Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
 
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/pagevec.h>
  12#include <linux/highmem.h>
  13#include <linux/kthread.h>
  14#include <linux/time.h>
  15#include <linux/init.h>
  16#include <linux/string.h>
  17#include <linux/backing-dev.h>
 
 
  18#include <linux/writeback.h>
  19#include <linux/psi.h>
  20#include <linux/slab.h>
  21#include <linux/sched/mm.h>
  22#include <linux/log2.h>
  23#include <linux/shrinker.h>
  24#include <crypto/hash.h>
  25#include "misc.h"
  26#include "ctree.h"
  27#include "fs.h"
 
  28#include "btrfs_inode.h"
  29#include "bio.h"
  30#include "ordered-data.h"
  31#include "compression.h"
  32#include "extent_io.h"
  33#include "extent_map.h"
  34#include "subpage.h"
  35#include "messages.h"
  36#include "super.h"
  37
  38static struct bio_set btrfs_compressed_bioset;
 
 
  39
  40static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
 
  41
  42const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  43{
  44	switch (type) {
  45	case BTRFS_COMPRESS_ZLIB:
  46	case BTRFS_COMPRESS_LZO:
  47	case BTRFS_COMPRESS_ZSTD:
  48	case BTRFS_COMPRESS_NONE:
  49		return btrfs_compress_types[type];
  50	default:
  51		break;
  52	}
  53
  54	return NULL;
  55}
  56
  57static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
  58{
  59	return container_of(bbio, struct compressed_bio, bbio);
  60}
  61
  62static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
  63						   u64 start, blk_opf_t op,
  64						   btrfs_bio_end_io_t end_io)
  65{
  66	struct btrfs_bio *bbio;
  67
  68	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
  69					  GFP_NOFS, &btrfs_compressed_bioset));
  70	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
  71	bbio->inode = inode;
  72	bbio->file_offset = start;
  73	return to_compressed_bio(bbio);
  74}
  75
  76bool btrfs_compress_is_valid_type(const char *str, size_t len)
  77{
  78	int i;
  79
  80	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  81		size_t comp_len = strlen(btrfs_compress_types[i]);
 
  82
  83		if (len < comp_len)
  84			continue;
  85
  86		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  87			return true;
  88	}
  89	return false;
  90}
 
  91
  92static int compression_compress_pages(int type, struct list_head *ws,
  93				      struct address_space *mapping, u64 start,
  94				      struct folio **folios, unsigned long *out_folios,
  95				      unsigned long *total_in, unsigned long *total_out)
  96{
  97	switch (type) {
  98	case BTRFS_COMPRESS_ZLIB:
  99		return zlib_compress_folios(ws, mapping, start, folios,
 100					    out_folios, total_in, total_out);
 101	case BTRFS_COMPRESS_LZO:
 102		return lzo_compress_folios(ws, mapping, start, folios,
 103					   out_folios, total_in, total_out);
 104	case BTRFS_COMPRESS_ZSTD:
 105		return zstd_compress_folios(ws, mapping, start, folios,
 106					    out_folios, total_in, total_out);
 107	case BTRFS_COMPRESS_NONE:
 108	default:
 109		/*
 110		 * This can happen when compression races with remount setting
 111		 * it to 'no compress', while caller doesn't call
 112		 * inode_need_compress() to check if we really need to
 113		 * compress.
 114		 *
 115		 * Not a big deal, just need to inform caller that we
 116		 * haven't allocated any pages yet.
 117		 */
 118		*out_folios = 0;
 119		return -E2BIG;
 120	}
 121}
 122
 123static int compression_decompress_bio(struct list_head *ws,
 124				      struct compressed_bio *cb)
 125{
 126	switch (cb->compress_type) {
 127	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 128	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 129	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 130	case BTRFS_COMPRESS_NONE:
 131	default:
 132		/*
 133		 * This can't happen, the type is validated several times
 134		 * before we get here.
 135		 */
 136		BUG();
 137	}
 138}
 139
 140static int compression_decompress(int type, struct list_head *ws,
 141		const u8 *data_in, struct folio *dest_folio,
 142		unsigned long dest_pgoff, size_t srclen, size_t destlen)
 143{
 144	switch (type) {
 145	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_folio,
 146						dest_pgoff, srclen, destlen);
 147	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_folio,
 148						dest_pgoff, srclen, destlen);
 149	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_folio,
 150						dest_pgoff, srclen, destlen);
 151	case BTRFS_COMPRESS_NONE:
 152	default:
 153		/*
 154		 * This can't happen, the type is validated several times
 155		 * before we get here.
 156		 */
 157		BUG();
 158	}
 159}
 160
 161static void btrfs_free_compressed_folios(struct compressed_bio *cb)
 
 162{
 163	for (unsigned int i = 0; i < cb->nr_folios; i++)
 164		btrfs_free_compr_folio(cb->compressed_folios[i]);
 165	kfree(cb->compressed_folios);
 166}
 167
 168static int btrfs_decompress_bio(struct compressed_bio *cb);
 169
 170/*
 171 * Global cache of last unused pages for compression/decompression.
 172 */
 173static struct btrfs_compr_pool {
 174	struct shrinker *shrinker;
 175	spinlock_t lock;
 176	struct list_head list;
 177	int count;
 178	int thresh;
 179} compr_pool;
 180
 181static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
 182{
 183	int ret;
 184
 185	/*
 186	 * We must not read the values more than once if 'ret' gets expanded in
 187	 * the return statement so we don't accidentally return a negative
 188	 * number, even if the first condition finds it positive.
 189	 */
 190	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
 191
 192	return ret > 0 ? ret : 0;
 193}
 194
 195static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
 
 
 196{
 197	struct list_head remove;
 198	struct list_head *tmp, *next;
 199	int freed;
 200
 201	if (compr_pool.count == 0)
 202		return SHRINK_STOP;
 203
 204	INIT_LIST_HEAD(&remove);
 205
 206	/* For now, just simply drain the whole list. */
 207	spin_lock(&compr_pool.lock);
 208	list_splice_init(&compr_pool.list, &remove);
 209	freed = compr_pool.count;
 210	compr_pool.count = 0;
 211	spin_unlock(&compr_pool.lock);
 212
 213	list_for_each_safe(tmp, next, &remove) {
 214		struct page *page = list_entry(tmp, struct page, lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215
 216		ASSERT(page_ref_count(page) == 1);
 217		put_page(page);
 218	}
 219
 220	return freed;
 
 221}
 222
 223/*
 224 * Common wrappers for page allocation from compression wrappers
 
 
 
 
 
 
 
 225 */
 226struct folio *btrfs_alloc_compr_folio(void)
 227{
 228	struct folio *folio = NULL;
 229
 230	spin_lock(&compr_pool.lock);
 231	if (compr_pool.count > 0) {
 232		folio = list_first_entry(&compr_pool.list, struct folio, lru);
 233		list_del_init(&folio->lru);
 234		compr_pool.count--;
 235	}
 236	spin_unlock(&compr_pool.lock);
 237
 238	if (folio)
 239		return folio;
 240
 241	return folio_alloc(GFP_NOFS, 0);
 242}
 
 
 
 243
 244void btrfs_free_compr_folio(struct folio *folio)
 245{
 246	bool do_free = false;
 
 
 247
 248	spin_lock(&compr_pool.lock);
 249	if (compr_pool.count > compr_pool.thresh) {
 250		do_free = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251	} else {
 252		list_add(&folio->lru, &compr_pool.list);
 253		compr_pool.count++;
 254	}
 255	spin_unlock(&compr_pool.lock);
 256
 257	if (!do_free)
 258		return;
 259
 260	ASSERT(folio_ref_count(folio) == 1);
 261	folio_put(folio);
 262}
 263
 264static void end_bbio_compressed_read(struct btrfs_bio *bbio)
 265{
 266	struct compressed_bio *cb = to_compressed_bio(bbio);
 267	blk_status_t status = bbio->bio.bi_status;
 
 
 268
 269	if (!status)
 270		status = errno_to_blk_status(btrfs_decompress_bio(cb));
 271
 272	btrfs_free_compressed_folios(cb);
 273	btrfs_bio_end_io(cb->orig_bbio, status);
 274	bio_put(&bbio->bio);
 
 
 275}
 276
 277/*
 278 * Clear the writeback bits on all of the file
 279 * pages for a compressed write
 280 */
 281static noinline void end_compressed_writeback(const struct compressed_bio *cb)
 
 282{
 283	struct inode *inode = &cb->bbio.inode->vfs_inode;
 284	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 285	unsigned long index = cb->start >> PAGE_SHIFT;
 286	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 287	struct folio_batch fbatch;
 288	const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
 289	int i;
 290	int ret;
 291
 292	if (error)
 293		mapping_set_error(inode->i_mapping, error);
 294
 295	folio_batch_init(&fbatch);
 296	while (index <= end_index) {
 297		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
 298				&fbatch);
 299
 300		if (ret == 0)
 301			return;
 302
 303		for (i = 0; i < ret; i++) {
 304			struct folio *folio = fbatch.folios[i];
 305
 306			btrfs_folio_clamp_clear_writeback(fs_info, folio,
 307							  cb->start, cb->len);
 308		}
 309		folio_batch_release(&fbatch);
 
 310	}
 311	/* the inode may be gone now */
 312}
 313
 314static void btrfs_finish_compressed_write_work(struct work_struct *work)
 315{
 316	struct compressed_bio *cb =
 317		container_of(work, struct compressed_bio, write_end_work);
 318
 319	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
 320				    cb->bbio.bio.bi_status == BLK_STS_OK);
 321
 322	if (cb->writeback)
 323		end_compressed_writeback(cb);
 324	/* Note, our inode could be gone now */
 325
 326	btrfs_free_compressed_folios(cb);
 327	bio_put(&cb->bbio.bio);
 328}
 329
 330/*
 331 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 332 * writeback on the file pages and free the compressed pages.
 
 333 *
 334 * This also calls the writeback end hooks for the file pages so that metadata
 335 * and checksums can be updated in the file.
 336 */
 337static void end_bbio_compressed_write(struct btrfs_bio *bbio)
 338{
 339	struct compressed_bio *cb = to_compressed_bio(bbio);
 340	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
 
 
 
 341
 342	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
 343}
 344
 345static void btrfs_add_compressed_bio_folios(struct compressed_bio *cb)
 346{
 347	struct bio *bio = &cb->bbio.bio;
 348	u32 offset = 0;
 
 349
 350	while (offset < cb->compressed_len) {
 351		int ret;
 352		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
 353
 354		/* Maximum compressed extent is smaller than bio size limit. */
 355		ret = bio_add_folio(bio, cb->compressed_folios[offset >> PAGE_SHIFT],
 356				    len, 0);
 357		ASSERT(ret);
 358		offset += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359	}
 
 
 
 
 
 
 360}
 361
 362/*
 363 * worker function to build and submit bios for previously compressed pages.
 364 * The corresponding pages in the inode should be marked for writeback
 365 * and the compressed pages should have a reference on them for dropping
 366 * when the IO is complete.
 367 *
 368 * This also checksums the file bytes and gets things ready for
 369 * the end io hooks.
 370 */
 371void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
 372				   struct folio **compressed_folios,
 373				   unsigned int nr_folios,
 374				   blk_opf_t write_flags,
 375				   bool writeback)
 376{
 377	struct btrfs_inode *inode = ordered->inode;
 378	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 379	struct compressed_bio *cb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380
 381	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
 382	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383
 384	cb = alloc_compressed_bio(inode, ordered->file_offset,
 385				  REQ_OP_WRITE | write_flags,
 386				  end_bbio_compressed_write);
 387	cb->start = ordered->file_offset;
 388	cb->len = ordered->num_bytes;
 389	cb->compressed_folios = compressed_folios;
 390	cb->compressed_len = ordered->disk_num_bytes;
 391	cb->writeback = writeback;
 392	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
 393	cb->nr_folios = nr_folios;
 394	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
 395	cb->bbio.ordered = ordered;
 396	btrfs_add_compressed_bio_folios(cb);
 397
 398	btrfs_submit_bbio(&cb->bbio, 0);
 
 399}
 400
 401/*
 402 * Add extra pages in the same compressed file extent so that we don't need to
 403 * re-read the same extent again and again.
 404 *
 405 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 406 * full page then submit bio for each compressed/regular extents.
 407 *
 408 * This means, if we have several sectors in the same page points to the same
 409 * on-disk compressed data, we will re-read the same extent many times and
 410 * this function can only help for the next page.
 411 */
 412static noinline int add_ra_bio_pages(struct inode *inode,
 413				     u64 compressed_end,
 414				     struct compressed_bio *cb,
 415				     int *memstall, unsigned long *pflags)
 416{
 417	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 418	unsigned long end_index;
 419	struct bio *orig_bio = &cb->orig_bbio->bio;
 420	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
 421	u64 isize = i_size_read(inode);
 422	int ret;
 423	struct folio *folio;
 
 424	struct extent_map *em;
 425	struct address_space *mapping = inode->i_mapping;
 426	struct extent_map_tree *em_tree;
 427	struct extent_io_tree *tree;
 428	int sectors_missed = 0;
 
 429
 
 
 430	em_tree = &BTRFS_I(inode)->extent_tree;
 431	tree = &BTRFS_I(inode)->io_tree;
 432
 433	if (isize == 0)
 434		return 0;
 435
 436	/*
 437	 * For current subpage support, we only support 64K page size,
 438	 * which means maximum compressed extent size (128K) is just 2x page
 439	 * size.
 440	 * This makes readahead less effective, so here disable readahead for
 441	 * subpage for now, until full compressed write is supported.
 442	 */
 443	if (fs_info->sectorsize < PAGE_SIZE)
 444		return 0;
 445
 446	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 447
 448	while (cur < compressed_end) {
 449		u64 page_end;
 450		u64 pg_index = cur >> PAGE_SHIFT;
 451		u32 add_size;
 452
 453		if (pg_index > end_index)
 454			break;
 455
 456		folio = filemap_get_folio(mapping, pg_index);
 457		if (!IS_ERR(folio)) {
 458			u64 folio_sz = folio_size(folio);
 459			u64 offset = offset_in_folio(folio, cur);
 460
 461			folio_put(folio);
 462			sectors_missed += (folio_sz - offset) >>
 463					  fs_info->sectorsize_bits;
 464
 465			/* Beyond threshold, no need to continue */
 466			if (sectors_missed > 4)
 467				break;
 468
 469			/*
 470			 * Jump to next page start as we already have page for
 471			 * current offset.
 472			 */
 473			cur += (folio_sz - offset);
 474			continue;
 475		}
 476
 477		folio = filemap_alloc_folio(mapping_gfp_constraint(mapping,
 478								   ~__GFP_FS), 0);
 479		if (!folio)
 480			break;
 481
 482		if (filemap_add_folio(mapping, folio, pg_index, GFP_NOFS)) {
 483			/* There is already a page, skip to page end */
 484			cur += folio_size(folio);
 485			folio_put(folio);
 486			continue;
 487		}
 488
 489		if (!*memstall && folio_test_workingset(folio)) {
 490			psi_memstall_enter(pflags);
 491			*memstall = 1;
 492		}
 493
 494		ret = set_folio_extent_mapped(folio);
 495		if (ret < 0) {
 496			folio_unlock(folio);
 497			folio_put(folio);
 498			break;
 499		}
 500
 501		page_end = (pg_index << PAGE_SHIFT) + folio_size(folio) - 1;
 502		lock_extent(tree, cur, page_end, NULL);
 503		read_lock(&em_tree->lock);
 504		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
 
 505		read_unlock(&em_tree->lock);
 506
 507		/*
 508		 * At this point, we have a locked page in the page cache for
 509		 * these bytes in the file.  But, we have to make sure they map
 510		 * to this compressed extent on disk.
 511		 */
 512		if (!em || cur < em->start ||
 513		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
 514		    (extent_map_block_start(em) >> SECTOR_SHIFT) !=
 515		    orig_bio->bi_iter.bi_sector) {
 516			free_extent_map(em);
 517			unlock_extent(tree, cur, page_end, NULL);
 518			folio_unlock(folio);
 519			folio_put(folio);
 520			break;
 521		}
 522		add_size = min(em->start + em->len, page_end + 1) - cur;
 523		free_extent_map(em);
 524		unlock_extent(tree, cur, page_end, NULL);
 525
 526		if (folio->index == end_index) {
 527			size_t zero_offset = offset_in_folio(folio, isize);
 
 528
 529			if (zero_offset) {
 530				int zeros;
 531				zeros = folio_size(folio) - zero_offset;
 532				folio_zero_range(folio, zero_offset, zeros);
 
 
 
 533			}
 534		}
 535
 536		if (!bio_add_folio(orig_bio, folio, add_size,
 537				   offset_in_folio(folio, cur))) {
 538			folio_unlock(folio);
 539			folio_put(folio);
 
 
 
 
 
 
 540			break;
 541		}
 542		/*
 543		 * If it's subpage, we also need to increase its
 544		 * subpage::readers number, as at endio we will decrease
 545		 * subpage::readers and to unlock the page.
 546		 */
 547		if (fs_info->sectorsize < PAGE_SIZE)
 548			btrfs_folio_set_lock(fs_info, folio, cur, add_size);
 549		folio_put(folio);
 550		cur += add_size;
 551	}
 552	return 0;
 553}
 554
 555/*
 556 * for a compressed read, the bio we get passed has all the inode pages
 557 * in it.  We don't actually do IO on those pages but allocate new ones
 558 * to hold the compressed pages on disk.
 559 *
 560 * bio->bi_iter.bi_sector points to the compressed extent on disk
 561 * bio->bi_io_vec points to all of the inode pages
 
 562 *
 563 * After the compressed pages are read, we copy the bytes into the
 564 * bio we were passed and then call the bio end_io calls
 565 */
 566void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
 
 567{
 568	struct btrfs_inode *inode = bbio->inode;
 569	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 570	struct extent_map_tree *em_tree = &inode->extent_tree;
 571	struct compressed_bio *cb;
 572	unsigned int compressed_len;
 573	u64 file_offset = bbio->file_offset;
 
 
 
 
 
 
 
 574	u64 em_len;
 575	u64 em_start;
 576	struct extent_map *em;
 577	unsigned long pflags;
 578	int memstall = 0;
 579	blk_status_t ret;
 580	int ret2;
 
 
 581
 582	/* we need the actual starting offset of this extent in the file */
 583	read_lock(&em_tree->lock);
 584	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
 
 
 585	read_unlock(&em_tree->lock);
 586	if (!em) {
 587		ret = BLK_STS_IOERR;
 588		goto out;
 589	}
 590
 591	ASSERT(extent_map_is_compressed(em));
 592	compressed_len = em->disk_num_bytes;
 
 
 593
 594	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
 595				  end_bbio_compressed_read);
 
 
 
 596
 597	cb->start = em->start - em->offset;
 598	em_len = em->len;
 599	em_start = em->start;
 600
 601	cb->len = bbio->bio.bi_iter.bi_size;
 602	cb->compressed_len = compressed_len;
 603	cb->compress_type = extent_map_compression(em);
 604	cb->orig_bbio = bbio;
 605
 606	free_extent_map(em);
 
 607
 608	cb->nr_folios = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 609	cb->compressed_folios = kcalloc(cb->nr_folios, sizeof(struct page *), GFP_NOFS);
 610	if (!cb->compressed_folios) {
 611		ret = BLK_STS_RESOURCE;
 612		goto out_free_bio;
 613	}
 614
 615	ret2 = btrfs_alloc_folio_array(cb->nr_folios, cb->compressed_folios);
 616	if (ret2) {
 617		ret = BLK_STS_RESOURCE;
 618		goto out_free_compressed_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 619	}
 
 
 620
 621	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
 622			 &pflags);
 
 
 
 623
 624	/* include any pages we added in add_ra-bio_pages */
 625	cb->len = bbio->bio.bi_iter.bi_size;
 626	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
 627	btrfs_add_compressed_bio_folios(cb);
 628
 629	if (memstall)
 630		psi_memstall_leave(&pflags);
 631
 632	btrfs_submit_bbio(&cb->bbio, 0);
 633	return;
 634
 635out_free_compressed_pages:
 636	kfree(cb->compressed_folios);
 637out_free_bio:
 638	bio_put(&cb->bbio.bio);
 639out:
 640	btrfs_bio_end_io(bbio, ret);
 641}
 642
 643/*
 644 * Heuristic uses systematic sampling to collect data from the input data
 645 * range, the logic can be tuned by the following constants:
 646 *
 647 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 648 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 649 */
 650#define SAMPLING_READ_SIZE	(16)
 651#define SAMPLING_INTERVAL	(256)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652
 653/*
 654 * For statistical analysis of the input data we consider bytes that form a
 655 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 656 * many times the object appeared in the sample.
 657 */
 658#define BUCKET_SIZE		(256)
 659
 660/*
 661 * The size of the sample is based on a statistical sampling rule of thumb.
 662 * The common way is to perform sampling tests as long as the number of
 663 * elements in each cell is at least 5.
 664 *
 665 * Instead of 5, we choose 32 to obtain more accurate results.
 666 * If the data contain the maximum number of symbols, which is 256, we obtain a
 667 * sample size bound by 8192.
 668 *
 669 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 670 * from up to 512 locations.
 671 */
 672#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 673				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 674
 675struct bucket_item {
 676	u32 count;
 677};
 
 
 
 
 678
 679struct heuristic_ws {
 680	/* Partial copy of input data */
 681	u8 *sample;
 682	u32 sample_size;
 683	/* Buckets store counters for each byte value */
 684	struct bucket_item *bucket;
 685	/* Sorting buffer */
 686	struct bucket_item *bucket_b;
 687	struct list_head list;
 688};
 
 
 689
 690static struct workspace_manager heuristic_wsm;
 
 
 
 
 691
 692static void free_heuristic_ws(struct list_head *ws)
 693{
 694	struct heuristic_ws *workspace;
 695
 696	workspace = list_entry(ws, struct heuristic_ws, list);
 
 
 
 697
 698	kvfree(workspace->sample);
 699	kfree(workspace->bucket);
 700	kfree(workspace->bucket_b);
 701	kfree(workspace);
 702}
 703
 704static struct list_head *alloc_heuristic_ws(void)
 705{
 706	struct heuristic_ws *ws;
 707
 708	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 709	if (!ws)
 710		return ERR_PTR(-ENOMEM);
 711
 712	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 713	if (!ws->sample)
 714		goto fail;
 715
 716	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 717	if (!ws->bucket)
 718		goto fail;
 719
 720	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 721	if (!ws->bucket_b)
 722		goto fail;
 723
 724	INIT_LIST_HEAD(&ws->list);
 725	return &ws->list;
 726fail:
 727	free_heuristic_ws(&ws->list);
 728	return ERR_PTR(-ENOMEM);
 
 729}
 730
 731const struct btrfs_compress_op btrfs_heuristic_compress = {
 732	.workspace_manager = &heuristic_wsm,
 733};
 
 
 734
 735static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 736	/* The heuristic is represented as compression type 0 */
 737	&btrfs_heuristic_compress,
 738	&btrfs_zlib_compress,
 739	&btrfs_lzo_compress,
 740	&btrfs_zstd_compress,
 741};
 742
 743static struct list_head *alloc_workspace(int type, unsigned int level)
 744{
 745	switch (type) {
 746	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws();
 747	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 748	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace();
 749	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 750	default:
 751		/*
 752		 * This can't happen, the type is validated several times
 753		 * before we get here.
 754		 */
 755		BUG();
 756	}
 757}
 758
 759static void free_workspace(int type, struct list_head *ws)
 760{
 761	switch (type) {
 762	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 763	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 764	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 765	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 766	default:
 767		/*
 768		 * This can't happen, the type is validated several times
 769		 * before we get here.
 770		 */
 771		BUG();
 772	}
 773}
 774
 775static void btrfs_init_workspace_manager(int type)
 776{
 777	struct workspace_manager *wsm;
 778	struct list_head *workspace;
 779
 780	wsm = btrfs_compress_op[type]->workspace_manager;
 781	INIT_LIST_HEAD(&wsm->idle_ws);
 782	spin_lock_init(&wsm->ws_lock);
 783	atomic_set(&wsm->total_ws, 0);
 784	init_waitqueue_head(&wsm->ws_wait);
 785
 786	/*
 787	 * Preallocate one workspace for each compression type so we can
 788	 * guarantee forward progress in the worst case
 789	 */
 790	workspace = alloc_workspace(type, 0);
 791	if (IS_ERR(workspace)) {
 792		pr_warn(
 793	"BTRFS: cannot preallocate compression workspace, will try later\n");
 794	} else {
 795		atomic_set(&wsm->total_ws, 1);
 796		wsm->free_ws = 1;
 797		list_add(workspace, &wsm->idle_ws);
 798	}
 799}
 800
 801static void btrfs_cleanup_workspace_manager(int type)
 802{
 803	struct workspace_manager *wsman;
 804	struct list_head *ws;
 805
 806	wsman = btrfs_compress_op[type]->workspace_manager;
 807	while (!list_empty(&wsman->idle_ws)) {
 808		ws = wsman->idle_ws.next;
 809		list_del(ws);
 810		free_workspace(type, ws);
 811		atomic_dec(&wsman->total_ws);
 812	}
 813}
 814
 815/*
 816 * This finds an available workspace or allocates a new one.
 817 * If it's not possible to allocate a new one, waits until there's one.
 818 * Preallocation makes a forward progress guarantees and we do not return
 819 * errors.
 820 */
 821struct list_head *btrfs_get_workspace(int type, unsigned int level)
 822{
 823	struct workspace_manager *wsm;
 824	struct list_head *workspace;
 825	int cpus = num_online_cpus();
 826	unsigned nofs_flag;
 827	struct list_head *idle_ws;
 828	spinlock_t *ws_lock;
 829	atomic_t *total_ws;
 830	wait_queue_head_t *ws_wait;
 831	int *free_ws;
 832
 833	wsm = btrfs_compress_op[type]->workspace_manager;
 834	idle_ws	 = &wsm->idle_ws;
 835	ws_lock	 = &wsm->ws_lock;
 836	total_ws = &wsm->total_ws;
 837	ws_wait	 = &wsm->ws_wait;
 838	free_ws	 = &wsm->free_ws;
 839
 
 
 
 
 
 840again:
 841	spin_lock(ws_lock);
 842	if (!list_empty(idle_ws)) {
 843		workspace = idle_ws->next;
 844		list_del(workspace);
 845		(*free_ws)--;
 846		spin_unlock(ws_lock);
 847		return workspace;
 848
 849	}
 850	if (atomic_read(total_ws) > cpus) {
 851		DEFINE_WAIT(wait);
 852
 853		spin_unlock(ws_lock);
 854		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 855		if (atomic_read(total_ws) > cpus && !*free_ws)
 856			schedule();
 857		finish_wait(ws_wait, &wait);
 858		goto again;
 859	}
 860	atomic_inc(total_ws);
 861	spin_unlock(ws_lock);
 862
 863	/*
 864	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 865	 * to turn it off here because we might get called from the restricted
 866	 * context of btrfs_compress_bio/btrfs_compress_pages
 867	 */
 868	nofs_flag = memalloc_nofs_save();
 869	workspace = alloc_workspace(type, level);
 870	memalloc_nofs_restore(nofs_flag);
 871
 
 872	if (IS_ERR(workspace)) {
 873		atomic_dec(total_ws);
 874		wake_up(ws_wait);
 875
 876		/*
 877		 * Do not return the error but go back to waiting. There's a
 878		 * workspace preallocated for each type and the compression
 879		 * time is bounded so we get to a workspace eventually. This
 880		 * makes our caller's life easier.
 881		 *
 882		 * To prevent silent and low-probability deadlocks (when the
 883		 * initial preallocation fails), check if there are any
 884		 * workspaces at all.
 885		 */
 886		if (atomic_read(total_ws) == 0) {
 887			static DEFINE_RATELIMIT_STATE(_rs,
 888					/* once per minute */ 60 * HZ,
 889					/* no burst */ 1);
 890
 891			if (__ratelimit(&_rs)) {
 892				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 893			}
 894		}
 895		goto again;
 896	}
 897	return workspace;
 898}
 899
 900static struct list_head *get_workspace(int type, int level)
 901{
 902	switch (type) {
 903	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
 904	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
 905	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
 906	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
 907	default:
 908		/*
 909		 * This can't happen, the type is validated several times
 910		 * before we get here.
 911		 */
 912		BUG();
 913	}
 914}
 915
 916/*
 917 * put a workspace struct back on the list or free it if we have enough
 918 * idle ones sitting around
 919 */
 920void btrfs_put_workspace(int type, struct list_head *ws)
 921{
 922	struct workspace_manager *wsm;
 923	struct list_head *idle_ws;
 924	spinlock_t *ws_lock;
 925	atomic_t *total_ws;
 926	wait_queue_head_t *ws_wait;
 927	int *free_ws;
 928
 929	wsm = btrfs_compress_op[type]->workspace_manager;
 930	idle_ws	 = &wsm->idle_ws;
 931	ws_lock	 = &wsm->ws_lock;
 932	total_ws = &wsm->total_ws;
 933	ws_wait	 = &wsm->ws_wait;
 934	free_ws	 = &wsm->free_ws;
 935
 936	spin_lock(ws_lock);
 937	if (*free_ws <= num_online_cpus()) {
 938		list_add(ws, idle_ws);
 939		(*free_ws)++;
 940		spin_unlock(ws_lock);
 941		goto wake;
 942	}
 943	spin_unlock(ws_lock);
 944
 945	free_workspace(type, ws);
 946	atomic_dec(total_ws);
 947wake:
 948	cond_wake_up(ws_wait);
 949}
 950
 951static void put_workspace(int type, struct list_head *ws)
 952{
 953	switch (type) {
 954	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
 955	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
 956	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
 957	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
 958	default:
 959		/*
 960		 * This can't happen, the type is validated several times
 961		 * before we get here.
 962		 */
 963		BUG();
 964	}
 965}
 966
 967/*
 968 * Adjust @level according to the limits of the compression algorithm or
 969 * fallback to default
 970 */
 971static unsigned int btrfs_compress_set_level(int type, unsigned level)
 972{
 973	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
 974
 975	if (level == 0)
 976		level = ops->default_level;
 977	else
 978		level = min(level, ops->max_level);
 979
 980	return level;
 981}
 982
 983/* Wrapper around find_get_page(), with extra error message. */
 984int btrfs_compress_filemap_get_folio(struct address_space *mapping, u64 start,
 985				     struct folio **in_folio_ret)
 986{
 987	struct folio *in_folio;
 988
 989	/*
 990	 * The compressed write path should have the folio locked already, thus
 991	 * we only need to grab one reference.
 992	 */
 993	in_folio = filemap_get_folio(mapping, start >> PAGE_SHIFT);
 994	if (IS_ERR(in_folio)) {
 995		struct btrfs_inode *inode = BTRFS_I(mapping->host);
 996
 997		btrfs_crit(inode->root->fs_info,
 998		"failed to get page cache, root %lld ino %llu file offset %llu",
 999			   btrfs_root_id(inode->root), btrfs_ino(inode), start);
1000		return -ENOENT;
1001	}
1002	*in_folio_ret = in_folio;
1003	return 0;
1004}
1005
1006/*
1007 * Given an address space and start and length, compress the bytes into @pages
1008 * that are allocated on demand.
1009 *
1010 * @type_level is encoded algorithm and level, where level 0 means whatever
1011 * default the algorithm chooses and is opaque here;
1012 * - compression algo are 0-3
1013 * - the level are bits 4-7
1014 *
1015 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1016 * and returns number of actually allocated pages
1017 *
1018 * @total_in is used to return the number of bytes actually read.  It
1019 * may be smaller than the input length if we had to exit early because we
1020 * ran out of room in the pages array or because we cross the
1021 * max_out threshold.
1022 *
1023 * @total_out is an in/out parameter, must be set to the input length and will
1024 * be also used to return the total number of compressed bytes
 
 
1025 */
1026int btrfs_compress_folios(unsigned int type_level, struct address_space *mapping,
1027			 u64 start, struct folio **folios, unsigned long *out_folios,
1028			 unsigned long *total_in, unsigned long *total_out)
 
 
 
 
 
1029{
1030	int type = btrfs_compress_type(type_level);
1031	int level = btrfs_compress_level(type_level);
1032	const unsigned long orig_len = *total_out;
1033	struct list_head *workspace;
1034	int ret;
1035
1036	level = btrfs_compress_set_level(type, level);
1037	workspace = get_workspace(type, level);
1038	ret = compression_compress_pages(type, workspace, mapping, start, folios,
1039					 out_folios, total_in, total_out);
1040	/* The total read-in bytes should be no larger than the input. */
1041	ASSERT(*total_in <= orig_len);
1042	put_workspace(type, workspace);
 
 
 
1043	return ret;
1044}
1045
1046static int btrfs_decompress_bio(struct compressed_bio *cb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047{
1048	struct list_head *workspace;
1049	int ret;
1050	int type = cb->compress_type;
1051
1052	workspace = get_workspace(type, 0);
1053	ret = compression_decompress_bio(workspace, cb);
1054	put_workspace(type, workspace);
1055
1056	if (!ret)
1057		zero_fill_bio(&cb->orig_bbio->bio);
 
 
1058	return ret;
1059}
1060
1061/*
1062 * a less complex decompression routine.  Our compressed data fits in a
1063 * single page, and we want to read a single page out of it.
1064 * start_byte tells us the offset into the compressed data we're interested in
1065 */
1066int btrfs_decompress(int type, const u8 *data_in, struct folio *dest_folio,
1067		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
1068{
1069	struct btrfs_fs_info *fs_info = folio_to_fs_info(dest_folio);
1070	struct list_head *workspace;
1071	const u32 sectorsize = fs_info->sectorsize;
1072	int ret;
1073
1074	/*
1075	 * The full destination page range should not exceed the page size.
1076	 * And the @destlen should not exceed sectorsize, as this is only called for
1077	 * inline file extents, which should not exceed sectorsize.
1078	 */
1079	ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1080
1081	workspace = get_workspace(type, 0);
1082	ret = compression_decompress(type, workspace, data_in, dest_folio,
1083				     dest_pgoff, srclen, destlen);
1084	put_workspace(type, workspace);
1085
1086	return ret;
1087}
1088
1089int __init btrfs_init_compress(void)
1090{
1091	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1092			offsetof(struct compressed_bio, bbio.bio),
1093			BIOSET_NEED_BVECS))
1094		return -ENOMEM;
1095
1096	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1097	if (!compr_pool.shrinker)
1098		return -ENOMEM;
1099
1100	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1101	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1102	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1103	zstd_init_workspace_manager();
1104
1105	spin_lock_init(&compr_pool.lock);
1106	INIT_LIST_HEAD(&compr_pool.list);
1107	compr_pool.count = 0;
1108	/* 128K / 4K = 32, for 8 threads is 256 pages. */
1109	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1110	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1111	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1112	compr_pool.shrinker->batch = 32;
1113	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1114	shrinker_register(compr_pool.shrinker);
1115
1116	return 0;
1117}
1118
1119void __cold btrfs_exit_compress(void)
1120{
1121	/* For now scan drains all pages and does not touch the parameters. */
1122	btrfs_compr_pool_scan(NULL, NULL);
1123	shrinker_free(compr_pool.shrinker);
1124
1125	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1126	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1127	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1128	zstd_cleanup_workspace_manager();
1129	bioset_exit(&btrfs_compressed_bioset);
1130}
1131
1132/*
1133 * Copy decompressed data from working buffer to pages.
1134 *
1135 * @buf:		The decompressed data buffer
1136 * @buf_len:		The decompressed data length
1137 * @decompressed:	Number of bytes that are already decompressed inside the
1138 * 			compressed extent
1139 * @cb:			The compressed extent descriptor
1140 * @orig_bio:		The original bio that the caller wants to read for
1141 *
1142 * An easier to understand graph is like below:
1143 *
1144 * 		|<- orig_bio ->|     |<- orig_bio->|
1145 * 	|<-------      full decompressed extent      ----->|
1146 * 	|<-----------    @cb range   ---->|
1147 * 	|			|<-- @buf_len -->|
1148 * 	|<--- @decompressed --->|
1149 *
1150 * Note that, @cb can be a subpage of the full decompressed extent, but
1151 * @cb->start always has the same as the orig_file_offset value of the full
1152 * decompressed extent.
1153 *
1154 * When reading compressed extent, we have to read the full compressed extent,
1155 * while @orig_bio may only want part of the range.
1156 * Thus this function will ensure only data covered by @orig_bio will be copied
1157 * to.
1158 *
1159 * Return 0 if we have copied all needed contents for @orig_bio.
1160 * Return >0 if we need continue decompress.
1161 */
1162int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1163			      struct compressed_bio *cb, u32 decompressed)
 
 
 
1164{
1165	struct bio *orig_bio = &cb->orig_bbio->bio;
1166	/* Offset inside the full decompressed extent */
1167	u32 cur_offset;
1168
1169	cur_offset = decompressed;
1170	/* The main loop to do the copy */
1171	while (cur_offset < decompressed + buf_len) {
1172		struct bio_vec bvec;
1173		size_t copy_len;
1174		u32 copy_start;
1175		/* Offset inside the full decompressed extent */
1176		u32 bvec_offset;
1177
1178		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1179		/*
1180		 * cb->start may underflow, but subtracting that value can still
1181		 * give us correct offset inside the full decompressed extent.
1182		 */
1183		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1184
1185		/* Haven't reached the bvec range, exit */
1186		if (decompressed + buf_len <= bvec_offset)
1187			return 1;
1188
1189		copy_start = max(cur_offset, bvec_offset);
1190		copy_len = min(bvec_offset + bvec.bv_len,
1191			       decompressed + buf_len) - copy_start;
1192		ASSERT(copy_len);
1193
1194		/*
1195		 * Extra range check to ensure we didn't go beyond
1196		 * @buf + @buf_len.
1197		 */
1198		ASSERT(copy_start - decompressed < buf_len);
1199		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1200			       buf + copy_start - decompressed, copy_len);
1201		cur_offset += copy_len;
1202
1203		bio_advance(orig_bio, copy_len);
1204		/* Finished the bio */
1205		if (!orig_bio->bi_iter.bi_size)
1206			return 0;
1207	}
1208	return 1;
1209}
1210
1211/*
1212 * Shannon Entropy calculation
1213 *
1214 * Pure byte distribution analysis fails to determine compressibility of data.
1215 * Try calculating entropy to estimate the average minimum number of bits
1216 * needed to encode the sampled data.
1217 *
1218 * For convenience, return the percentage of needed bits, instead of amount of
1219 * bits directly.
1220 *
1221 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1222 *			    and can be compressible with high probability
1223 *
1224 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1225 *
1226 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1227 */
1228#define ENTROPY_LVL_ACEPTABLE		(65)
1229#define ENTROPY_LVL_HIGH		(80)
1230
1231/*
1232 * For increasead precision in shannon_entropy calculation,
1233 * let's do pow(n, M) to save more digits after comma:
1234 *
1235 * - maximum int bit length is 64
1236 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1237 * - 13 * 4 = 52 < 64		-> M = 4
1238 *
1239 * So use pow(n, 4).
1240 */
1241static inline u32 ilog2_w(u64 n)
1242{
1243	return ilog2(n * n * n * n);
1244}
1245
1246static u32 shannon_entropy(struct heuristic_ws *ws)
1247{
1248	const u32 entropy_max = 8 * ilog2_w(2);
1249	u32 entropy_sum = 0;
1250	u32 p, p_base, sz_base;
1251	u32 i;
1252
1253	sz_base = ilog2_w(ws->sample_size);
1254	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1255		p = ws->bucket[i].count;
1256		p_base = ilog2_w(p);
1257		entropy_sum += p * (sz_base - p_base);
1258	}
1259
1260	entropy_sum /= ws->sample_size;
1261	return entropy_sum * 100 / entropy_max;
1262}
1263
1264#define RADIX_BASE		4U
1265#define COUNTERS_SIZE		(1U << RADIX_BASE)
1266
1267static u8 get4bits(u64 num, int shift) {
1268	u8 low4bits;
1269
1270	num >>= shift;
1271	/* Reverse order */
1272	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1273	return low4bits;
1274}
1275
1276/*
1277 * Use 4 bits as radix base
1278 * Use 16 u32 counters for calculating new position in buf array
1279 *
1280 * @array     - array that will be sorted
1281 * @array_buf - buffer array to store sorting results
1282 *              must be equal in size to @array
1283 * @num       - array size
1284 */
1285static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1286		       int num)
1287{
1288	u64 max_num;
1289	u64 buf_num;
1290	u32 counters[COUNTERS_SIZE];
1291	u32 new_addr;
1292	u32 addr;
1293	int bitlen;
1294	int shift;
1295	int i;
1296
1297	/*
1298	 * Try avoid useless loop iterations for small numbers stored in big
1299	 * counters.  Example: 48 33 4 ... in 64bit array
1300	 */
1301	max_num = array[0].count;
1302	for (i = 1; i < num; i++) {
1303		buf_num = array[i].count;
1304		if (buf_num > max_num)
1305			max_num = buf_num;
1306	}
1307
1308	buf_num = ilog2(max_num);
1309	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1310
1311	shift = 0;
1312	while (shift < bitlen) {
1313		memset(counters, 0, sizeof(counters));
1314
1315		for (i = 0; i < num; i++) {
1316			buf_num = array[i].count;
1317			addr = get4bits(buf_num, shift);
1318			counters[addr]++;
1319		}
1320
1321		for (i = 1; i < COUNTERS_SIZE; i++)
1322			counters[i] += counters[i - 1];
1323
1324		for (i = num - 1; i >= 0; i--) {
1325			buf_num = array[i].count;
1326			addr = get4bits(buf_num, shift);
1327			counters[addr]--;
1328			new_addr = counters[addr];
1329			array_buf[new_addr] = array[i];
1330		}
1331
1332		shift += RADIX_BASE;
1333
1334		/*
1335		 * Normal radix expects to move data from a temporary array, to
1336		 * the main one.  But that requires some CPU time. Avoid that
1337		 * by doing another sort iteration to original array instead of
1338		 * memcpy()
1339		 */
1340		memset(counters, 0, sizeof(counters));
1341
1342		for (i = 0; i < num; i ++) {
1343			buf_num = array_buf[i].count;
1344			addr = get4bits(buf_num, shift);
1345			counters[addr]++;
1346		}
1347
1348		for (i = 1; i < COUNTERS_SIZE; i++)
1349			counters[i] += counters[i - 1];
1350
1351		for (i = num - 1; i >= 0; i--) {
1352			buf_num = array_buf[i].count;
1353			addr = get4bits(buf_num, shift);
1354			counters[addr]--;
1355			new_addr = counters[addr];
1356			array[new_addr] = array_buf[i];
1357		}
1358
1359		shift += RADIX_BASE;
1360	}
1361}
1362
1363/*
1364 * Size of the core byte set - how many bytes cover 90% of the sample
1365 *
1366 * There are several types of structured binary data that use nearly all byte
1367 * values. The distribution can be uniform and counts in all buckets will be
1368 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1369 *
1370 * Other possibility is normal (Gaussian) distribution, where the data could
1371 * be potentially compressible, but we have to take a few more steps to decide
1372 * how much.
1373 *
1374 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1375 *                       compression algo can easy fix that
1376 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1377 *                       probability is not compressible
1378 */
1379#define BYTE_CORE_SET_LOW		(64)
1380#define BYTE_CORE_SET_HIGH		(200)
1381
1382static int byte_core_set_size(struct heuristic_ws *ws)
1383{
1384	u32 i;
1385	u32 coreset_sum = 0;
1386	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1387	struct bucket_item *bucket = ws->bucket;
1388
1389	/* Sort in reverse order */
1390	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1391
1392	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1393		coreset_sum += bucket[i].count;
1394
1395	if (coreset_sum > core_set_threshold)
1396		return i;
1397
1398	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1399		coreset_sum += bucket[i].count;
1400		if (coreset_sum > core_set_threshold)
1401			break;
1402	}
1403
1404	return i;
1405}
1406
1407/*
1408 * Count byte values in buckets.
1409 * This heuristic can detect textual data (configs, xml, json, html, etc).
1410 * Because in most text-like data byte set is restricted to limited number of
1411 * possible characters, and that restriction in most cases makes data easy to
1412 * compress.
1413 *
1414 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1415 *	less - compressible
1416 *	more - need additional analysis
1417 */
1418#define BYTE_SET_THRESHOLD		(64)
1419
1420static u32 byte_set_size(const struct heuristic_ws *ws)
1421{
1422	u32 i;
1423	u32 byte_set_size = 0;
1424
1425	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1426		if (ws->bucket[i].count > 0)
1427			byte_set_size++;
1428	}
1429
1430	/*
1431	 * Continue collecting count of byte values in buckets.  If the byte
1432	 * set size is bigger then the threshold, it's pointless to continue,
1433	 * the detection technique would fail for this type of data.
1434	 */
1435	for (; i < BUCKET_SIZE; i++) {
1436		if (ws->bucket[i].count > 0) {
1437			byte_set_size++;
1438			if (byte_set_size > BYTE_SET_THRESHOLD)
1439				return byte_set_size;
1440		}
1441	}
1442
1443	return byte_set_size;
1444}
1445
1446static bool sample_repeated_patterns(struct heuristic_ws *ws)
1447{
1448	const u32 half_of_sample = ws->sample_size / 2;
1449	const u8 *data = ws->sample;
1450
1451	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1452}
1453
1454static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1455				     struct heuristic_ws *ws)
1456{
1457	struct page *page;
1458	u64 index, index_end;
1459	u32 i, curr_sample_pos;
1460	u8 *in_data;
1461
1462	/*
1463	 * Compression handles the input data by chunks of 128KiB
1464	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1465	 *
1466	 * We do the same for the heuristic and loop over the whole range.
1467	 *
1468	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1469	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1470	 */
1471	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1472		end = start + BTRFS_MAX_UNCOMPRESSED;
1473
1474	index = start >> PAGE_SHIFT;
1475	index_end = end >> PAGE_SHIFT;
1476
1477	/* Don't miss unaligned end */
1478	if (!PAGE_ALIGNED(end))
1479		index_end++;
1480
1481	curr_sample_pos = 0;
1482	while (index < index_end) {
1483		page = find_get_page(inode->i_mapping, index);
1484		in_data = kmap_local_page(page);
1485		/* Handle case where the start is not aligned to PAGE_SIZE */
1486		i = start % PAGE_SIZE;
1487		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1488			/* Don't sample any garbage from the last page */
1489			if (start > end - SAMPLING_READ_SIZE)
1490				break;
1491			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1492					SAMPLING_READ_SIZE);
1493			i += SAMPLING_INTERVAL;
1494			start += SAMPLING_INTERVAL;
1495			curr_sample_pos += SAMPLING_READ_SIZE;
1496		}
1497		kunmap_local(in_data);
1498		put_page(page);
1499
1500		index++;
1501	}
1502
1503	ws->sample_size = curr_sample_pos;
1504}
1505
1506/*
1507 * Compression heuristic.
1508 *
1509 * The following types of analysis can be performed:
1510 * - detect mostly zero data
1511 * - detect data with low "byte set" size (text, etc)
1512 * - detect data with low/high "core byte" set
1513 *
1514 * Return non-zero if the compression should be done, 0 otherwise.
1515 */
1516int btrfs_compress_heuristic(struct btrfs_inode *inode, u64 start, u64 end)
1517{
1518	struct list_head *ws_list = get_workspace(0, 0);
1519	struct heuristic_ws *ws;
1520	u32 i;
1521	u8 byte;
1522	int ret = 0;
1523
1524	ws = list_entry(ws_list, struct heuristic_ws, list);
1525
1526	heuristic_collect_sample(&inode->vfs_inode, start, end, ws);
1527
1528	if (sample_repeated_patterns(ws)) {
1529		ret = 1;
1530		goto out;
1531	}
1532
1533	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1534
1535	for (i = 0; i < ws->sample_size; i++) {
1536		byte = ws->sample[i];
1537		ws->bucket[byte].count++;
1538	}
1539
1540	i = byte_set_size(ws);
1541	if (i < BYTE_SET_THRESHOLD) {
1542		ret = 2;
1543		goto out;
1544	}
1545
1546	i = byte_core_set_size(ws);
1547	if (i <= BYTE_CORE_SET_LOW) {
1548		ret = 3;
1549		goto out;
1550	}
1551
1552	if (i >= BYTE_CORE_SET_HIGH) {
1553		ret = 0;
1554		goto out;
1555	}
1556
1557	i = shannon_entropy(ws);
1558	if (i <= ENTROPY_LVL_ACEPTABLE) {
1559		ret = 4;
1560		goto out;
1561	}
1562
1563	/*
1564	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1565	 * needed to give green light to compression.
1566	 *
1567	 * For now just assume that compression at that level is not worth the
1568	 * resources because:
1569	 *
1570	 * 1. it is possible to defrag the data later
1571	 *
1572	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1573	 * values, every bucket has counter at level ~54. The heuristic would
1574	 * be confused. This can happen when data have some internal repeated
1575	 * patterns like "abbacbbc...". This can be detected by analyzing
1576	 * pairs of bytes, which is too costly.
1577	 */
1578	if (i < ENTROPY_LVL_HIGH) {
1579		ret = 5;
1580		goto out;
1581	} else {
1582		ret = 0;
1583		goto out;
1584	}
 
1585
1586out:
1587	put_workspace(0, ws_list);
1588	return ret;
1589}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590
1591/*
1592 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1593 * level, unrecognized string will set the default level
1594 */
1595unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1596{
1597	unsigned int level = 0;
1598	int ret;
1599
1600	if (!type)
1601		return 0;
1602
1603	if (str[0] == ':') {
1604		ret = kstrtouint(str + 1, 10, &level);
1605		if (ret)
1606			level = 0;
 
 
 
 
 
 
 
 
1607	}
1608
1609	level = btrfs_compress_set_level(type, level);
1610
1611	return level;
1612}
v3.15
 
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
 
  25#include <linux/highmem.h>
 
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
 
 
 
 
 
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "ordered-data.h"
  41#include "compression.h"
  42#include "extent_io.h"
  43#include "extent_map.h"
 
 
 
  44
  45struct compressed_bio {
  46	/* number of bios pending for this compressed extent */
  47	atomic_t pending_bios;
  48
  49	/* the pages with the compressed data on them */
  50	struct page **compressed_pages;
  51
  52	/* inode that owns this data */
  53	struct inode *inode;
 
 
 
 
 
 
 
 
 
  54
  55	/* starting offset in the inode for our pages */
  56	u64 start;
  57
  58	/* number of bytes in the inode we're working on */
  59	unsigned long len;
 
 
  60
  61	/* number of bytes on disk */
  62	unsigned long compressed_len;
 
 
 
  63
  64	/* the compression algorithm for this bio */
  65	int compress_type;
 
 
 
 
 
  66
  67	/* number of compressed pages in the array */
  68	unsigned long nr_pages;
 
  69
  70	/* IO errors */
  71	int errors;
  72	int mirror_num;
  73
  74	/* for reads, this is the bio we are copying the data into */
  75	struct bio *orig_bio;
  76
  77	/*
  78	 * the start of a variable length array of checksums only
  79	 * used by reads
  80	 */
  81	u32 sums;
  82};
  83
  84static int btrfs_decompress_biovec(int type, struct page **pages_in,
  85				   u64 disk_start, struct bio_vec *bvec,
  86				   int vcnt, size_t srclen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87
  88static inline int compressed_bio_size(struct btrfs_root *root,
  89				      unsigned long disk_size)
  90{
  91	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 
 
 
 
 
 
 
 
 
 
 
 
  92
  93	return sizeof(struct compressed_bio) +
  94		((disk_size + root->sectorsize - 1) / root->sectorsize) *
  95		csum_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
  97
  98static struct bio *compressed_bio_alloc(struct block_device *bdev,
  99					u64 first_byte, gfp_t gfp_flags)
 100{
 101	int nr_vecs;
 
 
 
 102
 103	nr_vecs = bio_get_nr_vecs(bdev);
 104	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105}
 106
 107static int check_compressed_csum(struct inode *inode,
 108				 struct compressed_bio *cb,
 109				 u64 disk_start)
 110{
 111	int ret;
 112	struct page *page;
 113	unsigned long i;
 114	char *kaddr;
 115	u32 csum;
 116	u32 *cb_sum = &cb->sums;
 
 
 117
 118	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 119		return 0;
 
 
 
 
 120
 121	for (i = 0; i < cb->nr_pages; i++) {
 122		page = cb->compressed_pages[i];
 123		csum = ~(u32)0;
 124
 125		kaddr = kmap_atomic(page);
 126		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
 127		btrfs_csum_final(csum, (char *)&csum);
 128		kunmap_atomic(kaddr);
 129
 130		if (csum != *cb_sum) {
 131			btrfs_info(BTRFS_I(inode)->root->fs_info,
 132			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
 133			   btrfs_ino(inode), disk_start, csum, *cb_sum,
 134			   cb->mirror_num);
 135			ret = -EIO;
 136			goto fail;
 137		}
 138		cb_sum++;
 139
 
 
 140	}
 141	ret = 0;
 142fail:
 143	return ret;
 144}
 145
 146/* when we finish reading compressed pages from the disk, we
 147 * decompress them and then run the bio end_io routines on the
 148 * decompressed pages (in the inode address space).
 149 *
 150 * This allows the checksumming and other IO error handling routines
 151 * to work normally
 152 *
 153 * The compressed pages are freed here, and it must be run
 154 * in process context
 155 */
 156static void end_compressed_bio_read(struct bio *bio, int err)
 157{
 158	struct compressed_bio *cb = bio->bi_private;
 159	struct inode *inode;
 160	struct page *page;
 161	unsigned long index;
 162	int ret;
 
 
 
 
 163
 164	if (err)
 165		cb->errors = 1;
 166
 167	/* if there are more bios still pending for this compressed
 168	 * extent, just exit
 169	 */
 170	if (!atomic_dec_and_test(&cb->pending_bios))
 171		goto out;
 172
 173	inode = cb->inode;
 174	ret = check_compressed_csum(inode, cb,
 175				    (u64)bio->bi_iter.bi_sector << 9);
 176	if (ret)
 177		goto csum_failed;
 178
 179	/* ok, we're the last bio for this extent, lets start
 180	 * the decompression.
 181	 */
 182	ret = btrfs_decompress_biovec(cb->compress_type,
 183				      cb->compressed_pages,
 184				      cb->start,
 185				      cb->orig_bio->bi_io_vec,
 186				      cb->orig_bio->bi_vcnt,
 187				      cb->compressed_len);
 188csum_failed:
 189	if (ret)
 190		cb->errors = 1;
 191
 192	/* release the compressed pages */
 193	index = 0;
 194	for (index = 0; index < cb->nr_pages; index++) {
 195		page = cb->compressed_pages[index];
 196		page->mapping = NULL;
 197		page_cache_release(page);
 198	}
 199
 200	/* do io completion on the original bio */
 201	if (cb->errors) {
 202		bio_io_error(cb->orig_bio);
 203	} else {
 204		int i;
 205		struct bio_vec *bvec;
 
 
 
 
 
 
 
 
 
 206
 207		/*
 208		 * we have verified the checksum already, set page
 209		 * checked so the end_io handlers know about it
 210		 */
 211		bio_for_each_segment_all(bvec, cb->orig_bio, i)
 212			SetPageChecked(bvec->bv_page);
 213
 214		bio_endio(cb->orig_bio, 0);
 215	}
 216
 217	/* finally free the cb struct */
 218	kfree(cb->compressed_pages);
 219	kfree(cb);
 220out:
 221	bio_put(bio);
 222}
 223
 224/*
 225 * Clear the writeback bits on all of the file
 226 * pages for a compressed write
 227 */
 228static noinline void end_compressed_writeback(struct inode *inode, u64 start,
 229					      unsigned long ram_size)
 230{
 231	unsigned long index = start >> PAGE_CACHE_SHIFT;
 232	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
 233	struct page *pages[16];
 234	unsigned long nr_pages = end_index - index + 1;
 
 
 235	int i;
 236	int ret;
 237
 238	while (nr_pages > 0) {
 239		ret = find_get_pages_contig(inode->i_mapping, index,
 240				     min_t(unsigned long,
 241				     nr_pages, ARRAY_SIZE(pages)), pages);
 242		if (ret == 0) {
 243			nr_pages -= 1;
 244			index += 1;
 245			continue;
 246		}
 
 
 247		for (i = 0; i < ret; i++) {
 248			end_page_writeback(pages[i]);
 249			page_cache_release(pages[i]);
 
 
 250		}
 251		nr_pages -= ret;
 252		index += ret;
 253	}
 254	/* the inode may be gone now */
 255}
 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257/*
 258 * do the cleanup once all the compressed pages hit the disk.
 259 * This will clear writeback on the file pages and free the compressed
 260 * pages.
 261 *
 262 * This also calls the writeback end hooks for the file pages so that
 263 * metadata and checksums can be updated in the file.
 264 */
 265static void end_compressed_bio_write(struct bio *bio, int err)
 266{
 267	struct extent_io_tree *tree;
 268	struct compressed_bio *cb = bio->bi_private;
 269	struct inode *inode;
 270	struct page *page;
 271	unsigned long index;
 272
 273	if (err)
 274		cb->errors = 1;
 275
 276	/* if there are more bios still pending for this compressed
 277	 * extent, just exit
 278	 */
 279	if (!atomic_dec_and_test(&cb->pending_bios))
 280		goto out;
 281
 282	/* ok, we're the last bio for this extent, step one is to
 283	 * call back into the FS and do all the end_io operations
 284	 */
 285	inode = cb->inode;
 286	tree = &BTRFS_I(inode)->io_tree;
 287	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 288	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 289					 cb->start,
 290					 cb->start + cb->len - 1,
 291					 NULL, 1);
 292	cb->compressed_pages[0]->mapping = NULL;
 293
 294	end_compressed_writeback(inode, cb->start, cb->len);
 295	/* note, our inode could be gone now */
 296
 297	/*
 298	 * release the compressed pages, these came from alloc_page and
 299	 * are not attached to the inode at all
 300	 */
 301	index = 0;
 302	for (index = 0; index < cb->nr_pages; index++) {
 303		page = cb->compressed_pages[index];
 304		page->mapping = NULL;
 305		page_cache_release(page);
 306	}
 307
 308	/* finally free the cb struct */
 309	kfree(cb->compressed_pages);
 310	kfree(cb);
 311out:
 312	bio_put(bio);
 313}
 314
 315/*
 316 * worker function to build and submit bios for previously compressed pages.
 317 * The corresponding pages in the inode should be marked for writeback
 318 * and the compressed pages should have a reference on them for dropping
 319 * when the IO is complete.
 320 *
 321 * This also checksums the file bytes and gets things ready for
 322 * the end io hooks.
 323 */
 324int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 325				 unsigned long len, u64 disk_start,
 326				 unsigned long compressed_len,
 327				 struct page **compressed_pages,
 328				 unsigned long nr_pages)
 329{
 330	struct bio *bio = NULL;
 331	struct btrfs_root *root = BTRFS_I(inode)->root;
 332	struct compressed_bio *cb;
 333	unsigned long bytes_left;
 334	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 335	int pg_index = 0;
 336	struct page *page;
 337	u64 first_byte = disk_start;
 338	struct block_device *bdev;
 339	int ret;
 340	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 341
 342	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 343	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 344	if (!cb)
 345		return -ENOMEM;
 346	atomic_set(&cb->pending_bios, 0);
 347	cb->errors = 0;
 348	cb->inode = inode;
 349	cb->start = start;
 350	cb->len = len;
 351	cb->mirror_num = 0;
 352	cb->compressed_pages = compressed_pages;
 353	cb->compressed_len = compressed_len;
 354	cb->orig_bio = NULL;
 355	cb->nr_pages = nr_pages;
 356
 357	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 358
 359	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 360	if (!bio) {
 361		kfree(cb);
 362		return -ENOMEM;
 363	}
 364	bio->bi_private = cb;
 365	bio->bi_end_io = end_compressed_bio_write;
 366	atomic_inc(&cb->pending_bios);
 367
 368	/* create and submit bios for the compressed pages */
 369	bytes_left = compressed_len;
 370	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 371		page = compressed_pages[pg_index];
 372		page->mapping = inode->i_mapping;
 373		if (bio->bi_iter.bi_size)
 374			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
 375							   PAGE_CACHE_SIZE,
 376							   bio, 0);
 377		else
 378			ret = 0;
 379
 380		page->mapping = NULL;
 381		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 382		    PAGE_CACHE_SIZE) {
 383			bio_get(bio);
 384
 385			/*
 386			 * inc the count before we submit the bio so
 387			 * we know the end IO handler won't happen before
 388			 * we inc the count.  Otherwise, the cb might get
 389			 * freed before we're done setting it up
 390			 */
 391			atomic_inc(&cb->pending_bios);
 392			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 393			BUG_ON(ret); /* -ENOMEM */
 394
 395			if (!skip_sum) {
 396				ret = btrfs_csum_one_bio(root, inode, bio,
 397							 start, 1);
 398				BUG_ON(ret); /* -ENOMEM */
 399			}
 400
 401			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 402			BUG_ON(ret); /* -ENOMEM */
 403
 404			bio_put(bio);
 405
 406			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 407			BUG_ON(!bio);
 408			bio->bi_private = cb;
 409			bio->bi_end_io = end_compressed_bio_write;
 410			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 411		}
 412		if (bytes_left < PAGE_CACHE_SIZE) {
 413			btrfs_info(BTRFS_I(inode)->root->fs_info,
 414					"bytes left %lu compress len %lu nr %lu",
 415			       bytes_left, cb->compressed_len, cb->nr_pages);
 416		}
 417		bytes_left -= PAGE_CACHE_SIZE;
 418		first_byte += PAGE_CACHE_SIZE;
 419		cond_resched();
 420	}
 421	bio_get(bio);
 422
 423	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 424	BUG_ON(ret); /* -ENOMEM */
 425
 426	if (!skip_sum) {
 427		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 428		BUG_ON(ret); /* -ENOMEM */
 429	}
 430
 431	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 432	BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
 
 433
 434	bio_put(bio);
 435	return 0;
 436}
 437
 
 
 
 
 
 
 
 
 
 
 
 438static noinline int add_ra_bio_pages(struct inode *inode,
 439				     u64 compressed_end,
 440				     struct compressed_bio *cb)
 
 441{
 
 442	unsigned long end_index;
 443	unsigned long pg_index;
 444	u64 last_offset;
 445	u64 isize = i_size_read(inode);
 446	int ret;
 447	struct page *page;
 448	unsigned long nr_pages = 0;
 449	struct extent_map *em;
 450	struct address_space *mapping = inode->i_mapping;
 451	struct extent_map_tree *em_tree;
 452	struct extent_io_tree *tree;
 453	u64 end;
 454	int misses = 0;
 455
 456	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 457	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 458	em_tree = &BTRFS_I(inode)->extent_tree;
 459	tree = &BTRFS_I(inode)->io_tree;
 460
 461	if (isize == 0)
 462		return 0;
 463
 464	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 465
 466	while (last_offset < compressed_end) {
 467		pg_index = last_offset >> PAGE_CACHE_SHIFT;
 
 
 468
 469		if (pg_index > end_index)
 470			break;
 471
 472		rcu_read_lock();
 473		page = radix_tree_lookup(&mapping->page_tree, pg_index);
 474		rcu_read_unlock();
 475		if (page && !radix_tree_exceptional_entry(page)) {
 476			misses++;
 477			if (misses > 4)
 
 
 
 
 
 478				break;
 479			goto next;
 
 
 
 
 
 
 480		}
 481
 482		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 483								~__GFP_FS);
 484		if (!page)
 485			break;
 486
 487		if (add_to_page_cache_lru(page, mapping, pg_index,
 488								GFP_NOFS)) {
 489			page_cache_release(page);
 490			goto next;
 
 
 
 
 
 
 491		}
 492
 493		end = last_offset + PAGE_CACHE_SIZE - 1;
 494		/*
 495		 * at this point, we have a locked page in the page cache
 496		 * for these bytes in the file.  But, we have to make
 497		 * sure they map to this compressed extent on disk.
 498		 */
 499		set_page_extent_mapped(page);
 500		lock_extent(tree, last_offset, end);
 
 501		read_lock(&em_tree->lock);
 502		em = lookup_extent_mapping(em_tree, last_offset,
 503					   PAGE_CACHE_SIZE);
 504		read_unlock(&em_tree->lock);
 505
 506		if (!em || last_offset < em->start ||
 507		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 508		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 
 
 
 
 
 
 509			free_extent_map(em);
 510			unlock_extent(tree, last_offset, end);
 511			unlock_page(page);
 512			page_cache_release(page);
 513			break;
 514		}
 
 515		free_extent_map(em);
 
 516
 517		if (page->index == end_index) {
 518			char *userpage;
 519			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 520
 521			if (zero_offset) {
 522				int zeros;
 523				zeros = PAGE_CACHE_SIZE - zero_offset;
 524				userpage = kmap_atomic(page);
 525				memset(userpage + zero_offset, 0, zeros);
 526				flush_dcache_page(page);
 527				kunmap_atomic(userpage);
 528			}
 529		}
 530
 531		ret = bio_add_page(cb->orig_bio, page,
 532				   PAGE_CACHE_SIZE, 0);
 533
 534		if (ret == PAGE_CACHE_SIZE) {
 535			nr_pages++;
 536			page_cache_release(page);
 537		} else {
 538			unlock_extent(tree, last_offset, end);
 539			unlock_page(page);
 540			page_cache_release(page);
 541			break;
 542		}
 543next:
 544		last_offset += PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 545	}
 546	return 0;
 547}
 548
 549/*
 550 * for a compressed read, the bio we get passed has all the inode pages
 551 * in it.  We don't actually do IO on those pages but allocate new ones
 552 * to hold the compressed pages on disk.
 553 *
 554 * bio->bi_iter.bi_sector points to the compressed extent on disk
 555 * bio->bi_io_vec points to all of the inode pages
 556 * bio->bi_vcnt is a count of pages
 557 *
 558 * After the compressed pages are read, we copy the bytes into the
 559 * bio we were passed and then call the bio end_io calls
 560 */
 561int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 562				 int mirror_num, unsigned long bio_flags)
 563{
 564	struct extent_io_tree *tree;
 565	struct extent_map_tree *em_tree;
 
 566	struct compressed_bio *cb;
 567	struct btrfs_root *root = BTRFS_I(inode)->root;
 568	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 569	unsigned long compressed_len;
 570	unsigned long nr_pages;
 571	unsigned long pg_index;
 572	struct page *page;
 573	struct block_device *bdev;
 574	struct bio *comp_bio;
 575	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 576	u64 em_len;
 577	u64 em_start;
 578	struct extent_map *em;
 579	int ret = -ENOMEM;
 580	int faili = 0;
 581	u32 *sums;
 582
 583	tree = &BTRFS_I(inode)->io_tree;
 584	em_tree = &BTRFS_I(inode)->extent_tree;
 585
 586	/* we need the actual starting offset of this extent in the file */
 587	read_lock(&em_tree->lock);
 588	em = lookup_extent_mapping(em_tree,
 589				   page_offset(bio->bi_io_vec->bv_page),
 590				   PAGE_CACHE_SIZE);
 591	read_unlock(&em_tree->lock);
 592	if (!em)
 593		return -EIO;
 
 
 594
 595	compressed_len = em->block_len;
 596	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 597	if (!cb)
 598		goto out;
 599
 600	atomic_set(&cb->pending_bios, 0);
 601	cb->errors = 0;
 602	cb->inode = inode;
 603	cb->mirror_num = mirror_num;
 604	sums = &cb->sums;
 605
 606	cb->start = em->orig_start;
 607	em_len = em->len;
 608	em_start = em->start;
 609
 
 
 
 
 
 610	free_extent_map(em);
 611	em = NULL;
 612
 613	cb->len = uncompressed_len;
 614	cb->compressed_len = compressed_len;
 615	cb->compress_type = extent_compress_type(bio_flags);
 616	cb->orig_bio = bio;
 
 
 617
 618	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
 619				 PAGE_CACHE_SIZE;
 620	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 621				       GFP_NOFS);
 622	if (!cb->compressed_pages)
 623		goto fail1;
 624
 625	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 626
 627	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 628		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 629							      __GFP_HIGHMEM);
 630		if (!cb->compressed_pages[pg_index]) {
 631			faili = pg_index - 1;
 632			ret = -ENOMEM;
 633			goto fail2;
 634		}
 635	}
 636	faili = nr_pages - 1;
 637	cb->nr_pages = nr_pages;
 638
 639	/* In the parent-locked case, we only locked the range we are
 640	 * interested in.  In all other cases, we can opportunistically
 641	 * cache decompressed data that goes beyond the requested range. */
 642	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
 643		add_ra_bio_pages(inode, em_start + em_len, cb);
 644
 645	/* include any pages we added in add_ra-bio_pages */
 646	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 647	cb->len = uncompressed_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648
 649	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 650	if (!comp_bio)
 651		goto fail2;
 652	comp_bio->bi_private = cb;
 653	comp_bio->bi_end_io = end_compressed_bio_read;
 654	atomic_inc(&cb->pending_bios);
 655
 656	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 657		page = cb->compressed_pages[pg_index];
 658		page->mapping = inode->i_mapping;
 659		page->index = em_start >> PAGE_CACHE_SHIFT;
 660
 661		if (comp_bio->bi_iter.bi_size)
 662			ret = tree->ops->merge_bio_hook(READ, page, 0,
 663							PAGE_CACHE_SIZE,
 664							comp_bio, 0);
 665		else
 666			ret = 0;
 667
 668		page->mapping = NULL;
 669		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 670		    PAGE_CACHE_SIZE) {
 671			bio_get(comp_bio);
 672
 673			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 674			BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 675
 676			/*
 677			 * inc the count before we submit the bio so
 678			 * we know the end IO handler won't happen before
 679			 * we inc the count.  Otherwise, the cb might get
 680			 * freed before we're done setting it up
 681			 */
 682			atomic_inc(&cb->pending_bios);
 
 
 
 
 
 
 
 683
 684			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 685				ret = btrfs_lookup_bio_sums(root, inode,
 686							comp_bio, sums);
 687				BUG_ON(ret); /* -ENOMEM */
 688			}
 689			sums += (comp_bio->bi_iter.bi_size +
 690				 root->sectorsize - 1) / root->sectorsize;
 691
 692			ret = btrfs_map_bio(root, READ, comp_bio,
 693					    mirror_num, 0);
 694			if (ret)
 695				bio_endio(comp_bio, ret);
 696
 697			bio_put(comp_bio);
 698
 699			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 700							GFP_NOFS);
 701			BUG_ON(!comp_bio);
 702			comp_bio->bi_private = cb;
 703			comp_bio->bi_end_io = end_compressed_bio_read;
 704
 705			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 706		}
 707		cur_disk_byte += PAGE_CACHE_SIZE;
 708	}
 709	bio_get(comp_bio);
 710
 711	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 712	BUG_ON(ret); /* -ENOMEM */
 
 713
 714	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 715		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 716		BUG_ON(ret); /* -ENOMEM */
 717	}
 718
 719	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 720	if (ret)
 721		bio_endio(comp_bio, ret);
 
 
 722
 723	bio_put(comp_bio);
 724	return 0;
 
 725
 726fail2:
 727	while (faili >= 0) {
 728		__free_page(cb->compressed_pages[faili]);
 729		faili--;
 730	}
 
 
 
 
 
 
 
 
 
 
 731
 732	kfree(cb->compressed_pages);
 733fail1:
 734	kfree(cb);
 735out:
 736	free_extent_map(em);
 737	return ret;
 738}
 739
 740static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 741static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 742static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 743static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 744static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 745
 746static struct btrfs_compress_op *btrfs_compress_op[] = {
 
 
 747	&btrfs_zlib_compress,
 748	&btrfs_lzo_compress,
 
 749};
 750
 751void __init btrfs_init_compress(void)
 752{
 753	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754
 755	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 756		INIT_LIST_HEAD(&comp_idle_workspace[i]);
 757		spin_lock_init(&comp_workspace_lock[i]);
 758		atomic_set(&comp_alloc_workspace[i], 0);
 759		init_waitqueue_head(&comp_workspace_wait[i]);
 
 760	}
 761}
 762
 763/*
 764 * this finds an available workspace or allocates a new one
 765 * ERR_PTR is returned if things go bad.
 
 
 766 */
 767static struct list_head *find_workspace(int type)
 768{
 
 769	struct list_head *workspace;
 770	int cpus = num_online_cpus();
 771	int idx = type - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 772
 773	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
 774	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
 775	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
 776	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
 777	int *num_workspace			= &comp_num_workspace[idx];
 778again:
 779	spin_lock(workspace_lock);
 780	if (!list_empty(idle_workspace)) {
 781		workspace = idle_workspace->next;
 782		list_del(workspace);
 783		(*num_workspace)--;
 784		spin_unlock(workspace_lock);
 785		return workspace;
 786
 787	}
 788	if (atomic_read(alloc_workspace) > cpus) {
 789		DEFINE_WAIT(wait);
 790
 791		spin_unlock(workspace_lock);
 792		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 793		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 794			schedule();
 795		finish_wait(workspace_wait, &wait);
 796		goto again;
 797	}
 798	atomic_inc(alloc_workspace);
 799	spin_unlock(workspace_lock);
 
 
 
 
 
 
 
 
 
 800
 801	workspace = btrfs_compress_op[idx]->alloc_workspace();
 802	if (IS_ERR(workspace)) {
 803		atomic_dec(alloc_workspace);
 804		wake_up(workspace_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	}
 806	return workspace;
 807}
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809/*
 810 * put a workspace struct back on the list or free it if we have enough
 811 * idle ones sitting around
 812 */
 813static void free_workspace(int type, struct list_head *workspace)
 814{
 815	int idx = type - 1;
 816	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
 817	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
 818	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
 819	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
 820	int *num_workspace			= &comp_num_workspace[idx];
 821
 822	spin_lock(workspace_lock);
 823	if (*num_workspace < num_online_cpus()) {
 824		list_add_tail(workspace, idle_workspace);
 825		(*num_workspace)++;
 826		spin_unlock(workspace_lock);
 
 
 
 
 
 
 
 827		goto wake;
 828	}
 829	spin_unlock(workspace_lock);
 830
 831	btrfs_compress_op[idx]->free_workspace(workspace);
 832	atomic_dec(alloc_workspace);
 833wake:
 834	smp_mb();
 835	if (waitqueue_active(workspace_wait))
 836		wake_up(workspace_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 837}
 838
 839/*
 840 * cleanup function for module exit
 
 841 */
 842static void free_workspaces(void)
 843{
 844	struct list_head *workspace;
 845	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 848		while (!list_empty(&comp_idle_workspace[i])) {
 849			workspace = comp_idle_workspace[i].next;
 850			list_del(workspace);
 851			btrfs_compress_op[i]->free_workspace(workspace);
 852			atomic_dec(&comp_alloc_workspace[i]);
 853		}
 
 
 
 
 
 854	}
 
 
 855}
 856
 857/*
 858 * given an address space and start/len, compress the bytes.
 
 859 *
 860 * pages are allocated to hold the compressed result and stored
 861 * in 'pages'
 
 
 862 *
 863 * out_pages is used to return the number of pages allocated.  There
 864 * may be pages allocated even if we return an error
 865 *
 866 * total_in is used to return the number of bytes actually read.  It
 867 * may be smaller then len if we had to exit early because we
 868 * ran out of room in the pages array or because we cross the
 869 * max_out threshold.
 870 *
 871 * total_out is used to return the total number of compressed bytes
 872 *
 873 * max_out tells us the max number of bytes that we're allowed to
 874 * stuff into pages
 875 */
 876int btrfs_compress_pages(int type, struct address_space *mapping,
 877			 u64 start, unsigned long len,
 878			 struct page **pages,
 879			 unsigned long nr_dest_pages,
 880			 unsigned long *out_pages,
 881			 unsigned long *total_in,
 882			 unsigned long *total_out,
 883			 unsigned long max_out)
 884{
 
 
 
 885	struct list_head *workspace;
 886	int ret;
 887
 888	workspace = find_workspace(type);
 889	if (IS_ERR(workspace))
 890		return -1;
 891
 892	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 893						      start, len, pages,
 894						      nr_dest_pages, out_pages,
 895						      total_in, total_out,
 896						      max_out);
 897	free_workspace(type, workspace);
 898	return ret;
 899}
 900
 901/*
 902 * pages_in is an array of pages with compressed data.
 903 *
 904 * disk_start is the starting logical offset of this array in the file
 905 *
 906 * bvec is a bio_vec of pages from the file that we want to decompress into
 907 *
 908 * vcnt is the count of pages in the biovec
 909 *
 910 * srclen is the number of bytes in pages_in
 911 *
 912 * The basic idea is that we have a bio that was created by readpages.
 913 * The pages in the bio are for the uncompressed data, and they may not
 914 * be contiguous.  They all correspond to the range of bytes covered by
 915 * the compressed extent.
 916 */
 917static int btrfs_decompress_biovec(int type, struct page **pages_in,
 918				   u64 disk_start, struct bio_vec *bvec,
 919				   int vcnt, size_t srclen)
 920{
 921	struct list_head *workspace;
 922	int ret;
 
 923
 924	workspace = find_workspace(type);
 925	if (IS_ERR(workspace))
 926		return -ENOMEM;
 927
 928	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 929							 disk_start,
 930							 bvec, vcnt, srclen);
 931	free_workspace(type, workspace);
 932	return ret;
 933}
 934
 935/*
 936 * a less complex decompression routine.  Our compressed data fits in a
 937 * single page, and we want to read a single page out of it.
 938 * start_byte tells us the offset into the compressed data we're interested in
 939 */
 940int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 941		     unsigned long start_byte, size_t srclen, size_t destlen)
 942{
 
 943	struct list_head *workspace;
 
 944	int ret;
 945
 946	workspace = find_workspace(type);
 947	if (IS_ERR(workspace))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948		return -ENOMEM;
 949
 950	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 951						  dest_page, start_byte,
 952						  srclen, destlen);
 953
 954	free_workspace(type, workspace);
 955	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956}
 957
 958void btrfs_exit_compress(void)
 959{
 960	free_workspaces();
 
 
 
 
 
 
 
 
 961}
 962
 963/*
 964 * Copy uncompressed data from working buffer to pages.
 965 *
 966 * buf_start is the byte offset we're of the start of our workspace buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967 *
 968 * total_out is the last byte of the buffer
 
 969 */
 970int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 971			      unsigned long total_out, u64 disk_start,
 972			      struct bio_vec *bvec, int vcnt,
 973			      unsigned long *pg_index,
 974			      unsigned long *pg_offset)
 975{
 976	unsigned long buf_offset;
 977	unsigned long current_buf_start;
 978	unsigned long start_byte;
 979	unsigned long working_bytes = total_out - buf_start;
 980	unsigned long bytes;
 981	char *kaddr;
 982	struct page *page_out = bvec[*pg_index].bv_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983
 984	/*
 985	 * start byte is the first byte of the page we're currently
 986	 * copying into relative to the start of the compressed data.
 987	 */
 988	start_byte = page_offset(page_out) - disk_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989
 990	/* we haven't yet hit data corresponding to this page */
 991	if (total_out <= start_byte)
 992		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	/*
 995	 * the start of the data we care about is offset into
 996	 * the middle of our working buffer
 
 997	 */
 998	if (total_out > start_byte && buf_start < start_byte) {
 999		buf_offset = start_byte - buf_start;
1000		working_bytes -= buf_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001	} else {
1002		buf_offset = 0;
 
1003	}
1004	current_buf_start = buf_start;
1005
1006	/* copy bytes from the working buffer into the pages */
1007	while (working_bytes > 0) {
1008		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1009			    PAGE_CACHE_SIZE - buf_offset);
1010		bytes = min(bytes, working_bytes);
1011		kaddr = kmap_atomic(page_out);
1012		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1013		if (*pg_index == (vcnt - 1) && *pg_offset == 0)
1014			memset(kaddr + bytes, 0, PAGE_CACHE_SIZE - bytes);
1015		kunmap_atomic(kaddr);
1016		flush_dcache_page(page_out);
1017
1018		*pg_offset += bytes;
1019		buf_offset += bytes;
1020		working_bytes -= bytes;
1021		current_buf_start += bytes;
1022
1023		/* check if we need to pick another page */
1024		if (*pg_offset == PAGE_CACHE_SIZE) {
1025			(*pg_index)++;
1026			if (*pg_index >= vcnt)
1027				return 0;
1028
1029			page_out = bvec[*pg_index].bv_page;
1030			*pg_offset = 0;
1031			start_byte = page_offset(page_out) - disk_start;
1032
1033			/*
1034			 * make sure our new page is covered by this
1035			 * working buffer
1036			 */
1037			if (total_out <= start_byte)
1038				return 1;
 
 
 
 
 
1039
1040			/*
1041			 * the next page in the biovec might not be adjacent
1042			 * to the last page, but it might still be found
1043			 * inside this working buffer. bump our offset pointer
1044			 */
1045			if (total_out > start_byte &&
1046			    current_buf_start < start_byte) {
1047				buf_offset = start_byte - buf_start;
1048				working_bytes = total_out - start_byte;
1049				current_buf_start = buf_start + buf_offset;
1050			}
1051		}
1052	}
1053
1054	return 1;
 
 
1055}