Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/timerfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 *
7 *
8 * Thanks to Thomas Gleixner for code reviews and useful comments.
9 *
10 */
11
12#include <linux/alarmtimer.h>
13#include <linux/file.h>
14#include <linux/poll.h>
15#include <linux/init.h>
16#include <linux/fs.h>
17#include <linux/sched.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/list.h>
21#include <linux/spinlock.h>
22#include <linux/time.h>
23#include <linux/hrtimer.h>
24#include <linux/anon_inodes.h>
25#include <linux/timerfd.h>
26#include <linux/syscalls.h>
27#include <linux/compat.h>
28#include <linux/rcupdate.h>
29#include <linux/time_namespace.h>
30
31struct timerfd_ctx {
32 union {
33 struct hrtimer tmr;
34 struct alarm alarm;
35 } t;
36 ktime_t tintv;
37 ktime_t moffs;
38 wait_queue_head_t wqh;
39 u64 ticks;
40 int clockid;
41 short unsigned expired;
42 short unsigned settime_flags; /* to show in fdinfo */
43 struct rcu_head rcu;
44 struct list_head clist;
45 spinlock_t cancel_lock;
46 bool might_cancel;
47};
48
49static LIST_HEAD(cancel_list);
50static DEFINE_SPINLOCK(cancel_lock);
51
52static inline bool isalarm(struct timerfd_ctx *ctx)
53{
54 return ctx->clockid == CLOCK_REALTIME_ALARM ||
55 ctx->clockid == CLOCK_BOOTTIME_ALARM;
56}
57
58/*
59 * This gets called when the timer event triggers. We set the "expired"
60 * flag, but we do not re-arm the timer (in case it's necessary,
61 * tintv != 0) until the timer is accessed.
62 */
63static void timerfd_triggered(struct timerfd_ctx *ctx)
64{
65 unsigned long flags;
66
67 spin_lock_irqsave(&ctx->wqh.lock, flags);
68 ctx->expired = 1;
69 ctx->ticks++;
70 wake_up_locked_poll(&ctx->wqh, EPOLLIN);
71 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
72}
73
74static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
75{
76 struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx,
77 t.tmr);
78 timerfd_triggered(ctx);
79 return HRTIMER_NORESTART;
80}
81
82static void timerfd_alarmproc(struct alarm *alarm, ktime_t now)
83{
84 struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx,
85 t.alarm);
86 timerfd_triggered(ctx);
87}
88
89/*
90 * Called when the clock was set to cancel the timers in the cancel
91 * list. This will wake up processes waiting on these timers. The
92 * wake-up requires ctx->ticks to be non zero, therefore we increment
93 * it before calling wake_up_locked().
94 */
95void timerfd_clock_was_set(void)
96{
97 ktime_t moffs = ktime_mono_to_real(0);
98 struct timerfd_ctx *ctx;
99 unsigned long flags;
100
101 rcu_read_lock();
102 list_for_each_entry_rcu(ctx, &cancel_list, clist) {
103 if (!ctx->might_cancel)
104 continue;
105 spin_lock_irqsave(&ctx->wqh.lock, flags);
106 if (ctx->moffs != moffs) {
107 ctx->moffs = KTIME_MAX;
108 ctx->ticks++;
109 wake_up_locked_poll(&ctx->wqh, EPOLLIN);
110 }
111 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
112 }
113 rcu_read_unlock();
114}
115
116static void timerfd_resume_work(struct work_struct *work)
117{
118 timerfd_clock_was_set();
119}
120
121static DECLARE_WORK(timerfd_work, timerfd_resume_work);
122
123/*
124 * Invoked from timekeeping_resume(). Defer the actual update to work so
125 * timerfd_clock_was_set() runs in task context.
126 */
127void timerfd_resume(void)
128{
129 schedule_work(&timerfd_work);
130}
131
132static void __timerfd_remove_cancel(struct timerfd_ctx *ctx)
133{
134 if (ctx->might_cancel) {
135 ctx->might_cancel = false;
136 spin_lock(&cancel_lock);
137 list_del_rcu(&ctx->clist);
138 spin_unlock(&cancel_lock);
139 }
140}
141
142static void timerfd_remove_cancel(struct timerfd_ctx *ctx)
143{
144 spin_lock(&ctx->cancel_lock);
145 __timerfd_remove_cancel(ctx);
146 spin_unlock(&ctx->cancel_lock);
147}
148
149static bool timerfd_canceled(struct timerfd_ctx *ctx)
150{
151 if (!ctx->might_cancel || ctx->moffs != KTIME_MAX)
152 return false;
153 ctx->moffs = ktime_mono_to_real(0);
154 return true;
155}
156
157static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
158{
159 spin_lock(&ctx->cancel_lock);
160 if ((ctx->clockid == CLOCK_REALTIME ||
161 ctx->clockid == CLOCK_REALTIME_ALARM) &&
162 (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
163 if (!ctx->might_cancel) {
164 ctx->might_cancel = true;
165 spin_lock(&cancel_lock);
166 list_add_rcu(&ctx->clist, &cancel_list);
167 spin_unlock(&cancel_lock);
168 }
169 } else {
170 __timerfd_remove_cancel(ctx);
171 }
172 spin_unlock(&ctx->cancel_lock);
173}
174
175static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
176{
177 ktime_t remaining;
178
179 if (isalarm(ctx))
180 remaining = alarm_expires_remaining(&ctx->t.alarm);
181 else
182 remaining = hrtimer_expires_remaining_adjusted(&ctx->t.tmr);
183
184 return remaining < 0 ? 0: remaining;
185}
186
187static int timerfd_setup(struct timerfd_ctx *ctx, int flags,
188 const struct itimerspec64 *ktmr)
189{
190 enum hrtimer_mode htmode;
191 ktime_t texp;
192 int clockid = ctx->clockid;
193
194 htmode = (flags & TFD_TIMER_ABSTIME) ?
195 HRTIMER_MODE_ABS: HRTIMER_MODE_REL;
196
197 texp = timespec64_to_ktime(ktmr->it_value);
198 ctx->expired = 0;
199 ctx->ticks = 0;
200 ctx->tintv = timespec64_to_ktime(ktmr->it_interval);
201
202 if (isalarm(ctx)) {
203 alarm_init(&ctx->t.alarm,
204 ctx->clockid == CLOCK_REALTIME_ALARM ?
205 ALARM_REALTIME : ALARM_BOOTTIME,
206 timerfd_alarmproc);
207 } else {
208 hrtimer_init(&ctx->t.tmr, clockid, htmode);
209 hrtimer_set_expires(&ctx->t.tmr, texp);
210 ctx->t.tmr.function = timerfd_tmrproc;
211 }
212
213 if (texp != 0) {
214 if (flags & TFD_TIMER_ABSTIME)
215 texp = timens_ktime_to_host(clockid, texp);
216 if (isalarm(ctx)) {
217 if (flags & TFD_TIMER_ABSTIME)
218 alarm_start(&ctx->t.alarm, texp);
219 else
220 alarm_start_relative(&ctx->t.alarm, texp);
221 } else {
222 hrtimer_start(&ctx->t.tmr, texp, htmode);
223 }
224
225 if (timerfd_canceled(ctx))
226 return -ECANCELED;
227 }
228
229 ctx->settime_flags = flags & TFD_SETTIME_FLAGS;
230 return 0;
231}
232
233static int timerfd_release(struct inode *inode, struct file *file)
234{
235 struct timerfd_ctx *ctx = file->private_data;
236
237 timerfd_remove_cancel(ctx);
238
239 if (isalarm(ctx))
240 alarm_cancel(&ctx->t.alarm);
241 else
242 hrtimer_cancel(&ctx->t.tmr);
243 kfree_rcu(ctx, rcu);
244 return 0;
245}
246
247static __poll_t timerfd_poll(struct file *file, poll_table *wait)
248{
249 struct timerfd_ctx *ctx = file->private_data;
250 __poll_t events = 0;
251 unsigned long flags;
252
253 poll_wait(file, &ctx->wqh, wait);
254
255 spin_lock_irqsave(&ctx->wqh.lock, flags);
256 if (ctx->ticks)
257 events |= EPOLLIN;
258 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
259
260 return events;
261}
262
263static ssize_t timerfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
264{
265 struct file *file = iocb->ki_filp;
266 struct timerfd_ctx *ctx = file->private_data;
267 ssize_t res;
268 u64 ticks = 0;
269
270 if (iov_iter_count(to) < sizeof(ticks))
271 return -EINVAL;
272
273 spin_lock_irq(&ctx->wqh.lock);
274 if (file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT)
275 res = -EAGAIN;
276 else
277 res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks);
278
279 /*
280 * If clock has changed, we do not care about the
281 * ticks and we do not rearm the timer. Userspace must
282 * reevaluate anyway.
283 */
284 if (timerfd_canceled(ctx)) {
285 ctx->ticks = 0;
286 ctx->expired = 0;
287 res = -ECANCELED;
288 }
289
290 if (ctx->ticks) {
291 ticks = ctx->ticks;
292
293 if (ctx->expired && ctx->tintv) {
294 /*
295 * If tintv != 0, this is a periodic timer that
296 * needs to be re-armed. We avoid doing it in the timer
297 * callback to avoid DoS attacks specifying a very
298 * short timer period.
299 */
300 if (isalarm(ctx)) {
301 ticks += alarm_forward_now(
302 &ctx->t.alarm, ctx->tintv) - 1;
303 alarm_restart(&ctx->t.alarm);
304 } else {
305 ticks += hrtimer_forward_now(&ctx->t.tmr,
306 ctx->tintv) - 1;
307 hrtimer_restart(&ctx->t.tmr);
308 }
309 }
310 ctx->expired = 0;
311 ctx->ticks = 0;
312 }
313 spin_unlock_irq(&ctx->wqh.lock);
314 if (ticks) {
315 res = copy_to_iter(&ticks, sizeof(ticks), to);
316 if (!res)
317 res = -EFAULT;
318 }
319 return res;
320}
321
322#ifdef CONFIG_PROC_FS
323static void timerfd_show(struct seq_file *m, struct file *file)
324{
325 struct timerfd_ctx *ctx = file->private_data;
326 struct timespec64 value, interval;
327
328 spin_lock_irq(&ctx->wqh.lock);
329 value = ktime_to_timespec64(timerfd_get_remaining(ctx));
330 interval = ktime_to_timespec64(ctx->tintv);
331 spin_unlock_irq(&ctx->wqh.lock);
332
333 seq_printf(m,
334 "clockid: %d\n"
335 "ticks: %llu\n"
336 "settime flags: 0%o\n"
337 "it_value: (%llu, %llu)\n"
338 "it_interval: (%llu, %llu)\n",
339 ctx->clockid,
340 (unsigned long long)ctx->ticks,
341 ctx->settime_flags,
342 (unsigned long long)value.tv_sec,
343 (unsigned long long)value.tv_nsec,
344 (unsigned long long)interval.tv_sec,
345 (unsigned long long)interval.tv_nsec);
346}
347#else
348#define timerfd_show NULL
349#endif
350
351#ifdef CONFIG_CHECKPOINT_RESTORE
352static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
353{
354 struct timerfd_ctx *ctx = file->private_data;
355 int ret = 0;
356
357 switch (cmd) {
358 case TFD_IOC_SET_TICKS: {
359 u64 ticks;
360
361 if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks)))
362 return -EFAULT;
363 if (!ticks)
364 return -EINVAL;
365
366 spin_lock_irq(&ctx->wqh.lock);
367 if (!timerfd_canceled(ctx)) {
368 ctx->ticks = ticks;
369 wake_up_locked_poll(&ctx->wqh, EPOLLIN);
370 } else
371 ret = -ECANCELED;
372 spin_unlock_irq(&ctx->wqh.lock);
373 break;
374 }
375 default:
376 ret = -ENOTTY;
377 break;
378 }
379
380 return ret;
381}
382#else
383#define timerfd_ioctl NULL
384#endif
385
386static const struct file_operations timerfd_fops = {
387 .release = timerfd_release,
388 .poll = timerfd_poll,
389 .read_iter = timerfd_read_iter,
390 .llseek = noop_llseek,
391 .show_fdinfo = timerfd_show,
392 .unlocked_ioctl = timerfd_ioctl,
393};
394
395SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)
396{
397 int ufd;
398 struct timerfd_ctx *ctx;
399 struct file *file;
400
401 /* Check the TFD_* constants for consistency. */
402 BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC);
403 BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK);
404
405 if ((flags & ~TFD_CREATE_FLAGS) ||
406 (clockid != CLOCK_MONOTONIC &&
407 clockid != CLOCK_REALTIME &&
408 clockid != CLOCK_REALTIME_ALARM &&
409 clockid != CLOCK_BOOTTIME &&
410 clockid != CLOCK_BOOTTIME_ALARM))
411 return -EINVAL;
412
413 if ((clockid == CLOCK_REALTIME_ALARM ||
414 clockid == CLOCK_BOOTTIME_ALARM) &&
415 !capable(CAP_WAKE_ALARM))
416 return -EPERM;
417
418 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
419 if (!ctx)
420 return -ENOMEM;
421
422 init_waitqueue_head(&ctx->wqh);
423 spin_lock_init(&ctx->cancel_lock);
424 ctx->clockid = clockid;
425
426 if (isalarm(ctx))
427 alarm_init(&ctx->t.alarm,
428 ctx->clockid == CLOCK_REALTIME_ALARM ?
429 ALARM_REALTIME : ALARM_BOOTTIME,
430 timerfd_alarmproc);
431 else
432 hrtimer_init(&ctx->t.tmr, clockid, HRTIMER_MODE_ABS);
433
434 ctx->moffs = ktime_mono_to_real(0);
435
436 ufd = get_unused_fd_flags(flags & TFD_SHARED_FCNTL_FLAGS);
437 if (ufd < 0) {
438 kfree(ctx);
439 return ufd;
440 }
441
442 file = anon_inode_getfile("[timerfd]", &timerfd_fops, ctx,
443 O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS));
444 if (IS_ERR(file)) {
445 put_unused_fd(ufd);
446 kfree(ctx);
447 return PTR_ERR(file);
448 }
449
450 file->f_mode |= FMODE_NOWAIT;
451 fd_install(ufd, file);
452 return ufd;
453}
454
455static int do_timerfd_settime(int ufd, int flags,
456 const struct itimerspec64 *new,
457 struct itimerspec64 *old)
458{
459 struct timerfd_ctx *ctx;
460 int ret;
461
462 if ((flags & ~TFD_SETTIME_FLAGS) ||
463 !itimerspec64_valid(new))
464 return -EINVAL;
465
466 CLASS(fd, f)(ufd);
467 if (fd_empty(f))
468 return -EBADF;
469
470 if (fd_file(f)->f_op != &timerfd_fops)
471 return -EINVAL;
472
473 ctx = fd_file(f)->private_data;
474
475 if (isalarm(ctx) && !capable(CAP_WAKE_ALARM))
476 return -EPERM;
477
478 timerfd_setup_cancel(ctx, flags);
479
480 /*
481 * We need to stop the existing timer before reprogramming
482 * it to the new values.
483 */
484 for (;;) {
485 spin_lock_irq(&ctx->wqh.lock);
486
487 if (isalarm(ctx)) {
488 if (alarm_try_to_cancel(&ctx->t.alarm) >= 0)
489 break;
490 } else {
491 if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0)
492 break;
493 }
494 spin_unlock_irq(&ctx->wqh.lock);
495
496 if (isalarm(ctx))
497 hrtimer_cancel_wait_running(&ctx->t.alarm.timer);
498 else
499 hrtimer_cancel_wait_running(&ctx->t.tmr);
500 }
501
502 /*
503 * If the timer is expired and it's periodic, we need to advance it
504 * because the caller may want to know the previous expiration time.
505 * We do not update "ticks" and "expired" since the timer will be
506 * re-programmed again in the following timerfd_setup() call.
507 */
508 if (ctx->expired && ctx->tintv) {
509 if (isalarm(ctx))
510 alarm_forward_now(&ctx->t.alarm, ctx->tintv);
511 else
512 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv);
513 }
514
515 old->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx));
516 old->it_interval = ktime_to_timespec64(ctx->tintv);
517
518 /*
519 * Re-program the timer to the new value ...
520 */
521 ret = timerfd_setup(ctx, flags, new);
522
523 spin_unlock_irq(&ctx->wqh.lock);
524 return ret;
525}
526
527static int do_timerfd_gettime(int ufd, struct itimerspec64 *t)
528{
529 struct timerfd_ctx *ctx;
530 CLASS(fd, f)(ufd);
531
532 if (fd_empty(f))
533 return -EBADF;
534 if (fd_file(f)->f_op != &timerfd_fops)
535 return -EINVAL;
536 ctx = fd_file(f)->private_data;
537
538 spin_lock_irq(&ctx->wqh.lock);
539 if (ctx->expired && ctx->tintv) {
540 ctx->expired = 0;
541
542 if (isalarm(ctx)) {
543 ctx->ticks +=
544 alarm_forward_now(
545 &ctx->t.alarm, ctx->tintv) - 1;
546 alarm_restart(&ctx->t.alarm);
547 } else {
548 ctx->ticks +=
549 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv)
550 - 1;
551 hrtimer_restart(&ctx->t.tmr);
552 }
553 }
554 t->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx));
555 t->it_interval = ktime_to_timespec64(ctx->tintv);
556 spin_unlock_irq(&ctx->wqh.lock);
557 return 0;
558}
559
560SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
561 const struct __kernel_itimerspec __user *, utmr,
562 struct __kernel_itimerspec __user *, otmr)
563{
564 struct itimerspec64 new, old;
565 int ret;
566
567 if (get_itimerspec64(&new, utmr))
568 return -EFAULT;
569 ret = do_timerfd_settime(ufd, flags, &new, &old);
570 if (ret)
571 return ret;
572 if (otmr && put_itimerspec64(&old, otmr))
573 return -EFAULT;
574
575 return ret;
576}
577
578SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct __kernel_itimerspec __user *, otmr)
579{
580 struct itimerspec64 kotmr;
581 int ret = do_timerfd_gettime(ufd, &kotmr);
582 if (ret)
583 return ret;
584 return put_itimerspec64(&kotmr, otmr) ? -EFAULT : 0;
585}
586
587#ifdef CONFIG_COMPAT_32BIT_TIME
588SYSCALL_DEFINE4(timerfd_settime32, int, ufd, int, flags,
589 const struct old_itimerspec32 __user *, utmr,
590 struct old_itimerspec32 __user *, otmr)
591{
592 struct itimerspec64 new, old;
593 int ret;
594
595 if (get_old_itimerspec32(&new, utmr))
596 return -EFAULT;
597 ret = do_timerfd_settime(ufd, flags, &new, &old);
598 if (ret)
599 return ret;
600 if (otmr && put_old_itimerspec32(&old, otmr))
601 return -EFAULT;
602 return ret;
603}
604
605SYSCALL_DEFINE2(timerfd_gettime32, int, ufd,
606 struct old_itimerspec32 __user *, otmr)
607{
608 struct itimerspec64 kotmr;
609 int ret = do_timerfd_gettime(ufd, &kotmr);
610 if (ret)
611 return ret;
612 return put_old_itimerspec32(&kotmr, otmr) ? -EFAULT : 0;
613}
614#endif
1/*
2 * fs/timerfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 *
6 *
7 * Thanks to Thomas Gleixner for code reviews and useful comments.
8 *
9 */
10
11#include <linux/alarmtimer.h>
12#include <linux/file.h>
13#include <linux/poll.h>
14#include <linux/init.h>
15#include <linux/fs.h>
16#include <linux/sched.h>
17#include <linux/kernel.h>
18#include <linux/slab.h>
19#include <linux/list.h>
20#include <linux/spinlock.h>
21#include <linux/time.h>
22#include <linux/hrtimer.h>
23#include <linux/anon_inodes.h>
24#include <linux/timerfd.h>
25#include <linux/syscalls.h>
26#include <linux/compat.h>
27#include <linux/rcupdate.h>
28
29struct timerfd_ctx {
30 union {
31 struct hrtimer tmr;
32 struct alarm alarm;
33 } t;
34 ktime_t tintv;
35 ktime_t moffs;
36 wait_queue_head_t wqh;
37 u64 ticks;
38 int expired;
39 int clockid;
40 struct rcu_head rcu;
41 struct list_head clist;
42 bool might_cancel;
43};
44
45static LIST_HEAD(cancel_list);
46static DEFINE_SPINLOCK(cancel_lock);
47
48static inline bool isalarm(struct timerfd_ctx *ctx)
49{
50 return ctx->clockid == CLOCK_REALTIME_ALARM ||
51 ctx->clockid == CLOCK_BOOTTIME_ALARM;
52}
53
54/*
55 * This gets called when the timer event triggers. We set the "expired"
56 * flag, but we do not re-arm the timer (in case it's necessary,
57 * tintv.tv64 != 0) until the timer is accessed.
58 */
59static void timerfd_triggered(struct timerfd_ctx *ctx)
60{
61 unsigned long flags;
62
63 spin_lock_irqsave(&ctx->wqh.lock, flags);
64 ctx->expired = 1;
65 ctx->ticks++;
66 wake_up_locked(&ctx->wqh);
67 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
68}
69
70static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
71{
72 struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx,
73 t.tmr);
74 timerfd_triggered(ctx);
75 return HRTIMER_NORESTART;
76}
77
78static enum alarmtimer_restart timerfd_alarmproc(struct alarm *alarm,
79 ktime_t now)
80{
81 struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx,
82 t.alarm);
83 timerfd_triggered(ctx);
84 return ALARMTIMER_NORESTART;
85}
86
87/*
88 * Called when the clock was set to cancel the timers in the cancel
89 * list. This will wake up processes waiting on these timers. The
90 * wake-up requires ctx->ticks to be non zero, therefore we increment
91 * it before calling wake_up_locked().
92 */
93void timerfd_clock_was_set(void)
94{
95 ktime_t moffs = ktime_get_monotonic_offset();
96 struct timerfd_ctx *ctx;
97 unsigned long flags;
98
99 rcu_read_lock();
100 list_for_each_entry_rcu(ctx, &cancel_list, clist) {
101 if (!ctx->might_cancel)
102 continue;
103 spin_lock_irqsave(&ctx->wqh.lock, flags);
104 if (ctx->moffs.tv64 != moffs.tv64) {
105 ctx->moffs.tv64 = KTIME_MAX;
106 ctx->ticks++;
107 wake_up_locked(&ctx->wqh);
108 }
109 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
110 }
111 rcu_read_unlock();
112}
113
114static void timerfd_remove_cancel(struct timerfd_ctx *ctx)
115{
116 if (ctx->might_cancel) {
117 ctx->might_cancel = false;
118 spin_lock(&cancel_lock);
119 list_del_rcu(&ctx->clist);
120 spin_unlock(&cancel_lock);
121 }
122}
123
124static bool timerfd_canceled(struct timerfd_ctx *ctx)
125{
126 if (!ctx->might_cancel || ctx->moffs.tv64 != KTIME_MAX)
127 return false;
128 ctx->moffs = ktime_get_monotonic_offset();
129 return true;
130}
131
132static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
133{
134 if ((ctx->clockid == CLOCK_REALTIME ||
135 ctx->clockid == CLOCK_REALTIME_ALARM) &&
136 (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
137 if (!ctx->might_cancel) {
138 ctx->might_cancel = true;
139 spin_lock(&cancel_lock);
140 list_add_rcu(&ctx->clist, &cancel_list);
141 spin_unlock(&cancel_lock);
142 }
143 } else if (ctx->might_cancel) {
144 timerfd_remove_cancel(ctx);
145 }
146}
147
148static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
149{
150 ktime_t remaining;
151
152 if (isalarm(ctx))
153 remaining = alarm_expires_remaining(&ctx->t.alarm);
154 else
155 remaining = hrtimer_expires_remaining(&ctx->t.tmr);
156
157 return remaining.tv64 < 0 ? ktime_set(0, 0): remaining;
158}
159
160static int timerfd_setup(struct timerfd_ctx *ctx, int flags,
161 const struct itimerspec *ktmr)
162{
163 enum hrtimer_mode htmode;
164 ktime_t texp;
165 int clockid = ctx->clockid;
166
167 htmode = (flags & TFD_TIMER_ABSTIME) ?
168 HRTIMER_MODE_ABS: HRTIMER_MODE_REL;
169
170 texp = timespec_to_ktime(ktmr->it_value);
171 ctx->expired = 0;
172 ctx->ticks = 0;
173 ctx->tintv = timespec_to_ktime(ktmr->it_interval);
174
175 if (isalarm(ctx)) {
176 alarm_init(&ctx->t.alarm,
177 ctx->clockid == CLOCK_REALTIME_ALARM ?
178 ALARM_REALTIME : ALARM_BOOTTIME,
179 timerfd_alarmproc);
180 } else {
181 hrtimer_init(&ctx->t.tmr, clockid, htmode);
182 hrtimer_set_expires(&ctx->t.tmr, texp);
183 ctx->t.tmr.function = timerfd_tmrproc;
184 }
185
186 if (texp.tv64 != 0) {
187 if (isalarm(ctx)) {
188 if (flags & TFD_TIMER_ABSTIME)
189 alarm_start(&ctx->t.alarm, texp);
190 else
191 alarm_start_relative(&ctx->t.alarm, texp);
192 } else {
193 hrtimer_start(&ctx->t.tmr, texp, htmode);
194 }
195
196 if (timerfd_canceled(ctx))
197 return -ECANCELED;
198 }
199 return 0;
200}
201
202static int timerfd_release(struct inode *inode, struct file *file)
203{
204 struct timerfd_ctx *ctx = file->private_data;
205
206 timerfd_remove_cancel(ctx);
207
208 if (isalarm(ctx))
209 alarm_cancel(&ctx->t.alarm);
210 else
211 hrtimer_cancel(&ctx->t.tmr);
212 kfree_rcu(ctx, rcu);
213 return 0;
214}
215
216static unsigned int timerfd_poll(struct file *file, poll_table *wait)
217{
218 struct timerfd_ctx *ctx = file->private_data;
219 unsigned int events = 0;
220 unsigned long flags;
221
222 poll_wait(file, &ctx->wqh, wait);
223
224 spin_lock_irqsave(&ctx->wqh.lock, flags);
225 if (ctx->ticks)
226 events |= POLLIN;
227 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
228
229 return events;
230}
231
232static ssize_t timerfd_read(struct file *file, char __user *buf, size_t count,
233 loff_t *ppos)
234{
235 struct timerfd_ctx *ctx = file->private_data;
236 ssize_t res;
237 u64 ticks = 0;
238
239 if (count < sizeof(ticks))
240 return -EINVAL;
241 spin_lock_irq(&ctx->wqh.lock);
242 if (file->f_flags & O_NONBLOCK)
243 res = -EAGAIN;
244 else
245 res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks);
246
247 /*
248 * If clock has changed, we do not care about the
249 * ticks and we do not rearm the timer. Userspace must
250 * reevaluate anyway.
251 */
252 if (timerfd_canceled(ctx)) {
253 ctx->ticks = 0;
254 ctx->expired = 0;
255 res = -ECANCELED;
256 }
257
258 if (ctx->ticks) {
259 ticks = ctx->ticks;
260
261 if (ctx->expired && ctx->tintv.tv64) {
262 /*
263 * If tintv.tv64 != 0, this is a periodic timer that
264 * needs to be re-armed. We avoid doing it in the timer
265 * callback to avoid DoS attacks specifying a very
266 * short timer period.
267 */
268 if (isalarm(ctx)) {
269 ticks += alarm_forward_now(
270 &ctx->t.alarm, ctx->tintv) - 1;
271 alarm_restart(&ctx->t.alarm);
272 } else {
273 ticks += hrtimer_forward_now(&ctx->t.tmr,
274 ctx->tintv) - 1;
275 hrtimer_restart(&ctx->t.tmr);
276 }
277 }
278 ctx->expired = 0;
279 ctx->ticks = 0;
280 }
281 spin_unlock_irq(&ctx->wqh.lock);
282 if (ticks)
283 res = put_user(ticks, (u64 __user *) buf) ? -EFAULT: sizeof(ticks);
284 return res;
285}
286
287static const struct file_operations timerfd_fops = {
288 .release = timerfd_release,
289 .poll = timerfd_poll,
290 .read = timerfd_read,
291 .llseek = noop_llseek,
292};
293
294static int timerfd_fget(int fd, struct fd *p)
295{
296 struct fd f = fdget(fd);
297 if (!f.file)
298 return -EBADF;
299 if (f.file->f_op != &timerfd_fops) {
300 fdput(f);
301 return -EINVAL;
302 }
303 *p = f;
304 return 0;
305}
306
307SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)
308{
309 int ufd;
310 struct timerfd_ctx *ctx;
311
312 /* Check the TFD_* constants for consistency. */
313 BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC);
314 BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK);
315
316 if ((flags & ~TFD_CREATE_FLAGS) ||
317 (clockid != CLOCK_MONOTONIC &&
318 clockid != CLOCK_REALTIME &&
319 clockid != CLOCK_REALTIME_ALARM &&
320 clockid != CLOCK_BOOTTIME &&
321 clockid != CLOCK_BOOTTIME_ALARM))
322 return -EINVAL;
323
324 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
325 if (!ctx)
326 return -ENOMEM;
327
328 init_waitqueue_head(&ctx->wqh);
329 ctx->clockid = clockid;
330
331 if (isalarm(ctx))
332 alarm_init(&ctx->t.alarm,
333 ctx->clockid == CLOCK_REALTIME_ALARM ?
334 ALARM_REALTIME : ALARM_BOOTTIME,
335 timerfd_alarmproc);
336 else
337 hrtimer_init(&ctx->t.tmr, clockid, HRTIMER_MODE_ABS);
338
339 ctx->moffs = ktime_get_monotonic_offset();
340
341 ufd = anon_inode_getfd("[timerfd]", &timerfd_fops, ctx,
342 O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS));
343 if (ufd < 0)
344 kfree(ctx);
345
346 return ufd;
347}
348
349static int do_timerfd_settime(int ufd, int flags,
350 const struct itimerspec *new,
351 struct itimerspec *old)
352{
353 struct fd f;
354 struct timerfd_ctx *ctx;
355 int ret;
356
357 if ((flags & ~TFD_SETTIME_FLAGS) ||
358 !timespec_valid(&new->it_value) ||
359 !timespec_valid(&new->it_interval))
360 return -EINVAL;
361
362 ret = timerfd_fget(ufd, &f);
363 if (ret)
364 return ret;
365 ctx = f.file->private_data;
366
367 timerfd_setup_cancel(ctx, flags);
368
369 /*
370 * We need to stop the existing timer before reprogramming
371 * it to the new values.
372 */
373 for (;;) {
374 spin_lock_irq(&ctx->wqh.lock);
375
376 if (isalarm(ctx)) {
377 if (alarm_try_to_cancel(&ctx->t.alarm) >= 0)
378 break;
379 } else {
380 if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0)
381 break;
382 }
383 spin_unlock_irq(&ctx->wqh.lock);
384 cpu_relax();
385 }
386
387 /*
388 * If the timer is expired and it's periodic, we need to advance it
389 * because the caller may want to know the previous expiration time.
390 * We do not update "ticks" and "expired" since the timer will be
391 * re-programmed again in the following timerfd_setup() call.
392 */
393 if (ctx->expired && ctx->tintv.tv64) {
394 if (isalarm(ctx))
395 alarm_forward_now(&ctx->t.alarm, ctx->tintv);
396 else
397 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv);
398 }
399
400 old->it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
401 old->it_interval = ktime_to_timespec(ctx->tintv);
402
403 /*
404 * Re-program the timer to the new value ...
405 */
406 ret = timerfd_setup(ctx, flags, new);
407
408 spin_unlock_irq(&ctx->wqh.lock);
409 fdput(f);
410 return ret;
411}
412
413static int do_timerfd_gettime(int ufd, struct itimerspec *t)
414{
415 struct fd f;
416 struct timerfd_ctx *ctx;
417 int ret = timerfd_fget(ufd, &f);
418 if (ret)
419 return ret;
420 ctx = f.file->private_data;
421
422 spin_lock_irq(&ctx->wqh.lock);
423 if (ctx->expired && ctx->tintv.tv64) {
424 ctx->expired = 0;
425
426 if (isalarm(ctx)) {
427 ctx->ticks +=
428 alarm_forward_now(
429 &ctx->t.alarm, ctx->tintv) - 1;
430 alarm_restart(&ctx->t.alarm);
431 } else {
432 ctx->ticks +=
433 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv)
434 - 1;
435 hrtimer_restart(&ctx->t.tmr);
436 }
437 }
438 t->it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
439 t->it_interval = ktime_to_timespec(ctx->tintv);
440 spin_unlock_irq(&ctx->wqh.lock);
441 fdput(f);
442 return 0;
443}
444
445SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
446 const struct itimerspec __user *, utmr,
447 struct itimerspec __user *, otmr)
448{
449 struct itimerspec new, old;
450 int ret;
451
452 if (copy_from_user(&new, utmr, sizeof(new)))
453 return -EFAULT;
454 ret = do_timerfd_settime(ufd, flags, &new, &old);
455 if (ret)
456 return ret;
457 if (otmr && copy_to_user(otmr, &old, sizeof(old)))
458 return -EFAULT;
459
460 return ret;
461}
462
463SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct itimerspec __user *, otmr)
464{
465 struct itimerspec kotmr;
466 int ret = do_timerfd_gettime(ufd, &kotmr);
467 if (ret)
468 return ret;
469 return copy_to_user(otmr, &kotmr, sizeof(kotmr)) ? -EFAULT: 0;
470}
471
472#ifdef CONFIG_COMPAT
473COMPAT_SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
474 const struct compat_itimerspec __user *, utmr,
475 struct compat_itimerspec __user *, otmr)
476{
477 struct itimerspec new, old;
478 int ret;
479
480 if (get_compat_itimerspec(&new, utmr))
481 return -EFAULT;
482 ret = do_timerfd_settime(ufd, flags, &new, &old);
483 if (ret)
484 return ret;
485 if (otmr && put_compat_itimerspec(otmr, &old))
486 return -EFAULT;
487 return ret;
488}
489
490COMPAT_SYSCALL_DEFINE2(timerfd_gettime, int, ufd,
491 struct compat_itimerspec __user *, otmr)
492{
493 struct itimerspec kotmr;
494 int ret = do_timerfd_gettime(ufd, &kotmr);
495 if (ret)
496 return ret;
497 return put_compat_itimerspec(otmr, &kotmr) ? -EFAULT: 0;
498}
499#endif