Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c. See raid1.c for further copyright information.
10 */
11
12#include <linux/slab.h>
13#include <linux/delay.h>
14#include <linux/blkdev.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/ratelimit.h>
18#include <linux/kthread.h>
19#include <linux/raid/md_p.h>
20#include <trace/events/block.h>
21#include "md.h"
22
23#define RAID_1_10_NAME "raid10"
24#include "raid10.h"
25#include "raid0.h"
26#include "md-bitmap.h"
27
28/*
29 * RAID10 provides a combination of RAID0 and RAID1 functionality.
30 * The layout of data is defined by
31 * chunk_size
32 * raid_disks
33 * near_copies (stored in low byte of layout)
34 * far_copies (stored in second byte of layout)
35 * far_offset (stored in bit 16 of layout )
36 * use_far_sets (stored in bit 17 of layout )
37 * use_far_sets_bugfixed (stored in bit 18 of layout )
38 *
39 * The data to be stored is divided into chunks using chunksize. Each device
40 * is divided into far_copies sections. In each section, chunks are laid out
41 * in a style similar to raid0, but near_copies copies of each chunk is stored
42 * (each on a different drive). The starting device for each section is offset
43 * near_copies from the starting device of the previous section. Thus there
44 * are (near_copies * far_copies) of each chunk, and each is on a different
45 * drive. near_copies and far_copies must be at least one, and their product
46 * is at most raid_disks.
47 *
48 * If far_offset is true, then the far_copies are handled a bit differently.
49 * The copies are still in different stripes, but instead of being very far
50 * apart on disk, there are adjacent stripes.
51 *
52 * The far and offset algorithms are handled slightly differently if
53 * 'use_far_sets' is true. In this case, the array's devices are grouped into
54 * sets that are (near_copies * far_copies) in size. The far copied stripes
55 * are still shifted by 'near_copies' devices, but this shifting stays confined
56 * to the set rather than the entire array. This is done to improve the number
57 * of device combinations that can fail without causing the array to fail.
58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59 * on a device):
60 * A B C D A B C D E
61 * ... ...
62 * D A B C E A B C D
63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64 * [A B] [C D] [A B] [C D E]
65 * |...| |...| |...| | ... |
66 * [B A] [D C] [B A] [E C D]
67 */
68
69static void allow_barrier(struct r10conf *conf);
70static void lower_barrier(struct r10conf *conf);
71static int _enough(struct r10conf *conf, int previous, int ignore);
72static int enough(struct r10conf *conf, int ignore);
73static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74 int *skipped);
75static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76static void end_reshape_write(struct bio *bio);
77static void end_reshape(struct r10conf *conf);
78
79#include "raid1-10.c"
80
81#define NULL_CMD
82#define cmd_before(conf, cmd) \
83 do { \
84 write_sequnlock_irq(&(conf)->resync_lock); \
85 cmd; \
86 } while (0)
87#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88
89#define wait_event_barrier_cmd(conf, cond, cmd) \
90 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91 cmd_after(conf))
92
93#define wait_event_barrier(conf, cond) \
94 wait_event_barrier_cmd(conf, cond, NULL_CMD)
95
96/*
97 * for resync bio, r10bio pointer can be retrieved from the per-bio
98 * 'struct resync_pages'.
99 */
100static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101{
102 return get_resync_pages(bio)->raid_bio;
103}
104
105static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106{
107 struct r10conf *conf = data;
108 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109
110 /* allocate a r10bio with room for raid_disks entries in the
111 * bios array */
112 return kzalloc(size, gfp_flags);
113}
114
115#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116/* amount of memory to reserve for resync requests */
117#define RESYNC_WINDOW (1024*1024)
118/* maximum number of concurrent requests, memory permitting */
119#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123/*
124 * When performing a resync, we need to read and compare, so
125 * we need as many pages are there are copies.
126 * When performing a recovery, we need 2 bios, one for read,
127 * one for write (we recover only one drive per r10buf)
128 *
129 */
130static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131{
132 struct r10conf *conf = data;
133 struct r10bio *r10_bio;
134 struct bio *bio;
135 int j;
136 int nalloc, nalloc_rp;
137 struct resync_pages *rps;
138
139 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140 if (!r10_bio)
141 return NULL;
142
143 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145 nalloc = conf->copies; /* resync */
146 else
147 nalloc = 2; /* recovery */
148
149 /* allocate once for all bios */
150 if (!conf->have_replacement)
151 nalloc_rp = nalloc;
152 else
153 nalloc_rp = nalloc * 2;
154 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155 if (!rps)
156 goto out_free_r10bio;
157
158 /*
159 * Allocate bios.
160 */
161 for (j = nalloc ; j-- ; ) {
162 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163 if (!bio)
164 goto out_free_bio;
165 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166 r10_bio->devs[j].bio = bio;
167 if (!conf->have_replacement)
168 continue;
169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170 if (!bio)
171 goto out_free_bio;
172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173 r10_bio->devs[j].repl_bio = bio;
174 }
175 /*
176 * Allocate RESYNC_PAGES data pages and attach them
177 * where needed.
178 */
179 for (j = 0; j < nalloc; j++) {
180 struct bio *rbio = r10_bio->devs[j].repl_bio;
181 struct resync_pages *rp, *rp_repl;
182
183 rp = &rps[j];
184 if (rbio)
185 rp_repl = &rps[nalloc + j];
186
187 bio = r10_bio->devs[j].bio;
188
189 if (!j || test_bit(MD_RECOVERY_SYNC,
190 &conf->mddev->recovery)) {
191 if (resync_alloc_pages(rp, gfp_flags))
192 goto out_free_pages;
193 } else {
194 memcpy(rp, &rps[0], sizeof(*rp));
195 resync_get_all_pages(rp);
196 }
197
198 rp->raid_bio = r10_bio;
199 bio->bi_private = rp;
200 if (rbio) {
201 memcpy(rp_repl, rp, sizeof(*rp));
202 rbio->bi_private = rp_repl;
203 }
204 }
205
206 return r10_bio;
207
208out_free_pages:
209 while (--j >= 0)
210 resync_free_pages(&rps[j]);
211
212 j = 0;
213out_free_bio:
214 for ( ; j < nalloc; j++) {
215 if (r10_bio->devs[j].bio)
216 bio_uninit(r10_bio->devs[j].bio);
217 kfree(r10_bio->devs[j].bio);
218 if (r10_bio->devs[j].repl_bio)
219 bio_uninit(r10_bio->devs[j].repl_bio);
220 kfree(r10_bio->devs[j].repl_bio);
221 }
222 kfree(rps);
223out_free_r10bio:
224 rbio_pool_free(r10_bio, conf);
225 return NULL;
226}
227
228static void r10buf_pool_free(void *__r10_bio, void *data)
229{
230 struct r10conf *conf = data;
231 struct r10bio *r10bio = __r10_bio;
232 int j;
233 struct resync_pages *rp = NULL;
234
235 for (j = conf->copies; j--; ) {
236 struct bio *bio = r10bio->devs[j].bio;
237
238 if (bio) {
239 rp = get_resync_pages(bio);
240 resync_free_pages(rp);
241 bio_uninit(bio);
242 kfree(bio);
243 }
244
245 bio = r10bio->devs[j].repl_bio;
246 if (bio) {
247 bio_uninit(bio);
248 kfree(bio);
249 }
250 }
251
252 /* resync pages array stored in the 1st bio's .bi_private */
253 kfree(rp);
254
255 rbio_pool_free(r10bio, conf);
256}
257
258static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259{
260 int i;
261
262 for (i = 0; i < conf->geo.raid_disks; i++) {
263 struct bio **bio = & r10_bio->devs[i].bio;
264 if (!BIO_SPECIAL(*bio))
265 bio_put(*bio);
266 *bio = NULL;
267 bio = &r10_bio->devs[i].repl_bio;
268 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269 bio_put(*bio);
270 *bio = NULL;
271 }
272}
273
274static void free_r10bio(struct r10bio *r10_bio)
275{
276 struct r10conf *conf = r10_bio->mddev->private;
277
278 put_all_bios(conf, r10_bio);
279 mempool_free(r10_bio, &conf->r10bio_pool);
280}
281
282static void put_buf(struct r10bio *r10_bio)
283{
284 struct r10conf *conf = r10_bio->mddev->private;
285
286 mempool_free(r10_bio, &conf->r10buf_pool);
287
288 lower_barrier(conf);
289}
290
291static void wake_up_barrier(struct r10conf *conf)
292{
293 if (wq_has_sleeper(&conf->wait_barrier))
294 wake_up(&conf->wait_barrier);
295}
296
297static void reschedule_retry(struct r10bio *r10_bio)
298{
299 unsigned long flags;
300 struct mddev *mddev = r10_bio->mddev;
301 struct r10conf *conf = mddev->private;
302
303 spin_lock_irqsave(&conf->device_lock, flags);
304 list_add(&r10_bio->retry_list, &conf->retry_list);
305 conf->nr_queued ++;
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307
308 /* wake up frozen array... */
309 wake_up(&conf->wait_barrier);
310
311 md_wakeup_thread(mddev->thread);
312}
313
314/*
315 * raid_end_bio_io() is called when we have finished servicing a mirrored
316 * operation and are ready to return a success/failure code to the buffer
317 * cache layer.
318 */
319static void raid_end_bio_io(struct r10bio *r10_bio)
320{
321 struct bio *bio = r10_bio->master_bio;
322 struct r10conf *conf = r10_bio->mddev->private;
323
324 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325 bio->bi_status = BLK_STS_IOERR;
326
327 bio_endio(bio);
328 /*
329 * Wake up any possible resync thread that waits for the device
330 * to go idle.
331 */
332 allow_barrier(conf);
333
334 free_r10bio(r10_bio);
335}
336
337/*
338 * Update disk head position estimator based on IRQ completion info.
339 */
340static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341{
342 struct r10conf *conf = r10_bio->mddev->private;
343
344 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345 r10_bio->devs[slot].addr + (r10_bio->sectors);
346}
347
348/*
349 * Find the disk number which triggered given bio
350 */
351static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352 struct bio *bio, int *slotp, int *replp)
353{
354 int slot;
355 int repl = 0;
356
357 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358 if (r10_bio->devs[slot].bio == bio)
359 break;
360 if (r10_bio->devs[slot].repl_bio == bio) {
361 repl = 1;
362 break;
363 }
364 }
365
366 update_head_pos(slot, r10_bio);
367
368 if (slotp)
369 *slotp = slot;
370 if (replp)
371 *replp = repl;
372 return r10_bio->devs[slot].devnum;
373}
374
375static void raid10_end_read_request(struct bio *bio)
376{
377 int uptodate = !bio->bi_status;
378 struct r10bio *r10_bio = bio->bi_private;
379 int slot;
380 struct md_rdev *rdev;
381 struct r10conf *conf = r10_bio->mddev->private;
382
383 slot = r10_bio->read_slot;
384 rdev = r10_bio->devs[slot].rdev;
385 /*
386 * this branch is our 'one mirror IO has finished' event handler:
387 */
388 update_head_pos(slot, r10_bio);
389
390 if (uptodate) {
391 /*
392 * Set R10BIO_Uptodate in our master bio, so that
393 * we will return a good error code to the higher
394 * levels even if IO on some other mirrored buffer fails.
395 *
396 * The 'master' represents the composite IO operation to
397 * user-side. So if something waits for IO, then it will
398 * wait for the 'master' bio.
399 */
400 set_bit(R10BIO_Uptodate, &r10_bio->state);
401 } else {
402 /* If all other devices that store this block have
403 * failed, we want to return the error upwards rather
404 * than fail the last device. Here we redefine
405 * "uptodate" to mean "Don't want to retry"
406 */
407 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408 rdev->raid_disk))
409 uptodate = 1;
410 }
411 if (uptodate) {
412 raid_end_bio_io(r10_bio);
413 rdev_dec_pending(rdev, conf->mddev);
414 } else {
415 /*
416 * oops, read error - keep the refcount on the rdev
417 */
418 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419 mdname(conf->mddev),
420 rdev->bdev,
421 (unsigned long long)r10_bio->sector);
422 set_bit(R10BIO_ReadError, &r10_bio->state);
423 reschedule_retry(r10_bio);
424 }
425}
426
427static void close_write(struct r10bio *r10_bio)
428{
429 struct mddev *mddev = r10_bio->mddev;
430
431 md_write_end(mddev);
432}
433
434static void one_write_done(struct r10bio *r10_bio)
435{
436 if (atomic_dec_and_test(&r10_bio->remaining)) {
437 if (test_bit(R10BIO_WriteError, &r10_bio->state))
438 reschedule_retry(r10_bio);
439 else {
440 close_write(r10_bio);
441 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
442 reschedule_retry(r10_bio);
443 else
444 raid_end_bio_io(r10_bio);
445 }
446 }
447}
448
449static void raid10_end_write_request(struct bio *bio)
450{
451 struct r10bio *r10_bio = bio->bi_private;
452 int dev;
453 int dec_rdev = 1;
454 struct r10conf *conf = r10_bio->mddev->private;
455 int slot, repl;
456 struct md_rdev *rdev = NULL;
457 struct bio *to_put = NULL;
458 bool discard_error;
459
460 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
461
462 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
463
464 if (repl)
465 rdev = conf->mirrors[dev].replacement;
466 if (!rdev) {
467 smp_rmb();
468 repl = 0;
469 rdev = conf->mirrors[dev].rdev;
470 }
471 /*
472 * this branch is our 'one mirror IO has finished' event handler:
473 */
474 if (bio->bi_status && !discard_error) {
475 if (repl)
476 /* Never record new bad blocks to replacement,
477 * just fail it.
478 */
479 md_error(rdev->mddev, rdev);
480 else {
481 set_bit(WriteErrorSeen, &rdev->flags);
482 if (!test_and_set_bit(WantReplacement, &rdev->flags))
483 set_bit(MD_RECOVERY_NEEDED,
484 &rdev->mddev->recovery);
485
486 dec_rdev = 0;
487 if (test_bit(FailFast, &rdev->flags) &&
488 (bio->bi_opf & MD_FAILFAST)) {
489 md_error(rdev->mddev, rdev);
490 }
491
492 /*
493 * When the device is faulty, it is not necessary to
494 * handle write error.
495 */
496 if (!test_bit(Faulty, &rdev->flags))
497 set_bit(R10BIO_WriteError, &r10_bio->state);
498 else {
499 /* Fail the request */
500 r10_bio->devs[slot].bio = NULL;
501 to_put = bio;
502 dec_rdev = 1;
503 }
504 }
505 } else {
506 /*
507 * Set R10BIO_Uptodate in our master bio, so that
508 * we will return a good error code for to the higher
509 * levels even if IO on some other mirrored buffer fails.
510 *
511 * The 'master' represents the composite IO operation to
512 * user-side. So if something waits for IO, then it will
513 * wait for the 'master' bio.
514 *
515 * Do not set R10BIO_Uptodate if the current device is
516 * rebuilding or Faulty. This is because we cannot use
517 * such device for properly reading the data back (we could
518 * potentially use it, if the current write would have felt
519 * before rdev->recovery_offset, but for simplicity we don't
520 * check this here.
521 */
522 if (test_bit(In_sync, &rdev->flags) &&
523 !test_bit(Faulty, &rdev->flags))
524 set_bit(R10BIO_Uptodate, &r10_bio->state);
525
526 /* Maybe we can clear some bad blocks. */
527 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
528 r10_bio->sectors) &&
529 !discard_error) {
530 bio_put(bio);
531 if (repl)
532 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
533 else
534 r10_bio->devs[slot].bio = IO_MADE_GOOD;
535 dec_rdev = 0;
536 set_bit(R10BIO_MadeGood, &r10_bio->state);
537 }
538 }
539
540 /*
541 *
542 * Let's see if all mirrored write operations have finished
543 * already.
544 */
545 one_write_done(r10_bio);
546 if (dec_rdev)
547 rdev_dec_pending(rdev, conf->mddev);
548 if (to_put)
549 bio_put(to_put);
550}
551
552/*
553 * RAID10 layout manager
554 * As well as the chunksize and raid_disks count, there are two
555 * parameters: near_copies and far_copies.
556 * near_copies * far_copies must be <= raid_disks.
557 * Normally one of these will be 1.
558 * If both are 1, we get raid0.
559 * If near_copies == raid_disks, we get raid1.
560 *
561 * Chunks are laid out in raid0 style with near_copies copies of the
562 * first chunk, followed by near_copies copies of the next chunk and
563 * so on.
564 * If far_copies > 1, then after 1/far_copies of the array has been assigned
565 * as described above, we start again with a device offset of near_copies.
566 * So we effectively have another copy of the whole array further down all
567 * the drives, but with blocks on different drives.
568 * With this layout, and block is never stored twice on the one device.
569 *
570 * raid10_find_phys finds the sector offset of a given virtual sector
571 * on each device that it is on.
572 *
573 * raid10_find_virt does the reverse mapping, from a device and a
574 * sector offset to a virtual address
575 */
576
577static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
578{
579 int n,f;
580 sector_t sector;
581 sector_t chunk;
582 sector_t stripe;
583 int dev;
584 int slot = 0;
585 int last_far_set_start, last_far_set_size;
586
587 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
588 last_far_set_start *= geo->far_set_size;
589
590 last_far_set_size = geo->far_set_size;
591 last_far_set_size += (geo->raid_disks % geo->far_set_size);
592
593 /* now calculate first sector/dev */
594 chunk = r10bio->sector >> geo->chunk_shift;
595 sector = r10bio->sector & geo->chunk_mask;
596
597 chunk *= geo->near_copies;
598 stripe = chunk;
599 dev = sector_div(stripe, geo->raid_disks);
600 if (geo->far_offset)
601 stripe *= geo->far_copies;
602
603 sector += stripe << geo->chunk_shift;
604
605 /* and calculate all the others */
606 for (n = 0; n < geo->near_copies; n++) {
607 int d = dev;
608 int set;
609 sector_t s = sector;
610 r10bio->devs[slot].devnum = d;
611 r10bio->devs[slot].addr = s;
612 slot++;
613
614 for (f = 1; f < geo->far_copies; f++) {
615 set = d / geo->far_set_size;
616 d += geo->near_copies;
617
618 if ((geo->raid_disks % geo->far_set_size) &&
619 (d > last_far_set_start)) {
620 d -= last_far_set_start;
621 d %= last_far_set_size;
622 d += last_far_set_start;
623 } else {
624 d %= geo->far_set_size;
625 d += geo->far_set_size * set;
626 }
627 s += geo->stride;
628 r10bio->devs[slot].devnum = d;
629 r10bio->devs[slot].addr = s;
630 slot++;
631 }
632 dev++;
633 if (dev >= geo->raid_disks) {
634 dev = 0;
635 sector += (geo->chunk_mask + 1);
636 }
637 }
638}
639
640static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
641{
642 struct geom *geo = &conf->geo;
643
644 if (conf->reshape_progress != MaxSector &&
645 ((r10bio->sector >= conf->reshape_progress) !=
646 conf->mddev->reshape_backwards)) {
647 set_bit(R10BIO_Previous, &r10bio->state);
648 geo = &conf->prev;
649 } else
650 clear_bit(R10BIO_Previous, &r10bio->state);
651
652 __raid10_find_phys(geo, r10bio);
653}
654
655static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
656{
657 sector_t offset, chunk, vchunk;
658 /* Never use conf->prev as this is only called during resync
659 * or recovery, so reshape isn't happening
660 */
661 struct geom *geo = &conf->geo;
662 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
663 int far_set_size = geo->far_set_size;
664 int last_far_set_start;
665
666 if (geo->raid_disks % geo->far_set_size) {
667 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
668 last_far_set_start *= geo->far_set_size;
669
670 if (dev >= last_far_set_start) {
671 far_set_size = geo->far_set_size;
672 far_set_size += (geo->raid_disks % geo->far_set_size);
673 far_set_start = last_far_set_start;
674 }
675 }
676
677 offset = sector & geo->chunk_mask;
678 if (geo->far_offset) {
679 int fc;
680 chunk = sector >> geo->chunk_shift;
681 fc = sector_div(chunk, geo->far_copies);
682 dev -= fc * geo->near_copies;
683 if (dev < far_set_start)
684 dev += far_set_size;
685 } else {
686 while (sector >= geo->stride) {
687 sector -= geo->stride;
688 if (dev < (geo->near_copies + far_set_start))
689 dev += far_set_size - geo->near_copies;
690 else
691 dev -= geo->near_copies;
692 }
693 chunk = sector >> geo->chunk_shift;
694 }
695 vchunk = chunk * geo->raid_disks + dev;
696 sector_div(vchunk, geo->near_copies);
697 return (vchunk << geo->chunk_shift) + offset;
698}
699
700/*
701 * This routine returns the disk from which the requested read should
702 * be done. There is a per-array 'next expected sequential IO' sector
703 * number - if this matches on the next IO then we use the last disk.
704 * There is also a per-disk 'last know head position' sector that is
705 * maintained from IRQ contexts, both the normal and the resync IO
706 * completion handlers update this position correctly. If there is no
707 * perfect sequential match then we pick the disk whose head is closest.
708 *
709 * If there are 2 mirrors in the same 2 devices, performance degrades
710 * because position is mirror, not device based.
711 *
712 * The rdev for the device selected will have nr_pending incremented.
713 */
714
715/*
716 * FIXME: possibly should rethink readbalancing and do it differently
717 * depending on near_copies / far_copies geometry.
718 */
719static struct md_rdev *read_balance(struct r10conf *conf,
720 struct r10bio *r10_bio,
721 int *max_sectors)
722{
723 const sector_t this_sector = r10_bio->sector;
724 int disk, slot;
725 int sectors = r10_bio->sectors;
726 int best_good_sectors;
727 sector_t new_distance, best_dist;
728 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
729 int do_balance;
730 int best_dist_slot, best_pending_slot;
731 bool has_nonrot_disk = false;
732 unsigned int min_pending;
733 struct geom *geo = &conf->geo;
734
735 raid10_find_phys(conf, r10_bio);
736 best_dist_slot = -1;
737 min_pending = UINT_MAX;
738 best_dist_rdev = NULL;
739 best_pending_rdev = NULL;
740 best_dist = MaxSector;
741 best_good_sectors = 0;
742 do_balance = 1;
743 clear_bit(R10BIO_FailFast, &r10_bio->state);
744
745 if (raid1_should_read_first(conf->mddev, this_sector, sectors))
746 do_balance = 0;
747
748 for (slot = 0; slot < conf->copies ; slot++) {
749 sector_t first_bad;
750 int bad_sectors;
751 sector_t dev_sector;
752 unsigned int pending;
753 bool nonrot;
754
755 if (r10_bio->devs[slot].bio == IO_BLOCKED)
756 continue;
757 disk = r10_bio->devs[slot].devnum;
758 rdev = conf->mirrors[disk].replacement;
759 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
760 r10_bio->devs[slot].addr + sectors >
761 rdev->recovery_offset)
762 rdev = conf->mirrors[disk].rdev;
763 if (rdev == NULL ||
764 test_bit(Faulty, &rdev->flags))
765 continue;
766 if (!test_bit(In_sync, &rdev->flags) &&
767 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
768 continue;
769
770 dev_sector = r10_bio->devs[slot].addr;
771 if (is_badblock(rdev, dev_sector, sectors,
772 &first_bad, &bad_sectors)) {
773 if (best_dist < MaxSector)
774 /* Already have a better slot */
775 continue;
776 if (first_bad <= dev_sector) {
777 /* Cannot read here. If this is the
778 * 'primary' device, then we must not read
779 * beyond 'bad_sectors' from another device.
780 */
781 bad_sectors -= (dev_sector - first_bad);
782 if (!do_balance && sectors > bad_sectors)
783 sectors = bad_sectors;
784 if (best_good_sectors > sectors)
785 best_good_sectors = sectors;
786 } else {
787 sector_t good_sectors =
788 first_bad - dev_sector;
789 if (good_sectors > best_good_sectors) {
790 best_good_sectors = good_sectors;
791 best_dist_slot = slot;
792 best_dist_rdev = rdev;
793 }
794 if (!do_balance)
795 /* Must read from here */
796 break;
797 }
798 continue;
799 } else
800 best_good_sectors = sectors;
801
802 if (!do_balance)
803 break;
804
805 nonrot = bdev_nonrot(rdev->bdev);
806 has_nonrot_disk |= nonrot;
807 pending = atomic_read(&rdev->nr_pending);
808 if (min_pending > pending && nonrot) {
809 min_pending = pending;
810 best_pending_slot = slot;
811 best_pending_rdev = rdev;
812 }
813
814 if (best_dist_slot >= 0)
815 /* At least 2 disks to choose from so failfast is OK */
816 set_bit(R10BIO_FailFast, &r10_bio->state);
817 /* This optimisation is debatable, and completely destroys
818 * sequential read speed for 'far copies' arrays. So only
819 * keep it for 'near' arrays, and review those later.
820 */
821 if (geo->near_copies > 1 && !pending)
822 new_distance = 0;
823
824 /* for far > 1 always use the lowest address */
825 else if (geo->far_copies > 1)
826 new_distance = r10_bio->devs[slot].addr;
827 else
828 new_distance = abs(r10_bio->devs[slot].addr -
829 conf->mirrors[disk].head_position);
830
831 if (new_distance < best_dist) {
832 best_dist = new_distance;
833 best_dist_slot = slot;
834 best_dist_rdev = rdev;
835 }
836 }
837 if (slot >= conf->copies) {
838 if (has_nonrot_disk) {
839 slot = best_pending_slot;
840 rdev = best_pending_rdev;
841 } else {
842 slot = best_dist_slot;
843 rdev = best_dist_rdev;
844 }
845 }
846
847 if (slot >= 0) {
848 atomic_inc(&rdev->nr_pending);
849 r10_bio->read_slot = slot;
850 } else
851 rdev = NULL;
852 *max_sectors = best_good_sectors;
853
854 return rdev;
855}
856
857static void flush_pending_writes(struct r10conf *conf)
858{
859 /* Any writes that have been queued but are awaiting
860 * bitmap updates get flushed here.
861 */
862 spin_lock_irq(&conf->device_lock);
863
864 if (conf->pending_bio_list.head) {
865 struct blk_plug plug;
866 struct bio *bio;
867
868 bio = bio_list_get(&conf->pending_bio_list);
869 spin_unlock_irq(&conf->device_lock);
870
871 /*
872 * As this is called in a wait_event() loop (see freeze_array),
873 * current->state might be TASK_UNINTERRUPTIBLE which will
874 * cause a warning when we prepare to wait again. As it is
875 * rare that this path is taken, it is perfectly safe to force
876 * us to go around the wait_event() loop again, so the warning
877 * is a false-positive. Silence the warning by resetting
878 * thread state
879 */
880 __set_current_state(TASK_RUNNING);
881
882 blk_start_plug(&plug);
883 raid1_prepare_flush_writes(conf->mddev);
884 wake_up(&conf->wait_barrier);
885
886 while (bio) { /* submit pending writes */
887 struct bio *next = bio->bi_next;
888
889 raid1_submit_write(bio);
890 bio = next;
891 cond_resched();
892 }
893 blk_finish_plug(&plug);
894 } else
895 spin_unlock_irq(&conf->device_lock);
896}
897
898/* Barriers....
899 * Sometimes we need to suspend IO while we do something else,
900 * either some resync/recovery, or reconfigure the array.
901 * To do this we raise a 'barrier'.
902 * The 'barrier' is a counter that can be raised multiple times
903 * to count how many activities are happening which preclude
904 * normal IO.
905 * We can only raise the barrier if there is no pending IO.
906 * i.e. if nr_pending == 0.
907 * We choose only to raise the barrier if no-one is waiting for the
908 * barrier to go down. This means that as soon as an IO request
909 * is ready, no other operations which require a barrier will start
910 * until the IO request has had a chance.
911 *
912 * So: regular IO calls 'wait_barrier'. When that returns there
913 * is no backgroup IO happening, It must arrange to call
914 * allow_barrier when it has finished its IO.
915 * backgroup IO calls must call raise_barrier. Once that returns
916 * there is no normal IO happeing. It must arrange to call
917 * lower_barrier when the particular background IO completes.
918 */
919
920static void raise_barrier(struct r10conf *conf, int force)
921{
922 write_seqlock_irq(&conf->resync_lock);
923
924 if (WARN_ON_ONCE(force && !conf->barrier))
925 force = false;
926
927 /* Wait until no block IO is waiting (unless 'force') */
928 wait_event_barrier(conf, force || !conf->nr_waiting);
929
930 /* block any new IO from starting */
931 WRITE_ONCE(conf->barrier, conf->barrier + 1);
932
933 /* Now wait for all pending IO to complete */
934 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
935 conf->barrier < RESYNC_DEPTH);
936
937 write_sequnlock_irq(&conf->resync_lock);
938}
939
940static void lower_barrier(struct r10conf *conf)
941{
942 unsigned long flags;
943
944 write_seqlock_irqsave(&conf->resync_lock, flags);
945 WRITE_ONCE(conf->barrier, conf->barrier - 1);
946 write_sequnlock_irqrestore(&conf->resync_lock, flags);
947 wake_up(&conf->wait_barrier);
948}
949
950static bool stop_waiting_barrier(struct r10conf *conf)
951{
952 struct bio_list *bio_list = current->bio_list;
953 struct md_thread *thread;
954
955 /* barrier is dropped */
956 if (!conf->barrier)
957 return true;
958
959 /*
960 * If there are already pending requests (preventing the barrier from
961 * rising completely), and the pre-process bio queue isn't empty, then
962 * don't wait, as we need to empty that queue to get the nr_pending
963 * count down.
964 */
965 if (atomic_read(&conf->nr_pending) && bio_list &&
966 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
967 return true;
968
969 /* daemon thread must exist while handling io */
970 thread = rcu_dereference_protected(conf->mddev->thread, true);
971 /*
972 * move on if io is issued from raid10d(), nr_pending is not released
973 * from original io(see handle_read_error()). All raise barrier is
974 * blocked until this io is done.
975 */
976 if (thread->tsk == current) {
977 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
978 return true;
979 }
980
981 return false;
982}
983
984static bool wait_barrier_nolock(struct r10conf *conf)
985{
986 unsigned int seq = read_seqbegin(&conf->resync_lock);
987
988 if (READ_ONCE(conf->barrier))
989 return false;
990
991 atomic_inc(&conf->nr_pending);
992 if (!read_seqretry(&conf->resync_lock, seq))
993 return true;
994
995 if (atomic_dec_and_test(&conf->nr_pending))
996 wake_up_barrier(conf);
997
998 return false;
999}
1000
1001static bool wait_barrier(struct r10conf *conf, bool nowait)
1002{
1003 bool ret = true;
1004
1005 if (wait_barrier_nolock(conf))
1006 return true;
1007
1008 write_seqlock_irq(&conf->resync_lock);
1009 if (conf->barrier) {
1010 /* Return false when nowait flag is set */
1011 if (nowait) {
1012 ret = false;
1013 } else {
1014 conf->nr_waiting++;
1015 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1016 wait_event_barrier(conf, stop_waiting_barrier(conf));
1017 conf->nr_waiting--;
1018 }
1019 if (!conf->nr_waiting)
1020 wake_up(&conf->wait_barrier);
1021 }
1022 /* Only increment nr_pending when we wait */
1023 if (ret)
1024 atomic_inc(&conf->nr_pending);
1025 write_sequnlock_irq(&conf->resync_lock);
1026 return ret;
1027}
1028
1029static void allow_barrier(struct r10conf *conf)
1030{
1031 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1032 (conf->array_freeze_pending))
1033 wake_up_barrier(conf);
1034}
1035
1036static void freeze_array(struct r10conf *conf, int extra)
1037{
1038 /* stop syncio and normal IO and wait for everything to
1039 * go quiet.
1040 * We increment barrier and nr_waiting, and then
1041 * wait until nr_pending match nr_queued+extra
1042 * This is called in the context of one normal IO request
1043 * that has failed. Thus any sync request that might be pending
1044 * will be blocked by nr_pending, and we need to wait for
1045 * pending IO requests to complete or be queued for re-try.
1046 * Thus the number queued (nr_queued) plus this request (extra)
1047 * must match the number of pending IOs (nr_pending) before
1048 * we continue.
1049 */
1050 write_seqlock_irq(&conf->resync_lock);
1051 conf->array_freeze_pending++;
1052 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1053 conf->nr_waiting++;
1054 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1055 conf->nr_queued + extra, flush_pending_writes(conf));
1056 conf->array_freeze_pending--;
1057 write_sequnlock_irq(&conf->resync_lock);
1058}
1059
1060static void unfreeze_array(struct r10conf *conf)
1061{
1062 /* reverse the effect of the freeze */
1063 write_seqlock_irq(&conf->resync_lock);
1064 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1065 conf->nr_waiting--;
1066 wake_up(&conf->wait_barrier);
1067 write_sequnlock_irq(&conf->resync_lock);
1068}
1069
1070static sector_t choose_data_offset(struct r10bio *r10_bio,
1071 struct md_rdev *rdev)
1072{
1073 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1074 test_bit(R10BIO_Previous, &r10_bio->state))
1075 return rdev->data_offset;
1076 else
1077 return rdev->new_data_offset;
1078}
1079
1080static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1081{
1082 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1083 struct mddev *mddev = plug->cb.data;
1084 struct r10conf *conf = mddev->private;
1085 struct bio *bio;
1086
1087 if (from_schedule) {
1088 spin_lock_irq(&conf->device_lock);
1089 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1090 spin_unlock_irq(&conf->device_lock);
1091 wake_up_barrier(conf);
1092 md_wakeup_thread(mddev->thread);
1093 kfree(plug);
1094 return;
1095 }
1096
1097 /* we aren't scheduling, so we can do the write-out directly. */
1098 bio = bio_list_get(&plug->pending);
1099 raid1_prepare_flush_writes(mddev);
1100 wake_up_barrier(conf);
1101
1102 while (bio) { /* submit pending writes */
1103 struct bio *next = bio->bi_next;
1104
1105 raid1_submit_write(bio);
1106 bio = next;
1107 cond_resched();
1108 }
1109 kfree(plug);
1110}
1111
1112/*
1113 * 1. Register the new request and wait if the reconstruction thread has put
1114 * up a bar for new requests. Continue immediately if no resync is active
1115 * currently.
1116 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1117 */
1118static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1119 struct bio *bio, sector_t sectors)
1120{
1121 /* Bail out if REQ_NOWAIT is set for the bio */
1122 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1123 bio_wouldblock_error(bio);
1124 return false;
1125 }
1126 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1127 bio->bi_iter.bi_sector < conf->reshape_progress &&
1128 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1129 allow_barrier(conf);
1130 if (bio->bi_opf & REQ_NOWAIT) {
1131 bio_wouldblock_error(bio);
1132 return false;
1133 }
1134 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1135 wait_event(conf->wait_barrier,
1136 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1137 conf->reshape_progress >= bio->bi_iter.bi_sector +
1138 sectors);
1139 wait_barrier(conf, false);
1140 }
1141 return true;
1142}
1143
1144static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1145 struct r10bio *r10_bio, bool io_accounting)
1146{
1147 struct r10conf *conf = mddev->private;
1148 struct bio *read_bio;
1149 const enum req_op op = bio_op(bio);
1150 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1151 int max_sectors;
1152 struct md_rdev *rdev;
1153 char b[BDEVNAME_SIZE];
1154 int slot = r10_bio->read_slot;
1155 struct md_rdev *err_rdev = NULL;
1156 gfp_t gfp = GFP_NOIO;
1157 int error;
1158
1159 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1160 /*
1161 * This is an error retry, but we cannot
1162 * safely dereference the rdev in the r10_bio,
1163 * we must use the one in conf.
1164 * If it has already been disconnected (unlikely)
1165 * we lose the device name in error messages.
1166 */
1167 int disk;
1168 /*
1169 * As we are blocking raid10, it is a little safer to
1170 * use __GFP_HIGH.
1171 */
1172 gfp = GFP_NOIO | __GFP_HIGH;
1173
1174 disk = r10_bio->devs[slot].devnum;
1175 err_rdev = conf->mirrors[disk].rdev;
1176 if (err_rdev)
1177 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1178 else {
1179 strcpy(b, "???");
1180 /* This never gets dereferenced */
1181 err_rdev = r10_bio->devs[slot].rdev;
1182 }
1183 }
1184
1185 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1186 return;
1187 rdev = read_balance(conf, r10_bio, &max_sectors);
1188 if (!rdev) {
1189 if (err_rdev) {
1190 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1191 mdname(mddev), b,
1192 (unsigned long long)r10_bio->sector);
1193 }
1194 raid_end_bio_io(r10_bio);
1195 return;
1196 }
1197 if (err_rdev)
1198 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1199 mdname(mddev),
1200 rdev->bdev,
1201 (unsigned long long)r10_bio->sector);
1202 if (max_sectors < bio_sectors(bio)) {
1203 struct bio *split = bio_split(bio, max_sectors,
1204 gfp, &conf->bio_split);
1205 if (IS_ERR(split)) {
1206 error = PTR_ERR(split);
1207 goto err_handle;
1208 }
1209 bio_chain(split, bio);
1210 allow_barrier(conf);
1211 submit_bio_noacct(bio);
1212 wait_barrier(conf, false);
1213 bio = split;
1214 r10_bio->master_bio = bio;
1215 r10_bio->sectors = max_sectors;
1216 }
1217 slot = r10_bio->read_slot;
1218
1219 if (io_accounting) {
1220 md_account_bio(mddev, &bio);
1221 r10_bio->master_bio = bio;
1222 }
1223 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1224
1225 r10_bio->devs[slot].bio = read_bio;
1226 r10_bio->devs[slot].rdev = rdev;
1227
1228 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1229 choose_data_offset(r10_bio, rdev);
1230 read_bio->bi_end_io = raid10_end_read_request;
1231 read_bio->bi_opf = op | do_sync;
1232 if (test_bit(FailFast, &rdev->flags) &&
1233 test_bit(R10BIO_FailFast, &r10_bio->state))
1234 read_bio->bi_opf |= MD_FAILFAST;
1235 read_bio->bi_private = r10_bio;
1236 mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1237 submit_bio_noacct(read_bio);
1238 return;
1239err_handle:
1240 atomic_dec(&rdev->nr_pending);
1241 bio->bi_status = errno_to_blk_status(error);
1242 set_bit(R10BIO_Uptodate, &r10_bio->state);
1243 raid_end_bio_io(r10_bio);
1244}
1245
1246static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1247 struct bio *bio, bool replacement,
1248 int n_copy)
1249{
1250 const enum req_op op = bio_op(bio);
1251 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1252 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1253 const blk_opf_t do_atomic = bio->bi_opf & REQ_ATOMIC;
1254 unsigned long flags;
1255 struct r10conf *conf = mddev->private;
1256 struct md_rdev *rdev;
1257 int devnum = r10_bio->devs[n_copy].devnum;
1258 struct bio *mbio;
1259
1260 rdev = replacement ? conf->mirrors[devnum].replacement :
1261 conf->mirrors[devnum].rdev;
1262
1263 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1264 if (replacement)
1265 r10_bio->devs[n_copy].repl_bio = mbio;
1266 else
1267 r10_bio->devs[n_copy].bio = mbio;
1268
1269 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1270 choose_data_offset(r10_bio, rdev));
1271 mbio->bi_end_io = raid10_end_write_request;
1272 mbio->bi_opf = op | do_sync | do_fua | do_atomic;
1273 if (!replacement && test_bit(FailFast,
1274 &conf->mirrors[devnum].rdev->flags)
1275 && enough(conf, devnum))
1276 mbio->bi_opf |= MD_FAILFAST;
1277 mbio->bi_private = r10_bio;
1278 mddev_trace_remap(mddev, mbio, r10_bio->sector);
1279 /* flush_pending_writes() needs access to the rdev so...*/
1280 mbio->bi_bdev = (void *)rdev;
1281
1282 atomic_inc(&r10_bio->remaining);
1283
1284 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1285 spin_lock_irqsave(&conf->device_lock, flags);
1286 bio_list_add(&conf->pending_bio_list, mbio);
1287 spin_unlock_irqrestore(&conf->device_lock, flags);
1288 md_wakeup_thread(mddev->thread);
1289 }
1290}
1291
1292static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1293{
1294 struct r10conf *conf = mddev->private;
1295 struct md_rdev *blocked_rdev;
1296 int i;
1297
1298retry_wait:
1299 blocked_rdev = NULL;
1300 for (i = 0; i < conf->copies; i++) {
1301 struct md_rdev *rdev, *rrdev;
1302
1303 rdev = conf->mirrors[i].rdev;
1304 if (rdev) {
1305 sector_t dev_sector = r10_bio->devs[i].addr;
1306
1307 /*
1308 * Discard request doesn't care the write result
1309 * so it doesn't need to wait blocked disk here.
1310 */
1311 if (test_bit(WriteErrorSeen, &rdev->flags) &&
1312 r10_bio->sectors &&
1313 rdev_has_badblock(rdev, dev_sector,
1314 r10_bio->sectors) < 0)
1315 /*
1316 * Mustn't write here until the bad
1317 * block is acknowledged
1318 */
1319 set_bit(BlockedBadBlocks, &rdev->flags);
1320
1321 if (rdev_blocked(rdev)) {
1322 blocked_rdev = rdev;
1323 atomic_inc(&rdev->nr_pending);
1324 break;
1325 }
1326 }
1327
1328 rrdev = conf->mirrors[i].replacement;
1329 if (rrdev && rdev_blocked(rrdev)) {
1330 atomic_inc(&rrdev->nr_pending);
1331 blocked_rdev = rrdev;
1332 break;
1333 }
1334 }
1335
1336 if (unlikely(blocked_rdev)) {
1337 /* Have to wait for this device to get unblocked, then retry */
1338 allow_barrier(conf);
1339 mddev_add_trace_msg(conf->mddev,
1340 "raid10 %s wait rdev %d blocked",
1341 __func__, blocked_rdev->raid_disk);
1342 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1343 wait_barrier(conf, false);
1344 goto retry_wait;
1345 }
1346}
1347
1348static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1349 struct r10bio *r10_bio)
1350{
1351 struct r10conf *conf = mddev->private;
1352 int i, k;
1353 sector_t sectors;
1354 int max_sectors;
1355 int error;
1356
1357 if ((mddev_is_clustered(mddev) &&
1358 md_cluster_ops->area_resyncing(mddev, WRITE,
1359 bio->bi_iter.bi_sector,
1360 bio_end_sector(bio)))) {
1361 DEFINE_WAIT(w);
1362 /* Bail out if REQ_NOWAIT is set for the bio */
1363 if (bio->bi_opf & REQ_NOWAIT) {
1364 bio_wouldblock_error(bio);
1365 return;
1366 }
1367 for (;;) {
1368 prepare_to_wait(&conf->wait_barrier,
1369 &w, TASK_IDLE);
1370 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1371 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1372 break;
1373 schedule();
1374 }
1375 finish_wait(&conf->wait_barrier, &w);
1376 }
1377
1378 sectors = r10_bio->sectors;
1379 if (!regular_request_wait(mddev, conf, bio, sectors))
1380 return;
1381 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1382 (mddev->reshape_backwards
1383 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1384 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1385 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1386 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1387 /* Need to update reshape_position in metadata */
1388 mddev->reshape_position = conf->reshape_progress;
1389 set_mask_bits(&mddev->sb_flags, 0,
1390 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1391 md_wakeup_thread(mddev->thread);
1392 if (bio->bi_opf & REQ_NOWAIT) {
1393 allow_barrier(conf);
1394 bio_wouldblock_error(bio);
1395 return;
1396 }
1397 mddev_add_trace_msg(conf->mddev,
1398 "raid10 wait reshape metadata");
1399 wait_event(mddev->sb_wait,
1400 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1401
1402 conf->reshape_safe = mddev->reshape_position;
1403 }
1404
1405 /* first select target devices under rcu_lock and
1406 * inc refcount on their rdev. Record them by setting
1407 * bios[x] to bio
1408 * If there are known/acknowledged bad blocks on any device
1409 * on which we have seen a write error, we want to avoid
1410 * writing to those blocks. This potentially requires several
1411 * writes to write around the bad blocks. Each set of writes
1412 * gets its own r10_bio with a set of bios attached.
1413 */
1414
1415 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1416 raid10_find_phys(conf, r10_bio);
1417
1418 wait_blocked_dev(mddev, r10_bio);
1419
1420 max_sectors = r10_bio->sectors;
1421
1422 for (i = 0; i < conf->copies; i++) {
1423 int d = r10_bio->devs[i].devnum;
1424 struct md_rdev *rdev, *rrdev;
1425
1426 rdev = conf->mirrors[d].rdev;
1427 rrdev = conf->mirrors[d].replacement;
1428 if (rdev && (test_bit(Faulty, &rdev->flags)))
1429 rdev = NULL;
1430 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1431 rrdev = NULL;
1432
1433 r10_bio->devs[i].bio = NULL;
1434 r10_bio->devs[i].repl_bio = NULL;
1435
1436 if (!rdev && !rrdev)
1437 continue;
1438 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1439 sector_t first_bad;
1440 sector_t dev_sector = r10_bio->devs[i].addr;
1441 int bad_sectors;
1442 int is_bad;
1443
1444 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1445 &first_bad, &bad_sectors);
1446 if (is_bad && first_bad <= dev_sector) {
1447 /* Cannot write here at all */
1448 bad_sectors -= (dev_sector - first_bad);
1449 if (bad_sectors < max_sectors)
1450 /* Mustn't write more than bad_sectors
1451 * to other devices yet
1452 */
1453 max_sectors = bad_sectors;
1454 continue;
1455 }
1456 if (is_bad) {
1457 int good_sectors;
1458
1459 /*
1460 * We cannot atomically write this, so just
1461 * error in that case. It could be possible to
1462 * atomically write other mirrors, but the
1463 * complexity of supporting that is not worth
1464 * the benefit.
1465 */
1466 if (bio->bi_opf & REQ_ATOMIC) {
1467 error = -EIO;
1468 goto err_handle;
1469 }
1470
1471 good_sectors = first_bad - dev_sector;
1472 if (good_sectors < max_sectors)
1473 max_sectors = good_sectors;
1474 }
1475 }
1476 if (rdev) {
1477 r10_bio->devs[i].bio = bio;
1478 atomic_inc(&rdev->nr_pending);
1479 }
1480 if (rrdev) {
1481 r10_bio->devs[i].repl_bio = bio;
1482 atomic_inc(&rrdev->nr_pending);
1483 }
1484 }
1485
1486 if (max_sectors < r10_bio->sectors)
1487 r10_bio->sectors = max_sectors;
1488
1489 if (r10_bio->sectors < bio_sectors(bio)) {
1490 struct bio *split = bio_split(bio, r10_bio->sectors,
1491 GFP_NOIO, &conf->bio_split);
1492 if (IS_ERR(split)) {
1493 error = PTR_ERR(split);
1494 goto err_handle;
1495 }
1496 bio_chain(split, bio);
1497 allow_barrier(conf);
1498 submit_bio_noacct(bio);
1499 wait_barrier(conf, false);
1500 bio = split;
1501 r10_bio->master_bio = bio;
1502 }
1503
1504 md_account_bio(mddev, &bio);
1505 r10_bio->master_bio = bio;
1506 atomic_set(&r10_bio->remaining, 1);
1507
1508 for (i = 0; i < conf->copies; i++) {
1509 if (r10_bio->devs[i].bio)
1510 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1511 if (r10_bio->devs[i].repl_bio)
1512 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1513 }
1514 one_write_done(r10_bio);
1515 return;
1516err_handle:
1517 for (k = 0; k < i; k++) {
1518 int d = r10_bio->devs[k].devnum;
1519 struct md_rdev *rdev = conf->mirrors[d].rdev;
1520 struct md_rdev *rrdev = conf->mirrors[d].replacement;
1521
1522 if (r10_bio->devs[k].bio) {
1523 rdev_dec_pending(rdev, mddev);
1524 r10_bio->devs[k].bio = NULL;
1525 }
1526 if (r10_bio->devs[k].repl_bio) {
1527 rdev_dec_pending(rrdev, mddev);
1528 r10_bio->devs[k].repl_bio = NULL;
1529 }
1530 }
1531
1532 bio->bi_status = errno_to_blk_status(error);
1533 set_bit(R10BIO_Uptodate, &r10_bio->state);
1534 raid_end_bio_io(r10_bio);
1535}
1536
1537static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1538{
1539 struct r10conf *conf = mddev->private;
1540 struct r10bio *r10_bio;
1541
1542 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1543
1544 r10_bio->master_bio = bio;
1545 r10_bio->sectors = sectors;
1546
1547 r10_bio->mddev = mddev;
1548 r10_bio->sector = bio->bi_iter.bi_sector;
1549 r10_bio->state = 0;
1550 r10_bio->read_slot = -1;
1551 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1552 conf->geo.raid_disks);
1553
1554 if (bio_data_dir(bio) == READ)
1555 raid10_read_request(mddev, bio, r10_bio, true);
1556 else
1557 raid10_write_request(mddev, bio, r10_bio);
1558}
1559
1560static void raid_end_discard_bio(struct r10bio *r10bio)
1561{
1562 struct r10conf *conf = r10bio->mddev->private;
1563 struct r10bio *first_r10bio;
1564
1565 while (atomic_dec_and_test(&r10bio->remaining)) {
1566
1567 allow_barrier(conf);
1568
1569 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1570 first_r10bio = (struct r10bio *)r10bio->master_bio;
1571 free_r10bio(r10bio);
1572 r10bio = first_r10bio;
1573 } else {
1574 md_write_end(r10bio->mddev);
1575 bio_endio(r10bio->master_bio);
1576 free_r10bio(r10bio);
1577 break;
1578 }
1579 }
1580}
1581
1582static void raid10_end_discard_request(struct bio *bio)
1583{
1584 struct r10bio *r10_bio = bio->bi_private;
1585 struct r10conf *conf = r10_bio->mddev->private;
1586 struct md_rdev *rdev = NULL;
1587 int dev;
1588 int slot, repl;
1589
1590 /*
1591 * We don't care the return value of discard bio
1592 */
1593 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1594 set_bit(R10BIO_Uptodate, &r10_bio->state);
1595
1596 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1597 rdev = repl ? conf->mirrors[dev].replacement :
1598 conf->mirrors[dev].rdev;
1599
1600 raid_end_discard_bio(r10_bio);
1601 rdev_dec_pending(rdev, conf->mddev);
1602}
1603
1604/*
1605 * There are some limitations to handle discard bio
1606 * 1st, the discard size is bigger than stripe_size*2.
1607 * 2st, if the discard bio spans reshape progress, we use the old way to
1608 * handle discard bio
1609 */
1610static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1611{
1612 struct r10conf *conf = mddev->private;
1613 struct geom *geo = &conf->geo;
1614 int far_copies = geo->far_copies;
1615 bool first_copy = true;
1616 struct r10bio *r10_bio, *first_r10bio;
1617 struct bio *split;
1618 int disk;
1619 sector_t chunk;
1620 unsigned int stripe_size;
1621 unsigned int stripe_data_disks;
1622 sector_t split_size;
1623 sector_t bio_start, bio_end;
1624 sector_t first_stripe_index, last_stripe_index;
1625 sector_t start_disk_offset;
1626 unsigned int start_disk_index;
1627 sector_t end_disk_offset;
1628 unsigned int end_disk_index;
1629 unsigned int remainder;
1630
1631 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1632 return -EAGAIN;
1633
1634 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1635 bio_wouldblock_error(bio);
1636 return 0;
1637 }
1638 wait_barrier(conf, false);
1639
1640 /*
1641 * Check reshape again to avoid reshape happens after checking
1642 * MD_RECOVERY_RESHAPE and before wait_barrier
1643 */
1644 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1645 goto out;
1646
1647 if (geo->near_copies)
1648 stripe_data_disks = geo->raid_disks / geo->near_copies +
1649 geo->raid_disks % geo->near_copies;
1650 else
1651 stripe_data_disks = geo->raid_disks;
1652
1653 stripe_size = stripe_data_disks << geo->chunk_shift;
1654
1655 bio_start = bio->bi_iter.bi_sector;
1656 bio_end = bio_end_sector(bio);
1657
1658 /*
1659 * Maybe one discard bio is smaller than strip size or across one
1660 * stripe and discard region is larger than one stripe size. For far
1661 * offset layout, if the discard region is not aligned with stripe
1662 * size, there is hole when we submit discard bio to member disk.
1663 * For simplicity, we only handle discard bio which discard region
1664 * is bigger than stripe_size * 2
1665 */
1666 if (bio_sectors(bio) < stripe_size*2)
1667 goto out;
1668
1669 /*
1670 * Keep bio aligned with strip size.
1671 */
1672 div_u64_rem(bio_start, stripe_size, &remainder);
1673 if (remainder) {
1674 split_size = stripe_size - remainder;
1675 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1676 if (IS_ERR(split)) {
1677 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1678 bio_endio(bio);
1679 return 0;
1680 }
1681 bio_chain(split, bio);
1682 allow_barrier(conf);
1683 /* Resend the fist split part */
1684 submit_bio_noacct(split);
1685 wait_barrier(conf, false);
1686 }
1687 div_u64_rem(bio_end, stripe_size, &remainder);
1688 if (remainder) {
1689 split_size = bio_sectors(bio) - remainder;
1690 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1691 if (IS_ERR(split)) {
1692 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1693 bio_endio(bio);
1694 return 0;
1695 }
1696 bio_chain(split, bio);
1697 allow_barrier(conf);
1698 /* Resend the second split part */
1699 submit_bio_noacct(bio);
1700 bio = split;
1701 wait_barrier(conf, false);
1702 }
1703
1704 bio_start = bio->bi_iter.bi_sector;
1705 bio_end = bio_end_sector(bio);
1706
1707 /*
1708 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1709 * One stripe contains the chunks from all member disk (one chunk from
1710 * one disk at the same HBA address). For layout detail, see 'man md 4'
1711 */
1712 chunk = bio_start >> geo->chunk_shift;
1713 chunk *= geo->near_copies;
1714 first_stripe_index = chunk;
1715 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1716 if (geo->far_offset)
1717 first_stripe_index *= geo->far_copies;
1718 start_disk_offset = (bio_start & geo->chunk_mask) +
1719 (first_stripe_index << geo->chunk_shift);
1720
1721 chunk = bio_end >> geo->chunk_shift;
1722 chunk *= geo->near_copies;
1723 last_stripe_index = chunk;
1724 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1725 if (geo->far_offset)
1726 last_stripe_index *= geo->far_copies;
1727 end_disk_offset = (bio_end & geo->chunk_mask) +
1728 (last_stripe_index << geo->chunk_shift);
1729
1730retry_discard:
1731 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1732 r10_bio->mddev = mddev;
1733 r10_bio->state = 0;
1734 r10_bio->sectors = 0;
1735 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1736 wait_blocked_dev(mddev, r10_bio);
1737
1738 /*
1739 * For far layout it needs more than one r10bio to cover all regions.
1740 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1741 * to record the discard bio. Other r10bio->master_bio record the first
1742 * r10bio. The first r10bio only release after all other r10bios finish.
1743 * The discard bio returns only first r10bio finishes
1744 */
1745 if (first_copy) {
1746 r10_bio->master_bio = bio;
1747 set_bit(R10BIO_Discard, &r10_bio->state);
1748 first_copy = false;
1749 first_r10bio = r10_bio;
1750 } else
1751 r10_bio->master_bio = (struct bio *)first_r10bio;
1752
1753 /*
1754 * first select target devices under rcu_lock and
1755 * inc refcount on their rdev. Record them by setting
1756 * bios[x] to bio
1757 */
1758 for (disk = 0; disk < geo->raid_disks; disk++) {
1759 struct md_rdev *rdev, *rrdev;
1760
1761 rdev = conf->mirrors[disk].rdev;
1762 rrdev = conf->mirrors[disk].replacement;
1763 r10_bio->devs[disk].bio = NULL;
1764 r10_bio->devs[disk].repl_bio = NULL;
1765
1766 if (rdev && (test_bit(Faulty, &rdev->flags)))
1767 rdev = NULL;
1768 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1769 rrdev = NULL;
1770 if (!rdev && !rrdev)
1771 continue;
1772
1773 if (rdev) {
1774 r10_bio->devs[disk].bio = bio;
1775 atomic_inc(&rdev->nr_pending);
1776 }
1777 if (rrdev) {
1778 r10_bio->devs[disk].repl_bio = bio;
1779 atomic_inc(&rrdev->nr_pending);
1780 }
1781 }
1782
1783 atomic_set(&r10_bio->remaining, 1);
1784 for (disk = 0; disk < geo->raid_disks; disk++) {
1785 sector_t dev_start, dev_end;
1786 struct bio *mbio, *rbio = NULL;
1787
1788 /*
1789 * Now start to calculate the start and end address for each disk.
1790 * The space between dev_start and dev_end is the discard region.
1791 *
1792 * For dev_start, it needs to consider three conditions:
1793 * 1st, the disk is before start_disk, you can imagine the disk in
1794 * the next stripe. So the dev_start is the start address of next
1795 * stripe.
1796 * 2st, the disk is after start_disk, it means the disk is at the
1797 * same stripe of first disk
1798 * 3st, the first disk itself, we can use start_disk_offset directly
1799 */
1800 if (disk < start_disk_index)
1801 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1802 else if (disk > start_disk_index)
1803 dev_start = first_stripe_index * mddev->chunk_sectors;
1804 else
1805 dev_start = start_disk_offset;
1806
1807 if (disk < end_disk_index)
1808 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1809 else if (disk > end_disk_index)
1810 dev_end = last_stripe_index * mddev->chunk_sectors;
1811 else
1812 dev_end = end_disk_offset;
1813
1814 /*
1815 * It only handles discard bio which size is >= stripe size, so
1816 * dev_end > dev_start all the time.
1817 * It doesn't need to use rcu lock to get rdev here. We already
1818 * add rdev->nr_pending in the first loop.
1819 */
1820 if (r10_bio->devs[disk].bio) {
1821 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1822 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1823 &mddev->bio_set);
1824 mbio->bi_end_io = raid10_end_discard_request;
1825 mbio->bi_private = r10_bio;
1826 r10_bio->devs[disk].bio = mbio;
1827 r10_bio->devs[disk].devnum = disk;
1828 atomic_inc(&r10_bio->remaining);
1829 md_submit_discard_bio(mddev, rdev, mbio,
1830 dev_start + choose_data_offset(r10_bio, rdev),
1831 dev_end - dev_start);
1832 bio_endio(mbio);
1833 }
1834 if (r10_bio->devs[disk].repl_bio) {
1835 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1836 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1837 &mddev->bio_set);
1838 rbio->bi_end_io = raid10_end_discard_request;
1839 rbio->bi_private = r10_bio;
1840 r10_bio->devs[disk].repl_bio = rbio;
1841 r10_bio->devs[disk].devnum = disk;
1842 atomic_inc(&r10_bio->remaining);
1843 md_submit_discard_bio(mddev, rrdev, rbio,
1844 dev_start + choose_data_offset(r10_bio, rrdev),
1845 dev_end - dev_start);
1846 bio_endio(rbio);
1847 }
1848 }
1849
1850 if (!geo->far_offset && --far_copies) {
1851 first_stripe_index += geo->stride >> geo->chunk_shift;
1852 start_disk_offset += geo->stride;
1853 last_stripe_index += geo->stride >> geo->chunk_shift;
1854 end_disk_offset += geo->stride;
1855 atomic_inc(&first_r10bio->remaining);
1856 raid_end_discard_bio(r10_bio);
1857 wait_barrier(conf, false);
1858 goto retry_discard;
1859 }
1860
1861 raid_end_discard_bio(r10_bio);
1862
1863 return 0;
1864out:
1865 allow_barrier(conf);
1866 return -EAGAIN;
1867}
1868
1869static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1870{
1871 struct r10conf *conf = mddev->private;
1872 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1873 int chunk_sects = chunk_mask + 1;
1874 int sectors = bio_sectors(bio);
1875
1876 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1877 && md_flush_request(mddev, bio))
1878 return true;
1879
1880 md_write_start(mddev, bio);
1881
1882 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1883 if (!raid10_handle_discard(mddev, bio))
1884 return true;
1885
1886 /*
1887 * If this request crosses a chunk boundary, we need to split
1888 * it.
1889 */
1890 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1891 sectors > chunk_sects
1892 && (conf->geo.near_copies < conf->geo.raid_disks
1893 || conf->prev.near_copies <
1894 conf->prev.raid_disks)))
1895 sectors = chunk_sects -
1896 (bio->bi_iter.bi_sector &
1897 (chunk_sects - 1));
1898 __make_request(mddev, bio, sectors);
1899
1900 /* In case raid10d snuck in to freeze_array */
1901 wake_up_barrier(conf);
1902 return true;
1903}
1904
1905static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1906{
1907 struct r10conf *conf = mddev->private;
1908 int i;
1909
1910 lockdep_assert_held(&mddev->lock);
1911
1912 if (conf->geo.near_copies < conf->geo.raid_disks)
1913 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1914 if (conf->geo.near_copies > 1)
1915 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1916 if (conf->geo.far_copies > 1) {
1917 if (conf->geo.far_offset)
1918 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1919 else
1920 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1921 if (conf->geo.far_set_size != conf->geo.raid_disks)
1922 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1923 }
1924 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1925 conf->geo.raid_disks - mddev->degraded);
1926 for (i = 0; i < conf->geo.raid_disks; i++) {
1927 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1928
1929 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1930 }
1931 seq_printf(seq, "]");
1932}
1933
1934/* check if there are enough drives for
1935 * every block to appear on atleast one.
1936 * Don't consider the device numbered 'ignore'
1937 * as we might be about to remove it.
1938 */
1939static int _enough(struct r10conf *conf, int previous, int ignore)
1940{
1941 int first = 0;
1942 int has_enough = 0;
1943 int disks, ncopies;
1944 if (previous) {
1945 disks = conf->prev.raid_disks;
1946 ncopies = conf->prev.near_copies;
1947 } else {
1948 disks = conf->geo.raid_disks;
1949 ncopies = conf->geo.near_copies;
1950 }
1951
1952 do {
1953 int n = conf->copies;
1954 int cnt = 0;
1955 int this = first;
1956 while (n--) {
1957 struct md_rdev *rdev;
1958 if (this != ignore &&
1959 (rdev = conf->mirrors[this].rdev) &&
1960 test_bit(In_sync, &rdev->flags))
1961 cnt++;
1962 this = (this+1) % disks;
1963 }
1964 if (cnt == 0)
1965 goto out;
1966 first = (first + ncopies) % disks;
1967 } while (first != 0);
1968 has_enough = 1;
1969out:
1970 return has_enough;
1971}
1972
1973static int enough(struct r10conf *conf, int ignore)
1974{
1975 /* when calling 'enough', both 'prev' and 'geo' must
1976 * be stable.
1977 * This is ensured if ->reconfig_mutex or ->device_lock
1978 * is held.
1979 */
1980 return _enough(conf, 0, ignore) &&
1981 _enough(conf, 1, ignore);
1982}
1983
1984/**
1985 * raid10_error() - RAID10 error handler.
1986 * @mddev: affected md device.
1987 * @rdev: member device to fail.
1988 *
1989 * The routine acknowledges &rdev failure and determines new @mddev state.
1990 * If it failed, then:
1991 * - &MD_BROKEN flag is set in &mddev->flags.
1992 * Otherwise, it must be degraded:
1993 * - recovery is interrupted.
1994 * - &mddev->degraded is bumped.
1995 *
1996 * @rdev is marked as &Faulty excluding case when array is failed and
1997 * &mddev->fail_last_dev is off.
1998 */
1999static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2000{
2001 struct r10conf *conf = mddev->private;
2002 unsigned long flags;
2003
2004 spin_lock_irqsave(&conf->device_lock, flags);
2005
2006 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2007 set_bit(MD_BROKEN, &mddev->flags);
2008
2009 if (!mddev->fail_last_dev) {
2010 spin_unlock_irqrestore(&conf->device_lock, flags);
2011 return;
2012 }
2013 }
2014 if (test_and_clear_bit(In_sync, &rdev->flags))
2015 mddev->degraded++;
2016
2017 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2018 set_bit(Blocked, &rdev->flags);
2019 set_bit(Faulty, &rdev->flags);
2020 set_mask_bits(&mddev->sb_flags, 0,
2021 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2022 spin_unlock_irqrestore(&conf->device_lock, flags);
2023 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2024 "md/raid10:%s: Operation continuing on %d devices.\n",
2025 mdname(mddev), rdev->bdev,
2026 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2027}
2028
2029static void print_conf(struct r10conf *conf)
2030{
2031 int i;
2032 struct md_rdev *rdev;
2033
2034 pr_debug("RAID10 conf printout:\n");
2035 if (!conf) {
2036 pr_debug("(!conf)\n");
2037 return;
2038 }
2039 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2040 conf->geo.raid_disks);
2041
2042 lockdep_assert_held(&conf->mddev->reconfig_mutex);
2043 for (i = 0; i < conf->geo.raid_disks; i++) {
2044 rdev = conf->mirrors[i].rdev;
2045 if (rdev)
2046 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2047 i, !test_bit(In_sync, &rdev->flags),
2048 !test_bit(Faulty, &rdev->flags),
2049 rdev->bdev);
2050 }
2051}
2052
2053static void close_sync(struct r10conf *conf)
2054{
2055 wait_barrier(conf, false);
2056 allow_barrier(conf);
2057
2058 mempool_exit(&conf->r10buf_pool);
2059}
2060
2061static int raid10_spare_active(struct mddev *mddev)
2062{
2063 int i;
2064 struct r10conf *conf = mddev->private;
2065 struct raid10_info *tmp;
2066 int count = 0;
2067 unsigned long flags;
2068
2069 /*
2070 * Find all non-in_sync disks within the RAID10 configuration
2071 * and mark them in_sync
2072 */
2073 for (i = 0; i < conf->geo.raid_disks; i++) {
2074 tmp = conf->mirrors + i;
2075 if (tmp->replacement
2076 && tmp->replacement->recovery_offset == MaxSector
2077 && !test_bit(Faulty, &tmp->replacement->flags)
2078 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2079 /* Replacement has just become active */
2080 if (!tmp->rdev
2081 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2082 count++;
2083 if (tmp->rdev) {
2084 /* Replaced device not technically faulty,
2085 * but we need to be sure it gets removed
2086 * and never re-added.
2087 */
2088 set_bit(Faulty, &tmp->rdev->flags);
2089 sysfs_notify_dirent_safe(
2090 tmp->rdev->sysfs_state);
2091 }
2092 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2093 } else if (tmp->rdev
2094 && tmp->rdev->recovery_offset == MaxSector
2095 && !test_bit(Faulty, &tmp->rdev->flags)
2096 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2097 count++;
2098 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2099 }
2100 }
2101 spin_lock_irqsave(&conf->device_lock, flags);
2102 mddev->degraded -= count;
2103 spin_unlock_irqrestore(&conf->device_lock, flags);
2104
2105 print_conf(conf);
2106 return count;
2107}
2108
2109static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2110{
2111 struct r10conf *conf = mddev->private;
2112 int err = -EEXIST;
2113 int mirror, repl_slot = -1;
2114 int first = 0;
2115 int last = conf->geo.raid_disks - 1;
2116 struct raid10_info *p;
2117
2118 if (mddev->recovery_cp < MaxSector)
2119 /* only hot-add to in-sync arrays, as recovery is
2120 * very different from resync
2121 */
2122 return -EBUSY;
2123 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2124 return -EINVAL;
2125
2126 if (rdev->raid_disk >= 0)
2127 first = last = rdev->raid_disk;
2128
2129 if (rdev->saved_raid_disk >= first &&
2130 rdev->saved_raid_disk < conf->geo.raid_disks &&
2131 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2132 mirror = rdev->saved_raid_disk;
2133 else
2134 mirror = first;
2135 for ( ; mirror <= last ; mirror++) {
2136 p = &conf->mirrors[mirror];
2137 if (p->recovery_disabled == mddev->recovery_disabled)
2138 continue;
2139 if (p->rdev) {
2140 if (test_bit(WantReplacement, &p->rdev->flags) &&
2141 p->replacement == NULL && repl_slot < 0)
2142 repl_slot = mirror;
2143 continue;
2144 }
2145
2146 err = mddev_stack_new_rdev(mddev, rdev);
2147 if (err)
2148 return err;
2149 p->head_position = 0;
2150 p->recovery_disabled = mddev->recovery_disabled - 1;
2151 rdev->raid_disk = mirror;
2152 err = 0;
2153 if (rdev->saved_raid_disk != mirror)
2154 conf->fullsync = 1;
2155 WRITE_ONCE(p->rdev, rdev);
2156 break;
2157 }
2158
2159 if (err && repl_slot >= 0) {
2160 p = &conf->mirrors[repl_slot];
2161 clear_bit(In_sync, &rdev->flags);
2162 set_bit(Replacement, &rdev->flags);
2163 rdev->raid_disk = repl_slot;
2164 err = mddev_stack_new_rdev(mddev, rdev);
2165 if (err)
2166 return err;
2167 conf->fullsync = 1;
2168 WRITE_ONCE(p->replacement, rdev);
2169 }
2170
2171 print_conf(conf);
2172 return err;
2173}
2174
2175static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2176{
2177 struct r10conf *conf = mddev->private;
2178 int err = 0;
2179 int number = rdev->raid_disk;
2180 struct md_rdev **rdevp;
2181 struct raid10_info *p;
2182
2183 print_conf(conf);
2184 if (unlikely(number >= mddev->raid_disks))
2185 return 0;
2186 p = conf->mirrors + number;
2187 if (rdev == p->rdev)
2188 rdevp = &p->rdev;
2189 else if (rdev == p->replacement)
2190 rdevp = &p->replacement;
2191 else
2192 return 0;
2193
2194 if (test_bit(In_sync, &rdev->flags) ||
2195 atomic_read(&rdev->nr_pending)) {
2196 err = -EBUSY;
2197 goto abort;
2198 }
2199 /* Only remove non-faulty devices if recovery
2200 * is not possible.
2201 */
2202 if (!test_bit(Faulty, &rdev->flags) &&
2203 mddev->recovery_disabled != p->recovery_disabled &&
2204 (!p->replacement || p->replacement == rdev) &&
2205 number < conf->geo.raid_disks &&
2206 enough(conf, -1)) {
2207 err = -EBUSY;
2208 goto abort;
2209 }
2210 WRITE_ONCE(*rdevp, NULL);
2211 if (p->replacement) {
2212 /* We must have just cleared 'rdev' */
2213 WRITE_ONCE(p->rdev, p->replacement);
2214 clear_bit(Replacement, &p->replacement->flags);
2215 WRITE_ONCE(p->replacement, NULL);
2216 }
2217
2218 clear_bit(WantReplacement, &rdev->flags);
2219 err = md_integrity_register(mddev);
2220
2221abort:
2222
2223 print_conf(conf);
2224 return err;
2225}
2226
2227static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2228{
2229 struct r10conf *conf = r10_bio->mddev->private;
2230
2231 if (!bio->bi_status)
2232 set_bit(R10BIO_Uptodate, &r10_bio->state);
2233 else
2234 /* The write handler will notice the lack of
2235 * R10BIO_Uptodate and record any errors etc
2236 */
2237 atomic_add(r10_bio->sectors,
2238 &conf->mirrors[d].rdev->corrected_errors);
2239
2240 /* for reconstruct, we always reschedule after a read.
2241 * for resync, only after all reads
2242 */
2243 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2244 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2245 atomic_dec_and_test(&r10_bio->remaining)) {
2246 /* we have read all the blocks,
2247 * do the comparison in process context in raid10d
2248 */
2249 reschedule_retry(r10_bio);
2250 }
2251}
2252
2253static void end_sync_read(struct bio *bio)
2254{
2255 struct r10bio *r10_bio = get_resync_r10bio(bio);
2256 struct r10conf *conf = r10_bio->mddev->private;
2257 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2258
2259 __end_sync_read(r10_bio, bio, d);
2260}
2261
2262static void end_reshape_read(struct bio *bio)
2263{
2264 /* reshape read bio isn't allocated from r10buf_pool */
2265 struct r10bio *r10_bio = bio->bi_private;
2266
2267 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2268}
2269
2270static void end_sync_request(struct r10bio *r10_bio)
2271{
2272 struct mddev *mddev = r10_bio->mddev;
2273
2274 while (atomic_dec_and_test(&r10_bio->remaining)) {
2275 if (r10_bio->master_bio == NULL) {
2276 /* the primary of several recovery bios */
2277 sector_t s = r10_bio->sectors;
2278 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2279 test_bit(R10BIO_WriteError, &r10_bio->state))
2280 reschedule_retry(r10_bio);
2281 else
2282 put_buf(r10_bio);
2283 md_done_sync(mddev, s, 1);
2284 break;
2285 } else {
2286 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2287 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2288 test_bit(R10BIO_WriteError, &r10_bio->state))
2289 reschedule_retry(r10_bio);
2290 else
2291 put_buf(r10_bio);
2292 r10_bio = r10_bio2;
2293 }
2294 }
2295}
2296
2297static void end_sync_write(struct bio *bio)
2298{
2299 struct r10bio *r10_bio = get_resync_r10bio(bio);
2300 struct mddev *mddev = r10_bio->mddev;
2301 struct r10conf *conf = mddev->private;
2302 int d;
2303 int slot;
2304 int repl;
2305 struct md_rdev *rdev = NULL;
2306
2307 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2308 if (repl)
2309 rdev = conf->mirrors[d].replacement;
2310 else
2311 rdev = conf->mirrors[d].rdev;
2312
2313 if (bio->bi_status) {
2314 if (repl)
2315 md_error(mddev, rdev);
2316 else {
2317 set_bit(WriteErrorSeen, &rdev->flags);
2318 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2319 set_bit(MD_RECOVERY_NEEDED,
2320 &rdev->mddev->recovery);
2321 set_bit(R10BIO_WriteError, &r10_bio->state);
2322 }
2323 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2324 r10_bio->sectors)) {
2325 set_bit(R10BIO_MadeGood, &r10_bio->state);
2326 }
2327
2328 rdev_dec_pending(rdev, mddev);
2329
2330 end_sync_request(r10_bio);
2331}
2332
2333/*
2334 * Note: sync and recover and handled very differently for raid10
2335 * This code is for resync.
2336 * For resync, we read through virtual addresses and read all blocks.
2337 * If there is any error, we schedule a write. The lowest numbered
2338 * drive is authoritative.
2339 * However requests come for physical address, so we need to map.
2340 * For every physical address there are raid_disks/copies virtual addresses,
2341 * which is always are least one, but is not necessarly an integer.
2342 * This means that a physical address can span multiple chunks, so we may
2343 * have to submit multiple io requests for a single sync request.
2344 */
2345/*
2346 * We check if all blocks are in-sync and only write to blocks that
2347 * aren't in sync
2348 */
2349static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2350{
2351 struct r10conf *conf = mddev->private;
2352 int i, first;
2353 struct bio *tbio, *fbio;
2354 int vcnt;
2355 struct page **tpages, **fpages;
2356
2357 atomic_set(&r10_bio->remaining, 1);
2358
2359 /* find the first device with a block */
2360 for (i=0; i<conf->copies; i++)
2361 if (!r10_bio->devs[i].bio->bi_status)
2362 break;
2363
2364 if (i == conf->copies)
2365 goto done;
2366
2367 first = i;
2368 fbio = r10_bio->devs[i].bio;
2369 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2370 fbio->bi_iter.bi_idx = 0;
2371 fpages = get_resync_pages(fbio)->pages;
2372
2373 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2374 /* now find blocks with errors */
2375 for (i=0 ; i < conf->copies ; i++) {
2376 int j, d;
2377 struct md_rdev *rdev;
2378 struct resync_pages *rp;
2379
2380 tbio = r10_bio->devs[i].bio;
2381
2382 if (tbio->bi_end_io != end_sync_read)
2383 continue;
2384 if (i == first)
2385 continue;
2386
2387 tpages = get_resync_pages(tbio)->pages;
2388 d = r10_bio->devs[i].devnum;
2389 rdev = conf->mirrors[d].rdev;
2390 if (!r10_bio->devs[i].bio->bi_status) {
2391 /* We know that the bi_io_vec layout is the same for
2392 * both 'first' and 'i', so we just compare them.
2393 * All vec entries are PAGE_SIZE;
2394 */
2395 int sectors = r10_bio->sectors;
2396 for (j = 0; j < vcnt; j++) {
2397 int len = PAGE_SIZE;
2398 if (sectors < (len / 512))
2399 len = sectors * 512;
2400 if (memcmp(page_address(fpages[j]),
2401 page_address(tpages[j]),
2402 len))
2403 break;
2404 sectors -= len/512;
2405 }
2406 if (j == vcnt)
2407 continue;
2408 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2409 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2410 /* Don't fix anything. */
2411 continue;
2412 } else if (test_bit(FailFast, &rdev->flags)) {
2413 /* Just give up on this device */
2414 md_error(rdev->mddev, rdev);
2415 continue;
2416 }
2417 /* Ok, we need to write this bio, either to correct an
2418 * inconsistency or to correct an unreadable block.
2419 * First we need to fixup bv_offset, bv_len and
2420 * bi_vecs, as the read request might have corrupted these
2421 */
2422 rp = get_resync_pages(tbio);
2423 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2424
2425 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2426
2427 rp->raid_bio = r10_bio;
2428 tbio->bi_private = rp;
2429 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2430 tbio->bi_end_io = end_sync_write;
2431
2432 bio_copy_data(tbio, fbio);
2433
2434 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2435 atomic_inc(&r10_bio->remaining);
2436 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2437
2438 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2439 tbio->bi_opf |= MD_FAILFAST;
2440 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2441 submit_bio_noacct(tbio);
2442 }
2443
2444 /* Now write out to any replacement devices
2445 * that are active
2446 */
2447 for (i = 0; i < conf->copies; i++) {
2448 int d;
2449
2450 tbio = r10_bio->devs[i].repl_bio;
2451 if (!tbio || !tbio->bi_end_io)
2452 continue;
2453 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2454 && r10_bio->devs[i].bio != fbio)
2455 bio_copy_data(tbio, fbio);
2456 d = r10_bio->devs[i].devnum;
2457 atomic_inc(&r10_bio->remaining);
2458 md_sync_acct(conf->mirrors[d].replacement->bdev,
2459 bio_sectors(tbio));
2460 submit_bio_noacct(tbio);
2461 }
2462
2463done:
2464 if (atomic_dec_and_test(&r10_bio->remaining)) {
2465 md_done_sync(mddev, r10_bio->sectors, 1);
2466 put_buf(r10_bio);
2467 }
2468}
2469
2470/*
2471 * Now for the recovery code.
2472 * Recovery happens across physical sectors.
2473 * We recover all non-is_sync drives by finding the virtual address of
2474 * each, and then choose a working drive that also has that virt address.
2475 * There is a separate r10_bio for each non-in_sync drive.
2476 * Only the first two slots are in use. The first for reading,
2477 * The second for writing.
2478 *
2479 */
2480static void fix_recovery_read_error(struct r10bio *r10_bio)
2481{
2482 /* We got a read error during recovery.
2483 * We repeat the read in smaller page-sized sections.
2484 * If a read succeeds, write it to the new device or record
2485 * a bad block if we cannot.
2486 * If a read fails, record a bad block on both old and
2487 * new devices.
2488 */
2489 struct mddev *mddev = r10_bio->mddev;
2490 struct r10conf *conf = mddev->private;
2491 struct bio *bio = r10_bio->devs[0].bio;
2492 sector_t sect = 0;
2493 int sectors = r10_bio->sectors;
2494 int idx = 0;
2495 int dr = r10_bio->devs[0].devnum;
2496 int dw = r10_bio->devs[1].devnum;
2497 struct page **pages = get_resync_pages(bio)->pages;
2498
2499 while (sectors) {
2500 int s = sectors;
2501 struct md_rdev *rdev;
2502 sector_t addr;
2503 int ok;
2504
2505 if (s > (PAGE_SIZE>>9))
2506 s = PAGE_SIZE >> 9;
2507
2508 rdev = conf->mirrors[dr].rdev;
2509 addr = r10_bio->devs[0].addr + sect;
2510 ok = sync_page_io(rdev,
2511 addr,
2512 s << 9,
2513 pages[idx],
2514 REQ_OP_READ, false);
2515 if (ok) {
2516 rdev = conf->mirrors[dw].rdev;
2517 addr = r10_bio->devs[1].addr + sect;
2518 ok = sync_page_io(rdev,
2519 addr,
2520 s << 9,
2521 pages[idx],
2522 REQ_OP_WRITE, false);
2523 if (!ok) {
2524 set_bit(WriteErrorSeen, &rdev->flags);
2525 if (!test_and_set_bit(WantReplacement,
2526 &rdev->flags))
2527 set_bit(MD_RECOVERY_NEEDED,
2528 &rdev->mddev->recovery);
2529 }
2530 }
2531 if (!ok) {
2532 /* We don't worry if we cannot set a bad block -
2533 * it really is bad so there is no loss in not
2534 * recording it yet
2535 */
2536 rdev_set_badblocks(rdev, addr, s, 0);
2537
2538 if (rdev != conf->mirrors[dw].rdev) {
2539 /* need bad block on destination too */
2540 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2541 addr = r10_bio->devs[1].addr + sect;
2542 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2543 if (!ok) {
2544 /* just abort the recovery */
2545 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2546 mdname(mddev));
2547
2548 conf->mirrors[dw].recovery_disabled
2549 = mddev->recovery_disabled;
2550 set_bit(MD_RECOVERY_INTR,
2551 &mddev->recovery);
2552 break;
2553 }
2554 }
2555 }
2556
2557 sectors -= s;
2558 sect += s;
2559 idx++;
2560 }
2561}
2562
2563static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2564{
2565 struct r10conf *conf = mddev->private;
2566 int d;
2567 struct bio *wbio = r10_bio->devs[1].bio;
2568 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2569
2570 /* Need to test wbio2->bi_end_io before we call
2571 * submit_bio_noacct as if the former is NULL,
2572 * the latter is free to free wbio2.
2573 */
2574 if (wbio2 && !wbio2->bi_end_io)
2575 wbio2 = NULL;
2576
2577 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2578 fix_recovery_read_error(r10_bio);
2579 if (wbio->bi_end_io)
2580 end_sync_request(r10_bio);
2581 if (wbio2)
2582 end_sync_request(r10_bio);
2583 return;
2584 }
2585
2586 /*
2587 * share the pages with the first bio
2588 * and submit the write request
2589 */
2590 d = r10_bio->devs[1].devnum;
2591 if (wbio->bi_end_io) {
2592 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2593 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2594 submit_bio_noacct(wbio);
2595 }
2596 if (wbio2) {
2597 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2598 md_sync_acct(conf->mirrors[d].replacement->bdev,
2599 bio_sectors(wbio2));
2600 submit_bio_noacct(wbio2);
2601 }
2602}
2603
2604static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2605 int sectors, struct page *page, enum req_op op)
2606{
2607 if (rdev_has_badblock(rdev, sector, sectors) &&
2608 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2609 return -1;
2610 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2611 /* success */
2612 return 1;
2613 if (op == REQ_OP_WRITE) {
2614 set_bit(WriteErrorSeen, &rdev->flags);
2615 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2616 set_bit(MD_RECOVERY_NEEDED,
2617 &rdev->mddev->recovery);
2618 }
2619 /* need to record an error - either for the block or the device */
2620 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2621 md_error(rdev->mddev, rdev);
2622 return 0;
2623}
2624
2625/*
2626 * This is a kernel thread which:
2627 *
2628 * 1. Retries failed read operations on working mirrors.
2629 * 2. Updates the raid superblock when problems encounter.
2630 * 3. Performs writes following reads for array synchronising.
2631 */
2632
2633static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2634{
2635 int sect = 0; /* Offset from r10_bio->sector */
2636 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2637 struct md_rdev *rdev;
2638 int d = r10_bio->devs[slot].devnum;
2639
2640 /* still own a reference to this rdev, so it cannot
2641 * have been cleared recently.
2642 */
2643 rdev = conf->mirrors[d].rdev;
2644
2645 if (test_bit(Faulty, &rdev->flags))
2646 /* drive has already been failed, just ignore any
2647 more fix_read_error() attempts */
2648 return;
2649
2650 if (exceed_read_errors(mddev, rdev)) {
2651 r10_bio->devs[slot].bio = IO_BLOCKED;
2652 return;
2653 }
2654
2655 while(sectors) {
2656 int s = sectors;
2657 int sl = slot;
2658 int success = 0;
2659 int start;
2660
2661 if (s > (PAGE_SIZE>>9))
2662 s = PAGE_SIZE >> 9;
2663
2664 do {
2665 d = r10_bio->devs[sl].devnum;
2666 rdev = conf->mirrors[d].rdev;
2667 if (rdev &&
2668 test_bit(In_sync, &rdev->flags) &&
2669 !test_bit(Faulty, &rdev->flags) &&
2670 rdev_has_badblock(rdev,
2671 r10_bio->devs[sl].addr + sect,
2672 s) == 0) {
2673 atomic_inc(&rdev->nr_pending);
2674 success = sync_page_io(rdev,
2675 r10_bio->devs[sl].addr +
2676 sect,
2677 s<<9,
2678 conf->tmppage,
2679 REQ_OP_READ, false);
2680 rdev_dec_pending(rdev, mddev);
2681 if (success)
2682 break;
2683 }
2684 sl++;
2685 if (sl == conf->copies)
2686 sl = 0;
2687 } while (sl != slot);
2688
2689 if (!success) {
2690 /* Cannot read from anywhere, just mark the block
2691 * as bad on the first device to discourage future
2692 * reads.
2693 */
2694 int dn = r10_bio->devs[slot].devnum;
2695 rdev = conf->mirrors[dn].rdev;
2696
2697 if (!rdev_set_badblocks(
2698 rdev,
2699 r10_bio->devs[slot].addr
2700 + sect,
2701 s, 0)) {
2702 md_error(mddev, rdev);
2703 r10_bio->devs[slot].bio
2704 = IO_BLOCKED;
2705 }
2706 break;
2707 }
2708
2709 start = sl;
2710 /* write it back and re-read */
2711 while (sl != slot) {
2712 if (sl==0)
2713 sl = conf->copies;
2714 sl--;
2715 d = r10_bio->devs[sl].devnum;
2716 rdev = conf->mirrors[d].rdev;
2717 if (!rdev ||
2718 test_bit(Faulty, &rdev->flags) ||
2719 !test_bit(In_sync, &rdev->flags))
2720 continue;
2721
2722 atomic_inc(&rdev->nr_pending);
2723 if (r10_sync_page_io(rdev,
2724 r10_bio->devs[sl].addr +
2725 sect,
2726 s, conf->tmppage, REQ_OP_WRITE)
2727 == 0) {
2728 /* Well, this device is dead */
2729 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2730 mdname(mddev), s,
2731 (unsigned long long)(
2732 sect +
2733 choose_data_offset(r10_bio,
2734 rdev)),
2735 rdev->bdev);
2736 pr_notice("md/raid10:%s: %pg: failing drive\n",
2737 mdname(mddev),
2738 rdev->bdev);
2739 }
2740 rdev_dec_pending(rdev, mddev);
2741 }
2742 sl = start;
2743 while (sl != slot) {
2744 if (sl==0)
2745 sl = conf->copies;
2746 sl--;
2747 d = r10_bio->devs[sl].devnum;
2748 rdev = conf->mirrors[d].rdev;
2749 if (!rdev ||
2750 test_bit(Faulty, &rdev->flags) ||
2751 !test_bit(In_sync, &rdev->flags))
2752 continue;
2753
2754 atomic_inc(&rdev->nr_pending);
2755 switch (r10_sync_page_io(rdev,
2756 r10_bio->devs[sl].addr +
2757 sect,
2758 s, conf->tmppage, REQ_OP_READ)) {
2759 case 0:
2760 /* Well, this device is dead */
2761 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2762 mdname(mddev), s,
2763 (unsigned long long)(
2764 sect +
2765 choose_data_offset(r10_bio, rdev)),
2766 rdev->bdev);
2767 pr_notice("md/raid10:%s: %pg: failing drive\n",
2768 mdname(mddev),
2769 rdev->bdev);
2770 break;
2771 case 1:
2772 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2773 mdname(mddev), s,
2774 (unsigned long long)(
2775 sect +
2776 choose_data_offset(r10_bio, rdev)),
2777 rdev->bdev);
2778 atomic_add(s, &rdev->corrected_errors);
2779 }
2780
2781 rdev_dec_pending(rdev, mddev);
2782 }
2783
2784 sectors -= s;
2785 sect += s;
2786 }
2787}
2788
2789static int narrow_write_error(struct r10bio *r10_bio, int i)
2790{
2791 struct bio *bio = r10_bio->master_bio;
2792 struct mddev *mddev = r10_bio->mddev;
2793 struct r10conf *conf = mddev->private;
2794 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2795 /* bio has the data to be written to slot 'i' where
2796 * we just recently had a write error.
2797 * We repeatedly clone the bio and trim down to one block,
2798 * then try the write. Where the write fails we record
2799 * a bad block.
2800 * It is conceivable that the bio doesn't exactly align with
2801 * blocks. We must handle this.
2802 *
2803 * We currently own a reference to the rdev.
2804 */
2805
2806 int block_sectors;
2807 sector_t sector;
2808 int sectors;
2809 int sect_to_write = r10_bio->sectors;
2810 int ok = 1;
2811
2812 if (rdev->badblocks.shift < 0)
2813 return 0;
2814
2815 block_sectors = roundup(1 << rdev->badblocks.shift,
2816 bdev_logical_block_size(rdev->bdev) >> 9);
2817 sector = r10_bio->sector;
2818 sectors = ((r10_bio->sector + block_sectors)
2819 & ~(sector_t)(block_sectors - 1))
2820 - sector;
2821
2822 while (sect_to_write) {
2823 struct bio *wbio;
2824 sector_t wsector;
2825 if (sectors > sect_to_write)
2826 sectors = sect_to_write;
2827 /* Write at 'sector' for 'sectors' */
2828 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2829 &mddev->bio_set);
2830 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2831 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2832 wbio->bi_iter.bi_sector = wsector +
2833 choose_data_offset(r10_bio, rdev);
2834 wbio->bi_opf = REQ_OP_WRITE;
2835
2836 if (submit_bio_wait(wbio) < 0)
2837 /* Failure! */
2838 ok = rdev_set_badblocks(rdev, wsector,
2839 sectors, 0)
2840 && ok;
2841
2842 bio_put(wbio);
2843 sect_to_write -= sectors;
2844 sector += sectors;
2845 sectors = block_sectors;
2846 }
2847 return ok;
2848}
2849
2850static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2851{
2852 int slot = r10_bio->read_slot;
2853 struct bio *bio;
2854 struct r10conf *conf = mddev->private;
2855 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2856
2857 /* we got a read error. Maybe the drive is bad. Maybe just
2858 * the block and we can fix it.
2859 * We freeze all other IO, and try reading the block from
2860 * other devices. When we find one, we re-write
2861 * and check it that fixes the read error.
2862 * This is all done synchronously while the array is
2863 * frozen.
2864 */
2865 bio = r10_bio->devs[slot].bio;
2866 bio_put(bio);
2867 r10_bio->devs[slot].bio = NULL;
2868
2869 if (mddev->ro)
2870 r10_bio->devs[slot].bio = IO_BLOCKED;
2871 else if (!test_bit(FailFast, &rdev->flags)) {
2872 freeze_array(conf, 1);
2873 fix_read_error(conf, mddev, r10_bio);
2874 unfreeze_array(conf);
2875 } else
2876 md_error(mddev, rdev);
2877
2878 rdev_dec_pending(rdev, mddev);
2879 r10_bio->state = 0;
2880 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2881 /*
2882 * allow_barrier after re-submit to ensure no sync io
2883 * can be issued while regular io pending.
2884 */
2885 allow_barrier(conf);
2886}
2887
2888static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2889{
2890 /* Some sort of write request has finished and it
2891 * succeeded in writing where we thought there was a
2892 * bad block. So forget the bad block.
2893 * Or possibly if failed and we need to record
2894 * a bad block.
2895 */
2896 int m;
2897 struct md_rdev *rdev;
2898
2899 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2900 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2901 for (m = 0; m < conf->copies; m++) {
2902 int dev = r10_bio->devs[m].devnum;
2903 rdev = conf->mirrors[dev].rdev;
2904 if (r10_bio->devs[m].bio == NULL ||
2905 r10_bio->devs[m].bio->bi_end_io == NULL)
2906 continue;
2907 if (!r10_bio->devs[m].bio->bi_status) {
2908 rdev_clear_badblocks(
2909 rdev,
2910 r10_bio->devs[m].addr,
2911 r10_bio->sectors, 0);
2912 } else {
2913 if (!rdev_set_badblocks(
2914 rdev,
2915 r10_bio->devs[m].addr,
2916 r10_bio->sectors, 0))
2917 md_error(conf->mddev, rdev);
2918 }
2919 rdev = conf->mirrors[dev].replacement;
2920 if (r10_bio->devs[m].repl_bio == NULL ||
2921 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2922 continue;
2923
2924 if (!r10_bio->devs[m].repl_bio->bi_status) {
2925 rdev_clear_badblocks(
2926 rdev,
2927 r10_bio->devs[m].addr,
2928 r10_bio->sectors, 0);
2929 } else {
2930 if (!rdev_set_badblocks(
2931 rdev,
2932 r10_bio->devs[m].addr,
2933 r10_bio->sectors, 0))
2934 md_error(conf->mddev, rdev);
2935 }
2936 }
2937 put_buf(r10_bio);
2938 } else {
2939 bool fail = false;
2940 for (m = 0; m < conf->copies; m++) {
2941 int dev = r10_bio->devs[m].devnum;
2942 struct bio *bio = r10_bio->devs[m].bio;
2943 rdev = conf->mirrors[dev].rdev;
2944 if (bio == IO_MADE_GOOD) {
2945 rdev_clear_badblocks(
2946 rdev,
2947 r10_bio->devs[m].addr,
2948 r10_bio->sectors, 0);
2949 rdev_dec_pending(rdev, conf->mddev);
2950 } else if (bio != NULL && bio->bi_status) {
2951 fail = true;
2952 if (!narrow_write_error(r10_bio, m))
2953 md_error(conf->mddev, rdev);
2954 rdev_dec_pending(rdev, conf->mddev);
2955 }
2956 bio = r10_bio->devs[m].repl_bio;
2957 rdev = conf->mirrors[dev].replacement;
2958 if (rdev && bio == IO_MADE_GOOD) {
2959 rdev_clear_badblocks(
2960 rdev,
2961 r10_bio->devs[m].addr,
2962 r10_bio->sectors, 0);
2963 rdev_dec_pending(rdev, conf->mddev);
2964 }
2965 }
2966 if (fail) {
2967 spin_lock_irq(&conf->device_lock);
2968 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2969 conf->nr_queued++;
2970 spin_unlock_irq(&conf->device_lock);
2971 /*
2972 * In case freeze_array() is waiting for condition
2973 * nr_pending == nr_queued + extra to be true.
2974 */
2975 wake_up(&conf->wait_barrier);
2976 md_wakeup_thread(conf->mddev->thread);
2977 } else {
2978 if (test_bit(R10BIO_WriteError,
2979 &r10_bio->state))
2980 close_write(r10_bio);
2981 raid_end_bio_io(r10_bio);
2982 }
2983 }
2984}
2985
2986static void raid10d(struct md_thread *thread)
2987{
2988 struct mddev *mddev = thread->mddev;
2989 struct r10bio *r10_bio;
2990 unsigned long flags;
2991 struct r10conf *conf = mddev->private;
2992 struct list_head *head = &conf->retry_list;
2993 struct blk_plug plug;
2994
2995 md_check_recovery(mddev);
2996
2997 if (!list_empty_careful(&conf->bio_end_io_list) &&
2998 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2999 LIST_HEAD(tmp);
3000 spin_lock_irqsave(&conf->device_lock, flags);
3001 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3002 while (!list_empty(&conf->bio_end_io_list)) {
3003 list_move(conf->bio_end_io_list.prev, &tmp);
3004 conf->nr_queued--;
3005 }
3006 }
3007 spin_unlock_irqrestore(&conf->device_lock, flags);
3008 while (!list_empty(&tmp)) {
3009 r10_bio = list_first_entry(&tmp, struct r10bio,
3010 retry_list);
3011 list_del(&r10_bio->retry_list);
3012
3013 if (test_bit(R10BIO_WriteError,
3014 &r10_bio->state))
3015 close_write(r10_bio);
3016 raid_end_bio_io(r10_bio);
3017 }
3018 }
3019
3020 blk_start_plug(&plug);
3021 for (;;) {
3022
3023 flush_pending_writes(conf);
3024
3025 spin_lock_irqsave(&conf->device_lock, flags);
3026 if (list_empty(head)) {
3027 spin_unlock_irqrestore(&conf->device_lock, flags);
3028 break;
3029 }
3030 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3031 list_del(head->prev);
3032 conf->nr_queued--;
3033 spin_unlock_irqrestore(&conf->device_lock, flags);
3034
3035 mddev = r10_bio->mddev;
3036 conf = mddev->private;
3037 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3038 test_bit(R10BIO_WriteError, &r10_bio->state))
3039 handle_write_completed(conf, r10_bio);
3040 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3041 reshape_request_write(mddev, r10_bio);
3042 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3043 sync_request_write(mddev, r10_bio);
3044 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3045 recovery_request_write(mddev, r10_bio);
3046 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3047 handle_read_error(mddev, r10_bio);
3048 else
3049 WARN_ON_ONCE(1);
3050
3051 cond_resched();
3052 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3053 md_check_recovery(mddev);
3054 }
3055 blk_finish_plug(&plug);
3056}
3057
3058static int init_resync(struct r10conf *conf)
3059{
3060 int ret, buffs, i;
3061
3062 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3063 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3064 conf->have_replacement = 0;
3065 for (i = 0; i < conf->geo.raid_disks; i++)
3066 if (conf->mirrors[i].replacement)
3067 conf->have_replacement = 1;
3068 ret = mempool_init(&conf->r10buf_pool, buffs,
3069 r10buf_pool_alloc, r10buf_pool_free, conf);
3070 if (ret)
3071 return ret;
3072 conf->next_resync = 0;
3073 return 0;
3074}
3075
3076static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3077{
3078 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3079 struct rsync_pages *rp;
3080 struct bio *bio;
3081 int nalloc;
3082 int i;
3083
3084 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3085 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3086 nalloc = conf->copies; /* resync */
3087 else
3088 nalloc = 2; /* recovery */
3089
3090 for (i = 0; i < nalloc; i++) {
3091 bio = r10bio->devs[i].bio;
3092 rp = bio->bi_private;
3093 bio_reset(bio, NULL, 0);
3094 bio->bi_private = rp;
3095 bio = r10bio->devs[i].repl_bio;
3096 if (bio) {
3097 rp = bio->bi_private;
3098 bio_reset(bio, NULL, 0);
3099 bio->bi_private = rp;
3100 }
3101 }
3102 return r10bio;
3103}
3104
3105/*
3106 * Set cluster_sync_high since we need other nodes to add the
3107 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3108 */
3109static void raid10_set_cluster_sync_high(struct r10conf *conf)
3110{
3111 sector_t window_size;
3112 int extra_chunk, chunks;
3113
3114 /*
3115 * First, here we define "stripe" as a unit which across
3116 * all member devices one time, so we get chunks by use
3117 * raid_disks / near_copies. Otherwise, if near_copies is
3118 * close to raid_disks, then resync window could increases
3119 * linearly with the increase of raid_disks, which means
3120 * we will suspend a really large IO window while it is not
3121 * necessary. If raid_disks is not divisible by near_copies,
3122 * an extra chunk is needed to ensure the whole "stripe" is
3123 * covered.
3124 */
3125
3126 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3127 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3128 extra_chunk = 0;
3129 else
3130 extra_chunk = 1;
3131 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3132
3133 /*
3134 * At least use a 32M window to align with raid1's resync window
3135 */
3136 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3137 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3138
3139 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3140}
3141
3142/*
3143 * perform a "sync" on one "block"
3144 *
3145 * We need to make sure that no normal I/O request - particularly write
3146 * requests - conflict with active sync requests.
3147 *
3148 * This is achieved by tracking pending requests and a 'barrier' concept
3149 * that can be installed to exclude normal IO requests.
3150 *
3151 * Resync and recovery are handled very differently.
3152 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3153 *
3154 * For resync, we iterate over virtual addresses, read all copies,
3155 * and update if there are differences. If only one copy is live,
3156 * skip it.
3157 * For recovery, we iterate over physical addresses, read a good
3158 * value for each non-in_sync drive, and over-write.
3159 *
3160 * So, for recovery we may have several outstanding complex requests for a
3161 * given address, one for each out-of-sync device. We model this by allocating
3162 * a number of r10_bio structures, one for each out-of-sync device.
3163 * As we setup these structures, we collect all bio's together into a list
3164 * which we then process collectively to add pages, and then process again
3165 * to pass to submit_bio_noacct.
3166 *
3167 * The r10_bio structures are linked using a borrowed master_bio pointer.
3168 * This link is counted in ->remaining. When the r10_bio that points to NULL
3169 * has its remaining count decremented to 0, the whole complex operation
3170 * is complete.
3171 *
3172 */
3173
3174static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3175 sector_t max_sector, int *skipped)
3176{
3177 struct r10conf *conf = mddev->private;
3178 struct r10bio *r10_bio;
3179 struct bio *biolist = NULL, *bio;
3180 sector_t nr_sectors;
3181 int i;
3182 int max_sync;
3183 sector_t sync_blocks;
3184 sector_t sectors_skipped = 0;
3185 int chunks_skipped = 0;
3186 sector_t chunk_mask = conf->geo.chunk_mask;
3187 int page_idx = 0;
3188 int error_disk = -1;
3189
3190 /*
3191 * Allow skipping a full rebuild for incremental assembly
3192 * of a clean array, like RAID1 does.
3193 */
3194 if (mddev->bitmap == NULL &&
3195 mddev->recovery_cp == MaxSector &&
3196 mddev->reshape_position == MaxSector &&
3197 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3198 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3199 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3200 conf->fullsync == 0) {
3201 *skipped = 1;
3202 return mddev->dev_sectors - sector_nr;
3203 }
3204
3205 if (!mempool_initialized(&conf->r10buf_pool))
3206 if (init_resync(conf))
3207 return 0;
3208
3209 skipped:
3210 if (sector_nr >= max_sector) {
3211 conf->cluster_sync_low = 0;
3212 conf->cluster_sync_high = 0;
3213
3214 /* If we aborted, we need to abort the
3215 * sync on the 'current' bitmap chucks (there can
3216 * be several when recovering multiple devices).
3217 * as we may have started syncing it but not finished.
3218 * We can find the current address in
3219 * mddev->curr_resync, but for recovery,
3220 * we need to convert that to several
3221 * virtual addresses.
3222 */
3223 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3224 end_reshape(conf);
3225 close_sync(conf);
3226 return 0;
3227 }
3228
3229 if (mddev->curr_resync < max_sector) { /* aborted */
3230 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3231 mddev->bitmap_ops->end_sync(mddev,
3232 mddev->curr_resync,
3233 &sync_blocks);
3234 else for (i = 0; i < conf->geo.raid_disks; i++) {
3235 sector_t sect =
3236 raid10_find_virt(conf, mddev->curr_resync, i);
3237
3238 mddev->bitmap_ops->end_sync(mddev, sect,
3239 &sync_blocks);
3240 }
3241 } else {
3242 /* completed sync */
3243 if ((!mddev->bitmap || conf->fullsync)
3244 && conf->have_replacement
3245 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3246 /* Completed a full sync so the replacements
3247 * are now fully recovered.
3248 */
3249 for (i = 0; i < conf->geo.raid_disks; i++) {
3250 struct md_rdev *rdev =
3251 conf->mirrors[i].replacement;
3252
3253 if (rdev)
3254 rdev->recovery_offset = MaxSector;
3255 }
3256 }
3257 conf->fullsync = 0;
3258 }
3259 mddev->bitmap_ops->close_sync(mddev);
3260 close_sync(conf);
3261 *skipped = 1;
3262 return sectors_skipped;
3263 }
3264
3265 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3266 return reshape_request(mddev, sector_nr, skipped);
3267
3268 if (chunks_skipped >= conf->geo.raid_disks) {
3269 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3270 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3271 if (error_disk >= 0 &&
3272 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3273 /*
3274 * recovery fails, set mirrors.recovery_disabled,
3275 * device shouldn't be added to there.
3276 */
3277 conf->mirrors[error_disk].recovery_disabled =
3278 mddev->recovery_disabled;
3279 return 0;
3280 }
3281 /*
3282 * if there has been nothing to do on any drive,
3283 * then there is nothing to do at all.
3284 */
3285 *skipped = 1;
3286 return (max_sector - sector_nr) + sectors_skipped;
3287 }
3288
3289 if (max_sector > mddev->resync_max)
3290 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3291
3292 /* make sure whole request will fit in a chunk - if chunks
3293 * are meaningful
3294 */
3295 if (conf->geo.near_copies < conf->geo.raid_disks &&
3296 max_sector > (sector_nr | chunk_mask))
3297 max_sector = (sector_nr | chunk_mask) + 1;
3298
3299 /*
3300 * If there is non-resync activity waiting for a turn, then let it
3301 * though before starting on this new sync request.
3302 */
3303 if (conf->nr_waiting)
3304 schedule_timeout_uninterruptible(1);
3305
3306 /* Again, very different code for resync and recovery.
3307 * Both must result in an r10bio with a list of bios that
3308 * have bi_end_io, bi_sector, bi_bdev set,
3309 * and bi_private set to the r10bio.
3310 * For recovery, we may actually create several r10bios
3311 * with 2 bios in each, that correspond to the bios in the main one.
3312 * In this case, the subordinate r10bios link back through a
3313 * borrowed master_bio pointer, and the counter in the master
3314 * includes a ref from each subordinate.
3315 */
3316 /* First, we decide what to do and set ->bi_end_io
3317 * To end_sync_read if we want to read, and
3318 * end_sync_write if we will want to write.
3319 */
3320
3321 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3322 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3323 /* recovery... the complicated one */
3324 int j;
3325 r10_bio = NULL;
3326
3327 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3328 bool still_degraded;
3329 struct r10bio *rb2;
3330 sector_t sect;
3331 bool must_sync;
3332 int any_working;
3333 struct raid10_info *mirror = &conf->mirrors[i];
3334 struct md_rdev *mrdev, *mreplace;
3335
3336 mrdev = mirror->rdev;
3337 mreplace = mirror->replacement;
3338
3339 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3340 test_bit(In_sync, &mrdev->flags)))
3341 mrdev = NULL;
3342 if (mreplace && test_bit(Faulty, &mreplace->flags))
3343 mreplace = NULL;
3344
3345 if (!mrdev && !mreplace)
3346 continue;
3347
3348 still_degraded = false;
3349 /* want to reconstruct this device */
3350 rb2 = r10_bio;
3351 sect = raid10_find_virt(conf, sector_nr, i);
3352 if (sect >= mddev->resync_max_sectors)
3353 /* last stripe is not complete - don't
3354 * try to recover this sector.
3355 */
3356 continue;
3357 /* Unless we are doing a full sync, or a replacement
3358 * we only need to recover the block if it is set in
3359 * the bitmap
3360 */
3361 must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3362 &sync_blocks,
3363 true);
3364 if (sync_blocks < max_sync)
3365 max_sync = sync_blocks;
3366 if (!must_sync &&
3367 mreplace == NULL &&
3368 !conf->fullsync) {
3369 /* yep, skip the sync_blocks here, but don't assume
3370 * that there will never be anything to do here
3371 */
3372 chunks_skipped = -1;
3373 continue;
3374 }
3375 if (mrdev)
3376 atomic_inc(&mrdev->nr_pending);
3377 if (mreplace)
3378 atomic_inc(&mreplace->nr_pending);
3379
3380 r10_bio = raid10_alloc_init_r10buf(conf);
3381 r10_bio->state = 0;
3382 raise_barrier(conf, rb2 != NULL);
3383 atomic_set(&r10_bio->remaining, 0);
3384
3385 r10_bio->master_bio = (struct bio*)rb2;
3386 if (rb2)
3387 atomic_inc(&rb2->remaining);
3388 r10_bio->mddev = mddev;
3389 set_bit(R10BIO_IsRecover, &r10_bio->state);
3390 r10_bio->sector = sect;
3391
3392 raid10_find_phys(conf, r10_bio);
3393
3394 /* Need to check if the array will still be
3395 * degraded
3396 */
3397 for (j = 0; j < conf->geo.raid_disks; j++) {
3398 struct md_rdev *rdev = conf->mirrors[j].rdev;
3399
3400 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3401 still_degraded = false;
3402 break;
3403 }
3404 }
3405
3406 must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3407 &sync_blocks, still_degraded);
3408
3409 any_working = 0;
3410 for (j=0; j<conf->copies;j++) {
3411 int k;
3412 int d = r10_bio->devs[j].devnum;
3413 sector_t from_addr, to_addr;
3414 struct md_rdev *rdev = conf->mirrors[d].rdev;
3415 sector_t sector, first_bad;
3416 int bad_sectors;
3417 if (!rdev ||
3418 !test_bit(In_sync, &rdev->flags))
3419 continue;
3420 /* This is where we read from */
3421 any_working = 1;
3422 sector = r10_bio->devs[j].addr;
3423
3424 if (is_badblock(rdev, sector, max_sync,
3425 &first_bad, &bad_sectors)) {
3426 if (first_bad > sector)
3427 max_sync = first_bad - sector;
3428 else {
3429 bad_sectors -= (sector
3430 - first_bad);
3431 if (max_sync > bad_sectors)
3432 max_sync = bad_sectors;
3433 continue;
3434 }
3435 }
3436 bio = r10_bio->devs[0].bio;
3437 bio->bi_next = biolist;
3438 biolist = bio;
3439 bio->bi_end_io = end_sync_read;
3440 bio->bi_opf = REQ_OP_READ;
3441 if (test_bit(FailFast, &rdev->flags))
3442 bio->bi_opf |= MD_FAILFAST;
3443 from_addr = r10_bio->devs[j].addr;
3444 bio->bi_iter.bi_sector = from_addr +
3445 rdev->data_offset;
3446 bio_set_dev(bio, rdev->bdev);
3447 atomic_inc(&rdev->nr_pending);
3448 /* and we write to 'i' (if not in_sync) */
3449
3450 for (k=0; k<conf->copies; k++)
3451 if (r10_bio->devs[k].devnum == i)
3452 break;
3453 BUG_ON(k == conf->copies);
3454 to_addr = r10_bio->devs[k].addr;
3455 r10_bio->devs[0].devnum = d;
3456 r10_bio->devs[0].addr = from_addr;
3457 r10_bio->devs[1].devnum = i;
3458 r10_bio->devs[1].addr = to_addr;
3459
3460 if (mrdev) {
3461 bio = r10_bio->devs[1].bio;
3462 bio->bi_next = biolist;
3463 biolist = bio;
3464 bio->bi_end_io = end_sync_write;
3465 bio->bi_opf = REQ_OP_WRITE;
3466 bio->bi_iter.bi_sector = to_addr
3467 + mrdev->data_offset;
3468 bio_set_dev(bio, mrdev->bdev);
3469 atomic_inc(&r10_bio->remaining);
3470 } else
3471 r10_bio->devs[1].bio->bi_end_io = NULL;
3472
3473 /* and maybe write to replacement */
3474 bio = r10_bio->devs[1].repl_bio;
3475 if (bio)
3476 bio->bi_end_io = NULL;
3477 /* Note: if replace is not NULL, then bio
3478 * cannot be NULL as r10buf_pool_alloc will
3479 * have allocated it.
3480 */
3481 if (!mreplace)
3482 break;
3483 bio->bi_next = biolist;
3484 biolist = bio;
3485 bio->bi_end_io = end_sync_write;
3486 bio->bi_opf = REQ_OP_WRITE;
3487 bio->bi_iter.bi_sector = to_addr +
3488 mreplace->data_offset;
3489 bio_set_dev(bio, mreplace->bdev);
3490 atomic_inc(&r10_bio->remaining);
3491 break;
3492 }
3493 if (j == conf->copies) {
3494 /* Cannot recover, so abort the recovery or
3495 * record a bad block */
3496 if (any_working) {
3497 /* problem is that there are bad blocks
3498 * on other device(s)
3499 */
3500 int k;
3501 for (k = 0; k < conf->copies; k++)
3502 if (r10_bio->devs[k].devnum == i)
3503 break;
3504 if (mrdev && !test_bit(In_sync,
3505 &mrdev->flags)
3506 && !rdev_set_badblocks(
3507 mrdev,
3508 r10_bio->devs[k].addr,
3509 max_sync, 0))
3510 any_working = 0;
3511 if (mreplace &&
3512 !rdev_set_badblocks(
3513 mreplace,
3514 r10_bio->devs[k].addr,
3515 max_sync, 0))
3516 any_working = 0;
3517 }
3518 if (!any_working) {
3519 if (!test_and_set_bit(MD_RECOVERY_INTR,
3520 &mddev->recovery))
3521 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3522 mdname(mddev));
3523 mirror->recovery_disabled
3524 = mddev->recovery_disabled;
3525 } else {
3526 error_disk = i;
3527 }
3528 put_buf(r10_bio);
3529 if (rb2)
3530 atomic_dec(&rb2->remaining);
3531 r10_bio = rb2;
3532 if (mrdev)
3533 rdev_dec_pending(mrdev, mddev);
3534 if (mreplace)
3535 rdev_dec_pending(mreplace, mddev);
3536 break;
3537 }
3538 if (mrdev)
3539 rdev_dec_pending(mrdev, mddev);
3540 if (mreplace)
3541 rdev_dec_pending(mreplace, mddev);
3542 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3543 /* Only want this if there is elsewhere to
3544 * read from. 'j' is currently the first
3545 * readable copy.
3546 */
3547 int targets = 1;
3548 for (; j < conf->copies; j++) {
3549 int d = r10_bio->devs[j].devnum;
3550 if (conf->mirrors[d].rdev &&
3551 test_bit(In_sync,
3552 &conf->mirrors[d].rdev->flags))
3553 targets++;
3554 }
3555 if (targets == 1)
3556 r10_bio->devs[0].bio->bi_opf
3557 &= ~MD_FAILFAST;
3558 }
3559 }
3560 if (biolist == NULL) {
3561 while (r10_bio) {
3562 struct r10bio *rb2 = r10_bio;
3563 r10_bio = (struct r10bio*) rb2->master_bio;
3564 rb2->master_bio = NULL;
3565 put_buf(rb2);
3566 }
3567 goto giveup;
3568 }
3569 } else {
3570 /* resync. Schedule a read for every block at this virt offset */
3571 int count = 0;
3572
3573 /*
3574 * Since curr_resync_completed could probably not update in
3575 * time, and we will set cluster_sync_low based on it.
3576 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3577 * safety reason, which ensures curr_resync_completed is
3578 * updated in bitmap_cond_end_sync.
3579 */
3580 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3581 mddev_is_clustered(mddev) &&
3582 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3583
3584 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3585 &sync_blocks,
3586 mddev->degraded) &&
3587 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3588 &mddev->recovery)) {
3589 /* We can skip this block */
3590 *skipped = 1;
3591 return sync_blocks + sectors_skipped;
3592 }
3593 if (sync_blocks < max_sync)
3594 max_sync = sync_blocks;
3595 r10_bio = raid10_alloc_init_r10buf(conf);
3596 r10_bio->state = 0;
3597
3598 r10_bio->mddev = mddev;
3599 atomic_set(&r10_bio->remaining, 0);
3600 raise_barrier(conf, 0);
3601 conf->next_resync = sector_nr;
3602
3603 r10_bio->master_bio = NULL;
3604 r10_bio->sector = sector_nr;
3605 set_bit(R10BIO_IsSync, &r10_bio->state);
3606 raid10_find_phys(conf, r10_bio);
3607 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3608
3609 for (i = 0; i < conf->copies; i++) {
3610 int d = r10_bio->devs[i].devnum;
3611 sector_t first_bad, sector;
3612 int bad_sectors;
3613 struct md_rdev *rdev;
3614
3615 if (r10_bio->devs[i].repl_bio)
3616 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3617
3618 bio = r10_bio->devs[i].bio;
3619 bio->bi_status = BLK_STS_IOERR;
3620 rdev = conf->mirrors[d].rdev;
3621 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3622 continue;
3623
3624 sector = r10_bio->devs[i].addr;
3625 if (is_badblock(rdev, sector, max_sync,
3626 &first_bad, &bad_sectors)) {
3627 if (first_bad > sector)
3628 max_sync = first_bad - sector;
3629 else {
3630 bad_sectors -= (sector - first_bad);
3631 if (max_sync > bad_sectors)
3632 max_sync = bad_sectors;
3633 continue;
3634 }
3635 }
3636 atomic_inc(&rdev->nr_pending);
3637 atomic_inc(&r10_bio->remaining);
3638 bio->bi_next = biolist;
3639 biolist = bio;
3640 bio->bi_end_io = end_sync_read;
3641 bio->bi_opf = REQ_OP_READ;
3642 if (test_bit(FailFast, &rdev->flags))
3643 bio->bi_opf |= MD_FAILFAST;
3644 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3645 bio_set_dev(bio, rdev->bdev);
3646 count++;
3647
3648 rdev = conf->mirrors[d].replacement;
3649 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3650 continue;
3651
3652 atomic_inc(&rdev->nr_pending);
3653
3654 /* Need to set up for writing to the replacement */
3655 bio = r10_bio->devs[i].repl_bio;
3656 bio->bi_status = BLK_STS_IOERR;
3657
3658 sector = r10_bio->devs[i].addr;
3659 bio->bi_next = biolist;
3660 biolist = bio;
3661 bio->bi_end_io = end_sync_write;
3662 bio->bi_opf = REQ_OP_WRITE;
3663 if (test_bit(FailFast, &rdev->flags))
3664 bio->bi_opf |= MD_FAILFAST;
3665 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3666 bio_set_dev(bio, rdev->bdev);
3667 count++;
3668 }
3669
3670 if (count < 2) {
3671 for (i=0; i<conf->copies; i++) {
3672 int d = r10_bio->devs[i].devnum;
3673 if (r10_bio->devs[i].bio->bi_end_io)
3674 rdev_dec_pending(conf->mirrors[d].rdev,
3675 mddev);
3676 if (r10_bio->devs[i].repl_bio &&
3677 r10_bio->devs[i].repl_bio->bi_end_io)
3678 rdev_dec_pending(
3679 conf->mirrors[d].replacement,
3680 mddev);
3681 }
3682 put_buf(r10_bio);
3683 biolist = NULL;
3684 goto giveup;
3685 }
3686 }
3687
3688 nr_sectors = 0;
3689 if (sector_nr + max_sync < max_sector)
3690 max_sector = sector_nr + max_sync;
3691 do {
3692 struct page *page;
3693 int len = PAGE_SIZE;
3694 if (sector_nr + (len>>9) > max_sector)
3695 len = (max_sector - sector_nr) << 9;
3696 if (len == 0)
3697 break;
3698 for (bio= biolist ; bio ; bio=bio->bi_next) {
3699 struct resync_pages *rp = get_resync_pages(bio);
3700 page = resync_fetch_page(rp, page_idx);
3701 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3702 bio->bi_status = BLK_STS_RESOURCE;
3703 bio_endio(bio);
3704 goto giveup;
3705 }
3706 }
3707 nr_sectors += len>>9;
3708 sector_nr += len>>9;
3709 } while (++page_idx < RESYNC_PAGES);
3710 r10_bio->sectors = nr_sectors;
3711
3712 if (mddev_is_clustered(mddev) &&
3713 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3714 /* It is resync not recovery */
3715 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3716 conf->cluster_sync_low = mddev->curr_resync_completed;
3717 raid10_set_cluster_sync_high(conf);
3718 /* Send resync message */
3719 md_cluster_ops->resync_info_update(mddev,
3720 conf->cluster_sync_low,
3721 conf->cluster_sync_high);
3722 }
3723 } else if (mddev_is_clustered(mddev)) {
3724 /* This is recovery not resync */
3725 sector_t sect_va1, sect_va2;
3726 bool broadcast_msg = false;
3727
3728 for (i = 0; i < conf->geo.raid_disks; i++) {
3729 /*
3730 * sector_nr is a device address for recovery, so we
3731 * need translate it to array address before compare
3732 * with cluster_sync_high.
3733 */
3734 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3735
3736 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3737 broadcast_msg = true;
3738 /*
3739 * curr_resync_completed is similar as
3740 * sector_nr, so make the translation too.
3741 */
3742 sect_va2 = raid10_find_virt(conf,
3743 mddev->curr_resync_completed, i);
3744
3745 if (conf->cluster_sync_low == 0 ||
3746 conf->cluster_sync_low > sect_va2)
3747 conf->cluster_sync_low = sect_va2;
3748 }
3749 }
3750 if (broadcast_msg) {
3751 raid10_set_cluster_sync_high(conf);
3752 md_cluster_ops->resync_info_update(mddev,
3753 conf->cluster_sync_low,
3754 conf->cluster_sync_high);
3755 }
3756 }
3757
3758 while (biolist) {
3759 bio = biolist;
3760 biolist = biolist->bi_next;
3761
3762 bio->bi_next = NULL;
3763 r10_bio = get_resync_r10bio(bio);
3764 r10_bio->sectors = nr_sectors;
3765
3766 if (bio->bi_end_io == end_sync_read) {
3767 md_sync_acct_bio(bio, nr_sectors);
3768 bio->bi_status = 0;
3769 submit_bio_noacct(bio);
3770 }
3771 }
3772
3773 if (sectors_skipped)
3774 /* pretend they weren't skipped, it makes
3775 * no important difference in this case
3776 */
3777 md_done_sync(mddev, sectors_skipped, 1);
3778
3779 return sectors_skipped + nr_sectors;
3780 giveup:
3781 /* There is nowhere to write, so all non-sync
3782 * drives must be failed or in resync, all drives
3783 * have a bad block, so try the next chunk...
3784 */
3785 if (sector_nr + max_sync < max_sector)
3786 max_sector = sector_nr + max_sync;
3787
3788 sectors_skipped += (max_sector - sector_nr);
3789 chunks_skipped ++;
3790 sector_nr = max_sector;
3791 goto skipped;
3792}
3793
3794static sector_t
3795raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3796{
3797 sector_t size;
3798 struct r10conf *conf = mddev->private;
3799
3800 if (!raid_disks)
3801 raid_disks = min(conf->geo.raid_disks,
3802 conf->prev.raid_disks);
3803 if (!sectors)
3804 sectors = conf->dev_sectors;
3805
3806 size = sectors >> conf->geo.chunk_shift;
3807 sector_div(size, conf->geo.far_copies);
3808 size = size * raid_disks;
3809 sector_div(size, conf->geo.near_copies);
3810
3811 return size << conf->geo.chunk_shift;
3812}
3813
3814static void calc_sectors(struct r10conf *conf, sector_t size)
3815{
3816 /* Calculate the number of sectors-per-device that will
3817 * actually be used, and set conf->dev_sectors and
3818 * conf->stride
3819 */
3820
3821 size = size >> conf->geo.chunk_shift;
3822 sector_div(size, conf->geo.far_copies);
3823 size = size * conf->geo.raid_disks;
3824 sector_div(size, conf->geo.near_copies);
3825 /* 'size' is now the number of chunks in the array */
3826 /* calculate "used chunks per device" */
3827 size = size * conf->copies;
3828
3829 /* We need to round up when dividing by raid_disks to
3830 * get the stride size.
3831 */
3832 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3833
3834 conf->dev_sectors = size << conf->geo.chunk_shift;
3835
3836 if (conf->geo.far_offset)
3837 conf->geo.stride = 1 << conf->geo.chunk_shift;
3838 else {
3839 sector_div(size, conf->geo.far_copies);
3840 conf->geo.stride = size << conf->geo.chunk_shift;
3841 }
3842}
3843
3844enum geo_type {geo_new, geo_old, geo_start};
3845static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3846{
3847 int nc, fc, fo;
3848 int layout, chunk, disks;
3849 switch (new) {
3850 case geo_old:
3851 layout = mddev->layout;
3852 chunk = mddev->chunk_sectors;
3853 disks = mddev->raid_disks - mddev->delta_disks;
3854 break;
3855 case geo_new:
3856 layout = mddev->new_layout;
3857 chunk = mddev->new_chunk_sectors;
3858 disks = mddev->raid_disks;
3859 break;
3860 default: /* avoid 'may be unused' warnings */
3861 case geo_start: /* new when starting reshape - raid_disks not
3862 * updated yet. */
3863 layout = mddev->new_layout;
3864 chunk = mddev->new_chunk_sectors;
3865 disks = mddev->raid_disks + mddev->delta_disks;
3866 break;
3867 }
3868 if (layout >> 19)
3869 return -1;
3870 if (chunk < (PAGE_SIZE >> 9) ||
3871 !is_power_of_2(chunk))
3872 return -2;
3873 nc = layout & 255;
3874 fc = (layout >> 8) & 255;
3875 fo = layout & (1<<16);
3876 geo->raid_disks = disks;
3877 geo->near_copies = nc;
3878 geo->far_copies = fc;
3879 geo->far_offset = fo;
3880 switch (layout >> 17) {
3881 case 0: /* original layout. simple but not always optimal */
3882 geo->far_set_size = disks;
3883 break;
3884 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3885 * actually using this, but leave code here just in case.*/
3886 geo->far_set_size = disks/fc;
3887 WARN(geo->far_set_size < fc,
3888 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3889 break;
3890 case 2: /* "improved" layout fixed to match documentation */
3891 geo->far_set_size = fc * nc;
3892 break;
3893 default: /* Not a valid layout */
3894 return -1;
3895 }
3896 geo->chunk_mask = chunk - 1;
3897 geo->chunk_shift = ffz(~chunk);
3898 return nc*fc;
3899}
3900
3901static void raid10_free_conf(struct r10conf *conf)
3902{
3903 if (!conf)
3904 return;
3905
3906 mempool_exit(&conf->r10bio_pool);
3907 kfree(conf->mirrors);
3908 kfree(conf->mirrors_old);
3909 kfree(conf->mirrors_new);
3910 safe_put_page(conf->tmppage);
3911 bioset_exit(&conf->bio_split);
3912 kfree(conf);
3913}
3914
3915static struct r10conf *setup_conf(struct mddev *mddev)
3916{
3917 struct r10conf *conf = NULL;
3918 int err = -EINVAL;
3919 struct geom geo;
3920 int copies;
3921
3922 copies = setup_geo(&geo, mddev, geo_new);
3923
3924 if (copies == -2) {
3925 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3926 mdname(mddev), PAGE_SIZE);
3927 goto out;
3928 }
3929
3930 if (copies < 2 || copies > mddev->raid_disks) {
3931 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3932 mdname(mddev), mddev->new_layout);
3933 goto out;
3934 }
3935
3936 err = -ENOMEM;
3937 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3938 if (!conf)
3939 goto out;
3940
3941 /* FIXME calc properly */
3942 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3943 sizeof(struct raid10_info),
3944 GFP_KERNEL);
3945 if (!conf->mirrors)
3946 goto out;
3947
3948 conf->tmppage = alloc_page(GFP_KERNEL);
3949 if (!conf->tmppage)
3950 goto out;
3951
3952 conf->geo = geo;
3953 conf->copies = copies;
3954 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3955 rbio_pool_free, conf);
3956 if (err)
3957 goto out;
3958
3959 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3960 if (err)
3961 goto out;
3962
3963 calc_sectors(conf, mddev->dev_sectors);
3964 if (mddev->reshape_position == MaxSector) {
3965 conf->prev = conf->geo;
3966 conf->reshape_progress = MaxSector;
3967 } else {
3968 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3969 err = -EINVAL;
3970 goto out;
3971 }
3972 conf->reshape_progress = mddev->reshape_position;
3973 if (conf->prev.far_offset)
3974 conf->prev.stride = 1 << conf->prev.chunk_shift;
3975 else
3976 /* far_copies must be 1 */
3977 conf->prev.stride = conf->dev_sectors;
3978 }
3979 conf->reshape_safe = conf->reshape_progress;
3980 spin_lock_init(&conf->device_lock);
3981 INIT_LIST_HEAD(&conf->retry_list);
3982 INIT_LIST_HEAD(&conf->bio_end_io_list);
3983
3984 seqlock_init(&conf->resync_lock);
3985 init_waitqueue_head(&conf->wait_barrier);
3986 atomic_set(&conf->nr_pending, 0);
3987
3988 err = -ENOMEM;
3989 rcu_assign_pointer(conf->thread,
3990 md_register_thread(raid10d, mddev, "raid10"));
3991 if (!conf->thread)
3992 goto out;
3993
3994 conf->mddev = mddev;
3995 return conf;
3996
3997 out:
3998 raid10_free_conf(conf);
3999 return ERR_PTR(err);
4000}
4001
4002static unsigned int raid10_nr_stripes(struct r10conf *conf)
4003{
4004 unsigned int raid_disks = conf->geo.raid_disks;
4005
4006 if (conf->geo.raid_disks % conf->geo.near_copies)
4007 return raid_disks;
4008 return raid_disks / conf->geo.near_copies;
4009}
4010
4011static int raid10_set_queue_limits(struct mddev *mddev)
4012{
4013 struct r10conf *conf = mddev->private;
4014 struct queue_limits lim;
4015 int err;
4016
4017 md_init_stacking_limits(&lim);
4018 lim.max_write_zeroes_sectors = 0;
4019 lim.io_min = mddev->chunk_sectors << 9;
4020 lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4021 lim.features |= BLK_FEAT_ATOMIC_WRITES_STACKED;
4022 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4023 if (err)
4024 return err;
4025 return queue_limits_set(mddev->gendisk->queue, &lim);
4026}
4027
4028static int raid10_run(struct mddev *mddev)
4029{
4030 struct r10conf *conf;
4031 int i, disk_idx;
4032 struct raid10_info *disk;
4033 struct md_rdev *rdev;
4034 sector_t size;
4035 sector_t min_offset_diff = 0;
4036 int first = 1;
4037 int ret = -EIO;
4038
4039 if (mddev->private == NULL) {
4040 conf = setup_conf(mddev);
4041 if (IS_ERR(conf))
4042 return PTR_ERR(conf);
4043 mddev->private = conf;
4044 }
4045 conf = mddev->private;
4046 if (!conf)
4047 goto out;
4048
4049 rcu_assign_pointer(mddev->thread, conf->thread);
4050 rcu_assign_pointer(conf->thread, NULL);
4051
4052 if (mddev_is_clustered(conf->mddev)) {
4053 int fc, fo;
4054
4055 fc = (mddev->layout >> 8) & 255;
4056 fo = mddev->layout & (1<<16);
4057 if (fc > 1 || fo > 0) {
4058 pr_err("only near layout is supported by clustered"
4059 " raid10\n");
4060 goto out_free_conf;
4061 }
4062 }
4063
4064 rdev_for_each(rdev, mddev) {
4065 long long diff;
4066
4067 disk_idx = rdev->raid_disk;
4068 if (disk_idx < 0)
4069 continue;
4070 if (disk_idx >= conf->geo.raid_disks &&
4071 disk_idx >= conf->prev.raid_disks)
4072 continue;
4073 disk = conf->mirrors + disk_idx;
4074
4075 if (test_bit(Replacement, &rdev->flags)) {
4076 if (disk->replacement)
4077 goto out_free_conf;
4078 disk->replacement = rdev;
4079 } else {
4080 if (disk->rdev)
4081 goto out_free_conf;
4082 disk->rdev = rdev;
4083 }
4084 diff = (rdev->new_data_offset - rdev->data_offset);
4085 if (!mddev->reshape_backwards)
4086 diff = -diff;
4087 if (diff < 0)
4088 diff = 0;
4089 if (first || diff < min_offset_diff)
4090 min_offset_diff = diff;
4091
4092 disk->head_position = 0;
4093 first = 0;
4094 }
4095
4096 if (!mddev_is_dm(conf->mddev)) {
4097 int err = raid10_set_queue_limits(mddev);
4098
4099 if (err) {
4100 ret = err;
4101 goto out_free_conf;
4102 }
4103 }
4104
4105 /* need to check that every block has at least one working mirror */
4106 if (!enough(conf, -1)) {
4107 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4108 mdname(mddev));
4109 goto out_free_conf;
4110 }
4111
4112 if (conf->reshape_progress != MaxSector) {
4113 /* must ensure that shape change is supported */
4114 if (conf->geo.far_copies != 1 &&
4115 conf->geo.far_offset == 0)
4116 goto out_free_conf;
4117 if (conf->prev.far_copies != 1 &&
4118 conf->prev.far_offset == 0)
4119 goto out_free_conf;
4120 }
4121
4122 mddev->degraded = 0;
4123 for (i = 0;
4124 i < conf->geo.raid_disks
4125 || i < conf->prev.raid_disks;
4126 i++) {
4127
4128 disk = conf->mirrors + i;
4129
4130 if (!disk->rdev && disk->replacement) {
4131 /* The replacement is all we have - use it */
4132 disk->rdev = disk->replacement;
4133 disk->replacement = NULL;
4134 clear_bit(Replacement, &disk->rdev->flags);
4135 }
4136
4137 if (!disk->rdev ||
4138 !test_bit(In_sync, &disk->rdev->flags)) {
4139 disk->head_position = 0;
4140 mddev->degraded++;
4141 if (disk->rdev &&
4142 disk->rdev->saved_raid_disk < 0)
4143 conf->fullsync = 1;
4144 }
4145
4146 if (disk->replacement &&
4147 !test_bit(In_sync, &disk->replacement->flags) &&
4148 disk->replacement->saved_raid_disk < 0) {
4149 conf->fullsync = 1;
4150 }
4151
4152 disk->recovery_disabled = mddev->recovery_disabled - 1;
4153 }
4154
4155 if (mddev->recovery_cp != MaxSector)
4156 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4157 mdname(mddev));
4158 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4159 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4160 conf->geo.raid_disks);
4161 /*
4162 * Ok, everything is just fine now
4163 */
4164 mddev->dev_sectors = conf->dev_sectors;
4165 size = raid10_size(mddev, 0, 0);
4166 md_set_array_sectors(mddev, size);
4167 mddev->resync_max_sectors = size;
4168 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4169
4170 if (md_integrity_register(mddev))
4171 goto out_free_conf;
4172
4173 if (conf->reshape_progress != MaxSector) {
4174 unsigned long before_length, after_length;
4175
4176 before_length = ((1 << conf->prev.chunk_shift) *
4177 conf->prev.far_copies);
4178 after_length = ((1 << conf->geo.chunk_shift) *
4179 conf->geo.far_copies);
4180
4181 if (max(before_length, after_length) > min_offset_diff) {
4182 /* This cannot work */
4183 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4184 goto out_free_conf;
4185 }
4186 conf->offset_diff = min_offset_diff;
4187
4188 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4189 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4190 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4192 }
4193
4194 return 0;
4195
4196out_free_conf:
4197 md_unregister_thread(mddev, &mddev->thread);
4198 raid10_free_conf(conf);
4199 mddev->private = NULL;
4200out:
4201 return ret;
4202}
4203
4204static void raid10_free(struct mddev *mddev, void *priv)
4205{
4206 raid10_free_conf(priv);
4207}
4208
4209static void raid10_quiesce(struct mddev *mddev, int quiesce)
4210{
4211 struct r10conf *conf = mddev->private;
4212
4213 if (quiesce)
4214 raise_barrier(conf, 0);
4215 else
4216 lower_barrier(conf);
4217}
4218
4219static int raid10_resize(struct mddev *mddev, sector_t sectors)
4220{
4221 /* Resize of 'far' arrays is not supported.
4222 * For 'near' and 'offset' arrays we can set the
4223 * number of sectors used to be an appropriate multiple
4224 * of the chunk size.
4225 * For 'offset', this is far_copies*chunksize.
4226 * For 'near' the multiplier is the LCM of
4227 * near_copies and raid_disks.
4228 * So if far_copies > 1 && !far_offset, fail.
4229 * Else find LCM(raid_disks, near_copy)*far_copies and
4230 * multiply by chunk_size. Then round to this number.
4231 * This is mostly done by raid10_size()
4232 */
4233 struct r10conf *conf = mddev->private;
4234 sector_t oldsize, size;
4235 int ret;
4236
4237 if (mddev->reshape_position != MaxSector)
4238 return -EBUSY;
4239
4240 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4241 return -EINVAL;
4242
4243 oldsize = raid10_size(mddev, 0, 0);
4244 size = raid10_size(mddev, sectors, 0);
4245 if (mddev->external_size &&
4246 mddev->array_sectors > size)
4247 return -EINVAL;
4248
4249 ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4250 if (ret)
4251 return ret;
4252
4253 md_set_array_sectors(mddev, size);
4254 if (sectors > mddev->dev_sectors &&
4255 mddev->recovery_cp > oldsize) {
4256 mddev->recovery_cp = oldsize;
4257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4258 }
4259 calc_sectors(conf, sectors);
4260 mddev->dev_sectors = conf->dev_sectors;
4261 mddev->resync_max_sectors = size;
4262 return 0;
4263}
4264
4265static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4266{
4267 struct md_rdev *rdev;
4268 struct r10conf *conf;
4269
4270 if (mddev->degraded > 0) {
4271 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4272 mdname(mddev));
4273 return ERR_PTR(-EINVAL);
4274 }
4275 sector_div(size, devs);
4276
4277 /* Set new parameters */
4278 mddev->new_level = 10;
4279 /* new layout: far_copies = 1, near_copies = 2 */
4280 mddev->new_layout = (1<<8) + 2;
4281 mddev->new_chunk_sectors = mddev->chunk_sectors;
4282 mddev->delta_disks = mddev->raid_disks;
4283 mddev->raid_disks *= 2;
4284 /* make sure it will be not marked as dirty */
4285 mddev->recovery_cp = MaxSector;
4286 mddev->dev_sectors = size;
4287
4288 conf = setup_conf(mddev);
4289 if (!IS_ERR(conf)) {
4290 rdev_for_each(rdev, mddev)
4291 if (rdev->raid_disk >= 0) {
4292 rdev->new_raid_disk = rdev->raid_disk * 2;
4293 rdev->sectors = size;
4294 }
4295 }
4296
4297 return conf;
4298}
4299
4300static void *raid10_takeover(struct mddev *mddev)
4301{
4302 struct r0conf *raid0_conf;
4303
4304 /* raid10 can take over:
4305 * raid0 - providing it has only two drives
4306 */
4307 if (mddev->level == 0) {
4308 /* for raid0 takeover only one zone is supported */
4309 raid0_conf = mddev->private;
4310 if (raid0_conf->nr_strip_zones > 1) {
4311 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4312 mdname(mddev));
4313 return ERR_PTR(-EINVAL);
4314 }
4315 return raid10_takeover_raid0(mddev,
4316 raid0_conf->strip_zone->zone_end,
4317 raid0_conf->strip_zone->nb_dev);
4318 }
4319 return ERR_PTR(-EINVAL);
4320}
4321
4322static int raid10_check_reshape(struct mddev *mddev)
4323{
4324 /* Called when there is a request to change
4325 * - layout (to ->new_layout)
4326 * - chunk size (to ->new_chunk_sectors)
4327 * - raid_disks (by delta_disks)
4328 * or when trying to restart a reshape that was ongoing.
4329 *
4330 * We need to validate the request and possibly allocate
4331 * space if that might be an issue later.
4332 *
4333 * Currently we reject any reshape of a 'far' mode array,
4334 * allow chunk size to change if new is generally acceptable,
4335 * allow raid_disks to increase, and allow
4336 * a switch between 'near' mode and 'offset' mode.
4337 */
4338 struct r10conf *conf = mddev->private;
4339 struct geom geo;
4340
4341 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4342 return -EINVAL;
4343
4344 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4345 /* mustn't change number of copies */
4346 return -EINVAL;
4347 if (geo.far_copies > 1 && !geo.far_offset)
4348 /* Cannot switch to 'far' mode */
4349 return -EINVAL;
4350
4351 if (mddev->array_sectors & geo.chunk_mask)
4352 /* not factor of array size */
4353 return -EINVAL;
4354
4355 if (!enough(conf, -1))
4356 return -EINVAL;
4357
4358 kfree(conf->mirrors_new);
4359 conf->mirrors_new = NULL;
4360 if (mddev->delta_disks > 0) {
4361 /* allocate new 'mirrors' list */
4362 conf->mirrors_new =
4363 kcalloc(mddev->raid_disks + mddev->delta_disks,
4364 sizeof(struct raid10_info),
4365 GFP_KERNEL);
4366 if (!conf->mirrors_new)
4367 return -ENOMEM;
4368 }
4369 return 0;
4370}
4371
4372/*
4373 * Need to check if array has failed when deciding whether to:
4374 * - start an array
4375 * - remove non-faulty devices
4376 * - add a spare
4377 * - allow a reshape
4378 * This determination is simple when no reshape is happening.
4379 * However if there is a reshape, we need to carefully check
4380 * both the before and after sections.
4381 * This is because some failed devices may only affect one
4382 * of the two sections, and some non-in_sync devices may
4383 * be insync in the section most affected by failed devices.
4384 */
4385static int calc_degraded(struct r10conf *conf)
4386{
4387 int degraded, degraded2;
4388 int i;
4389
4390 degraded = 0;
4391 /* 'prev' section first */
4392 for (i = 0; i < conf->prev.raid_disks; i++) {
4393 struct md_rdev *rdev = conf->mirrors[i].rdev;
4394
4395 if (!rdev || test_bit(Faulty, &rdev->flags))
4396 degraded++;
4397 else if (!test_bit(In_sync, &rdev->flags))
4398 /* When we can reduce the number of devices in
4399 * an array, this might not contribute to
4400 * 'degraded'. It does now.
4401 */
4402 degraded++;
4403 }
4404 if (conf->geo.raid_disks == conf->prev.raid_disks)
4405 return degraded;
4406 degraded2 = 0;
4407 for (i = 0; i < conf->geo.raid_disks; i++) {
4408 struct md_rdev *rdev = conf->mirrors[i].rdev;
4409
4410 if (!rdev || test_bit(Faulty, &rdev->flags))
4411 degraded2++;
4412 else if (!test_bit(In_sync, &rdev->flags)) {
4413 /* If reshape is increasing the number of devices,
4414 * this section has already been recovered, so
4415 * it doesn't contribute to degraded.
4416 * else it does.
4417 */
4418 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4419 degraded2++;
4420 }
4421 }
4422 if (degraded2 > degraded)
4423 return degraded2;
4424 return degraded;
4425}
4426
4427static int raid10_start_reshape(struct mddev *mddev)
4428{
4429 /* A 'reshape' has been requested. This commits
4430 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4431 * This also checks if there are enough spares and adds them
4432 * to the array.
4433 * We currently require enough spares to make the final
4434 * array non-degraded. We also require that the difference
4435 * between old and new data_offset - on each device - is
4436 * enough that we never risk over-writing.
4437 */
4438
4439 unsigned long before_length, after_length;
4440 sector_t min_offset_diff = 0;
4441 int first = 1;
4442 struct geom new;
4443 struct r10conf *conf = mddev->private;
4444 struct md_rdev *rdev;
4445 int spares = 0;
4446 int ret;
4447
4448 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4449 return -EBUSY;
4450
4451 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4452 return -EINVAL;
4453
4454 before_length = ((1 << conf->prev.chunk_shift) *
4455 conf->prev.far_copies);
4456 after_length = ((1 << conf->geo.chunk_shift) *
4457 conf->geo.far_copies);
4458
4459 rdev_for_each(rdev, mddev) {
4460 if (!test_bit(In_sync, &rdev->flags)
4461 && !test_bit(Faulty, &rdev->flags))
4462 spares++;
4463 if (rdev->raid_disk >= 0) {
4464 long long diff = (rdev->new_data_offset
4465 - rdev->data_offset);
4466 if (!mddev->reshape_backwards)
4467 diff = -diff;
4468 if (diff < 0)
4469 diff = 0;
4470 if (first || diff < min_offset_diff)
4471 min_offset_diff = diff;
4472 first = 0;
4473 }
4474 }
4475
4476 if (max(before_length, after_length) > min_offset_diff)
4477 return -EINVAL;
4478
4479 if (spares < mddev->delta_disks)
4480 return -EINVAL;
4481
4482 conf->offset_diff = min_offset_diff;
4483 spin_lock_irq(&conf->device_lock);
4484 if (conf->mirrors_new) {
4485 memcpy(conf->mirrors_new, conf->mirrors,
4486 sizeof(struct raid10_info)*conf->prev.raid_disks);
4487 smp_mb();
4488 kfree(conf->mirrors_old);
4489 conf->mirrors_old = conf->mirrors;
4490 conf->mirrors = conf->mirrors_new;
4491 conf->mirrors_new = NULL;
4492 }
4493 setup_geo(&conf->geo, mddev, geo_start);
4494 smp_mb();
4495 if (mddev->reshape_backwards) {
4496 sector_t size = raid10_size(mddev, 0, 0);
4497 if (size < mddev->array_sectors) {
4498 spin_unlock_irq(&conf->device_lock);
4499 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4500 mdname(mddev));
4501 return -EINVAL;
4502 }
4503 mddev->resync_max_sectors = size;
4504 conf->reshape_progress = size;
4505 } else
4506 conf->reshape_progress = 0;
4507 conf->reshape_safe = conf->reshape_progress;
4508 spin_unlock_irq(&conf->device_lock);
4509
4510 if (mddev->delta_disks && mddev->bitmap) {
4511 struct mdp_superblock_1 *sb = NULL;
4512 sector_t oldsize, newsize;
4513
4514 oldsize = raid10_size(mddev, 0, 0);
4515 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4516
4517 if (!mddev_is_clustered(mddev)) {
4518 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4519 if (ret)
4520 goto abort;
4521 else
4522 goto out;
4523 }
4524
4525 rdev_for_each(rdev, mddev) {
4526 if (rdev->raid_disk > -1 &&
4527 !test_bit(Faulty, &rdev->flags))
4528 sb = page_address(rdev->sb_page);
4529 }
4530
4531 /*
4532 * some node is already performing reshape, and no need to
4533 * call bitmap_ops->resize again since it should be called when
4534 * receiving BITMAP_RESIZE msg
4535 */
4536 if ((sb && (le32_to_cpu(sb->feature_map) &
4537 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4538 goto out;
4539
4540 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4541 if (ret)
4542 goto abort;
4543
4544 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4545 if (ret) {
4546 mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4547 goto abort;
4548 }
4549 }
4550out:
4551 if (mddev->delta_disks > 0) {
4552 rdev_for_each(rdev, mddev)
4553 if (rdev->raid_disk < 0 &&
4554 !test_bit(Faulty, &rdev->flags)) {
4555 if (raid10_add_disk(mddev, rdev) == 0) {
4556 if (rdev->raid_disk >=
4557 conf->prev.raid_disks)
4558 set_bit(In_sync, &rdev->flags);
4559 else
4560 rdev->recovery_offset = 0;
4561
4562 /* Failure here is OK */
4563 sysfs_link_rdev(mddev, rdev);
4564 }
4565 } else if (rdev->raid_disk >= conf->prev.raid_disks
4566 && !test_bit(Faulty, &rdev->flags)) {
4567 /* This is a spare that was manually added */
4568 set_bit(In_sync, &rdev->flags);
4569 }
4570 }
4571 /* When a reshape changes the number of devices,
4572 * ->degraded is measured against the larger of the
4573 * pre and post numbers.
4574 */
4575 spin_lock_irq(&conf->device_lock);
4576 mddev->degraded = calc_degraded(conf);
4577 spin_unlock_irq(&conf->device_lock);
4578 mddev->raid_disks = conf->geo.raid_disks;
4579 mddev->reshape_position = conf->reshape_progress;
4580 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4581
4582 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4583 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4584 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4585 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4586 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4587 conf->reshape_checkpoint = jiffies;
4588 md_new_event();
4589 return 0;
4590
4591abort:
4592 mddev->recovery = 0;
4593 spin_lock_irq(&conf->device_lock);
4594 conf->geo = conf->prev;
4595 mddev->raid_disks = conf->geo.raid_disks;
4596 rdev_for_each(rdev, mddev)
4597 rdev->new_data_offset = rdev->data_offset;
4598 smp_wmb();
4599 conf->reshape_progress = MaxSector;
4600 conf->reshape_safe = MaxSector;
4601 mddev->reshape_position = MaxSector;
4602 spin_unlock_irq(&conf->device_lock);
4603 return ret;
4604}
4605
4606/* Calculate the last device-address that could contain
4607 * any block from the chunk that includes the array-address 's'
4608 * and report the next address.
4609 * i.e. the address returned will be chunk-aligned and after
4610 * any data that is in the chunk containing 's'.
4611 */
4612static sector_t last_dev_address(sector_t s, struct geom *geo)
4613{
4614 s = (s | geo->chunk_mask) + 1;
4615 s >>= geo->chunk_shift;
4616 s *= geo->near_copies;
4617 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4618 s *= geo->far_copies;
4619 s <<= geo->chunk_shift;
4620 return s;
4621}
4622
4623/* Calculate the first device-address that could contain
4624 * any block from the chunk that includes the array-address 's'.
4625 * This too will be the start of a chunk
4626 */
4627static sector_t first_dev_address(sector_t s, struct geom *geo)
4628{
4629 s >>= geo->chunk_shift;
4630 s *= geo->near_copies;
4631 sector_div(s, geo->raid_disks);
4632 s *= geo->far_copies;
4633 s <<= geo->chunk_shift;
4634 return s;
4635}
4636
4637static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4638 int *skipped)
4639{
4640 /* We simply copy at most one chunk (smallest of old and new)
4641 * at a time, possibly less if that exceeds RESYNC_PAGES,
4642 * or we hit a bad block or something.
4643 * This might mean we pause for normal IO in the middle of
4644 * a chunk, but that is not a problem as mddev->reshape_position
4645 * can record any location.
4646 *
4647 * If we will want to write to a location that isn't
4648 * yet recorded as 'safe' (i.e. in metadata on disk) then
4649 * we need to flush all reshape requests and update the metadata.
4650 *
4651 * When reshaping forwards (e.g. to more devices), we interpret
4652 * 'safe' as the earliest block which might not have been copied
4653 * down yet. We divide this by previous stripe size and multiply
4654 * by previous stripe length to get lowest device offset that we
4655 * cannot write to yet.
4656 * We interpret 'sector_nr' as an address that we want to write to.
4657 * From this we use last_device_address() to find where we might
4658 * write to, and first_device_address on the 'safe' position.
4659 * If this 'next' write position is after the 'safe' position,
4660 * we must update the metadata to increase the 'safe' position.
4661 *
4662 * When reshaping backwards, we round in the opposite direction
4663 * and perform the reverse test: next write position must not be
4664 * less than current safe position.
4665 *
4666 * In all this the minimum difference in data offsets
4667 * (conf->offset_diff - always positive) allows a bit of slack,
4668 * so next can be after 'safe', but not by more than offset_diff
4669 *
4670 * We need to prepare all the bios here before we start any IO
4671 * to ensure the size we choose is acceptable to all devices.
4672 * The means one for each copy for write-out and an extra one for
4673 * read-in.
4674 * We store the read-in bio in ->master_bio and the others in
4675 * ->devs[x].bio and ->devs[x].repl_bio.
4676 */
4677 struct r10conf *conf = mddev->private;
4678 struct r10bio *r10_bio;
4679 sector_t next, safe, last;
4680 int max_sectors;
4681 int nr_sectors;
4682 int s;
4683 struct md_rdev *rdev;
4684 int need_flush = 0;
4685 struct bio *blist;
4686 struct bio *bio, *read_bio;
4687 int sectors_done = 0;
4688 struct page **pages;
4689
4690 if (sector_nr == 0) {
4691 /* If restarting in the middle, skip the initial sectors */
4692 if (mddev->reshape_backwards &&
4693 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4694 sector_nr = (raid10_size(mddev, 0, 0)
4695 - conf->reshape_progress);
4696 } else if (!mddev->reshape_backwards &&
4697 conf->reshape_progress > 0)
4698 sector_nr = conf->reshape_progress;
4699 if (sector_nr) {
4700 mddev->curr_resync_completed = sector_nr;
4701 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4702 *skipped = 1;
4703 return sector_nr;
4704 }
4705 }
4706
4707 /* We don't use sector_nr to track where we are up to
4708 * as that doesn't work well for ->reshape_backwards.
4709 * So just use ->reshape_progress.
4710 */
4711 if (mddev->reshape_backwards) {
4712 /* 'next' is the earliest device address that we might
4713 * write to for this chunk in the new layout
4714 */
4715 next = first_dev_address(conf->reshape_progress - 1,
4716 &conf->geo);
4717
4718 /* 'safe' is the last device address that we might read from
4719 * in the old layout after a restart
4720 */
4721 safe = last_dev_address(conf->reshape_safe - 1,
4722 &conf->prev);
4723
4724 if (next + conf->offset_diff < safe)
4725 need_flush = 1;
4726
4727 last = conf->reshape_progress - 1;
4728 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4729 & conf->prev.chunk_mask);
4730 if (sector_nr + RESYNC_SECTORS < last)
4731 sector_nr = last + 1 - RESYNC_SECTORS;
4732 } else {
4733 /* 'next' is after the last device address that we
4734 * might write to for this chunk in the new layout
4735 */
4736 next = last_dev_address(conf->reshape_progress, &conf->geo);
4737
4738 /* 'safe' is the earliest device address that we might
4739 * read from in the old layout after a restart
4740 */
4741 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4742
4743 /* Need to update metadata if 'next' might be beyond 'safe'
4744 * as that would possibly corrupt data
4745 */
4746 if (next > safe + conf->offset_diff)
4747 need_flush = 1;
4748
4749 sector_nr = conf->reshape_progress;
4750 last = sector_nr | (conf->geo.chunk_mask
4751 & conf->prev.chunk_mask);
4752
4753 if (sector_nr + RESYNC_SECTORS <= last)
4754 last = sector_nr + RESYNC_SECTORS - 1;
4755 }
4756
4757 if (need_flush ||
4758 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4759 /* Need to update reshape_position in metadata */
4760 wait_barrier(conf, false);
4761 mddev->reshape_position = conf->reshape_progress;
4762 if (mddev->reshape_backwards)
4763 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4764 - conf->reshape_progress;
4765 else
4766 mddev->curr_resync_completed = conf->reshape_progress;
4767 conf->reshape_checkpoint = jiffies;
4768 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4769 md_wakeup_thread(mddev->thread);
4770 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4771 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4772 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4773 allow_barrier(conf);
4774 return sectors_done;
4775 }
4776 conf->reshape_safe = mddev->reshape_position;
4777 allow_barrier(conf);
4778 }
4779
4780 raise_barrier(conf, 0);
4781read_more:
4782 /* Now schedule reads for blocks from sector_nr to last */
4783 r10_bio = raid10_alloc_init_r10buf(conf);
4784 r10_bio->state = 0;
4785 raise_barrier(conf, 1);
4786 atomic_set(&r10_bio->remaining, 0);
4787 r10_bio->mddev = mddev;
4788 r10_bio->sector = sector_nr;
4789 set_bit(R10BIO_IsReshape, &r10_bio->state);
4790 r10_bio->sectors = last - sector_nr + 1;
4791 rdev = read_balance(conf, r10_bio, &max_sectors);
4792 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4793
4794 if (!rdev) {
4795 /* Cannot read from here, so need to record bad blocks
4796 * on all the target devices.
4797 */
4798 // FIXME
4799 mempool_free(r10_bio, &conf->r10buf_pool);
4800 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4801 return sectors_done;
4802 }
4803
4804 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4805 GFP_KERNEL, &mddev->bio_set);
4806 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4807 + rdev->data_offset);
4808 read_bio->bi_private = r10_bio;
4809 read_bio->bi_end_io = end_reshape_read;
4810 r10_bio->master_bio = read_bio;
4811 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4812
4813 /*
4814 * Broadcast RESYNC message to other nodes, so all nodes would not
4815 * write to the region to avoid conflict.
4816 */
4817 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4818 struct mdp_superblock_1 *sb = NULL;
4819 int sb_reshape_pos = 0;
4820
4821 conf->cluster_sync_low = sector_nr;
4822 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4823 sb = page_address(rdev->sb_page);
4824 if (sb) {
4825 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4826 /*
4827 * Set cluster_sync_low again if next address for array
4828 * reshape is less than cluster_sync_low. Since we can't
4829 * update cluster_sync_low until it has finished reshape.
4830 */
4831 if (sb_reshape_pos < conf->cluster_sync_low)
4832 conf->cluster_sync_low = sb_reshape_pos;
4833 }
4834
4835 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4836 conf->cluster_sync_high);
4837 }
4838
4839 /* Now find the locations in the new layout */
4840 __raid10_find_phys(&conf->geo, r10_bio);
4841
4842 blist = read_bio;
4843 read_bio->bi_next = NULL;
4844
4845 for (s = 0; s < conf->copies*2; s++) {
4846 struct bio *b;
4847 int d = r10_bio->devs[s/2].devnum;
4848 struct md_rdev *rdev2;
4849 if (s&1) {
4850 rdev2 = conf->mirrors[d].replacement;
4851 b = r10_bio->devs[s/2].repl_bio;
4852 } else {
4853 rdev2 = conf->mirrors[d].rdev;
4854 b = r10_bio->devs[s/2].bio;
4855 }
4856 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4857 continue;
4858
4859 bio_set_dev(b, rdev2->bdev);
4860 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4861 rdev2->new_data_offset;
4862 b->bi_end_io = end_reshape_write;
4863 b->bi_opf = REQ_OP_WRITE;
4864 b->bi_next = blist;
4865 blist = b;
4866 }
4867
4868 /* Now add as many pages as possible to all of these bios. */
4869
4870 nr_sectors = 0;
4871 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4872 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4873 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4874 int len = (max_sectors - s) << 9;
4875 if (len > PAGE_SIZE)
4876 len = PAGE_SIZE;
4877 for (bio = blist; bio ; bio = bio->bi_next) {
4878 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4879 bio->bi_status = BLK_STS_RESOURCE;
4880 bio_endio(bio);
4881 return sectors_done;
4882 }
4883 }
4884 sector_nr += len >> 9;
4885 nr_sectors += len >> 9;
4886 }
4887 r10_bio->sectors = nr_sectors;
4888
4889 /* Now submit the read */
4890 md_sync_acct_bio(read_bio, r10_bio->sectors);
4891 atomic_inc(&r10_bio->remaining);
4892 read_bio->bi_next = NULL;
4893 submit_bio_noacct(read_bio);
4894 sectors_done += nr_sectors;
4895 if (sector_nr <= last)
4896 goto read_more;
4897
4898 lower_barrier(conf);
4899
4900 /* Now that we have done the whole section we can
4901 * update reshape_progress
4902 */
4903 if (mddev->reshape_backwards)
4904 conf->reshape_progress -= sectors_done;
4905 else
4906 conf->reshape_progress += sectors_done;
4907
4908 return sectors_done;
4909}
4910
4911static void end_reshape_request(struct r10bio *r10_bio);
4912static int handle_reshape_read_error(struct mddev *mddev,
4913 struct r10bio *r10_bio);
4914static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4915{
4916 /* Reshape read completed. Hopefully we have a block
4917 * to write out.
4918 * If we got a read error then we do sync 1-page reads from
4919 * elsewhere until we find the data - or give up.
4920 */
4921 struct r10conf *conf = mddev->private;
4922 int s;
4923
4924 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4925 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4926 /* Reshape has been aborted */
4927 md_done_sync(mddev, r10_bio->sectors, 0);
4928 return;
4929 }
4930
4931 /* We definitely have the data in the pages, schedule the
4932 * writes.
4933 */
4934 atomic_set(&r10_bio->remaining, 1);
4935 for (s = 0; s < conf->copies*2; s++) {
4936 struct bio *b;
4937 int d = r10_bio->devs[s/2].devnum;
4938 struct md_rdev *rdev;
4939 if (s&1) {
4940 rdev = conf->mirrors[d].replacement;
4941 b = r10_bio->devs[s/2].repl_bio;
4942 } else {
4943 rdev = conf->mirrors[d].rdev;
4944 b = r10_bio->devs[s/2].bio;
4945 }
4946 if (!rdev || test_bit(Faulty, &rdev->flags))
4947 continue;
4948
4949 atomic_inc(&rdev->nr_pending);
4950 md_sync_acct_bio(b, r10_bio->sectors);
4951 atomic_inc(&r10_bio->remaining);
4952 b->bi_next = NULL;
4953 submit_bio_noacct(b);
4954 }
4955 end_reshape_request(r10_bio);
4956}
4957
4958static void end_reshape(struct r10conf *conf)
4959{
4960 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4961 return;
4962
4963 spin_lock_irq(&conf->device_lock);
4964 conf->prev = conf->geo;
4965 md_finish_reshape(conf->mddev);
4966 smp_wmb();
4967 conf->reshape_progress = MaxSector;
4968 conf->reshape_safe = MaxSector;
4969 spin_unlock_irq(&conf->device_lock);
4970
4971 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4972 conf->fullsync = 0;
4973}
4974
4975static void raid10_update_reshape_pos(struct mddev *mddev)
4976{
4977 struct r10conf *conf = mddev->private;
4978 sector_t lo, hi;
4979
4980 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4981 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4982 || mddev->reshape_position == MaxSector)
4983 conf->reshape_progress = mddev->reshape_position;
4984 else
4985 WARN_ON_ONCE(1);
4986}
4987
4988static int handle_reshape_read_error(struct mddev *mddev,
4989 struct r10bio *r10_bio)
4990{
4991 /* Use sync reads to get the blocks from somewhere else */
4992 int sectors = r10_bio->sectors;
4993 struct r10conf *conf = mddev->private;
4994 struct r10bio *r10b;
4995 int slot = 0;
4996 int idx = 0;
4997 struct page **pages;
4998
4999 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5000 if (!r10b) {
5001 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5002 return -ENOMEM;
5003 }
5004
5005 /* reshape IOs share pages from .devs[0].bio */
5006 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5007
5008 r10b->sector = r10_bio->sector;
5009 __raid10_find_phys(&conf->prev, r10b);
5010
5011 while (sectors) {
5012 int s = sectors;
5013 int success = 0;
5014 int first_slot = slot;
5015
5016 if (s > (PAGE_SIZE >> 9))
5017 s = PAGE_SIZE >> 9;
5018
5019 while (!success) {
5020 int d = r10b->devs[slot].devnum;
5021 struct md_rdev *rdev = conf->mirrors[d].rdev;
5022 sector_t addr;
5023 if (rdev == NULL ||
5024 test_bit(Faulty, &rdev->flags) ||
5025 !test_bit(In_sync, &rdev->flags))
5026 goto failed;
5027
5028 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5029 atomic_inc(&rdev->nr_pending);
5030 success = sync_page_io(rdev,
5031 addr,
5032 s << 9,
5033 pages[idx],
5034 REQ_OP_READ, false);
5035 rdev_dec_pending(rdev, mddev);
5036 if (success)
5037 break;
5038 failed:
5039 slot++;
5040 if (slot >= conf->copies)
5041 slot = 0;
5042 if (slot == first_slot)
5043 break;
5044 }
5045 if (!success) {
5046 /* couldn't read this block, must give up */
5047 set_bit(MD_RECOVERY_INTR,
5048 &mddev->recovery);
5049 kfree(r10b);
5050 return -EIO;
5051 }
5052 sectors -= s;
5053 idx++;
5054 }
5055 kfree(r10b);
5056 return 0;
5057}
5058
5059static void end_reshape_write(struct bio *bio)
5060{
5061 struct r10bio *r10_bio = get_resync_r10bio(bio);
5062 struct mddev *mddev = r10_bio->mddev;
5063 struct r10conf *conf = mddev->private;
5064 int d;
5065 int slot;
5066 int repl;
5067 struct md_rdev *rdev = NULL;
5068
5069 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5070 rdev = repl ? conf->mirrors[d].replacement :
5071 conf->mirrors[d].rdev;
5072
5073 if (bio->bi_status) {
5074 /* FIXME should record badblock */
5075 md_error(mddev, rdev);
5076 }
5077
5078 rdev_dec_pending(rdev, mddev);
5079 end_reshape_request(r10_bio);
5080}
5081
5082static void end_reshape_request(struct r10bio *r10_bio)
5083{
5084 if (!atomic_dec_and_test(&r10_bio->remaining))
5085 return;
5086 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5087 bio_put(r10_bio->master_bio);
5088 put_buf(r10_bio);
5089}
5090
5091static void raid10_finish_reshape(struct mddev *mddev)
5092{
5093 struct r10conf *conf = mddev->private;
5094
5095 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5096 return;
5097
5098 if (mddev->delta_disks > 0) {
5099 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5100 mddev->recovery_cp = mddev->resync_max_sectors;
5101 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5102 }
5103 mddev->resync_max_sectors = mddev->array_sectors;
5104 } else {
5105 int d;
5106 for (d = conf->geo.raid_disks ;
5107 d < conf->geo.raid_disks - mddev->delta_disks;
5108 d++) {
5109 struct md_rdev *rdev = conf->mirrors[d].rdev;
5110 if (rdev)
5111 clear_bit(In_sync, &rdev->flags);
5112 rdev = conf->mirrors[d].replacement;
5113 if (rdev)
5114 clear_bit(In_sync, &rdev->flags);
5115 }
5116 }
5117 mddev->layout = mddev->new_layout;
5118 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5119 mddev->reshape_position = MaxSector;
5120 mddev->delta_disks = 0;
5121 mddev->reshape_backwards = 0;
5122}
5123
5124static struct md_personality raid10_personality =
5125{
5126 .name = "raid10",
5127 .level = 10,
5128 .owner = THIS_MODULE,
5129 .make_request = raid10_make_request,
5130 .run = raid10_run,
5131 .free = raid10_free,
5132 .status = raid10_status,
5133 .error_handler = raid10_error,
5134 .hot_add_disk = raid10_add_disk,
5135 .hot_remove_disk= raid10_remove_disk,
5136 .spare_active = raid10_spare_active,
5137 .sync_request = raid10_sync_request,
5138 .quiesce = raid10_quiesce,
5139 .size = raid10_size,
5140 .resize = raid10_resize,
5141 .takeover = raid10_takeover,
5142 .check_reshape = raid10_check_reshape,
5143 .start_reshape = raid10_start_reshape,
5144 .finish_reshape = raid10_finish_reshape,
5145 .update_reshape_pos = raid10_update_reshape_pos,
5146};
5147
5148static int __init raid_init(void)
5149{
5150 return register_md_personality(&raid10_personality);
5151}
5152
5153static void raid_exit(void)
5154{
5155 unregister_md_personality(&raid10_personality);
5156}
5157
5158module_init(raid_init);
5159module_exit(raid_exit);
5160MODULE_LICENSE("GPL");
5161MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5162MODULE_ALIAS("md-personality-9"); /* RAID10 */
5163MODULE_ALIAS("md-raid10");
5164MODULE_ALIAS("md-level-10");
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/slab.h>
22#include <linux/delay.h>
23#include <linux/blkdev.h>
24#include <linux/module.h>
25#include <linux/seq_file.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include "md.h"
29#include "raid10.h"
30#include "raid0.h"
31#include "bitmap.h"
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define NR_RAID10_BIOS 256
77
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
100static int _enough(struct r10conf *conf, int previous, int ignore);
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
106
107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108{
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119 kfree(r10_bio);
120}
121
122/* Maximum size of each resync request */
123#define RESYNC_BLOCK_SIZE (64*1024)
124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138{
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238}
239
240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241{
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254}
255
256static void free_r10bio(struct r10bio *r10_bio)
257{
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262}
263
264static void put_buf(struct r10bio *r10_bio)
265{
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271}
272
273static void reschedule_retry(struct r10bio *r10_bio)
274{
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295static void raid_end_bio_io(struct r10bio *r10_bio)
296{
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326{
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
333/*
334 * Find the disk number which triggered given bio
335 */
336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338{
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359}
360
361static void raid10_end_read_request(struct bio *bio, int error)
362{
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
398 }
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
403 /*
404 * oops, read error - keep the refcount on the rdev
405 */
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
414 }
415}
416
417static void close_write(struct r10bio *r10_bio)
418{
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425}
426
427static void one_write_done(struct r10bio *r10_bio)
428{
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440}
441
442static void raid10_end_write_request(struct bio *bio, int error)
443{
444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 struct r10bio *r10_bio = bio->bi_private;
446 int dev;
447 int dec_rdev = 1;
448 struct r10conf *conf = r10_bio->mddev->private;
449 int slot, repl;
450 struct md_rdev *rdev = NULL;
451
452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453
454 if (repl)
455 rdev = conf->mirrors[dev].replacement;
456 if (!rdev) {
457 smp_rmb();
458 repl = 0;
459 rdev = conf->mirrors[dev].rdev;
460 }
461 /*
462 * this branch is our 'one mirror IO has finished' event handler:
463 */
464 if (!uptodate) {
465 if (repl)
466 /* Never record new bad blocks to replacement,
467 * just fail it.
468 */
469 md_error(rdev->mddev, rdev);
470 else {
471 set_bit(WriteErrorSeen, &rdev->flags);
472 if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 set_bit(MD_RECOVERY_NEEDED,
474 &rdev->mddev->recovery);
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 dec_rdev = 0;
477 }
478 } else {
479 /*
480 * Set R10BIO_Uptodate in our master bio, so that
481 * we will return a good error code for to the higher
482 * levels even if IO on some other mirrored buffer fails.
483 *
484 * The 'master' represents the composite IO operation to
485 * user-side. So if something waits for IO, then it will
486 * wait for the 'master' bio.
487 */
488 sector_t first_bad;
489 int bad_sectors;
490
491 /*
492 * Do not set R10BIO_Uptodate if the current device is
493 * rebuilding or Faulty. This is because we cannot use
494 * such device for properly reading the data back (we could
495 * potentially use it, if the current write would have felt
496 * before rdev->recovery_offset, but for simplicity we don't
497 * check this here.
498 */
499 if (test_bit(In_sync, &rdev->flags) &&
500 !test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_Uptodate, &r10_bio->state);
502
503 /* Maybe we can clear some bad blocks. */
504 if (is_badblock(rdev,
505 r10_bio->devs[slot].addr,
506 r10_bio->sectors,
507 &first_bad, &bad_sectors)) {
508 bio_put(bio);
509 if (repl)
510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 else
512 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 dec_rdev = 0;
514 set_bit(R10BIO_MadeGood, &r10_bio->state);
515 }
516 }
517
518 /*
519 *
520 * Let's see if all mirrored write operations have finished
521 * already.
522 */
523 one_write_done(r10_bio);
524 if (dec_rdev)
525 rdev_dec_pending(rdev, conf->mddev);
526}
527
528/*
529 * RAID10 layout manager
530 * As well as the chunksize and raid_disks count, there are two
531 * parameters: near_copies and far_copies.
532 * near_copies * far_copies must be <= raid_disks.
533 * Normally one of these will be 1.
534 * If both are 1, we get raid0.
535 * If near_copies == raid_disks, we get raid1.
536 *
537 * Chunks are laid out in raid0 style with near_copies copies of the
538 * first chunk, followed by near_copies copies of the next chunk and
539 * so on.
540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
541 * as described above, we start again with a device offset of near_copies.
542 * So we effectively have another copy of the whole array further down all
543 * the drives, but with blocks on different drives.
544 * With this layout, and block is never stored twice on the one device.
545 *
546 * raid10_find_phys finds the sector offset of a given virtual sector
547 * on each device that it is on.
548 *
549 * raid10_find_virt does the reverse mapping, from a device and a
550 * sector offset to a virtual address
551 */
552
553static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554{
555 int n,f;
556 sector_t sector;
557 sector_t chunk;
558 sector_t stripe;
559 int dev;
560 int slot = 0;
561 int last_far_set_start, last_far_set_size;
562
563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 last_far_set_start *= geo->far_set_size;
565
566 last_far_set_size = geo->far_set_size;
567 last_far_set_size += (geo->raid_disks % geo->far_set_size);
568
569 /* now calculate first sector/dev */
570 chunk = r10bio->sector >> geo->chunk_shift;
571 sector = r10bio->sector & geo->chunk_mask;
572
573 chunk *= geo->near_copies;
574 stripe = chunk;
575 dev = sector_div(stripe, geo->raid_disks);
576 if (geo->far_offset)
577 stripe *= geo->far_copies;
578
579 sector += stripe << geo->chunk_shift;
580
581 /* and calculate all the others */
582 for (n = 0; n < geo->near_copies; n++) {
583 int d = dev;
584 int set;
585 sector_t s = sector;
586 r10bio->devs[slot].devnum = d;
587 r10bio->devs[slot].addr = s;
588 slot++;
589
590 for (f = 1; f < geo->far_copies; f++) {
591 set = d / geo->far_set_size;
592 d += geo->near_copies;
593
594 if ((geo->raid_disks % geo->far_set_size) &&
595 (d > last_far_set_start)) {
596 d -= last_far_set_start;
597 d %= last_far_set_size;
598 d += last_far_set_start;
599 } else {
600 d %= geo->far_set_size;
601 d += geo->far_set_size * set;
602 }
603 s += geo->stride;
604 r10bio->devs[slot].devnum = d;
605 r10bio->devs[slot].addr = s;
606 slot++;
607 }
608 dev++;
609 if (dev >= geo->raid_disks) {
610 dev = 0;
611 sector += (geo->chunk_mask + 1);
612 }
613 }
614}
615
616static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617{
618 struct geom *geo = &conf->geo;
619
620 if (conf->reshape_progress != MaxSector &&
621 ((r10bio->sector >= conf->reshape_progress) !=
622 conf->mddev->reshape_backwards)) {
623 set_bit(R10BIO_Previous, &r10bio->state);
624 geo = &conf->prev;
625 } else
626 clear_bit(R10BIO_Previous, &r10bio->state);
627
628 __raid10_find_phys(geo, r10bio);
629}
630
631static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632{
633 sector_t offset, chunk, vchunk;
634 /* Never use conf->prev as this is only called during resync
635 * or recovery, so reshape isn't happening
636 */
637 struct geom *geo = &conf->geo;
638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 int far_set_size = geo->far_set_size;
640 int last_far_set_start;
641
642 if (geo->raid_disks % geo->far_set_size) {
643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 last_far_set_start *= geo->far_set_size;
645
646 if (dev >= last_far_set_start) {
647 far_set_size = geo->far_set_size;
648 far_set_size += (geo->raid_disks % geo->far_set_size);
649 far_set_start = last_far_set_start;
650 }
651 }
652
653 offset = sector & geo->chunk_mask;
654 if (geo->far_offset) {
655 int fc;
656 chunk = sector >> geo->chunk_shift;
657 fc = sector_div(chunk, geo->far_copies);
658 dev -= fc * geo->near_copies;
659 if (dev < far_set_start)
660 dev += far_set_size;
661 } else {
662 while (sector >= geo->stride) {
663 sector -= geo->stride;
664 if (dev < (geo->near_copies + far_set_start))
665 dev += far_set_size - geo->near_copies;
666 else
667 dev -= geo->near_copies;
668 }
669 chunk = sector >> geo->chunk_shift;
670 }
671 vchunk = chunk * geo->raid_disks + dev;
672 sector_div(vchunk, geo->near_copies);
673 return (vchunk << geo->chunk_shift) + offset;
674}
675
676/**
677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678 * @q: request queue
679 * @bvm: properties of new bio
680 * @biovec: the request that could be merged to it.
681 *
682 * Return amount of bytes we can accept at this offset
683 * This requires checking for end-of-chunk if near_copies != raid_disks,
684 * and for subordinate merge_bvec_fns if merge_check_needed.
685 */
686static int raid10_mergeable_bvec(struct request_queue *q,
687 struct bvec_merge_data *bvm,
688 struct bio_vec *biovec)
689{
690 struct mddev *mddev = q->queuedata;
691 struct r10conf *conf = mddev->private;
692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 int max;
694 unsigned int chunk_sectors;
695 unsigned int bio_sectors = bvm->bi_size >> 9;
696 struct geom *geo = &conf->geo;
697
698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 if (conf->reshape_progress != MaxSector &&
700 ((sector >= conf->reshape_progress) !=
701 conf->mddev->reshape_backwards))
702 geo = &conf->prev;
703
704 if (geo->near_copies < geo->raid_disks) {
705 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 + bio_sectors)) << 9;
707 if (max < 0)
708 /* bio_add cannot handle a negative return */
709 max = 0;
710 if (max <= biovec->bv_len && bio_sectors == 0)
711 return biovec->bv_len;
712 } else
713 max = biovec->bv_len;
714
715 if (mddev->merge_check_needed) {
716 struct {
717 struct r10bio r10_bio;
718 struct r10dev devs[conf->copies];
719 } on_stack;
720 struct r10bio *r10_bio = &on_stack.r10_bio;
721 int s;
722 if (conf->reshape_progress != MaxSector) {
723 /* Cannot give any guidance during reshape */
724 if (max <= biovec->bv_len && bio_sectors == 0)
725 return biovec->bv_len;
726 return 0;
727 }
728 r10_bio->sector = sector;
729 raid10_find_phys(conf, r10_bio);
730 rcu_read_lock();
731 for (s = 0; s < conf->copies; s++) {
732 int disk = r10_bio->devs[s].devnum;
733 struct md_rdev *rdev = rcu_dereference(
734 conf->mirrors[disk].rdev);
735 if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 struct request_queue *q =
737 bdev_get_queue(rdev->bdev);
738 if (q->merge_bvec_fn) {
739 bvm->bi_sector = r10_bio->devs[s].addr
740 + rdev->data_offset;
741 bvm->bi_bdev = rdev->bdev;
742 max = min(max, q->merge_bvec_fn(
743 q, bvm, biovec));
744 }
745 }
746 rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q =
749 bdev_get_queue(rdev->bdev);
750 if (q->merge_bvec_fn) {
751 bvm->bi_sector = r10_bio->devs[s].addr
752 + rdev->data_offset;
753 bvm->bi_bdev = rdev->bdev;
754 max = min(max, q->merge_bvec_fn(
755 q, bvm, biovec));
756 }
757 }
758 }
759 rcu_read_unlock();
760 }
761 return max;
762}
763
764/*
765 * This routine returns the disk from which the requested read should
766 * be done. There is a per-array 'next expected sequential IO' sector
767 * number - if this matches on the next IO then we use the last disk.
768 * There is also a per-disk 'last know head position' sector that is
769 * maintained from IRQ contexts, both the normal and the resync IO
770 * completion handlers update this position correctly. If there is no
771 * perfect sequential match then we pick the disk whose head is closest.
772 *
773 * If there are 2 mirrors in the same 2 devices, performance degrades
774 * because position is mirror, not device based.
775 *
776 * The rdev for the device selected will have nr_pending incremented.
777 */
778
779/*
780 * FIXME: possibly should rethink readbalancing and do it differently
781 * depending on near_copies / far_copies geometry.
782 */
783static struct md_rdev *read_balance(struct r10conf *conf,
784 struct r10bio *r10_bio,
785 int *max_sectors)
786{
787 const sector_t this_sector = r10_bio->sector;
788 int disk, slot;
789 int sectors = r10_bio->sectors;
790 int best_good_sectors;
791 sector_t new_distance, best_dist;
792 struct md_rdev *best_rdev, *rdev = NULL;
793 int do_balance;
794 int best_slot;
795 struct geom *geo = &conf->geo;
796
797 raid10_find_phys(conf, r10_bio);
798 rcu_read_lock();
799retry:
800 sectors = r10_bio->sectors;
801 best_slot = -1;
802 best_rdev = NULL;
803 best_dist = MaxSector;
804 best_good_sectors = 0;
805 do_balance = 1;
806 /*
807 * Check if we can balance. We can balance on the whole
808 * device if no resync is going on (recovery is ok), or below
809 * the resync window. We take the first readable disk when
810 * above the resync window.
811 */
812 if (conf->mddev->recovery_cp < MaxSector
813 && (this_sector + sectors >= conf->next_resync))
814 do_balance = 0;
815
816 for (slot = 0; slot < conf->copies ; slot++) {
817 sector_t first_bad;
818 int bad_sectors;
819 sector_t dev_sector;
820
821 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 continue;
823 disk = r10_bio->devs[slot].devnum;
824 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 test_bit(Unmerged, &rdev->flags) ||
827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 if (rdev == NULL ||
830 test_bit(Faulty, &rdev->flags) ||
831 test_bit(Unmerged, &rdev->flags))
832 continue;
833 if (!test_bit(In_sync, &rdev->flags) &&
834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 continue;
836
837 dev_sector = r10_bio->devs[slot].addr;
838 if (is_badblock(rdev, dev_sector, sectors,
839 &first_bad, &bad_sectors)) {
840 if (best_dist < MaxSector)
841 /* Already have a better slot */
842 continue;
843 if (first_bad <= dev_sector) {
844 /* Cannot read here. If this is the
845 * 'primary' device, then we must not read
846 * beyond 'bad_sectors' from another device.
847 */
848 bad_sectors -= (dev_sector - first_bad);
849 if (!do_balance && sectors > bad_sectors)
850 sectors = bad_sectors;
851 if (best_good_sectors > sectors)
852 best_good_sectors = sectors;
853 } else {
854 sector_t good_sectors =
855 first_bad - dev_sector;
856 if (good_sectors > best_good_sectors) {
857 best_good_sectors = good_sectors;
858 best_slot = slot;
859 best_rdev = rdev;
860 }
861 if (!do_balance)
862 /* Must read from here */
863 break;
864 }
865 continue;
866 } else
867 best_good_sectors = sectors;
868
869 if (!do_balance)
870 break;
871
872 /* This optimisation is debatable, and completely destroys
873 * sequential read speed for 'far copies' arrays. So only
874 * keep it for 'near' arrays, and review those later.
875 */
876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 break;
878
879 /* for far > 1 always use the lowest address */
880 if (geo->far_copies > 1)
881 new_distance = r10_bio->devs[slot].addr;
882 else
883 new_distance = abs(r10_bio->devs[slot].addr -
884 conf->mirrors[disk].head_position);
885 if (new_distance < best_dist) {
886 best_dist = new_distance;
887 best_slot = slot;
888 best_rdev = rdev;
889 }
890 }
891 if (slot >= conf->copies) {
892 slot = best_slot;
893 rdev = best_rdev;
894 }
895
896 if (slot >= 0) {
897 atomic_inc(&rdev->nr_pending);
898 if (test_bit(Faulty, &rdev->flags)) {
899 /* Cannot risk returning a device that failed
900 * before we inc'ed nr_pending
901 */
902 rdev_dec_pending(rdev, conf->mddev);
903 goto retry;
904 }
905 r10_bio->read_slot = slot;
906 } else
907 rdev = NULL;
908 rcu_read_unlock();
909 *max_sectors = best_good_sectors;
910
911 return rdev;
912}
913
914int md_raid10_congested(struct mddev *mddev, int bits)
915{
916 struct r10conf *conf = mddev->private;
917 int i, ret = 0;
918
919 if ((bits & (1 << BDI_async_congested)) &&
920 conf->pending_count >= max_queued_requests)
921 return 1;
922
923 rcu_read_lock();
924 for (i = 0;
925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 && ret == 0;
927 i++) {
928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 struct request_queue *q = bdev_get_queue(rdev->bdev);
931
932 ret |= bdi_congested(&q->backing_dev_info, bits);
933 }
934 }
935 rcu_read_unlock();
936 return ret;
937}
938EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940static int raid10_congested(void *data, int bits)
941{
942 struct mddev *mddev = data;
943
944 return mddev_congested(mddev, bits) ||
945 md_raid10_congested(mddev, bits);
946}
947
948static void flush_pending_writes(struct r10conf *conf)
949{
950 /* Any writes that have been queued but are awaiting
951 * bitmap updates get flushed here.
952 */
953 spin_lock_irq(&conf->device_lock);
954
955 if (conf->pending_bio_list.head) {
956 struct bio *bio;
957 bio = bio_list_get(&conf->pending_bio_list);
958 conf->pending_count = 0;
959 spin_unlock_irq(&conf->device_lock);
960 /* flush any pending bitmap writes to disk
961 * before proceeding w/ I/O */
962 bitmap_unplug(conf->mddev->bitmap);
963 wake_up(&conf->wait_barrier);
964
965 while (bio) { /* submit pending writes */
966 struct bio *next = bio->bi_next;
967 bio->bi_next = NULL;
968 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 /* Just ignore it */
971 bio_endio(bio, 0);
972 else
973 generic_make_request(bio);
974 bio = next;
975 }
976 } else
977 spin_unlock_irq(&conf->device_lock);
978}
979
980/* Barriers....
981 * Sometimes we need to suspend IO while we do something else,
982 * either some resync/recovery, or reconfigure the array.
983 * To do this we raise a 'barrier'.
984 * The 'barrier' is a counter that can be raised multiple times
985 * to count how many activities are happening which preclude
986 * normal IO.
987 * We can only raise the barrier if there is no pending IO.
988 * i.e. if nr_pending == 0.
989 * We choose only to raise the barrier if no-one is waiting for the
990 * barrier to go down. This means that as soon as an IO request
991 * is ready, no other operations which require a barrier will start
992 * until the IO request has had a chance.
993 *
994 * So: regular IO calls 'wait_barrier'. When that returns there
995 * is no backgroup IO happening, It must arrange to call
996 * allow_barrier when it has finished its IO.
997 * backgroup IO calls must call raise_barrier. Once that returns
998 * there is no normal IO happeing. It must arrange to call
999 * lower_barrier when the particular background IO completes.
1000 */
1001
1002static void raise_barrier(struct r10conf *conf, int force)
1003{
1004 BUG_ON(force && !conf->barrier);
1005 spin_lock_irq(&conf->resync_lock);
1006
1007 /* Wait until no block IO is waiting (unless 'force') */
1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 conf->resync_lock);
1010
1011 /* block any new IO from starting */
1012 conf->barrier++;
1013
1014 /* Now wait for all pending IO to complete */
1015 wait_event_lock_irq(conf->wait_barrier,
1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 conf->resync_lock);
1018
1019 spin_unlock_irq(&conf->resync_lock);
1020}
1021
1022static void lower_barrier(struct r10conf *conf)
1023{
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->resync_lock, flags);
1026 conf->barrier--;
1027 spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 wake_up(&conf->wait_barrier);
1029}
1030
1031static void wait_barrier(struct r10conf *conf)
1032{
1033 spin_lock_irq(&conf->resync_lock);
1034 if (conf->barrier) {
1035 conf->nr_waiting++;
1036 /* Wait for the barrier to drop.
1037 * However if there are already pending
1038 * requests (preventing the barrier from
1039 * rising completely), and the
1040 * pre-process bio queue isn't empty,
1041 * then don't wait, as we need to empty
1042 * that queue to get the nr_pending
1043 * count down.
1044 */
1045 wait_event_lock_irq(conf->wait_barrier,
1046 !conf->barrier ||
1047 (conf->nr_pending &&
1048 current->bio_list &&
1049 !bio_list_empty(current->bio_list)),
1050 conf->resync_lock);
1051 conf->nr_waiting--;
1052 }
1053 conf->nr_pending++;
1054 spin_unlock_irq(&conf->resync_lock);
1055}
1056
1057static void allow_barrier(struct r10conf *conf)
1058{
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->resync_lock, flags);
1061 conf->nr_pending--;
1062 spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 wake_up(&conf->wait_barrier);
1064}
1065
1066static void freeze_array(struct r10conf *conf, int extra)
1067{
1068 /* stop syncio and normal IO and wait for everything to
1069 * go quiet.
1070 * We increment barrier and nr_waiting, and then
1071 * wait until nr_pending match nr_queued+extra
1072 * This is called in the context of one normal IO request
1073 * that has failed. Thus any sync request that might be pending
1074 * will be blocked by nr_pending, and we need to wait for
1075 * pending IO requests to complete or be queued for re-try.
1076 * Thus the number queued (nr_queued) plus this request (extra)
1077 * must match the number of pending IOs (nr_pending) before
1078 * we continue.
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->barrier++;
1082 conf->nr_waiting++;
1083 wait_event_lock_irq_cmd(conf->wait_barrier,
1084 conf->nr_pending == conf->nr_queued+extra,
1085 conf->resync_lock,
1086 flush_pending_writes(conf));
1087
1088 spin_unlock_irq(&conf->resync_lock);
1089}
1090
1091static void unfreeze_array(struct r10conf *conf)
1092{
1093 /* reverse the effect of the freeze */
1094 spin_lock_irq(&conf->resync_lock);
1095 conf->barrier--;
1096 conf->nr_waiting--;
1097 wake_up(&conf->wait_barrier);
1098 spin_unlock_irq(&conf->resync_lock);
1099}
1100
1101static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 struct md_rdev *rdev)
1103{
1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 test_bit(R10BIO_Previous, &r10_bio->state))
1106 return rdev->data_offset;
1107 else
1108 return rdev->new_data_offset;
1109}
1110
1111struct raid10_plug_cb {
1112 struct blk_plug_cb cb;
1113 struct bio_list pending;
1114 int pending_cnt;
1115};
1116
1117static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118{
1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 cb);
1121 struct mddev *mddev = plug->cb.data;
1122 struct r10conf *conf = mddev->private;
1123 struct bio *bio;
1124
1125 if (from_schedule || current->bio_list) {
1126 spin_lock_irq(&conf->device_lock);
1127 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 conf->pending_count += plug->pending_cnt;
1129 spin_unlock_irq(&conf->device_lock);
1130 wake_up(&conf->wait_barrier);
1131 md_wakeup_thread(mddev->thread);
1132 kfree(plug);
1133 return;
1134 }
1135
1136 /* we aren't scheduling, so we can do the write-out directly. */
1137 bio = bio_list_get(&plug->pending);
1138 bitmap_unplug(mddev->bitmap);
1139 wake_up(&conf->wait_barrier);
1140
1141 while (bio) { /* submit pending writes */
1142 struct bio *next = bio->bi_next;
1143 bio->bi_next = NULL;
1144 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio, 0);
1148 else
1149 generic_make_request(bio);
1150 bio = next;
1151 }
1152 kfree(plug);
1153}
1154
1155static void __make_request(struct mddev *mddev, struct bio *bio)
1156{
1157 struct r10conf *conf = mddev->private;
1158 struct r10bio *r10_bio;
1159 struct bio *read_bio;
1160 int i;
1161 const int rw = bio_data_dir(bio);
1162 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1163 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1164 const unsigned long do_discard = (bio->bi_rw
1165 & (REQ_DISCARD | REQ_SECURE));
1166 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1167 unsigned long flags;
1168 struct md_rdev *blocked_rdev;
1169 struct blk_plug_cb *cb;
1170 struct raid10_plug_cb *plug = NULL;
1171 int sectors_handled;
1172 int max_sectors;
1173 int sectors;
1174
1175 /*
1176 * Register the new request and wait if the reconstruction
1177 * thread has put up a bar for new requests.
1178 * Continue immediately if no resync is active currently.
1179 */
1180 wait_barrier(conf);
1181
1182 sectors = bio_sectors(bio);
1183 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1184 bio->bi_iter.bi_sector < conf->reshape_progress &&
1185 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1186 /* IO spans the reshape position. Need to wait for
1187 * reshape to pass
1188 */
1189 allow_barrier(conf);
1190 wait_event(conf->wait_barrier,
1191 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1192 conf->reshape_progress >= bio->bi_iter.bi_sector +
1193 sectors);
1194 wait_barrier(conf);
1195 }
1196 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1197 bio_data_dir(bio) == WRITE &&
1198 (mddev->reshape_backwards
1199 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1200 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1201 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1202 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1203 /* Need to update reshape_position in metadata */
1204 mddev->reshape_position = conf->reshape_progress;
1205 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1206 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1207 md_wakeup_thread(mddev->thread);
1208 wait_event(mddev->sb_wait,
1209 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1210
1211 conf->reshape_safe = mddev->reshape_position;
1212 }
1213
1214 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1215
1216 r10_bio->master_bio = bio;
1217 r10_bio->sectors = sectors;
1218
1219 r10_bio->mddev = mddev;
1220 r10_bio->sector = bio->bi_iter.bi_sector;
1221 r10_bio->state = 0;
1222
1223 /* We might need to issue multiple reads to different
1224 * devices if there are bad blocks around, so we keep
1225 * track of the number of reads in bio->bi_phys_segments.
1226 * If this is 0, there is only one r10_bio and no locking
1227 * will be needed when the request completes. If it is
1228 * non-zero, then it is the number of not-completed requests.
1229 */
1230 bio->bi_phys_segments = 0;
1231 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1232
1233 if (rw == READ) {
1234 /*
1235 * read balancing logic:
1236 */
1237 struct md_rdev *rdev;
1238 int slot;
1239
1240read_again:
1241 rdev = read_balance(conf, r10_bio, &max_sectors);
1242 if (!rdev) {
1243 raid_end_bio_io(r10_bio);
1244 return;
1245 }
1246 slot = r10_bio->read_slot;
1247
1248 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1249 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1250 max_sectors);
1251
1252 r10_bio->devs[slot].bio = read_bio;
1253 r10_bio->devs[slot].rdev = rdev;
1254
1255 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1256 choose_data_offset(r10_bio, rdev);
1257 read_bio->bi_bdev = rdev->bdev;
1258 read_bio->bi_end_io = raid10_end_read_request;
1259 read_bio->bi_rw = READ | do_sync;
1260 read_bio->bi_private = r10_bio;
1261
1262 if (max_sectors < r10_bio->sectors) {
1263 /* Could not read all from this device, so we will
1264 * need another r10_bio.
1265 */
1266 sectors_handled = (r10_bio->sector + max_sectors
1267 - bio->bi_iter.bi_sector);
1268 r10_bio->sectors = max_sectors;
1269 spin_lock_irq(&conf->device_lock);
1270 if (bio->bi_phys_segments == 0)
1271 bio->bi_phys_segments = 2;
1272 else
1273 bio->bi_phys_segments++;
1274 spin_unlock_irq(&conf->device_lock);
1275 /* Cannot call generic_make_request directly
1276 * as that will be queued in __generic_make_request
1277 * and subsequent mempool_alloc might block
1278 * waiting for it. so hand bio over to raid10d.
1279 */
1280 reschedule_retry(r10_bio);
1281
1282 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1283
1284 r10_bio->master_bio = bio;
1285 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1286 r10_bio->state = 0;
1287 r10_bio->mddev = mddev;
1288 r10_bio->sector = bio->bi_iter.bi_sector +
1289 sectors_handled;
1290 goto read_again;
1291 } else
1292 generic_make_request(read_bio);
1293 return;
1294 }
1295
1296 /*
1297 * WRITE:
1298 */
1299 if (conf->pending_count >= max_queued_requests) {
1300 md_wakeup_thread(mddev->thread);
1301 wait_event(conf->wait_barrier,
1302 conf->pending_count < max_queued_requests);
1303 }
1304 /* first select target devices under rcu_lock and
1305 * inc refcount on their rdev. Record them by setting
1306 * bios[x] to bio
1307 * If there are known/acknowledged bad blocks on any device
1308 * on which we have seen a write error, we want to avoid
1309 * writing to those blocks. This potentially requires several
1310 * writes to write around the bad blocks. Each set of writes
1311 * gets its own r10_bio with a set of bios attached. The number
1312 * of r10_bios is recored in bio->bi_phys_segments just as with
1313 * the read case.
1314 */
1315
1316 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1317 raid10_find_phys(conf, r10_bio);
1318retry_write:
1319 blocked_rdev = NULL;
1320 rcu_read_lock();
1321 max_sectors = r10_bio->sectors;
1322
1323 for (i = 0; i < conf->copies; i++) {
1324 int d = r10_bio->devs[i].devnum;
1325 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1326 struct md_rdev *rrdev = rcu_dereference(
1327 conf->mirrors[d].replacement);
1328 if (rdev == rrdev)
1329 rrdev = NULL;
1330 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1331 atomic_inc(&rdev->nr_pending);
1332 blocked_rdev = rdev;
1333 break;
1334 }
1335 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1336 atomic_inc(&rrdev->nr_pending);
1337 blocked_rdev = rrdev;
1338 break;
1339 }
1340 if (rdev && (test_bit(Faulty, &rdev->flags)
1341 || test_bit(Unmerged, &rdev->flags)))
1342 rdev = NULL;
1343 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1344 || test_bit(Unmerged, &rrdev->flags)))
1345 rrdev = NULL;
1346
1347 r10_bio->devs[i].bio = NULL;
1348 r10_bio->devs[i].repl_bio = NULL;
1349
1350 if (!rdev && !rrdev) {
1351 set_bit(R10BIO_Degraded, &r10_bio->state);
1352 continue;
1353 }
1354 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1355 sector_t first_bad;
1356 sector_t dev_sector = r10_bio->devs[i].addr;
1357 int bad_sectors;
1358 int is_bad;
1359
1360 is_bad = is_badblock(rdev, dev_sector,
1361 max_sectors,
1362 &first_bad, &bad_sectors);
1363 if (is_bad < 0) {
1364 /* Mustn't write here until the bad block
1365 * is acknowledged
1366 */
1367 atomic_inc(&rdev->nr_pending);
1368 set_bit(BlockedBadBlocks, &rdev->flags);
1369 blocked_rdev = rdev;
1370 break;
1371 }
1372 if (is_bad && first_bad <= dev_sector) {
1373 /* Cannot write here at all */
1374 bad_sectors -= (dev_sector - first_bad);
1375 if (bad_sectors < max_sectors)
1376 /* Mustn't write more than bad_sectors
1377 * to other devices yet
1378 */
1379 max_sectors = bad_sectors;
1380 /* We don't set R10BIO_Degraded as that
1381 * only applies if the disk is missing,
1382 * so it might be re-added, and we want to
1383 * know to recover this chunk.
1384 * In this case the device is here, and the
1385 * fact that this chunk is not in-sync is
1386 * recorded in the bad block log.
1387 */
1388 continue;
1389 }
1390 if (is_bad) {
1391 int good_sectors = first_bad - dev_sector;
1392 if (good_sectors < max_sectors)
1393 max_sectors = good_sectors;
1394 }
1395 }
1396 if (rdev) {
1397 r10_bio->devs[i].bio = bio;
1398 atomic_inc(&rdev->nr_pending);
1399 }
1400 if (rrdev) {
1401 r10_bio->devs[i].repl_bio = bio;
1402 atomic_inc(&rrdev->nr_pending);
1403 }
1404 }
1405 rcu_read_unlock();
1406
1407 if (unlikely(blocked_rdev)) {
1408 /* Have to wait for this device to get unblocked, then retry */
1409 int j;
1410 int d;
1411
1412 for (j = 0; j < i; j++) {
1413 if (r10_bio->devs[j].bio) {
1414 d = r10_bio->devs[j].devnum;
1415 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1416 }
1417 if (r10_bio->devs[j].repl_bio) {
1418 struct md_rdev *rdev;
1419 d = r10_bio->devs[j].devnum;
1420 rdev = conf->mirrors[d].replacement;
1421 if (!rdev) {
1422 /* Race with remove_disk */
1423 smp_mb();
1424 rdev = conf->mirrors[d].rdev;
1425 }
1426 rdev_dec_pending(rdev, mddev);
1427 }
1428 }
1429 allow_barrier(conf);
1430 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431 wait_barrier(conf);
1432 goto retry_write;
1433 }
1434
1435 if (max_sectors < r10_bio->sectors) {
1436 /* We are splitting this into multiple parts, so
1437 * we need to prepare for allocating another r10_bio.
1438 */
1439 r10_bio->sectors = max_sectors;
1440 spin_lock_irq(&conf->device_lock);
1441 if (bio->bi_phys_segments == 0)
1442 bio->bi_phys_segments = 2;
1443 else
1444 bio->bi_phys_segments++;
1445 spin_unlock_irq(&conf->device_lock);
1446 }
1447 sectors_handled = r10_bio->sector + max_sectors -
1448 bio->bi_iter.bi_sector;
1449
1450 atomic_set(&r10_bio->remaining, 1);
1451 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1452
1453 for (i = 0; i < conf->copies; i++) {
1454 struct bio *mbio;
1455 int d = r10_bio->devs[i].devnum;
1456 if (r10_bio->devs[i].bio) {
1457 struct md_rdev *rdev = conf->mirrors[d].rdev;
1458 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1459 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1460 max_sectors);
1461 r10_bio->devs[i].bio = mbio;
1462
1463 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1464 choose_data_offset(r10_bio,
1465 rdev));
1466 mbio->bi_bdev = rdev->bdev;
1467 mbio->bi_end_io = raid10_end_write_request;
1468 mbio->bi_rw =
1469 WRITE | do_sync | do_fua | do_discard | do_same;
1470 mbio->bi_private = r10_bio;
1471
1472 atomic_inc(&r10_bio->remaining);
1473
1474 cb = blk_check_plugged(raid10_unplug, mddev,
1475 sizeof(*plug));
1476 if (cb)
1477 plug = container_of(cb, struct raid10_plug_cb,
1478 cb);
1479 else
1480 plug = NULL;
1481 spin_lock_irqsave(&conf->device_lock, flags);
1482 if (plug) {
1483 bio_list_add(&plug->pending, mbio);
1484 plug->pending_cnt++;
1485 } else {
1486 bio_list_add(&conf->pending_bio_list, mbio);
1487 conf->pending_count++;
1488 }
1489 spin_unlock_irqrestore(&conf->device_lock, flags);
1490 if (!plug)
1491 md_wakeup_thread(mddev->thread);
1492 }
1493
1494 if (r10_bio->devs[i].repl_bio) {
1495 struct md_rdev *rdev = conf->mirrors[d].replacement;
1496 if (rdev == NULL) {
1497 /* Replacement just got moved to main 'rdev' */
1498 smp_mb();
1499 rdev = conf->mirrors[d].rdev;
1500 }
1501 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1502 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1503 max_sectors);
1504 r10_bio->devs[i].repl_bio = mbio;
1505
1506 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1507 choose_data_offset(
1508 r10_bio, rdev));
1509 mbio->bi_bdev = rdev->bdev;
1510 mbio->bi_end_io = raid10_end_write_request;
1511 mbio->bi_rw =
1512 WRITE | do_sync | do_fua | do_discard | do_same;
1513 mbio->bi_private = r10_bio;
1514
1515 atomic_inc(&r10_bio->remaining);
1516 spin_lock_irqsave(&conf->device_lock, flags);
1517 bio_list_add(&conf->pending_bio_list, mbio);
1518 conf->pending_count++;
1519 spin_unlock_irqrestore(&conf->device_lock, flags);
1520 if (!mddev_check_plugged(mddev))
1521 md_wakeup_thread(mddev->thread);
1522 }
1523 }
1524
1525 /* Don't remove the bias on 'remaining' (one_write_done) until
1526 * after checking if we need to go around again.
1527 */
1528
1529 if (sectors_handled < bio_sectors(bio)) {
1530 one_write_done(r10_bio);
1531 /* We need another r10_bio. It has already been counted
1532 * in bio->bi_phys_segments.
1533 */
1534 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1535
1536 r10_bio->master_bio = bio;
1537 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1538
1539 r10_bio->mddev = mddev;
1540 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1541 r10_bio->state = 0;
1542 goto retry_write;
1543 }
1544 one_write_done(r10_bio);
1545}
1546
1547static void make_request(struct mddev *mddev, struct bio *bio)
1548{
1549 struct r10conf *conf = mddev->private;
1550 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1551 int chunk_sects = chunk_mask + 1;
1552
1553 struct bio *split;
1554
1555 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1556 md_flush_request(mddev, bio);
1557 return;
1558 }
1559
1560 md_write_start(mddev, bio);
1561
1562
1563 do {
1564
1565 /*
1566 * If this request crosses a chunk boundary, we need to split
1567 * it.
1568 */
1569 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1570 bio_sectors(bio) > chunk_sects
1571 && (conf->geo.near_copies < conf->geo.raid_disks
1572 || conf->prev.near_copies <
1573 conf->prev.raid_disks))) {
1574 split = bio_split(bio, chunk_sects -
1575 (bio->bi_iter.bi_sector &
1576 (chunk_sects - 1)),
1577 GFP_NOIO, fs_bio_set);
1578 bio_chain(split, bio);
1579 } else {
1580 split = bio;
1581 }
1582
1583 __make_request(mddev, split);
1584 } while (split != bio);
1585
1586 /* In case raid10d snuck in to freeze_array */
1587 wake_up(&conf->wait_barrier);
1588}
1589
1590static void status(struct seq_file *seq, struct mddev *mddev)
1591{
1592 struct r10conf *conf = mddev->private;
1593 int i;
1594
1595 if (conf->geo.near_copies < conf->geo.raid_disks)
1596 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1597 if (conf->geo.near_copies > 1)
1598 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1599 if (conf->geo.far_copies > 1) {
1600 if (conf->geo.far_offset)
1601 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1602 else
1603 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1604 }
1605 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606 conf->geo.raid_disks - mddev->degraded);
1607 for (i = 0; i < conf->geo.raid_disks; i++)
1608 seq_printf(seq, "%s",
1609 conf->mirrors[i].rdev &&
1610 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1611 seq_printf(seq, "]");
1612}
1613
1614/* check if there are enough drives for
1615 * every block to appear on atleast one.
1616 * Don't consider the device numbered 'ignore'
1617 * as we might be about to remove it.
1618 */
1619static int _enough(struct r10conf *conf, int previous, int ignore)
1620{
1621 int first = 0;
1622 int has_enough = 0;
1623 int disks, ncopies;
1624 if (previous) {
1625 disks = conf->prev.raid_disks;
1626 ncopies = conf->prev.near_copies;
1627 } else {
1628 disks = conf->geo.raid_disks;
1629 ncopies = conf->geo.near_copies;
1630 }
1631
1632 rcu_read_lock();
1633 do {
1634 int n = conf->copies;
1635 int cnt = 0;
1636 int this = first;
1637 while (n--) {
1638 struct md_rdev *rdev;
1639 if (this != ignore &&
1640 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1641 test_bit(In_sync, &rdev->flags))
1642 cnt++;
1643 this = (this+1) % disks;
1644 }
1645 if (cnt == 0)
1646 goto out;
1647 first = (first + ncopies) % disks;
1648 } while (first != 0);
1649 has_enough = 1;
1650out:
1651 rcu_read_unlock();
1652 return has_enough;
1653}
1654
1655static int enough(struct r10conf *conf, int ignore)
1656{
1657 /* when calling 'enough', both 'prev' and 'geo' must
1658 * be stable.
1659 * This is ensured if ->reconfig_mutex or ->device_lock
1660 * is held.
1661 */
1662 return _enough(conf, 0, ignore) &&
1663 _enough(conf, 1, ignore);
1664}
1665
1666static void error(struct mddev *mddev, struct md_rdev *rdev)
1667{
1668 char b[BDEVNAME_SIZE];
1669 struct r10conf *conf = mddev->private;
1670 unsigned long flags;
1671
1672 /*
1673 * If it is not operational, then we have already marked it as dead
1674 * else if it is the last working disks, ignore the error, let the
1675 * next level up know.
1676 * else mark the drive as failed
1677 */
1678 spin_lock_irqsave(&conf->device_lock, flags);
1679 if (test_bit(In_sync, &rdev->flags)
1680 && !enough(conf, rdev->raid_disk)) {
1681 /*
1682 * Don't fail the drive, just return an IO error.
1683 */
1684 spin_unlock_irqrestore(&conf->device_lock, flags);
1685 return;
1686 }
1687 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1688 mddev->degraded++;
1689 /*
1690 * if recovery is running, make sure it aborts.
1691 */
1692 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1693 }
1694 set_bit(Blocked, &rdev->flags);
1695 set_bit(Faulty, &rdev->flags);
1696 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1697 spin_unlock_irqrestore(&conf->device_lock, flags);
1698 printk(KERN_ALERT
1699 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1700 "md/raid10:%s: Operation continuing on %d devices.\n",
1701 mdname(mddev), bdevname(rdev->bdev, b),
1702 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1703}
1704
1705static void print_conf(struct r10conf *conf)
1706{
1707 int i;
1708 struct raid10_info *tmp;
1709
1710 printk(KERN_DEBUG "RAID10 conf printout:\n");
1711 if (!conf) {
1712 printk(KERN_DEBUG "(!conf)\n");
1713 return;
1714 }
1715 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1716 conf->geo.raid_disks);
1717
1718 for (i = 0; i < conf->geo.raid_disks; i++) {
1719 char b[BDEVNAME_SIZE];
1720 tmp = conf->mirrors + i;
1721 if (tmp->rdev)
1722 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1723 i, !test_bit(In_sync, &tmp->rdev->flags),
1724 !test_bit(Faulty, &tmp->rdev->flags),
1725 bdevname(tmp->rdev->bdev,b));
1726 }
1727}
1728
1729static void close_sync(struct r10conf *conf)
1730{
1731 wait_barrier(conf);
1732 allow_barrier(conf);
1733
1734 mempool_destroy(conf->r10buf_pool);
1735 conf->r10buf_pool = NULL;
1736}
1737
1738static int raid10_spare_active(struct mddev *mddev)
1739{
1740 int i;
1741 struct r10conf *conf = mddev->private;
1742 struct raid10_info *tmp;
1743 int count = 0;
1744 unsigned long flags;
1745
1746 /*
1747 * Find all non-in_sync disks within the RAID10 configuration
1748 * and mark them in_sync
1749 */
1750 for (i = 0; i < conf->geo.raid_disks; i++) {
1751 tmp = conf->mirrors + i;
1752 if (tmp->replacement
1753 && tmp->replacement->recovery_offset == MaxSector
1754 && !test_bit(Faulty, &tmp->replacement->flags)
1755 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1756 /* Replacement has just become active */
1757 if (!tmp->rdev
1758 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1759 count++;
1760 if (tmp->rdev) {
1761 /* Replaced device not technically faulty,
1762 * but we need to be sure it gets removed
1763 * and never re-added.
1764 */
1765 set_bit(Faulty, &tmp->rdev->flags);
1766 sysfs_notify_dirent_safe(
1767 tmp->rdev->sysfs_state);
1768 }
1769 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1770 } else if (tmp->rdev
1771 && tmp->rdev->recovery_offset == MaxSector
1772 && !test_bit(Faulty, &tmp->rdev->flags)
1773 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1774 count++;
1775 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1776 }
1777 }
1778 spin_lock_irqsave(&conf->device_lock, flags);
1779 mddev->degraded -= count;
1780 spin_unlock_irqrestore(&conf->device_lock, flags);
1781
1782 print_conf(conf);
1783 return count;
1784}
1785
1786
1787static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1788{
1789 struct r10conf *conf = mddev->private;
1790 int err = -EEXIST;
1791 int mirror;
1792 int first = 0;
1793 int last = conf->geo.raid_disks - 1;
1794 struct request_queue *q = bdev_get_queue(rdev->bdev);
1795
1796 if (mddev->recovery_cp < MaxSector)
1797 /* only hot-add to in-sync arrays, as recovery is
1798 * very different from resync
1799 */
1800 return -EBUSY;
1801 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1802 return -EINVAL;
1803
1804 if (rdev->raid_disk >= 0)
1805 first = last = rdev->raid_disk;
1806
1807 if (q->merge_bvec_fn) {
1808 set_bit(Unmerged, &rdev->flags);
1809 mddev->merge_check_needed = 1;
1810 }
1811
1812 if (rdev->saved_raid_disk >= first &&
1813 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1814 mirror = rdev->saved_raid_disk;
1815 else
1816 mirror = first;
1817 for ( ; mirror <= last ; mirror++) {
1818 struct raid10_info *p = &conf->mirrors[mirror];
1819 if (p->recovery_disabled == mddev->recovery_disabled)
1820 continue;
1821 if (p->rdev) {
1822 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1823 p->replacement != NULL)
1824 continue;
1825 clear_bit(In_sync, &rdev->flags);
1826 set_bit(Replacement, &rdev->flags);
1827 rdev->raid_disk = mirror;
1828 err = 0;
1829 if (mddev->gendisk)
1830 disk_stack_limits(mddev->gendisk, rdev->bdev,
1831 rdev->data_offset << 9);
1832 conf->fullsync = 1;
1833 rcu_assign_pointer(p->replacement, rdev);
1834 break;
1835 }
1836
1837 if (mddev->gendisk)
1838 disk_stack_limits(mddev->gendisk, rdev->bdev,
1839 rdev->data_offset << 9);
1840
1841 p->head_position = 0;
1842 p->recovery_disabled = mddev->recovery_disabled - 1;
1843 rdev->raid_disk = mirror;
1844 err = 0;
1845 if (rdev->saved_raid_disk != mirror)
1846 conf->fullsync = 1;
1847 rcu_assign_pointer(p->rdev, rdev);
1848 break;
1849 }
1850 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1851 /* Some requests might not have seen this new
1852 * merge_bvec_fn. We must wait for them to complete
1853 * before merging the device fully.
1854 * First we make sure any code which has tested
1855 * our function has submitted the request, then
1856 * we wait for all outstanding requests to complete.
1857 */
1858 synchronize_sched();
1859 freeze_array(conf, 0);
1860 unfreeze_array(conf);
1861 clear_bit(Unmerged, &rdev->flags);
1862 }
1863 md_integrity_add_rdev(rdev, mddev);
1864 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1865 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1866
1867 print_conf(conf);
1868 return err;
1869}
1870
1871static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1872{
1873 struct r10conf *conf = mddev->private;
1874 int err = 0;
1875 int number = rdev->raid_disk;
1876 struct md_rdev **rdevp;
1877 struct raid10_info *p = conf->mirrors + number;
1878
1879 print_conf(conf);
1880 if (rdev == p->rdev)
1881 rdevp = &p->rdev;
1882 else if (rdev == p->replacement)
1883 rdevp = &p->replacement;
1884 else
1885 return 0;
1886
1887 if (test_bit(In_sync, &rdev->flags) ||
1888 atomic_read(&rdev->nr_pending)) {
1889 err = -EBUSY;
1890 goto abort;
1891 }
1892 /* Only remove faulty devices if recovery
1893 * is not possible.
1894 */
1895 if (!test_bit(Faulty, &rdev->flags) &&
1896 mddev->recovery_disabled != p->recovery_disabled &&
1897 (!p->replacement || p->replacement == rdev) &&
1898 number < conf->geo.raid_disks &&
1899 enough(conf, -1)) {
1900 err = -EBUSY;
1901 goto abort;
1902 }
1903 *rdevp = NULL;
1904 synchronize_rcu();
1905 if (atomic_read(&rdev->nr_pending)) {
1906 /* lost the race, try later */
1907 err = -EBUSY;
1908 *rdevp = rdev;
1909 goto abort;
1910 } else if (p->replacement) {
1911 /* We must have just cleared 'rdev' */
1912 p->rdev = p->replacement;
1913 clear_bit(Replacement, &p->replacement->flags);
1914 smp_mb(); /* Make sure other CPUs may see both as identical
1915 * but will never see neither -- if they are careful.
1916 */
1917 p->replacement = NULL;
1918 clear_bit(WantReplacement, &rdev->flags);
1919 } else
1920 /* We might have just remove the Replacement as faulty
1921 * Clear the flag just in case
1922 */
1923 clear_bit(WantReplacement, &rdev->flags);
1924
1925 err = md_integrity_register(mddev);
1926
1927abort:
1928
1929 print_conf(conf);
1930 return err;
1931}
1932
1933
1934static void end_sync_read(struct bio *bio, int error)
1935{
1936 struct r10bio *r10_bio = bio->bi_private;
1937 struct r10conf *conf = r10_bio->mddev->private;
1938 int d;
1939
1940 if (bio == r10_bio->master_bio) {
1941 /* this is a reshape read */
1942 d = r10_bio->read_slot; /* really the read dev */
1943 } else
1944 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1945
1946 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1947 set_bit(R10BIO_Uptodate, &r10_bio->state);
1948 else
1949 /* The write handler will notice the lack of
1950 * R10BIO_Uptodate and record any errors etc
1951 */
1952 atomic_add(r10_bio->sectors,
1953 &conf->mirrors[d].rdev->corrected_errors);
1954
1955 /* for reconstruct, we always reschedule after a read.
1956 * for resync, only after all reads
1957 */
1958 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1959 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1960 atomic_dec_and_test(&r10_bio->remaining)) {
1961 /* we have read all the blocks,
1962 * do the comparison in process context in raid10d
1963 */
1964 reschedule_retry(r10_bio);
1965 }
1966}
1967
1968static void end_sync_request(struct r10bio *r10_bio)
1969{
1970 struct mddev *mddev = r10_bio->mddev;
1971
1972 while (atomic_dec_and_test(&r10_bio->remaining)) {
1973 if (r10_bio->master_bio == NULL) {
1974 /* the primary of several recovery bios */
1975 sector_t s = r10_bio->sectors;
1976 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1977 test_bit(R10BIO_WriteError, &r10_bio->state))
1978 reschedule_retry(r10_bio);
1979 else
1980 put_buf(r10_bio);
1981 md_done_sync(mddev, s, 1);
1982 break;
1983 } else {
1984 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1985 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1986 test_bit(R10BIO_WriteError, &r10_bio->state))
1987 reschedule_retry(r10_bio);
1988 else
1989 put_buf(r10_bio);
1990 r10_bio = r10_bio2;
1991 }
1992 }
1993}
1994
1995static void end_sync_write(struct bio *bio, int error)
1996{
1997 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1998 struct r10bio *r10_bio = bio->bi_private;
1999 struct mddev *mddev = r10_bio->mddev;
2000 struct r10conf *conf = mddev->private;
2001 int d;
2002 sector_t first_bad;
2003 int bad_sectors;
2004 int slot;
2005 int repl;
2006 struct md_rdev *rdev = NULL;
2007
2008 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2009 if (repl)
2010 rdev = conf->mirrors[d].replacement;
2011 else
2012 rdev = conf->mirrors[d].rdev;
2013
2014 if (!uptodate) {
2015 if (repl)
2016 md_error(mddev, rdev);
2017 else {
2018 set_bit(WriteErrorSeen, &rdev->flags);
2019 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2020 set_bit(MD_RECOVERY_NEEDED,
2021 &rdev->mddev->recovery);
2022 set_bit(R10BIO_WriteError, &r10_bio->state);
2023 }
2024 } else if (is_badblock(rdev,
2025 r10_bio->devs[slot].addr,
2026 r10_bio->sectors,
2027 &first_bad, &bad_sectors))
2028 set_bit(R10BIO_MadeGood, &r10_bio->state);
2029
2030 rdev_dec_pending(rdev, mddev);
2031
2032 end_sync_request(r10_bio);
2033}
2034
2035/*
2036 * Note: sync and recover and handled very differently for raid10
2037 * This code is for resync.
2038 * For resync, we read through virtual addresses and read all blocks.
2039 * If there is any error, we schedule a write. The lowest numbered
2040 * drive is authoritative.
2041 * However requests come for physical address, so we need to map.
2042 * For every physical address there are raid_disks/copies virtual addresses,
2043 * which is always are least one, but is not necessarly an integer.
2044 * This means that a physical address can span multiple chunks, so we may
2045 * have to submit multiple io requests for a single sync request.
2046 */
2047/*
2048 * We check if all blocks are in-sync and only write to blocks that
2049 * aren't in sync
2050 */
2051static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2052{
2053 struct r10conf *conf = mddev->private;
2054 int i, first;
2055 struct bio *tbio, *fbio;
2056 int vcnt;
2057
2058 atomic_set(&r10_bio->remaining, 1);
2059
2060 /* find the first device with a block */
2061 for (i=0; i<conf->copies; i++)
2062 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2063 break;
2064
2065 if (i == conf->copies)
2066 goto done;
2067
2068 first = i;
2069 fbio = r10_bio->devs[i].bio;
2070
2071 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2072 /* now find blocks with errors */
2073 for (i=0 ; i < conf->copies ; i++) {
2074 int j, d;
2075
2076 tbio = r10_bio->devs[i].bio;
2077
2078 if (tbio->bi_end_io != end_sync_read)
2079 continue;
2080 if (i == first)
2081 continue;
2082 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2083 /* We know that the bi_io_vec layout is the same for
2084 * both 'first' and 'i', so we just compare them.
2085 * All vec entries are PAGE_SIZE;
2086 */
2087 int sectors = r10_bio->sectors;
2088 for (j = 0; j < vcnt; j++) {
2089 int len = PAGE_SIZE;
2090 if (sectors < (len / 512))
2091 len = sectors * 512;
2092 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2093 page_address(tbio->bi_io_vec[j].bv_page),
2094 len))
2095 break;
2096 sectors -= len/512;
2097 }
2098 if (j == vcnt)
2099 continue;
2100 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2101 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2102 /* Don't fix anything. */
2103 continue;
2104 }
2105 /* Ok, we need to write this bio, either to correct an
2106 * inconsistency or to correct an unreadable block.
2107 * First we need to fixup bv_offset, bv_len and
2108 * bi_vecs, as the read request might have corrupted these
2109 */
2110 bio_reset(tbio);
2111
2112 tbio->bi_vcnt = vcnt;
2113 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2114 tbio->bi_rw = WRITE;
2115 tbio->bi_private = r10_bio;
2116 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2117
2118 for (j=0; j < vcnt ; j++) {
2119 tbio->bi_io_vec[j].bv_offset = 0;
2120 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2121
2122 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2123 page_address(fbio->bi_io_vec[j].bv_page),
2124 PAGE_SIZE);
2125 }
2126 tbio->bi_end_io = end_sync_write;
2127
2128 d = r10_bio->devs[i].devnum;
2129 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2130 atomic_inc(&r10_bio->remaining);
2131 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2132
2133 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2134 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2135 generic_make_request(tbio);
2136 }
2137
2138 /* Now write out to any replacement devices
2139 * that are active
2140 */
2141 for (i = 0; i < conf->copies; i++) {
2142 int j, d;
2143
2144 tbio = r10_bio->devs[i].repl_bio;
2145 if (!tbio || !tbio->bi_end_io)
2146 continue;
2147 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2148 && r10_bio->devs[i].bio != fbio)
2149 for (j = 0; j < vcnt; j++)
2150 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2151 page_address(fbio->bi_io_vec[j].bv_page),
2152 PAGE_SIZE);
2153 d = r10_bio->devs[i].devnum;
2154 atomic_inc(&r10_bio->remaining);
2155 md_sync_acct(conf->mirrors[d].replacement->bdev,
2156 bio_sectors(tbio));
2157 generic_make_request(tbio);
2158 }
2159
2160done:
2161 if (atomic_dec_and_test(&r10_bio->remaining)) {
2162 md_done_sync(mddev, r10_bio->sectors, 1);
2163 put_buf(r10_bio);
2164 }
2165}
2166
2167/*
2168 * Now for the recovery code.
2169 * Recovery happens across physical sectors.
2170 * We recover all non-is_sync drives by finding the virtual address of
2171 * each, and then choose a working drive that also has that virt address.
2172 * There is a separate r10_bio for each non-in_sync drive.
2173 * Only the first two slots are in use. The first for reading,
2174 * The second for writing.
2175 *
2176 */
2177static void fix_recovery_read_error(struct r10bio *r10_bio)
2178{
2179 /* We got a read error during recovery.
2180 * We repeat the read in smaller page-sized sections.
2181 * If a read succeeds, write it to the new device or record
2182 * a bad block if we cannot.
2183 * If a read fails, record a bad block on both old and
2184 * new devices.
2185 */
2186 struct mddev *mddev = r10_bio->mddev;
2187 struct r10conf *conf = mddev->private;
2188 struct bio *bio = r10_bio->devs[0].bio;
2189 sector_t sect = 0;
2190 int sectors = r10_bio->sectors;
2191 int idx = 0;
2192 int dr = r10_bio->devs[0].devnum;
2193 int dw = r10_bio->devs[1].devnum;
2194
2195 while (sectors) {
2196 int s = sectors;
2197 struct md_rdev *rdev;
2198 sector_t addr;
2199 int ok;
2200
2201 if (s > (PAGE_SIZE>>9))
2202 s = PAGE_SIZE >> 9;
2203
2204 rdev = conf->mirrors[dr].rdev;
2205 addr = r10_bio->devs[0].addr + sect,
2206 ok = sync_page_io(rdev,
2207 addr,
2208 s << 9,
2209 bio->bi_io_vec[idx].bv_page,
2210 READ, false);
2211 if (ok) {
2212 rdev = conf->mirrors[dw].rdev;
2213 addr = r10_bio->devs[1].addr + sect;
2214 ok = sync_page_io(rdev,
2215 addr,
2216 s << 9,
2217 bio->bi_io_vec[idx].bv_page,
2218 WRITE, false);
2219 if (!ok) {
2220 set_bit(WriteErrorSeen, &rdev->flags);
2221 if (!test_and_set_bit(WantReplacement,
2222 &rdev->flags))
2223 set_bit(MD_RECOVERY_NEEDED,
2224 &rdev->mddev->recovery);
2225 }
2226 }
2227 if (!ok) {
2228 /* We don't worry if we cannot set a bad block -
2229 * it really is bad so there is no loss in not
2230 * recording it yet
2231 */
2232 rdev_set_badblocks(rdev, addr, s, 0);
2233
2234 if (rdev != conf->mirrors[dw].rdev) {
2235 /* need bad block on destination too */
2236 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2237 addr = r10_bio->devs[1].addr + sect;
2238 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2239 if (!ok) {
2240 /* just abort the recovery */
2241 printk(KERN_NOTICE
2242 "md/raid10:%s: recovery aborted"
2243 " due to read error\n",
2244 mdname(mddev));
2245
2246 conf->mirrors[dw].recovery_disabled
2247 = mddev->recovery_disabled;
2248 set_bit(MD_RECOVERY_INTR,
2249 &mddev->recovery);
2250 break;
2251 }
2252 }
2253 }
2254
2255 sectors -= s;
2256 sect += s;
2257 idx++;
2258 }
2259}
2260
2261static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2262{
2263 struct r10conf *conf = mddev->private;
2264 int d;
2265 struct bio *wbio, *wbio2;
2266
2267 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2268 fix_recovery_read_error(r10_bio);
2269 end_sync_request(r10_bio);
2270 return;
2271 }
2272
2273 /*
2274 * share the pages with the first bio
2275 * and submit the write request
2276 */
2277 d = r10_bio->devs[1].devnum;
2278 wbio = r10_bio->devs[1].bio;
2279 wbio2 = r10_bio->devs[1].repl_bio;
2280 /* Need to test wbio2->bi_end_io before we call
2281 * generic_make_request as if the former is NULL,
2282 * the latter is free to free wbio2.
2283 */
2284 if (wbio2 && !wbio2->bi_end_io)
2285 wbio2 = NULL;
2286 if (wbio->bi_end_io) {
2287 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2288 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2289 generic_make_request(wbio);
2290 }
2291 if (wbio2) {
2292 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2293 md_sync_acct(conf->mirrors[d].replacement->bdev,
2294 bio_sectors(wbio2));
2295 generic_make_request(wbio2);
2296 }
2297}
2298
2299
2300/*
2301 * Used by fix_read_error() to decay the per rdev read_errors.
2302 * We halve the read error count for every hour that has elapsed
2303 * since the last recorded read error.
2304 *
2305 */
2306static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2307{
2308 struct timespec cur_time_mon;
2309 unsigned long hours_since_last;
2310 unsigned int read_errors = atomic_read(&rdev->read_errors);
2311
2312 ktime_get_ts(&cur_time_mon);
2313
2314 if (rdev->last_read_error.tv_sec == 0 &&
2315 rdev->last_read_error.tv_nsec == 0) {
2316 /* first time we've seen a read error */
2317 rdev->last_read_error = cur_time_mon;
2318 return;
2319 }
2320
2321 hours_since_last = (cur_time_mon.tv_sec -
2322 rdev->last_read_error.tv_sec) / 3600;
2323
2324 rdev->last_read_error = cur_time_mon;
2325
2326 /*
2327 * if hours_since_last is > the number of bits in read_errors
2328 * just set read errors to 0. We do this to avoid
2329 * overflowing the shift of read_errors by hours_since_last.
2330 */
2331 if (hours_since_last >= 8 * sizeof(read_errors))
2332 atomic_set(&rdev->read_errors, 0);
2333 else
2334 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2335}
2336
2337static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2338 int sectors, struct page *page, int rw)
2339{
2340 sector_t first_bad;
2341 int bad_sectors;
2342
2343 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2344 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2345 return -1;
2346 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2347 /* success */
2348 return 1;
2349 if (rw == WRITE) {
2350 set_bit(WriteErrorSeen, &rdev->flags);
2351 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2352 set_bit(MD_RECOVERY_NEEDED,
2353 &rdev->mddev->recovery);
2354 }
2355 /* need to record an error - either for the block or the device */
2356 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2357 md_error(rdev->mddev, rdev);
2358 return 0;
2359}
2360
2361/*
2362 * This is a kernel thread which:
2363 *
2364 * 1. Retries failed read operations on working mirrors.
2365 * 2. Updates the raid superblock when problems encounter.
2366 * 3. Performs writes following reads for array synchronising.
2367 */
2368
2369static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2370{
2371 int sect = 0; /* Offset from r10_bio->sector */
2372 int sectors = r10_bio->sectors;
2373 struct md_rdev*rdev;
2374 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2375 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2376
2377 /* still own a reference to this rdev, so it cannot
2378 * have been cleared recently.
2379 */
2380 rdev = conf->mirrors[d].rdev;
2381
2382 if (test_bit(Faulty, &rdev->flags))
2383 /* drive has already been failed, just ignore any
2384 more fix_read_error() attempts */
2385 return;
2386
2387 check_decay_read_errors(mddev, rdev);
2388 atomic_inc(&rdev->read_errors);
2389 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2390 char b[BDEVNAME_SIZE];
2391 bdevname(rdev->bdev, b);
2392
2393 printk(KERN_NOTICE
2394 "md/raid10:%s: %s: Raid device exceeded "
2395 "read_error threshold [cur %d:max %d]\n",
2396 mdname(mddev), b,
2397 atomic_read(&rdev->read_errors), max_read_errors);
2398 printk(KERN_NOTICE
2399 "md/raid10:%s: %s: Failing raid device\n",
2400 mdname(mddev), b);
2401 md_error(mddev, conf->mirrors[d].rdev);
2402 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2403 return;
2404 }
2405
2406 while(sectors) {
2407 int s = sectors;
2408 int sl = r10_bio->read_slot;
2409 int success = 0;
2410 int start;
2411
2412 if (s > (PAGE_SIZE>>9))
2413 s = PAGE_SIZE >> 9;
2414
2415 rcu_read_lock();
2416 do {
2417 sector_t first_bad;
2418 int bad_sectors;
2419
2420 d = r10_bio->devs[sl].devnum;
2421 rdev = rcu_dereference(conf->mirrors[d].rdev);
2422 if (rdev &&
2423 !test_bit(Unmerged, &rdev->flags) &&
2424 test_bit(In_sync, &rdev->flags) &&
2425 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2426 &first_bad, &bad_sectors) == 0) {
2427 atomic_inc(&rdev->nr_pending);
2428 rcu_read_unlock();
2429 success = sync_page_io(rdev,
2430 r10_bio->devs[sl].addr +
2431 sect,
2432 s<<9,
2433 conf->tmppage, READ, false);
2434 rdev_dec_pending(rdev, mddev);
2435 rcu_read_lock();
2436 if (success)
2437 break;
2438 }
2439 sl++;
2440 if (sl == conf->copies)
2441 sl = 0;
2442 } while (!success && sl != r10_bio->read_slot);
2443 rcu_read_unlock();
2444
2445 if (!success) {
2446 /* Cannot read from anywhere, just mark the block
2447 * as bad on the first device to discourage future
2448 * reads.
2449 */
2450 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2451 rdev = conf->mirrors[dn].rdev;
2452
2453 if (!rdev_set_badblocks(
2454 rdev,
2455 r10_bio->devs[r10_bio->read_slot].addr
2456 + sect,
2457 s, 0)) {
2458 md_error(mddev, rdev);
2459 r10_bio->devs[r10_bio->read_slot].bio
2460 = IO_BLOCKED;
2461 }
2462 break;
2463 }
2464
2465 start = sl;
2466 /* write it back and re-read */
2467 rcu_read_lock();
2468 while (sl != r10_bio->read_slot) {
2469 char b[BDEVNAME_SIZE];
2470
2471 if (sl==0)
2472 sl = conf->copies;
2473 sl--;
2474 d = r10_bio->devs[sl].devnum;
2475 rdev = rcu_dereference(conf->mirrors[d].rdev);
2476 if (!rdev ||
2477 test_bit(Unmerged, &rdev->flags) ||
2478 !test_bit(In_sync, &rdev->flags))
2479 continue;
2480
2481 atomic_inc(&rdev->nr_pending);
2482 rcu_read_unlock();
2483 if (r10_sync_page_io(rdev,
2484 r10_bio->devs[sl].addr +
2485 sect,
2486 s, conf->tmppage, WRITE)
2487 == 0) {
2488 /* Well, this device is dead */
2489 printk(KERN_NOTICE
2490 "md/raid10:%s: read correction "
2491 "write failed"
2492 " (%d sectors at %llu on %s)\n",
2493 mdname(mddev), s,
2494 (unsigned long long)(
2495 sect +
2496 choose_data_offset(r10_bio,
2497 rdev)),
2498 bdevname(rdev->bdev, b));
2499 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2500 "drive\n",
2501 mdname(mddev),
2502 bdevname(rdev->bdev, b));
2503 }
2504 rdev_dec_pending(rdev, mddev);
2505 rcu_read_lock();
2506 }
2507 sl = start;
2508 while (sl != r10_bio->read_slot) {
2509 char b[BDEVNAME_SIZE];
2510
2511 if (sl==0)
2512 sl = conf->copies;
2513 sl--;
2514 d = r10_bio->devs[sl].devnum;
2515 rdev = rcu_dereference(conf->mirrors[d].rdev);
2516 if (!rdev ||
2517 !test_bit(In_sync, &rdev->flags))
2518 continue;
2519
2520 atomic_inc(&rdev->nr_pending);
2521 rcu_read_unlock();
2522 switch (r10_sync_page_io(rdev,
2523 r10_bio->devs[sl].addr +
2524 sect,
2525 s, conf->tmppage,
2526 READ)) {
2527 case 0:
2528 /* Well, this device is dead */
2529 printk(KERN_NOTICE
2530 "md/raid10:%s: unable to read back "
2531 "corrected sectors"
2532 " (%d sectors at %llu on %s)\n",
2533 mdname(mddev), s,
2534 (unsigned long long)(
2535 sect +
2536 choose_data_offset(r10_bio, rdev)),
2537 bdevname(rdev->bdev, b));
2538 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2539 "drive\n",
2540 mdname(mddev),
2541 bdevname(rdev->bdev, b));
2542 break;
2543 case 1:
2544 printk(KERN_INFO
2545 "md/raid10:%s: read error corrected"
2546 " (%d sectors at %llu on %s)\n",
2547 mdname(mddev), s,
2548 (unsigned long long)(
2549 sect +
2550 choose_data_offset(r10_bio, rdev)),
2551 bdevname(rdev->bdev, b));
2552 atomic_add(s, &rdev->corrected_errors);
2553 }
2554
2555 rdev_dec_pending(rdev, mddev);
2556 rcu_read_lock();
2557 }
2558 rcu_read_unlock();
2559
2560 sectors -= s;
2561 sect += s;
2562 }
2563}
2564
2565static int narrow_write_error(struct r10bio *r10_bio, int i)
2566{
2567 struct bio *bio = r10_bio->master_bio;
2568 struct mddev *mddev = r10_bio->mddev;
2569 struct r10conf *conf = mddev->private;
2570 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2571 /* bio has the data to be written to slot 'i' where
2572 * we just recently had a write error.
2573 * We repeatedly clone the bio and trim down to one block,
2574 * then try the write. Where the write fails we record
2575 * a bad block.
2576 * It is conceivable that the bio doesn't exactly align with
2577 * blocks. We must handle this.
2578 *
2579 * We currently own a reference to the rdev.
2580 */
2581
2582 int block_sectors;
2583 sector_t sector;
2584 int sectors;
2585 int sect_to_write = r10_bio->sectors;
2586 int ok = 1;
2587
2588 if (rdev->badblocks.shift < 0)
2589 return 0;
2590
2591 block_sectors = 1 << rdev->badblocks.shift;
2592 sector = r10_bio->sector;
2593 sectors = ((r10_bio->sector + block_sectors)
2594 & ~(sector_t)(block_sectors - 1))
2595 - sector;
2596
2597 while (sect_to_write) {
2598 struct bio *wbio;
2599 if (sectors > sect_to_write)
2600 sectors = sect_to_write;
2601 /* Write at 'sector' for 'sectors' */
2602 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2603 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2604 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2605 choose_data_offset(r10_bio, rdev) +
2606 (sector - r10_bio->sector));
2607 wbio->bi_bdev = rdev->bdev;
2608 if (submit_bio_wait(WRITE, wbio) == 0)
2609 /* Failure! */
2610 ok = rdev_set_badblocks(rdev, sector,
2611 sectors, 0)
2612 && ok;
2613
2614 bio_put(wbio);
2615 sect_to_write -= sectors;
2616 sector += sectors;
2617 sectors = block_sectors;
2618 }
2619 return ok;
2620}
2621
2622static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2623{
2624 int slot = r10_bio->read_slot;
2625 struct bio *bio;
2626 struct r10conf *conf = mddev->private;
2627 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2628 char b[BDEVNAME_SIZE];
2629 unsigned long do_sync;
2630 int max_sectors;
2631
2632 /* we got a read error. Maybe the drive is bad. Maybe just
2633 * the block and we can fix it.
2634 * We freeze all other IO, and try reading the block from
2635 * other devices. When we find one, we re-write
2636 * and check it that fixes the read error.
2637 * This is all done synchronously while the array is
2638 * frozen.
2639 */
2640 bio = r10_bio->devs[slot].bio;
2641 bdevname(bio->bi_bdev, b);
2642 bio_put(bio);
2643 r10_bio->devs[slot].bio = NULL;
2644
2645 if (mddev->ro == 0) {
2646 freeze_array(conf, 1);
2647 fix_read_error(conf, mddev, r10_bio);
2648 unfreeze_array(conf);
2649 } else
2650 r10_bio->devs[slot].bio = IO_BLOCKED;
2651
2652 rdev_dec_pending(rdev, mddev);
2653
2654read_more:
2655 rdev = read_balance(conf, r10_bio, &max_sectors);
2656 if (rdev == NULL) {
2657 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2658 " read error for block %llu\n",
2659 mdname(mddev), b,
2660 (unsigned long long)r10_bio->sector);
2661 raid_end_bio_io(r10_bio);
2662 return;
2663 }
2664
2665 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2666 slot = r10_bio->read_slot;
2667 printk_ratelimited(
2668 KERN_ERR
2669 "md/raid10:%s: %s: redirecting "
2670 "sector %llu to another mirror\n",
2671 mdname(mddev),
2672 bdevname(rdev->bdev, b),
2673 (unsigned long long)r10_bio->sector);
2674 bio = bio_clone_mddev(r10_bio->master_bio,
2675 GFP_NOIO, mddev);
2676 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2677 r10_bio->devs[slot].bio = bio;
2678 r10_bio->devs[slot].rdev = rdev;
2679 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2680 + choose_data_offset(r10_bio, rdev);
2681 bio->bi_bdev = rdev->bdev;
2682 bio->bi_rw = READ | do_sync;
2683 bio->bi_private = r10_bio;
2684 bio->bi_end_io = raid10_end_read_request;
2685 if (max_sectors < r10_bio->sectors) {
2686 /* Drat - have to split this up more */
2687 struct bio *mbio = r10_bio->master_bio;
2688 int sectors_handled =
2689 r10_bio->sector + max_sectors
2690 - mbio->bi_iter.bi_sector;
2691 r10_bio->sectors = max_sectors;
2692 spin_lock_irq(&conf->device_lock);
2693 if (mbio->bi_phys_segments == 0)
2694 mbio->bi_phys_segments = 2;
2695 else
2696 mbio->bi_phys_segments++;
2697 spin_unlock_irq(&conf->device_lock);
2698 generic_make_request(bio);
2699
2700 r10_bio = mempool_alloc(conf->r10bio_pool,
2701 GFP_NOIO);
2702 r10_bio->master_bio = mbio;
2703 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2704 r10_bio->state = 0;
2705 set_bit(R10BIO_ReadError,
2706 &r10_bio->state);
2707 r10_bio->mddev = mddev;
2708 r10_bio->sector = mbio->bi_iter.bi_sector
2709 + sectors_handled;
2710
2711 goto read_more;
2712 } else
2713 generic_make_request(bio);
2714}
2715
2716static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2717{
2718 /* Some sort of write request has finished and it
2719 * succeeded in writing where we thought there was a
2720 * bad block. So forget the bad block.
2721 * Or possibly if failed and we need to record
2722 * a bad block.
2723 */
2724 int m;
2725 struct md_rdev *rdev;
2726
2727 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2728 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2729 for (m = 0; m < conf->copies; m++) {
2730 int dev = r10_bio->devs[m].devnum;
2731 rdev = conf->mirrors[dev].rdev;
2732 if (r10_bio->devs[m].bio == NULL)
2733 continue;
2734 if (test_bit(BIO_UPTODATE,
2735 &r10_bio->devs[m].bio->bi_flags)) {
2736 rdev_clear_badblocks(
2737 rdev,
2738 r10_bio->devs[m].addr,
2739 r10_bio->sectors, 0);
2740 } else {
2741 if (!rdev_set_badblocks(
2742 rdev,
2743 r10_bio->devs[m].addr,
2744 r10_bio->sectors, 0))
2745 md_error(conf->mddev, rdev);
2746 }
2747 rdev = conf->mirrors[dev].replacement;
2748 if (r10_bio->devs[m].repl_bio == NULL)
2749 continue;
2750 if (test_bit(BIO_UPTODATE,
2751 &r10_bio->devs[m].repl_bio->bi_flags)) {
2752 rdev_clear_badblocks(
2753 rdev,
2754 r10_bio->devs[m].addr,
2755 r10_bio->sectors, 0);
2756 } else {
2757 if (!rdev_set_badblocks(
2758 rdev,
2759 r10_bio->devs[m].addr,
2760 r10_bio->sectors, 0))
2761 md_error(conf->mddev, rdev);
2762 }
2763 }
2764 put_buf(r10_bio);
2765 } else {
2766 for (m = 0; m < conf->copies; m++) {
2767 int dev = r10_bio->devs[m].devnum;
2768 struct bio *bio = r10_bio->devs[m].bio;
2769 rdev = conf->mirrors[dev].rdev;
2770 if (bio == IO_MADE_GOOD) {
2771 rdev_clear_badblocks(
2772 rdev,
2773 r10_bio->devs[m].addr,
2774 r10_bio->sectors, 0);
2775 rdev_dec_pending(rdev, conf->mddev);
2776 } else if (bio != NULL &&
2777 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2778 if (!narrow_write_error(r10_bio, m)) {
2779 md_error(conf->mddev, rdev);
2780 set_bit(R10BIO_Degraded,
2781 &r10_bio->state);
2782 }
2783 rdev_dec_pending(rdev, conf->mddev);
2784 }
2785 bio = r10_bio->devs[m].repl_bio;
2786 rdev = conf->mirrors[dev].replacement;
2787 if (rdev && bio == IO_MADE_GOOD) {
2788 rdev_clear_badblocks(
2789 rdev,
2790 r10_bio->devs[m].addr,
2791 r10_bio->sectors, 0);
2792 rdev_dec_pending(rdev, conf->mddev);
2793 }
2794 }
2795 if (test_bit(R10BIO_WriteError,
2796 &r10_bio->state))
2797 close_write(r10_bio);
2798 raid_end_bio_io(r10_bio);
2799 }
2800}
2801
2802static void raid10d(struct md_thread *thread)
2803{
2804 struct mddev *mddev = thread->mddev;
2805 struct r10bio *r10_bio;
2806 unsigned long flags;
2807 struct r10conf *conf = mddev->private;
2808 struct list_head *head = &conf->retry_list;
2809 struct blk_plug plug;
2810
2811 md_check_recovery(mddev);
2812
2813 blk_start_plug(&plug);
2814 for (;;) {
2815
2816 flush_pending_writes(conf);
2817
2818 spin_lock_irqsave(&conf->device_lock, flags);
2819 if (list_empty(head)) {
2820 spin_unlock_irqrestore(&conf->device_lock, flags);
2821 break;
2822 }
2823 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2824 list_del(head->prev);
2825 conf->nr_queued--;
2826 spin_unlock_irqrestore(&conf->device_lock, flags);
2827
2828 mddev = r10_bio->mddev;
2829 conf = mddev->private;
2830 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2831 test_bit(R10BIO_WriteError, &r10_bio->state))
2832 handle_write_completed(conf, r10_bio);
2833 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2834 reshape_request_write(mddev, r10_bio);
2835 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2836 sync_request_write(mddev, r10_bio);
2837 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2838 recovery_request_write(mddev, r10_bio);
2839 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2840 handle_read_error(mddev, r10_bio);
2841 else {
2842 /* just a partial read to be scheduled from a
2843 * separate context
2844 */
2845 int slot = r10_bio->read_slot;
2846 generic_make_request(r10_bio->devs[slot].bio);
2847 }
2848
2849 cond_resched();
2850 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2851 md_check_recovery(mddev);
2852 }
2853 blk_finish_plug(&plug);
2854}
2855
2856
2857static int init_resync(struct r10conf *conf)
2858{
2859 int buffs;
2860 int i;
2861
2862 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2863 BUG_ON(conf->r10buf_pool);
2864 conf->have_replacement = 0;
2865 for (i = 0; i < conf->geo.raid_disks; i++)
2866 if (conf->mirrors[i].replacement)
2867 conf->have_replacement = 1;
2868 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2869 if (!conf->r10buf_pool)
2870 return -ENOMEM;
2871 conf->next_resync = 0;
2872 return 0;
2873}
2874
2875/*
2876 * perform a "sync" on one "block"
2877 *
2878 * We need to make sure that no normal I/O request - particularly write
2879 * requests - conflict with active sync requests.
2880 *
2881 * This is achieved by tracking pending requests and a 'barrier' concept
2882 * that can be installed to exclude normal IO requests.
2883 *
2884 * Resync and recovery are handled very differently.
2885 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2886 *
2887 * For resync, we iterate over virtual addresses, read all copies,
2888 * and update if there are differences. If only one copy is live,
2889 * skip it.
2890 * For recovery, we iterate over physical addresses, read a good
2891 * value for each non-in_sync drive, and over-write.
2892 *
2893 * So, for recovery we may have several outstanding complex requests for a
2894 * given address, one for each out-of-sync device. We model this by allocating
2895 * a number of r10_bio structures, one for each out-of-sync device.
2896 * As we setup these structures, we collect all bio's together into a list
2897 * which we then process collectively to add pages, and then process again
2898 * to pass to generic_make_request.
2899 *
2900 * The r10_bio structures are linked using a borrowed master_bio pointer.
2901 * This link is counted in ->remaining. When the r10_bio that points to NULL
2902 * has its remaining count decremented to 0, the whole complex operation
2903 * is complete.
2904 *
2905 */
2906
2907static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2908 int *skipped, int go_faster)
2909{
2910 struct r10conf *conf = mddev->private;
2911 struct r10bio *r10_bio;
2912 struct bio *biolist = NULL, *bio;
2913 sector_t max_sector, nr_sectors;
2914 int i;
2915 int max_sync;
2916 sector_t sync_blocks;
2917 sector_t sectors_skipped = 0;
2918 int chunks_skipped = 0;
2919 sector_t chunk_mask = conf->geo.chunk_mask;
2920
2921 if (!conf->r10buf_pool)
2922 if (init_resync(conf))
2923 return 0;
2924
2925 /*
2926 * Allow skipping a full rebuild for incremental assembly
2927 * of a clean array, like RAID1 does.
2928 */
2929 if (mddev->bitmap == NULL &&
2930 mddev->recovery_cp == MaxSector &&
2931 mddev->reshape_position == MaxSector &&
2932 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2933 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2934 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2935 conf->fullsync == 0) {
2936 *skipped = 1;
2937 return mddev->dev_sectors - sector_nr;
2938 }
2939
2940 skipped:
2941 max_sector = mddev->dev_sectors;
2942 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2943 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2944 max_sector = mddev->resync_max_sectors;
2945 if (sector_nr >= max_sector) {
2946 /* If we aborted, we need to abort the
2947 * sync on the 'current' bitmap chucks (there can
2948 * be several when recovering multiple devices).
2949 * as we may have started syncing it but not finished.
2950 * We can find the current address in
2951 * mddev->curr_resync, but for recovery,
2952 * we need to convert that to several
2953 * virtual addresses.
2954 */
2955 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2956 end_reshape(conf);
2957 return 0;
2958 }
2959
2960 if (mddev->curr_resync < max_sector) { /* aborted */
2961 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2962 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2963 &sync_blocks, 1);
2964 else for (i = 0; i < conf->geo.raid_disks; i++) {
2965 sector_t sect =
2966 raid10_find_virt(conf, mddev->curr_resync, i);
2967 bitmap_end_sync(mddev->bitmap, sect,
2968 &sync_blocks, 1);
2969 }
2970 } else {
2971 /* completed sync */
2972 if ((!mddev->bitmap || conf->fullsync)
2973 && conf->have_replacement
2974 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2975 /* Completed a full sync so the replacements
2976 * are now fully recovered.
2977 */
2978 for (i = 0; i < conf->geo.raid_disks; i++)
2979 if (conf->mirrors[i].replacement)
2980 conf->mirrors[i].replacement
2981 ->recovery_offset
2982 = MaxSector;
2983 }
2984 conf->fullsync = 0;
2985 }
2986 bitmap_close_sync(mddev->bitmap);
2987 close_sync(conf);
2988 *skipped = 1;
2989 return sectors_skipped;
2990 }
2991
2992 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2993 return reshape_request(mddev, sector_nr, skipped);
2994
2995 if (chunks_skipped >= conf->geo.raid_disks) {
2996 /* if there has been nothing to do on any drive,
2997 * then there is nothing to do at all..
2998 */
2999 *skipped = 1;
3000 return (max_sector - sector_nr) + sectors_skipped;
3001 }
3002
3003 if (max_sector > mddev->resync_max)
3004 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3005
3006 /* make sure whole request will fit in a chunk - if chunks
3007 * are meaningful
3008 */
3009 if (conf->geo.near_copies < conf->geo.raid_disks &&
3010 max_sector > (sector_nr | chunk_mask))
3011 max_sector = (sector_nr | chunk_mask) + 1;
3012 /*
3013 * If there is non-resync activity waiting for us then
3014 * put in a delay to throttle resync.
3015 */
3016 if (!go_faster && conf->nr_waiting)
3017 msleep_interruptible(1000);
3018
3019 /* Again, very different code for resync and recovery.
3020 * Both must result in an r10bio with a list of bios that
3021 * have bi_end_io, bi_sector, bi_bdev set,
3022 * and bi_private set to the r10bio.
3023 * For recovery, we may actually create several r10bios
3024 * with 2 bios in each, that correspond to the bios in the main one.
3025 * In this case, the subordinate r10bios link back through a
3026 * borrowed master_bio pointer, and the counter in the master
3027 * includes a ref from each subordinate.
3028 */
3029 /* First, we decide what to do and set ->bi_end_io
3030 * To end_sync_read if we want to read, and
3031 * end_sync_write if we will want to write.
3032 */
3033
3034 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3035 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3036 /* recovery... the complicated one */
3037 int j;
3038 r10_bio = NULL;
3039
3040 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3041 int still_degraded;
3042 struct r10bio *rb2;
3043 sector_t sect;
3044 int must_sync;
3045 int any_working;
3046 struct raid10_info *mirror = &conf->mirrors[i];
3047
3048 if ((mirror->rdev == NULL ||
3049 test_bit(In_sync, &mirror->rdev->flags))
3050 &&
3051 (mirror->replacement == NULL ||
3052 test_bit(Faulty,
3053 &mirror->replacement->flags)))
3054 continue;
3055
3056 still_degraded = 0;
3057 /* want to reconstruct this device */
3058 rb2 = r10_bio;
3059 sect = raid10_find_virt(conf, sector_nr, i);
3060 if (sect >= mddev->resync_max_sectors) {
3061 /* last stripe is not complete - don't
3062 * try to recover this sector.
3063 */
3064 continue;
3065 }
3066 /* Unless we are doing a full sync, or a replacement
3067 * we only need to recover the block if it is set in
3068 * the bitmap
3069 */
3070 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3071 &sync_blocks, 1);
3072 if (sync_blocks < max_sync)
3073 max_sync = sync_blocks;
3074 if (!must_sync &&
3075 mirror->replacement == NULL &&
3076 !conf->fullsync) {
3077 /* yep, skip the sync_blocks here, but don't assume
3078 * that there will never be anything to do here
3079 */
3080 chunks_skipped = -1;
3081 continue;
3082 }
3083
3084 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3085 raise_barrier(conf, rb2 != NULL);
3086 atomic_set(&r10_bio->remaining, 0);
3087
3088 r10_bio->master_bio = (struct bio*)rb2;
3089 if (rb2)
3090 atomic_inc(&rb2->remaining);
3091 r10_bio->mddev = mddev;
3092 set_bit(R10BIO_IsRecover, &r10_bio->state);
3093 r10_bio->sector = sect;
3094
3095 raid10_find_phys(conf, r10_bio);
3096
3097 /* Need to check if the array will still be
3098 * degraded
3099 */
3100 for (j = 0; j < conf->geo.raid_disks; j++)
3101 if (conf->mirrors[j].rdev == NULL ||
3102 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3103 still_degraded = 1;
3104 break;
3105 }
3106
3107 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3108 &sync_blocks, still_degraded);
3109
3110 any_working = 0;
3111 for (j=0; j<conf->copies;j++) {
3112 int k;
3113 int d = r10_bio->devs[j].devnum;
3114 sector_t from_addr, to_addr;
3115 struct md_rdev *rdev;
3116 sector_t sector, first_bad;
3117 int bad_sectors;
3118 if (!conf->mirrors[d].rdev ||
3119 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3120 continue;
3121 /* This is where we read from */
3122 any_working = 1;
3123 rdev = conf->mirrors[d].rdev;
3124 sector = r10_bio->devs[j].addr;
3125
3126 if (is_badblock(rdev, sector, max_sync,
3127 &first_bad, &bad_sectors)) {
3128 if (first_bad > sector)
3129 max_sync = first_bad - sector;
3130 else {
3131 bad_sectors -= (sector
3132 - first_bad);
3133 if (max_sync > bad_sectors)
3134 max_sync = bad_sectors;
3135 continue;
3136 }
3137 }
3138 bio = r10_bio->devs[0].bio;
3139 bio_reset(bio);
3140 bio->bi_next = biolist;
3141 biolist = bio;
3142 bio->bi_private = r10_bio;
3143 bio->bi_end_io = end_sync_read;
3144 bio->bi_rw = READ;
3145 from_addr = r10_bio->devs[j].addr;
3146 bio->bi_iter.bi_sector = from_addr +
3147 rdev->data_offset;
3148 bio->bi_bdev = rdev->bdev;
3149 atomic_inc(&rdev->nr_pending);
3150 /* and we write to 'i' (if not in_sync) */
3151
3152 for (k=0; k<conf->copies; k++)
3153 if (r10_bio->devs[k].devnum == i)
3154 break;
3155 BUG_ON(k == conf->copies);
3156 to_addr = r10_bio->devs[k].addr;
3157 r10_bio->devs[0].devnum = d;
3158 r10_bio->devs[0].addr = from_addr;
3159 r10_bio->devs[1].devnum = i;
3160 r10_bio->devs[1].addr = to_addr;
3161
3162 rdev = mirror->rdev;
3163 if (!test_bit(In_sync, &rdev->flags)) {
3164 bio = r10_bio->devs[1].bio;
3165 bio_reset(bio);
3166 bio->bi_next = biolist;
3167 biolist = bio;
3168 bio->bi_private = r10_bio;
3169 bio->bi_end_io = end_sync_write;
3170 bio->bi_rw = WRITE;
3171 bio->bi_iter.bi_sector = to_addr
3172 + rdev->data_offset;
3173 bio->bi_bdev = rdev->bdev;
3174 atomic_inc(&r10_bio->remaining);
3175 } else
3176 r10_bio->devs[1].bio->bi_end_io = NULL;
3177
3178 /* and maybe write to replacement */
3179 bio = r10_bio->devs[1].repl_bio;
3180 if (bio)
3181 bio->bi_end_io = NULL;
3182 rdev = mirror->replacement;
3183 /* Note: if rdev != NULL, then bio
3184 * cannot be NULL as r10buf_pool_alloc will
3185 * have allocated it.
3186 * So the second test here is pointless.
3187 * But it keeps semantic-checkers happy, and
3188 * this comment keeps human reviewers
3189 * happy.
3190 */
3191 if (rdev == NULL || bio == NULL ||
3192 test_bit(Faulty, &rdev->flags))
3193 break;
3194 bio_reset(bio);
3195 bio->bi_next = biolist;
3196 biolist = bio;
3197 bio->bi_private = r10_bio;
3198 bio->bi_end_io = end_sync_write;
3199 bio->bi_rw = WRITE;
3200 bio->bi_iter.bi_sector = to_addr +
3201 rdev->data_offset;
3202 bio->bi_bdev = rdev->bdev;
3203 atomic_inc(&r10_bio->remaining);
3204 break;
3205 }
3206 if (j == conf->copies) {
3207 /* Cannot recover, so abort the recovery or
3208 * record a bad block */
3209 if (any_working) {
3210 /* problem is that there are bad blocks
3211 * on other device(s)
3212 */
3213 int k;
3214 for (k = 0; k < conf->copies; k++)
3215 if (r10_bio->devs[k].devnum == i)
3216 break;
3217 if (!test_bit(In_sync,
3218 &mirror->rdev->flags)
3219 && !rdev_set_badblocks(
3220 mirror->rdev,
3221 r10_bio->devs[k].addr,
3222 max_sync, 0))
3223 any_working = 0;
3224 if (mirror->replacement &&
3225 !rdev_set_badblocks(
3226 mirror->replacement,
3227 r10_bio->devs[k].addr,
3228 max_sync, 0))
3229 any_working = 0;
3230 }
3231 if (!any_working) {
3232 if (!test_and_set_bit(MD_RECOVERY_INTR,
3233 &mddev->recovery))
3234 printk(KERN_INFO "md/raid10:%s: insufficient "
3235 "working devices for recovery.\n",
3236 mdname(mddev));
3237 mirror->recovery_disabled
3238 = mddev->recovery_disabled;
3239 }
3240 put_buf(r10_bio);
3241 if (rb2)
3242 atomic_dec(&rb2->remaining);
3243 r10_bio = rb2;
3244 break;
3245 }
3246 }
3247 if (biolist == NULL) {
3248 while (r10_bio) {
3249 struct r10bio *rb2 = r10_bio;
3250 r10_bio = (struct r10bio*) rb2->master_bio;
3251 rb2->master_bio = NULL;
3252 put_buf(rb2);
3253 }
3254 goto giveup;
3255 }
3256 } else {
3257 /* resync. Schedule a read for every block at this virt offset */
3258 int count = 0;
3259
3260 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3261
3262 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3263 &sync_blocks, mddev->degraded) &&
3264 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3265 &mddev->recovery)) {
3266 /* We can skip this block */
3267 *skipped = 1;
3268 return sync_blocks + sectors_skipped;
3269 }
3270 if (sync_blocks < max_sync)
3271 max_sync = sync_blocks;
3272 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3273
3274 r10_bio->mddev = mddev;
3275 atomic_set(&r10_bio->remaining, 0);
3276 raise_barrier(conf, 0);
3277 conf->next_resync = sector_nr;
3278
3279 r10_bio->master_bio = NULL;
3280 r10_bio->sector = sector_nr;
3281 set_bit(R10BIO_IsSync, &r10_bio->state);
3282 raid10_find_phys(conf, r10_bio);
3283 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3284
3285 for (i = 0; i < conf->copies; i++) {
3286 int d = r10_bio->devs[i].devnum;
3287 sector_t first_bad, sector;
3288 int bad_sectors;
3289
3290 if (r10_bio->devs[i].repl_bio)
3291 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3292
3293 bio = r10_bio->devs[i].bio;
3294 bio_reset(bio);
3295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3296 if (conf->mirrors[d].rdev == NULL ||
3297 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3298 continue;
3299 sector = r10_bio->devs[i].addr;
3300 if (is_badblock(conf->mirrors[d].rdev,
3301 sector, max_sync,
3302 &first_bad, &bad_sectors)) {
3303 if (first_bad > sector)
3304 max_sync = first_bad - sector;
3305 else {
3306 bad_sectors -= (sector - first_bad);
3307 if (max_sync > bad_sectors)
3308 max_sync = bad_sectors;
3309 continue;
3310 }
3311 }
3312 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3313 atomic_inc(&r10_bio->remaining);
3314 bio->bi_next = biolist;
3315 biolist = bio;
3316 bio->bi_private = r10_bio;
3317 bio->bi_end_io = end_sync_read;
3318 bio->bi_rw = READ;
3319 bio->bi_iter.bi_sector = sector +
3320 conf->mirrors[d].rdev->data_offset;
3321 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3322 count++;
3323
3324 if (conf->mirrors[d].replacement == NULL ||
3325 test_bit(Faulty,
3326 &conf->mirrors[d].replacement->flags))
3327 continue;
3328
3329 /* Need to set up for writing to the replacement */
3330 bio = r10_bio->devs[i].repl_bio;
3331 bio_reset(bio);
3332 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3333
3334 sector = r10_bio->devs[i].addr;
3335 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3336 bio->bi_next = biolist;
3337 biolist = bio;
3338 bio->bi_private = r10_bio;
3339 bio->bi_end_io = end_sync_write;
3340 bio->bi_rw = WRITE;
3341 bio->bi_iter.bi_sector = sector +
3342 conf->mirrors[d].replacement->data_offset;
3343 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3344 count++;
3345 }
3346
3347 if (count < 2) {
3348 for (i=0; i<conf->copies; i++) {
3349 int d = r10_bio->devs[i].devnum;
3350 if (r10_bio->devs[i].bio->bi_end_io)
3351 rdev_dec_pending(conf->mirrors[d].rdev,
3352 mddev);
3353 if (r10_bio->devs[i].repl_bio &&
3354 r10_bio->devs[i].repl_bio->bi_end_io)
3355 rdev_dec_pending(
3356 conf->mirrors[d].replacement,
3357 mddev);
3358 }
3359 put_buf(r10_bio);
3360 biolist = NULL;
3361 goto giveup;
3362 }
3363 }
3364
3365 nr_sectors = 0;
3366 if (sector_nr + max_sync < max_sector)
3367 max_sector = sector_nr + max_sync;
3368 do {
3369 struct page *page;
3370 int len = PAGE_SIZE;
3371 if (sector_nr + (len>>9) > max_sector)
3372 len = (max_sector - sector_nr) << 9;
3373 if (len == 0)
3374 break;
3375 for (bio= biolist ; bio ; bio=bio->bi_next) {
3376 struct bio *bio2;
3377 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3378 if (bio_add_page(bio, page, len, 0))
3379 continue;
3380
3381 /* stop here */
3382 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3383 for (bio2 = biolist;
3384 bio2 && bio2 != bio;
3385 bio2 = bio2->bi_next) {
3386 /* remove last page from this bio */
3387 bio2->bi_vcnt--;
3388 bio2->bi_iter.bi_size -= len;
3389 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3390 }
3391 goto bio_full;
3392 }
3393 nr_sectors += len>>9;
3394 sector_nr += len>>9;
3395 } while (biolist->bi_vcnt < RESYNC_PAGES);
3396 bio_full:
3397 r10_bio->sectors = nr_sectors;
3398
3399 while (biolist) {
3400 bio = biolist;
3401 biolist = biolist->bi_next;
3402
3403 bio->bi_next = NULL;
3404 r10_bio = bio->bi_private;
3405 r10_bio->sectors = nr_sectors;
3406
3407 if (bio->bi_end_io == end_sync_read) {
3408 md_sync_acct(bio->bi_bdev, nr_sectors);
3409 set_bit(BIO_UPTODATE, &bio->bi_flags);
3410 generic_make_request(bio);
3411 }
3412 }
3413
3414 if (sectors_skipped)
3415 /* pretend they weren't skipped, it makes
3416 * no important difference in this case
3417 */
3418 md_done_sync(mddev, sectors_skipped, 1);
3419
3420 return sectors_skipped + nr_sectors;
3421 giveup:
3422 /* There is nowhere to write, so all non-sync
3423 * drives must be failed or in resync, all drives
3424 * have a bad block, so try the next chunk...
3425 */
3426 if (sector_nr + max_sync < max_sector)
3427 max_sector = sector_nr + max_sync;
3428
3429 sectors_skipped += (max_sector - sector_nr);
3430 chunks_skipped ++;
3431 sector_nr = max_sector;
3432 goto skipped;
3433}
3434
3435static sector_t
3436raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3437{
3438 sector_t size;
3439 struct r10conf *conf = mddev->private;
3440
3441 if (!raid_disks)
3442 raid_disks = min(conf->geo.raid_disks,
3443 conf->prev.raid_disks);
3444 if (!sectors)
3445 sectors = conf->dev_sectors;
3446
3447 size = sectors >> conf->geo.chunk_shift;
3448 sector_div(size, conf->geo.far_copies);
3449 size = size * raid_disks;
3450 sector_div(size, conf->geo.near_copies);
3451
3452 return size << conf->geo.chunk_shift;
3453}
3454
3455static void calc_sectors(struct r10conf *conf, sector_t size)
3456{
3457 /* Calculate the number of sectors-per-device that will
3458 * actually be used, and set conf->dev_sectors and
3459 * conf->stride
3460 */
3461
3462 size = size >> conf->geo.chunk_shift;
3463 sector_div(size, conf->geo.far_copies);
3464 size = size * conf->geo.raid_disks;
3465 sector_div(size, conf->geo.near_copies);
3466 /* 'size' is now the number of chunks in the array */
3467 /* calculate "used chunks per device" */
3468 size = size * conf->copies;
3469
3470 /* We need to round up when dividing by raid_disks to
3471 * get the stride size.
3472 */
3473 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3474
3475 conf->dev_sectors = size << conf->geo.chunk_shift;
3476
3477 if (conf->geo.far_offset)
3478 conf->geo.stride = 1 << conf->geo.chunk_shift;
3479 else {
3480 sector_div(size, conf->geo.far_copies);
3481 conf->geo.stride = size << conf->geo.chunk_shift;
3482 }
3483}
3484
3485enum geo_type {geo_new, geo_old, geo_start};
3486static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3487{
3488 int nc, fc, fo;
3489 int layout, chunk, disks;
3490 switch (new) {
3491 case geo_old:
3492 layout = mddev->layout;
3493 chunk = mddev->chunk_sectors;
3494 disks = mddev->raid_disks - mddev->delta_disks;
3495 break;
3496 case geo_new:
3497 layout = mddev->new_layout;
3498 chunk = mddev->new_chunk_sectors;
3499 disks = mddev->raid_disks;
3500 break;
3501 default: /* avoid 'may be unused' warnings */
3502 case geo_start: /* new when starting reshape - raid_disks not
3503 * updated yet. */
3504 layout = mddev->new_layout;
3505 chunk = mddev->new_chunk_sectors;
3506 disks = mddev->raid_disks + mddev->delta_disks;
3507 break;
3508 }
3509 if (layout >> 18)
3510 return -1;
3511 if (chunk < (PAGE_SIZE >> 9) ||
3512 !is_power_of_2(chunk))
3513 return -2;
3514 nc = layout & 255;
3515 fc = (layout >> 8) & 255;
3516 fo = layout & (1<<16);
3517 geo->raid_disks = disks;
3518 geo->near_copies = nc;
3519 geo->far_copies = fc;
3520 geo->far_offset = fo;
3521 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3522 geo->chunk_mask = chunk - 1;
3523 geo->chunk_shift = ffz(~chunk);
3524 return nc*fc;
3525}
3526
3527static struct r10conf *setup_conf(struct mddev *mddev)
3528{
3529 struct r10conf *conf = NULL;
3530 int err = -EINVAL;
3531 struct geom geo;
3532 int copies;
3533
3534 copies = setup_geo(&geo, mddev, geo_new);
3535
3536 if (copies == -2) {
3537 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3538 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3539 mdname(mddev), PAGE_SIZE);
3540 goto out;
3541 }
3542
3543 if (copies < 2 || copies > mddev->raid_disks) {
3544 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3545 mdname(mddev), mddev->new_layout);
3546 goto out;
3547 }
3548
3549 err = -ENOMEM;
3550 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3551 if (!conf)
3552 goto out;
3553
3554 /* FIXME calc properly */
3555 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3556 max(0,-mddev->delta_disks)),
3557 GFP_KERNEL);
3558 if (!conf->mirrors)
3559 goto out;
3560
3561 conf->tmppage = alloc_page(GFP_KERNEL);
3562 if (!conf->tmppage)
3563 goto out;
3564
3565 conf->geo = geo;
3566 conf->copies = copies;
3567 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3568 r10bio_pool_free, conf);
3569 if (!conf->r10bio_pool)
3570 goto out;
3571
3572 calc_sectors(conf, mddev->dev_sectors);
3573 if (mddev->reshape_position == MaxSector) {
3574 conf->prev = conf->geo;
3575 conf->reshape_progress = MaxSector;
3576 } else {
3577 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3578 err = -EINVAL;
3579 goto out;
3580 }
3581 conf->reshape_progress = mddev->reshape_position;
3582 if (conf->prev.far_offset)
3583 conf->prev.stride = 1 << conf->prev.chunk_shift;
3584 else
3585 /* far_copies must be 1 */
3586 conf->prev.stride = conf->dev_sectors;
3587 }
3588 spin_lock_init(&conf->device_lock);
3589 INIT_LIST_HEAD(&conf->retry_list);
3590
3591 spin_lock_init(&conf->resync_lock);
3592 init_waitqueue_head(&conf->wait_barrier);
3593
3594 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3595 if (!conf->thread)
3596 goto out;
3597
3598 conf->mddev = mddev;
3599 return conf;
3600
3601 out:
3602 if (err == -ENOMEM)
3603 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3604 mdname(mddev));
3605 if (conf) {
3606 if (conf->r10bio_pool)
3607 mempool_destroy(conf->r10bio_pool);
3608 kfree(conf->mirrors);
3609 safe_put_page(conf->tmppage);
3610 kfree(conf);
3611 }
3612 return ERR_PTR(err);
3613}
3614
3615static int run(struct mddev *mddev)
3616{
3617 struct r10conf *conf;
3618 int i, disk_idx, chunk_size;
3619 struct raid10_info *disk;
3620 struct md_rdev *rdev;
3621 sector_t size;
3622 sector_t min_offset_diff = 0;
3623 int first = 1;
3624 bool discard_supported = false;
3625
3626 if (mddev->private == NULL) {
3627 conf = setup_conf(mddev);
3628 if (IS_ERR(conf))
3629 return PTR_ERR(conf);
3630 mddev->private = conf;
3631 }
3632 conf = mddev->private;
3633 if (!conf)
3634 goto out;
3635
3636 mddev->thread = conf->thread;
3637 conf->thread = NULL;
3638
3639 chunk_size = mddev->chunk_sectors << 9;
3640 if (mddev->queue) {
3641 blk_queue_max_discard_sectors(mddev->queue,
3642 mddev->chunk_sectors);
3643 blk_queue_max_write_same_sectors(mddev->queue, 0);
3644 blk_queue_io_min(mddev->queue, chunk_size);
3645 if (conf->geo.raid_disks % conf->geo.near_copies)
3646 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3647 else
3648 blk_queue_io_opt(mddev->queue, chunk_size *
3649 (conf->geo.raid_disks / conf->geo.near_copies));
3650 }
3651
3652 rdev_for_each(rdev, mddev) {
3653 long long diff;
3654 struct request_queue *q;
3655
3656 disk_idx = rdev->raid_disk;
3657 if (disk_idx < 0)
3658 continue;
3659 if (disk_idx >= conf->geo.raid_disks &&
3660 disk_idx >= conf->prev.raid_disks)
3661 continue;
3662 disk = conf->mirrors + disk_idx;
3663
3664 if (test_bit(Replacement, &rdev->flags)) {
3665 if (disk->replacement)
3666 goto out_free_conf;
3667 disk->replacement = rdev;
3668 } else {
3669 if (disk->rdev)
3670 goto out_free_conf;
3671 disk->rdev = rdev;
3672 }
3673 q = bdev_get_queue(rdev->bdev);
3674 if (q->merge_bvec_fn)
3675 mddev->merge_check_needed = 1;
3676 diff = (rdev->new_data_offset - rdev->data_offset);
3677 if (!mddev->reshape_backwards)
3678 diff = -diff;
3679 if (diff < 0)
3680 diff = 0;
3681 if (first || diff < min_offset_diff)
3682 min_offset_diff = diff;
3683
3684 if (mddev->gendisk)
3685 disk_stack_limits(mddev->gendisk, rdev->bdev,
3686 rdev->data_offset << 9);
3687
3688 disk->head_position = 0;
3689
3690 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3691 discard_supported = true;
3692 }
3693
3694 if (mddev->queue) {
3695 if (discard_supported)
3696 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3697 mddev->queue);
3698 else
3699 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3700 mddev->queue);
3701 }
3702 /* need to check that every block has at least one working mirror */
3703 if (!enough(conf, -1)) {
3704 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3705 mdname(mddev));
3706 goto out_free_conf;
3707 }
3708
3709 if (conf->reshape_progress != MaxSector) {
3710 /* must ensure that shape change is supported */
3711 if (conf->geo.far_copies != 1 &&
3712 conf->geo.far_offset == 0)
3713 goto out_free_conf;
3714 if (conf->prev.far_copies != 1 &&
3715 conf->prev.far_offset == 0)
3716 goto out_free_conf;
3717 }
3718
3719 mddev->degraded = 0;
3720 for (i = 0;
3721 i < conf->geo.raid_disks
3722 || i < conf->prev.raid_disks;
3723 i++) {
3724
3725 disk = conf->mirrors + i;
3726
3727 if (!disk->rdev && disk->replacement) {
3728 /* The replacement is all we have - use it */
3729 disk->rdev = disk->replacement;
3730 disk->replacement = NULL;
3731 clear_bit(Replacement, &disk->rdev->flags);
3732 }
3733
3734 if (!disk->rdev ||
3735 !test_bit(In_sync, &disk->rdev->flags)) {
3736 disk->head_position = 0;
3737 mddev->degraded++;
3738 if (disk->rdev &&
3739 disk->rdev->saved_raid_disk < 0)
3740 conf->fullsync = 1;
3741 }
3742 disk->recovery_disabled = mddev->recovery_disabled - 1;
3743 }
3744
3745 if (mddev->recovery_cp != MaxSector)
3746 printk(KERN_NOTICE "md/raid10:%s: not clean"
3747 " -- starting background reconstruction\n",
3748 mdname(mddev));
3749 printk(KERN_INFO
3750 "md/raid10:%s: active with %d out of %d devices\n",
3751 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3752 conf->geo.raid_disks);
3753 /*
3754 * Ok, everything is just fine now
3755 */
3756 mddev->dev_sectors = conf->dev_sectors;
3757 size = raid10_size(mddev, 0, 0);
3758 md_set_array_sectors(mddev, size);
3759 mddev->resync_max_sectors = size;
3760
3761 if (mddev->queue) {
3762 int stripe = conf->geo.raid_disks *
3763 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3764 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3765 mddev->queue->backing_dev_info.congested_data = mddev;
3766
3767 /* Calculate max read-ahead size.
3768 * We need to readahead at least twice a whole stripe....
3769 * maybe...
3770 */
3771 stripe /= conf->geo.near_copies;
3772 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3773 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3774 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3775 }
3776
3777
3778 if (md_integrity_register(mddev))
3779 goto out_free_conf;
3780
3781 if (conf->reshape_progress != MaxSector) {
3782 unsigned long before_length, after_length;
3783
3784 before_length = ((1 << conf->prev.chunk_shift) *
3785 conf->prev.far_copies);
3786 after_length = ((1 << conf->geo.chunk_shift) *
3787 conf->geo.far_copies);
3788
3789 if (max(before_length, after_length) > min_offset_diff) {
3790 /* This cannot work */
3791 printk("md/raid10: offset difference not enough to continue reshape\n");
3792 goto out_free_conf;
3793 }
3794 conf->offset_diff = min_offset_diff;
3795
3796 conf->reshape_safe = conf->reshape_progress;
3797 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3798 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3799 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3800 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3801 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3802 "reshape");
3803 }
3804
3805 return 0;
3806
3807out_free_conf:
3808 md_unregister_thread(&mddev->thread);
3809 if (conf->r10bio_pool)
3810 mempool_destroy(conf->r10bio_pool);
3811 safe_put_page(conf->tmppage);
3812 kfree(conf->mirrors);
3813 kfree(conf);
3814 mddev->private = NULL;
3815out:
3816 return -EIO;
3817}
3818
3819static int stop(struct mddev *mddev)
3820{
3821 struct r10conf *conf = mddev->private;
3822
3823 raise_barrier(conf, 0);
3824 lower_barrier(conf);
3825
3826 md_unregister_thread(&mddev->thread);
3827 if (mddev->queue)
3828 /* the unplug fn references 'conf'*/
3829 blk_sync_queue(mddev->queue);
3830
3831 if (conf->r10bio_pool)
3832 mempool_destroy(conf->r10bio_pool);
3833 safe_put_page(conf->tmppage);
3834 kfree(conf->mirrors);
3835 kfree(conf);
3836 mddev->private = NULL;
3837 return 0;
3838}
3839
3840static void raid10_quiesce(struct mddev *mddev, int state)
3841{
3842 struct r10conf *conf = mddev->private;
3843
3844 switch(state) {
3845 case 1:
3846 raise_barrier(conf, 0);
3847 break;
3848 case 0:
3849 lower_barrier(conf);
3850 break;
3851 }
3852}
3853
3854static int raid10_resize(struct mddev *mddev, sector_t sectors)
3855{
3856 /* Resize of 'far' arrays is not supported.
3857 * For 'near' and 'offset' arrays we can set the
3858 * number of sectors used to be an appropriate multiple
3859 * of the chunk size.
3860 * For 'offset', this is far_copies*chunksize.
3861 * For 'near' the multiplier is the LCM of
3862 * near_copies and raid_disks.
3863 * So if far_copies > 1 && !far_offset, fail.
3864 * Else find LCM(raid_disks, near_copy)*far_copies and
3865 * multiply by chunk_size. Then round to this number.
3866 * This is mostly done by raid10_size()
3867 */
3868 struct r10conf *conf = mddev->private;
3869 sector_t oldsize, size;
3870
3871 if (mddev->reshape_position != MaxSector)
3872 return -EBUSY;
3873
3874 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3875 return -EINVAL;
3876
3877 oldsize = raid10_size(mddev, 0, 0);
3878 size = raid10_size(mddev, sectors, 0);
3879 if (mddev->external_size &&
3880 mddev->array_sectors > size)
3881 return -EINVAL;
3882 if (mddev->bitmap) {
3883 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3884 if (ret)
3885 return ret;
3886 }
3887 md_set_array_sectors(mddev, size);
3888 set_capacity(mddev->gendisk, mddev->array_sectors);
3889 revalidate_disk(mddev->gendisk);
3890 if (sectors > mddev->dev_sectors &&
3891 mddev->recovery_cp > oldsize) {
3892 mddev->recovery_cp = oldsize;
3893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3894 }
3895 calc_sectors(conf, sectors);
3896 mddev->dev_sectors = conf->dev_sectors;
3897 mddev->resync_max_sectors = size;
3898 return 0;
3899}
3900
3901static void *raid10_takeover_raid0(struct mddev *mddev)
3902{
3903 struct md_rdev *rdev;
3904 struct r10conf *conf;
3905
3906 if (mddev->degraded > 0) {
3907 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3908 mdname(mddev));
3909 return ERR_PTR(-EINVAL);
3910 }
3911
3912 /* Set new parameters */
3913 mddev->new_level = 10;
3914 /* new layout: far_copies = 1, near_copies = 2 */
3915 mddev->new_layout = (1<<8) + 2;
3916 mddev->new_chunk_sectors = mddev->chunk_sectors;
3917 mddev->delta_disks = mddev->raid_disks;
3918 mddev->raid_disks *= 2;
3919 /* make sure it will be not marked as dirty */
3920 mddev->recovery_cp = MaxSector;
3921
3922 conf = setup_conf(mddev);
3923 if (!IS_ERR(conf)) {
3924 rdev_for_each(rdev, mddev)
3925 if (rdev->raid_disk >= 0)
3926 rdev->new_raid_disk = rdev->raid_disk * 2;
3927 conf->barrier = 1;
3928 }
3929
3930 return conf;
3931}
3932
3933static void *raid10_takeover(struct mddev *mddev)
3934{
3935 struct r0conf *raid0_conf;
3936
3937 /* raid10 can take over:
3938 * raid0 - providing it has only two drives
3939 */
3940 if (mddev->level == 0) {
3941 /* for raid0 takeover only one zone is supported */
3942 raid0_conf = mddev->private;
3943 if (raid0_conf->nr_strip_zones > 1) {
3944 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3945 " with more than one zone.\n",
3946 mdname(mddev));
3947 return ERR_PTR(-EINVAL);
3948 }
3949 return raid10_takeover_raid0(mddev);
3950 }
3951 return ERR_PTR(-EINVAL);
3952}
3953
3954static int raid10_check_reshape(struct mddev *mddev)
3955{
3956 /* Called when there is a request to change
3957 * - layout (to ->new_layout)
3958 * - chunk size (to ->new_chunk_sectors)
3959 * - raid_disks (by delta_disks)
3960 * or when trying to restart a reshape that was ongoing.
3961 *
3962 * We need to validate the request and possibly allocate
3963 * space if that might be an issue later.
3964 *
3965 * Currently we reject any reshape of a 'far' mode array,
3966 * allow chunk size to change if new is generally acceptable,
3967 * allow raid_disks to increase, and allow
3968 * a switch between 'near' mode and 'offset' mode.
3969 */
3970 struct r10conf *conf = mddev->private;
3971 struct geom geo;
3972
3973 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3974 return -EINVAL;
3975
3976 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3977 /* mustn't change number of copies */
3978 return -EINVAL;
3979 if (geo.far_copies > 1 && !geo.far_offset)
3980 /* Cannot switch to 'far' mode */
3981 return -EINVAL;
3982
3983 if (mddev->array_sectors & geo.chunk_mask)
3984 /* not factor of array size */
3985 return -EINVAL;
3986
3987 if (!enough(conf, -1))
3988 return -EINVAL;
3989
3990 kfree(conf->mirrors_new);
3991 conf->mirrors_new = NULL;
3992 if (mddev->delta_disks > 0) {
3993 /* allocate new 'mirrors' list */
3994 conf->mirrors_new = kzalloc(
3995 sizeof(struct raid10_info)
3996 *(mddev->raid_disks +
3997 mddev->delta_disks),
3998 GFP_KERNEL);
3999 if (!conf->mirrors_new)
4000 return -ENOMEM;
4001 }
4002 return 0;
4003}
4004
4005/*
4006 * Need to check if array has failed when deciding whether to:
4007 * - start an array
4008 * - remove non-faulty devices
4009 * - add a spare
4010 * - allow a reshape
4011 * This determination is simple when no reshape is happening.
4012 * However if there is a reshape, we need to carefully check
4013 * both the before and after sections.
4014 * This is because some failed devices may only affect one
4015 * of the two sections, and some non-in_sync devices may
4016 * be insync in the section most affected by failed devices.
4017 */
4018static int calc_degraded(struct r10conf *conf)
4019{
4020 int degraded, degraded2;
4021 int i;
4022
4023 rcu_read_lock();
4024 degraded = 0;
4025 /* 'prev' section first */
4026 for (i = 0; i < conf->prev.raid_disks; i++) {
4027 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4028 if (!rdev || test_bit(Faulty, &rdev->flags))
4029 degraded++;
4030 else if (!test_bit(In_sync, &rdev->flags))
4031 /* When we can reduce the number of devices in
4032 * an array, this might not contribute to
4033 * 'degraded'. It does now.
4034 */
4035 degraded++;
4036 }
4037 rcu_read_unlock();
4038 if (conf->geo.raid_disks == conf->prev.raid_disks)
4039 return degraded;
4040 rcu_read_lock();
4041 degraded2 = 0;
4042 for (i = 0; i < conf->geo.raid_disks; i++) {
4043 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4044 if (!rdev || test_bit(Faulty, &rdev->flags))
4045 degraded2++;
4046 else if (!test_bit(In_sync, &rdev->flags)) {
4047 /* If reshape is increasing the number of devices,
4048 * this section has already been recovered, so
4049 * it doesn't contribute to degraded.
4050 * else it does.
4051 */
4052 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4053 degraded2++;
4054 }
4055 }
4056 rcu_read_unlock();
4057 if (degraded2 > degraded)
4058 return degraded2;
4059 return degraded;
4060}
4061
4062static int raid10_start_reshape(struct mddev *mddev)
4063{
4064 /* A 'reshape' has been requested. This commits
4065 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4066 * This also checks if there are enough spares and adds them
4067 * to the array.
4068 * We currently require enough spares to make the final
4069 * array non-degraded. We also require that the difference
4070 * between old and new data_offset - on each device - is
4071 * enough that we never risk over-writing.
4072 */
4073
4074 unsigned long before_length, after_length;
4075 sector_t min_offset_diff = 0;
4076 int first = 1;
4077 struct geom new;
4078 struct r10conf *conf = mddev->private;
4079 struct md_rdev *rdev;
4080 int spares = 0;
4081 int ret;
4082
4083 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4084 return -EBUSY;
4085
4086 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4087 return -EINVAL;
4088
4089 before_length = ((1 << conf->prev.chunk_shift) *
4090 conf->prev.far_copies);
4091 after_length = ((1 << conf->geo.chunk_shift) *
4092 conf->geo.far_copies);
4093
4094 rdev_for_each(rdev, mddev) {
4095 if (!test_bit(In_sync, &rdev->flags)
4096 && !test_bit(Faulty, &rdev->flags))
4097 spares++;
4098 if (rdev->raid_disk >= 0) {
4099 long long diff = (rdev->new_data_offset
4100 - rdev->data_offset);
4101 if (!mddev->reshape_backwards)
4102 diff = -diff;
4103 if (diff < 0)
4104 diff = 0;
4105 if (first || diff < min_offset_diff)
4106 min_offset_diff = diff;
4107 }
4108 }
4109
4110 if (max(before_length, after_length) > min_offset_diff)
4111 return -EINVAL;
4112
4113 if (spares < mddev->delta_disks)
4114 return -EINVAL;
4115
4116 conf->offset_diff = min_offset_diff;
4117 spin_lock_irq(&conf->device_lock);
4118 if (conf->mirrors_new) {
4119 memcpy(conf->mirrors_new, conf->mirrors,
4120 sizeof(struct raid10_info)*conf->prev.raid_disks);
4121 smp_mb();
4122 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4123 conf->mirrors_old = conf->mirrors;
4124 conf->mirrors = conf->mirrors_new;
4125 conf->mirrors_new = NULL;
4126 }
4127 setup_geo(&conf->geo, mddev, geo_start);
4128 smp_mb();
4129 if (mddev->reshape_backwards) {
4130 sector_t size = raid10_size(mddev, 0, 0);
4131 if (size < mddev->array_sectors) {
4132 spin_unlock_irq(&conf->device_lock);
4133 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4134 mdname(mddev));
4135 return -EINVAL;
4136 }
4137 mddev->resync_max_sectors = size;
4138 conf->reshape_progress = size;
4139 } else
4140 conf->reshape_progress = 0;
4141 spin_unlock_irq(&conf->device_lock);
4142
4143 if (mddev->delta_disks && mddev->bitmap) {
4144 ret = bitmap_resize(mddev->bitmap,
4145 raid10_size(mddev, 0,
4146 conf->geo.raid_disks),
4147 0, 0);
4148 if (ret)
4149 goto abort;
4150 }
4151 if (mddev->delta_disks > 0) {
4152 rdev_for_each(rdev, mddev)
4153 if (rdev->raid_disk < 0 &&
4154 !test_bit(Faulty, &rdev->flags)) {
4155 if (raid10_add_disk(mddev, rdev) == 0) {
4156 if (rdev->raid_disk >=
4157 conf->prev.raid_disks)
4158 set_bit(In_sync, &rdev->flags);
4159 else
4160 rdev->recovery_offset = 0;
4161
4162 if (sysfs_link_rdev(mddev, rdev))
4163 /* Failure here is OK */;
4164 }
4165 } else if (rdev->raid_disk >= conf->prev.raid_disks
4166 && !test_bit(Faulty, &rdev->flags)) {
4167 /* This is a spare that was manually added */
4168 set_bit(In_sync, &rdev->flags);
4169 }
4170 }
4171 /* When a reshape changes the number of devices,
4172 * ->degraded is measured against the larger of the
4173 * pre and post numbers.
4174 */
4175 spin_lock_irq(&conf->device_lock);
4176 mddev->degraded = calc_degraded(conf);
4177 spin_unlock_irq(&conf->device_lock);
4178 mddev->raid_disks = conf->geo.raid_disks;
4179 mddev->reshape_position = conf->reshape_progress;
4180 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181
4182 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4184 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4185 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4186
4187 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4188 "reshape");
4189 if (!mddev->sync_thread) {
4190 ret = -EAGAIN;
4191 goto abort;
4192 }
4193 conf->reshape_checkpoint = jiffies;
4194 md_wakeup_thread(mddev->sync_thread);
4195 md_new_event(mddev);
4196 return 0;
4197
4198abort:
4199 mddev->recovery = 0;
4200 spin_lock_irq(&conf->device_lock);
4201 conf->geo = conf->prev;
4202 mddev->raid_disks = conf->geo.raid_disks;
4203 rdev_for_each(rdev, mddev)
4204 rdev->new_data_offset = rdev->data_offset;
4205 smp_wmb();
4206 conf->reshape_progress = MaxSector;
4207 mddev->reshape_position = MaxSector;
4208 spin_unlock_irq(&conf->device_lock);
4209 return ret;
4210}
4211
4212/* Calculate the last device-address that could contain
4213 * any block from the chunk that includes the array-address 's'
4214 * and report the next address.
4215 * i.e. the address returned will be chunk-aligned and after
4216 * any data that is in the chunk containing 's'.
4217 */
4218static sector_t last_dev_address(sector_t s, struct geom *geo)
4219{
4220 s = (s | geo->chunk_mask) + 1;
4221 s >>= geo->chunk_shift;
4222 s *= geo->near_copies;
4223 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4224 s *= geo->far_copies;
4225 s <<= geo->chunk_shift;
4226 return s;
4227}
4228
4229/* Calculate the first device-address that could contain
4230 * any block from the chunk that includes the array-address 's'.
4231 * This too will be the start of a chunk
4232 */
4233static sector_t first_dev_address(sector_t s, struct geom *geo)
4234{
4235 s >>= geo->chunk_shift;
4236 s *= geo->near_copies;
4237 sector_div(s, geo->raid_disks);
4238 s *= geo->far_copies;
4239 s <<= geo->chunk_shift;
4240 return s;
4241}
4242
4243static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4244 int *skipped)
4245{
4246 /* We simply copy at most one chunk (smallest of old and new)
4247 * at a time, possibly less if that exceeds RESYNC_PAGES,
4248 * or we hit a bad block or something.
4249 * This might mean we pause for normal IO in the middle of
4250 * a chunk, but that is not a problem was mddev->reshape_position
4251 * can record any location.
4252 *
4253 * If we will want to write to a location that isn't
4254 * yet recorded as 'safe' (i.e. in metadata on disk) then
4255 * we need to flush all reshape requests and update the metadata.
4256 *
4257 * When reshaping forwards (e.g. to more devices), we interpret
4258 * 'safe' as the earliest block which might not have been copied
4259 * down yet. We divide this by previous stripe size and multiply
4260 * by previous stripe length to get lowest device offset that we
4261 * cannot write to yet.
4262 * We interpret 'sector_nr' as an address that we want to write to.
4263 * From this we use last_device_address() to find where we might
4264 * write to, and first_device_address on the 'safe' position.
4265 * If this 'next' write position is after the 'safe' position,
4266 * we must update the metadata to increase the 'safe' position.
4267 *
4268 * When reshaping backwards, we round in the opposite direction
4269 * and perform the reverse test: next write position must not be
4270 * less than current safe position.
4271 *
4272 * In all this the minimum difference in data offsets
4273 * (conf->offset_diff - always positive) allows a bit of slack,
4274 * so next can be after 'safe', but not by more than offset_disk
4275 *
4276 * We need to prepare all the bios here before we start any IO
4277 * to ensure the size we choose is acceptable to all devices.
4278 * The means one for each copy for write-out and an extra one for
4279 * read-in.
4280 * We store the read-in bio in ->master_bio and the others in
4281 * ->devs[x].bio and ->devs[x].repl_bio.
4282 */
4283 struct r10conf *conf = mddev->private;
4284 struct r10bio *r10_bio;
4285 sector_t next, safe, last;
4286 int max_sectors;
4287 int nr_sectors;
4288 int s;
4289 struct md_rdev *rdev;
4290 int need_flush = 0;
4291 struct bio *blist;
4292 struct bio *bio, *read_bio;
4293 int sectors_done = 0;
4294
4295 if (sector_nr == 0) {
4296 /* If restarting in the middle, skip the initial sectors */
4297 if (mddev->reshape_backwards &&
4298 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4299 sector_nr = (raid10_size(mddev, 0, 0)
4300 - conf->reshape_progress);
4301 } else if (!mddev->reshape_backwards &&
4302 conf->reshape_progress > 0)
4303 sector_nr = conf->reshape_progress;
4304 if (sector_nr) {
4305 mddev->curr_resync_completed = sector_nr;
4306 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4307 *skipped = 1;
4308 return sector_nr;
4309 }
4310 }
4311
4312 /* We don't use sector_nr to track where we are up to
4313 * as that doesn't work well for ->reshape_backwards.
4314 * So just use ->reshape_progress.
4315 */
4316 if (mddev->reshape_backwards) {
4317 /* 'next' is the earliest device address that we might
4318 * write to for this chunk in the new layout
4319 */
4320 next = first_dev_address(conf->reshape_progress - 1,
4321 &conf->geo);
4322
4323 /* 'safe' is the last device address that we might read from
4324 * in the old layout after a restart
4325 */
4326 safe = last_dev_address(conf->reshape_safe - 1,
4327 &conf->prev);
4328
4329 if (next + conf->offset_diff < safe)
4330 need_flush = 1;
4331
4332 last = conf->reshape_progress - 1;
4333 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4334 & conf->prev.chunk_mask);
4335 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4336 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4337 } else {
4338 /* 'next' is after the last device address that we
4339 * might write to for this chunk in the new layout
4340 */
4341 next = last_dev_address(conf->reshape_progress, &conf->geo);
4342
4343 /* 'safe' is the earliest device address that we might
4344 * read from in the old layout after a restart
4345 */
4346 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4347
4348 /* Need to update metadata if 'next' might be beyond 'safe'
4349 * as that would possibly corrupt data
4350 */
4351 if (next > safe + conf->offset_diff)
4352 need_flush = 1;
4353
4354 sector_nr = conf->reshape_progress;
4355 last = sector_nr | (conf->geo.chunk_mask
4356 & conf->prev.chunk_mask);
4357
4358 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4359 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4360 }
4361
4362 if (need_flush ||
4363 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4364 /* Need to update reshape_position in metadata */
4365 wait_barrier(conf);
4366 mddev->reshape_position = conf->reshape_progress;
4367 if (mddev->reshape_backwards)
4368 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4369 - conf->reshape_progress;
4370 else
4371 mddev->curr_resync_completed = conf->reshape_progress;
4372 conf->reshape_checkpoint = jiffies;
4373 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4374 md_wakeup_thread(mddev->thread);
4375 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4376 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4377 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4378 allow_barrier(conf);
4379 return sectors_done;
4380 }
4381 conf->reshape_safe = mddev->reshape_position;
4382 allow_barrier(conf);
4383 }
4384
4385read_more:
4386 /* Now schedule reads for blocks from sector_nr to last */
4387 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4388 raise_barrier(conf, sectors_done != 0);
4389 atomic_set(&r10_bio->remaining, 0);
4390 r10_bio->mddev = mddev;
4391 r10_bio->sector = sector_nr;
4392 set_bit(R10BIO_IsReshape, &r10_bio->state);
4393 r10_bio->sectors = last - sector_nr + 1;
4394 rdev = read_balance(conf, r10_bio, &max_sectors);
4395 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4396
4397 if (!rdev) {
4398 /* Cannot read from here, so need to record bad blocks
4399 * on all the target devices.
4400 */
4401 // FIXME
4402 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4403 return sectors_done;
4404 }
4405
4406 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4407
4408 read_bio->bi_bdev = rdev->bdev;
4409 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4410 + rdev->data_offset);
4411 read_bio->bi_private = r10_bio;
4412 read_bio->bi_end_io = end_sync_read;
4413 read_bio->bi_rw = READ;
4414 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4415 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4416 read_bio->bi_vcnt = 0;
4417 read_bio->bi_iter.bi_size = 0;
4418 r10_bio->master_bio = read_bio;
4419 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4420
4421 /* Now find the locations in the new layout */
4422 __raid10_find_phys(&conf->geo, r10_bio);
4423
4424 blist = read_bio;
4425 read_bio->bi_next = NULL;
4426
4427 for (s = 0; s < conf->copies*2; s++) {
4428 struct bio *b;
4429 int d = r10_bio->devs[s/2].devnum;
4430 struct md_rdev *rdev2;
4431 if (s&1) {
4432 rdev2 = conf->mirrors[d].replacement;
4433 b = r10_bio->devs[s/2].repl_bio;
4434 } else {
4435 rdev2 = conf->mirrors[d].rdev;
4436 b = r10_bio->devs[s/2].bio;
4437 }
4438 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4439 continue;
4440
4441 bio_reset(b);
4442 b->bi_bdev = rdev2->bdev;
4443 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4444 rdev2->new_data_offset;
4445 b->bi_private = r10_bio;
4446 b->bi_end_io = end_reshape_write;
4447 b->bi_rw = WRITE;
4448 b->bi_next = blist;
4449 blist = b;
4450 }
4451
4452 /* Now add as many pages as possible to all of these bios. */
4453
4454 nr_sectors = 0;
4455 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4456 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4457 int len = (max_sectors - s) << 9;
4458 if (len > PAGE_SIZE)
4459 len = PAGE_SIZE;
4460 for (bio = blist; bio ; bio = bio->bi_next) {
4461 struct bio *bio2;
4462 if (bio_add_page(bio, page, len, 0))
4463 continue;
4464
4465 /* Didn't fit, must stop */
4466 for (bio2 = blist;
4467 bio2 && bio2 != bio;
4468 bio2 = bio2->bi_next) {
4469 /* Remove last page from this bio */
4470 bio2->bi_vcnt--;
4471 bio2->bi_iter.bi_size -= len;
4472 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4473 }
4474 goto bio_full;
4475 }
4476 sector_nr += len >> 9;
4477 nr_sectors += len >> 9;
4478 }
4479bio_full:
4480 r10_bio->sectors = nr_sectors;
4481
4482 /* Now submit the read */
4483 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4484 atomic_inc(&r10_bio->remaining);
4485 read_bio->bi_next = NULL;
4486 generic_make_request(read_bio);
4487 sector_nr += nr_sectors;
4488 sectors_done += nr_sectors;
4489 if (sector_nr <= last)
4490 goto read_more;
4491
4492 /* Now that we have done the whole section we can
4493 * update reshape_progress
4494 */
4495 if (mddev->reshape_backwards)
4496 conf->reshape_progress -= sectors_done;
4497 else
4498 conf->reshape_progress += sectors_done;
4499
4500 return sectors_done;
4501}
4502
4503static void end_reshape_request(struct r10bio *r10_bio);
4504static int handle_reshape_read_error(struct mddev *mddev,
4505 struct r10bio *r10_bio);
4506static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4507{
4508 /* Reshape read completed. Hopefully we have a block
4509 * to write out.
4510 * If we got a read error then we do sync 1-page reads from
4511 * elsewhere until we find the data - or give up.
4512 */
4513 struct r10conf *conf = mddev->private;
4514 int s;
4515
4516 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4517 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4518 /* Reshape has been aborted */
4519 md_done_sync(mddev, r10_bio->sectors, 0);
4520 return;
4521 }
4522
4523 /* We definitely have the data in the pages, schedule the
4524 * writes.
4525 */
4526 atomic_set(&r10_bio->remaining, 1);
4527 for (s = 0; s < conf->copies*2; s++) {
4528 struct bio *b;
4529 int d = r10_bio->devs[s/2].devnum;
4530 struct md_rdev *rdev;
4531 if (s&1) {
4532 rdev = conf->mirrors[d].replacement;
4533 b = r10_bio->devs[s/2].repl_bio;
4534 } else {
4535 rdev = conf->mirrors[d].rdev;
4536 b = r10_bio->devs[s/2].bio;
4537 }
4538 if (!rdev || test_bit(Faulty, &rdev->flags))
4539 continue;
4540 atomic_inc(&rdev->nr_pending);
4541 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4542 atomic_inc(&r10_bio->remaining);
4543 b->bi_next = NULL;
4544 generic_make_request(b);
4545 }
4546 end_reshape_request(r10_bio);
4547}
4548
4549static void end_reshape(struct r10conf *conf)
4550{
4551 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4552 return;
4553
4554 spin_lock_irq(&conf->device_lock);
4555 conf->prev = conf->geo;
4556 md_finish_reshape(conf->mddev);
4557 smp_wmb();
4558 conf->reshape_progress = MaxSector;
4559 spin_unlock_irq(&conf->device_lock);
4560
4561 /* read-ahead size must cover two whole stripes, which is
4562 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4563 */
4564 if (conf->mddev->queue) {
4565 int stripe = conf->geo.raid_disks *
4566 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4567 stripe /= conf->geo.near_copies;
4568 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4569 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4570 }
4571 conf->fullsync = 0;
4572}
4573
4574
4575static int handle_reshape_read_error(struct mddev *mddev,
4576 struct r10bio *r10_bio)
4577{
4578 /* Use sync reads to get the blocks from somewhere else */
4579 int sectors = r10_bio->sectors;
4580 struct r10conf *conf = mddev->private;
4581 struct {
4582 struct r10bio r10_bio;
4583 struct r10dev devs[conf->copies];
4584 } on_stack;
4585 struct r10bio *r10b = &on_stack.r10_bio;
4586 int slot = 0;
4587 int idx = 0;
4588 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4589
4590 r10b->sector = r10_bio->sector;
4591 __raid10_find_phys(&conf->prev, r10b);
4592
4593 while (sectors) {
4594 int s = sectors;
4595 int success = 0;
4596 int first_slot = slot;
4597
4598 if (s > (PAGE_SIZE >> 9))
4599 s = PAGE_SIZE >> 9;
4600
4601 while (!success) {
4602 int d = r10b->devs[slot].devnum;
4603 struct md_rdev *rdev = conf->mirrors[d].rdev;
4604 sector_t addr;
4605 if (rdev == NULL ||
4606 test_bit(Faulty, &rdev->flags) ||
4607 !test_bit(In_sync, &rdev->flags))
4608 goto failed;
4609
4610 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4611 success = sync_page_io(rdev,
4612 addr,
4613 s << 9,
4614 bvec[idx].bv_page,
4615 READ, false);
4616 if (success)
4617 break;
4618 failed:
4619 slot++;
4620 if (slot >= conf->copies)
4621 slot = 0;
4622 if (slot == first_slot)
4623 break;
4624 }
4625 if (!success) {
4626 /* couldn't read this block, must give up */
4627 set_bit(MD_RECOVERY_INTR,
4628 &mddev->recovery);
4629 return -EIO;
4630 }
4631 sectors -= s;
4632 idx++;
4633 }
4634 return 0;
4635}
4636
4637static void end_reshape_write(struct bio *bio, int error)
4638{
4639 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4640 struct r10bio *r10_bio = bio->bi_private;
4641 struct mddev *mddev = r10_bio->mddev;
4642 struct r10conf *conf = mddev->private;
4643 int d;
4644 int slot;
4645 int repl;
4646 struct md_rdev *rdev = NULL;
4647
4648 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4649 if (repl)
4650 rdev = conf->mirrors[d].replacement;
4651 if (!rdev) {
4652 smp_mb();
4653 rdev = conf->mirrors[d].rdev;
4654 }
4655
4656 if (!uptodate) {
4657 /* FIXME should record badblock */
4658 md_error(mddev, rdev);
4659 }
4660
4661 rdev_dec_pending(rdev, mddev);
4662 end_reshape_request(r10_bio);
4663}
4664
4665static void end_reshape_request(struct r10bio *r10_bio)
4666{
4667 if (!atomic_dec_and_test(&r10_bio->remaining))
4668 return;
4669 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4670 bio_put(r10_bio->master_bio);
4671 put_buf(r10_bio);
4672}
4673
4674static void raid10_finish_reshape(struct mddev *mddev)
4675{
4676 struct r10conf *conf = mddev->private;
4677
4678 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4679 return;
4680
4681 if (mddev->delta_disks > 0) {
4682 sector_t size = raid10_size(mddev, 0, 0);
4683 md_set_array_sectors(mddev, size);
4684 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4685 mddev->recovery_cp = mddev->resync_max_sectors;
4686 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4687 }
4688 mddev->resync_max_sectors = size;
4689 set_capacity(mddev->gendisk, mddev->array_sectors);
4690 revalidate_disk(mddev->gendisk);
4691 } else {
4692 int d;
4693 for (d = conf->geo.raid_disks ;
4694 d < conf->geo.raid_disks - mddev->delta_disks;
4695 d++) {
4696 struct md_rdev *rdev = conf->mirrors[d].rdev;
4697 if (rdev)
4698 clear_bit(In_sync, &rdev->flags);
4699 rdev = conf->mirrors[d].replacement;
4700 if (rdev)
4701 clear_bit(In_sync, &rdev->flags);
4702 }
4703 }
4704 mddev->layout = mddev->new_layout;
4705 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4706 mddev->reshape_position = MaxSector;
4707 mddev->delta_disks = 0;
4708 mddev->reshape_backwards = 0;
4709}
4710
4711static struct md_personality raid10_personality =
4712{
4713 .name = "raid10",
4714 .level = 10,
4715 .owner = THIS_MODULE,
4716 .make_request = make_request,
4717 .run = run,
4718 .stop = stop,
4719 .status = status,
4720 .error_handler = error,
4721 .hot_add_disk = raid10_add_disk,
4722 .hot_remove_disk= raid10_remove_disk,
4723 .spare_active = raid10_spare_active,
4724 .sync_request = sync_request,
4725 .quiesce = raid10_quiesce,
4726 .size = raid10_size,
4727 .resize = raid10_resize,
4728 .takeover = raid10_takeover,
4729 .check_reshape = raid10_check_reshape,
4730 .start_reshape = raid10_start_reshape,
4731 .finish_reshape = raid10_finish_reshape,
4732};
4733
4734static int __init raid_init(void)
4735{
4736 return register_md_personality(&raid10_personality);
4737}
4738
4739static void raid_exit(void)
4740{
4741 unregister_md_personality(&raid10_personality);
4742}
4743
4744module_init(raid_init);
4745module_exit(raid_exit);
4746MODULE_LICENSE("GPL");
4747MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4748MODULE_ALIAS("md-personality-9"); /* RAID10 */
4749MODULE_ALIAS("md-raid10");
4750MODULE_ALIAS("md-level-10");
4751
4752module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);