Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/percpu.c - percpu memory allocator
   4 *
   5 * Copyright (C) 2009		SUSE Linux Products GmbH
   6 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
   7 *
   8 * Copyright (C) 2017		Facebook Inc.
   9 * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
  10 *
  11 * The percpu allocator handles both static and dynamic areas.  Percpu
  12 * areas are allocated in chunks which are divided into units.  There is
  13 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
  14 * based on NUMA properties of the machine.
 
 
 
 
  15 *
  16 *  c0                           c1                         c2
  17 *  -------------------          -------------------        ------------
  18 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  19 *  -------------------  ......  -------------------  ....  ------------
  20 *
  21 * Allocation is done by offsets into a unit's address space.  Ie., an
  22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
  23 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
  24 * and even sparse.  Access is handled by configuring percpu base
  25 * registers according to the cpu to unit mappings and offsetting the
  26 * base address using pcpu_unit_size.
  27 *
  28 * There is special consideration for the first chunk which must handle
  29 * the static percpu variables in the kernel image as allocation services
  30 * are not online yet.  In short, the first chunk is structured like so:
  31 *
  32 *                  <Static | [Reserved] | Dynamic>
  33 *
  34 * The static data is copied from the original section managed by the
  35 * linker.  The reserved section, if non-zero, primarily manages static
  36 * percpu variables from kernel modules.  Finally, the dynamic section
  37 * takes care of normal allocations.
  38 *
  39 * The allocator organizes chunks into lists according to free size and
  40 * memcg-awareness.  To make a percpu allocation memcg-aware the __GFP_ACCOUNT
  41 * flag should be passed.  All memcg-aware allocations are sharing one set
  42 * of chunks and all unaccounted allocations and allocations performed
  43 * by processes belonging to the root memory cgroup are using the second set.
  44 *
  45 * The allocator tries to allocate from the fullest chunk first. Each chunk
  46 * is managed by a bitmap with metadata blocks.  The allocation map is updated
  47 * on every allocation and free to reflect the current state while the boundary
  48 * map is only updated on allocation.  Each metadata block contains
  49 * information to help mitigate the need to iterate over large portions
  50 * of the bitmap.  The reverse mapping from page to chunk is stored in
  51 * the page's index.  Lastly, units are lazily backed and grow in unison.
  52 *
  53 * There is a unique conversion that goes on here between bytes and bits.
  54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
  55 * tracks the number of pages it is responsible for in nr_pages.  Helper
  56 * functions are used to convert from between the bytes, bits, and blocks.
  57 * All hints are managed in bits unless explicitly stated.
  58 *
  59 * To use this allocator, arch code should do the following:
  60 *
  61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  62 *   regular address to percpu pointer and back if they need to be
  63 *   different from the default
  64 *
  65 * - use pcpu_setup_first_chunk() during percpu area initialization to
  66 *   setup the first chunk containing the kernel static percpu area
  67 */
  68
  69#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  70
  71#include <linux/bitmap.h>
  72#include <linux/cpumask.h>
  73#include <linux/memblock.h>
  74#include <linux/err.h>
  75#include <linux/list.h>
  76#include <linux/log2.h>
  77#include <linux/mm.h>
  78#include <linux/module.h>
  79#include <linux/mutex.h>
  80#include <linux/percpu.h>
  81#include <linux/pfn.h>
  82#include <linux/slab.h>
  83#include <linux/spinlock.h>
  84#include <linux/vmalloc.h>
  85#include <linux/workqueue.h>
  86#include <linux/kmemleak.h>
  87#include <linux/sched.h>
  88#include <linux/sched/mm.h>
  89#include <linux/memcontrol.h>
  90
  91#include <asm/cacheflush.h>
  92#include <asm/sections.h>
  93#include <asm/tlbflush.h>
  94#include <asm/io.h>
  95
  96#define CREATE_TRACE_POINTS
  97#include <trace/events/percpu.h>
  98
  99#include "percpu-internal.h"
 100
 101/*
 102 * The slots are sorted by the size of the biggest continuous free area.
 103 * 1-31 bytes share the same slot.
 104 */
 105#define PCPU_SLOT_BASE_SHIFT		5
 106/* chunks in slots below this are subject to being sidelined on failed alloc */
 107#define PCPU_SLOT_FAIL_THRESHOLD	3
 108
 109#define PCPU_EMPTY_POP_PAGES_LOW	2
 110#define PCPU_EMPTY_POP_PAGES_HIGH	4
 111
 112#ifdef CONFIG_SMP
 113/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 114#ifndef __addr_to_pcpu_ptr
 115#define __addr_to_pcpu_ptr(addr)					\
 116	(void __percpu *)((unsigned long)(addr) -			\
 117			  (unsigned long)pcpu_base_addr	+		\
 118			  (unsigned long)__per_cpu_start)
 119#endif
 120#ifndef __pcpu_ptr_to_addr
 121#define __pcpu_ptr_to_addr(ptr)						\
 122	(void __force *)((unsigned long)(ptr) +				\
 123			 (unsigned long)pcpu_base_addr -		\
 124			 (unsigned long)__per_cpu_start)
 125#endif
 126#else	/* CONFIG_SMP */
 127/* on UP, it's always identity mapped */
 128#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
 129#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
 130#endif	/* CONFIG_SMP */
 131
 132static int pcpu_unit_pages __ro_after_init;
 133static int pcpu_unit_size __ro_after_init;
 134static int pcpu_nr_units __ro_after_init;
 135static int pcpu_atom_size __ro_after_init;
 136int pcpu_nr_slots __ro_after_init;
 137static int pcpu_free_slot __ro_after_init;
 138int pcpu_sidelined_slot __ro_after_init;
 139int pcpu_to_depopulate_slot __ro_after_init;
 140static size_t pcpu_chunk_struct_size __ro_after_init;
 
 
 
 
 
 
 
 
 
 
 
 141
 142/* cpus with the lowest and highest unit addresses */
 143static unsigned int pcpu_low_unit_cpu __ro_after_init;
 144static unsigned int pcpu_high_unit_cpu __ro_after_init;
 145
 146/* the address of the first chunk which starts with the kernel static area */
 147void *pcpu_base_addr __ro_after_init;
 
 148
 149static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
 150const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
 151
 152/* group information, used for vm allocation */
 153static int pcpu_nr_groups __ro_after_init;
 154static const unsigned long *pcpu_group_offsets __ro_after_init;
 155static const size_t *pcpu_group_sizes __ro_after_init;
 156
 157/*
 158 * The first chunk which always exists.  Note that unlike other
 159 * chunks, this one can be allocated and mapped in several different
 160 * ways and thus often doesn't live in the vmalloc area.
 161 */
 162struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 163
 164/*
 165 * Optional reserved chunk.  This chunk reserves part of the first
 166 * chunk and serves it for reserved allocations.  When the reserved
 167 * region doesn't exist, the following variable is NULL.
 
 
 168 */
 169struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 170
 171DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
 172static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
 173
 174struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
 175
 176/*
 177 * The number of empty populated pages, protected by pcpu_lock.
 178 * The reserved chunk doesn't contribute to the count.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179 */
 180int pcpu_nr_empty_pop_pages;
 
 181
 182/*
 183 * The number of populated pages in use by the allocator, protected by
 184 * pcpu_lock.  This number is kept per a unit per chunk (i.e. when a page gets
 185 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
 186 * and increments/decrements this count by 1).
 187 */
 188static unsigned long pcpu_nr_populated;
 189
 190/*
 191 * Balance work is used to populate or destroy chunks asynchronously.  We
 192 * try to keep the number of populated free pages between
 193 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 194 * empty chunk.
 195 */
 196static void pcpu_balance_workfn(struct work_struct *work);
 197static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 198static bool pcpu_async_enabled __read_mostly;
 199static bool pcpu_atomic_alloc_failed;
 200
 201static void pcpu_schedule_balance_work(void)
 202{
 203	if (pcpu_async_enabled)
 204		schedule_work(&pcpu_balance_work);
 
 205}
 206
 207/**
 208 * pcpu_addr_in_chunk - check if the address is served from this chunk
 209 * @chunk: chunk of interest
 210 * @addr: percpu address
 211 *
 212 * RETURNS:
 213 * True if the address is served from this chunk.
 214 */
 215static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 216{
 217	void *start_addr, *end_addr;
 218
 219	if (!chunk)
 220		return false;
 221
 222	start_addr = chunk->base_addr + chunk->start_offset;
 223	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 224		   chunk->end_offset;
 225
 226	return addr >= start_addr && addr < end_addr;
 
 227}
 228
 229static int __pcpu_size_to_slot(int size)
 230{
 231	int highbit = fls(size);	/* size is in bytes */
 232	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 233}
 234
 235static int pcpu_size_to_slot(int size)
 236{
 237	if (size == pcpu_unit_size)
 238		return pcpu_free_slot;
 239	return __pcpu_size_to_slot(size);
 240}
 241
 242static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 243{
 244	const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 245
 246	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
 247	    chunk_md->contig_hint == 0)
 248		return 0;
 249
 250	return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
 251}
 252
 253/* set the pointer to a chunk in a page struct */
 254static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 255{
 256	page->private = (unsigned long)pcpu;
 257}
 258
 259/* obtain pointer to a chunk from a page struct */
 260static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 261{
 262	return (struct pcpu_chunk *)page->private;
 263}
 264
 265static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 266{
 267	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 268}
 269
 270static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 271{
 272	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 273}
 274
 275static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 276				     unsigned int cpu, int page_idx)
 277{
 278	return (unsigned long)chunk->base_addr +
 279	       pcpu_unit_page_offset(cpu, page_idx);
 280}
 281
 282/*
 283 * The following are helper functions to help access bitmaps and convert
 284 * between bitmap offsets to address offsets.
 285 */
 286static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 287{
 288	return chunk->alloc_map +
 289	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 290}
 291
 292static unsigned long pcpu_off_to_block_index(int off)
 293{
 294	return off / PCPU_BITMAP_BLOCK_BITS;
 295}
 296
 297static unsigned long pcpu_off_to_block_off(int off)
 298{
 299	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 300}
 301
 302static unsigned long pcpu_block_off_to_off(int index, int off)
 303{
 304	return index * PCPU_BITMAP_BLOCK_BITS + off;
 305}
 306
 307/**
 308 * pcpu_check_block_hint - check against the contig hint
 309 * @block: block of interest
 310 * @bits: size of allocation
 311 * @align: alignment of area (max PAGE_SIZE)
 312 *
 313 * Check to see if the allocation can fit in the block's contig hint.
 314 * Note, a chunk uses the same hints as a block so this can also check against
 315 * the chunk's contig hint.
 316 */
 317static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits,
 318				  size_t align)
 319{
 320	int bit_off = ALIGN(block->contig_hint_start, align) -
 321		block->contig_hint_start;
 322
 323	return bit_off + bits <= block->contig_hint;
 324}
 325
 326/*
 327 * pcpu_next_hint - determine which hint to use
 328 * @block: block of interest
 329 * @alloc_bits: size of allocation
 330 *
 331 * This determines if we should scan based on the scan_hint or first_free.
 332 * In general, we want to scan from first_free to fulfill allocations by
 333 * first fit.  However, if we know a scan_hint at position scan_hint_start
 334 * cannot fulfill an allocation, we can begin scanning from there knowing
 335 * the contig_hint will be our fallback.
 336 */
 337static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
 338{
 339	/*
 340	 * The three conditions below determine if we can skip past the
 341	 * scan_hint.  First, does the scan hint exist.  Second, is the
 342	 * contig_hint after the scan_hint (possibly not true iff
 343	 * contig_hint == scan_hint).  Third, is the allocation request
 344	 * larger than the scan_hint.
 345	 */
 346	if (block->scan_hint &&
 347	    block->contig_hint_start > block->scan_hint_start &&
 348	    alloc_bits > block->scan_hint)
 349		return block->scan_hint_start + block->scan_hint;
 350
 351	return block->first_free;
 352}
 353
 354/**
 355 * pcpu_next_md_free_region - finds the next hint free area
 356 * @chunk: chunk of interest
 357 * @bit_off: chunk offset
 358 * @bits: size of free area
 359 *
 360 * Helper function for pcpu_for_each_md_free_region.  It checks
 361 * block->contig_hint and performs aggregation across blocks to find the
 362 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 363 * loop.
 364 */
 365static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 366				     int *bits)
 367{
 368	int i = pcpu_off_to_block_index(*bit_off);
 369	int block_off = pcpu_off_to_block_off(*bit_off);
 370	struct pcpu_block_md *block;
 371
 372	*bits = 0;
 373	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 374	     block++, i++) {
 375		/* handles contig area across blocks */
 376		if (*bits) {
 377			*bits += block->left_free;
 378			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 379				continue;
 380			return;
 381		}
 382
 383		/*
 384		 * This checks three things.  First is there a contig_hint to
 385		 * check.  Second, have we checked this hint before by
 386		 * comparing the block_off.  Third, is this the same as the
 387		 * right contig hint.  In the last case, it spills over into
 388		 * the next block and should be handled by the contig area
 389		 * across blocks code.
 390		 */
 391		*bits = block->contig_hint;
 392		if (*bits && block->contig_hint_start >= block_off &&
 393		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 394			*bit_off = pcpu_block_off_to_off(i,
 395					block->contig_hint_start);
 396			return;
 397		}
 398		/* reset to satisfy the second predicate above */
 399		block_off = 0;
 400
 401		*bits = block->right_free;
 402		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 403	}
 404}
 405
 406/**
 407 * pcpu_next_fit_region - finds fit areas for a given allocation request
 408 * @chunk: chunk of interest
 409 * @alloc_bits: size of allocation
 410 * @align: alignment of area (max PAGE_SIZE)
 411 * @bit_off: chunk offset
 412 * @bits: size of free area
 413 *
 414 * Finds the next free region that is viable for use with a given size and
 415 * alignment.  This only returns if there is a valid area to be used for this
 416 * allocation.  block->first_free is returned if the allocation request fits
 417 * within the block to see if the request can be fulfilled prior to the contig
 418 * hint.
 419 */
 420static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 421				 int align, int *bit_off, int *bits)
 422{
 423	int i = pcpu_off_to_block_index(*bit_off);
 424	int block_off = pcpu_off_to_block_off(*bit_off);
 425	struct pcpu_block_md *block;
 426
 427	*bits = 0;
 428	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 429	     block++, i++) {
 430		/* handles contig area across blocks */
 431		if (*bits) {
 432			*bits += block->left_free;
 433			if (*bits >= alloc_bits)
 434				return;
 435			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 436				continue;
 437		}
 438
 439		/* check block->contig_hint */
 440		*bits = ALIGN(block->contig_hint_start, align) -
 441			block->contig_hint_start;
 442		/*
 443		 * This uses the block offset to determine if this has been
 444		 * checked in the prior iteration.
 445		 */
 446		if (block->contig_hint &&
 447		    block->contig_hint_start >= block_off &&
 448		    block->contig_hint >= *bits + alloc_bits) {
 449			int start = pcpu_next_hint(block, alloc_bits);
 450
 451			*bits += alloc_bits + block->contig_hint_start -
 452				 start;
 453			*bit_off = pcpu_block_off_to_off(i, start);
 454			return;
 455		}
 456		/* reset to satisfy the second predicate above */
 457		block_off = 0;
 458
 459		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 460				 align);
 461		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 462		*bit_off = pcpu_block_off_to_off(i, *bit_off);
 463		if (*bits >= alloc_bits)
 464			return;
 465	}
 466
 467	/* no valid offsets were found - fail condition */
 468	*bit_off = pcpu_chunk_map_bits(chunk);
 469}
 470
 471/*
 472 * Metadata free area iterators.  These perform aggregation of free areas
 473 * based on the metadata blocks and return the offset @bit_off and size in
 474 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 475 * a fit is found for the allocation request.
 476 */
 477#define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
 478	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
 479	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
 480	     (bit_off) += (bits) + 1,					\
 481	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 482
 483#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 484	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 485				  &(bits));				      \
 486	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
 487	     (bit_off) += (bits),					      \
 488	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 489				  &(bits)))
 490
 491/**
 492 * pcpu_mem_zalloc - allocate memory
 493 * @size: bytes to allocate
 494 * @gfp: allocation flags
 495 *
 496 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 497 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 498 * This is to facilitate passing through whitelisted flags.  The
 499 * returned memory is always zeroed.
 
 
 500 *
 501 * RETURNS:
 502 * Pointer to the allocated area on success, NULL on failure.
 503 */
 504static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 505{
 506	if (WARN_ON_ONCE(!slab_is_available()))
 507		return NULL;
 508
 509	if (size <= PAGE_SIZE)
 510		return kzalloc(size, gfp);
 511	else
 512		return __vmalloc(size, gfp | __GFP_ZERO);
 513}
 514
 515/**
 516 * pcpu_mem_free - free memory
 517 * @ptr: memory to free
 
 518 *
 519 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 520 */
 521static void pcpu_mem_free(void *ptr)
 522{
 523	kvfree(ptr);
 524}
 525
 526static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
 527			      bool move_front)
 528{
 529	if (chunk != pcpu_reserved_chunk) {
 530		if (move_front)
 531			list_move(&chunk->list, &pcpu_chunk_lists[slot]);
 532		else
 533			list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]);
 534	}
 535}
 536
 537static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
 538{
 539	__pcpu_chunk_move(chunk, slot, true);
 540}
 541
 542/**
 543 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 544 * @chunk: chunk of interest
 545 * @oslot: the previous slot it was on
 546 *
 547 * This function is called after an allocation or free changed @chunk.
 548 * New slot according to the changed state is determined and @chunk is
 549 * moved to the slot.  Note that the reserved chunk is never put on
 550 * chunk slots.
 551 *
 552 * CONTEXT:
 553 * pcpu_lock.
 554 */
 555static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 556{
 557	int nslot = pcpu_chunk_slot(chunk);
 558
 559	/* leave isolated chunks in-place */
 560	if (chunk->isolated)
 561		return;
 562
 563	if (oslot != nslot)
 564		__pcpu_chunk_move(chunk, nslot, oslot < nslot);
 565}
 566
 567static void pcpu_isolate_chunk(struct pcpu_chunk *chunk)
 568{
 569	lockdep_assert_held(&pcpu_lock);
 570
 571	if (!chunk->isolated) {
 572		chunk->isolated = true;
 573		pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages;
 574	}
 575	list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]);
 576}
 577
 578static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk)
 579{
 580	lockdep_assert_held(&pcpu_lock);
 581
 582	if (chunk->isolated) {
 583		chunk->isolated = false;
 584		pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages;
 585		pcpu_chunk_relocate(chunk, -1);
 586	}
 587}
 588
 589/*
 590 * pcpu_update_empty_pages - update empty page counters
 591 * @chunk: chunk of interest
 592 * @nr: nr of empty pages
 593 *
 594 * This is used to keep track of the empty pages now based on the premise
 595 * a md_block covers a page.  The hint update functions recognize if a block
 596 * is made full or broken to calculate deltas for keeping track of free pages.
 597 */
 598static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
 599{
 600	chunk->nr_empty_pop_pages += nr;
 601	if (chunk != pcpu_reserved_chunk && !chunk->isolated)
 602		pcpu_nr_empty_pop_pages += nr;
 603}
 604
 605/*
 606 * pcpu_region_overlap - determines if two regions overlap
 607 * @a: start of first region, inclusive
 608 * @b: end of first region, exclusive
 609 * @x: start of second region, inclusive
 610 * @y: end of second region, exclusive
 611 *
 612 * This is used to determine if the hint region [a, b) overlaps with the
 613 * allocated region [x, y).
 614 */
 615static inline bool pcpu_region_overlap(int a, int b, int x, int y)
 616{
 617	return (a < y) && (x < b);
 618}
 619
 620/**
 621 * pcpu_block_update - updates a block given a free area
 622 * @block: block of interest
 623 * @start: start offset in block
 624 * @end: end offset in block
 625 *
 626 * Updates a block given a known free area.  The region [start, end) is
 627 * expected to be the entirety of the free area within a block.  Chooses
 628 * the best starting offset if the contig hints are equal.
 629 */
 630static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 631{
 632	int contig = end - start;
 633
 634	block->first_free = min(block->first_free, start);
 635	if (start == 0)
 636		block->left_free = contig;
 637
 638	if (end == block->nr_bits)
 639		block->right_free = contig;
 640
 641	if (contig > block->contig_hint) {
 642		/* promote the old contig_hint to be the new scan_hint */
 643		if (start > block->contig_hint_start) {
 644			if (block->contig_hint > block->scan_hint) {
 645				block->scan_hint_start =
 646					block->contig_hint_start;
 647				block->scan_hint = block->contig_hint;
 648			} else if (start < block->scan_hint_start) {
 649				/*
 650				 * The old contig_hint == scan_hint.  But, the
 651				 * new contig is larger so hold the invariant
 652				 * scan_hint_start < contig_hint_start.
 653				 */
 654				block->scan_hint = 0;
 655			}
 656		} else {
 657			block->scan_hint = 0;
 658		}
 659		block->contig_hint_start = start;
 660		block->contig_hint = contig;
 661	} else if (contig == block->contig_hint) {
 662		if (block->contig_hint_start &&
 663		    (!start ||
 664		     __ffs(start) > __ffs(block->contig_hint_start))) {
 665			/* start has a better alignment so use it */
 666			block->contig_hint_start = start;
 667			if (start < block->scan_hint_start &&
 668			    block->contig_hint > block->scan_hint)
 669				block->scan_hint = 0;
 670		} else if (start > block->scan_hint_start ||
 671			   block->contig_hint > block->scan_hint) {
 672			/*
 673			 * Knowing contig == contig_hint, update the scan_hint
 674			 * if it is farther than or larger than the current
 675			 * scan_hint.
 676			 */
 677			block->scan_hint_start = start;
 678			block->scan_hint = contig;
 679		}
 680	} else {
 681		/*
 682		 * The region is smaller than the contig_hint.  So only update
 683		 * the scan_hint if it is larger than or equal and farther than
 684		 * the current scan_hint.
 685		 */
 686		if ((start < block->contig_hint_start &&
 687		     (contig > block->scan_hint ||
 688		      (contig == block->scan_hint &&
 689		       start > block->scan_hint_start)))) {
 690			block->scan_hint_start = start;
 691			block->scan_hint = contig;
 692		}
 693	}
 694}
 695
 696/*
 697 * pcpu_block_update_scan - update a block given a free area from a scan
 698 * @chunk: chunk of interest
 699 * @bit_off: chunk offset
 700 * @bits: size of free area
 701 *
 702 * Finding the final allocation spot first goes through pcpu_find_block_fit()
 703 * to find a block that can hold the allocation and then pcpu_alloc_area()
 704 * where a scan is used.  When allocations require specific alignments,
 705 * we can inadvertently create holes which will not be seen in the alloc
 706 * or free paths.
 707 *
 708 * This takes a given free area hole and updates a block as it may change the
 709 * scan_hint.  We need to scan backwards to ensure we don't miss free bits
 710 * from alignment.
 711 */
 712static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
 713				   int bits)
 714{
 715	int s_off = pcpu_off_to_block_off(bit_off);
 716	int e_off = s_off + bits;
 717	int s_index, l_bit;
 718	struct pcpu_block_md *block;
 719
 720	if (e_off > PCPU_BITMAP_BLOCK_BITS)
 721		return;
 722
 723	s_index = pcpu_off_to_block_index(bit_off);
 724	block = chunk->md_blocks + s_index;
 725
 726	/* scan backwards in case of alignment skipping free bits */
 727	l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
 728	s_off = (s_off == l_bit) ? 0 : l_bit + 1;
 729
 730	pcpu_block_update(block, s_off, e_off);
 731}
 732
 733/**
 734 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 735 * @chunk: chunk of interest
 736 * @full_scan: if we should scan from the beginning
 737 *
 738 * Iterates over the metadata blocks to find the largest contig area.
 739 * A full scan can be avoided on the allocation path as this is triggered
 740 * if we broke the contig_hint.  In doing so, the scan_hint will be before
 741 * the contig_hint or after if the scan_hint == contig_hint.  This cannot
 742 * be prevented on freeing as we want to find the largest area possibly
 743 * spanning blocks.
 744 */
 745static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
 746{
 747	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 748	int bit_off, bits;
 749
 750	/* promote scan_hint to contig_hint */
 751	if (!full_scan && chunk_md->scan_hint) {
 752		bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
 753		chunk_md->contig_hint_start = chunk_md->scan_hint_start;
 754		chunk_md->contig_hint = chunk_md->scan_hint;
 755		chunk_md->scan_hint = 0;
 756	} else {
 757		bit_off = chunk_md->first_free;
 758		chunk_md->contig_hint = 0;
 759	}
 760
 761	bits = 0;
 762	pcpu_for_each_md_free_region(chunk, bit_off, bits)
 763		pcpu_block_update(chunk_md, bit_off, bit_off + bits);
 764}
 765
 766/**
 767 * pcpu_block_refresh_hint
 768 * @chunk: chunk of interest
 769 * @index: index of the metadata block
 770 *
 771 * Scans over the block beginning at first_free and updates the block
 772 * metadata accordingly.
 773 */
 774static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 775{
 776	struct pcpu_block_md *block = chunk->md_blocks + index;
 777	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 778	unsigned int start, end;	/* region start, region end */
 779
 780	/* promote scan_hint to contig_hint */
 781	if (block->scan_hint) {
 782		start = block->scan_hint_start + block->scan_hint;
 783		block->contig_hint_start = block->scan_hint_start;
 784		block->contig_hint = block->scan_hint;
 785		block->scan_hint = 0;
 786	} else {
 787		start = block->first_free;
 788		block->contig_hint = 0;
 789	}
 790
 791	block->right_free = 0;
 
 
 792
 793	/* iterate over free areas and update the contig hints */
 794	for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS)
 795		pcpu_block_update(block, start, end);
 796}
 797
 798/**
 799 * pcpu_block_update_hint_alloc - update hint on allocation path
 800 * @chunk: chunk of interest
 801 * @bit_off: chunk offset
 802 * @bits: size of request
 803 *
 804 * Updates metadata for the allocation path.  The metadata only has to be
 805 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 806 * scans are required if the block's contig hint is broken.
 807 */
 808static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 809					 int bits)
 810{
 811	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
 812	int nr_empty_pages = 0;
 813	struct pcpu_block_md *s_block, *e_block, *block;
 814	int s_index, e_index;	/* block indexes of the freed allocation */
 815	int s_off, e_off;	/* block offsets of the freed allocation */
 816
 817	/*
 818	 * Calculate per block offsets.
 819	 * The calculation uses an inclusive range, but the resulting offsets
 820	 * are [start, end).  e_index always points to the last block in the
 821	 * range.
 822	 */
 823	s_index = pcpu_off_to_block_index(bit_off);
 824	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 825	s_off = pcpu_off_to_block_off(bit_off);
 826	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 827
 828	s_block = chunk->md_blocks + s_index;
 829	e_block = chunk->md_blocks + e_index;
 830
 831	/*
 832	 * Update s_block.
 833	 */
 834	if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 835		nr_empty_pages++;
 836
 837	/*
 838	 * block->first_free must be updated if the allocation takes its place.
 839	 * If the allocation breaks the contig_hint, a scan is required to
 840	 * restore this hint.
 841	 */
 842	if (s_off == s_block->first_free)
 843		s_block->first_free = find_next_zero_bit(
 844					pcpu_index_alloc_map(chunk, s_index),
 845					PCPU_BITMAP_BLOCK_BITS,
 846					s_off + bits);
 847
 848	if (pcpu_region_overlap(s_block->scan_hint_start,
 849				s_block->scan_hint_start + s_block->scan_hint,
 850				s_off,
 851				s_off + bits))
 852		s_block->scan_hint = 0;
 853
 854	if (pcpu_region_overlap(s_block->contig_hint_start,
 855				s_block->contig_hint_start +
 856				s_block->contig_hint,
 857				s_off,
 858				s_off + bits)) {
 859		/* block contig hint is broken - scan to fix it */
 860		if (!s_off)
 861			s_block->left_free = 0;
 862		pcpu_block_refresh_hint(chunk, s_index);
 863	} else {
 864		/* update left and right contig manually */
 865		s_block->left_free = min(s_block->left_free, s_off);
 866		if (s_index == e_index)
 867			s_block->right_free = min_t(int, s_block->right_free,
 868					PCPU_BITMAP_BLOCK_BITS - e_off);
 869		else
 870			s_block->right_free = 0;
 871	}
 872
 873	/*
 874	 * Update e_block.
 875	 */
 876	if (s_index != e_index) {
 877		if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
 878			nr_empty_pages++;
 879
 880		/*
 881		 * When the allocation is across blocks, the end is along
 882		 * the left part of the e_block.
 883		 */
 884		e_block->first_free = find_next_zero_bit(
 885				pcpu_index_alloc_map(chunk, e_index),
 886				PCPU_BITMAP_BLOCK_BITS, e_off);
 887
 888		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 889			/* reset the block */
 890			e_block++;
 891		} else {
 892			if (e_off > e_block->scan_hint_start)
 893				e_block->scan_hint = 0;
 894
 895			e_block->left_free = 0;
 896			if (e_off > e_block->contig_hint_start) {
 897				/* contig hint is broken - scan to fix it */
 898				pcpu_block_refresh_hint(chunk, e_index);
 899			} else {
 900				e_block->right_free =
 901					min_t(int, e_block->right_free,
 902					      PCPU_BITMAP_BLOCK_BITS - e_off);
 903			}
 904		}
 905
 906		/* update in-between md_blocks */
 907		nr_empty_pages += (e_index - s_index - 1);
 908		for (block = s_block + 1; block < e_block; block++) {
 909			block->scan_hint = 0;
 910			block->contig_hint = 0;
 911			block->left_free = 0;
 912			block->right_free = 0;
 913		}
 914	}
 915
 916	/*
 917	 * If the allocation is not atomic, some blocks may not be
 918	 * populated with pages, while we account it here.  The number
 919	 * of pages will be added back with pcpu_chunk_populated()
 920	 * when populating pages.
 921	 */
 922	if (nr_empty_pages)
 923		pcpu_update_empty_pages(chunk, -nr_empty_pages);
 924
 925	if (pcpu_region_overlap(chunk_md->scan_hint_start,
 926				chunk_md->scan_hint_start +
 927				chunk_md->scan_hint,
 928				bit_off,
 929				bit_off + bits))
 930		chunk_md->scan_hint = 0;
 931
 932	/*
 933	 * The only time a full chunk scan is required is if the chunk
 934	 * contig hint is broken.  Otherwise, it means a smaller space
 935	 * was used and therefore the chunk contig hint is still correct.
 936	 */
 937	if (pcpu_region_overlap(chunk_md->contig_hint_start,
 938				chunk_md->contig_hint_start +
 939				chunk_md->contig_hint,
 940				bit_off,
 941				bit_off + bits))
 942		pcpu_chunk_refresh_hint(chunk, false);
 943}
 944
 945/**
 946 * pcpu_block_update_hint_free - updates the block hints on the free path
 947 * @chunk: chunk of interest
 948 * @bit_off: chunk offset
 949 * @bits: size of request
 950 *
 951 * Updates metadata for the allocation path.  This avoids a blind block
 952 * refresh by making use of the block contig hints.  If this fails, it scans
 953 * forward and backward to determine the extent of the free area.  This is
 954 * capped at the boundary of blocks.
 955 *
 956 * A chunk update is triggered if a page becomes free, a block becomes free,
 957 * or the free spans across blocks.  This tradeoff is to minimize iterating
 958 * over the block metadata to update chunk_md->contig_hint.
 959 * chunk_md->contig_hint may be off by up to a page, but it will never be more
 960 * than the available space.  If the contig hint is contained in one block, it
 961 * will be accurate.
 962 */
 963static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 964					int bits)
 965{
 966	int nr_empty_pages = 0;
 967	struct pcpu_block_md *s_block, *e_block, *block;
 968	int s_index, e_index;	/* block indexes of the freed allocation */
 969	int s_off, e_off;	/* block offsets of the freed allocation */
 970	int start, end;		/* start and end of the whole free area */
 971
 972	/*
 973	 * Calculate per block offsets.
 974	 * The calculation uses an inclusive range, but the resulting offsets
 975	 * are [start, end).  e_index always points to the last block in the
 976	 * range.
 977	 */
 978	s_index = pcpu_off_to_block_index(bit_off);
 979	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 980	s_off = pcpu_off_to_block_off(bit_off);
 981	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 982
 983	s_block = chunk->md_blocks + s_index;
 984	e_block = chunk->md_blocks + e_index;
 985
 986	/*
 987	 * Check if the freed area aligns with the block->contig_hint.
 988	 * If it does, then the scan to find the beginning/end of the
 989	 * larger free area can be avoided.
 990	 *
 991	 * start and end refer to beginning and end of the free area
 992	 * within each their respective blocks.  This is not necessarily
 993	 * the entire free area as it may span blocks past the beginning
 994	 * or end of the block.
 995	 */
 996	start = s_off;
 997	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 998		start = s_block->contig_hint_start;
 999	} else {
1000		/*
1001		 * Scan backwards to find the extent of the free area.
1002		 * find_last_bit returns the starting bit, so if the start bit
1003		 * is returned, that means there was no last bit and the
1004		 * remainder of the chunk is free.
1005		 */
1006		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
1007					  start);
1008		start = (start == l_bit) ? 0 : l_bit + 1;
1009	}
1010
1011	end = e_off;
1012	if (e_off == e_block->contig_hint_start)
1013		end = e_block->contig_hint_start + e_block->contig_hint;
1014	else
1015		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
1016				    PCPU_BITMAP_BLOCK_BITS, end);
1017
1018	/* update s_block */
1019	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
1020	if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
1021		nr_empty_pages++;
1022	pcpu_block_update(s_block, start, e_off);
1023
1024	/* freeing in the same block */
1025	if (s_index != e_index) {
1026		/* update e_block */
1027		if (end == PCPU_BITMAP_BLOCK_BITS)
1028			nr_empty_pages++;
1029		pcpu_block_update(e_block, 0, end);
1030
1031		/* reset md_blocks in the middle */
1032		nr_empty_pages += (e_index - s_index - 1);
1033		for (block = s_block + 1; block < e_block; block++) {
1034			block->first_free = 0;
1035			block->scan_hint = 0;
1036			block->contig_hint_start = 0;
1037			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1038			block->left_free = PCPU_BITMAP_BLOCK_BITS;
1039			block->right_free = PCPU_BITMAP_BLOCK_BITS;
1040		}
1041	}
1042
1043	if (nr_empty_pages)
1044		pcpu_update_empty_pages(chunk, nr_empty_pages);
1045
1046	/*
1047	 * Refresh chunk metadata when the free makes a block free or spans
1048	 * across blocks.  The contig_hint may be off by up to a page, but if
1049	 * the contig_hint is contained in a block, it will be accurate with
1050	 * the else condition below.
1051	 */
1052	if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1053		pcpu_chunk_refresh_hint(chunk, true);
1054	else
1055		pcpu_block_update(&chunk->chunk_md,
1056				  pcpu_block_off_to_off(s_index, start),
1057				  end);
1058}
1059
1060/**
1061 * pcpu_is_populated - determines if the region is populated
1062 * @chunk: chunk of interest
1063 * @bit_off: chunk offset
1064 * @bits: size of area
1065 * @next_off: return value for the next offset to start searching
1066 *
1067 * For atomic allocations, check if the backing pages are populated.
1068 *
1069 * RETURNS:
1070 * Bool if the backing pages are populated.
1071 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1072 */
1073static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1074			      int *next_off)
1075{
1076	unsigned int start, end;
1077
1078	start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1079	end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1080
1081	start = find_next_zero_bit(chunk->populated, end, start);
1082	if (start >= end)
1083		return true;
1084
1085	end = find_next_bit(chunk->populated, end, start + 1);
1086
1087	*next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1088	return false;
1089}
1090
1091/**
1092 * pcpu_find_block_fit - finds the block index to start searching
1093 * @chunk: chunk of interest
1094 * @alloc_bits: size of request in allocation units
1095 * @align: alignment of area (max PAGE_SIZE bytes)
1096 * @pop_only: use populated regions only
1097 *
1098 * Given a chunk and an allocation spec, find the offset to begin searching
1099 * for a free region.  This iterates over the bitmap metadata blocks to
1100 * find an offset that will be guaranteed to fit the requirements.  It is
1101 * not quite first fit as if the allocation does not fit in the contig hint
1102 * of a block or chunk, it is skipped.  This errs on the side of caution
1103 * to prevent excess iteration.  Poor alignment can cause the allocator to
1104 * skip over blocks and chunks that have valid free areas.
1105 *
1106 * RETURNS:
1107 * The offset in the bitmap to begin searching.
1108 * -1 if no offset is found.
1109 */
1110static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1111			       size_t align, bool pop_only)
1112{
1113	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1114	int bit_off, bits, next_off;
1115
1116	/*
1117	 * This is an optimization to prevent scanning by assuming if the
1118	 * allocation cannot fit in the global hint, there is memory pressure
1119	 * and creating a new chunk would happen soon.
1120	 */
1121	if (!pcpu_check_block_hint(chunk_md, alloc_bits, align))
1122		return -1;
1123
1124	bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1125	bits = 0;
1126	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1127		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1128						   &next_off))
1129			break;
1130
1131		bit_off = next_off;
1132		bits = 0;
1133	}
1134
1135	if (bit_off == pcpu_chunk_map_bits(chunk))
1136		return -1;
 
1137
1138	return bit_off;
1139}
1140
1141/*
1142 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1143 * @map: the address to base the search on
1144 * @size: the bitmap size in bits
1145 * @start: the bitnumber to start searching at
1146 * @nr: the number of zeroed bits we're looking for
1147 * @align_mask: alignment mask for zero area
1148 * @largest_off: offset of the largest area skipped
1149 * @largest_bits: size of the largest area skipped
1150 *
1151 * The @align_mask should be one less than a power of 2.
1152 *
1153 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1154 * the largest area that was skipped.  This is imperfect, but in general is
1155 * good enough.  The largest remembered region is the largest failed region
1156 * seen.  This does not include anything we possibly skipped due to alignment.
1157 * pcpu_block_update_scan() does scan backwards to try and recover what was
1158 * lost to alignment.  While this can cause scanning to miss earlier possible
1159 * free areas, smaller allocations will eventually fill those holes.
1160 */
1161static unsigned long pcpu_find_zero_area(unsigned long *map,
1162					 unsigned long size,
1163					 unsigned long start,
1164					 unsigned long nr,
1165					 unsigned long align_mask,
1166					 unsigned long *largest_off,
1167					 unsigned long *largest_bits)
1168{
1169	unsigned long index, end, i, area_off, area_bits;
1170again:
1171	index = find_next_zero_bit(map, size, start);
1172
1173	/* Align allocation */
1174	index = __ALIGN_MASK(index, align_mask);
1175	area_off = index;
1176
1177	end = index + nr;
1178	if (end > size)
1179		return end;
1180	i = find_next_bit(map, end, index);
1181	if (i < end) {
1182		area_bits = i - area_off;
1183		/* remember largest unused area with best alignment */
1184		if (area_bits > *largest_bits ||
1185		    (area_bits == *largest_bits && *largest_off &&
1186		     (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1187			*largest_off = area_off;
1188			*largest_bits = area_bits;
1189		}
1190
1191		start = i + 1;
1192		goto again;
1193	}
1194	return index;
1195}
1196
1197/**
1198 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1199 * @chunk: chunk of interest
1200 * @alloc_bits: size of request in allocation units
1201 * @align: alignment of area (max PAGE_SIZE)
1202 * @start: bit_off to start searching
1203 *
1204 * This function takes in a @start offset to begin searching to fit an
1205 * allocation of @alloc_bits with alignment @align.  It needs to scan
1206 * the allocation map because if it fits within the block's contig hint,
1207 * @start will be block->first_free. This is an attempt to fill the
1208 * allocation prior to breaking the contig hint.  The allocation and
1209 * boundary maps are updated accordingly if it confirms a valid
1210 * free area.
1211 *
1212 * RETURNS:
1213 * Allocated addr offset in @chunk on success.
1214 * -1 if no matching area is found.
1215 */
1216static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1217			   size_t align, int start)
1218{
1219	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1220	size_t align_mask = (align) ? (align - 1) : 0;
1221	unsigned long area_off = 0, area_bits = 0;
1222	int bit_off, end, oslot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223
1224	lockdep_assert_held(&pcpu_lock);
 
1225
1226	oslot = pcpu_chunk_slot(chunk);
 
 
 
 
 
1227
1228	/*
1229	 * Search to find a fit.
1230	 */
1231	end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1232		    pcpu_chunk_map_bits(chunk));
1233	bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1234				      align_mask, &area_off, &area_bits);
1235	if (bit_off >= end)
1236		return -1;
1237
1238	if (area_bits)
1239		pcpu_block_update_scan(chunk, area_off, area_bits);
1240
1241	/* update alloc map */
1242	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1243
1244	/* update boundary map */
1245	set_bit(bit_off, chunk->bound_map);
1246	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1247	set_bit(bit_off + alloc_bits, chunk->bound_map);
1248
1249	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1250
1251	/* update first free bit */
1252	if (bit_off == chunk_md->first_free)
1253		chunk_md->first_free = find_next_zero_bit(
1254					chunk->alloc_map,
1255					pcpu_chunk_map_bits(chunk),
1256					bit_off + alloc_bits);
1257
1258	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
 
 
1259
 
1260	pcpu_chunk_relocate(chunk, oslot);
1261
1262	return bit_off * PCPU_MIN_ALLOC_SIZE;
 
1263}
1264
1265/**
1266 * pcpu_free_area - frees the corresponding offset
1267 * @chunk: chunk of interest
1268 * @off: addr offset into chunk
1269 *
1270 * This function determines the size of an allocation to free using
1271 * the boundary bitmap and clears the allocation map.
1272 *
1273 * RETURNS:
1274 * Number of freed bytes.
1275 */
1276static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1277{
1278	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1279	int bit_off, bits, end, oslot, freed;
1280
1281	lockdep_assert_held(&pcpu_lock);
1282	pcpu_stats_area_dealloc(chunk);
1283
1284	oslot = pcpu_chunk_slot(chunk);
1285
1286	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1287
1288	/* find end index */
1289	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1290			    bit_off + 1);
1291	bits = end - bit_off;
1292	bitmap_clear(chunk->alloc_map, bit_off, bits);
1293
1294	freed = bits * PCPU_MIN_ALLOC_SIZE;
1295
1296	/* update metadata */
1297	chunk->free_bytes += freed;
1298
1299	/* update first free bit */
1300	chunk_md->first_free = min(chunk_md->first_free, bit_off);
1301
1302	pcpu_block_update_hint_free(chunk, bit_off, bits);
1303
1304	pcpu_chunk_relocate(chunk, oslot);
1305
1306	return freed;
1307}
1308
1309static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1310{
1311	block->scan_hint = 0;
1312	block->contig_hint = nr_bits;
1313	block->left_free = nr_bits;
1314	block->right_free = nr_bits;
1315	block->first_free = 0;
1316	block->nr_bits = nr_bits;
1317}
1318
1319static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1320{
1321	struct pcpu_block_md *md_block;
1322
1323	/* init the chunk's block */
1324	pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1325
1326	for (md_block = chunk->md_blocks;
1327	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1328	     md_block++)
1329		pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1330}
1331
1332/**
1333 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1334 * @tmp_addr: the start of the region served
1335 * @map_size: size of the region served
1336 *
1337 * This is responsible for creating the chunks that serve the first chunk.  The
1338 * base_addr is page aligned down of @tmp_addr while the region end is page
1339 * aligned up.  Offsets are kept track of to determine the region served. All
1340 * this is done to appease the bitmap allocator in avoiding partial blocks.
1341 *
1342 * RETURNS:
1343 * Chunk serving the region at @tmp_addr of @map_size.
1344 */
1345static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1346							 int map_size)
1347{
1348	struct pcpu_chunk *chunk;
1349	unsigned long aligned_addr;
1350	int start_offset, offset_bits, region_size, region_bits;
1351	size_t alloc_size;
1352
1353	/* region calculations */
1354	aligned_addr = tmp_addr & PAGE_MASK;
1355
1356	start_offset = tmp_addr - aligned_addr;
1357	region_size = ALIGN(start_offset + map_size, PAGE_SIZE);
1358
1359	/* allocate chunk */
1360	alloc_size = struct_size(chunk, populated,
1361				 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1362	chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1363	if (!chunk)
1364		panic("%s: Failed to allocate %zu bytes\n", __func__,
1365		      alloc_size);
1366
1367	INIT_LIST_HEAD(&chunk->list);
 
1368
1369	chunk->base_addr = (void *)aligned_addr;
1370	chunk->start_offset = start_offset;
1371	chunk->end_offset = region_size - chunk->start_offset - map_size;
1372
1373	chunk->nr_pages = region_size >> PAGE_SHIFT;
1374	region_bits = pcpu_chunk_map_bits(chunk);
1375
1376	alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1377	chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1378	if (!chunk->alloc_map)
1379		panic("%s: Failed to allocate %zu bytes\n", __func__,
1380		      alloc_size);
1381
1382	alloc_size =
1383		BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1384	chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1385	if (!chunk->bound_map)
1386		panic("%s: Failed to allocate %zu bytes\n", __func__,
1387		      alloc_size);
1388
1389	alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1390	chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1391	if (!chunk->md_blocks)
1392		panic("%s: Failed to allocate %zu bytes\n", __func__,
1393		      alloc_size);
1394
1395#ifdef NEED_PCPUOBJ_EXT
1396	/* first chunk is free to use */
1397	chunk->obj_exts = NULL;
1398#endif
1399	pcpu_init_md_blocks(chunk);
1400
1401	/* manage populated page bitmap */
1402	chunk->immutable = true;
1403	bitmap_fill(chunk->populated, chunk->nr_pages);
1404	chunk->nr_populated = chunk->nr_pages;
1405	chunk->nr_empty_pop_pages = chunk->nr_pages;
1406
1407	chunk->free_bytes = map_size;
1408
1409	if (chunk->start_offset) {
1410		/* hide the beginning of the bitmap */
1411		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1412		bitmap_set(chunk->alloc_map, 0, offset_bits);
1413		set_bit(0, chunk->bound_map);
1414		set_bit(offset_bits, chunk->bound_map);
1415
1416		chunk->chunk_md.first_free = offset_bits;
1417
1418		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1419	}
1420
1421	if (chunk->end_offset) {
1422		/* hide the end of the bitmap */
1423		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1424		bitmap_set(chunk->alloc_map,
1425			   pcpu_chunk_map_bits(chunk) - offset_bits,
1426			   offset_bits);
1427		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1428			chunk->bound_map);
1429		set_bit(region_bits, chunk->bound_map);
1430
1431		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1432					     - offset_bits, offset_bits);
 
 
 
 
 
 
 
 
 
 
 
1433	}
1434
1435	return chunk;
 
1436}
1437
1438static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1439{
1440	struct pcpu_chunk *chunk;
1441	int region_bits;
1442
1443	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1444	if (!chunk)
1445		return NULL;
1446
1447	INIT_LIST_HEAD(&chunk->list);
1448	chunk->nr_pages = pcpu_unit_pages;
1449	region_bits = pcpu_chunk_map_bits(chunk);
1450
1451	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1452					   sizeof(chunk->alloc_map[0]), gfp);
1453	if (!chunk->alloc_map)
1454		goto alloc_map_fail;
1455
1456	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1457					   sizeof(chunk->bound_map[0]), gfp);
1458	if (!chunk->bound_map)
1459		goto bound_map_fail;
1460
1461	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1462					   sizeof(chunk->md_blocks[0]), gfp);
1463	if (!chunk->md_blocks)
1464		goto md_blocks_fail;
1465
1466#ifdef NEED_PCPUOBJ_EXT
1467	if (need_pcpuobj_ext()) {
1468		chunk->obj_exts =
1469			pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1470					sizeof(struct pcpuobj_ext), gfp);
1471		if (!chunk->obj_exts)
1472			goto objcg_fail;
1473	}
1474#endif
1475
1476	pcpu_init_md_blocks(chunk);
 
 
 
1477
1478	/* init metadata */
1479	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
 
1480
1481	return chunk;
1482
1483#ifdef NEED_PCPUOBJ_EXT
1484objcg_fail:
1485	pcpu_mem_free(chunk->md_blocks);
1486#endif
1487md_blocks_fail:
1488	pcpu_mem_free(chunk->bound_map);
1489bound_map_fail:
1490	pcpu_mem_free(chunk->alloc_map);
1491alloc_map_fail:
1492	pcpu_mem_free(chunk);
1493
1494	return NULL;
1495}
1496
1497static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1498{
1499	if (!chunk)
1500		return;
1501#ifdef NEED_PCPUOBJ_EXT
1502	pcpu_mem_free(chunk->obj_exts);
1503#endif
1504	pcpu_mem_free(chunk->md_blocks);
1505	pcpu_mem_free(chunk->bound_map);
1506	pcpu_mem_free(chunk->alloc_map);
1507	pcpu_mem_free(chunk);
1508}
1509
1510/**
1511 * pcpu_chunk_populated - post-population bookkeeping
1512 * @chunk: pcpu_chunk which got populated
1513 * @page_start: the start page
1514 * @page_end: the end page
1515 *
1516 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1517 * the bookkeeping information accordingly.  Must be called after each
1518 * successful population.
1519 */
1520static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1521				 int page_end)
1522{
1523	int nr = page_end - page_start;
1524
1525	lockdep_assert_held(&pcpu_lock);
1526
1527	bitmap_set(chunk->populated, page_start, nr);
1528	chunk->nr_populated += nr;
1529	pcpu_nr_populated += nr;
1530
1531	pcpu_update_empty_pages(chunk, nr);
1532}
1533
1534/**
1535 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1536 * @chunk: pcpu_chunk which got depopulated
1537 * @page_start: the start page
1538 * @page_end: the end page
1539 *
1540 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1541 * Update the bookkeeping information accordingly.  Must be called after
1542 * each successful depopulation.
1543 */
1544static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1545				   int page_start, int page_end)
1546{
1547	int nr = page_end - page_start;
1548
1549	lockdep_assert_held(&pcpu_lock);
1550
1551	bitmap_clear(chunk->populated, page_start, nr);
1552	chunk->nr_populated -= nr;
1553	pcpu_nr_populated -= nr;
1554
1555	pcpu_update_empty_pages(chunk, -nr);
1556}
1557
1558/*
1559 * Chunk management implementation.
1560 *
1561 * To allow different implementations, chunk alloc/free and
1562 * [de]population are implemented in a separate file which is pulled
1563 * into this file and compiled together.  The following functions
1564 * should be implemented.
1565 *
1566 * pcpu_populate_chunk		- populate the specified range of a chunk
1567 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1568 * pcpu_post_unmap_tlb_flush	- flush tlb for the specified range of a chunk
1569 * pcpu_create_chunk		- create a new chunk
1570 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1571 * pcpu_addr_to_page		- translate address to physical address
1572 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1573 */
1574static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1575			       int page_start, int page_end, gfp_t gfp);
1576static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1577				  int page_start, int page_end);
1578static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
1579				      int page_start, int page_end);
1580static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1581static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1582static struct page *pcpu_addr_to_page(void *addr);
1583static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1584
1585#ifdef CONFIG_NEED_PER_CPU_KM
1586#include "percpu-km.c"
1587#else
1588#include "percpu-vm.c"
1589#endif
1590
1591/**
1592 * pcpu_chunk_addr_search - determine chunk containing specified address
1593 * @addr: address for which the chunk needs to be determined.
1594 *
1595 * This is an internal function that handles all but static allocations.
1596 * Static percpu address values should never be passed into the allocator.
1597 *
1598 * RETURNS:
1599 * The address of the found chunk.
1600 */
1601static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1602{
1603	/* is it in the dynamic region (first chunk)? */
1604	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
 
 
 
1605		return pcpu_first_chunk;
1606
1607	/* is it in the reserved region? */
1608	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1609		return pcpu_reserved_chunk;
1610
1611	/*
1612	 * The address is relative to unit0 which might be unused and
1613	 * thus unmapped.  Offset the address to the unit space of the
1614	 * current processor before looking it up in the vmalloc
1615	 * space.  Note that any possible cpu id can be used here, so
1616	 * there's no need to worry about preemption or cpu hotplug.
1617	 */
1618	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1619	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1620}
1621
1622#ifdef CONFIG_MEMCG
1623static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1624				      struct obj_cgroup **objcgp)
1625{
1626	struct obj_cgroup *objcg;
1627
1628	if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT))
1629		return true;
1630
1631	objcg = current_obj_cgroup();
1632	if (!objcg)
1633		return true;
1634
1635	if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size)))
1636		return false;
1637
1638	*objcgp = objcg;
1639	return true;
1640}
1641
1642static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1643				       struct pcpu_chunk *chunk, int off,
1644				       size_t size)
1645{
1646	if (!objcg)
1647		return;
1648
1649	if (likely(chunk && chunk->obj_exts)) {
1650		obj_cgroup_get(objcg);
1651		chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = objcg;
1652
1653		rcu_read_lock();
1654		mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1655				pcpu_obj_full_size(size));
1656		rcu_read_unlock();
1657	} else {
1658		obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1659	}
1660}
1661
1662static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1663{
1664	struct obj_cgroup *objcg;
1665
1666	if (unlikely(!chunk->obj_exts))
1667		return;
1668
1669	objcg = chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup;
1670	if (!objcg)
1671		return;
1672	chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].cgroup = NULL;
1673
1674	obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size));
1675
1676	rcu_read_lock();
1677	mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1678			-pcpu_obj_full_size(size));
1679	rcu_read_unlock();
1680
1681	obj_cgroup_put(objcg);
1682}
1683
1684#else /* CONFIG_MEMCG */
1685static bool
1686pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1687{
1688	return true;
1689}
1690
1691static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1692				       struct pcpu_chunk *chunk, int off,
1693				       size_t size)
1694{
1695}
1696
1697static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1698{
1699}
1700#endif /* CONFIG_MEMCG */
1701
1702#ifdef CONFIG_MEM_ALLOC_PROFILING
1703static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off,
1704				      size_t size)
1705{
1706	if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts)) {
1707		alloc_tag_add(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag,
1708			      current->alloc_tag, size);
1709	}
1710}
1711
1712static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1713{
1714	if (mem_alloc_profiling_enabled() && likely(chunk->obj_exts))
1715		alloc_tag_sub(&chunk->obj_exts[off >> PCPU_MIN_ALLOC_SHIFT].tag, size);
1716}
1717#else
1718static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk *chunk, int off,
1719				      size_t size)
1720{
1721}
1722
1723static void pcpu_alloc_tag_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1724{
1725}
1726#endif
1727
1728/**
1729 * pcpu_alloc - the percpu allocator
1730 * @size: size of area to allocate in bytes
1731 * @align: alignment of area (max PAGE_SIZE)
1732 * @reserved: allocate from the reserved chunk if available
1733 * @gfp: allocation flags
1734 *
1735 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1736 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1737 * then no warning will be triggered on invalid or failed allocation
1738 * requests.
1739 *
1740 * RETURNS:
1741 * Percpu pointer to the allocated area on success, NULL on failure.
1742 */
1743void __percpu *pcpu_alloc_noprof(size_t size, size_t align, bool reserved,
1744				 gfp_t gfp)
1745{
1746	gfp_t pcpu_gfp;
1747	bool is_atomic;
1748	bool do_warn;
1749	struct obj_cgroup *objcg = NULL;
1750	static int warn_limit = 10;
1751	struct pcpu_chunk *chunk, *next;
1752	const char *err;
1753	int slot, off, cpu, ret;
1754	unsigned long flags;
1755	void __percpu *ptr;
1756	size_t bits, bit_align;
1757
1758	gfp = current_gfp_context(gfp);
1759	/* whitelisted flags that can be passed to the backing allocators */
1760	pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1761	is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1762	do_warn = !(gfp & __GFP_NOWARN);
1763
1764	/*
1765	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1766	 * therefore alignment must be a minimum of that many bytes.
1767	 * An allocation may have internal fragmentation from rounding up
1768	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1769	 */
1770	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1771		align = PCPU_MIN_ALLOC_SIZE;
1772
1773	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1774	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1775	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1776
1777	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1778		     !is_power_of_2(align))) {
1779		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1780		     size, align);
1781		return NULL;
1782	}
1783
1784	if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg)))
 
 
1785		return NULL;
1786
1787	if (!is_atomic) {
1788		/*
1789		 * pcpu_balance_workfn() allocates memory under this mutex,
1790		 * and it may wait for memory reclaim. Allow current task
1791		 * to become OOM victim, in case of memory pressure.
1792		 */
1793		if (gfp & __GFP_NOFAIL) {
1794			mutex_lock(&pcpu_alloc_mutex);
1795		} else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1796			pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1797			return NULL;
1798		}
1799	}
1800
 
1801	spin_lock_irqsave(&pcpu_lock, flags);
1802
1803	/* serve reserved allocations from the reserved chunk if available */
1804	if (reserved && pcpu_reserved_chunk) {
1805		chunk = pcpu_reserved_chunk;
1806
1807		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1808		if (off < 0) {
1809			err = "alloc from reserved chunk failed";
1810			goto fail_unlock;
1811		}
1812
1813		off = pcpu_alloc_area(chunk, bits, bit_align, off);
 
 
 
 
 
 
 
 
 
1814		if (off >= 0)
1815			goto area_found;
1816
1817		err = "alloc from reserved chunk failed";
1818		goto fail_unlock;
1819	}
1820
1821restart:
1822	/* search through normal chunks */
1823	for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) {
1824		list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot],
1825					 list) {
1826			off = pcpu_find_block_fit(chunk, bits, bit_align,
1827						  is_atomic);
1828			if (off < 0) {
1829				if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1830					pcpu_chunk_move(chunk, 0);
1831				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832			}
1833
1834			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1835			if (off >= 0) {
1836				pcpu_reintegrate_chunk(chunk);
1837				goto area_found;
1838			}
1839		}
1840	}
1841
 
1842	spin_unlock_irqrestore(&pcpu_lock, flags);
1843
1844	if (is_atomic) {
1845		err = "atomic alloc failed, no space left";
1846		goto fail;
1847	}
1848
1849	/* No space left.  Create a new chunk. */
1850	if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) {
1851		chunk = pcpu_create_chunk(pcpu_gfp);
1852		if (!chunk) {
1853			err = "failed to allocate new chunk";
1854			goto fail;
1855		}
1856
1857		spin_lock_irqsave(&pcpu_lock, flags);
1858		pcpu_chunk_relocate(chunk, -1);
1859	} else {
1860		spin_lock_irqsave(&pcpu_lock, flags);
1861	}
1862
 
 
1863	goto restart;
1864
1865area_found:
1866	pcpu_stats_area_alloc(chunk, size);
1867
1868	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1869		pcpu_schedule_balance_work();
1870
1871	spin_unlock_irqrestore(&pcpu_lock, flags);
1872
1873	/* populate if not all pages are already there */
1874	if (!is_atomic) {
1875		unsigned int page_end, rs, re;
1876
1877		rs = PFN_DOWN(off);
1878		page_end = PFN_UP(off + size);
1879
1880		for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) {
1881			WARN_ON(chunk->immutable);
1882
1883			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1884
1885			spin_lock_irqsave(&pcpu_lock, flags);
1886			if (ret) {
1887				pcpu_free_area(chunk, off);
1888				err = "failed to populate";
1889				goto fail_unlock;
1890			}
1891			pcpu_chunk_populated(chunk, rs, re);
1892			spin_unlock_irqrestore(&pcpu_lock, flags);
1893		}
1894
1895		mutex_unlock(&pcpu_alloc_mutex);
1896	}
1897
1898	/* clear the areas and return address relative to base address */
1899	for_each_possible_cpu(cpu)
1900		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1901
 
1902	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1903	kmemleak_alloc_percpu(ptr, size, gfp);
1904
1905	trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align,
1906				  chunk->base_addr, off, ptr,
1907				  pcpu_obj_full_size(size), gfp);
1908
1909	pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1910
1911	pcpu_alloc_tag_alloc_hook(chunk, off, size);
1912
1913	return ptr;
1914
1915fail_unlock:
1916	spin_unlock_irqrestore(&pcpu_lock, flags);
1917fail:
1918	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1919
1920	if (do_warn && warn_limit) {
1921		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1922			size, align, is_atomic, err);
1923		if (!is_atomic)
1924			dump_stack();
1925		if (!--warn_limit)
1926			pr_info("limit reached, disable warning\n");
1927	}
1928
1929	if (is_atomic) {
1930		/* see the flag handling in pcpu_balance_workfn() */
1931		pcpu_atomic_alloc_failed = true;
1932		pcpu_schedule_balance_work();
1933	} else {
1934		mutex_unlock(&pcpu_alloc_mutex);
1935	}
1936
1937	pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1938
1939	return NULL;
1940}
1941EXPORT_SYMBOL_GPL(pcpu_alloc_noprof);
1942
1943/**
1944 * pcpu_balance_free - manage the amount of free chunks
1945 * @empty_only: free chunks only if there are no populated pages
 
1946 *
1947 * If empty_only is %false, reclaim all fully free chunks regardless of the
1948 * number of populated pages.  Otherwise, only reclaim chunks that have no
1949 * populated pages.
1950 *
1951 * CONTEXT:
1952 * pcpu_lock (can be dropped temporarily)
 
 
 
1953 */
1954static void pcpu_balance_free(bool empty_only)
1955{
1956	LIST_HEAD(to_free);
1957	struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot];
1958	struct pcpu_chunk *chunk, *next;
1959
1960	lockdep_assert_held(&pcpu_lock);
1961
1962	/*
1963	 * There's no reason to keep around multiple unused chunks and VM
1964	 * areas can be scarce.  Destroy all free chunks except for one.
1965	 */
1966	list_for_each_entry_safe(chunk, next, free_head, list) {
1967		WARN_ON(chunk->immutable);
1968
1969		/* spare the first one */
1970		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1971			continue;
1972
1973		if (!empty_only || chunk->nr_empty_pop_pages == 0)
1974			list_move(&chunk->list, &to_free);
1975	}
1976
1977	if (list_empty(&to_free))
1978		return;
1979
1980	spin_unlock_irq(&pcpu_lock);
1981	list_for_each_entry_safe(chunk, next, &to_free, list) {
1982		unsigned int rs, re;
1983
1984		for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
1985			pcpu_depopulate_chunk(chunk, rs, re);
1986			spin_lock_irq(&pcpu_lock);
1987			pcpu_chunk_depopulated(chunk, rs, re);
1988			spin_unlock_irq(&pcpu_lock);
1989		}
1990		pcpu_destroy_chunk(chunk);
1991		cond_resched();
1992	}
1993	spin_lock_irq(&pcpu_lock);
1994}
 
1995
1996/**
1997 * pcpu_balance_populated - manage the amount of populated pages
 
 
1998 *
1999 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2000 * It is possible that this is called when physical memory is scarce causing
2001 * OOM killer to be triggered.  We should avoid doing so until an actual
2002 * allocation causes the failure as it is possible that requests can be
2003 * serviced from already backed regions.
2004 *
2005 * CONTEXT:
2006 * pcpu_lock (can be dropped temporarily)
 
 
 
2007 */
2008static void pcpu_balance_populated(void)
2009{
2010	/* gfp flags passed to underlying allocators */
2011	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
2012	struct pcpu_chunk *chunk;
2013	int slot, nr_to_pop, ret;
2014
2015	lockdep_assert_held(&pcpu_lock);
2016
2017	/*
2018	 * Ensure there are certain number of free populated pages for
2019	 * atomic allocs.  Fill up from the most packed so that atomic
2020	 * allocs don't increase fragmentation.  If atomic allocation
2021	 * failed previously, always populate the maximum amount.  This
2022	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2023	 * failing indefinitely; however, large atomic allocs are not
2024	 * something we support properly and can be highly unreliable and
2025	 * inefficient.
2026	 */
2027retry_pop:
2028	if (pcpu_atomic_alloc_failed) {
2029		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
2030		/* best effort anyway, don't worry about synchronization */
2031		pcpu_atomic_alloc_failed = false;
2032	} else {
2033		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2034				  pcpu_nr_empty_pop_pages,
2035				  0, PCPU_EMPTY_POP_PAGES_HIGH);
2036	}
2037
2038	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) {
2039		unsigned int nr_unpop = 0, rs, re;
2040
2041		if (!nr_to_pop)
2042			break;
2043
2044		list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) {
2045			nr_unpop = chunk->nr_pages - chunk->nr_populated;
2046			if (nr_unpop)
2047				break;
2048		}
2049
2050		if (!nr_unpop)
2051			continue;
2052
2053		/* @chunk can't go away while pcpu_alloc_mutex is held */
2054		for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) {
2055			int nr = min_t(int, re - rs, nr_to_pop);
2056
2057			spin_unlock_irq(&pcpu_lock);
2058			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2059			cond_resched();
2060			spin_lock_irq(&pcpu_lock);
2061			if (!ret) {
2062				nr_to_pop -= nr;
2063				pcpu_chunk_populated(chunk, rs, rs + nr);
2064			} else {
2065				nr_to_pop = 0;
2066			}
2067
2068			if (!nr_to_pop)
2069				break;
2070		}
2071	}
2072
2073	if (nr_to_pop) {
2074		/* ran out of chunks to populate, create a new one and retry */
2075		spin_unlock_irq(&pcpu_lock);
2076		chunk = pcpu_create_chunk(gfp);
2077		cond_resched();
2078		spin_lock_irq(&pcpu_lock);
2079		if (chunk) {
2080			pcpu_chunk_relocate(chunk, -1);
2081			goto retry_pop;
2082		}
2083	}
2084}
2085
2086/**
2087 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
 
2088 *
2089 * Scan over chunks in the depopulate list and try to release unused populated
2090 * pages back to the system.  Depopulated chunks are sidelined to prevent
2091 * repopulating these pages unless required.  Fully free chunks are reintegrated
2092 * and freed accordingly (1 is kept around).  If we drop below the empty
2093 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2094 * Each chunk is scanned in the reverse order to keep populated pages close to
2095 * the beginning of the chunk.
2096 *
2097 * CONTEXT:
2098 * pcpu_lock (can be dropped temporarily)
2099 *
2100 */
2101static void pcpu_reclaim_populated(void)
2102{
2103	struct pcpu_chunk *chunk;
2104	struct pcpu_block_md *block;
2105	int freed_page_start, freed_page_end;
2106	int i, end;
2107	bool reintegrate;
2108
2109	lockdep_assert_held(&pcpu_lock);
 
2110
2111	/*
2112	 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2113	 * longer discoverable to allocations whom may populate pages.  The only
2114	 * other accessor is the free path which only returns area back to the
2115	 * allocator not touching the populated bitmap.
2116	 */
2117	while ((chunk = list_first_entry_or_null(
2118			&pcpu_chunk_lists[pcpu_to_depopulate_slot],
2119			struct pcpu_chunk, list))) {
2120		WARN_ON(chunk->immutable);
2121
2122		/*
2123		 * Scan chunk's pages in the reverse order to keep populated
2124		 * pages close to the beginning of the chunk.
2125		 */
2126		freed_page_start = chunk->nr_pages;
2127		freed_page_end = 0;
2128		reintegrate = false;
2129		for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) {
2130			/* no more work to do */
2131			if (chunk->nr_empty_pop_pages == 0)
2132				break;
2133
2134			/* reintegrate chunk to prevent atomic alloc failures */
2135			if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) {
2136				reintegrate = true;
2137				break;
2138			}
2139
2140			/*
2141			 * If the page is empty and populated, start or
2142			 * extend the (i, end) range.  If i == 0, decrease
2143			 * i and perform the depopulation to cover the last
2144			 * (first) page in the chunk.
2145			 */
2146			block = chunk->md_blocks + i;
2147			if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS &&
2148			    test_bit(i, chunk->populated)) {
2149				if (end == -1)
2150					end = i;
2151				if (i > 0)
2152					continue;
2153				i--;
2154			}
2155
2156			/* depopulate if there is an active range */
2157			if (end == -1)
2158				continue;
2159
2160			spin_unlock_irq(&pcpu_lock);
2161			pcpu_depopulate_chunk(chunk, i + 1, end + 1);
2162			cond_resched();
2163			spin_lock_irq(&pcpu_lock);
2164
2165			pcpu_chunk_depopulated(chunk, i + 1, end + 1);
2166			freed_page_start = min(freed_page_start, i + 1);
2167			freed_page_end = max(freed_page_end, end + 1);
2168
2169			/* reset the range and continue */
2170			end = -1;
2171		}
2172
2173		/* batch tlb flush per chunk to amortize cost */
2174		if (freed_page_start < freed_page_end) {
2175			spin_unlock_irq(&pcpu_lock);
2176			pcpu_post_unmap_tlb_flush(chunk,
2177						  freed_page_start,
2178						  freed_page_end);
2179			cond_resched();
2180			spin_lock_irq(&pcpu_lock);
2181		}
2182
2183		if (reintegrate || chunk->free_bytes == pcpu_unit_size)
2184			pcpu_reintegrate_chunk(chunk);
2185		else
2186			list_move_tail(&chunk->list,
2187				       &pcpu_chunk_lists[pcpu_sidelined_slot]);
2188	}
2189}
2190
2191/**
2192 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2193 * @work: unused
2194 *
2195 * For each chunk type, manage the number of fully free chunks and the number of
2196 * populated pages.  An important thing to consider is when pages are freed and
2197 * how they contribute to the global counts.
2198 */
2199static void pcpu_balance_workfn(struct work_struct *work)
2200{
2201	/*
2202	 * pcpu_balance_free() is called twice because the first time we may
2203	 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2204	 * to grow other chunks.  This then gives pcpu_reclaim_populated() time
2205	 * to move fully free chunks to the active list to be freed if
2206	 * appropriate.
2207	 */
2208	mutex_lock(&pcpu_alloc_mutex);
2209	spin_lock_irq(&pcpu_lock);
2210
2211	pcpu_balance_free(false);
2212	pcpu_reclaim_populated();
2213	pcpu_balance_populated();
2214	pcpu_balance_free(true);
2215
2216	spin_unlock_irq(&pcpu_lock);
2217	mutex_unlock(&pcpu_alloc_mutex);
2218}
2219
2220/**
2221 * free_percpu - free percpu area
2222 * @ptr: pointer to area to free
2223 *
2224 * Free percpu area @ptr.
2225 *
2226 * CONTEXT:
2227 * Can be called from atomic context.
2228 */
2229void free_percpu(void __percpu *ptr)
2230{
2231	void *addr;
2232	struct pcpu_chunk *chunk;
2233	unsigned long flags;
2234	int size, off;
2235	bool need_balance = false;
2236
2237	if (!ptr)
2238		return;
2239
2240	kmemleak_free_percpu(ptr);
2241
2242	addr = __pcpu_ptr_to_addr(ptr);
2243	chunk = pcpu_chunk_addr_search(addr);
2244	off = addr - chunk->base_addr;
2245
2246	spin_lock_irqsave(&pcpu_lock, flags);
2247	size = pcpu_free_area(chunk, off);
2248
2249	pcpu_alloc_tag_free_hook(chunk, off, size);
 
2250
2251	pcpu_memcg_free_hook(chunk, off, size);
2252
2253	/*
2254	 * If there are more than one fully free chunks, wake up grim reaper.
2255	 * If the chunk is isolated, it may be in the process of being
2256	 * reclaimed.  Let reclaim manage cleaning up of that chunk.
2257	 */
2258	if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) {
2259		struct pcpu_chunk *pos;
2260
2261		list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list)
2262			if (pos != chunk) {
2263				need_balance = true;
2264				break;
2265			}
2266	} else if (pcpu_should_reclaim_chunk(chunk)) {
2267		pcpu_isolate_chunk(chunk);
2268		need_balance = true;
2269	}
2270
2271	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2272
2273	spin_unlock_irqrestore(&pcpu_lock, flags);
2274
2275	if (need_balance)
2276		pcpu_schedule_balance_work();
2277}
2278EXPORT_SYMBOL_GPL(free_percpu);
2279
2280bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2281{
2282#ifdef CONFIG_SMP
2283	const size_t static_size = __per_cpu_end - __per_cpu_start;
2284	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2285	unsigned int cpu;
2286
2287	for_each_possible_cpu(cpu) {
2288		void *start = per_cpu_ptr(base, cpu);
2289		void *va = (void *)addr;
2290
2291		if (va >= start && va < start + static_size) {
2292			if (can_addr) {
2293				*can_addr = (unsigned long) (va - start);
2294				*can_addr += (unsigned long)
2295					per_cpu_ptr(base, get_boot_cpu_id());
2296			}
2297			return true;
2298		}
2299	}
2300#endif
2301	/* on UP, can't distinguish from other static vars, always false */
2302	return false;
2303}
2304
2305/**
2306 * is_kernel_percpu_address - test whether address is from static percpu area
2307 * @addr: address to test
2308 *
2309 * Test whether @addr belongs to in-kernel static percpu area.  Module
2310 * static percpu areas are not considered.  For those, use
2311 * is_module_percpu_address().
2312 *
2313 * RETURNS:
2314 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2315 */
2316bool is_kernel_percpu_address(unsigned long addr)
2317{
2318	return __is_kernel_percpu_address(addr, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
2319}
2320
2321/**
2322 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2323 * @addr: the address to be converted to physical address
2324 *
2325 * Given @addr which is dereferenceable address obtained via one of
2326 * percpu access macros, this function translates it into its physical
2327 * address.  The caller is responsible for ensuring @addr stays valid
2328 * until this function finishes.
2329 *
2330 * percpu allocator has special setup for the first chunk, which currently
2331 * supports either embedding in linear address space or vmalloc mapping,
2332 * and, from the second one, the backing allocator (currently either vm or
2333 * km) provides translation.
2334 *
2335 * The addr can be translated simply without checking if it falls into the
2336 * first chunk. But the current code reflects better how percpu allocator
2337 * actually works, and the verification can discover both bugs in percpu
2338 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2339 * code.
2340 *
2341 * RETURNS:
2342 * The physical address for @addr.
2343 */
2344phys_addr_t per_cpu_ptr_to_phys(void *addr)
2345{
2346	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2347	bool in_first_chunk = false;
2348	unsigned long first_low, first_high;
2349	unsigned int cpu;
2350
2351	/*
2352	 * The following test on unit_low/high isn't strictly
2353	 * necessary but will speed up lookups of addresses which
2354	 * aren't in the first chunk.
2355	 *
2356	 * The address check is against full chunk sizes.  pcpu_base_addr
2357	 * points to the beginning of the first chunk including the
2358	 * static region.  Assumes good intent as the first chunk may
2359	 * not be full (ie. < pcpu_unit_pages in size).
2360	 */
2361	first_low = (unsigned long)pcpu_base_addr +
2362		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2363	first_high = (unsigned long)pcpu_base_addr +
2364		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2365	if ((unsigned long)addr >= first_low &&
2366	    (unsigned long)addr < first_high) {
2367		for_each_possible_cpu(cpu) {
2368			void *start = per_cpu_ptr(base, cpu);
2369
2370			if (addr >= start && addr < start + pcpu_unit_size) {
2371				in_first_chunk = true;
2372				break;
2373			}
2374		}
2375	}
2376
2377	if (in_first_chunk) {
2378		if (!is_vmalloc_addr(addr))
2379			return __pa(addr);
2380		else
2381			return page_to_phys(vmalloc_to_page(addr)) +
2382			       offset_in_page(addr);
2383	} else
2384		return page_to_phys(pcpu_addr_to_page(addr)) +
2385		       offset_in_page(addr);
2386}
2387
2388/**
2389 * pcpu_alloc_alloc_info - allocate percpu allocation info
2390 * @nr_groups: the number of groups
2391 * @nr_units: the number of units
2392 *
2393 * Allocate ai which is large enough for @nr_groups groups containing
2394 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
2395 * cpu_map array which is long enough for @nr_units and filled with
2396 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
2397 * pointer of other groups.
2398 *
2399 * RETURNS:
2400 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2401 * failure.
2402 */
2403struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2404						      int nr_units)
2405{
2406	struct pcpu_alloc_info *ai;
2407	size_t base_size, ai_size;
2408	void *ptr;
2409	int unit;
2410
2411	base_size = ALIGN(struct_size(ai, groups, nr_groups),
2412			  __alignof__(ai->groups[0].cpu_map[0]));
2413	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2414
2415	ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2416	if (!ptr)
2417		return NULL;
2418	ai = ptr;
2419	ptr += base_size;
2420
2421	ai->groups[0].cpu_map = ptr;
2422
2423	for (unit = 0; unit < nr_units; unit++)
2424		ai->groups[0].cpu_map[unit] = NR_CPUS;
2425
2426	ai->nr_groups = nr_groups;
2427	ai->__ai_size = PFN_ALIGN(ai_size);
2428
2429	return ai;
2430}
2431
2432/**
2433 * pcpu_free_alloc_info - free percpu allocation info
2434 * @ai: pcpu_alloc_info to free
2435 *
2436 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2437 */
2438void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2439{
2440	memblock_free(ai, ai->__ai_size);
2441}
2442
2443/**
2444 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2445 * @lvl: loglevel
2446 * @ai: allocation info to dump
2447 *
2448 * Print out information about @ai using loglevel @lvl.
2449 */
2450static void pcpu_dump_alloc_info(const char *lvl,
2451				 const struct pcpu_alloc_info *ai)
2452{
2453	int group_width = 1, cpu_width = 1, width;
2454	char empty_str[] = "--------";
2455	int alloc = 0, alloc_end = 0;
2456	int group, v;
2457	int upa, apl;	/* units per alloc, allocs per line */
2458
2459	v = ai->nr_groups;
2460	while (v /= 10)
2461		group_width++;
2462
2463	v = num_possible_cpus();
2464	while (v /= 10)
2465		cpu_width++;
2466	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2467
2468	upa = ai->alloc_size / ai->unit_size;
2469	width = upa * (cpu_width + 1) + group_width + 3;
2470	apl = rounddown_pow_of_two(max(60 / width, 1));
2471
2472	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2473	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2474	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2475
2476	for (group = 0; group < ai->nr_groups; group++) {
2477		const struct pcpu_group_info *gi = &ai->groups[group];
2478		int unit = 0, unit_end = 0;
2479
2480		BUG_ON(gi->nr_units % upa);
2481		for (alloc_end += gi->nr_units / upa;
2482		     alloc < alloc_end; alloc++) {
2483			if (!(alloc % apl)) {
2484				pr_cont("\n");
2485				printk("%spcpu-alloc: ", lvl);
2486			}
2487			pr_cont("[%0*d] ", group_width, group);
2488
2489			for (unit_end += upa; unit < unit_end; unit++)
2490				if (gi->cpu_map[unit] != NR_CPUS)
2491					pr_cont("%0*d ",
2492						cpu_width, gi->cpu_map[unit]);
2493				else
2494					pr_cont("%s ", empty_str);
2495		}
2496	}
2497	pr_cont("\n");
2498}
2499
2500/**
2501 * pcpu_setup_first_chunk - initialize the first percpu chunk
2502 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2503 * @base_addr: mapped address
2504 *
2505 * Initialize the first percpu chunk which contains the kernel static
2506 * percpu area.  This function is to be called from arch percpu area
2507 * setup path.
2508 *
2509 * @ai contains all information necessary to initialize the first
2510 * chunk and prime the dynamic percpu allocator.
2511 *
2512 * @ai->static_size is the size of static percpu area.
2513 *
2514 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2515 * reserve after the static area in the first chunk.  This reserves
2516 * the first chunk such that it's available only through reserved
2517 * percpu allocation.  This is primarily used to serve module percpu
2518 * static areas on architectures where the addressing model has
2519 * limited offset range for symbol relocations to guarantee module
2520 * percpu symbols fall inside the relocatable range.
2521 *
2522 * @ai->dyn_size determines the number of bytes available for dynamic
2523 * allocation in the first chunk.  The area between @ai->static_size +
2524 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2525 *
2526 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2527 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2528 * @ai->dyn_size.
2529 *
2530 * @ai->atom_size is the allocation atom size and used as alignment
2531 * for vm areas.
2532 *
2533 * @ai->alloc_size is the allocation size and always multiple of
2534 * @ai->atom_size.  This is larger than @ai->atom_size if
2535 * @ai->unit_size is larger than @ai->atom_size.
2536 *
2537 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2538 * percpu areas.  Units which should be colocated are put into the
2539 * same group.  Dynamic VM areas will be allocated according to these
2540 * groupings.  If @ai->nr_groups is zero, a single group containing
2541 * all units is assumed.
2542 *
2543 * The caller should have mapped the first chunk at @base_addr and
2544 * copied static data to each unit.
2545 *
2546 * The first chunk will always contain a static and a dynamic region.
2547 * However, the static region is not managed by any chunk.  If the first
2548 * chunk also contains a reserved region, it is served by two chunks -
2549 * one for the reserved region and one for the dynamic region.  They
2550 * share the same vm, but use offset regions in the area allocation map.
2551 * The chunk serving the dynamic region is circulated in the chunk slots
2552 * and available for dynamic allocation like any other chunk.
 
 
2553 */
2554void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2555				   void *base_addr)
2556{
2557	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2558	size_t static_size, dyn_size;
 
 
 
 
2559	unsigned long *group_offsets;
2560	size_t *group_sizes;
2561	unsigned long *unit_off;
2562	unsigned int cpu;
2563	int *unit_map;
2564	int group, unit, i;
2565	unsigned long tmp_addr;
2566	size_t alloc_size;
2567
2568#define PCPU_SETUP_BUG_ON(cond)	do {					\
2569	if (unlikely(cond)) {						\
2570		pr_emerg("failed to initialize, %s\n", #cond);		\
2571		pr_emerg("cpu_possible_mask=%*pb\n",			\
2572			 cpumask_pr_args(cpu_possible_mask));		\
2573		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2574		BUG();							\
2575	}								\
2576} while (0)
2577
2578	/* sanity checks */
2579	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2580#ifdef CONFIG_SMP
2581	PCPU_SETUP_BUG_ON(!ai->static_size);
2582	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2583#endif
2584	PCPU_SETUP_BUG_ON(!base_addr);
2585	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2586	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2587	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2588	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2589	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2590	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2591	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2592	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2593			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2594	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2595
2596	/* process group information and build config tables accordingly */
2597	alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2598	group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2599	if (!group_offsets)
2600		panic("%s: Failed to allocate %zu bytes\n", __func__,
2601		      alloc_size);
2602
2603	alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2604	group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2605	if (!group_sizes)
2606		panic("%s: Failed to allocate %zu bytes\n", __func__,
2607		      alloc_size);
2608
2609	alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2610	unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2611	if (!unit_map)
2612		panic("%s: Failed to allocate %zu bytes\n", __func__,
2613		      alloc_size);
2614
2615	alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2616	unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2617	if (!unit_off)
2618		panic("%s: Failed to allocate %zu bytes\n", __func__,
2619		      alloc_size);
2620
2621	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2622		unit_map[cpu] = UINT_MAX;
2623
2624	pcpu_low_unit_cpu = NR_CPUS;
2625	pcpu_high_unit_cpu = NR_CPUS;
2626
2627	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2628		const struct pcpu_group_info *gi = &ai->groups[group];
2629
2630		group_offsets[group] = gi->base_offset;
2631		group_sizes[group] = gi->nr_units * ai->unit_size;
2632
2633		for (i = 0; i < gi->nr_units; i++) {
2634			cpu = gi->cpu_map[i];
2635			if (cpu == NR_CPUS)
2636				continue;
2637
2638			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2639			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2640			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2641
2642			unit_map[cpu] = unit + i;
2643			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2644
2645			/* determine low/high unit_cpu */
2646			if (pcpu_low_unit_cpu == NR_CPUS ||
2647			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2648				pcpu_low_unit_cpu = cpu;
2649			if (pcpu_high_unit_cpu == NR_CPUS ||
2650			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2651				pcpu_high_unit_cpu = cpu;
2652		}
2653	}
2654	pcpu_nr_units = unit;
2655
2656	for_each_possible_cpu(cpu)
2657		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2658
2659	/* we're done parsing the input, undefine BUG macro and dump config */
2660#undef PCPU_SETUP_BUG_ON
2661	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2662
2663	pcpu_nr_groups = ai->nr_groups;
2664	pcpu_group_offsets = group_offsets;
2665	pcpu_group_sizes = group_sizes;
2666	pcpu_unit_map = unit_map;
2667	pcpu_unit_offsets = unit_off;
2668
2669	/* determine basic parameters */
2670	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2671	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2672	pcpu_atom_size = ai->atom_size;
2673	pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated,
2674					     BITS_TO_LONGS(pcpu_unit_pages));
2675
2676	pcpu_stats_save_ai(ai);
2677
2678	/*
2679	 * Allocate chunk slots.  The slots after the active slots are:
2680	 *   sidelined_slot - isolated, depopulated chunks
2681	 *   free_slot - fully free chunks
2682	 *   to_depopulate_slot - isolated, chunks to depopulate
2683	 */
2684	pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1;
2685	pcpu_free_slot = pcpu_sidelined_slot + 1;
2686	pcpu_to_depopulate_slot = pcpu_free_slot + 1;
2687	pcpu_nr_slots = pcpu_to_depopulate_slot + 1;
2688	pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2689					  sizeof(pcpu_chunk_lists[0]),
2690					  SMP_CACHE_BYTES);
2691	if (!pcpu_chunk_lists)
2692		panic("%s: Failed to allocate %zu bytes\n", __func__,
2693		      pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]));
2694
2695	for (i = 0; i < pcpu_nr_slots; i++)
2696		INIT_LIST_HEAD(&pcpu_chunk_lists[i]);
2697
2698	/*
2699	 * The end of the static region needs to be aligned with the
2700	 * minimum allocation size as this offsets the reserved and
2701	 * dynamic region.  The first chunk ends page aligned by
2702	 * expanding the dynamic region, therefore the dynamic region
2703	 * can be shrunk to compensate while still staying above the
2704	 * configured sizes.
2705	 */
2706	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2707	dyn_size = ai->dyn_size - (static_size - ai->static_size);
2708
2709	/*
2710	 * Initialize first chunk:
2711	 * This chunk is broken up into 3 parts:
2712	 *		< static | [reserved] | dynamic >
2713	 * - static - there is no backing chunk because these allocations can
2714	 *   never be freed.
2715	 * - reserved (pcpu_reserved_chunk) - exists primarily to serve
2716	 *   allocations from module load.
2717	 * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first
2718	 *   chunk.
2719	 */
2720	tmp_addr = (unsigned long)base_addr + static_size;
2721	if (ai->reserved_size)
2722		pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr,
2723						ai->reserved_size);
2724	tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size;
2725	pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size);
 
 
 
 
 
 
 
2726
2727	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2728	pcpu_chunk_relocate(pcpu_first_chunk, -1);
 
 
 
 
 
2729
2730	/* include all regions of the first chunk */
2731	pcpu_nr_populated += PFN_DOWN(size_sum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2732
2733	pcpu_stats_chunk_alloc();
2734	trace_percpu_create_chunk(base_addr);
 
2735
2736	/* we're done */
2737	pcpu_base_addr = base_addr;
 
2738}
2739
2740#ifdef CONFIG_SMP
2741
2742const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2743	[PCPU_FC_AUTO]	= "auto",
2744	[PCPU_FC_EMBED]	= "embed",
2745	[PCPU_FC_PAGE]	= "page",
2746};
2747
2748enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2749
2750static int __init percpu_alloc_setup(char *str)
2751{
2752	if (!str)
2753		return -EINVAL;
2754
2755	if (0)
2756		/* nada */;
2757#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2758	else if (!strcmp(str, "embed"))
2759		pcpu_chosen_fc = PCPU_FC_EMBED;
2760#endif
2761#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2762	else if (!strcmp(str, "page"))
2763		pcpu_chosen_fc = PCPU_FC_PAGE;
2764#endif
2765	else
2766		pr_warn("unknown allocator %s specified\n", str);
2767
2768	return 0;
2769}
2770early_param("percpu_alloc", percpu_alloc_setup);
2771
2772/*
2773 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2774 * Build it if needed by the arch config or the generic setup is going
2775 * to be used.
2776 */
2777#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2778	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2779#define BUILD_EMBED_FIRST_CHUNK
2780#endif
2781
2782/* build pcpu_page_first_chunk() iff needed by the arch config */
2783#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2784#define BUILD_PAGE_FIRST_CHUNK
2785#endif
2786
2787/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2788#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2789/**
2790 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2791 * @reserved_size: the size of reserved percpu area in bytes
2792 * @dyn_size: minimum free size for dynamic allocation in bytes
2793 * @atom_size: allocation atom size
2794 * @cpu_distance_fn: callback to determine distance between cpus, optional
2795 *
2796 * This function determines grouping of units, their mappings to cpus
2797 * and other parameters considering needed percpu size, allocation
2798 * atom size and distances between CPUs.
2799 *
2800 * Groups are always multiples of atom size and CPUs which are of
2801 * LOCAL_DISTANCE both ways are grouped together and share space for
2802 * units in the same group.  The returned configuration is guaranteed
2803 * to have CPUs on different nodes on different groups and >=75% usage
2804 * of allocated virtual address space.
2805 *
2806 * RETURNS:
2807 * On success, pointer to the new allocation_info is returned.  On
2808 * failure, ERR_PTR value is returned.
2809 */
2810static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2811				size_t reserved_size, size_t dyn_size,
2812				size_t atom_size,
2813				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2814{
2815	static int group_map[NR_CPUS] __initdata;
2816	static int group_cnt[NR_CPUS] __initdata;
2817	static struct cpumask mask __initdata;
2818	const size_t static_size = __per_cpu_end - __per_cpu_start;
2819	int nr_groups = 1, nr_units = 0;
2820	size_t size_sum, min_unit_size, alloc_size;
2821	int upa, max_upa, best_upa;	/* units_per_alloc */
2822	int last_allocs, group, unit;
2823	unsigned int cpu, tcpu;
2824	struct pcpu_alloc_info *ai;
2825	unsigned int *cpu_map;
2826
2827	/* this function may be called multiple times */
2828	memset(group_map, 0, sizeof(group_map));
2829	memset(group_cnt, 0, sizeof(group_cnt));
2830	cpumask_clear(&mask);
2831
2832	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2833	size_sum = PFN_ALIGN(static_size + reserved_size +
2834			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2835	dyn_size = size_sum - static_size - reserved_size;
2836
2837	/*
2838	 * Determine min_unit_size, alloc_size and max_upa such that
2839	 * alloc_size is multiple of atom_size and is the smallest
2840	 * which can accommodate 4k aligned segments which are equal to
2841	 * or larger than min_unit_size.
2842	 */
2843	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2844
2845	/* determine the maximum # of units that can fit in an allocation */
2846	alloc_size = roundup(min_unit_size, atom_size);
2847	upa = alloc_size / min_unit_size;
2848	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2849		upa--;
2850	max_upa = upa;
2851
2852	cpumask_copy(&mask, cpu_possible_mask);
2853
2854	/* group cpus according to their proximity */
2855	for (group = 0; !cpumask_empty(&mask); group++) {
2856		/* pop the group's first cpu */
2857		cpu = cpumask_first(&mask);
2858		group_map[cpu] = group;
2859		group_cnt[group]++;
2860		cpumask_clear_cpu(cpu, &mask);
2861
2862		for_each_cpu(tcpu, &mask) {
2863			if (!cpu_distance_fn ||
2864			    (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2865			     cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2866				group_map[tcpu] = group;
2867				group_cnt[group]++;
2868				cpumask_clear_cpu(tcpu, &mask);
2869			}
2870		}
 
 
2871	}
2872	nr_groups = group;
2873
2874	/*
2875	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2876	 * Expand the unit_size until we use >= 75% of the units allocated.
2877	 * Related to atom_size, which could be much larger than the unit_size.
2878	 */
2879	last_allocs = INT_MAX;
2880	best_upa = 0;
2881	for (upa = max_upa; upa; upa--) {
2882		int allocs = 0, wasted = 0;
2883
2884		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2885			continue;
2886
2887		for (group = 0; group < nr_groups; group++) {
2888			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2889			allocs += this_allocs;
2890			wasted += this_allocs * upa - group_cnt[group];
2891		}
2892
2893		/*
2894		 * Don't accept if wastage is over 1/3.  The
2895		 * greater-than comparison ensures upa==1 always
2896		 * passes the following check.
2897		 */
2898		if (wasted > num_possible_cpus() / 3)
2899			continue;
2900
2901		/* and then don't consume more memory */
2902		if (allocs > last_allocs)
2903			break;
2904		last_allocs = allocs;
2905		best_upa = upa;
2906	}
2907	BUG_ON(!best_upa);
2908	upa = best_upa;
2909
2910	/* allocate and fill alloc_info */
2911	for (group = 0; group < nr_groups; group++)
2912		nr_units += roundup(group_cnt[group], upa);
2913
2914	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2915	if (!ai)
2916		return ERR_PTR(-ENOMEM);
2917	cpu_map = ai->groups[0].cpu_map;
2918
2919	for (group = 0; group < nr_groups; group++) {
2920		ai->groups[group].cpu_map = cpu_map;
2921		cpu_map += roundup(group_cnt[group], upa);
2922	}
2923
2924	ai->static_size = static_size;
2925	ai->reserved_size = reserved_size;
2926	ai->dyn_size = dyn_size;
2927	ai->unit_size = alloc_size / upa;
2928	ai->atom_size = atom_size;
2929	ai->alloc_size = alloc_size;
2930
2931	for (group = 0, unit = 0; group < nr_groups; group++) {
2932		struct pcpu_group_info *gi = &ai->groups[group];
2933
2934		/*
2935		 * Initialize base_offset as if all groups are located
2936		 * back-to-back.  The caller should update this to
2937		 * reflect actual allocation.
2938		 */
2939		gi->base_offset = unit * ai->unit_size;
2940
2941		for_each_possible_cpu(cpu)
2942			if (group_map[cpu] == group)
2943				gi->cpu_map[gi->nr_units++] = cpu;
2944		gi->nr_units = roundup(gi->nr_units, upa);
2945		unit += gi->nr_units;
2946	}
2947	BUG_ON(unit != nr_units);
2948
2949	return ai;
2950}
2951
2952static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align,
2953				   pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
2954{
2955	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
2956#ifdef CONFIG_NUMA
2957	int node = NUMA_NO_NODE;
2958	void *ptr;
2959
2960	if (cpu_to_nd_fn)
2961		node = cpu_to_nd_fn(cpu);
2962
2963	if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) {
2964		ptr = memblock_alloc_from(size, align, goal);
2965		pr_info("cpu %d has no node %d or node-local memory\n",
2966			cpu, node);
2967		pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
2968			 cpu, size, (u64)__pa(ptr));
2969	} else {
2970		ptr = memblock_alloc_try_nid(size, align, goal,
2971					     MEMBLOCK_ALLOC_ACCESSIBLE,
2972					     node);
2973
2974		pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
2975			 cpu, size, node, (u64)__pa(ptr));
2976	}
2977	return ptr;
2978#else
2979	return memblock_alloc_from(size, align, goal);
2980#endif
2981}
2982
2983static void __init pcpu_fc_free(void *ptr, size_t size)
2984{
2985	memblock_free(ptr, size);
2986}
2987#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2988
2989#if defined(BUILD_EMBED_FIRST_CHUNK)
2990/**
2991 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2992 * @reserved_size: the size of reserved percpu area in bytes
2993 * @dyn_size: minimum free size for dynamic allocation in bytes
2994 * @atom_size: allocation atom size
2995 * @cpu_distance_fn: callback to determine distance between cpus, optional
2996 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
 
2997 *
2998 * This is a helper to ease setting up embedded first percpu chunk and
2999 * can be called where pcpu_setup_first_chunk() is expected.
3000 *
3001 * If this function is used to setup the first chunk, it is allocated
3002 * by calling pcpu_fc_alloc and used as-is without being mapped into
3003 * vmalloc area.  Allocations are always whole multiples of @atom_size
3004 * aligned to @atom_size.
3005 *
3006 * This enables the first chunk to piggy back on the linear physical
3007 * mapping which often uses larger page size.  Please note that this
3008 * can result in very sparse cpu->unit mapping on NUMA machines thus
3009 * requiring large vmalloc address space.  Don't use this allocator if
3010 * vmalloc space is not orders of magnitude larger than distances
3011 * between node memory addresses (ie. 32bit NUMA machines).
3012 *
3013 * @dyn_size specifies the minimum dynamic area size.
3014 *
3015 * If the needed size is smaller than the minimum or specified unit
3016 * size, the leftover is returned using pcpu_fc_free.
3017 *
3018 * RETURNS:
3019 * 0 on success, -errno on failure.
3020 */
3021int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
3022				  size_t atom_size,
3023				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
3024				  pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
 
3025{
3026	void *base = (void *)ULONG_MAX;
3027	void **areas = NULL;
3028	struct pcpu_alloc_info *ai;
3029	size_t size_sum, areas_size;
3030	unsigned long max_distance;
3031	int group, i, highest_group, rc = 0;
3032
3033	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
3034				   cpu_distance_fn);
3035	if (IS_ERR(ai))
3036		return PTR_ERR(ai);
3037
3038	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
3039	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
3040
3041	areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
3042	if (!areas) {
3043		rc = -ENOMEM;
3044		goto out_free;
3045	}
3046
3047	/* allocate, copy and determine base address & max_distance */
3048	highest_group = 0;
3049	for (group = 0; group < ai->nr_groups; group++) {
3050		struct pcpu_group_info *gi = &ai->groups[group];
3051		unsigned int cpu = NR_CPUS;
3052		void *ptr;
3053
3054		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
3055			cpu = gi->cpu_map[i];
3056		BUG_ON(cpu == NR_CPUS);
3057
3058		/* allocate space for the whole group */
3059		ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn);
3060		if (!ptr) {
3061			rc = -ENOMEM;
3062			goto out_free_areas;
3063		}
3064		/* kmemleak tracks the percpu allocations separately */
3065		kmemleak_ignore_phys(__pa(ptr));
3066		areas[group] = ptr;
3067
3068		base = min(ptr, base);
3069		if (ptr > areas[highest_group])
3070			highest_group = group;
3071	}
3072	max_distance = areas[highest_group] - base;
3073	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
3074
3075	/* warn if maximum distance is further than 75% of vmalloc space */
3076	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
3077		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3078				max_distance, VMALLOC_TOTAL);
3079#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3080		/* and fail if we have fallback */
3081		rc = -EINVAL;
3082		goto out_free_areas;
3083#endif
3084	}
3085
3086	/*
3087	 * Copy data and free unused parts.  This should happen after all
3088	 * allocations are complete; otherwise, we may end up with
3089	 * overlapping groups.
3090	 */
3091	for (group = 0; group < ai->nr_groups; group++) {
3092		struct pcpu_group_info *gi = &ai->groups[group];
3093		void *ptr = areas[group];
3094
3095		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
3096			if (gi->cpu_map[i] == NR_CPUS) {
3097				/* unused unit, free whole */
3098				pcpu_fc_free(ptr, ai->unit_size);
3099				continue;
3100			}
3101			/* copy and return the unused part */
3102			memcpy(ptr, __per_cpu_load, ai->static_size);
3103			pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum);
3104		}
3105	}
3106
3107	/* base address is now known, determine group base offsets */
 
3108	for (group = 0; group < ai->nr_groups; group++) {
3109		ai->groups[group].base_offset = areas[group] - base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110	}
3111
3112	pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3113		PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
3114		ai->dyn_size, ai->unit_size);
3115
3116	pcpu_setup_first_chunk(ai, base);
3117	goto out_free;
3118
3119out_free_areas:
3120	for (group = 0; group < ai->nr_groups; group++)
3121		if (areas[group])
3122			pcpu_fc_free(areas[group],
3123				ai->groups[group].nr_units * ai->unit_size);
3124out_free:
3125	pcpu_free_alloc_info(ai);
3126	if (areas)
3127		memblock_free(areas, areas_size);
3128	return rc;
3129}
3130#endif /* BUILD_EMBED_FIRST_CHUNK */
3131
3132#ifdef BUILD_PAGE_FIRST_CHUNK
3133#include <asm/pgalloc.h>
3134
3135#ifndef P4D_TABLE_SIZE
3136#define P4D_TABLE_SIZE PAGE_SIZE
3137#endif
3138
3139#ifndef PUD_TABLE_SIZE
3140#define PUD_TABLE_SIZE PAGE_SIZE
3141#endif
3142
3143#ifndef PMD_TABLE_SIZE
3144#define PMD_TABLE_SIZE PAGE_SIZE
3145#endif
3146
3147#ifndef PTE_TABLE_SIZE
3148#define PTE_TABLE_SIZE PAGE_SIZE
3149#endif
3150void __init __weak pcpu_populate_pte(unsigned long addr)
3151{
3152	pgd_t *pgd = pgd_offset_k(addr);
3153	p4d_t *p4d;
3154	pud_t *pud;
3155	pmd_t *pmd;
3156
3157	if (pgd_none(*pgd)) {
3158		p4d = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE);
3159		if (!p4d)
3160			goto err_alloc;
3161		pgd_populate(&init_mm, pgd, p4d);
3162	}
3163
3164	p4d = p4d_offset(pgd, addr);
3165	if (p4d_none(*p4d)) {
3166		pud = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
3167		if (!pud)
3168			goto err_alloc;
3169		p4d_populate(&init_mm, p4d, pud);
3170	}
3171
3172	pud = pud_offset(p4d, addr);
3173	if (pud_none(*pud)) {
3174		pmd = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
3175		if (!pmd)
3176			goto err_alloc;
3177		pud_populate(&init_mm, pud, pmd);
3178	}
3179
3180	pmd = pmd_offset(pud, addr);
3181	if (!pmd_present(*pmd)) {
3182		pte_t *new;
3183
3184		new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
3185		if (!new)
3186			goto err_alloc;
3187		pmd_populate_kernel(&init_mm, pmd, new);
3188	}
3189
3190	return;
3191
3192err_alloc:
3193	panic("%s: Failed to allocate memory\n", __func__);
3194}
3195
3196/**
3197 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3198 * @reserved_size: the size of reserved percpu area in bytes
3199 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
 
 
3200 *
3201 * This is a helper to ease setting up page-remapped first percpu
3202 * chunk and can be called where pcpu_setup_first_chunk() is expected.
3203 *
3204 * This is the basic allocator.  Static percpu area is allocated
3205 * page-by-page into vmalloc area.
3206 *
3207 * RETURNS:
3208 * 0 on success, -errno on failure.
3209 */
3210int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn)
 
 
 
3211{
3212	static struct vm_struct vm;
3213	struct pcpu_alloc_info *ai;
3214	char psize_str[16];
3215	int unit_pages;
3216	size_t pages_size;
3217	struct page **pages;
3218	int unit, i, j, rc = 0;
3219	int upa;
3220	int nr_g0_units;
3221
3222	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
3223
3224	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
3225	if (IS_ERR(ai))
3226		return PTR_ERR(ai);
3227	BUG_ON(ai->nr_groups != 1);
3228	upa = ai->alloc_size/ai->unit_size;
3229	nr_g0_units = roundup(num_possible_cpus(), upa);
3230	if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
3231		pcpu_free_alloc_info(ai);
3232		return -EINVAL;
3233	}
3234
3235	unit_pages = ai->unit_size >> PAGE_SHIFT;
3236
3237	/* unaligned allocations can't be freed, round up to page size */
3238	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3239			       sizeof(pages[0]));
3240	pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3241	if (!pages)
3242		panic("%s: Failed to allocate %zu bytes\n", __func__,
3243		      pages_size);
3244
3245	/* allocate pages */
3246	j = 0;
3247	for (unit = 0; unit < num_possible_cpus(); unit++) {
3248		unsigned int cpu = ai->groups[0].cpu_map[unit];
3249		for (i = 0; i < unit_pages; i++) {
 
3250			void *ptr;
3251
3252			ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn);
3253			if (!ptr) {
3254				pr_warn("failed to allocate %s page for cpu%u\n",
3255						psize_str, cpu);
3256				goto enomem;
3257			}
3258			/* kmemleak tracks the percpu allocations separately */
3259			kmemleak_ignore_phys(__pa(ptr));
3260			pages[j++] = virt_to_page(ptr);
3261		}
3262	}
3263
3264	/* allocate vm area, map the pages and copy static data */
3265	vm.flags = VM_ALLOC;
3266	vm.size = num_possible_cpus() * ai->unit_size;
3267	vm_area_register_early(&vm, PAGE_SIZE);
3268
3269	for (unit = 0; unit < num_possible_cpus(); unit++) {
3270		unsigned long unit_addr =
3271			(unsigned long)vm.addr + unit * ai->unit_size;
3272
3273		for (i = 0; i < unit_pages; i++)
3274			pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT));
3275
3276		/* pte already populated, the following shouldn't fail */
3277		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3278				      unit_pages);
3279		if (rc < 0)
3280			panic("failed to map percpu area, err=%d\n", rc);
3281
3282		flush_cache_vmap_early(unit_addr, unit_addr + ai->unit_size);
 
 
 
 
 
 
3283
3284		/* copy static data */
3285		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3286	}
3287
3288	/* we're ready, commit */
3289	pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3290		unit_pages, psize_str, ai->static_size,
3291		ai->reserved_size, ai->dyn_size);
3292
3293	pcpu_setup_first_chunk(ai, vm.addr);
3294	goto out_free_ar;
3295
3296enomem:
3297	while (--j >= 0)
3298		pcpu_fc_free(page_address(pages[j]), PAGE_SIZE);
3299	rc = -ENOMEM;
3300out_free_ar:
3301	memblock_free(pages, pages_size);
3302	pcpu_free_alloc_info(ai);
3303	return rc;
3304}
3305#endif /* BUILD_PAGE_FIRST_CHUNK */
3306
3307#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
3308/*
3309 * Generic SMP percpu area setup.
3310 *
3311 * The embedding helper is used because its behavior closely resembles
3312 * the original non-dynamic generic percpu area setup.  This is
3313 * important because many archs have addressing restrictions and might
3314 * fail if the percpu area is located far away from the previous
3315 * location.  As an added bonus, in non-NUMA cases, embedding is
3316 * generally a good idea TLB-wise because percpu area can piggy back
3317 * on the physical linear memory mapping which uses large page
3318 * mappings on applicable archs.
3319 */
3320unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3321EXPORT_SYMBOL(__per_cpu_offset);
3322
 
 
 
 
 
 
 
 
 
 
 
 
3323void __init setup_per_cpu_areas(void)
3324{
3325	unsigned long delta;
3326	unsigned int cpu;
3327	int rc;
3328
3329	/*
3330	 * Always reserve area for module percpu variables.  That's
3331	 * what the legacy allocator did.
3332	 */
3333	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE,
3334				    PAGE_SIZE, NULL, NULL);
 
3335	if (rc < 0)
3336		panic("Failed to initialize percpu areas.");
3337
3338	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3339	for_each_possible_cpu(cpu)
3340		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3341}
3342#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3343
3344#else	/* CONFIG_SMP */
3345
3346/*
3347 * UP percpu area setup.
3348 *
3349 * UP always uses km-based percpu allocator with identity mapping.
3350 * Static percpu variables are indistinguishable from the usual static
3351 * variables and don't require any special preparation.
3352 */
3353void __init setup_per_cpu_areas(void)
3354{
3355	const size_t unit_size =
3356		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3357					 PERCPU_DYNAMIC_RESERVE));
3358	struct pcpu_alloc_info *ai;
3359	void *fc;
3360
3361	ai = pcpu_alloc_alloc_info(1, 1);
3362	fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 
 
3363	if (!ai || !fc)
3364		panic("Failed to allocate memory for percpu areas.");
3365	/* kmemleak tracks the percpu allocations separately */
3366	kmemleak_ignore_phys(__pa(fc));
3367
3368	ai->dyn_size = unit_size;
3369	ai->unit_size = unit_size;
3370	ai->atom_size = unit_size;
3371	ai->alloc_size = unit_size;
3372	ai->groups[0].nr_units = 1;
3373	ai->groups[0].cpu_map[0] = 0;
3374
3375	pcpu_setup_first_chunk(ai, fc);
3376	pcpu_free_alloc_info(ai);
3377}
3378
3379#endif	/* CONFIG_SMP */
3380
3381/*
3382 * pcpu_nr_pages - calculate total number of populated backing pages
3383 *
3384 * This reflects the number of pages populated to back chunks.  Metadata is
3385 * excluded in the number exposed in meminfo as the number of backing pages
3386 * scales with the number of cpus and can quickly outweigh the memory used for
3387 * metadata.  It also keeps this calculation nice and simple.
3388 *
3389 * RETURNS:
3390 * Total number of populated backing pages in use by the allocator.
3391 */
3392unsigned long pcpu_nr_pages(void)
3393{
3394	return pcpu_nr_populated * pcpu_nr_units;
3395}
 
 
 
3396
3397/*
3398 * Percpu allocator is initialized early during boot when neither slab or
3399 * workqueue is available.  Plug async management until everything is up
3400 * and running.
3401 */
3402static int __init percpu_enable_async(void)
3403{
3404	pcpu_async_enabled = true;
3405	return 0;
 
 
 
 
 
3406}
3407subsys_initcall(percpu_enable_async);
v3.15
 
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009		SUSE Linux Products GmbH
   5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
 
   8 *
   9 * This is percpu allocator which can handle both static and dynamic
  10 * areas.  Percpu areas are allocated in chunks.  Each chunk is
  11 * consisted of boot-time determined number of units and the first
  12 * chunk is used for static percpu variables in the kernel image
  13 * (special boot time alloc/init handling necessary as these areas
  14 * need to be brought up before allocation services are running).
  15 * Unit grows as necessary and all units grow or shrink in unison.
  16 * When a chunk is filled up, another chunk is allocated.
  17 *
  18 *  c0                           c1                         c2
  19 *  -------------------          -------------------        ------------
  20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  21 *  -------------------  ......  -------------------  ....  ------------
  22 *
  23 * Allocation is done in offset-size areas of single unit space.  Ie,
  24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  25 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
  26 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
  27 * Percpu access can be done by configuring percpu base registers
  28 * according to cpu to unit mapping and pcpu_unit_size.
  29 *
  30 * There are usually many small percpu allocations many of them being
  31 * as small as 4 bytes.  The allocator organizes chunks into lists
  32 * according to free size and tries to allocate from the fullest one.
  33 * Each chunk keeps the maximum contiguous area size hint which is
  34 * guaranteed to be equal to or larger than the maximum contiguous
  35 * area in the chunk.  This helps the allocator not to iterate the
  36 * chunk maps unnecessarily.
  37 *
  38 * Allocation state in each chunk is kept using an array of integers
  39 * on chunk->map.  A positive value in the map represents a free
  40 * region and negative allocated.  Allocation inside a chunk is done
  41 * by scanning this map sequentially and serving the first matching
  42 * entry.  This is mostly copied from the percpu_modalloc() allocator.
  43 * Chunks can be determined from the address using the index field
  44 * in the page struct. The index field contains a pointer to the chunk.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  45 *
  46 * To use this allocator, arch code should do the followings.
  47 *
  48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  49 *   regular address to percpu pointer and back if they need to be
  50 *   different from the default
  51 *
  52 * - use pcpu_setup_first_chunk() during percpu area initialization to
  53 *   setup the first chunk containing the kernel static percpu area
  54 */
  55
 
 
  56#include <linux/bitmap.h>
  57#include <linux/bootmem.h>
 
  58#include <linux/err.h>
  59#include <linux/list.h>
  60#include <linux/log2.h>
  61#include <linux/mm.h>
  62#include <linux/module.h>
  63#include <linux/mutex.h>
  64#include <linux/percpu.h>
  65#include <linux/pfn.h>
  66#include <linux/slab.h>
  67#include <linux/spinlock.h>
  68#include <linux/vmalloc.h>
  69#include <linux/workqueue.h>
  70#include <linux/kmemleak.h>
 
 
 
  71
  72#include <asm/cacheflush.h>
  73#include <asm/sections.h>
  74#include <asm/tlbflush.h>
  75#include <asm/io.h>
  76
  77#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
  78#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80#ifdef CONFIG_SMP
  81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  82#ifndef __addr_to_pcpu_ptr
  83#define __addr_to_pcpu_ptr(addr)					\
  84	(void __percpu *)((unsigned long)(addr) -			\
  85			  (unsigned long)pcpu_base_addr	+		\
  86			  (unsigned long)__per_cpu_start)
  87#endif
  88#ifndef __pcpu_ptr_to_addr
  89#define __pcpu_ptr_to_addr(ptr)						\
  90	(void __force *)((unsigned long)(ptr) +				\
  91			 (unsigned long)pcpu_base_addr -		\
  92			 (unsigned long)__per_cpu_start)
  93#endif
  94#else	/* CONFIG_SMP */
  95/* on UP, it's always identity mapped */
  96#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
  97#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
  98#endif	/* CONFIG_SMP */
  99
 100struct pcpu_chunk {
 101	struct list_head	list;		/* linked to pcpu_slot lists */
 102	int			free_size;	/* free bytes in the chunk */
 103	int			contig_hint;	/* max contiguous size hint */
 104	void			*base_addr;	/* base address of this chunk */
 105	int			map_used;	/* # of map entries used before the sentry */
 106	int			map_alloc;	/* # of map entries allocated */
 107	int			*map;		/* allocation map */
 108	void			*data;		/* chunk data */
 109	int			first_free;	/* no free below this */
 110	bool			immutable;	/* no [de]population allowed */
 111	unsigned long		populated[];	/* populated bitmap */
 112};
 113
 114static int pcpu_unit_pages __read_mostly;
 115static int pcpu_unit_size __read_mostly;
 116static int pcpu_nr_units __read_mostly;
 117static int pcpu_atom_size __read_mostly;
 118static int pcpu_nr_slots __read_mostly;
 119static size_t pcpu_chunk_struct_size __read_mostly;
 120
 121/* cpus with the lowest and highest unit addresses */
 122static unsigned int pcpu_low_unit_cpu __read_mostly;
 123static unsigned int pcpu_high_unit_cpu __read_mostly;
 124
 125/* the address of the first chunk which starts with the kernel static area */
 126void *pcpu_base_addr __read_mostly;
 127EXPORT_SYMBOL_GPL(pcpu_base_addr);
 128
 129static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
 130const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
 131
 132/* group information, used for vm allocation */
 133static int pcpu_nr_groups __read_mostly;
 134static const unsigned long *pcpu_group_offsets __read_mostly;
 135static const size_t *pcpu_group_sizes __read_mostly;
 136
 137/*
 138 * The first chunk which always exists.  Note that unlike other
 139 * chunks, this one can be allocated and mapped in several different
 140 * ways and thus often doesn't live in the vmalloc area.
 141 */
 142static struct pcpu_chunk *pcpu_first_chunk;
 143
 144/*
 145 * Optional reserved chunk.  This chunk reserves part of the first
 146 * chunk and serves it for reserved allocations.  The amount of
 147 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 148 * area doesn't exist, the following variables contain NULL and 0
 149 * respectively.
 150 */
 151static struct pcpu_chunk *pcpu_reserved_chunk;
 152static int pcpu_reserved_chunk_limit;
 
 
 
 
 153
 154/*
 155 * Synchronization rules.
 156 *
 157 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
 158 * protects allocation/reclaim paths, chunks, populated bitmap and
 159 * vmalloc mapping.  The latter is a spinlock and protects the index
 160 * data structures - chunk slots, chunks and area maps in chunks.
 161 *
 162 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 163 * pcpu_lock is grabbed and released as necessary.  All actual memory
 164 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
 165 * general, percpu memory can't be allocated with irq off but
 166 * irqsave/restore are still used in alloc path so that it can be used
 167 * from early init path - sched_init() specifically.
 168 *
 169 * Free path accesses and alters only the index data structures, so it
 170 * can be safely called from atomic context.  When memory needs to be
 171 * returned to the system, free path schedules reclaim_work which
 172 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 173 * reclaimed, release both locks and frees the chunks.  Note that it's
 174 * necessary to grab both locks to remove a chunk from circulation as
 175 * allocation path might be referencing the chunk with only
 176 * pcpu_alloc_mutex locked.
 177 */
 178static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
 179static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
 180
 181static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
 
 
 
 
 
 
 182
 183/* reclaim work to release fully free chunks, scheduled from free path */
 184static void pcpu_reclaim(struct work_struct *work);
 185static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
 
 
 
 
 
 
 
 186
 187static bool pcpu_addr_in_first_chunk(void *addr)
 188{
 189	void *first_start = pcpu_first_chunk->base_addr;
 190
 191	return addr >= first_start && addr < first_start + pcpu_unit_size;
 192}
 193
 194static bool pcpu_addr_in_reserved_chunk(void *addr)
 
 
 
 
 
 
 
 
 195{
 196	void *first_start = pcpu_first_chunk->base_addr;
 
 
 
 
 
 
 
 197
 198	return addr >= first_start &&
 199		addr < first_start + pcpu_reserved_chunk_limit;
 200}
 201
 202static int __pcpu_size_to_slot(int size)
 203{
 204	int highbit = fls(size);	/* size is in bytes */
 205	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 206}
 207
 208static int pcpu_size_to_slot(int size)
 209{
 210	if (size == pcpu_unit_size)
 211		return pcpu_nr_slots - 1;
 212	return __pcpu_size_to_slot(size);
 213}
 214
 215static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 216{
 217	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
 
 
 
 218		return 0;
 219
 220	return pcpu_size_to_slot(chunk->free_size);
 221}
 222
 223/* set the pointer to a chunk in a page struct */
 224static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 225{
 226	page->index = (unsigned long)pcpu;
 227}
 228
 229/* obtain pointer to a chunk from a page struct */
 230static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 231{
 232	return (struct pcpu_chunk *)page->index;
 233}
 234
 235static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 236{
 237	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 238}
 239
 
 
 
 
 
 240static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 241				     unsigned int cpu, int page_idx)
 242{
 243	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
 244		(page_idx << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245}
 246
 247static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
 248					   int *rs, int *re, int end)
 
 
 
 
 
 
 
 
 
 
 249{
 250	*rs = find_next_zero_bit(chunk->populated, end, *rs);
 251	*re = find_next_bit(chunk->populated, end, *rs + 1);
 
 
 252}
 253
 254static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
 255					 int *rs, int *re, int end)
 
 
 
 
 
 
 
 
 
 
 256{
 257	*rs = find_next_bit(chunk->populated, end, *rs);
 258	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259}
 260
 261/*
 262 * (Un)populated page region iterators.  Iterate over (un)populated
 263 * page regions between @start and @end in @chunk.  @rs and @re should
 264 * be integer variables and will be set to start and end page index of
 265 * the current region.
 266 */
 267#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
 268	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
 269	     (rs) < (re);						    \
 270	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
 271
 272#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
 273	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
 274	     (rs) < (re);						    \
 275	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
 
 
 
 
 276
 277/**
 278 * pcpu_mem_zalloc - allocate memory
 279 * @size: bytes to allocate
 
 280 *
 281 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 282 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
 283 * memory is always zeroed.
 284 *
 285 * CONTEXT:
 286 * Does GFP_KERNEL allocation.
 287 *
 288 * RETURNS:
 289 * Pointer to the allocated area on success, NULL on failure.
 290 */
 291static void *pcpu_mem_zalloc(size_t size)
 292{
 293	if (WARN_ON_ONCE(!slab_is_available()))
 294		return NULL;
 295
 296	if (size <= PAGE_SIZE)
 297		return kzalloc(size, GFP_KERNEL);
 298	else
 299		return vzalloc(size);
 300}
 301
 302/**
 303 * pcpu_mem_free - free memory
 304 * @ptr: memory to free
 305 * @size: size of the area
 306 *
 307 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 308 */
 309static void pcpu_mem_free(void *ptr, size_t size)
 310{
 311	if (size <= PAGE_SIZE)
 312		kfree(ptr);
 313	else
 314		vfree(ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 315}
 316
 317/**
 318 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 319 * @chunk: chunk of interest
 320 * @oslot: the previous slot it was on
 321 *
 322 * This function is called after an allocation or free changed @chunk.
 323 * New slot according to the changed state is determined and @chunk is
 324 * moved to the slot.  Note that the reserved chunk is never put on
 325 * chunk slots.
 326 *
 327 * CONTEXT:
 328 * pcpu_lock.
 329 */
 330static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 331{
 332	int nslot = pcpu_chunk_slot(chunk);
 333
 334	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 335		if (oslot < nslot)
 336			list_move(&chunk->list, &pcpu_slot[nslot]);
 337		else
 338			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339	}
 340}
 341
 342/**
 343 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 344 * @chunk: chunk of interest
 
 345 *
 346 * Determine whether area map of @chunk needs to be extended to
 347 * accommodate a new allocation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348 *
 349 * CONTEXT:
 350 * pcpu_lock.
 
 
 
 
 
 
 
 
 
 
 
 351 *
 352 * RETURNS:
 353 * New target map allocation length if extension is necessary, 0
 354 * otherwise.
 355 */
 356static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
 357{
 358	int new_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359
 360	if (chunk->map_alloc >= chunk->map_used + 3)
 361		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362
 363	new_alloc = PCPU_DFL_MAP_ALLOC;
 364	while (new_alloc < chunk->map_used + 3)
 365		new_alloc *= 2;
 366
 367	return new_alloc;
 368}
 369
 370/**
 371 * pcpu_extend_area_map - extend area map of a chunk
 372 * @chunk: chunk of interest
 373 * @new_alloc: new target allocation length of the area map
 374 *
 375 * Extend area map of @chunk to have @new_alloc entries.
 376 *
 377 * CONTEXT:
 378 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 379 *
 380 * RETURNS:
 381 * 0 on success, -errno on failure.
 382 */
 383static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
 384{
 385	int *old = NULL, *new = NULL;
 386	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
 387	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 388
 389	new = pcpu_mem_zalloc(new_size);
 390	if (!new)
 391		return -ENOMEM;
 392
 393	/* acquire pcpu_lock and switch to new area map */
 394	spin_lock_irqsave(&pcpu_lock, flags);
 
 
 395
 396	if (new_alloc <= chunk->map_alloc)
 397		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398
 399	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
 400	old = chunk->map;
 
 
 
 
 
 
 
 
 401
 402	memcpy(new, old, old_size);
 
 403
 404	chunk->map_alloc = new_alloc;
 405	chunk->map = new;
 406	new = NULL;
 
 
 407
 408out_unlock:
 409	spin_unlock_irqrestore(&pcpu_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410
 411	/*
 412	 * pcpu_mem_free() might end up calling vfree() which uses
 413	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
 
 
 414	 */
 415	pcpu_mem_free(old, old_size);
 416	pcpu_mem_free(new, new_size);
 417
 418	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419}
 420
 421/**
 422 * pcpu_alloc_area - allocate area from a pcpu_chunk
 423 * @chunk: chunk of interest
 424 * @size: wanted size in bytes
 425 * @align: wanted align
 426 *
 427 * Try to allocate @size bytes area aligned at @align from @chunk.
 428 * Note that this function only allocates the offset.  It doesn't
 429 * populate or map the area.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430 *
 431 * @chunk->map must have at least two free slots.
 432 *
 433 * CONTEXT:
 434 * pcpu_lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435 *
 436 * RETURNS:
 437 * Allocated offset in @chunk on success, -1 if no matching area is
 438 * found.
 439 */
 440static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
 
 441{
 442	int oslot = pcpu_chunk_slot(chunk);
 443	int max_contig = 0;
 444	int i, off;
 445	bool seen_free = false;
 446	int *p;
 447
 448	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
 449		int head, tail;
 450		int this_size;
 
 
 
 
 
 
 
 
 
 
 
 
 451
 452		off = *p;
 453		if (off & 1)
 454			continue;
 455
 456		/* extra for alignment requirement */
 457		head = ALIGN(off, align) - off;
 458
 459		this_size = (p[1] & ~1) - off;
 460		if (this_size < head + size) {
 461			if (!seen_free) {
 462				chunk->first_free = i;
 463				seen_free = true;
 464			}
 465			max_contig = max(this_size, max_contig);
 466			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467		}
 468
 469		/*
 470		 * If head is small or the previous block is free,
 471		 * merge'em.  Note that 'small' is defined as smaller
 472		 * than sizeof(int), which is very small but isn't too
 473		 * uncommon for percpu allocations.
 474		 */
 475		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
 476			*p = off += head;
 477			if (p[-1] & 1)
 478				chunk->free_size -= head;
 479			else
 480				max_contig = max(*p - p[-1], max_contig);
 481			this_size -= head;
 482			head = 0;
 483		}
 484
 485		/* if tail is small, just keep it around */
 486		tail = this_size - head - size;
 487		if (tail < sizeof(int)) {
 488			tail = 0;
 489			size = this_size - head;
 490		}
 491
 492		/* split if warranted */
 493		if (head || tail) {
 494			int nr_extra = !!head + !!tail;
 495
 496			/* insert new subblocks */
 497			memmove(p + nr_extra + 1, p + 1,
 498				sizeof(chunk->map[0]) * (chunk->map_used - i));
 499			chunk->map_used += nr_extra;
 500
 501			if (head) {
 502				if (!seen_free) {
 503					chunk->first_free = i;
 504					seen_free = true;
 505				}
 506				*++p = off += head;
 507				++i;
 508				max_contig = max(head, max_contig);
 509			}
 510			if (tail) {
 511				p[1] = off + size;
 512				max_contig = max(tail, max_contig);
 513			}
 514		}
 515
 516		if (!seen_free)
 517			chunk->first_free = i + 1;
 518
 519		/* update hint and mark allocated */
 520		if (i + 1 == chunk->map_used)
 521			chunk->contig_hint = max_contig; /* fully scanned */
 522		else
 523			chunk->contig_hint = max(chunk->contig_hint,
 524						 max_contig);
 525
 526		chunk->free_size -= size;
 527		*p |= 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529		pcpu_chunk_relocate(chunk, oslot);
 530		return off;
 531	}
 532
 533	chunk->contig_hint = max_contig;	/* fully scanned */
 534	pcpu_chunk_relocate(chunk, oslot);
 535
 536	/* tell the upper layer that this chunk has no matching area */
 537	return -1;
 538}
 539
 540/**
 541 * pcpu_free_area - free area to a pcpu_chunk
 542 * @chunk: chunk of interest
 543 * @freeme: offset of area to free
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544 *
 545 * Free area starting from @freeme to @chunk.  Note that this function
 546 * only modifies the allocation map.  It doesn't depopulate or unmap
 547 * the area.
 
 548 *
 549 * CONTEXT:
 550 * pcpu_lock.
 551 */
 552static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
 
 553{
 554	int oslot = pcpu_chunk_slot(chunk);
 555	int off = 0;
 556	unsigned i, j;
 557	int to_free = 0;
 558	int *p;
 559
 560	freeme |= 1;	/* we are searching for <given offset, in use> pair */
 561
 562	i = 0;
 563	j = chunk->map_used;
 564	while (i != j) {
 565		unsigned k = (i + j) / 2;
 566		off = chunk->map[k];
 567		if (off < freeme)
 568			i = k + 1;
 569		else if (off > freeme)
 570			j = k;
 571		else
 572			i = j = k;
 573	}
 574	BUG_ON(off != freeme);
 575
 576	if (i < chunk->first_free)
 577		chunk->first_free = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578
 579	p = chunk->map + i;
 580	*p = off &= ~1;
 581	chunk->free_size += (p[1] & ~1) - off;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583	/* merge with next? */
 584	if (!(p[1] & 1))
 585		to_free++;
 586	/* merge with previous? */
 587	if (i > 0 && !(p[-1] & 1)) {
 588		to_free++;
 589		i--;
 590		p--;
 591	}
 592	if (to_free) {
 593		chunk->map_used -= to_free;
 594		memmove(p + 1, p + 1 + to_free,
 595			(chunk->map_used - i) * sizeof(chunk->map[0]));
 596	}
 597
 598	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
 599	pcpu_chunk_relocate(chunk, oslot);
 600}
 601
 602static struct pcpu_chunk *pcpu_alloc_chunk(void)
 603{
 604	struct pcpu_chunk *chunk;
 
 605
 606	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
 607	if (!chunk)
 608		return NULL;
 609
 610	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
 611						sizeof(chunk->map[0]));
 612	if (!chunk->map) {
 613		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
 614		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615	}
 
 616
 617	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
 618	chunk->map[0] = 0;
 619	chunk->map[1] = pcpu_unit_size | 1;
 620	chunk->map_used = 1;
 621
 622	INIT_LIST_HEAD(&chunk->list);
 623	chunk->free_size = pcpu_unit_size;
 624	chunk->contig_hint = pcpu_unit_size;
 625
 626	return chunk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 627}
 628
 629static void pcpu_free_chunk(struct pcpu_chunk *chunk)
 630{
 631	if (!chunk)
 632		return;
 633	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
 634	pcpu_mem_free(chunk, pcpu_chunk_struct_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635}
 636
 637/*
 638 * Chunk management implementation.
 639 *
 640 * To allow different implementations, chunk alloc/free and
 641 * [de]population are implemented in a separate file which is pulled
 642 * into this file and compiled together.  The following functions
 643 * should be implemented.
 644 *
 645 * pcpu_populate_chunk		- populate the specified range of a chunk
 646 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 
 647 * pcpu_create_chunk		- create a new chunk
 648 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 649 * pcpu_addr_to_page		- translate address to physical address
 650 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
 651 */
 652static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
 653static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
 654static struct pcpu_chunk *pcpu_create_chunk(void);
 
 
 
 
 655static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
 656static struct page *pcpu_addr_to_page(void *addr);
 657static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
 658
 659#ifdef CONFIG_NEED_PER_CPU_KM
 660#include "percpu-km.c"
 661#else
 662#include "percpu-vm.c"
 663#endif
 664
 665/**
 666 * pcpu_chunk_addr_search - determine chunk containing specified address
 667 * @addr: address for which the chunk needs to be determined.
 668 *
 
 
 
 669 * RETURNS:
 670 * The address of the found chunk.
 671 */
 672static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 673{
 674	/* is it in the first chunk? */
 675	if (pcpu_addr_in_first_chunk(addr)) {
 676		/* is it in the reserved area? */
 677		if (pcpu_addr_in_reserved_chunk(addr))
 678			return pcpu_reserved_chunk;
 679		return pcpu_first_chunk;
 680	}
 
 
 
 681
 682	/*
 683	 * The address is relative to unit0 which might be unused and
 684	 * thus unmapped.  Offset the address to the unit space of the
 685	 * current processor before looking it up in the vmalloc
 686	 * space.  Note that any possible cpu id can be used here, so
 687	 * there's no need to worry about preemption or cpu hotplug.
 688	 */
 689	addr += pcpu_unit_offsets[raw_smp_processor_id()];
 690	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
 691}
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693/**
 694 * pcpu_alloc - the percpu allocator
 695 * @size: size of area to allocate in bytes
 696 * @align: alignment of area (max PAGE_SIZE)
 697 * @reserved: allocate from the reserved chunk if available
 
 698 *
 699 * Allocate percpu area of @size bytes aligned at @align.
 700 *
 701 * CONTEXT:
 702 * Does GFP_KERNEL allocation.
 703 *
 704 * RETURNS:
 705 * Percpu pointer to the allocated area on success, NULL on failure.
 706 */
 707static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
 
 708{
 
 
 
 
 709	static int warn_limit = 10;
 710	struct pcpu_chunk *chunk;
 711	const char *err;
 712	int slot, off, new_alloc;
 713	unsigned long flags;
 714	void __percpu *ptr;
 
 
 
 
 
 
 
 715
 716	/*
 717	 * We want the lowest bit of offset available for in-use/free
 718	 * indicator, so force >= 16bit alignment and make size even.
 
 
 719	 */
 720	if (unlikely(align < 2))
 721		align = 2;
 722
 723	if (unlikely(size & 1))
 724		size++;
 
 
 
 
 
 
 
 
 725
 726	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
 727		WARN(true, "illegal size (%zu) or align (%zu) for "
 728		     "percpu allocation\n", size, align);
 729		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 730	}
 731
 732	mutex_lock(&pcpu_alloc_mutex);
 733	spin_lock_irqsave(&pcpu_lock, flags);
 734
 735	/* serve reserved allocations from the reserved chunk if available */
 736	if (reserved && pcpu_reserved_chunk) {
 737		chunk = pcpu_reserved_chunk;
 738
 739		if (size > chunk->contig_hint) {
 
 740			err = "alloc from reserved chunk failed";
 741			goto fail_unlock;
 742		}
 743
 744		while ((new_alloc = pcpu_need_to_extend(chunk))) {
 745			spin_unlock_irqrestore(&pcpu_lock, flags);
 746			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
 747				err = "failed to extend area map of reserved chunk";
 748				goto fail_unlock_mutex;
 749			}
 750			spin_lock_irqsave(&pcpu_lock, flags);
 751		}
 752
 753		off = pcpu_alloc_area(chunk, size, align);
 754		if (off >= 0)
 755			goto area_found;
 756
 757		err = "alloc from reserved chunk failed";
 758		goto fail_unlock;
 759	}
 760
 761restart:
 762	/* search through normal chunks */
 763	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
 764		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 765			if (size > chunk->contig_hint)
 
 
 
 
 
 766				continue;
 767
 768			new_alloc = pcpu_need_to_extend(chunk);
 769			if (new_alloc) {
 770				spin_unlock_irqrestore(&pcpu_lock, flags);
 771				if (pcpu_extend_area_map(chunk,
 772							 new_alloc) < 0) {
 773					err = "failed to extend area map";
 774					goto fail_unlock_mutex;
 775				}
 776				spin_lock_irqsave(&pcpu_lock, flags);
 777				/*
 778				 * pcpu_lock has been dropped, need to
 779				 * restart cpu_slot list walking.
 780				 */
 781				goto restart;
 782			}
 783
 784			off = pcpu_alloc_area(chunk, size, align);
 785			if (off >= 0)
 
 786				goto area_found;
 
 787		}
 788	}
 789
 790	/* hmmm... no space left, create a new chunk */
 791	spin_unlock_irqrestore(&pcpu_lock, flags);
 792
 793	chunk = pcpu_create_chunk();
 794	if (!chunk) {
 795		err = "failed to allocate new chunk";
 796		goto fail_unlock_mutex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 797	}
 798
 799	spin_lock_irqsave(&pcpu_lock, flags);
 800	pcpu_chunk_relocate(chunk, -1);
 801	goto restart;
 802
 803area_found:
 
 
 
 
 
 804	spin_unlock_irqrestore(&pcpu_lock, flags);
 805
 806	/* populate, map and clear the area */
 807	if (pcpu_populate_chunk(chunk, off, size)) {
 808		spin_lock_irqsave(&pcpu_lock, flags);
 809		pcpu_free_area(chunk, off);
 810		err = "failed to populate";
 811		goto fail_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812	}
 813
 814	mutex_unlock(&pcpu_alloc_mutex);
 
 
 815
 816	/* return address relative to base address */
 817	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
 818	kmemleak_alloc_percpu(ptr, size);
 
 
 
 
 
 
 
 
 
 819	return ptr;
 820
 821fail_unlock:
 822	spin_unlock_irqrestore(&pcpu_lock, flags);
 823fail_unlock_mutex:
 824	mutex_unlock(&pcpu_alloc_mutex);
 825	if (warn_limit) {
 826		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
 827			   "%s\n", size, align, err);
 828		dump_stack();
 
 
 829		if (!--warn_limit)
 830			pr_info("PERCPU: limit reached, disable warning\n");
 831	}
 
 
 
 
 
 
 
 
 
 
 
 832	return NULL;
 833}
 
 834
 835/**
 836 * __alloc_percpu - allocate dynamic percpu area
 837 * @size: size of area to allocate in bytes
 838 * @align: alignment of area (max PAGE_SIZE)
 839 *
 840 * Allocate zero-filled percpu area of @size bytes aligned at @align.
 841 * Might sleep.  Might trigger writeouts.
 
 842 *
 843 * CONTEXT:
 844 * Does GFP_KERNEL allocation.
 845 *
 846 * RETURNS:
 847 * Percpu pointer to the allocated area on success, NULL on failure.
 848 */
 849void __percpu *__alloc_percpu(size_t size, size_t align)
 850{
 851	return pcpu_alloc(size, align, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852}
 853EXPORT_SYMBOL_GPL(__alloc_percpu);
 854
 855/**
 856 * __alloc_reserved_percpu - allocate reserved percpu area
 857 * @size: size of area to allocate in bytes
 858 * @align: alignment of area (max PAGE_SIZE)
 859 *
 860 * Allocate zero-filled percpu area of @size bytes aligned at @align
 861 * from reserved percpu area if arch has set it up; otherwise,
 862 * allocation is served from the same dynamic area.  Might sleep.
 863 * Might trigger writeouts.
 
 864 *
 865 * CONTEXT:
 866 * Does GFP_KERNEL allocation.
 867 *
 868 * RETURNS:
 869 * Percpu pointer to the allocated area on success, NULL on failure.
 870 */
 871void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
 872{
 873	return pcpu_alloc(size, align, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874}
 875
 876/**
 877 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 878 * @work: unused
 879 *
 880 * Reclaim all fully free chunks except for the first one.
 
 
 
 
 
 
 881 *
 882 * CONTEXT:
 883 * workqueue context.
 
 884 */
 885static void pcpu_reclaim(struct work_struct *work)
 886{
 887	LIST_HEAD(todo);
 888	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
 889	struct pcpu_chunk *chunk, *next;
 
 
 890
 891	mutex_lock(&pcpu_alloc_mutex);
 892	spin_lock_irq(&pcpu_lock);
 893
 894	list_for_each_entry_safe(chunk, next, head, list) {
 
 
 
 
 
 
 
 
 895		WARN_ON(chunk->immutable);
 896
 897		/* spare the first one */
 898		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
 899			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900
 901		list_move(&chunk->list, &todo);
 
 
 
 
 902	}
 
 903
 904	spin_unlock_irq(&pcpu_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906	list_for_each_entry_safe(chunk, next, &todo, list) {
 907		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
 908		pcpu_destroy_chunk(chunk);
 909	}
 910
 
 911	mutex_unlock(&pcpu_alloc_mutex);
 912}
 913
 914/**
 915 * free_percpu - free percpu area
 916 * @ptr: pointer to area to free
 917 *
 918 * Free percpu area @ptr.
 919 *
 920 * CONTEXT:
 921 * Can be called from atomic context.
 922 */
 923void free_percpu(void __percpu *ptr)
 924{
 925	void *addr;
 926	struct pcpu_chunk *chunk;
 927	unsigned long flags;
 928	int off;
 
 929
 930	if (!ptr)
 931		return;
 932
 933	kmemleak_free_percpu(ptr);
 934
 935	addr = __pcpu_ptr_to_addr(ptr);
 
 
 936
 937	spin_lock_irqsave(&pcpu_lock, flags);
 
 938
 939	chunk = pcpu_chunk_addr_search(addr);
 940	off = addr - chunk->base_addr;
 941
 942	pcpu_free_area(chunk, off);
 943
 944	/* if there are more than one fully free chunks, wake up grim reaper */
 945	if (chunk->free_size == pcpu_unit_size) {
 
 
 
 
 946		struct pcpu_chunk *pos;
 947
 948		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
 949			if (pos != chunk) {
 950				schedule_work(&pcpu_reclaim_work);
 951				break;
 952			}
 
 
 
 953	}
 954
 
 
 955	spin_unlock_irqrestore(&pcpu_lock, flags);
 
 
 
 956}
 957EXPORT_SYMBOL_GPL(free_percpu);
 958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959/**
 960 * is_kernel_percpu_address - test whether address is from static percpu area
 961 * @addr: address to test
 962 *
 963 * Test whether @addr belongs to in-kernel static percpu area.  Module
 964 * static percpu areas are not considered.  For those, use
 965 * is_module_percpu_address().
 966 *
 967 * RETURNS:
 968 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 969 */
 970bool is_kernel_percpu_address(unsigned long addr)
 971{
 972#ifdef CONFIG_SMP
 973	const size_t static_size = __per_cpu_end - __per_cpu_start;
 974	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
 975	unsigned int cpu;
 976
 977	for_each_possible_cpu(cpu) {
 978		void *start = per_cpu_ptr(base, cpu);
 979
 980		if ((void *)addr >= start && (void *)addr < start + static_size)
 981			return true;
 982        }
 983#endif
 984	/* on UP, can't distinguish from other static vars, always false */
 985	return false;
 986}
 987
 988/**
 989 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 990 * @addr: the address to be converted to physical address
 991 *
 992 * Given @addr which is dereferenceable address obtained via one of
 993 * percpu access macros, this function translates it into its physical
 994 * address.  The caller is responsible for ensuring @addr stays valid
 995 * until this function finishes.
 996 *
 997 * percpu allocator has special setup for the first chunk, which currently
 998 * supports either embedding in linear address space or vmalloc mapping,
 999 * and, from the second one, the backing allocator (currently either vm or
1000 * km) provides translation.
1001 *
1002 * The addr can be tranlated simply without checking if it falls into the
1003 * first chunk. But the current code reflects better how percpu allocator
1004 * actually works, and the verification can discover both bugs in percpu
1005 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1006 * code.
1007 *
1008 * RETURNS:
1009 * The physical address for @addr.
1010 */
1011phys_addr_t per_cpu_ptr_to_phys(void *addr)
1012{
1013	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1014	bool in_first_chunk = false;
1015	unsigned long first_low, first_high;
1016	unsigned int cpu;
1017
1018	/*
1019	 * The following test on unit_low/high isn't strictly
1020	 * necessary but will speed up lookups of addresses which
1021	 * aren't in the first chunk.
 
 
 
 
 
1022	 */
1023	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1024	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1025				     pcpu_unit_pages);
 
1026	if ((unsigned long)addr >= first_low &&
1027	    (unsigned long)addr < first_high) {
1028		for_each_possible_cpu(cpu) {
1029			void *start = per_cpu_ptr(base, cpu);
1030
1031			if (addr >= start && addr < start + pcpu_unit_size) {
1032				in_first_chunk = true;
1033				break;
1034			}
1035		}
1036	}
1037
1038	if (in_first_chunk) {
1039		if (!is_vmalloc_addr(addr))
1040			return __pa(addr);
1041		else
1042			return page_to_phys(vmalloc_to_page(addr)) +
1043			       offset_in_page(addr);
1044	} else
1045		return page_to_phys(pcpu_addr_to_page(addr)) +
1046		       offset_in_page(addr);
1047}
1048
1049/**
1050 * pcpu_alloc_alloc_info - allocate percpu allocation info
1051 * @nr_groups: the number of groups
1052 * @nr_units: the number of units
1053 *
1054 * Allocate ai which is large enough for @nr_groups groups containing
1055 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1056 * cpu_map array which is long enough for @nr_units and filled with
1057 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1058 * pointer of other groups.
1059 *
1060 * RETURNS:
1061 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1062 * failure.
1063 */
1064struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1065						      int nr_units)
1066{
1067	struct pcpu_alloc_info *ai;
1068	size_t base_size, ai_size;
1069	void *ptr;
1070	int unit;
1071
1072	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1073			  __alignof__(ai->groups[0].cpu_map[0]));
1074	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1075
1076	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1077	if (!ptr)
1078		return NULL;
1079	ai = ptr;
1080	ptr += base_size;
1081
1082	ai->groups[0].cpu_map = ptr;
1083
1084	for (unit = 0; unit < nr_units; unit++)
1085		ai->groups[0].cpu_map[unit] = NR_CPUS;
1086
1087	ai->nr_groups = nr_groups;
1088	ai->__ai_size = PFN_ALIGN(ai_size);
1089
1090	return ai;
1091}
1092
1093/**
1094 * pcpu_free_alloc_info - free percpu allocation info
1095 * @ai: pcpu_alloc_info to free
1096 *
1097 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1098 */
1099void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1100{
1101	memblock_free_early(__pa(ai), ai->__ai_size);
1102}
1103
1104/**
1105 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1106 * @lvl: loglevel
1107 * @ai: allocation info to dump
1108 *
1109 * Print out information about @ai using loglevel @lvl.
1110 */
1111static void pcpu_dump_alloc_info(const char *lvl,
1112				 const struct pcpu_alloc_info *ai)
1113{
1114	int group_width = 1, cpu_width = 1, width;
1115	char empty_str[] = "--------";
1116	int alloc = 0, alloc_end = 0;
1117	int group, v;
1118	int upa, apl;	/* units per alloc, allocs per line */
1119
1120	v = ai->nr_groups;
1121	while (v /= 10)
1122		group_width++;
1123
1124	v = num_possible_cpus();
1125	while (v /= 10)
1126		cpu_width++;
1127	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1128
1129	upa = ai->alloc_size / ai->unit_size;
1130	width = upa * (cpu_width + 1) + group_width + 3;
1131	apl = rounddown_pow_of_two(max(60 / width, 1));
1132
1133	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1134	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1135	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1136
1137	for (group = 0; group < ai->nr_groups; group++) {
1138		const struct pcpu_group_info *gi = &ai->groups[group];
1139		int unit = 0, unit_end = 0;
1140
1141		BUG_ON(gi->nr_units % upa);
1142		for (alloc_end += gi->nr_units / upa;
1143		     alloc < alloc_end; alloc++) {
1144			if (!(alloc % apl)) {
1145				printk(KERN_CONT "\n");
1146				printk("%spcpu-alloc: ", lvl);
1147			}
1148			printk(KERN_CONT "[%0*d] ", group_width, group);
1149
1150			for (unit_end += upa; unit < unit_end; unit++)
1151				if (gi->cpu_map[unit] != NR_CPUS)
1152					printk(KERN_CONT "%0*d ", cpu_width,
1153					       gi->cpu_map[unit]);
1154				else
1155					printk(KERN_CONT "%s ", empty_str);
1156		}
1157	}
1158	printk(KERN_CONT "\n");
1159}
1160
1161/**
1162 * pcpu_setup_first_chunk - initialize the first percpu chunk
1163 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1164 * @base_addr: mapped address
1165 *
1166 * Initialize the first percpu chunk which contains the kernel static
1167 * perpcu area.  This function is to be called from arch percpu area
1168 * setup path.
1169 *
1170 * @ai contains all information necessary to initialize the first
1171 * chunk and prime the dynamic percpu allocator.
1172 *
1173 * @ai->static_size is the size of static percpu area.
1174 *
1175 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1176 * reserve after the static area in the first chunk.  This reserves
1177 * the first chunk such that it's available only through reserved
1178 * percpu allocation.  This is primarily used to serve module percpu
1179 * static areas on architectures where the addressing model has
1180 * limited offset range for symbol relocations to guarantee module
1181 * percpu symbols fall inside the relocatable range.
1182 *
1183 * @ai->dyn_size determines the number of bytes available for dynamic
1184 * allocation in the first chunk.  The area between @ai->static_size +
1185 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1186 *
1187 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1188 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1189 * @ai->dyn_size.
1190 *
1191 * @ai->atom_size is the allocation atom size and used as alignment
1192 * for vm areas.
1193 *
1194 * @ai->alloc_size is the allocation size and always multiple of
1195 * @ai->atom_size.  This is larger than @ai->atom_size if
1196 * @ai->unit_size is larger than @ai->atom_size.
1197 *
1198 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1199 * percpu areas.  Units which should be colocated are put into the
1200 * same group.  Dynamic VM areas will be allocated according to these
1201 * groupings.  If @ai->nr_groups is zero, a single group containing
1202 * all units is assumed.
1203 *
1204 * The caller should have mapped the first chunk at @base_addr and
1205 * copied static data to each unit.
1206 *
1207 * If the first chunk ends up with both reserved and dynamic areas, it
1208 * is served by two chunks - one to serve the core static and reserved
1209 * areas and the other for the dynamic area.  They share the same vm
1210 * and page map but uses different area allocation map to stay away
1211 * from each other.  The latter chunk is circulated in the chunk slots
1212 * and available for dynamic allocation like any other chunks.
1213 *
1214 * RETURNS:
1215 * 0 on success, -errno on failure.
1216 */
1217int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1218				  void *base_addr)
1219{
1220	static char cpus_buf[4096] __initdata;
1221	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1222	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1223	size_t dyn_size = ai->dyn_size;
1224	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1225	struct pcpu_chunk *schunk, *dchunk = NULL;
1226	unsigned long *group_offsets;
1227	size_t *group_sizes;
1228	unsigned long *unit_off;
1229	unsigned int cpu;
1230	int *unit_map;
1231	int group, unit, i;
1232
1233	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1234
1235#define PCPU_SETUP_BUG_ON(cond)	do {					\
1236	if (unlikely(cond)) {						\
1237		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1238		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
 
1239		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1240		BUG();							\
1241	}								\
1242} while (0)
1243
1244	/* sanity checks */
1245	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1246#ifdef CONFIG_SMP
1247	PCPU_SETUP_BUG_ON(!ai->static_size);
1248	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1249#endif
1250	PCPU_SETUP_BUG_ON(!base_addr);
1251	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1252	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1253	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1254	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
 
1255	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
 
 
 
1256	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1257
1258	/* process group information and build config tables accordingly */
1259	group_offsets = memblock_virt_alloc(ai->nr_groups *
1260					     sizeof(group_offsets[0]), 0);
1261	group_sizes = memblock_virt_alloc(ai->nr_groups *
1262					   sizeof(group_sizes[0]), 0);
1263	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1264	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265
1266	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1267		unit_map[cpu] = UINT_MAX;
1268
1269	pcpu_low_unit_cpu = NR_CPUS;
1270	pcpu_high_unit_cpu = NR_CPUS;
1271
1272	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1273		const struct pcpu_group_info *gi = &ai->groups[group];
1274
1275		group_offsets[group] = gi->base_offset;
1276		group_sizes[group] = gi->nr_units * ai->unit_size;
1277
1278		for (i = 0; i < gi->nr_units; i++) {
1279			cpu = gi->cpu_map[i];
1280			if (cpu == NR_CPUS)
1281				continue;
1282
1283			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1284			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1285			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1286
1287			unit_map[cpu] = unit + i;
1288			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1289
1290			/* determine low/high unit_cpu */
1291			if (pcpu_low_unit_cpu == NR_CPUS ||
1292			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1293				pcpu_low_unit_cpu = cpu;
1294			if (pcpu_high_unit_cpu == NR_CPUS ||
1295			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1296				pcpu_high_unit_cpu = cpu;
1297		}
1298	}
1299	pcpu_nr_units = unit;
1300
1301	for_each_possible_cpu(cpu)
1302		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1303
1304	/* we're done parsing the input, undefine BUG macro and dump config */
1305#undef PCPU_SETUP_BUG_ON
1306	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1307
1308	pcpu_nr_groups = ai->nr_groups;
1309	pcpu_group_offsets = group_offsets;
1310	pcpu_group_sizes = group_sizes;
1311	pcpu_unit_map = unit_map;
1312	pcpu_unit_offsets = unit_off;
1313
1314	/* determine basic parameters */
1315	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1316	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1317	pcpu_atom_size = ai->atom_size;
1318	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1319		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
 
 
1320
1321	/*
1322	 * Allocate chunk slots.  The additional last slot is for
1323	 * empty chunks.
 
 
1324	 */
1325	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1326	pcpu_slot = memblock_virt_alloc(
1327			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
 
 
 
 
 
 
 
 
1328	for (i = 0; i < pcpu_nr_slots; i++)
1329		INIT_LIST_HEAD(&pcpu_slot[i]);
 
 
 
 
 
 
 
 
 
 
 
1330
1331	/*
1332	 * Initialize static chunk.  If reserved_size is zero, the
1333	 * static chunk covers static area + dynamic allocation area
1334	 * in the first chunk.  If reserved_size is not zero, it
1335	 * covers static area + reserved area (mostly used for module
1336	 * static percpu allocation).
1337	 */
1338	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1339	INIT_LIST_HEAD(&schunk->list);
1340	schunk->base_addr = base_addr;
1341	schunk->map = smap;
1342	schunk->map_alloc = ARRAY_SIZE(smap);
1343	schunk->immutable = true;
1344	bitmap_fill(schunk->populated, pcpu_unit_pages);
1345
1346	if (ai->reserved_size) {
1347		schunk->free_size = ai->reserved_size;
1348		pcpu_reserved_chunk = schunk;
1349		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1350	} else {
1351		schunk->free_size = dyn_size;
1352		dyn_size = 0;			/* dynamic area covered */
1353	}
1354	schunk->contig_hint = schunk->free_size;
1355
1356	schunk->map[0] = 1;
1357	schunk->map[1] = ai->static_size;
1358	schunk->map_used = 1;
1359	if (schunk->free_size)
1360		schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1361	else
1362		schunk->map[1] |= 1;
1363
1364	/* init dynamic chunk if necessary */
1365	if (dyn_size) {
1366		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1367		INIT_LIST_HEAD(&dchunk->list);
1368		dchunk->base_addr = base_addr;
1369		dchunk->map = dmap;
1370		dchunk->map_alloc = ARRAY_SIZE(dmap);
1371		dchunk->immutable = true;
1372		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1373
1374		dchunk->contig_hint = dchunk->free_size = dyn_size;
1375		dchunk->map[0] = 1;
1376		dchunk->map[1] = pcpu_reserved_chunk_limit;
1377		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1378		dchunk->map_used = 2;
1379	}
1380
1381	/* link the first chunk in */
1382	pcpu_first_chunk = dchunk ?: schunk;
1383	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1384
1385	/* we're done */
1386	pcpu_base_addr = base_addr;
1387	return 0;
1388}
1389
1390#ifdef CONFIG_SMP
1391
1392const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1393	[PCPU_FC_AUTO]	= "auto",
1394	[PCPU_FC_EMBED]	= "embed",
1395	[PCPU_FC_PAGE]	= "page",
1396};
1397
1398enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1399
1400static int __init percpu_alloc_setup(char *str)
1401{
1402	if (!str)
1403		return -EINVAL;
1404
1405	if (0)
1406		/* nada */;
1407#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1408	else if (!strcmp(str, "embed"))
1409		pcpu_chosen_fc = PCPU_FC_EMBED;
1410#endif
1411#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1412	else if (!strcmp(str, "page"))
1413		pcpu_chosen_fc = PCPU_FC_PAGE;
1414#endif
1415	else
1416		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1417
1418	return 0;
1419}
1420early_param("percpu_alloc", percpu_alloc_setup);
1421
1422/*
1423 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1424 * Build it if needed by the arch config or the generic setup is going
1425 * to be used.
1426 */
1427#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1428	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1429#define BUILD_EMBED_FIRST_CHUNK
1430#endif
1431
1432/* build pcpu_page_first_chunk() iff needed by the arch config */
1433#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1434#define BUILD_PAGE_FIRST_CHUNK
1435#endif
1436
1437/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1438#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1439/**
1440 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1441 * @reserved_size: the size of reserved percpu area in bytes
1442 * @dyn_size: minimum free size for dynamic allocation in bytes
1443 * @atom_size: allocation atom size
1444 * @cpu_distance_fn: callback to determine distance between cpus, optional
1445 *
1446 * This function determines grouping of units, their mappings to cpus
1447 * and other parameters considering needed percpu size, allocation
1448 * atom size and distances between CPUs.
1449 *
1450 * Groups are always mutliples of atom size and CPUs which are of
1451 * LOCAL_DISTANCE both ways are grouped together and share space for
1452 * units in the same group.  The returned configuration is guaranteed
1453 * to have CPUs on different nodes on different groups and >=75% usage
1454 * of allocated virtual address space.
1455 *
1456 * RETURNS:
1457 * On success, pointer to the new allocation_info is returned.  On
1458 * failure, ERR_PTR value is returned.
1459 */
1460static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1461				size_t reserved_size, size_t dyn_size,
1462				size_t atom_size,
1463				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1464{
1465	static int group_map[NR_CPUS] __initdata;
1466	static int group_cnt[NR_CPUS] __initdata;
 
1467	const size_t static_size = __per_cpu_end - __per_cpu_start;
1468	int nr_groups = 1, nr_units = 0;
1469	size_t size_sum, min_unit_size, alloc_size;
1470	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1471	int last_allocs, group, unit;
1472	unsigned int cpu, tcpu;
1473	struct pcpu_alloc_info *ai;
1474	unsigned int *cpu_map;
1475
1476	/* this function may be called multiple times */
1477	memset(group_map, 0, sizeof(group_map));
1478	memset(group_cnt, 0, sizeof(group_cnt));
 
1479
1480	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1481	size_sum = PFN_ALIGN(static_size + reserved_size +
1482			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1483	dyn_size = size_sum - static_size - reserved_size;
1484
1485	/*
1486	 * Determine min_unit_size, alloc_size and max_upa such that
1487	 * alloc_size is multiple of atom_size and is the smallest
1488	 * which can accommodate 4k aligned segments which are equal to
1489	 * or larger than min_unit_size.
1490	 */
1491	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1492
 
1493	alloc_size = roundup(min_unit_size, atom_size);
1494	upa = alloc_size / min_unit_size;
1495	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1496		upa--;
1497	max_upa = upa;
1498
 
 
1499	/* group cpus according to their proximity */
1500	for_each_possible_cpu(cpu) {
1501		group = 0;
1502	next_group:
1503		for_each_possible_cpu(tcpu) {
1504			if (cpu == tcpu)
1505				break;
1506			if (group_map[tcpu] == group && cpu_distance_fn &&
1507			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1508			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1509				group++;
1510				nr_groups = max(nr_groups, group + 1);
1511				goto next_group;
 
 
1512			}
1513		}
1514		group_map[cpu] = group;
1515		group_cnt[group]++;
1516	}
 
1517
1518	/*
1519	 * Expand unit size until address space usage goes over 75%
1520	 * and then as much as possible without using more address
1521	 * space.
1522	 */
1523	last_allocs = INT_MAX;
 
1524	for (upa = max_upa; upa; upa--) {
1525		int allocs = 0, wasted = 0;
1526
1527		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1528			continue;
1529
1530		for (group = 0; group < nr_groups; group++) {
1531			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1532			allocs += this_allocs;
1533			wasted += this_allocs * upa - group_cnt[group];
1534		}
1535
1536		/*
1537		 * Don't accept if wastage is over 1/3.  The
1538		 * greater-than comparison ensures upa==1 always
1539		 * passes the following check.
1540		 */
1541		if (wasted > num_possible_cpus() / 3)
1542			continue;
1543
1544		/* and then don't consume more memory */
1545		if (allocs > last_allocs)
1546			break;
1547		last_allocs = allocs;
1548		best_upa = upa;
1549	}
 
1550	upa = best_upa;
1551
1552	/* allocate and fill alloc_info */
1553	for (group = 0; group < nr_groups; group++)
1554		nr_units += roundup(group_cnt[group], upa);
1555
1556	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1557	if (!ai)
1558		return ERR_PTR(-ENOMEM);
1559	cpu_map = ai->groups[0].cpu_map;
1560
1561	for (group = 0; group < nr_groups; group++) {
1562		ai->groups[group].cpu_map = cpu_map;
1563		cpu_map += roundup(group_cnt[group], upa);
1564	}
1565
1566	ai->static_size = static_size;
1567	ai->reserved_size = reserved_size;
1568	ai->dyn_size = dyn_size;
1569	ai->unit_size = alloc_size / upa;
1570	ai->atom_size = atom_size;
1571	ai->alloc_size = alloc_size;
1572
1573	for (group = 0, unit = 0; group_cnt[group]; group++) {
1574		struct pcpu_group_info *gi = &ai->groups[group];
1575
1576		/*
1577		 * Initialize base_offset as if all groups are located
1578		 * back-to-back.  The caller should update this to
1579		 * reflect actual allocation.
1580		 */
1581		gi->base_offset = unit * ai->unit_size;
1582
1583		for_each_possible_cpu(cpu)
1584			if (group_map[cpu] == group)
1585				gi->cpu_map[gi->nr_units++] = cpu;
1586		gi->nr_units = roundup(gi->nr_units, upa);
1587		unit += gi->nr_units;
1588	}
1589	BUG_ON(unit != nr_units);
1590
1591	return ai;
1592}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1594
1595#if defined(BUILD_EMBED_FIRST_CHUNK)
1596/**
1597 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1598 * @reserved_size: the size of reserved percpu area in bytes
1599 * @dyn_size: minimum free size for dynamic allocation in bytes
1600 * @atom_size: allocation atom size
1601 * @cpu_distance_fn: callback to determine distance between cpus, optional
1602 * @alloc_fn: function to allocate percpu page
1603 * @free_fn: function to free percpu page
1604 *
1605 * This is a helper to ease setting up embedded first percpu chunk and
1606 * can be called where pcpu_setup_first_chunk() is expected.
1607 *
1608 * If this function is used to setup the first chunk, it is allocated
1609 * by calling @alloc_fn and used as-is without being mapped into
1610 * vmalloc area.  Allocations are always whole multiples of @atom_size
1611 * aligned to @atom_size.
1612 *
1613 * This enables the first chunk to piggy back on the linear physical
1614 * mapping which often uses larger page size.  Please note that this
1615 * can result in very sparse cpu->unit mapping on NUMA machines thus
1616 * requiring large vmalloc address space.  Don't use this allocator if
1617 * vmalloc space is not orders of magnitude larger than distances
1618 * between node memory addresses (ie. 32bit NUMA machines).
1619 *
1620 * @dyn_size specifies the minimum dynamic area size.
1621 *
1622 * If the needed size is smaller than the minimum or specified unit
1623 * size, the leftover is returned using @free_fn.
1624 *
1625 * RETURNS:
1626 * 0 on success, -errno on failure.
1627 */
1628int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1629				  size_t atom_size,
1630				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1631				  pcpu_fc_alloc_fn_t alloc_fn,
1632				  pcpu_fc_free_fn_t free_fn)
1633{
1634	void *base = (void *)ULONG_MAX;
1635	void **areas = NULL;
1636	struct pcpu_alloc_info *ai;
1637	size_t size_sum, areas_size, max_distance;
1638	int group, i, rc;
 
1639
1640	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1641				   cpu_distance_fn);
1642	if (IS_ERR(ai))
1643		return PTR_ERR(ai);
1644
1645	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1646	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1647
1648	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1649	if (!areas) {
1650		rc = -ENOMEM;
1651		goto out_free;
1652	}
1653
1654	/* allocate, copy and determine base address */
 
1655	for (group = 0; group < ai->nr_groups; group++) {
1656		struct pcpu_group_info *gi = &ai->groups[group];
1657		unsigned int cpu = NR_CPUS;
1658		void *ptr;
1659
1660		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1661			cpu = gi->cpu_map[i];
1662		BUG_ON(cpu == NR_CPUS);
1663
1664		/* allocate space for the whole group */
1665		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1666		if (!ptr) {
1667			rc = -ENOMEM;
1668			goto out_free_areas;
1669		}
1670		/* kmemleak tracks the percpu allocations separately */
1671		kmemleak_free(ptr);
1672		areas[group] = ptr;
1673
1674		base = min(ptr, base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675	}
1676
1677	/*
1678	 * Copy data and free unused parts.  This should happen after all
1679	 * allocations are complete; otherwise, we may end up with
1680	 * overlapping groups.
1681	 */
1682	for (group = 0; group < ai->nr_groups; group++) {
1683		struct pcpu_group_info *gi = &ai->groups[group];
1684		void *ptr = areas[group];
1685
1686		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1687			if (gi->cpu_map[i] == NR_CPUS) {
1688				/* unused unit, free whole */
1689				free_fn(ptr, ai->unit_size);
1690				continue;
1691			}
1692			/* copy and return the unused part */
1693			memcpy(ptr, __per_cpu_load, ai->static_size);
1694			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1695		}
1696	}
1697
1698	/* base address is now known, determine group base offsets */
1699	max_distance = 0;
1700	for (group = 0; group < ai->nr_groups; group++) {
1701		ai->groups[group].base_offset = areas[group] - base;
1702		max_distance = max_t(size_t, max_distance,
1703				     ai->groups[group].base_offset);
1704	}
1705	max_distance += ai->unit_size;
1706
1707	/* warn if maximum distance is further than 75% of vmalloc space */
1708	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1709		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1710			   "space 0x%lx\n", max_distance,
1711			   VMALLOC_TOTAL);
1712#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1713		/* and fail if we have fallback */
1714		rc = -EINVAL;
1715		goto out_free;
1716#endif
1717	}
1718
1719	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1720		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1721		ai->dyn_size, ai->unit_size);
1722
1723	rc = pcpu_setup_first_chunk(ai, base);
1724	goto out_free;
1725
1726out_free_areas:
1727	for (group = 0; group < ai->nr_groups; group++)
1728		if (areas[group])
1729			free_fn(areas[group],
1730				ai->groups[group].nr_units * ai->unit_size);
1731out_free:
1732	pcpu_free_alloc_info(ai);
1733	if (areas)
1734		memblock_free_early(__pa(areas), areas_size);
1735	return rc;
1736}
1737#endif /* BUILD_EMBED_FIRST_CHUNK */
1738
1739#ifdef BUILD_PAGE_FIRST_CHUNK
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740/**
1741 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1742 * @reserved_size: the size of reserved percpu area in bytes
1743 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1744 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1745 * @populate_pte_fn: function to populate pte
1746 *
1747 * This is a helper to ease setting up page-remapped first percpu
1748 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1749 *
1750 * This is the basic allocator.  Static percpu area is allocated
1751 * page-by-page into vmalloc area.
1752 *
1753 * RETURNS:
1754 * 0 on success, -errno on failure.
1755 */
1756int __init pcpu_page_first_chunk(size_t reserved_size,
1757				 pcpu_fc_alloc_fn_t alloc_fn,
1758				 pcpu_fc_free_fn_t free_fn,
1759				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1760{
1761	static struct vm_struct vm;
1762	struct pcpu_alloc_info *ai;
1763	char psize_str[16];
1764	int unit_pages;
1765	size_t pages_size;
1766	struct page **pages;
1767	int unit, i, j, rc;
 
 
1768
1769	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1770
1771	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1772	if (IS_ERR(ai))
1773		return PTR_ERR(ai);
1774	BUG_ON(ai->nr_groups != 1);
1775	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
 
 
 
 
 
1776
1777	unit_pages = ai->unit_size >> PAGE_SHIFT;
1778
1779	/* unaligned allocations can't be freed, round up to page size */
1780	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1781			       sizeof(pages[0]));
1782	pages = memblock_virt_alloc(pages_size, 0);
 
 
 
1783
1784	/* allocate pages */
1785	j = 0;
1786	for (unit = 0; unit < num_possible_cpus(); unit++)
 
1787		for (i = 0; i < unit_pages; i++) {
1788			unsigned int cpu = ai->groups[0].cpu_map[unit];
1789			void *ptr;
1790
1791			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1792			if (!ptr) {
1793				pr_warning("PERCPU: failed to allocate %s page "
1794					   "for cpu%u\n", psize_str, cpu);
1795				goto enomem;
1796			}
1797			/* kmemleak tracks the percpu allocations separately */
1798			kmemleak_free(ptr);
1799			pages[j++] = virt_to_page(ptr);
1800		}
 
1801
1802	/* allocate vm area, map the pages and copy static data */
1803	vm.flags = VM_ALLOC;
1804	vm.size = num_possible_cpus() * ai->unit_size;
1805	vm_area_register_early(&vm, PAGE_SIZE);
1806
1807	for (unit = 0; unit < num_possible_cpus(); unit++) {
1808		unsigned long unit_addr =
1809			(unsigned long)vm.addr + unit * ai->unit_size;
1810
1811		for (i = 0; i < unit_pages; i++)
1812			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1813
1814		/* pte already populated, the following shouldn't fail */
1815		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1816				      unit_pages);
1817		if (rc < 0)
1818			panic("failed to map percpu area, err=%d\n", rc);
1819
1820		/*
1821		 * FIXME: Archs with virtual cache should flush local
1822		 * cache for the linear mapping here - something
1823		 * equivalent to flush_cache_vmap() on the local cpu.
1824		 * flush_cache_vmap() can't be used as most supporting
1825		 * data structures are not set up yet.
1826		 */
1827
1828		/* copy static data */
1829		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1830	}
1831
1832	/* we're ready, commit */
1833	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1834		unit_pages, psize_str, vm.addr, ai->static_size,
1835		ai->reserved_size, ai->dyn_size);
1836
1837	rc = pcpu_setup_first_chunk(ai, vm.addr);
1838	goto out_free_ar;
1839
1840enomem:
1841	while (--j >= 0)
1842		free_fn(page_address(pages[j]), PAGE_SIZE);
1843	rc = -ENOMEM;
1844out_free_ar:
1845	memblock_free_early(__pa(pages), pages_size);
1846	pcpu_free_alloc_info(ai);
1847	return rc;
1848}
1849#endif /* BUILD_PAGE_FIRST_CHUNK */
1850
1851#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1852/*
1853 * Generic SMP percpu area setup.
1854 *
1855 * The embedding helper is used because its behavior closely resembles
1856 * the original non-dynamic generic percpu area setup.  This is
1857 * important because many archs have addressing restrictions and might
1858 * fail if the percpu area is located far away from the previous
1859 * location.  As an added bonus, in non-NUMA cases, embedding is
1860 * generally a good idea TLB-wise because percpu area can piggy back
1861 * on the physical linear memory mapping which uses large page
1862 * mappings on applicable archs.
1863 */
1864unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1865EXPORT_SYMBOL(__per_cpu_offset);
1866
1867static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1868				       size_t align)
1869{
1870	return  memblock_virt_alloc_from_nopanic(
1871			size, align, __pa(MAX_DMA_ADDRESS));
1872}
1873
1874static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1875{
1876	memblock_free_early(__pa(ptr), size);
1877}
1878
1879void __init setup_per_cpu_areas(void)
1880{
1881	unsigned long delta;
1882	unsigned int cpu;
1883	int rc;
1884
1885	/*
1886	 * Always reserve area for module percpu variables.  That's
1887	 * what the legacy allocator did.
1888	 */
1889	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1890				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1891				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1892	if (rc < 0)
1893		panic("Failed to initialize percpu areas.");
1894
1895	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1896	for_each_possible_cpu(cpu)
1897		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1898}
1899#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1900
1901#else	/* CONFIG_SMP */
1902
1903/*
1904 * UP percpu area setup.
1905 *
1906 * UP always uses km-based percpu allocator with identity mapping.
1907 * Static percpu variables are indistinguishable from the usual static
1908 * variables and don't require any special preparation.
1909 */
1910void __init setup_per_cpu_areas(void)
1911{
1912	const size_t unit_size =
1913		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1914					 PERCPU_DYNAMIC_RESERVE));
1915	struct pcpu_alloc_info *ai;
1916	void *fc;
1917
1918	ai = pcpu_alloc_alloc_info(1, 1);
1919	fc = memblock_virt_alloc_from_nopanic(unit_size,
1920					      PAGE_SIZE,
1921					      __pa(MAX_DMA_ADDRESS));
1922	if (!ai || !fc)
1923		panic("Failed to allocate memory for percpu areas.");
1924	/* kmemleak tracks the percpu allocations separately */
1925	kmemleak_free(fc);
1926
1927	ai->dyn_size = unit_size;
1928	ai->unit_size = unit_size;
1929	ai->atom_size = unit_size;
1930	ai->alloc_size = unit_size;
1931	ai->groups[0].nr_units = 1;
1932	ai->groups[0].cpu_map[0] = 0;
1933
1934	if (pcpu_setup_first_chunk(ai, fc) < 0)
1935		panic("Failed to initialize percpu areas.");
1936}
1937
1938#endif	/* CONFIG_SMP */
1939
1940/*
1941 * First and reserved chunks are initialized with temporary allocation
1942 * map in initdata so that they can be used before slab is online.
1943 * This function is called after slab is brought up and replaces those
1944 * with properly allocated maps.
 
 
 
 
 
1945 */
1946void __init percpu_init_late(void)
1947{
1948	struct pcpu_chunk *target_chunks[] =
1949		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1950	struct pcpu_chunk *chunk;
1951	unsigned long flags;
1952	int i;
1953
1954	for (i = 0; (chunk = target_chunks[i]); i++) {
1955		int *map;
1956		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1957
1958		BUILD_BUG_ON(size > PAGE_SIZE);
1959
1960		map = pcpu_mem_zalloc(size);
1961		BUG_ON(!map);
1962
1963		spin_lock_irqsave(&pcpu_lock, flags);
1964		memcpy(map, chunk->map, size);
1965		chunk->map = map;
1966		spin_unlock_irqrestore(&pcpu_lock, flags);
1967	}
1968}