(struct Qdisc *qdisc)
1095{
1096	if (qdisc->flags & TCQ_F_BUILTIN)
1097		return;
1098
1099	__qdisc_destroy(qdisc);
1100}
1101
1102void qdisc_put(struct Qdisc *qdisc)
1103{
1104	if (!qdisc)
1105		return;
1106
1107	if (qdisc->flags & TCQ_F_BUILTIN ||
1108	    !refcount_dec_and_test(&qdisc->refcnt))
1109		return;
1110
1111	__qdisc_destroy(qdisc);
1112}
1113EXPORT_SYMBOL(qdisc_put);
1114
1115/* Version of qdisc_put() that is called with rtnl mutex unlocked.
1116 * Intended to be used as optimization, this function only takes rtnl lock if
1117 * qdisc reference counter reached zero.
1118 */
1119
1120void qdisc_put_unlocked(struct Qdisc *qdisc)
1121{
1122	if (qdisc->flags & TCQ_F_BUILTIN ||
1123	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1124		return;
1125
1126	__qdisc_destroy(qdisc);
1127	rtnl_unlock();
 
 
 
 
1128}
1129EXPORT_SYMBOL(qdisc_put_unlocked);
1130
1131/* Attach toplevel qdisc to device queue. */
1132struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1133			      struct Qdisc *qdisc)
1134{
1135	struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1136	spinlock_t *root_lock;
1137
1138	root_lock = qdisc_lock(oqdisc);
1139	spin_lock_bh(root_lock);
1140
 
 
 
 
1141	/* ... and graft new one */
1142	if (qdisc == NULL)
1143		qdisc = &noop_qdisc;
1144	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1145	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1146
1147	spin_unlock_bh(root_lock);
1148
1149	return oqdisc;
1150}
1151EXPORT_SYMBOL(dev_graft_qdisc);
1152
1153static void shutdown_scheduler_queue(struct net_device *dev,
1154				     struct netdev_queue *dev_queue,
1155				     void *_qdisc_default)
1156{
1157	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1158	struct Qdisc *qdisc_default = _qdisc_default;
1159
1160	if (qdisc) {
1161		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1162		rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1163
1164		qdisc_put(qdisc);
1165	}
1166}
1167
1168static void attach_one_default_qdisc(struct net_device *dev,
1169				     struct netdev_queue *dev_queue,
1170				     void *_unused)
1171{
1172	struct Qdisc *qdisc;
1173	const struct Qdisc_ops *ops = default_qdisc_ops;
1174
1175	if (dev->priv_flags & IFF_NO_QUEUE)
1176		ops = &noqueue_qdisc_ops;
1177	else if(dev->type == ARPHRD_CAN)
1178		ops = &pfifo_fast_ops;
1179
1180	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1181	if (!qdisc)
1182		return;
1183
1184	if (!netif_is_multiqueue(dev))
1185		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1186	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1187}
1188
1189static void attach_default_qdiscs(struct net_device *dev)
1190{
1191	struct netdev_queue *txq;
1192	struct Qdisc *qdisc;
1193
1194	txq = netdev_get_tx_queue(dev, 0);
1195
1196	if (!netif_is_multiqueue(dev) ||
1197	    dev->priv_flags & IFF_NO_QUEUE) {
1198		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1199		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1200		rcu_assign_pointer(dev->qdisc, qdisc);
1201		qdisc_refcount_inc(qdisc);
1202	} else {
1203		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1204		if (qdisc) {
1205			rcu_assign_pointer(dev->qdisc, qdisc);
1206			qdisc->ops->attach(qdisc);
1207		}
1208	}
1209	qdisc = rtnl_dereference(dev->qdisc);
1210
1211	/* Detect default qdisc setup/init failed and fallback to "noqueue" */
1212	if (qdisc == &noop_qdisc) {
1213		netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1214			    default_qdisc_ops->id, noqueue_qdisc_ops.id);
1215		netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1216		dev->priv_flags |= IFF_NO_QUEUE;
1217		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1218		qdisc = rtnl_dereference(txq->qdisc_sleeping);
1219		rcu_assign_pointer(dev->qdisc, qdisc);
1220		qdisc_refcount_inc(qdisc);
1221		dev->priv_flags ^= IFF_NO_QUEUE;
1222	}
1223
1224#ifdef CONFIG_NET_SCHED
1225	if (qdisc != &noop_qdisc)
1226		qdisc_hash_add(qdisc, false);
1227#endif
1228}
1229
1230static void transition_one_qdisc(struct net_device *dev,
1231				 struct netdev_queue *dev_queue,
1232				 void *_need_watchdog)
1233{
1234	struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1235	int *need_watchdog_p = _need_watchdog;
1236
1237	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1238		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1239
1240	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1241	if (need_watchdog_p) {
1242		WRITE_ONCE(dev_queue->trans_start, 0);
1243		*need_watchdog_p = 1;
1244	}
1245}
1246
1247void dev_activate(struct net_device *dev)
1248{
1249	int need_watchdog;
1250
1251	/* No queueing discipline is attached to device;
1252	 * create default one for devices, which need queueing
1253	 * and noqueue_qdisc for virtual interfaces
1254	 */
1255
1256	if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1257		attach_default_qdiscs(dev);
1258
1259	if (!netif_carrier_ok(dev))
1260		/* Delay activation until next carrier-on event */
1261		return;
1262
1263	need_watchdog = 0;
1264	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1265	if (dev_ingress_queue(dev))
1266		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1267
1268	if (need_watchdog) {
1269		netif_trans_update(dev);
1270		dev_watchdog_up(dev);
1271	}
1272}
1273EXPORT_SYMBOL(dev_activate);
1274
1275static void qdisc_deactivate(struct Qdisc *qdisc)
1276{
1277	if (qdisc->flags & TCQ_F_BUILTIN)
1278		return;
1279
1280	set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1281}
1282
1283static void dev_deactivate_queue(struct net_device *dev,
1284				 struct netdev_queue *dev_queue,
1285				 void *_qdisc_default)
1286{
1287	struct Qdisc *qdisc_default = _qdisc_default;
1288	struct Qdisc *qdisc;
1289
1290	qdisc = rtnl_dereference(dev_queue->qdisc);
1291	if (qdisc) {
1292		qdisc_deactivate(qdisc);
1293		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1294	}
1295}
1296
1297static void dev_reset_queue(struct net_device *dev,
1298			    struct netdev_queue *dev_queue,
1299			    void *_unused)
1300{
1301	struct Qdisc *qdisc;
1302	bool nolock;
1303
1304	qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1305	if (!qdisc)
1306		return;
1307
1308	nolock = qdisc->flags & TCQ_F_NOLOCK;
 
1309
1310	if (nolock)
1311		spin_lock_bh(&qdisc->seqlock);
1312	spin_lock_bh(qdisc_lock(qdisc));
1313
1314	qdisc_reset(qdisc);
1315
1316	spin_unlock_bh(qdisc_lock(qdisc));
1317	if (nolock) {
1318		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1319		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1320		spin_unlock_bh(&qdisc->seqlock);
1321	}
1322}
1323
1324static bool some_qdisc_is_busy(struct net_device *dev)
1325{
1326	unsigned int i;
1327
1328	for (i = 0; i < dev->num_tx_queues; i++) {
1329		struct netdev_queue *dev_queue;
1330		spinlock_t *root_lock;
1331		struct Qdisc *q;
1332		int val;
1333
1334		dev_queue = netdev_get_tx_queue(dev, i);
1335		q = rtnl_dereference(dev_queue->qdisc_sleeping);
1336
1337		root_lock = qdisc_lock(q);
 
1338		spin_lock_bh(root_lock);
1339
1340		val = (qdisc_is_running(q) ||
1341		       test_bit(__QDISC_STATE_SCHED, &q->state));
1342
1343		spin_unlock_bh(root_lock);
1344
1345		if (val)
1346			return true;
1347	}
1348	return false;
1349}
1350
1351/**
1352 * 	dev_deactivate_many - deactivate transmissions on several devices
1353 * 	@head: list of devices to deactivate
1354 *
1355 *	This function returns only when all outstanding transmissions
1356 *	have completed, unless all devices are in dismantle phase.
1357 */
1358void dev_deactivate_many(struct list_head *head)
1359{
1360	struct net_device *dev;
 
1361
1362	list_for_each_entry(dev, head, close_list) {
1363		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1364					 &noop_qdisc);
1365		if (dev_ingress_queue(dev))
1366			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1367					     &noop_qdisc);
1368
1369		dev_watchdog_down(dev);
 
1370	}
1371
1372	/* Wait for outstanding qdisc-less dev_queue_xmit calls or
1373	 * outstanding qdisc enqueuing calls.
1374	 * This is avoided if all devices are in dismantle phase :
1375	 * Caller will call synchronize_net() for us
1376	 */
1377	synchronize_net();
1378
1379	list_for_each_entry(dev, head, close_list) {
1380		netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1381
1382		if (dev_ingress_queue(dev))
1383			dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1384	}
1385
1386	/* Wait for outstanding qdisc_run calls. */
1387	list_for_each_entry(dev, head, close_list) {
1388		while (some_qdisc_is_busy(dev)) {
1389			/* wait_event() would avoid this sleep-loop but would
1390			 * require expensive checks in the fast paths of packet
1391			 * processing which isn't worth it.
1392			 */
1393			schedule_timeout_uninterruptible(1);
1394		}
1395	}
1396}
1397
1398void dev_deactivate(struct net_device *dev)
1399{
1400	LIST_HEAD(single);
1401
1402	list_add(&dev->close_list, &single);
1403	dev_deactivate_many(&single);
1404	list_del(&single);
1405}
1406EXPORT_SYMBOL(dev_deactivate);
1407
1408static int qdisc_change_tx_queue_len(struct net_device *dev,
1409				     struct netdev_queue *dev_queue)
1410{
1411	struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1412	const struct Qdisc_ops *ops = qdisc->ops;
1413
1414	if (ops->change_tx_queue_len)
1415		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1416	return 0;
1417}
1418
1419void dev_qdisc_change_real_num_tx(struct net_device *dev,
1420				  unsigned int new_real_tx)
1421{
1422	struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1423
1424	if (qdisc->ops->change_real_num_tx)
1425		qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1426}
1427
1428void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1429{
1430#ifdef CONFIG_NET_SCHED
1431	struct net_device *dev = qdisc_dev(sch);
1432	struct Qdisc *qdisc;
1433	unsigned int i;
1434
1435	for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1436		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1437		/* Only update the default qdiscs we created,
1438		 * qdiscs with handles are always hashed.
1439		 */
1440		if (qdisc != &noop_qdisc && !qdisc->handle)
1441			qdisc_hash_del(qdisc);
1442	}
1443	for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1444		qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1445		if (qdisc != &noop_qdisc && !qdisc->handle)
1446			qdisc_hash_add(qdisc, false);
1447	}
1448#endif
1449}
1450EXPORT_SYMBOL(mq_change_real_num_tx);
1451
1452int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1453{
1454	bool up = dev->flags & IFF_UP;
1455	unsigned int i;
1456	int ret = 0;
1457
1458	if (up)
1459		dev_deactivate(dev);
1460
1461	for (i = 0; i < dev->num_tx_queues; i++) {
1462		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1463
1464		/* TODO: revert changes on a partial failure */
1465		if (ret)
1466			break;
1467	}
1468
1469	if (up)
1470		dev_activate(dev);
1471	return ret;
1472}
1473
1474static void dev_init_scheduler_queue(struct net_device *dev,
1475				     struct netdev_queue *dev_queue,
1476				     void *_qdisc)
1477{
1478	struct Qdisc *qdisc = _qdisc;
1479
1480	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1481	rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1482}
1483
1484void dev_init_scheduler(struct net_device *dev)
1485{
1486	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1487	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1488	if (dev_ingress_queue(dev))
1489		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1490
1491	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492}
1493
1494void dev_shutdown(struct net_device *dev)
1495{
1496	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1497	if (dev_ingress_queue(dev))
1498		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1499	qdisc_put(rtnl_dereference(dev->qdisc));
1500	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1501
1502	WARN_ON(timer_pending(&dev->watchdog_timer));
1503}
1504
1505/**
1506 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1507 * @rate:   Rate to compute reciprocal division values of
1508 * @mult:   Multiplier for reciprocal division
1509 * @shift:  Shift for reciprocal division
1510 *
1511 * The multiplier and shift for reciprocal division by rate are stored
1512 * in mult and shift.
1513 *
1514 * The deal here is to replace a divide by a reciprocal one
1515 * in fast path (a reciprocal divide is a multiply and a shift)
1516 *
1517 * Normal formula would be :
1518 *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1519 *
1520 * We compute mult/shift to use instead :
1521 *  time_in_ns = (len * mult) >> shift;
1522 *
1523 * We try to get the highest possible mult value for accuracy,
1524 * but have to make sure no overflows will ever happen.
1525 *
1526 * reciprocal_value() is not used here it doesn't handle 64-bit values.
1527 */
1528static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1529{
1530	u64 factor = NSEC_PER_SEC;
1531
1532	*mult = 1;
1533	*shift = 0;
1534
1535	if (rate <= 0)
1536		return;
1537
1538	for (;;) {
1539		*mult = div64_u64(factor, rate);
1540		if (*mult & (1U << 31) || factor & (1ULL << 63))
1541			break;
1542		factor <<= 1;
1543		(*shift)++;
1544	}
1545}
1546
1547void psched_ratecfg_precompute(struct psched_ratecfg *r,
1548			       const struct tc_ratespec *conf,
1549			       u64 rate64)
1550{
1551	memset(r, 0, sizeof(*r));
1552	r->overhead = conf->overhead;
1553	r->mpu = conf->mpu;
1554	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1555	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1556	psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1557}
1558EXPORT_SYMBOL(psched_ratecfg_precompute);
1559
1560void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1561{
1562	r->rate_pkts_ps = pktrate64;
1563	psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1564}
1565EXPORT_SYMBOL(psched_ppscfg_precompute);
1566
1567void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1568			  struct tcf_proto *tp_head)
1569{
1570	/* Protected with chain0->filter_chain_lock.
1571	 * Can't access chain directly because tp_head can be NULL.
1572	 */
1573	struct mini_Qdisc *miniq_old =
1574		rcu_dereference_protected(*miniqp->p_miniq, 1);
1575	struct mini_Qdisc *miniq;
1576
1577	if (!tp_head) {
1578		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1579	} else {
1580		miniq = miniq_old != &miniqp->miniq1 ?
1581			&miniqp->miniq1 : &miniqp->miniq2;
1582
1583		/* We need to make sure that readers won't see the miniq
1584		 * we are about to modify. So ensure that at least one RCU
1585		 * grace period has elapsed since the miniq was made
1586		 * inactive.
1587		 */
1588		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1589			cond_synchronize_rcu(miniq->rcu_state);
1590		else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1591			synchronize_rcu_expedited();
1592
1593		miniq->filter_list = tp_head;
1594		rcu_assign_pointer(*miniqp->p_miniq, miniq);
1595	}
1596
1597	if (miniq_old)
1598		/* This is counterpart of the rcu sync above. We need to
1599		 * block potential new user of miniq_old until all readers
1600		 * are not seeing it.
1601		 */
1602		miniq_old->rcu_state = start_poll_synchronize_rcu();
1603}
1604EXPORT_SYMBOL(mini_qdisc_pair_swap);
1605
1606void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1607				struct tcf_block *block)
1608{
1609	miniqp->miniq1.block = block;
1610	miniqp->miniq2.block = block;
1611}
1612EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1613
1614void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1615			  struct mini_Qdisc __rcu **p_miniq)
1616{
1617	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1618	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1619	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1620	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1621	miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1622	miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1623	miniqp->p_miniq = p_miniq;
1624}
1625EXPORT_SYMBOL(mini_qdisc_pair_init);
v3.15
 
  1/*
  2 * net/sched/sch_generic.c	Generic packet scheduler routines.
  3 *
  4 *		This program is free software; you can redistribute it and/or
  5 *		modify it under the terms of the GNU General Public License
  6 *		as published by the Free Software Foundation; either version
  7 *		2 of the License, or (at your option) any later version.
  8 *
  9 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 10 *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
 11 *              - Ingress support
 12 */
 13
 14#include <linux/bitops.h>
 15#include <linux/module.h>
 16#include <linux/types.h>
 17#include <linux/kernel.h>
 18#include <linux/sched.h>
 19#include <linux/string.h>
 20#include <linux/errno.h>
 21#include <linux/netdevice.h>
 22#include <linux/skbuff.h>
 23#include <linux/rtnetlink.h>
 24#include <linux/init.h>
 25#include <linux/rcupdate.h>
 26#include <linux/list.h>
 27#include <linux/slab.h>
 28#include <linux/if_vlan.h>
 
 
 29#include <net/sch_generic.h>
 30#include <net/pkt_sched.h>
 31#include <net/dst.h>
 
 
 
 
 32
 33/* Qdisc to use by default */
 34const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
 35EXPORT_SYMBOL(default_qdisc_ops);
 36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37/* Main transmission queue. */
 38
 39/* Modifications to data participating in scheduling must be protected with
 40 * qdisc_lock(qdisc) spinlock.
 41 *
 42 * The idea is the following:
 43 * - enqueue, dequeue are serialized via qdisc root lock
 44 * - ingress filtering is also serialized via qdisc root lock
 45 * - updates to tree and tree walking are only done under the rtnl mutex.
 46 */
 47
 48static inline int dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49{
 50	skb_dst_force(skb);
 51	q->gso_skb = skb;
 52	q->qstats.requeues++;
 53	q->q.qlen++;	/* it's still part of the queue */
 54	__netif_schedule(q);
 55
 56	return 0;
 57}
 58
 59static inline struct sk_buff *dequeue_skb(struct Qdisc *q)
 
 60{
 61	struct sk_buff *skb = q->gso_skb;
 62	const struct netdev_queue *txq = q->dev_queue;
 
 
 
 
 
 
 63
 64	if (unlikely(skb)) {
 65		/* check the reason of requeuing without tx lock first */
 66		txq = netdev_get_tx_queue(txq->dev, skb_get_queue_mapping(skb));
 67		if (!netif_xmit_frozen_or_stopped(txq)) {
 68			q->gso_skb = NULL;
 69			q->q.qlen--;
 70		} else
 71			skb = NULL;
 72	} else {
 73		if (!(q->flags & TCQ_F_ONETXQUEUE) || !netif_xmit_frozen_or_stopped(txq))
 74			skb = q->dequeue(q);
 75	}
 76
 77	return skb;
 
 78}
 79
 80static inline int handle_dev_cpu_collision(struct sk_buff *skb,
 81					   struct netdev_queue *dev_queue,
 82					   struct Qdisc *q)
 83{
 84	int ret;
 85
 86	if (unlikely(dev_queue->xmit_lock_owner == smp_processor_id())) {
 87		/*
 88		 * Same CPU holding the lock. It may be a transient
 89		 * configuration error, when hard_start_xmit() recurses. We
 90		 * detect it by checking xmit owner and drop the packet when
 91		 * deadloop is detected. Return OK to try the next skb.
 92		 */
 93		kfree_skb(skb);
 94		net_warn_ratelimited("Dead loop on netdevice %s, fix it urgently!\n",
 95				     dev_queue->dev->name);
 96		ret = qdisc_qlen(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 97	} else {
 98		/*
 99		 * Another cpu is holding lock, requeue & delay xmits for
100		 * some time.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101		 */
102		__this_cpu_inc(softnet_data.cpu_collision);
103		ret = dev_requeue_skb(skb, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104	}
105
106	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107}
108
109/*
110 * Transmit one skb, and handle the return status as required. Holding the
111 * __QDISC_STATE_RUNNING bit guarantees that only one CPU can execute this
112 * function.
113 *
114 * Returns to the caller:
115 *				0  - queue is empty or throttled.
116 *				>0 - queue is not empty.
117 */
118int sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
119		    struct net_device *dev, struct netdev_queue *txq,
120		    spinlock_t *root_lock)
121{
122	int ret = NETDEV_TX_BUSY;
 
123
124	/* And release qdisc */
125	spin_unlock(root_lock);
 
126
127	HARD_TX_LOCK(dev, txq, smp_processor_id());
128	if (!netif_xmit_frozen_or_stopped(txq))
129		ret = dev_hard_start_xmit(skb, dev, txq);
 
 
 
 
 
130
131	HARD_TX_UNLOCK(dev, txq);
 
 
 
132
133	spin_lock(root_lock);
 
 
 
 
 
134
135	if (dev_xmit_complete(ret)) {
136		/* Driver sent out skb successfully or skb was consumed */
137		ret = qdisc_qlen(q);
138	} else if (ret == NETDEV_TX_LOCKED) {
139		/* Driver try lock failed */
140		ret = handle_dev_cpu_collision(skb, txq, q);
141	} else {
 
 
 
 
 
 
 
 
 
142		/* Driver returned NETDEV_TX_BUSY - requeue skb */
143		if (unlikely(ret != NETDEV_TX_BUSY))
144			net_warn_ratelimited("BUG %s code %d qlen %d\n",
145					     dev->name, ret, q->q.qlen);
146
147		ret = dev_requeue_skb(skb, q);
 
148	}
149
150	if (ret && netif_xmit_frozen_or_stopped(txq))
151		ret = 0;
152
153	return ret;
154}
155
156/*
157 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
158 *
159 * __QDISC_STATE_RUNNING guarantees only one CPU can process
160 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
161 * this queue.
162 *
163 *  netif_tx_lock serializes accesses to device driver.
164 *
165 *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
166 *  if one is grabbed, another must be free.
167 *
168 * Note, that this procedure can be called by a watchdog timer
169 *
170 * Returns to the caller:
171 *				0  - queue is empty or throttled.
172 *				>0 - queue is not empty.
173 *
174 */
175static inline int qdisc_restart(struct Qdisc *q)
176{
 
177	struct netdev_queue *txq;
178	struct net_device *dev;
179	spinlock_t *root_lock;
180	struct sk_buff *skb;
 
181
182	/* Dequeue packet */
183	skb = dequeue_skb(q);
184	if (unlikely(!skb))
185		return 0;
186	WARN_ON_ONCE(skb_dst_is_noref(skb));
187	root_lock = qdisc_lock(q);
 
 
188	dev = qdisc_dev(q);
189	txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
190
191	return sch_direct_xmit(skb, q, dev, txq, root_lock);
192}
193
194void __qdisc_run(struct Qdisc *q)
195{
196	int quota = weight_p;
 
 
 
 
 
 
 
 
 
197
198	while (qdisc_restart(q)) {
199		/*
200		 * Ordered by possible occurrence: Postpone processing if
201		 * 1. we've exceeded packet quota
202		 * 2. another process needs the CPU;
203		 */
204		if (--quota <= 0 || need_resched()) {
205			__netif_schedule(q);
206			break;
207		}
208	}
209
210	qdisc_run_end(q);
211}
212
213unsigned long dev_trans_start(struct net_device *dev)
214{
215	unsigned long val, res;
 
216	unsigned int i;
217
218	if (is_vlan_dev(dev))
219		dev = vlan_dev_real_dev(dev);
220	res = dev->trans_start;
221	for (i = 0; i < dev->num_tx_queues; i++) {
222		val = netdev_get_tx_queue(dev, i)->trans_start;
223		if (val && time_after(val, res))
224			res = val;
225	}
226	dev->trans_start = res;
227
228	return res;
229}
230EXPORT_SYMBOL(dev_trans_start);
231
232static void dev_watchdog(unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233{
234	struct net_device *dev = (struct net_device *)arg;
 
 
 
235
236	netif_tx_lock(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237	if (!qdisc_tx_is_noop(dev)) {
238		if (netif_device_present(dev) &&
239		    netif_running(dev) &&
240		    netif_carrier_ok(dev)) {
241			int some_queue_timedout = 0;
242			unsigned int i;
243			unsigned long trans_start;
 
244
245			for (i = 0; i < dev->num_tx_queues; i++) {
246				struct netdev_queue *txq;
247
248				txq = netdev_get_tx_queue(dev, i);
249				/*
250				 * old device drivers set dev->trans_start
 
 
 
251				 */
252				trans_start = txq->trans_start ? : dev->trans_start;
253				if (netif_xmit_stopped(txq) &&
254				    time_after(jiffies, (trans_start +
255							 dev->watchdog_timeo))) {
256					some_queue_timedout = 1;
257					txq->trans_timeout++;
258					break;
259				}
 
 
260			}
261
262			if (some_queue_timedout) {
263				WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n",
264				       dev->name, netdev_drivername(dev), i);
265				dev->netdev_ops->ndo_tx_timeout(dev);
 
 
 
 
266			}
267			if (!mod_timer(&dev->watchdog_timer,
268				       round_jiffies(jiffies +
269						     dev->watchdog_timeo)))
270				dev_hold(dev);
271		}
272	}
273	netif_tx_unlock(dev);
274
275	dev_put(dev);
 
276}
277
278void __netdev_watchdog_up(struct net_device *dev)
279{
280	if (dev->netdev_ops->ndo_tx_timeout) {
281		if (dev->watchdog_timeo <= 0)
282			dev->watchdog_timeo = 5*HZ;
283		if (!mod_timer(&dev->watchdog_timer,
284			       round_jiffies(jiffies + dev->watchdog_timeo)))
285			dev_hold(dev);
 
286	}
287}
 
288
289static void dev_watchdog_up(struct net_device *dev)
290{
291	__netdev_watchdog_up(dev);
292}
293
294static void dev_watchdog_down(struct net_device *dev)
295{
296	netif_tx_lock_bh(dev);
297	if (del_timer(&dev->watchdog_timer))
298		dev_put(dev);
299	netif_tx_unlock_bh(dev);
300}
301
302/**
303 *	netif_carrier_on - set carrier
304 *	@dev: network device
305 *
306 * Device has detected that carrier.
307 */
308void netif_carrier_on(struct net_device *dev)
309{
310	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
311		if (dev->reg_state == NETREG_UNINITIALIZED)
312			return;
313		atomic_inc(&dev->carrier_changes);
314		linkwatch_fire_event(dev);
315		if (netif_running(dev))
316			__netdev_watchdog_up(dev);
317	}
318}
319EXPORT_SYMBOL(netif_carrier_on);
320
321/**
322 *	netif_carrier_off - clear carrier
323 *	@dev: network device
324 *
325 * Device has detected loss of carrier.
326 */
327void netif_carrier_off(struct net_device *dev)
328{
329	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
330		if (dev->reg_state == NETREG_UNINITIALIZED)
331			return;
332		atomic_inc(&dev->carrier_changes);
333		linkwatch_fire_event(dev);
334	}
335}
336EXPORT_SYMBOL(netif_carrier_off);
337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338/* "NOOP" scheduler: the best scheduler, recommended for all interfaces
339   under all circumstances. It is difficult to invent anything faster or
340   cheaper.
341 */
342
343static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc)
 
344{
345	kfree_skb(skb);
 
346	return NET_XMIT_CN;
347}
348
349static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
350{
351	return NULL;
352}
353
354struct Qdisc_ops noop_qdisc_ops __read_mostly = {
355	.id		=	"noop",
356	.priv_size	=	0,
357	.enqueue	=	noop_enqueue,
358	.dequeue	=	noop_dequeue,
359	.peek		=	noop_dequeue,
360	.owner		=	THIS_MODULE,
361};
362
363static struct netdev_queue noop_netdev_queue = {
364	.qdisc		=	&noop_qdisc,
365	.qdisc_sleeping	=	&noop_qdisc,
366};
367
368struct Qdisc noop_qdisc = {
369	.enqueue	=	noop_enqueue,
370	.dequeue	=	noop_dequeue,
371	.flags		=	TCQ_F_BUILTIN,
372	.ops		=	&noop_qdisc_ops,
373	.list		=	LIST_HEAD_INIT(noop_qdisc.list),
374	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
375	.dev_queue	=	&noop_netdev_queue,
376	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
 
 
 
 
 
 
 
 
 
 
 
 
 
377};
378EXPORT_SYMBOL(noop_qdisc);
379
380static struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
 
 
 
 
 
 
 
 
 
 
381	.id		=	"noqueue",
382	.priv_size	=	0,
 
383	.enqueue	=	noop_enqueue,
384	.dequeue	=	noop_dequeue,
385	.peek		=	noop_dequeue,
386	.owner		=	THIS_MODULE,
387};
388
389static struct Qdisc noqueue_qdisc;
390static struct netdev_queue noqueue_netdev_queue = {
391	.qdisc		=	&noqueue_qdisc,
392	.qdisc_sleeping	=	&noqueue_qdisc,
393};
394
395static struct Qdisc noqueue_qdisc = {
396	.enqueue	=	NULL,
397	.dequeue	=	noop_dequeue,
398	.flags		=	TCQ_F_BUILTIN,
399	.ops		=	&noqueue_qdisc_ops,
400	.list		=	LIST_HEAD_INIT(noqueue_qdisc.list),
401	.q.lock		=	__SPIN_LOCK_UNLOCKED(noqueue_qdisc.q.lock),
402	.dev_queue	=	&noqueue_netdev_queue,
403	.busylock	=	__SPIN_LOCK_UNLOCKED(noqueue_qdisc.busylock),
404};
405
406
407static const u8 prio2band[TC_PRIO_MAX + 1] = {
408	1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
409};
 
410
411/* 3-band FIFO queue: old style, but should be a bit faster than
412   generic prio+fifo combination.
413 */
414
415#define PFIFO_FAST_BANDS 3
416
417/*
418 * Private data for a pfifo_fast scheduler containing:
419 * 	- queues for the three band
420 * 	- bitmap indicating which of the bands contain skbs
421 */
422struct pfifo_fast_priv {
423	u32 bitmap;
424	struct sk_buff_head q[PFIFO_FAST_BANDS];
425};
426
427/*
428 * Convert a bitmap to the first band number where an skb is queued, where:
429 * 	bitmap=0 means there are no skbs on any band.
430 * 	bitmap=1 means there is an skb on band 0.
431 *	bitmap=7 means there are skbs on all 3 bands, etc.
432 */
433static const int bitmap2band[] = {-1, 0, 1, 0, 2, 0, 1, 0};
434
435static inline struct sk_buff_head *band2list(struct pfifo_fast_priv *priv,
436					     int band)
437{
438	return priv->q + band;
439}
440
441static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc)
 
442{
443	if (skb_queue_len(&qdisc->q) < qdisc_dev(qdisc)->tx_queue_len) {
444		int band = prio2band[skb->priority & TC_PRIO_MAX];
445		struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
446		struct sk_buff_head *list = band2list(priv, band);
 
447
448		priv->bitmap |= (1 << band);
449		qdisc->q.qlen++;
450		return __qdisc_enqueue_tail(skb, qdisc, list);
 
 
 
 
451	}
452
453	return qdisc_drop(skb, qdisc);
 
454}
455
456static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
457{
458	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
459	int band = bitmap2band[priv->bitmap];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460
461	if (likely(band >= 0)) {
462		struct sk_buff_head *list = band2list(priv, band);
463		struct sk_buff *skb = __qdisc_dequeue_head(qdisc, list);
464
465		qdisc->q.qlen--;
466		if (skb_queue_empty(list))
467			priv->bitmap &= ~(1 << band);
468
469		return skb;
470	}
471
472	return NULL;
473}
474
475static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
476{
477	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
478	int band = bitmap2band[priv->bitmap];
 
479
480	if (band >= 0) {
481		struct sk_buff_head *list = band2list(priv, band);
482
483		return skb_peek(list);
484	}
485
486	return NULL;
487}
488
489static void pfifo_fast_reset(struct Qdisc *qdisc)
490{
491	int prio;
492	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
493
494	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++)
495		__qdisc_reset_queue(qdisc, band2list(priv, prio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496
497	priv->bitmap = 0;
498	qdisc->qstats.backlog = 0;
499	qdisc->q.qlen = 0;
 
 
500}
501
502static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
503{
504	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
505
506	memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
507	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
508		goto nla_put_failure;
509	return skb->len;
510
511nla_put_failure:
512	return -1;
513}
514
515static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt)
 
516{
 
 
517	int prio;
518	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
519
520	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++)
521		skb_queue_head_init(band2list(priv, prio));
 
 
 
 
 
 
 
 
 
 
522
523	/* Can by-pass the queue discipline */
524	qdisc->flags |= TCQ_F_CAN_BYPASS;
525	return 0;
526}
527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528struct Qdisc_ops pfifo_fast_ops __read_mostly = {
529	.id		=	"pfifo_fast",
530	.priv_size	=	sizeof(struct pfifo_fast_priv),
531	.enqueue	=	pfifo_fast_enqueue,
532	.dequeue	=	pfifo_fast_dequeue,
533	.peek		=	pfifo_fast_peek,
534	.init		=	pfifo_fast_init,
 
535	.reset		=	pfifo_fast_reset,
536	.dump		=	pfifo_fast_dump,
 
537	.owner		=	THIS_MODULE,
 
538};
 
539
540static struct lock_class_key qdisc_tx_busylock;
541
542struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
543			  const struct Qdisc_ops *ops)
 
544{
545	void *p;
546	struct Qdisc *sch;
547	unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size;
548	int err = -ENOBUFS;
549	struct net_device *dev = dev_queue->dev;
 
 
 
 
 
 
550
551	p = kzalloc_node(size, GFP_KERNEL,
552			 netdev_queue_numa_node_read(dev_queue));
553
554	if (!p)
555		goto errout;
556	sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
557	/* if we got non aligned memory, ask more and do alignment ourself */
558	if (sch != p) {
559		kfree(p);
560		p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL,
561				 netdev_queue_numa_node_read(dev_queue));
562		if (!p)
563			goto errout;
564		sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
565		sch->padded = (char *) sch - (char *) p;
 
 
 
 
 
 
 
 
566	}
567	INIT_LIST_HEAD(&sch->list);
568	skb_queue_head_init(&sch->q);
569
570	spin_lock_init(&sch->busylock);
571	lockdep_set_class(&sch->busylock,
572			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
573
 
 
 
 
 
574	sch->ops = ops;
 
575	sch->enqueue = ops->enqueue;
576	sch->dequeue = ops->dequeue;
577	sch->dev_queue = dev_queue;
578	dev_hold(dev);
579	atomic_set(&sch->refcnt, 1);
 
580
581	return sch;
 
 
 
582errout:
583	return ERR_PTR(err);
584}
585
586struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
587				const struct Qdisc_ops *ops,
588				unsigned int parentid)
 
589{
590	struct Qdisc *sch;
591
592	if (!try_module_get(ops->owner))
593		goto errout;
 
 
594
595	sch = qdisc_alloc(dev_queue, ops);
596	if (IS_ERR(sch))
597		goto errout;
 
 
598	sch->parent = parentid;
599
600	if (!ops->init || ops->init(sch, NULL) == 0)
 
601		return sch;
 
602
603	qdisc_destroy(sch);
604errout:
605	return NULL;
606}
607EXPORT_SYMBOL(qdisc_create_dflt);
608
609/* Under qdisc_lock(qdisc) and BH! */
610
611void qdisc_reset(struct Qdisc *qdisc)
612{
613	const struct Qdisc_ops *ops = qdisc->ops;
614
 
 
615	if (ops->reset)
616		ops->reset(qdisc);
617
618	if (qdisc->gso_skb) {
619		kfree_skb(qdisc->gso_skb);
620		qdisc->gso_skb = NULL;
621		qdisc->q.qlen = 0;
 
 
 
 
 
 
 
 
 
622	}
 
 
623}
624EXPORT_SYMBOL(qdisc_reset);
625
626static void qdisc_rcu_free(struct rcu_head *head)
627{
628	struct Qdisc *qdisc = container_of(head, struct Qdisc, rcu_head);
629
630	kfree((char *) qdisc - qdisc->padded);
631}
632
633void qdisc_destroy(struct Qdisc *qdisc)
634{
635	const struct Qdisc_ops  *ops = qdisc->ops;
636
637	if (qdisc->flags & TCQ_F_BUILTIN ||
638	    !atomic_dec_and_test(&qdisc->refcnt))
639		return;
640
641#ifdef CONFIG_NET_SCHED
642	qdisc_list_del(qdisc);
643
644	qdisc_put_stab(rtnl_dereference(qdisc->stab));
645#endif
646	gen_kill_estimator(&qdisc->bstats, &qdisc->rate_est);
647	if (ops->reset)
648		ops->reset(qdisc);
 
 
649	if (ops->destroy)
650		ops->destroy(qdisc);
651
 
652	module_put(ops->owner);
653	dev_put(qdisc_dev(qdisc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654
655	kfree_skb(qdisc->gso_skb);
656	/*
657	 * gen_estimator est_timer() might access qdisc->q.lock,
658	 * wait a RCU grace period before freeing qdisc.
659	 */
660	call_rcu(&qdisc->rcu_head, qdisc_rcu_free);
661}
662EXPORT_SYMBOL(qdisc_destroy);
663
664/* Attach toplevel qdisc to device queue. */
665struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
666			      struct Qdisc *qdisc)
667{
668	struct Qdisc *oqdisc = dev_queue->qdisc_sleeping;
669	spinlock_t *root_lock;
670
671	root_lock = qdisc_lock(oqdisc);
672	spin_lock_bh(root_lock);
673
674	/* Prune old scheduler */
675	if (oqdisc && atomic_read(&oqdisc->refcnt) <= 1)
676		qdisc_reset(oqdisc);
677
678	/* ... and graft new one */
679	if (qdisc == NULL)
680		qdisc = &noop_qdisc;
681	dev_queue->qdisc_sleeping = qdisc;
682	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
683
684	spin_unlock_bh(root_lock);
685
686	return oqdisc;
687}
688EXPORT_SYMBOL(dev_graft_qdisc);
689
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690static void attach_one_default_qdisc(struct net_device *dev,
691				     struct netdev_queue *dev_queue,
692				     void *_unused)
693{
694	struct Qdisc *qdisc = &noqueue_qdisc;
 
695
696	if (dev->tx_queue_len) {
697		qdisc = qdisc_create_dflt(dev_queue,
698					  default_qdisc_ops, TC_H_ROOT);
699		if (!qdisc) {
700			netdev_info(dev, "activation failed\n");
701			return;
702		}
703		if (!netif_is_multiqueue(dev))
704			qdisc->flags |= TCQ_F_ONETXQUEUE;
705	}
706	dev_queue->qdisc_sleeping = qdisc;
 
707}
708
709static void attach_default_qdiscs(struct net_device *dev)
710{
711	struct netdev_queue *txq;
712	struct Qdisc *qdisc;
713
714	txq = netdev_get_tx_queue(dev, 0);
715
716	if (!netif_is_multiqueue(dev) || dev->tx_queue_len == 0) {
 
717		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
718		dev->qdisc = txq->qdisc_sleeping;
719		atomic_inc(&dev->qdisc->refcnt);
 
720	} else {
721		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT);
722		if (qdisc) {
723			dev->qdisc = qdisc;
724			qdisc->ops->attach(qdisc);
725		}
726	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727}
728
729static void transition_one_qdisc(struct net_device *dev,
730				 struct netdev_queue *dev_queue,
731				 void *_need_watchdog)
732{
733	struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping;
734	int *need_watchdog_p = _need_watchdog;
735
736	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
737		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
738
739	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
740	if (need_watchdog_p && new_qdisc != &noqueue_qdisc) {
741		dev_queue->trans_start = 0;
742		*need_watchdog_p = 1;
743	}
744}
745
746void dev_activate(struct net_device *dev)
747{
748	int need_watchdog;
749
750	/* No queueing discipline is attached to device;
751	 * create default one for devices, which need queueing
752	 * and noqueue_qdisc for virtual interfaces
753	 */
754
755	if (dev->qdisc == &noop_qdisc)
756		attach_default_qdiscs(dev);
757
758	if (!netif_carrier_ok(dev))
759		/* Delay activation until next carrier-on event */
760		return;
761
762	need_watchdog = 0;
763	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
764	if (dev_ingress_queue(dev))
765		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
766
767	if (need_watchdog) {
768		dev->trans_start = jiffies;
769		dev_watchdog_up(dev);
770	}
771}
772EXPORT_SYMBOL(dev_activate);
773
 
 
 
 
 
 
 
 
774static void dev_deactivate_queue(struct net_device *dev,
775				 struct netdev_queue *dev_queue,
776				 void *_qdisc_default)
777{
778	struct Qdisc *qdisc_default = _qdisc_default;
779	struct Qdisc *qdisc;
780
781	qdisc = dev_queue->qdisc;
782	if (qdisc) {
783		spin_lock_bh(qdisc_lock(qdisc));
 
 
 
 
 
 
 
 
 
 
784
785		if (!(qdisc->flags & TCQ_F_BUILTIN))
786			set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
 
787
788		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
789		qdisc_reset(qdisc);
790
791		spin_unlock_bh(qdisc_lock(qdisc));
 
 
 
 
 
 
 
 
 
 
792	}
793}
794
795static bool some_qdisc_is_busy(struct net_device *dev)
796{
797	unsigned int i;
798
799	for (i = 0; i < dev->num_tx_queues; i++) {
800		struct netdev_queue *dev_queue;
801		spinlock_t *root_lock;
802		struct Qdisc *q;
803		int val;
804
805		dev_queue = netdev_get_tx_queue(dev, i);
806		q = dev_queue->qdisc_sleeping;
 
807		root_lock = qdisc_lock(q);
808
809		spin_lock_bh(root_lock);
810
811		val = (qdisc_is_running(q) ||
812		       test_bit(__QDISC_STATE_SCHED, &q->state));
813
814		spin_unlock_bh(root_lock);
815
816		if (val)
817			return true;
818	}
819	return false;
820}
821
822/**
823 * 	dev_deactivate_many - deactivate transmissions on several devices
824 * 	@head: list of devices to deactivate
825 *
826 *	This function returns only when all outstanding transmissions
827 *	have completed, unless all devices are in dismantle phase.
828 */
829void dev_deactivate_many(struct list_head *head)
830{
831	struct net_device *dev;
832	bool sync_needed = false;
833
834	list_for_each_entry(dev, head, close_list) {
835		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
836					 &noop_qdisc);
837		if (dev_ingress_queue(dev))
838			dev_deactivate_queue(dev, dev_ingress_queue(dev),
839					     &noop_qdisc);
840
841		dev_watchdog_down(dev);
842		sync_needed |= !dev->dismantle;
843	}
844
845	/* Wait for outstanding qdisc-less dev_queue_xmit calls.
 
846	 * This is avoided if all devices are in dismantle phase :
847	 * Caller will call synchronize_net() for us
848	 */
849	if (sync_needed)
850		synchronize_net();
 
 
 
 
 
 
851
852	/* Wait for outstanding qdisc_run calls. */
853	list_for_each_entry(dev, head, close_list)
854		while (some_qdisc_is_busy(dev))
855			yield();
 
 
 
 
 
 
856}
857
858void dev_deactivate(struct net_device *dev)
859{
860	LIST_HEAD(single);
861
862	list_add(&dev->close_list, &single);
863	dev_deactivate_many(&single);
864	list_del(&single);
865}
866EXPORT_SYMBOL(dev_deactivate);
867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
868static void dev_init_scheduler_queue(struct net_device *dev,
869				     struct netdev_queue *dev_queue,
870				     void *_qdisc)
871{
872	struct Qdisc *qdisc = _qdisc;
873
874	dev_queue->qdisc = qdisc;
875	dev_queue->qdisc_sleeping = qdisc;
876}
877
878void dev_init_scheduler(struct net_device *dev)
879{
880	dev->qdisc = &noop_qdisc;
881	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
882	if (dev_ingress_queue(dev))
883		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
884
885	setup_timer(&dev->watchdog_timer, dev_watchdog, (unsigned long)dev);
886}
887
888static void shutdown_scheduler_queue(struct net_device *dev,
889				     struct netdev_queue *dev_queue,
890				     void *_qdisc_default)
891{
892	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
893	struct Qdisc *qdisc_default = _qdisc_default;
894
895	if (qdisc) {
896		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
897		dev_queue->qdisc_sleeping = qdisc_default;
898
899		qdisc_destroy(qdisc);
900	}
901}
902
903void dev_shutdown(struct net_device *dev)
904{
905	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
906	if (dev_ingress_queue(dev))
907		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
908	qdisc_destroy(dev->qdisc);
909	dev->qdisc = &noop_qdisc;
910
911	WARN_ON(timer_pending(&dev->watchdog_timer));
912}
913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
914void psched_ratecfg_precompute(struct psched_ratecfg *r,
915			       const struct tc_ratespec *conf,
916			       u64 rate64)
917{
918	memset(r, 0, sizeof(*r));
919	r->overhead = conf->overhead;
 
920	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
921	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
922	r->mult = 1;
923	/*
924	 * The deal here is to replace a divide by a reciprocal one
925	 * in fast path (a reciprocal divide is a multiply and a shift)
926	 *
927	 * Normal formula would be :
928	 *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
929	 *
930	 * We compute mult/shift to use instead :
931	 *  time_in_ns = (len * mult) >> shift;
932	 *
933	 * We try to get the highest possible mult value for accuracy,
934	 * but have to make sure no overflows will ever happen.
 
 
 
935	 */
936	if (r->rate_bytes_ps > 0) {
937		u64 factor = NSEC_PER_SEC;
 
 
 
 
 
 
 
938
939		for (;;) {
940			r->mult = div64_u64(factor, r->rate_bytes_ps);
941			if (r->mult & (1U << 31) || factor & (1ULL << 63))
942				break;
943			factor <<= 1;
944			r->shift++;
945		}
 
 
 
 
 
946	}
 
 
 
 
 
 
 
947}
948EXPORT_SYMBOL(psched_ratecfg_precompute);