Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
  2/**************************************************************************
  3 *
  4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
  5 * All Rights Reserved.
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the
  9 * "Software"), to deal in the Software without restriction, including
 10 * without limitation the rights to use, copy, modify, merge, publish,
 11 * distribute, sub license, and/or sell copies of the Software, and to
 12 * permit persons to whom the Software is furnished to do so, subject to
 13 * the following conditions:
 14 *
 15 * The above copyright notice and this permission notice (including the
 16 * next paragraph) shall be included in all copies or substantial portions
 17 * of the Software.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 26 *
 27 **************************************************************************/
 28/*
 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 30 */
 31
 
 
 
 
 
 
 
 32#include <linux/vmalloc.h>
 
 33
 34#include <drm/ttm/ttm_bo.h>
 35#include <drm/ttm/ttm_placement.h>
 36#include <drm/ttm/ttm_tt.h>
 
 
 
 
 
 
 
 
 
 37
 38#include <drm/drm_cache.h>
 
 
 
 
 
 
 39
 40struct ttm_transfer_obj {
 41	struct ttm_buffer_object base;
 42	struct ttm_buffer_object *bo;
 43};
 44
 45int ttm_mem_io_reserve(struct ttm_device *bdev,
 46		       struct ttm_resource *mem)
 
 
 
 
 
 
 
 
 
 
 
 
 47{
 48	if (mem->bus.offset || mem->bus.addr)
 49		return 0;
 50
 51	mem->bus.is_iomem = false;
 52	if (!bdev->funcs->io_mem_reserve)
 53		return 0;
 54
 55	return bdev->funcs->io_mem_reserve(bdev, mem);
 
 56}
 
 57
 58void ttm_mem_io_free(struct ttm_device *bdev,
 59		     struct ttm_resource *mem)
 60{
 61	if (!mem)
 62		return;
 63
 64	if (!mem->bus.offset && !mem->bus.addr)
 65		return;
 
 66
 67	if (bdev->funcs->io_mem_free)
 68		bdev->funcs->io_mem_free(bdev, mem);
 
 
 
 
 
 
 
 
 
 
 69
 70	mem->bus.offset = 0;
 71	mem->bus.addr = NULL;
 72}
 73
 74/**
 75 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
 76 * @clear: Whether to clear rather than copy.
 77 * @num_pages: Number of pages of the operation.
 78 * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
 79 * @src_iter: A struct ttm_kmap_iter representing the source resource.
 80 *
 81 * This function is intended to be able to move out async under a
 82 * dma-fence if desired.
 83 */
 84void ttm_move_memcpy(bool clear,
 85		     u32 num_pages,
 86		     struct ttm_kmap_iter *dst_iter,
 87		     struct ttm_kmap_iter *src_iter)
 88{
 89	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
 90	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
 91	struct iosys_map src_map, dst_map;
 92	pgoff_t i;
 93
 94	/* Single TTM move. NOP */
 95	if (dst_ops->maps_tt && src_ops->maps_tt)
 96		return;
 
 
 
 
 
 
 
 97
 98	/* Don't move nonexistent data. Clear destination instead. */
 99	if (clear) {
100		for (i = 0; i < num_pages; ++i) {
101			dst_ops->map_local(dst_iter, &dst_map, i);
102			if (dst_map.is_iomem)
103				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
104			else
105				memset(dst_map.vaddr, 0, PAGE_SIZE);
106			if (dst_ops->unmap_local)
107				dst_ops->unmap_local(dst_iter, &dst_map);
108		}
 
 
 
 
 
 
 
 
 
 
 
109		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110	}
 
111
112	for (i = 0; i < num_pages; ++i) {
113		dst_ops->map_local(dst_iter, &dst_map, i);
114		src_ops->map_local(src_iter, &src_map, i);
 
 
 
115
116		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
 
 
 
 
 
117
118		if (src_ops->unmap_local)
119			src_ops->unmap_local(src_iter, &src_map);
120		if (dst_ops->unmap_local)
121			dst_ops->unmap_local(dst_iter, &dst_map);
 
 
 
 
 
 
 
 
 
122	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123}
124EXPORT_SYMBOL(ttm_move_memcpy);
125
126/**
127 * ttm_bo_move_memcpy
128 *
129 * @bo: A pointer to a struct ttm_buffer_object.
130 * @ctx: operation context
131 * @dst_mem: struct ttm_resource indicating where to move.
132 *
133 * Fallback move function for a mappable buffer object in mappable memory.
134 * The function will, if successful,
135 * free any old aperture space, and set (@new_mem)->mm_node to NULL,
136 * and update the (@bo)->mem placement flags. If unsuccessful, the old
137 * data remains untouched, and it's up to the caller to free the
138 * memory space indicated by @new_mem.
139 * Returns:
140 * !0: Failure.
141 */
142int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
143		       struct ttm_operation_ctx *ctx,
144		       struct ttm_resource *dst_mem)
145{
146	struct ttm_device *bdev = bo->bdev;
147	struct ttm_resource_manager *dst_man =
148		ttm_manager_type(bo->bdev, dst_mem->mem_type);
149	struct ttm_tt *ttm = bo->ttm;
150	struct ttm_resource *src_mem = bo->resource;
151	struct ttm_resource_manager *src_man;
152	union {
153		struct ttm_kmap_iter_tt tt;
154		struct ttm_kmap_iter_linear_io io;
155	} _dst_iter, _src_iter;
156	struct ttm_kmap_iter *dst_iter, *src_iter;
157	bool clear;
158	int ret = 0;
159
160	if (WARN_ON(!src_mem))
161		return -EINVAL;
 
 
 
 
162
163	src_man = ttm_manager_type(bdev, src_mem->mem_type);
164	if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
165		    dst_man->use_tt)) {
166		ret = ttm_bo_populate(bo, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167		if (ret)
168			return ret;
169	}
170
171	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
172	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
173		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
174	if (IS_ERR(dst_iter))
175		return PTR_ERR(dst_iter);
176
177	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
178	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
179		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
180	if (IS_ERR(src_iter)) {
181		ret = PTR_ERR(src_iter);
182		goto out_src_iter;
183	}
184
185	clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
186	if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
187		ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
188
189	if (!src_iter->ops->maps_tt)
190		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
191	ttm_bo_move_sync_cleanup(bo, dst_mem);
192
193out_src_iter:
194	if (!dst_iter->ops->maps_tt)
195		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197	return ret;
198}
199EXPORT_SYMBOL(ttm_bo_move_memcpy);
200
201static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
202{
203	struct ttm_transfer_obj *fbo;
204
205	fbo = container_of(bo, struct ttm_transfer_obj, base);
206	dma_resv_fini(&fbo->base.base._resv);
207	ttm_bo_put(fbo->bo);
208	kfree(fbo);
209}
210
211/**
212 * ttm_buffer_object_transfer
213 *
214 * @bo: A pointer to a struct ttm_buffer_object.
215 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
216 * holding the data of @bo with the old placement.
217 *
218 * This is a utility function that may be called after an accelerated move
219 * has been scheduled. A new buffer object is created as a placeholder for
220 * the old data while it's being copied. When that buffer object is idle,
221 * it can be destroyed, releasing the space of the old placement.
222 * Returns:
223 * !0: Failure.
224 */
225
226static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
227				      struct ttm_buffer_object **new_obj)
228{
229	struct ttm_transfer_obj *fbo;
 
 
230	int ret;
231
232	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
233	if (!fbo)
234		return -ENOMEM;
235
236	fbo->base = *bo;
237
238	/**
239	 * Fix up members that we shouldn't copy directly:
240	 * TODO: Explicit member copy would probably be better here.
241	 */
242
243	atomic_inc(&ttm_glob.bo_count);
244	drm_vma_node_reset(&fbo->base.base.vma_node);
245
246	kref_init(&fbo->base.kref);
247	fbo->base.destroy = &ttm_transfered_destroy;
248	fbo->base.pin_count = 0;
249	if (bo->type != ttm_bo_type_sg)
250		fbo->base.base.resv = &fbo->base.base._resv;
251
252	dma_resv_init(&fbo->base.base._resv);
253	fbo->base.base.dev = NULL;
254	ret = dma_resv_trylock(&fbo->base.base._resv);
 
 
 
 
 
 
 
 
255	WARN_ON(!ret);
256
257	if (fbo->base.resource) {
258		ttm_resource_set_bo(fbo->base.resource, &fbo->base);
259		bo->resource = NULL;
260		ttm_bo_set_bulk_move(&fbo->base, NULL);
261	} else {
262		fbo->base.bulk_move = NULL;
263	}
264
265	ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
266	if (ret) {
267		kfree(fbo);
268		return ret;
269	}
270
271	ttm_bo_get(bo);
272	fbo->bo = bo;
273
274	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
275
276	*new_obj = &fbo->base;
277	return 0;
278}
279
280/**
281 * ttm_io_prot
282 *
283 * @bo: ttm buffer object
284 * @res: ttm resource object
285 * @tmp: Page protection flag for a normal, cached mapping.
286 *
287 * Utility function that returns the pgprot_t that should be used for
288 * setting up a PTE with the caching model indicated by @c_state.
289 */
290pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
291		     pgprot_t tmp)
292{
293	struct ttm_resource_manager *man;
294	enum ttm_caching caching;
295
296	man = ttm_manager_type(bo->bdev, res->mem_type);
297	if (man->use_tt) {
298		caching = bo->ttm->caching;
299		if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
300			tmp = pgprot_decrypted(tmp);
301	} else  {
302		caching = res->bus.caching;
 
303	}
304
305	return ttm_prot_from_caching(caching, tmp);
 
 
 
 
 
 
 
 
 
 
306}
307EXPORT_SYMBOL(ttm_io_prot);
308
309static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
310			  unsigned long offset,
311			  unsigned long size,
312			  struct ttm_bo_kmap_obj *map)
313{
314	struct ttm_resource *mem = bo->resource;
315
316	if (bo->resource->bus.addr) {
317		map->bo_kmap_type = ttm_bo_map_premapped;
318		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
319	} else {
320		resource_size_t res = bo->resource->bus.offset + offset;
321
322		map->bo_kmap_type = ttm_bo_map_iomap;
323		if (mem->bus.caching == ttm_write_combined)
324			map->virtual = ioremap_wc(res, size);
325#ifdef CONFIG_X86
326		else if (mem->bus.caching == ttm_cached)
327			map->virtual = ioremap_cache(res, size);
328#endif
329		else
330			map->virtual = ioremap(res, size);
 
331	}
332	return (!map->virtual) ? -ENOMEM : 0;
333}
334
335static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
336			   unsigned long start_page,
337			   unsigned long num_pages,
338			   struct ttm_bo_kmap_obj *map)
339{
340	struct ttm_resource *mem = bo->resource;
341	struct ttm_operation_ctx ctx = {
342		.interruptible = false,
343		.no_wait_gpu = false
344	};
345	struct ttm_tt *ttm = bo->ttm;
346	struct ttm_resource_manager *man =
347			ttm_manager_type(bo->bdev, bo->resource->mem_type);
348	pgprot_t prot;
349	int ret;
350
351	BUG_ON(!ttm);
352
353	ret = ttm_bo_populate(bo, &ctx);
354	if (ret)
355		return ret;
 
 
356
357	if (num_pages == 1 && ttm->caching == ttm_cached &&
358	    !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
359		/*
360		 * We're mapping a single page, and the desired
361		 * page protection is consistent with the bo.
362		 */
363
364		map->bo_kmap_type = ttm_bo_map_kmap;
365		map->page = ttm->pages[start_page];
366		map->virtual = kmap(map->page);
367	} else {
368		/*
369		 * We need to use vmap to get the desired page protection
370		 * or to make the buffer object look contiguous.
371		 */
372		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
 
 
373		map->bo_kmap_type = ttm_bo_map_vmap;
374		map->virtual = vmap(ttm->pages + start_page, num_pages,
375				    0, prot);
376	}
377	return (!map->virtual) ? -ENOMEM : 0;
378}
379
380/**
381 * ttm_bo_kmap
382 *
383 * @bo: The buffer object.
384 * @start_page: The first page to map.
385 * @num_pages: Number of pages to map.
386 * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
387 *
388 * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
389 * data in the buffer object. The ttm_kmap_obj_virtual function can then be
390 * used to obtain a virtual address to the data.
391 *
392 * Returns
393 * -ENOMEM: Out of memory.
394 * -EINVAL: Invalid range.
395 */
396int ttm_bo_kmap(struct ttm_buffer_object *bo,
397		unsigned long start_page, unsigned long num_pages,
398		struct ttm_bo_kmap_obj *map)
399{
 
 
400	unsigned long offset, size;
401	int ret;
402
 
403	map->virtual = NULL;
404	map->bo = bo;
405	if (num_pages > PFN_UP(bo->resource->size))
406		return -EINVAL;
407	if ((start_page + num_pages) > PFN_UP(bo->resource->size))
408		return -EINVAL;
409
410	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
 
 
 
 
 
411	if (ret)
412		return ret;
413	if (!bo->resource->bus.is_iomem) {
414		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
415	} else {
416		offset = start_page << PAGE_SHIFT;
417		size = num_pages << PAGE_SHIFT;
418		return ttm_bo_ioremap(bo, offset, size, map);
419	}
420}
421EXPORT_SYMBOL(ttm_bo_kmap);
422
423/**
424 * ttm_bo_kunmap
425 *
426 * @map: Object describing the map to unmap.
427 *
428 * Unmaps a kernel map set up by ttm_bo_kmap.
429 */
430void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
431{
 
 
 
 
432	if (!map->virtual)
433		return;
434	switch (map->bo_kmap_type) {
435	case ttm_bo_map_iomap:
436		iounmap(map->virtual);
437		break;
438	case ttm_bo_map_vmap:
439		vunmap(map->virtual);
440		break;
441	case ttm_bo_map_kmap:
442		kunmap(map->page);
443		break;
444	case ttm_bo_map_premapped:
445		break;
446	default:
447		BUG();
448	}
449	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
 
 
450	map->virtual = NULL;
451	map->page = NULL;
452}
453EXPORT_SYMBOL(ttm_bo_kunmap);
454
455/**
456 * ttm_bo_vmap
457 *
458 * @bo: The buffer object.
459 * @map: pointer to a struct iosys_map representing the map.
460 *
461 * Sets up a kernel virtual mapping, using ioremap or vmap to the
462 * data in the buffer object. The parameter @map returns the virtual
463 * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
464 *
465 * Returns
466 * -ENOMEM: Out of memory.
467 * -EINVAL: Invalid range.
468 */
469int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
470{
471	struct ttm_resource *mem = bo->resource;
 
 
 
472	int ret;
 
 
473
474	dma_resv_assert_held(bo->base.resv);
475
476	ret = ttm_mem_io_reserve(bo->bdev, mem);
477	if (ret)
478		return ret;
479
480	if (mem->bus.is_iomem) {
481		void __iomem *vaddr_iomem;
482
483		if (mem->bus.addr)
484			vaddr_iomem = (void __iomem *)mem->bus.addr;
485		else if (mem->bus.caching == ttm_write_combined)
486			vaddr_iomem = ioremap_wc(mem->bus.offset,
487						 bo->base.size);
488#ifdef CONFIG_X86
489		else if (mem->bus.caching == ttm_cached)
490			vaddr_iomem = ioremap_cache(mem->bus.offset,
491						  bo->base.size);
492#endif
493		else
494			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
495
496		if (!vaddr_iomem)
497			return -ENOMEM;
498
499		iosys_map_set_vaddr_iomem(map, vaddr_iomem);
500
501	} else {
502		struct ttm_operation_ctx ctx = {
503			.interruptible = false,
504			.no_wait_gpu = false
505		};
506		struct ttm_tt *ttm = bo->ttm;
507		pgprot_t prot;
508		void *vaddr;
509
510		ret = ttm_bo_populate(bo, &ctx);
511		if (ret)
512			return ret;
513
514		/*
515		 * We need to use vmap to get the desired page protection
516		 * or to make the buffer object look contiguous.
 
 
 
 
 
 
 
 
 
 
 
517		 */
518		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
519		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
520		if (!vaddr)
521			return -ENOMEM;
522
523		iosys_map_set_vaddr(map, vaddr);
524	}
525
526	return 0;
527}
528EXPORT_SYMBOL(ttm_bo_vmap);
529
530/**
531 * ttm_bo_vunmap
532 *
533 * @bo: The buffer object.
534 * @map: Object describing the map to unmap.
535 *
536 * Unmaps a kernel map set up by ttm_bo_vmap().
537 */
538void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
539{
540	struct ttm_resource *mem = bo->resource;
541
542	dma_resv_assert_held(bo->base.resv);
543
544	if (iosys_map_is_null(map))
545		return;
546
547	if (!map->is_iomem)
548		vunmap(map->vaddr);
549	else if (!mem->bus.addr)
550		iounmap(map->vaddr_iomem);
551	iosys_map_clear(map);
552
553	ttm_mem_io_free(bo->bdev, bo->resource);
554}
555EXPORT_SYMBOL(ttm_bo_vunmap);
556
557static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
558				 bool dst_use_tt)
559{
560	long ret;
561
562	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
563				    false, 15 * HZ);
564	if (ret == 0)
565		return -EBUSY;
566	if (ret < 0)
567		return ret;
568
569	if (!dst_use_tt)
570		ttm_bo_tt_destroy(bo);
571	ttm_resource_free(bo, &bo->resource);
572	return 0;
573}
574
575static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
576				struct dma_fence *fence,
577				bool dst_use_tt)
578{
579	struct ttm_buffer_object *ghost_obj;
580	int ret;
581
582	/**
583	 * This should help pipeline ordinary buffer moves.
584	 *
585	 * Hang old buffer memory on a new buffer object,
586	 * and leave it to be released when the GPU
587	 * operation has completed.
588	 */
589
590	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
591	if (ret)
592		return ret;
593
594	dma_resv_add_fence(&ghost_obj->base._resv, fence,
595			   DMA_RESV_USAGE_KERNEL);
596
597	/**
598	 * If we're not moving to fixed memory, the TTM object
599	 * needs to stay alive. Otherwhise hang it on the ghost
600	 * bo to be unbound and destroyed.
601	 */
602
603	if (dst_use_tt)
604		ghost_obj->ttm = NULL;
605	else
606		bo->ttm = NULL;
607
608	dma_resv_unlock(&ghost_obj->base._resv);
609	ttm_bo_put(ghost_obj);
610	return 0;
611}
612
613static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
614				       struct dma_fence *fence)
615{
616	struct ttm_device *bdev = bo->bdev;
617	struct ttm_resource_manager *from;
618
619	from = ttm_manager_type(bdev, bo->resource->mem_type);
 
 
 
620
621	/**
622	 * BO doesn't have a TTM we need to bind/unbind. Just remember
623	 * this eviction and free up the allocation
624	 */
625	spin_lock(&from->move_lock);
626	if (!from->move || dma_fence_is_later(fence, from->move)) {
627		dma_fence_put(from->move);
628		from->move = dma_fence_get(fence);
629	}
630	spin_unlock(&from->move_lock);
631
632	ttm_resource_free(bo, &bo->resource);
633}
634
635/**
636 * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
637 *
638 * @bo: A pointer to a struct ttm_buffer_object.
639 * @fence: A fence object that signals when moving is complete.
640 * @evict: This is an evict move. Don't return until the buffer is idle.
641 * @pipeline: evictions are to be pipelined.
642 * @new_mem: struct ttm_resource indicating where to move.
643 *
644 * Accelerated move function to be called when an accelerated move
645 * has been scheduled. The function will create a new temporary buffer object
646 * representing the old placement, and put the sync object on both buffer
647 * objects. After that the newly created buffer object is unref'd to be
648 * destroyed when the move is complete. This will help pipeline
649 * buffer moves.
650 */
651int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
652			      struct dma_fence *fence,
653			      bool evict,
654			      bool pipeline,
655			      struct ttm_resource *new_mem)
656{
657	struct ttm_device *bdev = bo->bdev;
658	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
659	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
660	int ret = 0;
661
662	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
663	if (!evict)
664		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
665	else if (!from->use_tt && pipeline)
666		ttm_bo_move_pipeline_evict(bo, fence);
667	else
668		ret = ttm_bo_wait_free_node(bo, man->use_tt);
669
670	if (ret)
671		return ret;
672
673	ttm_bo_assign_mem(bo, new_mem);
674
675	return 0;
676}
677EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
678
679/**
680 * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
681 *
682 * @bo: A pointer to a struct ttm_buffer_object.
683 * @new_mem: struct ttm_resource indicating where to move.
684 *
685 * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
686 * by the caller to be idle. Typically used after memcpy buffer moves.
687 */
688void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
689			      struct ttm_resource *new_mem)
690{
691	struct ttm_device *bdev = bo->bdev;
692	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
693	int ret;
694
695	ret = ttm_bo_wait_free_node(bo, man->use_tt);
696	if (WARN_ON(ret))
697		return;
698
699	ttm_bo_assign_mem(bo, new_mem);
700}
701EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
702
703/**
704 * ttm_bo_pipeline_gutting - purge the contents of a bo
705 * @bo: The buffer object
706 *
707 * Purge the contents of a bo, async if the bo is not idle.
708 * After a successful call, the bo is left unpopulated in
709 * system placement. The function may wait uninterruptible
710 * for idle on OOM.
711 *
712 * Return: 0 if successful, negative error code on failure.
713 */
714int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
715{
716	struct ttm_buffer_object *ghost;
717	struct ttm_tt *ttm;
718	int ret;
719
720	/* If already idle, no need for ghost object dance. */
721	if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
722		if (!bo->ttm) {
723			/* See comment below about clearing. */
724			ret = ttm_tt_create(bo, true);
725			if (ret)
726				return ret;
727		} else {
728			ttm_tt_unpopulate(bo->bdev, bo->ttm);
729			if (bo->type == ttm_bo_type_device)
730				ttm_tt_mark_for_clear(bo->ttm);
731		}
732		ttm_resource_free(bo, &bo->resource);
733		return 0;
734	}
735
736	/*
737	 * We need an unpopulated ttm_tt after giving our current one,
738	 * if any, to the ghost object. And we can't afford to fail
739	 * creating one *after* the operation. If the bo subsequently gets
740	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
741	 * to avoid leaking sensitive information to user-space.
742	 */
743
744	ttm = bo->ttm;
745	bo->ttm = NULL;
746	ret = ttm_tt_create(bo, true);
747	swap(bo->ttm, ttm);
748	if (ret)
749		return ret;
750
751	ret = ttm_buffer_object_transfer(bo, &ghost);
752	if (ret)
753		goto error_destroy_tt;
754
755	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
756	/* Last resort, wait for the BO to be idle when we are OOM */
757	if (ret) {
758		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
759				      false, MAX_SCHEDULE_TIMEOUT);
760	}
761
762	dma_resv_unlock(&ghost->base._resv);
763	ttm_bo_put(ghost);
764	bo->ttm = ttm;
765	return 0;
766
767error_destroy_tt:
768	ttm_tt_destroy(bo->bdev, ttm);
769	return ret;
770}
771
772static bool ttm_lru_walk_trylock(struct ttm_lru_walk *walk,
773				 struct ttm_buffer_object *bo,
774				 bool *needs_unlock)
775{
776	struct ttm_operation_ctx *ctx = walk->ctx;
777
778	*needs_unlock = false;
779
780	if (dma_resv_trylock(bo->base.resv)) {
781		*needs_unlock = true;
782		return true;
783	}
784
785	if (bo->base.resv == ctx->resv && ctx->allow_res_evict) {
786		dma_resv_assert_held(bo->base.resv);
787		return true;
788	}
789
790	return false;
791}
792
793static int ttm_lru_walk_ticketlock(struct ttm_lru_walk *walk,
794				   struct ttm_buffer_object *bo,
795				   bool *needs_unlock)
796{
797	struct dma_resv *resv = bo->base.resv;
798	int ret;
799
800	if (walk->ctx->interruptible)
801		ret = dma_resv_lock_interruptible(resv, walk->ticket);
802	else
803		ret = dma_resv_lock(resv, walk->ticket);
804
805	if (!ret) {
806		*needs_unlock = true;
807		/*
808		 * Only a single ticketlock per loop. Ticketlocks are prone
809		 * to return -EDEADLK causing the eviction to fail, so
810		 * after waiting for the ticketlock, revert back to
811		 * trylocking for this walk.
812		 */
813		walk->ticket = NULL;
814	} else if (ret == -EDEADLK) {
815		/* Caller needs to exit the ww transaction. */
816		ret = -ENOSPC;
817	}
818
819	return ret;
820}
821
822static void ttm_lru_walk_unlock(struct ttm_buffer_object *bo, bool locked)
823{
824	if (locked)
825		dma_resv_unlock(bo->base.resv);
826}
827
828/**
829 * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on
830 * valid items.
831 * @walk: describe the walks and actions taken
832 * @bdev: The TTM device.
833 * @man: The struct ttm_resource manager whose LRU lists we're walking.
834 * @target: The end condition for the walk.
835 *
836 * The LRU lists of @man are walk, and for each struct ttm_resource encountered,
837 * the corresponding ttm_buffer_object is locked and taken a reference on, and
838 * the LRU lock is dropped. the LRU lock may be dropped before locking and, in
839 * that case, it's verified that the item actually remains on the LRU list after
840 * the lock, and that the buffer object didn't switch resource in between.
841 *
842 * With a locked object, the actions indicated by @walk->process_bo are
843 * performed, and after that, the bo is unlocked, the refcount dropped and the
844 * next struct ttm_resource is processed. Here, the walker relies on
845 * TTM's restartable LRU list implementation.
846 *
847 * Typically @walk->process_bo() would return the number of pages evicted,
848 * swapped or shrunken, so that when the total exceeds @target, or when the
849 * LRU list has been walked in full, iteration is terminated. It's also terminated
850 * on error. Note that the definition of @target is done by the caller, it
851 * could have a different meaning than the number of pages.
852 *
853 * Note that the way dma_resv individualization is done, locking needs to be done
854 * either with the LRU lock held (trylocking only) or with a reference on the
855 * object.
856 *
857 * Return: The progress made towards target or negative error code on error.
858 */
859s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev,
860			   struct ttm_resource_manager *man, s64 target)
861{
862	struct ttm_resource_cursor cursor;
863	struct ttm_resource *res;
864	s64 progress = 0;
865	s64 lret;
866
867	spin_lock(&bdev->lru_lock);
868	ttm_resource_manager_for_each_res(man, &cursor, res) {
869		struct ttm_buffer_object *bo = res->bo;
870		bool bo_needs_unlock = false;
871		bool bo_locked = false;
872		int mem_type;
873
874		/*
875		 * Attempt a trylock before taking a reference on the bo,
876		 * since if we do it the other way around, and the trylock fails,
877		 * we need to drop the lru lock to put the bo.
878		 */
879		if (ttm_lru_walk_trylock(walk, bo, &bo_needs_unlock))
880			bo_locked = true;
881		else if (!walk->ticket || walk->ctx->no_wait_gpu ||
882			 walk->trylock_only)
883			continue;
884
885		if (!ttm_bo_get_unless_zero(bo)) {
886			ttm_lru_walk_unlock(bo, bo_needs_unlock);
887			continue;
888		}
889
890		mem_type = res->mem_type;
891		spin_unlock(&bdev->lru_lock);
892
893		lret = 0;
894		if (!bo_locked)
895			lret = ttm_lru_walk_ticketlock(walk, bo, &bo_needs_unlock);
896
897		/*
898		 * Note that in between the release of the lru lock and the
899		 * ticketlock, the bo may have switched resource,
900		 * and also memory type, since the resource may have been
901		 * freed and allocated again with a different memory type.
902		 * In that case, just skip it.
903		 */
904		if (!lret && bo->resource && bo->resource->mem_type == mem_type)
905			lret = walk->ops->process_bo(walk, bo);
906
907		ttm_lru_walk_unlock(bo, bo_needs_unlock);
908		ttm_bo_put(bo);
909		if (lret == -EBUSY || lret == -EALREADY)
910			lret = 0;
911		progress = (lret < 0) ? lret : progress + lret;
912
913		spin_lock(&bdev->lru_lock);
914		if (progress < 0 || progress >= target)
915			break;
916	}
917	ttm_resource_cursor_fini(&cursor);
918	spin_unlock(&bdev->lru_lock);
919
920	return progress;
921}
v3.15
 
  1/**************************************************************************
  2 *
  3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
  4 * All Rights Reserved.
  5 *
  6 * Permission is hereby granted, free of charge, to any person obtaining a
  7 * copy of this software and associated documentation files (the
  8 * "Software"), to deal in the Software without restriction, including
  9 * without limitation the rights to use, copy, modify, merge, publish,
 10 * distribute, sub license, and/or sell copies of the Software, and to
 11 * permit persons to whom the Software is furnished to do so, subject to
 12 * the following conditions:
 13 *
 14 * The above copyright notice and this permission notice (including the
 15 * next paragraph) shall be included in all copies or substantial portions
 16 * of the Software.
 17 *
 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 25 *
 26 **************************************************************************/
 27/*
 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
 29 */
 30
 31#include <drm/ttm/ttm_bo_driver.h>
 32#include <drm/ttm/ttm_placement.h>
 33#include <drm/drm_vma_manager.h>
 34#include <linux/io.h>
 35#include <linux/highmem.h>
 36#include <linux/wait.h>
 37#include <linux/slab.h>
 38#include <linux/vmalloc.h>
 39#include <linux/module.h>
 40
 41void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
 42{
 43	ttm_bo_mem_put(bo, &bo->mem);
 44}
 45
 46int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
 47		    bool evict,
 48		    bool no_wait_gpu, struct ttm_mem_reg *new_mem)
 49{
 50	struct ttm_tt *ttm = bo->ttm;
 51	struct ttm_mem_reg *old_mem = &bo->mem;
 52	int ret;
 53
 54	if (old_mem->mem_type != TTM_PL_SYSTEM) {
 55		ttm_tt_unbind(ttm);
 56		ttm_bo_free_old_node(bo);
 57		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
 58				TTM_PL_MASK_MEM);
 59		old_mem->mem_type = TTM_PL_SYSTEM;
 60	}
 61
 62	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
 63	if (unlikely(ret != 0))
 64		return ret;
 
 65
 66	if (new_mem->mem_type != TTM_PL_SYSTEM) {
 67		ret = ttm_tt_bind(ttm, new_mem);
 68		if (unlikely(ret != 0))
 69			return ret;
 70	}
 71
 72	*old_mem = *new_mem;
 73	new_mem->mm_node = NULL;
 74
 75	return 0;
 76}
 77EXPORT_SYMBOL(ttm_bo_move_ttm);
 78
 79int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
 80{
 81	if (likely(man->io_reserve_fastpath))
 82		return 0;
 83
 84	if (interruptible)
 85		return mutex_lock_interruptible(&man->io_reserve_mutex);
 
 86
 87	mutex_lock(&man->io_reserve_mutex);
 88	return 0;
 89}
 90EXPORT_SYMBOL(ttm_mem_io_lock);
 91
 92void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
 
 93{
 94	if (likely(man->io_reserve_fastpath))
 95		return;
 96
 97	mutex_unlock(&man->io_reserve_mutex);
 98}
 99EXPORT_SYMBOL(ttm_mem_io_unlock);
100
101static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
102{
103	struct ttm_buffer_object *bo;
104
105	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
106		return -EAGAIN;
107
108	bo = list_first_entry(&man->io_reserve_lru,
109			      struct ttm_buffer_object,
110			      io_reserve_lru);
111	list_del_init(&bo->io_reserve_lru);
112	ttm_bo_unmap_virtual_locked(bo);
113
114	return 0;
 
115}
116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
118int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
119		       struct ttm_mem_reg *mem)
120{
121	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
122	int ret = 0;
123
124	if (!bdev->driver->io_mem_reserve)
125		return 0;
126	if (likely(man->io_reserve_fastpath))
127		return bdev->driver->io_mem_reserve(bdev, mem);
128
129	if (bdev->driver->io_mem_reserve &&
130	    mem->bus.io_reserved_count++ == 0) {
131retry:
132		ret = bdev->driver->io_mem_reserve(bdev, mem);
133		if (ret == -EAGAIN) {
134			ret = ttm_mem_io_evict(man);
135			if (ret == 0)
136				goto retry;
 
 
137		}
138	}
139	return ret;
140}
141EXPORT_SYMBOL(ttm_mem_io_reserve);
142
143void ttm_mem_io_free(struct ttm_bo_device *bdev,
144		     struct ttm_mem_reg *mem)
145{
146	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
147
148	if (likely(man->io_reserve_fastpath))
149		return;
150
151	if (bdev->driver->io_mem_reserve &&
152	    --mem->bus.io_reserved_count == 0 &&
153	    bdev->driver->io_mem_free)
154		bdev->driver->io_mem_free(bdev, mem);
155
156}
157EXPORT_SYMBOL(ttm_mem_io_free);
158
159int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
160{
161	struct ttm_mem_reg *mem = &bo->mem;
162	int ret;
163
164	if (!mem->bus.io_reserved_vm) {
165		struct ttm_mem_type_manager *man =
166			&bo->bdev->man[mem->mem_type];
167
168		ret = ttm_mem_io_reserve(bo->bdev, mem);
169		if (unlikely(ret != 0))
170			return ret;
171		mem->bus.io_reserved_vm = true;
172		if (man->use_io_reserve_lru)
173			list_add_tail(&bo->io_reserve_lru,
174				      &man->io_reserve_lru);
175	}
176	return 0;
177}
178
179void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
180{
181	struct ttm_mem_reg *mem = &bo->mem;
182
183	if (mem->bus.io_reserved_vm) {
184		mem->bus.io_reserved_vm = false;
185		list_del_init(&bo->io_reserve_lru);
186		ttm_mem_io_free(bo->bdev, mem);
187	}
188}
189
190static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
191			void **virtual)
192{
193	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
194	int ret;
195	void *addr;
196
197	*virtual = NULL;
198	(void) ttm_mem_io_lock(man, false);
199	ret = ttm_mem_io_reserve(bdev, mem);
200	ttm_mem_io_unlock(man);
201	if (ret || !mem->bus.is_iomem)
202		return ret;
203
204	if (mem->bus.addr) {
205		addr = mem->bus.addr;
206	} else {
207		if (mem->placement & TTM_PL_FLAG_WC)
208			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
209		else
210			addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
211		if (!addr) {
212			(void) ttm_mem_io_lock(man, false);
213			ttm_mem_io_free(bdev, mem);
214			ttm_mem_io_unlock(man);
215			return -ENOMEM;
216		}
217	}
218	*virtual = addr;
219	return 0;
220}
221
222static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
223			 void *virtual)
224{
225	struct ttm_mem_type_manager *man;
226
227	man = &bdev->man[mem->mem_type];
228
229	if (virtual && mem->bus.addr == NULL)
230		iounmap(virtual);
231	(void) ttm_mem_io_lock(man, false);
232	ttm_mem_io_free(bdev, mem);
233	ttm_mem_io_unlock(man);
234}
235
236static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
237{
238	uint32_t *dstP =
239	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
240	uint32_t *srcP =
241	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
242
243	int i;
244	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
245		iowrite32(ioread32(srcP++), dstP++);
246	return 0;
247}
248
249static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
250				unsigned long page,
251				pgprot_t prot)
252{
253	struct page *d = ttm->pages[page];
254	void *dst;
255
256	if (!d)
257		return -ENOMEM;
258
259	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
260
261#ifdef CONFIG_X86
262	dst = kmap_atomic_prot(d, prot);
263#else
264	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
265		dst = vmap(&d, 1, 0, prot);
266	else
267		dst = kmap(d);
268#endif
269	if (!dst)
270		return -ENOMEM;
271
272	memcpy_fromio(dst, src, PAGE_SIZE);
273
274#ifdef CONFIG_X86
275	kunmap_atomic(dst);
276#else
277	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
278		vunmap(dst);
279	else
280		kunmap(d);
281#endif
282
283	return 0;
284}
285
286static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
287				unsigned long page,
288				pgprot_t prot)
289{
290	struct page *s = ttm->pages[page];
291	void *src;
292
293	if (!s)
294		return -ENOMEM;
295
296	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
297#ifdef CONFIG_X86
298	src = kmap_atomic_prot(s, prot);
299#else
300	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
301		src = vmap(&s, 1, 0, prot);
302	else
303		src = kmap(s);
304#endif
305	if (!src)
306		return -ENOMEM;
307
308	memcpy_toio(dst, src, PAGE_SIZE);
309
310#ifdef CONFIG_X86
311	kunmap_atomic(src);
312#else
313	if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL))
314		vunmap(src);
315	else
316		kunmap(s);
317#endif
318
319	return 0;
320}
 
321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
323		       bool evict, bool no_wait_gpu,
324		       struct ttm_mem_reg *new_mem)
325{
326	struct ttm_bo_device *bdev = bo->bdev;
327	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
 
328	struct ttm_tt *ttm = bo->ttm;
329	struct ttm_mem_reg *old_mem = &bo->mem;
330	struct ttm_mem_reg old_copy = *old_mem;
331	void *old_iomap;
332	void *new_iomap;
333	int ret;
334	unsigned long i;
335	unsigned long page;
336	unsigned long add = 0;
337	int dir;
338
339	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
340	if (ret)
341		return ret;
342	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
343	if (ret)
344		goto out;
345
346	/*
347	 * Single TTM move. NOP.
348	 */
349	if (old_iomap == NULL && new_iomap == NULL)
350		goto out2;
351
352	/*
353	 * Don't move nonexistent data. Clear destination instead.
354	 */
355	if (old_iomap == NULL &&
356	    (ttm == NULL || (ttm->state == tt_unpopulated &&
357			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
358		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
359		goto out2;
360	}
361
362	/*
363	 * TTM might be null for moves within the same region.
364	 */
365	if (ttm && ttm->state == tt_unpopulated) {
366		ret = ttm->bdev->driver->ttm_tt_populate(ttm);
367		if (ret)
368			goto out1;
369	}
370
371	add = 0;
372	dir = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373
374	if ((old_mem->mem_type == new_mem->mem_type) &&
375	    (new_mem->start < old_mem->start + old_mem->size)) {
376		dir = -1;
377		add = new_mem->num_pages - 1;
378	}
379
380	for (i = 0; i < new_mem->num_pages; ++i) {
381		page = i * dir + add;
382		if (old_iomap == NULL) {
383			pgprot_t prot = ttm_io_prot(old_mem->placement,
384						    PAGE_KERNEL);
385			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
386						   prot);
387		} else if (new_iomap == NULL) {
388			pgprot_t prot = ttm_io_prot(new_mem->placement,
389						    PAGE_KERNEL);
390			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
391						   prot);
392		} else
393			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
394		if (ret)
395			goto out1;
396	}
397	mb();
398out2:
399	old_copy = *old_mem;
400	*old_mem = *new_mem;
401	new_mem->mm_node = NULL;
402
403	if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) {
404		ttm_tt_unbind(ttm);
405		ttm_tt_destroy(ttm);
406		bo->ttm = NULL;
407	}
408
409out1:
410	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
411out:
412	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
413
414	/*
415	 * On error, keep the mm node!
416	 */
417	if (!ret)
418		ttm_bo_mem_put(bo, &old_copy);
419	return ret;
420}
421EXPORT_SYMBOL(ttm_bo_move_memcpy);
422
423static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
424{
425	kfree(bo);
 
 
 
 
 
426}
427
428/**
429 * ttm_buffer_object_transfer
430 *
431 * @bo: A pointer to a struct ttm_buffer_object.
432 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
433 * holding the data of @bo with the old placement.
434 *
435 * This is a utility function that may be called after an accelerated move
436 * has been scheduled. A new buffer object is created as a placeholder for
437 * the old data while it's being copied. When that buffer object is idle,
438 * it can be destroyed, releasing the space of the old placement.
439 * Returns:
440 * !0: Failure.
441 */
442
443static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
444				      struct ttm_buffer_object **new_obj)
445{
446	struct ttm_buffer_object *fbo;
447	struct ttm_bo_device *bdev = bo->bdev;
448	struct ttm_bo_driver *driver = bdev->driver;
449	int ret;
450
451	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
452	if (!fbo)
453		return -ENOMEM;
454
455	*fbo = *bo;
456
457	/**
458	 * Fix up members that we shouldn't copy directly:
459	 * TODO: Explicit member copy would probably be better here.
460	 */
461
462	INIT_LIST_HEAD(&fbo->ddestroy);
463	INIT_LIST_HEAD(&fbo->lru);
464	INIT_LIST_HEAD(&fbo->swap);
465	INIT_LIST_HEAD(&fbo->io_reserve_lru);
466	drm_vma_node_reset(&fbo->vma_node);
467	atomic_set(&fbo->cpu_writers, 0);
468
469	spin_lock(&bdev->fence_lock);
470	if (bo->sync_obj)
471		fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj);
472	else
473		fbo->sync_obj = NULL;
474	spin_unlock(&bdev->fence_lock);
475	kref_init(&fbo->list_kref);
476	kref_init(&fbo->kref);
477	fbo->destroy = &ttm_transfered_destroy;
478	fbo->acc_size = 0;
479	fbo->resv = &fbo->ttm_resv;
480	reservation_object_init(fbo->resv);
481	ret = ww_mutex_trylock(&fbo->resv->lock);
482	WARN_ON(!ret);
483
484	*new_obj = fbo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485	return 0;
486}
487
488pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
 
 
 
 
 
 
 
 
 
 
 
489{
490#if defined(__i386__) || defined(__x86_64__)
491	if (caching_flags & TTM_PL_FLAG_WC)
492		tmp = pgprot_writecombine(tmp);
493	else if (boot_cpu_data.x86 > 3)
494		tmp = pgprot_noncached(tmp);
495
496#elif defined(__powerpc__)
497	if (!(caching_flags & TTM_PL_FLAG_CACHED)) {
498		pgprot_val(tmp) |= _PAGE_NO_CACHE;
499		if (caching_flags & TTM_PL_FLAG_UNCACHED)
500			pgprot_val(tmp) |= _PAGE_GUARDED;
501	}
502#endif
503#if defined(__ia64__)
504	if (caching_flags & TTM_PL_FLAG_WC)
505		tmp = pgprot_writecombine(tmp);
506	else
507		tmp = pgprot_noncached(tmp);
508#endif
509#if defined(__sparc__) || defined(__mips__)
510	if (!(caching_flags & TTM_PL_FLAG_CACHED))
511		tmp = pgprot_noncached(tmp);
512#endif
513	return tmp;
514}
515EXPORT_SYMBOL(ttm_io_prot);
516
517static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
518			  unsigned long offset,
519			  unsigned long size,
520			  struct ttm_bo_kmap_obj *map)
521{
522	struct ttm_mem_reg *mem = &bo->mem;
523
524	if (bo->mem.bus.addr) {
525		map->bo_kmap_type = ttm_bo_map_premapped;
526		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
527	} else {
 
 
528		map->bo_kmap_type = ttm_bo_map_iomap;
529		if (mem->placement & TTM_PL_FLAG_WC)
530			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
531						  size);
 
 
 
532		else
533			map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
534						       size);
535	}
536	return (!map->virtual) ? -ENOMEM : 0;
537}
538
539static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
540			   unsigned long start_page,
541			   unsigned long num_pages,
542			   struct ttm_bo_kmap_obj *map)
543{
544	struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot;
 
 
 
 
545	struct ttm_tt *ttm = bo->ttm;
 
 
 
546	int ret;
547
548	BUG_ON(!ttm);
549
550	if (ttm->state == tt_unpopulated) {
551		ret = ttm->bdev->driver->ttm_tt_populate(ttm);
552		if (ret)
553			return ret;
554	}
555
556	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
 
557		/*
558		 * We're mapping a single page, and the desired
559		 * page protection is consistent with the bo.
560		 */
561
562		map->bo_kmap_type = ttm_bo_map_kmap;
563		map->page = ttm->pages[start_page];
564		map->virtual = kmap(map->page);
565	} else {
566		/*
567		 * We need to use vmap to get the desired page protection
568		 * or to make the buffer object look contiguous.
569		 */
570		prot = (mem->placement & TTM_PL_FLAG_CACHED) ?
571			PAGE_KERNEL :
572			ttm_io_prot(mem->placement, PAGE_KERNEL);
573		map->bo_kmap_type = ttm_bo_map_vmap;
574		map->virtual = vmap(ttm->pages + start_page, num_pages,
575				    0, prot);
576	}
577	return (!map->virtual) ? -ENOMEM : 0;
578}
579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580int ttm_bo_kmap(struct ttm_buffer_object *bo,
581		unsigned long start_page, unsigned long num_pages,
582		struct ttm_bo_kmap_obj *map)
583{
584	struct ttm_mem_type_manager *man =
585		&bo->bdev->man[bo->mem.mem_type];
586	unsigned long offset, size;
587	int ret;
588
589	BUG_ON(!list_empty(&bo->swap));
590	map->virtual = NULL;
591	map->bo = bo;
592	if (num_pages > bo->num_pages)
593		return -EINVAL;
594	if (start_page > bo->num_pages)
595		return -EINVAL;
596#if 0
597	if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
598		return -EPERM;
599#endif
600	(void) ttm_mem_io_lock(man, false);
601	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
602	ttm_mem_io_unlock(man);
603	if (ret)
604		return ret;
605	if (!bo->mem.bus.is_iomem) {
606		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
607	} else {
608		offset = start_page << PAGE_SHIFT;
609		size = num_pages << PAGE_SHIFT;
610		return ttm_bo_ioremap(bo, offset, size, map);
611	}
612}
613EXPORT_SYMBOL(ttm_bo_kmap);
614
 
 
 
 
 
 
 
615void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
616{
617	struct ttm_buffer_object *bo = map->bo;
618	struct ttm_mem_type_manager *man =
619		&bo->bdev->man[bo->mem.mem_type];
620
621	if (!map->virtual)
622		return;
623	switch (map->bo_kmap_type) {
624	case ttm_bo_map_iomap:
625		iounmap(map->virtual);
626		break;
627	case ttm_bo_map_vmap:
628		vunmap(map->virtual);
629		break;
630	case ttm_bo_map_kmap:
631		kunmap(map->page);
632		break;
633	case ttm_bo_map_premapped:
634		break;
635	default:
636		BUG();
637	}
638	(void) ttm_mem_io_lock(man, false);
639	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
640	ttm_mem_io_unlock(man);
641	map->virtual = NULL;
642	map->page = NULL;
643}
644EXPORT_SYMBOL(ttm_bo_kunmap);
645
646int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
647			      void *sync_obj,
648			      bool evict,
649			      bool no_wait_gpu,
650			      struct ttm_mem_reg *new_mem)
 
 
 
 
 
 
 
 
 
 
651{
652	struct ttm_bo_device *bdev = bo->bdev;
653	struct ttm_bo_driver *driver = bdev->driver;
654	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
655	struct ttm_mem_reg *old_mem = &bo->mem;
656	int ret;
657	struct ttm_buffer_object *ghost_obj;
658	void *tmp_obj = NULL;
659
660	spin_lock(&bdev->fence_lock);
661	if (bo->sync_obj) {
662		tmp_obj = bo->sync_obj;
663		bo->sync_obj = NULL;
664	}
665	bo->sync_obj = driver->sync_obj_ref(sync_obj);
666	if (evict) {
667		ret = ttm_bo_wait(bo, false, false, false);
668		spin_unlock(&bdev->fence_lock);
669		if (tmp_obj)
670			driver->sync_obj_unref(&tmp_obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671		if (ret)
672			return ret;
673
674		if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
675		    (bo->ttm != NULL)) {
676			ttm_tt_unbind(bo->ttm);
677			ttm_tt_destroy(bo->ttm);
678			bo->ttm = NULL;
679		}
680		ttm_bo_free_old_node(bo);
681	} else {
682		/**
683		 * This should help pipeline ordinary buffer moves.
684		 *
685		 * Hang old buffer memory on a new buffer object,
686		 * and leave it to be released when the GPU
687		 * operation has completed.
688		 */
 
 
 
 
 
 
 
689
690		set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
691		spin_unlock(&bdev->fence_lock);
692		if (tmp_obj)
693			driver->sync_obj_unref(&tmp_obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
694
695		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
696		if (ret)
697			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698
699		/**
700		 * If we're not moving to fixed memory, the TTM object
701		 * needs to stay alive. Otherwhise hang it on the ghost
702		 * bo to be unbound and destroyed.
703		 */
704
705		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
706			ghost_obj->ttm = NULL;
707		else
708			bo->ttm = NULL;
709
710		ttm_bo_unreserve(ghost_obj);
711		ttm_bo_unref(&ghost_obj);
 
 
 
 
 
 
712	}
 
 
 
 
713
714	*old_mem = *new_mem;
715	new_mem->mm_node = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
716
717	return 0;
718}
719EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);