Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
   4 */
   5#include <linux/list_sort.h>
   6#include <linux/libnvdimm.h>
   7#include <linux/module.h>
   8#include <linux/nospec.h>
   9#include <linux/mutex.h>
  10#include <linux/ndctl.h>
  11#include <linux/sysfs.h>
  12#include <linux/delay.h>
  13#include <linux/list.h>
  14#include <linux/acpi.h>
  15#include <linux/sort.h>
  16#include <linux/io.h>
  17#include <linux/nd.h>
  18#include <asm/cacheflush.h>
  19#include <acpi/nfit.h>
  20#include "intel.h"
  21#include "nfit.h"
  22
  23/*
  24 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
  25 * irrelevant.
  26 */
  27#include <linux/io-64-nonatomic-hi-lo.h>
  28
  29static bool force_enable_dimms;
  30module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
  31MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
  32
  33static bool disable_vendor_specific;
  34module_param(disable_vendor_specific, bool, S_IRUGO);
  35MODULE_PARM_DESC(disable_vendor_specific,
  36		"Limit commands to the publicly specified set");
  37
  38static unsigned long override_dsm_mask;
  39module_param(override_dsm_mask, ulong, S_IRUGO);
  40MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
  41
  42static int default_dsm_family = -1;
  43module_param(default_dsm_family, int, S_IRUGO);
  44MODULE_PARM_DESC(default_dsm_family,
  45		"Try this DSM type first when identifying NVDIMM family");
  46
  47static bool no_init_ars;
  48module_param(no_init_ars, bool, 0644);
  49MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
  50
  51static bool force_labels;
  52module_param(force_labels, bool, 0444);
  53MODULE_PARM_DESC(force_labels, "Opt-in to labels despite missing methods");
  54
  55LIST_HEAD(acpi_descs);
  56DEFINE_MUTEX(acpi_desc_lock);
  57
  58static struct workqueue_struct *nfit_wq;
  59
  60struct nfit_table_prev {
  61	struct list_head spas;
  62	struct list_head memdevs;
  63	struct list_head dcrs;
  64	struct list_head bdws;
  65	struct list_head idts;
  66	struct list_head flushes;
  67};
  68
  69static guid_t nfit_uuid[NFIT_UUID_MAX];
  70
  71const guid_t *to_nfit_uuid(enum nfit_uuids id)
  72{
  73	return &nfit_uuid[id];
  74}
  75EXPORT_SYMBOL(to_nfit_uuid);
  76
  77static const guid_t *to_nfit_bus_uuid(int family)
  78{
  79	if (WARN_ONCE(family == NVDIMM_BUS_FAMILY_NFIT,
  80			"only secondary bus families can be translated\n"))
  81		return NULL;
  82	/*
  83	 * The index of bus UUIDs starts immediately following the last
  84	 * NVDIMM/leaf family.
  85	 */
  86	return to_nfit_uuid(family + NVDIMM_FAMILY_MAX);
  87}
  88
  89static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
  90{
  91	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
  92
  93	/*
  94	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
  95	 * acpi_device.
  96	 */
  97	if (!nd_desc->provider_name
  98			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
  99		return NULL;
 100
 101	return to_acpi_device(acpi_desc->dev);
 102}
 103
 104static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
 105{
 106	struct nd_cmd_clear_error *clear_err;
 107	struct nd_cmd_ars_status *ars_status;
 108	u16 flags;
 109
 110	switch (cmd) {
 111	case ND_CMD_ARS_CAP:
 112		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
 113			return -ENOTTY;
 114
 115		/* Command failed */
 116		if (status & 0xffff)
 117			return -EIO;
 118
 119		/* No supported scan types for this range */
 120		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
 121		if ((status >> 16 & flags) == 0)
 122			return -ENOTTY;
 123		return 0;
 124	case ND_CMD_ARS_START:
 125		/* ARS is in progress */
 126		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
 127			return -EBUSY;
 128
 129		/* Command failed */
 130		if (status & 0xffff)
 131			return -EIO;
 132		return 0;
 133	case ND_CMD_ARS_STATUS:
 134		ars_status = buf;
 135		/* Command failed */
 136		if (status & 0xffff)
 137			return -EIO;
 138		/* Check extended status (Upper two bytes) */
 139		if (status == NFIT_ARS_STATUS_DONE)
 140			return 0;
 141
 142		/* ARS is in progress */
 143		if (status == NFIT_ARS_STATUS_BUSY)
 144			return -EBUSY;
 145
 146		/* No ARS performed for the current boot */
 147		if (status == NFIT_ARS_STATUS_NONE)
 148			return -EAGAIN;
 149
 150		/*
 151		 * ARS interrupted, either we overflowed or some other
 152		 * agent wants the scan to stop.  If we didn't overflow
 153		 * then just continue with the returned results.
 154		 */
 155		if (status == NFIT_ARS_STATUS_INTR) {
 156			if (ars_status->out_length >= 40 && (ars_status->flags
 157						& NFIT_ARS_F_OVERFLOW))
 158				return -ENOSPC;
 159			return 0;
 160		}
 161
 162		/* Unknown status */
 163		if (status >> 16)
 164			return -EIO;
 165		return 0;
 166	case ND_CMD_CLEAR_ERROR:
 167		clear_err = buf;
 168		if (status & 0xffff)
 169			return -EIO;
 170		if (!clear_err->cleared)
 171			return -EIO;
 172		if (clear_err->length > clear_err->cleared)
 173			return clear_err->cleared;
 174		return 0;
 175	default:
 176		break;
 177	}
 178
 179	/* all other non-zero status results in an error */
 180	if (status)
 181		return -EIO;
 182	return 0;
 183}
 184
 185#define ACPI_LABELS_LOCKED 3
 186
 187static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
 188		u32 status)
 189{
 190	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
 191
 192	switch (cmd) {
 193	case ND_CMD_GET_CONFIG_SIZE:
 194		/*
 195		 * In the _LSI, _LSR, _LSW case the locked status is
 196		 * communicated via the read/write commands
 197		 */
 198		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
 199			break;
 200
 201		if (status >> 16 & ND_CONFIG_LOCKED)
 202			return -EACCES;
 203		break;
 204	case ND_CMD_GET_CONFIG_DATA:
 205		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
 206				&& status == ACPI_LABELS_LOCKED)
 207			return -EACCES;
 208		break;
 209	case ND_CMD_SET_CONFIG_DATA:
 210		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
 211				&& status == ACPI_LABELS_LOCKED)
 212			return -EACCES;
 213		break;
 214	default:
 215		break;
 216	}
 217
 218	/* all other non-zero status results in an error */
 219	if (status)
 220		return -EIO;
 221	return 0;
 222}
 223
 224static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
 225		u32 status)
 226{
 227	if (!nvdimm)
 228		return xlat_bus_status(buf, cmd, status);
 229	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
 230}
 231
 232/* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
 233static union acpi_object *pkg_to_buf(union acpi_object *pkg)
 234{
 235	int i;
 236	void *dst;
 237	size_t size = 0;
 238	union acpi_object *buf = NULL;
 239
 240	if (pkg->type != ACPI_TYPE_PACKAGE) {
 241		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
 242				pkg->type);
 243		goto err;
 244	}
 245
 246	for (i = 0; i < pkg->package.count; i++) {
 247		union acpi_object *obj = &pkg->package.elements[i];
 248
 249		if (obj->type == ACPI_TYPE_INTEGER)
 250			size += 4;
 251		else if (obj->type == ACPI_TYPE_BUFFER)
 252			size += obj->buffer.length;
 253		else {
 254			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
 255					obj->type);
 256			goto err;
 257		}
 258	}
 259
 260	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
 261	if (!buf)
 262		goto err;
 263
 264	dst = buf + 1;
 265	buf->type = ACPI_TYPE_BUFFER;
 266	buf->buffer.length = size;
 267	buf->buffer.pointer = dst;
 268	for (i = 0; i < pkg->package.count; i++) {
 269		union acpi_object *obj = &pkg->package.elements[i];
 270
 271		if (obj->type == ACPI_TYPE_INTEGER) {
 272			memcpy(dst, &obj->integer.value, 4);
 273			dst += 4;
 274		} else if (obj->type == ACPI_TYPE_BUFFER) {
 275			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
 276			dst += obj->buffer.length;
 277		}
 278	}
 279err:
 280	ACPI_FREE(pkg);
 281	return buf;
 282}
 283
 284static union acpi_object *int_to_buf(union acpi_object *integer)
 285{
 286	union acpi_object *buf = NULL;
 287	void *dst = NULL;
 288
 289	if (integer->type != ACPI_TYPE_INTEGER) {
 290		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
 291				integer->type);
 292		goto err;
 293	}
 294
 295	buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
 296	if (!buf)
 297		goto err;
 298
 299	dst = buf + 1;
 300	buf->type = ACPI_TYPE_BUFFER;
 301	buf->buffer.length = 4;
 302	buf->buffer.pointer = dst;
 303	memcpy(dst, &integer->integer.value, 4);
 304err:
 305	ACPI_FREE(integer);
 306	return buf;
 307}
 308
 309static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
 310		u32 len, void *data)
 311{
 312	acpi_status rc;
 313	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
 314	struct acpi_object_list input = {
 315		.count = 3,
 316		.pointer = (union acpi_object []) {
 317			[0] = {
 318				.integer.type = ACPI_TYPE_INTEGER,
 319				.integer.value = offset,
 320			},
 321			[1] = {
 322				.integer.type = ACPI_TYPE_INTEGER,
 323				.integer.value = len,
 324			},
 325			[2] = {
 326				.buffer.type = ACPI_TYPE_BUFFER,
 327				.buffer.pointer = data,
 328				.buffer.length = len,
 329			},
 330		},
 331	};
 332
 333	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
 334	if (ACPI_FAILURE(rc))
 335		return NULL;
 336	return int_to_buf(buf.pointer);
 337}
 338
 339static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
 340		u32 len)
 341{
 342	acpi_status rc;
 343	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
 344	struct acpi_object_list input = {
 345		.count = 2,
 346		.pointer = (union acpi_object []) {
 347			[0] = {
 348				.integer.type = ACPI_TYPE_INTEGER,
 349				.integer.value = offset,
 350			},
 351			[1] = {
 352				.integer.type = ACPI_TYPE_INTEGER,
 353				.integer.value = len,
 354			},
 355		},
 356	};
 357
 358	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
 359	if (ACPI_FAILURE(rc))
 360		return NULL;
 361	return pkg_to_buf(buf.pointer);
 362}
 363
 364static union acpi_object *acpi_label_info(acpi_handle handle)
 365{
 366	acpi_status rc;
 367	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
 368
 369	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
 370	if (ACPI_FAILURE(rc))
 371		return NULL;
 372	return pkg_to_buf(buf.pointer);
 373}
 374
 375static u8 nfit_dsm_revid(unsigned family, unsigned func)
 376{
 377	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][NVDIMM_CMD_MAX+1] = {
 378		[NVDIMM_FAMILY_INTEL] = {
 379			[NVDIMM_INTEL_GET_MODES ...
 380				NVDIMM_INTEL_FW_ACTIVATE_ARM] = 2,
 381		},
 382	};
 383	u8 id;
 384
 385	if (family > NVDIMM_FAMILY_MAX)
 386		return 0;
 387	if (func > NVDIMM_CMD_MAX)
 388		return 0;
 389	id = revid_table[family][func];
 390	if (id == 0)
 391		return 1; /* default */
 392	return id;
 393}
 394
 395static bool payload_dumpable(struct nvdimm *nvdimm, unsigned int func)
 396{
 397	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
 398
 399	if (nfit_mem && nfit_mem->family == NVDIMM_FAMILY_INTEL
 400			&& func >= NVDIMM_INTEL_GET_SECURITY_STATE
 401			&& func <= NVDIMM_INTEL_MASTER_SECURE_ERASE)
 402		return IS_ENABLED(CONFIG_NFIT_SECURITY_DEBUG);
 403	return true;
 404}
 405
 406static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
 407		struct nd_cmd_pkg *call_pkg, int *family)
 408{
 409	if (call_pkg) {
 410		int i;
 411
 412		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
 413			return -ENOTTY;
 414
 415		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
 416			if (call_pkg->nd_reserved2[i])
 417				return -EINVAL;
 418		*family = call_pkg->nd_family;
 419		return call_pkg->nd_command;
 420	}
 421
 422	/* In the !call_pkg case, bus commands == bus functions */
 423	if (!nfit_mem)
 424		return cmd;
 425
 426	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
 427	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
 428		return cmd;
 429
 430	/*
 431	 * Force function number validation to fail since 0 is never
 432	 * published as a valid function in dsm_mask.
 433	 */
 434	return 0;
 435}
 436
 437int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
 438		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
 439{
 440	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
 441	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
 442	union acpi_object in_obj, in_buf, *out_obj;
 443	const struct nd_cmd_desc *desc = NULL;
 444	struct device *dev = acpi_desc->dev;
 445	struct nd_cmd_pkg *call_pkg = NULL;
 446	const char *cmd_name, *dimm_name;
 447	unsigned long cmd_mask, dsm_mask;
 448	u32 offset, fw_status = 0;
 449	acpi_handle handle;
 450	const guid_t *guid;
 451	int func, rc, i;
 452	int family = 0;
 453
 454	if (cmd_rc)
 455		*cmd_rc = -EINVAL;
 456
 457	if (cmd == ND_CMD_CALL) {
 458		if (!buf || buf_len < sizeof(*call_pkg))
 459			return -EINVAL;
 460
 461		call_pkg = buf;
 462	}
 463
 464	func = cmd_to_func(nfit_mem, cmd, call_pkg, &family);
 465	if (func < 0)
 466		return func;
 467
 468	if (nvdimm) {
 469		struct acpi_device *adev = nfit_mem->adev;
 470
 471		if (!adev)
 472			return -ENOTTY;
 473
 474		dimm_name = nvdimm_name(nvdimm);
 475		cmd_name = nvdimm_cmd_name(cmd);
 476		cmd_mask = nvdimm_cmd_mask(nvdimm);
 477		dsm_mask = nfit_mem->dsm_mask;
 478		desc = nd_cmd_dimm_desc(cmd);
 479		guid = to_nfit_uuid(nfit_mem->family);
 480		handle = adev->handle;
 481	} else {
 482		struct acpi_device *adev = to_acpi_dev(acpi_desc);
 483
 484		cmd_name = nvdimm_bus_cmd_name(cmd);
 485		cmd_mask = nd_desc->cmd_mask;
 486		if (cmd == ND_CMD_CALL && call_pkg->nd_family) {
 487			family = call_pkg->nd_family;
 488			if (family > NVDIMM_BUS_FAMILY_MAX ||
 489			    !test_bit(family, &nd_desc->bus_family_mask))
 490				return -EINVAL;
 491			family = array_index_nospec(family,
 492						    NVDIMM_BUS_FAMILY_MAX + 1);
 493			dsm_mask = acpi_desc->family_dsm_mask[family];
 494			guid = to_nfit_bus_uuid(family);
 495		} else {
 496			dsm_mask = acpi_desc->bus_dsm_mask;
 497			guid = to_nfit_uuid(NFIT_DEV_BUS);
 498		}
 499		desc = nd_cmd_bus_desc(cmd);
 500		handle = adev->handle;
 501		dimm_name = "bus";
 502	}
 503
 504	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
 505		return -ENOTTY;
 506
 507	/*
 508	 * Check for a valid command.  For ND_CMD_CALL, we also have to
 509	 * make sure that the DSM function is supported.
 510	 */
 511	if (cmd == ND_CMD_CALL &&
 512	    (func > NVDIMM_CMD_MAX || !test_bit(func, &dsm_mask)))
 513		return -ENOTTY;
 514	else if (!test_bit(cmd, &cmd_mask))
 515		return -ENOTTY;
 516
 517	in_obj.type = ACPI_TYPE_PACKAGE;
 518	in_obj.package.count = 1;
 519	in_obj.package.elements = &in_buf;
 520	in_buf.type = ACPI_TYPE_BUFFER;
 521	in_buf.buffer.pointer = buf;
 522	in_buf.buffer.length = 0;
 523
 524	/* libnvdimm has already validated the input envelope */
 525	for (i = 0; i < desc->in_num; i++)
 526		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
 527				i, buf);
 528
 529	if (call_pkg) {
 530		/* skip over package wrapper */
 531		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
 532		in_buf.buffer.length = call_pkg->nd_size_in;
 533	}
 534
 535	dev_dbg(dev, "%s cmd: %d: family: %d func: %d input length: %d\n",
 536		dimm_name, cmd, family, func, in_buf.buffer.length);
 537	if (payload_dumpable(nvdimm, func))
 538		print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
 539				in_buf.buffer.pointer,
 540				min_t(u32, 256, in_buf.buffer.length), true);
 541
 542	/* call the BIOS, prefer the named methods over _DSM if available */
 543	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE
 544			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags))
 545		out_obj = acpi_label_info(handle);
 546	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA
 547			&& test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
 548		struct nd_cmd_get_config_data_hdr *p = buf;
 549
 550		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
 551	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
 552			&& test_bit(NFIT_MEM_LSW, &nfit_mem->flags)) {
 553		struct nd_cmd_set_config_hdr *p = buf;
 554
 555		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
 556				p->in_buf);
 557	} else {
 558		u8 revid;
 559
 560		if (nvdimm)
 561			revid = nfit_dsm_revid(nfit_mem->family, func);
 562		else
 563			revid = 1;
 564		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
 565	}
 566
 567	if (!out_obj) {
 568		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
 569		return -EINVAL;
 570	}
 571
 572	if (out_obj->type != ACPI_TYPE_BUFFER) {
 573		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
 574				dimm_name, cmd_name, out_obj->type);
 575		rc = -EINVAL;
 576		goto out;
 577	}
 578
 579	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
 580			cmd_name, out_obj->buffer.length);
 581	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
 582			out_obj->buffer.pointer,
 583			min_t(u32, 128, out_obj->buffer.length), true);
 584
 585	if (call_pkg) {
 586		call_pkg->nd_fw_size = out_obj->buffer.length;
 587		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
 588			out_obj->buffer.pointer,
 589			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
 590
 591		ACPI_FREE(out_obj);
 592		/*
 593		 * Need to support FW function w/o known size in advance.
 594		 * Caller can determine required size based upon nd_fw_size.
 595		 * If we return an error (like elsewhere) then caller wouldn't
 596		 * be able to rely upon data returned to make calculation.
 597		 */
 598		if (cmd_rc)
 599			*cmd_rc = 0;
 600		return 0;
 601	}
 602
 603	for (i = 0, offset = 0; i < desc->out_num; i++) {
 604		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
 605				(u32 *) out_obj->buffer.pointer,
 606				out_obj->buffer.length - offset);
 607
 608		if (offset + out_size > out_obj->buffer.length) {
 609			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
 610					dimm_name, cmd_name, i);
 611			break;
 612		}
 613
 614		if (in_buf.buffer.length + offset + out_size > buf_len) {
 615			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
 616					dimm_name, cmd_name, i);
 617			rc = -ENXIO;
 618			goto out;
 619		}
 620		memcpy(buf + in_buf.buffer.length + offset,
 621				out_obj->buffer.pointer + offset, out_size);
 622		offset += out_size;
 623	}
 624
 625	/*
 626	 * Set fw_status for all the commands with a known format to be
 627	 * later interpreted by xlat_status().
 628	 */
 629	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
 630					&& cmd <= ND_CMD_CLEAR_ERROR)
 631				|| (nvdimm && cmd >= ND_CMD_SMART
 632					&& cmd <= ND_CMD_VENDOR)))
 633		fw_status = *(u32 *) out_obj->buffer.pointer;
 634
 635	if (offset + in_buf.buffer.length < buf_len) {
 636		if (i >= 1) {
 637			/*
 638			 * status valid, return the number of bytes left
 639			 * unfilled in the output buffer
 640			 */
 641			rc = buf_len - offset - in_buf.buffer.length;
 642			if (cmd_rc)
 643				*cmd_rc = xlat_status(nvdimm, buf, cmd,
 644						fw_status);
 645		} else {
 646			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
 647					__func__, dimm_name, cmd_name, buf_len,
 648					offset);
 649			rc = -ENXIO;
 650		}
 651	} else {
 652		rc = 0;
 653		if (cmd_rc)
 654			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
 655	}
 656
 657 out:
 658	ACPI_FREE(out_obj);
 659
 660	return rc;
 661}
 662EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
 663
 664static const char *spa_type_name(u16 type)
 665{
 666	static const char *to_name[] = {
 667		[NFIT_SPA_VOLATILE] = "volatile",
 668		[NFIT_SPA_PM] = "pmem",
 669		[NFIT_SPA_DCR] = "dimm-control-region",
 670		[NFIT_SPA_BDW] = "block-data-window",
 671		[NFIT_SPA_VDISK] = "volatile-disk",
 672		[NFIT_SPA_VCD] = "volatile-cd",
 673		[NFIT_SPA_PDISK] = "persistent-disk",
 674		[NFIT_SPA_PCD] = "persistent-cd",
 675
 676	};
 677
 678	if (type > NFIT_SPA_PCD)
 679		return "unknown";
 680
 681	return to_name[type];
 682}
 683
 684int nfit_spa_type(struct acpi_nfit_system_address *spa)
 685{
 686	guid_t guid;
 687	int i;
 688
 689	import_guid(&guid, spa->range_guid);
 690	for (i = 0; i < NFIT_UUID_MAX; i++)
 691		if (guid_equal(to_nfit_uuid(i), &guid))
 692			return i;
 693	return -1;
 694}
 695
 696static size_t sizeof_spa(struct acpi_nfit_system_address *spa)
 697{
 698	if (spa->flags & ACPI_NFIT_LOCATION_COOKIE_VALID)
 699		return sizeof(*spa);
 700	return sizeof(*spa) - 8;
 701}
 702
 703static bool add_spa(struct acpi_nfit_desc *acpi_desc,
 704		struct nfit_table_prev *prev,
 705		struct acpi_nfit_system_address *spa)
 706{
 707	struct device *dev = acpi_desc->dev;
 708	struct nfit_spa *nfit_spa;
 709
 710	if (spa->header.length != sizeof_spa(spa))
 711		return false;
 712
 713	list_for_each_entry(nfit_spa, &prev->spas, list) {
 714		if (memcmp(nfit_spa->spa, spa, sizeof_spa(spa)) == 0) {
 715			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
 716			return true;
 717		}
 718	}
 719
 720	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof_spa(spa),
 721			GFP_KERNEL);
 722	if (!nfit_spa)
 723		return false;
 724	INIT_LIST_HEAD(&nfit_spa->list);
 725	memcpy(nfit_spa->spa, spa, sizeof_spa(spa));
 726	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
 727	dev_dbg(dev, "spa index: %d type: %s\n",
 728			spa->range_index,
 729			spa_type_name(nfit_spa_type(spa)));
 730	return true;
 731}
 732
 733static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
 734		struct nfit_table_prev *prev,
 735		struct acpi_nfit_memory_map *memdev)
 736{
 737	struct device *dev = acpi_desc->dev;
 738	struct nfit_memdev *nfit_memdev;
 739
 740	if (memdev->header.length != sizeof(*memdev))
 741		return false;
 742
 743	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
 744		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
 745			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
 746			return true;
 747		}
 748
 749	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
 750			GFP_KERNEL);
 751	if (!nfit_memdev)
 752		return false;
 753	INIT_LIST_HEAD(&nfit_memdev->list);
 754	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
 755	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
 756	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
 757			memdev->device_handle, memdev->range_index,
 758			memdev->region_index, memdev->flags);
 759	return true;
 760}
 761
 762int nfit_get_smbios_id(u32 device_handle, u16 *flags)
 763{
 764	struct acpi_nfit_memory_map *memdev;
 765	struct acpi_nfit_desc *acpi_desc;
 766	struct nfit_mem *nfit_mem;
 767	u16 physical_id;
 768
 769	mutex_lock(&acpi_desc_lock);
 770	list_for_each_entry(acpi_desc, &acpi_descs, list) {
 771		mutex_lock(&acpi_desc->init_mutex);
 772		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
 773			memdev = __to_nfit_memdev(nfit_mem);
 774			if (memdev->device_handle == device_handle) {
 775				*flags = memdev->flags;
 776				physical_id = memdev->physical_id;
 777				mutex_unlock(&acpi_desc->init_mutex);
 778				mutex_unlock(&acpi_desc_lock);
 779				return physical_id;
 780			}
 781		}
 782		mutex_unlock(&acpi_desc->init_mutex);
 783	}
 784	mutex_unlock(&acpi_desc_lock);
 785
 786	return -ENODEV;
 787}
 788EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
 789
 790/*
 791 * An implementation may provide a truncated control region if no block windows
 792 * are defined.
 793 */
 794static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
 795{
 796	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
 797				window_size))
 798		return 0;
 799	if (dcr->windows)
 800		return sizeof(*dcr);
 801	return offsetof(struct acpi_nfit_control_region, window_size);
 802}
 803
 804static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
 805		struct nfit_table_prev *prev,
 806		struct acpi_nfit_control_region *dcr)
 807{
 808	struct device *dev = acpi_desc->dev;
 809	struct nfit_dcr *nfit_dcr;
 810
 811	if (!sizeof_dcr(dcr))
 812		return false;
 813
 814	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
 815		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
 816			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
 817			return true;
 818		}
 819
 820	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
 821			GFP_KERNEL);
 822	if (!nfit_dcr)
 823		return false;
 824	INIT_LIST_HEAD(&nfit_dcr->list);
 825	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
 826	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
 827	dev_dbg(dev, "dcr index: %d windows: %d\n",
 828			dcr->region_index, dcr->windows);
 829	return true;
 830}
 831
 832static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
 833		struct nfit_table_prev *prev,
 834		struct acpi_nfit_data_region *bdw)
 835{
 836	struct device *dev = acpi_desc->dev;
 837	struct nfit_bdw *nfit_bdw;
 838
 839	if (bdw->header.length != sizeof(*bdw))
 840		return false;
 841	list_for_each_entry(nfit_bdw, &prev->bdws, list)
 842		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
 843			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
 844			return true;
 845		}
 846
 847	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
 848			GFP_KERNEL);
 849	if (!nfit_bdw)
 850		return false;
 851	INIT_LIST_HEAD(&nfit_bdw->list);
 852	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
 853	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
 854	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
 855			bdw->region_index, bdw->windows);
 856	return true;
 857}
 858
 859static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
 860{
 861	if (idt->header.length < sizeof(*idt))
 862		return 0;
 863	return sizeof(*idt) + sizeof(u32) * idt->line_count;
 864}
 865
 866static bool add_idt(struct acpi_nfit_desc *acpi_desc,
 867		struct nfit_table_prev *prev,
 868		struct acpi_nfit_interleave *idt)
 869{
 870	struct device *dev = acpi_desc->dev;
 871	struct nfit_idt *nfit_idt;
 872
 873	if (!sizeof_idt(idt))
 874		return false;
 875
 876	list_for_each_entry(nfit_idt, &prev->idts, list) {
 877		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
 878			continue;
 879
 880		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
 881			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
 882			return true;
 883		}
 884	}
 885
 886	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
 887			GFP_KERNEL);
 888	if (!nfit_idt)
 889		return false;
 890	INIT_LIST_HEAD(&nfit_idt->list);
 891	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
 892	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
 893	dev_dbg(dev, "idt index: %d num_lines: %d\n",
 894			idt->interleave_index, idt->line_count);
 895	return true;
 896}
 897
 898static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
 899{
 900	if (flush->header.length < sizeof(*flush))
 901		return 0;
 902	return struct_size(flush, hint_address, flush->hint_count);
 903}
 904
 905static bool add_flush(struct acpi_nfit_desc *acpi_desc,
 906		struct nfit_table_prev *prev,
 907		struct acpi_nfit_flush_address *flush)
 908{
 909	struct device *dev = acpi_desc->dev;
 910	struct nfit_flush *nfit_flush;
 911
 912	if (!sizeof_flush(flush))
 913		return false;
 914
 915	list_for_each_entry(nfit_flush, &prev->flushes, list) {
 916		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
 917			continue;
 918
 919		if (memcmp(nfit_flush->flush, flush,
 920					sizeof_flush(flush)) == 0) {
 921			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
 922			return true;
 923		}
 924	}
 925
 926	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
 927			+ sizeof_flush(flush), GFP_KERNEL);
 928	if (!nfit_flush)
 929		return false;
 930	INIT_LIST_HEAD(&nfit_flush->list);
 931	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
 932	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
 933	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
 934			flush->device_handle, flush->hint_count);
 935	return true;
 936}
 937
 938static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
 939		struct acpi_nfit_capabilities *pcap)
 940{
 941	struct device *dev = acpi_desc->dev;
 942	u32 mask;
 943
 944	mask = (1 << (pcap->highest_capability + 1)) - 1;
 945	acpi_desc->platform_cap = pcap->capabilities & mask;
 946	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
 947	return true;
 948}
 949
 950static void *add_table(struct acpi_nfit_desc *acpi_desc,
 951		struct nfit_table_prev *prev, void *table, const void *end)
 952{
 953	struct device *dev = acpi_desc->dev;
 954	struct acpi_nfit_header *hdr;
 955	void *err = ERR_PTR(-ENOMEM);
 956
 957	if (table >= end)
 958		return NULL;
 959
 960	hdr = table;
 961	if (!hdr->length) {
 962		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
 963			hdr->type);
 964		return NULL;
 965	}
 966
 967	switch (hdr->type) {
 968	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
 969		if (!add_spa(acpi_desc, prev, table))
 970			return err;
 971		break;
 972	case ACPI_NFIT_TYPE_MEMORY_MAP:
 973		if (!add_memdev(acpi_desc, prev, table))
 974			return err;
 975		break;
 976	case ACPI_NFIT_TYPE_CONTROL_REGION:
 977		if (!add_dcr(acpi_desc, prev, table))
 978			return err;
 979		break;
 980	case ACPI_NFIT_TYPE_DATA_REGION:
 981		if (!add_bdw(acpi_desc, prev, table))
 982			return err;
 983		break;
 984	case ACPI_NFIT_TYPE_INTERLEAVE:
 985		if (!add_idt(acpi_desc, prev, table))
 986			return err;
 987		break;
 988	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
 989		if (!add_flush(acpi_desc, prev, table))
 990			return err;
 991		break;
 992	case ACPI_NFIT_TYPE_SMBIOS:
 993		dev_dbg(dev, "smbios\n");
 994		break;
 995	case ACPI_NFIT_TYPE_CAPABILITIES:
 996		if (!add_platform_cap(acpi_desc, table))
 997			return err;
 998		break;
 999	default:
1000		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
1001		break;
1002	}
1003
1004	return table + hdr->length;
1005}
1006
1007static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1008		struct acpi_nfit_system_address *spa)
1009{
1010	struct nfit_mem *nfit_mem, *found;
1011	struct nfit_memdev *nfit_memdev;
1012	int type = spa ? nfit_spa_type(spa) : 0;
1013
1014	switch (type) {
1015	case NFIT_SPA_DCR:
1016	case NFIT_SPA_PM:
1017		break;
1018	default:
1019		if (spa)
1020			return 0;
1021	}
1022
1023	/*
1024	 * This loop runs in two modes, when a dimm is mapped the loop
1025	 * adds memdev associations to an existing dimm, or creates a
1026	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1027	 * instances with an invalid / zero range_index and adds those
1028	 * dimms without spa associations.
1029	 */
1030	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1031		struct nfit_flush *nfit_flush;
1032		struct nfit_dcr *nfit_dcr;
1033		u32 device_handle;
1034		u16 dcr;
1035
1036		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1037			continue;
1038		if (!spa && nfit_memdev->memdev->range_index)
1039			continue;
1040		found = NULL;
1041		dcr = nfit_memdev->memdev->region_index;
1042		device_handle = nfit_memdev->memdev->device_handle;
1043		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1044			if (__to_nfit_memdev(nfit_mem)->device_handle
1045					== device_handle) {
1046				found = nfit_mem;
1047				break;
1048			}
1049
1050		if (found)
1051			nfit_mem = found;
1052		else {
1053			nfit_mem = devm_kzalloc(acpi_desc->dev,
1054					sizeof(*nfit_mem), GFP_KERNEL);
1055			if (!nfit_mem)
1056				return -ENOMEM;
1057			INIT_LIST_HEAD(&nfit_mem->list);
1058			nfit_mem->acpi_desc = acpi_desc;
1059			list_add(&nfit_mem->list, &acpi_desc->dimms);
1060		}
1061
1062		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1063			if (nfit_dcr->dcr->region_index != dcr)
1064				continue;
1065			/*
1066			 * Record the control region for the dimm.  For
1067			 * the ACPI 6.1 case, where there are separate
1068			 * control regions for the pmem vs blk
1069			 * interfaces, be sure to record the extended
1070			 * blk details.
1071			 */
1072			if (!nfit_mem->dcr)
1073				nfit_mem->dcr = nfit_dcr->dcr;
1074			else if (nfit_mem->dcr->windows == 0
1075					&& nfit_dcr->dcr->windows)
1076				nfit_mem->dcr = nfit_dcr->dcr;
1077			break;
1078		}
1079
1080		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1081			struct acpi_nfit_flush_address *flush;
1082			u16 i;
1083
1084			if (nfit_flush->flush->device_handle != device_handle)
1085				continue;
1086			nfit_mem->nfit_flush = nfit_flush;
1087			flush = nfit_flush->flush;
1088			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1089					flush->hint_count,
1090					sizeof(struct resource),
1091					GFP_KERNEL);
1092			if (!nfit_mem->flush_wpq)
1093				return -ENOMEM;
1094			for (i = 0; i < flush->hint_count; i++) {
1095				struct resource *res = &nfit_mem->flush_wpq[i];
1096
1097				res->start = flush->hint_address[i];
1098				res->end = res->start + 8 - 1;
1099			}
1100			break;
1101		}
1102
1103		if (dcr && !nfit_mem->dcr) {
1104			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1105					spa->range_index, dcr);
1106			return -ENODEV;
1107		}
1108
1109		if (type == NFIT_SPA_DCR) {
1110			struct nfit_idt *nfit_idt;
1111			u16 idt_idx;
1112
1113			/* multiple dimms may share a SPA when interleaved */
1114			nfit_mem->spa_dcr = spa;
1115			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1116			idt_idx = nfit_memdev->memdev->interleave_index;
1117			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1118				if (nfit_idt->idt->interleave_index != idt_idx)
1119					continue;
1120				nfit_mem->idt_dcr = nfit_idt->idt;
1121				break;
1122			}
1123		} else if (type == NFIT_SPA_PM) {
1124			/*
1125			 * A single dimm may belong to multiple SPA-PM
1126			 * ranges, record at least one in addition to
1127			 * any SPA-DCR range.
1128			 */
1129			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1130		} else
1131			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1132	}
1133
1134	return 0;
1135}
1136
1137static int nfit_mem_cmp(void *priv, const struct list_head *_a,
1138		const struct list_head *_b)
1139{
1140	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1141	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1142	u32 handleA, handleB;
1143
1144	handleA = __to_nfit_memdev(a)->device_handle;
1145	handleB = __to_nfit_memdev(b)->device_handle;
1146	if (handleA < handleB)
1147		return -1;
1148	else if (handleA > handleB)
1149		return 1;
1150	return 0;
1151}
1152
1153static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1154{
1155	struct nfit_spa *nfit_spa;
1156	int rc;
1157
1158
1159	/*
1160	 * For each SPA-DCR or SPA-PMEM address range find its
1161	 * corresponding MEMDEV(s).  From each MEMDEV find the
1162	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1163	 * try to find a SPA-BDW and a corresponding BDW that references
1164	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1165	 * BDWs are optional.
1166	 */
1167	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1168		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1169		if (rc)
1170			return rc;
1171	}
1172
1173	/*
1174	 * If a DIMM has failed to be mapped into SPA there will be no
1175	 * SPA entries above. Find and register all the unmapped DIMMs
1176	 * for reporting and recovery purposes.
1177	 */
1178	rc = __nfit_mem_init(acpi_desc, NULL);
1179	if (rc)
1180		return rc;
1181
1182	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1183
1184	return 0;
1185}
1186
1187static ssize_t bus_dsm_mask_show(struct device *dev,
1188		struct device_attribute *attr, char *buf)
1189{
1190	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1191	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1192	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1193
1194	return sysfs_emit(buf, "%#lx\n", acpi_desc->bus_dsm_mask);
1195}
1196static struct device_attribute dev_attr_bus_dsm_mask =
1197		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1198
1199static ssize_t revision_show(struct device *dev,
1200		struct device_attribute *attr, char *buf)
1201{
1202	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1203	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1204	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1205
1206	return sysfs_emit(buf, "%d\n", acpi_desc->acpi_header.revision);
1207}
1208static DEVICE_ATTR_RO(revision);
1209
1210static ssize_t hw_error_scrub_show(struct device *dev,
1211		struct device_attribute *attr, char *buf)
1212{
1213	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1214	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1215	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1216
1217	return sysfs_emit(buf, "%d\n", acpi_desc->scrub_mode);
1218}
1219
1220/*
1221 * The 'hw_error_scrub' attribute can have the following values written to it:
1222 * '0': Switch to the default mode where an exception will only insert
1223 *      the address of the memory error into the poison and badblocks lists.
1224 * '1': Enable a full scrub to happen if an exception for a memory error is
1225 *      received.
1226 */
1227static ssize_t hw_error_scrub_store(struct device *dev,
1228		struct device_attribute *attr, const char *buf, size_t size)
1229{
1230	struct nvdimm_bus_descriptor *nd_desc;
1231	ssize_t rc;
1232	long val;
1233
1234	rc = kstrtol(buf, 0, &val);
1235	if (rc)
1236		return rc;
1237
1238	device_lock(dev);
1239	nd_desc = dev_get_drvdata(dev);
1240	if (nd_desc) {
1241		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1242
1243		switch (val) {
1244		case HW_ERROR_SCRUB_ON:
1245			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1246			break;
1247		case HW_ERROR_SCRUB_OFF:
1248			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1249			break;
1250		default:
1251			rc = -EINVAL;
1252			break;
1253		}
1254	}
1255	device_unlock(dev);
1256	if (rc)
1257		return rc;
1258	return size;
1259}
1260static DEVICE_ATTR_RW(hw_error_scrub);
1261
1262/*
1263 * This shows the number of full Address Range Scrubs that have been
1264 * completed since driver load time. Userspace can wait on this using
1265 * select/poll etc. A '+' at the end indicates an ARS is in progress
1266 */
1267static ssize_t scrub_show(struct device *dev,
1268		struct device_attribute *attr, char *buf)
1269{
1270	struct nvdimm_bus_descriptor *nd_desc;
1271	struct acpi_nfit_desc *acpi_desc;
1272	ssize_t rc = -ENXIO;
1273	bool busy;
1274
1275	device_lock(dev);
1276	nd_desc = dev_get_drvdata(dev);
1277	if (!nd_desc) {
1278		device_unlock(dev);
1279		return rc;
1280	}
1281	acpi_desc = to_acpi_desc(nd_desc);
1282
1283	mutex_lock(&acpi_desc->init_mutex);
1284	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1285		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1286	rc = sysfs_emit(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1287	/* Allow an admin to poll the busy state at a higher rate */
1288	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1289				&acpi_desc->scrub_flags)) {
1290		acpi_desc->scrub_tmo = 1;
1291		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1292	}
1293
1294	mutex_unlock(&acpi_desc->init_mutex);
1295	device_unlock(dev);
1296	return rc;
1297}
1298
1299static ssize_t scrub_store(struct device *dev,
1300		struct device_attribute *attr, const char *buf, size_t size)
1301{
1302	struct nvdimm_bus_descriptor *nd_desc;
1303	ssize_t rc;
1304	long val;
1305
1306	rc = kstrtol(buf, 0, &val);
1307	if (rc)
1308		return rc;
1309	if (val != 1)
1310		return -EINVAL;
1311
1312	device_lock(dev);
1313	nd_desc = dev_get_drvdata(dev);
1314	if (nd_desc) {
1315		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1316
1317		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1318	}
1319	device_unlock(dev);
1320	if (rc)
1321		return rc;
1322	return size;
1323}
1324static DEVICE_ATTR_RW(scrub);
1325
1326static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1327{
1328	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1329	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1330		| 1 << ND_CMD_ARS_STATUS;
1331
1332	return (nd_desc->cmd_mask & mask) == mask;
1333}
1334
1335static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1336{
1337	struct device *dev = kobj_to_dev(kobj);
1338	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1339
1340	if (a == &dev_attr_scrub.attr)
1341		return ars_supported(nvdimm_bus) ? a->mode : 0;
1342
1343	if (a == &dev_attr_firmware_activate_noidle.attr)
1344		return intel_fwa_supported(nvdimm_bus) ? a->mode : 0;
1345
1346	return a->mode;
1347}
1348
1349static struct attribute *acpi_nfit_attributes[] = {
1350	&dev_attr_revision.attr,
1351	&dev_attr_scrub.attr,
1352	&dev_attr_hw_error_scrub.attr,
1353	&dev_attr_bus_dsm_mask.attr,
1354	&dev_attr_firmware_activate_noidle.attr,
1355	NULL,
1356};
1357
1358static const struct attribute_group acpi_nfit_attribute_group = {
1359	.name = "nfit",
1360	.attrs = acpi_nfit_attributes,
1361	.is_visible = nfit_visible,
1362};
1363
1364static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1365	&acpi_nfit_attribute_group,
1366	NULL,
1367};
1368
1369static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1370{
1371	struct nvdimm *nvdimm = to_nvdimm(dev);
1372	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1373
1374	return __to_nfit_memdev(nfit_mem);
1375}
1376
1377static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1378{
1379	struct nvdimm *nvdimm = to_nvdimm(dev);
1380	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1381
1382	return nfit_mem->dcr;
1383}
1384
1385static ssize_t handle_show(struct device *dev,
1386		struct device_attribute *attr, char *buf)
1387{
1388	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1389
1390	return sysfs_emit(buf, "%#x\n", memdev->device_handle);
1391}
1392static DEVICE_ATTR_RO(handle);
1393
1394static ssize_t phys_id_show(struct device *dev,
1395		struct device_attribute *attr, char *buf)
1396{
1397	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1398
1399	return sysfs_emit(buf, "%#x\n", memdev->physical_id);
1400}
1401static DEVICE_ATTR_RO(phys_id);
1402
1403static ssize_t vendor_show(struct device *dev,
1404		struct device_attribute *attr, char *buf)
1405{
1406	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1407
1408	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1409}
1410static DEVICE_ATTR_RO(vendor);
1411
1412static ssize_t rev_id_show(struct device *dev,
1413		struct device_attribute *attr, char *buf)
1414{
1415	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1416
1417	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1418}
1419static DEVICE_ATTR_RO(rev_id);
1420
1421static ssize_t device_show(struct device *dev,
1422		struct device_attribute *attr, char *buf)
1423{
1424	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1425
1426	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1427}
1428static DEVICE_ATTR_RO(device);
1429
1430static ssize_t subsystem_vendor_show(struct device *dev,
1431		struct device_attribute *attr, char *buf)
1432{
1433	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1434
1435	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1436}
1437static DEVICE_ATTR_RO(subsystem_vendor);
1438
1439static ssize_t subsystem_rev_id_show(struct device *dev,
1440		struct device_attribute *attr, char *buf)
1441{
1442	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1443
1444	return sysfs_emit(buf, "0x%04x\n",
1445			be16_to_cpu(dcr->subsystem_revision_id));
1446}
1447static DEVICE_ATTR_RO(subsystem_rev_id);
1448
1449static ssize_t subsystem_device_show(struct device *dev,
1450		struct device_attribute *attr, char *buf)
1451{
1452	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1453
1454	return sysfs_emit(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1455}
1456static DEVICE_ATTR_RO(subsystem_device);
1457
1458static int num_nvdimm_formats(struct nvdimm *nvdimm)
1459{
1460	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1461	int formats = 0;
1462
1463	if (nfit_mem->memdev_pmem)
1464		formats++;
1465	return formats;
1466}
1467
1468static ssize_t format_show(struct device *dev,
1469		struct device_attribute *attr, char *buf)
1470{
1471	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1472
1473	return sysfs_emit(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1474}
1475static DEVICE_ATTR_RO(format);
1476
1477static ssize_t format1_show(struct device *dev,
1478		struct device_attribute *attr, char *buf)
1479{
1480	u32 handle;
1481	ssize_t rc = -ENXIO;
1482	struct nfit_mem *nfit_mem;
1483	struct nfit_memdev *nfit_memdev;
1484	struct acpi_nfit_desc *acpi_desc;
1485	struct nvdimm *nvdimm = to_nvdimm(dev);
1486	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1487
1488	nfit_mem = nvdimm_provider_data(nvdimm);
1489	acpi_desc = nfit_mem->acpi_desc;
1490	handle = to_nfit_memdev(dev)->device_handle;
1491
1492	/* assumes DIMMs have at most 2 published interface codes */
1493	mutex_lock(&acpi_desc->init_mutex);
1494	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1495		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1496		struct nfit_dcr *nfit_dcr;
1497
1498		if (memdev->device_handle != handle)
1499			continue;
1500
1501		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1502			if (nfit_dcr->dcr->region_index != memdev->region_index)
1503				continue;
1504			if (nfit_dcr->dcr->code == dcr->code)
1505				continue;
1506			rc = sysfs_emit(buf, "0x%04x\n",
1507					le16_to_cpu(nfit_dcr->dcr->code));
1508			break;
1509		}
1510		if (rc != -ENXIO)
1511			break;
1512	}
1513	mutex_unlock(&acpi_desc->init_mutex);
1514	return rc;
1515}
1516static DEVICE_ATTR_RO(format1);
1517
1518static ssize_t formats_show(struct device *dev,
1519		struct device_attribute *attr, char *buf)
1520{
1521	struct nvdimm *nvdimm = to_nvdimm(dev);
1522
1523	return sysfs_emit(buf, "%d\n", num_nvdimm_formats(nvdimm));
1524}
1525static DEVICE_ATTR_RO(formats);
1526
1527static ssize_t serial_show(struct device *dev,
1528		struct device_attribute *attr, char *buf)
1529{
1530	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1531
1532	return sysfs_emit(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1533}
1534static DEVICE_ATTR_RO(serial);
1535
1536static ssize_t family_show(struct device *dev,
1537		struct device_attribute *attr, char *buf)
1538{
1539	struct nvdimm *nvdimm = to_nvdimm(dev);
1540	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1541
1542	if (nfit_mem->family < 0)
1543		return -ENXIO;
1544	return sysfs_emit(buf, "%d\n", nfit_mem->family);
1545}
1546static DEVICE_ATTR_RO(family);
1547
1548static ssize_t dsm_mask_show(struct device *dev,
1549		struct device_attribute *attr, char *buf)
1550{
1551	struct nvdimm *nvdimm = to_nvdimm(dev);
1552	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1553
1554	if (nfit_mem->family < 0)
1555		return -ENXIO;
1556	return sysfs_emit(buf, "%#lx\n", nfit_mem->dsm_mask);
1557}
1558static DEVICE_ATTR_RO(dsm_mask);
1559
1560static ssize_t flags_show(struct device *dev,
1561		struct device_attribute *attr, char *buf)
1562{
1563	struct nvdimm *nvdimm = to_nvdimm(dev);
1564	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1565	u16 flags = __to_nfit_memdev(nfit_mem)->flags;
1566
1567	if (test_bit(NFIT_MEM_DIRTY, &nfit_mem->flags))
1568		flags |= ACPI_NFIT_MEM_FLUSH_FAILED;
1569
1570	return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
1571		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1572		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1573		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1574		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1575		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1576		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1577		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1578}
1579static DEVICE_ATTR_RO(flags);
1580
1581static ssize_t id_show(struct device *dev,
1582		struct device_attribute *attr, char *buf)
1583{
1584	struct nvdimm *nvdimm = to_nvdimm(dev);
1585	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1586
1587	return sysfs_emit(buf, "%s\n", nfit_mem->id);
1588}
1589static DEVICE_ATTR_RO(id);
1590
1591static ssize_t dirty_shutdown_show(struct device *dev,
1592		struct device_attribute *attr, char *buf)
1593{
1594	struct nvdimm *nvdimm = to_nvdimm(dev);
1595	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1596
1597	return sysfs_emit(buf, "%d\n", nfit_mem->dirty_shutdown);
1598}
1599static DEVICE_ATTR_RO(dirty_shutdown);
1600
1601static struct attribute *acpi_nfit_dimm_attributes[] = {
1602	&dev_attr_handle.attr,
1603	&dev_attr_phys_id.attr,
1604	&dev_attr_vendor.attr,
1605	&dev_attr_device.attr,
1606	&dev_attr_rev_id.attr,
1607	&dev_attr_subsystem_vendor.attr,
1608	&dev_attr_subsystem_device.attr,
1609	&dev_attr_subsystem_rev_id.attr,
1610	&dev_attr_format.attr,
1611	&dev_attr_formats.attr,
1612	&dev_attr_format1.attr,
1613	&dev_attr_serial.attr,
1614	&dev_attr_flags.attr,
1615	&dev_attr_id.attr,
1616	&dev_attr_family.attr,
1617	&dev_attr_dsm_mask.attr,
1618	&dev_attr_dirty_shutdown.attr,
1619	NULL,
1620};
1621
1622static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1623		struct attribute *a, int n)
1624{
1625	struct device *dev = kobj_to_dev(kobj);
1626	struct nvdimm *nvdimm = to_nvdimm(dev);
1627	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1628
1629	if (!to_nfit_dcr(dev)) {
1630		/* Without a dcr only the memdev attributes can be surfaced */
1631		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1632				|| a == &dev_attr_flags.attr
1633				|| a == &dev_attr_family.attr
1634				|| a == &dev_attr_dsm_mask.attr)
1635			return a->mode;
1636		return 0;
1637	}
1638
1639	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1640		return 0;
1641
1642	if (!test_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags)
1643			&& a == &dev_attr_dirty_shutdown.attr)
1644		return 0;
1645
1646	return a->mode;
1647}
1648
1649static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1650	.name = "nfit",
1651	.attrs = acpi_nfit_dimm_attributes,
1652	.is_visible = acpi_nfit_dimm_attr_visible,
1653};
1654
1655static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1656	&acpi_nfit_dimm_attribute_group,
1657	NULL,
1658};
1659
1660static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1661		u32 device_handle)
1662{
1663	struct nfit_mem *nfit_mem;
1664
1665	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1666		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1667			return nfit_mem->nvdimm;
1668
1669	return NULL;
1670}
1671
1672void __acpi_nvdimm_notify(struct device *dev, u32 event)
1673{
1674	struct nfit_mem *nfit_mem;
1675	struct acpi_nfit_desc *acpi_desc;
1676
1677	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1678			event);
1679
1680	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1681		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1682				event);
1683		return;
1684	}
1685
1686	acpi_desc = dev_get_drvdata(dev->parent);
1687	if (!acpi_desc)
1688		return;
1689
1690	/*
1691	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1692	 * is still valid.
1693	 */
1694	nfit_mem = dev_get_drvdata(dev);
1695	if (nfit_mem && nfit_mem->flags_attr)
1696		sysfs_notify_dirent(nfit_mem->flags_attr);
1697}
1698EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1699
1700static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1701{
1702	struct acpi_device *adev = data;
1703	struct device *dev = &adev->dev;
1704
1705	device_lock(dev->parent);
1706	__acpi_nvdimm_notify(dev, event);
1707	device_unlock(dev->parent);
1708}
1709
1710static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1711{
1712	acpi_handle handle;
1713	acpi_status status;
1714
1715	status = acpi_get_handle(adev->handle, method, &handle);
1716
1717	if (ACPI_SUCCESS(status))
1718		return true;
1719	return false;
1720}
1721
1722__weak void nfit_intel_shutdown_status(struct nfit_mem *nfit_mem)
1723{
1724	struct device *dev = &nfit_mem->adev->dev;
1725	struct nd_intel_smart smart = { 0 };
1726	union acpi_object in_buf = {
1727		.buffer.type = ACPI_TYPE_BUFFER,
1728		.buffer.length = 0,
1729	};
1730	union acpi_object in_obj = {
1731		.package.type = ACPI_TYPE_PACKAGE,
1732		.package.count = 1,
1733		.package.elements = &in_buf,
1734	};
1735	const u8 func = ND_INTEL_SMART;
1736	const guid_t *guid = to_nfit_uuid(nfit_mem->family);
1737	u8 revid = nfit_dsm_revid(nfit_mem->family, func);
1738	struct acpi_device *adev = nfit_mem->adev;
1739	acpi_handle handle = adev->handle;
1740	union acpi_object *out_obj;
1741
1742	if ((nfit_mem->dsm_mask & (1 << func)) == 0)
1743		return;
1744
1745	out_obj = acpi_evaluate_dsm_typed(handle, guid, revid, func, &in_obj, ACPI_TYPE_BUFFER);
1746	if (!out_obj || out_obj->buffer.length < sizeof(smart)) {
1747		dev_dbg(dev->parent, "%s: failed to retrieve initial health\n",
1748				dev_name(dev));
1749		ACPI_FREE(out_obj);
1750		return;
1751	}
1752	memcpy(&smart, out_obj->buffer.pointer, sizeof(smart));
1753	ACPI_FREE(out_obj);
1754
1755	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_VALID) {
1756		if (smart.shutdown_state)
1757			set_bit(NFIT_MEM_DIRTY, &nfit_mem->flags);
1758	}
1759
1760	if (smart.flags & ND_INTEL_SMART_SHUTDOWN_COUNT_VALID) {
1761		set_bit(NFIT_MEM_DIRTY_COUNT, &nfit_mem->flags);
1762		nfit_mem->dirty_shutdown = smart.shutdown_count;
1763	}
1764}
1765
1766static void populate_shutdown_status(struct nfit_mem *nfit_mem)
1767{
1768	/*
1769	 * For DIMMs that provide a dynamic facility to retrieve a
1770	 * dirty-shutdown status and/or a dirty-shutdown count, cache
1771	 * these values in nfit_mem.
1772	 */
1773	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1774		nfit_intel_shutdown_status(nfit_mem);
1775}
1776
1777static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1778		struct nfit_mem *nfit_mem, u32 device_handle)
1779{
1780	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1781	struct acpi_device *adev, *adev_dimm;
1782	struct device *dev = acpi_desc->dev;
1783	unsigned long dsm_mask, label_mask;
1784	const guid_t *guid;
1785	int i;
1786	int family = -1;
1787	struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1788
1789	/* nfit test assumes 1:1 relationship between commands and dsms */
1790	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1791	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1792	set_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1793
1794	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1795		sprintf(nfit_mem->id, "%04x-%02x-%04x-%08x",
1796				be16_to_cpu(dcr->vendor_id),
1797				dcr->manufacturing_location,
1798				be16_to_cpu(dcr->manufacturing_date),
1799				be32_to_cpu(dcr->serial_number));
1800	else
1801		sprintf(nfit_mem->id, "%04x-%08x",
1802				be16_to_cpu(dcr->vendor_id),
1803				be32_to_cpu(dcr->serial_number));
1804
1805	adev = to_acpi_dev(acpi_desc);
1806	if (!adev) {
1807		/* unit test case */
1808		populate_shutdown_status(nfit_mem);
1809		return 0;
1810	}
1811
1812	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1813	nfit_mem->adev = adev_dimm;
1814	if (!adev_dimm) {
1815		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1816				device_handle);
1817		return force_enable_dimms ? 0 : -ENODEV;
1818	}
1819
1820	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1821		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1822		dev_err(dev, "%s: notification registration failed\n",
1823				dev_name(&adev_dimm->dev));
1824		return -ENXIO;
1825	}
1826	/*
1827	 * Record nfit_mem for the notification path to track back to
1828	 * the nfit sysfs attributes for this dimm device object.
1829	 */
1830	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1831
1832	/*
1833	 * There are 4 "legacy" NVDIMM command sets
1834	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1835	 * an EFI working group was established to constrain this
1836	 * proliferation. The nfit driver probes for the supported command
1837	 * set by GUID. Note, if you're a platform developer looking to add
1838	 * a new command set to this probe, consider using an existing set,
1839	 * or otherwise seek approval to publish the command set at
1840	 * http://www.uefi.org/RFIC_LIST.
1841	 *
1842	 * Note, that checking for function0 (bit0) tells us if any commands
1843	 * are reachable through this GUID.
1844	 */
1845	clear_bit(NVDIMM_FAMILY_INTEL, &nd_desc->dimm_family_mask);
1846	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1847		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) {
1848			set_bit(i, &nd_desc->dimm_family_mask);
1849			if (family < 0 || i == default_dsm_family)
1850				family = i;
1851		}
1852
1853	/* limit the supported commands to those that are publicly documented */
1854	nfit_mem->family = family;
1855	if (override_dsm_mask && !disable_vendor_specific)
1856		dsm_mask = override_dsm_mask;
1857	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1858		dsm_mask = NVDIMM_INTEL_CMDMASK;
1859		if (disable_vendor_specific)
1860			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1861	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1862		dsm_mask = 0x1c3c76;
1863	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1864		dsm_mask = 0x1fe;
1865		if (disable_vendor_specific)
1866			dsm_mask &= ~(1 << 8);
1867	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1868		dsm_mask = 0xffffffff;
1869	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1870		dsm_mask = 0x1f;
1871	} else {
1872		dev_dbg(dev, "unknown dimm command family\n");
1873		nfit_mem->family = -1;
1874		/* DSMs are optional, continue loading the driver... */
1875		return 0;
1876	}
1877
1878	/*
1879	 * Function 0 is the command interrogation function, don't
1880	 * export it to potential userspace use, and enable it to be
1881	 * used as an error value in acpi_nfit_ctl().
1882	 */
1883	dsm_mask &= ~1UL;
1884
1885	guid = to_nfit_uuid(nfit_mem->family);
1886	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1887		if (acpi_check_dsm(adev_dimm->handle, guid,
1888					nfit_dsm_revid(nfit_mem->family, i),
1889					1ULL << i))
1890			set_bit(i, &nfit_mem->dsm_mask);
1891
1892	/*
1893	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1894	 * due to their better semantics handling locked capacity.
1895	 */
1896	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1897		| 1 << ND_CMD_SET_CONFIG_DATA;
1898	if (family == NVDIMM_FAMILY_INTEL
1899			&& (dsm_mask & label_mask) == label_mask)
1900		/* skip _LS{I,R,W} enabling */;
1901	else {
1902		if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1903				&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1904			dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1905			set_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1906		}
1907
1908		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)
1909				&& acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1910			dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1911			set_bit(NFIT_MEM_LSW, &nfit_mem->flags);
1912		}
1913
1914		/*
1915		 * Quirk read-only label configurations to preserve
1916		 * access to label-less namespaces by default.
1917		 */
1918		if (!test_bit(NFIT_MEM_LSW, &nfit_mem->flags)
1919				&& !force_labels) {
1920			dev_dbg(dev, "%s: No _LSW, disable labels\n",
1921					dev_name(&adev_dimm->dev));
1922			clear_bit(NFIT_MEM_LSR, &nfit_mem->flags);
1923		} else
1924			dev_dbg(dev, "%s: Force enable labels\n",
1925					dev_name(&adev_dimm->dev));
1926	}
1927
1928	populate_shutdown_status(nfit_mem);
1929
1930	return 0;
1931}
1932
1933static void shutdown_dimm_notify(void *data)
1934{
1935	struct acpi_nfit_desc *acpi_desc = data;
1936	struct nfit_mem *nfit_mem;
1937
1938	mutex_lock(&acpi_desc->init_mutex);
1939	/*
1940	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1941	 * notifications.
1942	 */
1943	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1944		struct acpi_device *adev_dimm = nfit_mem->adev;
1945
1946		if (nfit_mem->flags_attr) {
1947			sysfs_put(nfit_mem->flags_attr);
1948			nfit_mem->flags_attr = NULL;
1949		}
1950		if (adev_dimm) {
1951			acpi_remove_notify_handler(adev_dimm->handle,
1952					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1953			dev_set_drvdata(&adev_dimm->dev, NULL);
1954		}
1955	}
1956	mutex_unlock(&acpi_desc->init_mutex);
1957}
1958
1959static const struct nvdimm_security_ops *acpi_nfit_get_security_ops(int family)
1960{
1961	switch (family) {
1962	case NVDIMM_FAMILY_INTEL:
1963		return intel_security_ops;
1964	default:
1965		return NULL;
1966	}
1967}
1968
1969static const struct nvdimm_fw_ops *acpi_nfit_get_fw_ops(
1970		struct nfit_mem *nfit_mem)
1971{
1972	unsigned long mask;
1973	struct acpi_nfit_desc *acpi_desc = nfit_mem->acpi_desc;
1974	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1975
1976	if (!nd_desc->fw_ops)
1977		return NULL;
1978
1979	if (nfit_mem->family != NVDIMM_FAMILY_INTEL)
1980		return NULL;
1981
1982	mask = nfit_mem->dsm_mask & NVDIMM_INTEL_FW_ACTIVATE_CMDMASK;
1983	if (mask != NVDIMM_INTEL_FW_ACTIVATE_CMDMASK)
1984		return NULL;
1985
1986	return intel_fw_ops;
1987}
1988
1989static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1990{
1991	struct nfit_mem *nfit_mem;
1992	int dimm_count = 0, rc;
1993	struct nvdimm *nvdimm;
1994
1995	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1996		struct acpi_nfit_flush_address *flush;
1997		unsigned long flags = 0, cmd_mask;
1998		struct nfit_memdev *nfit_memdev;
1999		u32 device_handle;
2000		u16 mem_flags;
2001
2002		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
2003		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
2004		if (nvdimm) {
2005			dimm_count++;
2006			continue;
2007		}
2008
2009		/* collate flags across all memdevs for this dimm */
2010		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2011			struct acpi_nfit_memory_map *dimm_memdev;
2012
2013			dimm_memdev = __to_nfit_memdev(nfit_mem);
2014			if (dimm_memdev->device_handle
2015					!= nfit_memdev->memdev->device_handle)
2016				continue;
2017			dimm_memdev->flags |= nfit_memdev->memdev->flags;
2018		}
2019
2020		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
2021		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
2022			set_bit(NDD_UNARMED, &flags);
2023
2024		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
2025		if (rc)
2026			continue;
2027
2028		/*
2029		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
2030		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
2031		 * userspace interface.
2032		 */
2033		cmd_mask = 1UL << ND_CMD_CALL;
2034		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
2035			/*
2036			 * These commands have a 1:1 correspondence
2037			 * between DSM payload and libnvdimm ioctl
2038			 * payload format.
2039			 */
2040			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
2041		}
2042
2043		if (test_bit(NFIT_MEM_LSR, &nfit_mem->flags)) {
2044			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
2045			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
2046		}
2047		if (test_bit(NFIT_MEM_LSW, &nfit_mem->flags))
2048			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
2049
2050		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
2051			: NULL;
2052		nvdimm = __nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
2053				acpi_nfit_dimm_attribute_groups,
2054				flags, cmd_mask, flush ? flush->hint_count : 0,
2055				nfit_mem->flush_wpq, &nfit_mem->id[0],
2056				acpi_nfit_get_security_ops(nfit_mem->family),
2057				acpi_nfit_get_fw_ops(nfit_mem));
2058		if (!nvdimm)
2059			return -ENOMEM;
2060
2061		nfit_mem->nvdimm = nvdimm;
2062		dimm_count++;
2063
2064		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
2065			continue;
2066
2067		dev_err(acpi_desc->dev, "Error found in NVDIMM %s flags:%s%s%s%s%s\n",
2068				nvdimm_name(nvdimm),
2069		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
2070		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
2071		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
2072		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
2073		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
2074
2075	}
2076
2077	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
2078	if (rc)
2079		return rc;
2080
2081	/*
2082	 * Now that dimms are successfully registered, and async registration
2083	 * is flushed, attempt to enable event notification.
2084	 */
2085	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
2086		struct kernfs_node *nfit_kernfs;
2087
2088		nvdimm = nfit_mem->nvdimm;
2089		if (!nvdimm)
2090			continue;
2091
2092		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
2093		if (nfit_kernfs)
2094			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
2095					"flags");
2096		sysfs_put(nfit_kernfs);
2097		if (!nfit_mem->flags_attr)
2098			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
2099					nvdimm_name(nvdimm));
2100	}
2101
2102	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
2103			acpi_desc);
2104}
2105
2106/*
2107 * These constants are private because there are no kernel consumers of
2108 * these commands.
2109 */
2110enum nfit_aux_cmds {
2111	NFIT_CMD_TRANSLATE_SPA = 5,
2112	NFIT_CMD_ARS_INJECT_SET = 7,
2113	NFIT_CMD_ARS_INJECT_CLEAR = 8,
2114	NFIT_CMD_ARS_INJECT_GET = 9,
2115};
2116
2117static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2118{
2119	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2120	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2121	unsigned long dsm_mask, *mask;
2122	struct acpi_device *adev;
2123	int i;
2124
2125	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2126	set_bit(NVDIMM_BUS_FAMILY_NFIT, &nd_desc->bus_family_mask);
2127
2128	/* enable nfit_test to inject bus command emulation */
2129	if (acpi_desc->bus_cmd_force_en) {
2130		nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2131		mask = &nd_desc->bus_family_mask;
2132		if (acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL]) {
2133			set_bit(NVDIMM_BUS_FAMILY_INTEL, mask);
2134			nd_desc->fw_ops = intel_bus_fw_ops;
2135		}
2136	}
2137
2138	adev = to_acpi_dev(acpi_desc);
2139	if (!adev)
2140		return;
2141
2142	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2143		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2144			set_bit(i, &nd_desc->cmd_mask);
2145
2146	dsm_mask =
2147		(1 << ND_CMD_ARS_CAP) |
2148		(1 << ND_CMD_ARS_START) |
2149		(1 << ND_CMD_ARS_STATUS) |
2150		(1 << ND_CMD_CLEAR_ERROR) |
2151		(1 << NFIT_CMD_TRANSLATE_SPA) |
2152		(1 << NFIT_CMD_ARS_INJECT_SET) |
2153		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2154		(1 << NFIT_CMD_ARS_INJECT_GET);
2155	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2156		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2157			set_bit(i, &acpi_desc->bus_dsm_mask);
2158
2159	/* Enumerate allowed NVDIMM_BUS_FAMILY_INTEL commands */
2160	dsm_mask = NVDIMM_BUS_INTEL_FW_ACTIVATE_CMDMASK;
2161	guid = to_nfit_bus_uuid(NVDIMM_BUS_FAMILY_INTEL);
2162	mask = &acpi_desc->family_dsm_mask[NVDIMM_BUS_FAMILY_INTEL];
2163	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2164		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2165			set_bit(i, mask);
2166
2167	if (*mask == dsm_mask) {
2168		set_bit(NVDIMM_BUS_FAMILY_INTEL, &nd_desc->bus_family_mask);
2169		nd_desc->fw_ops = intel_bus_fw_ops;
2170	}
2171}
2172
2173static ssize_t range_index_show(struct device *dev,
2174		struct device_attribute *attr, char *buf)
2175{
2176	struct nd_region *nd_region = to_nd_region(dev);
2177	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2178
2179	return sysfs_emit(buf, "%d\n", nfit_spa->spa->range_index);
2180}
2181static DEVICE_ATTR_RO(range_index);
2182
2183static struct attribute *acpi_nfit_region_attributes[] = {
2184	&dev_attr_range_index.attr,
2185	NULL,
2186};
2187
2188static const struct attribute_group acpi_nfit_region_attribute_group = {
2189	.name = "nfit",
2190	.attrs = acpi_nfit_region_attributes,
2191};
2192
2193static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2194	&acpi_nfit_region_attribute_group,
2195	NULL,
2196};
2197
2198/* enough info to uniquely specify an interleave set */
2199struct nfit_set_info {
2200	u64 region_offset;
2201	u32 serial_number;
2202	u32 pad;
2203};
2204
2205struct nfit_set_info2 {
2206	u64 region_offset;
2207	u32 serial_number;
2208	u16 vendor_id;
2209	u16 manufacturing_date;
2210	u8 manufacturing_location;
2211	u8 reserved[31];
2212};
2213
2214static int cmp_map_compat(const void *m0, const void *m1)
2215{
2216	const struct nfit_set_info *map0 = m0;
2217	const struct nfit_set_info *map1 = m1;
2218
2219	return memcmp(&map0->region_offset, &map1->region_offset,
2220			sizeof(u64));
2221}
2222
2223static int cmp_map(const void *m0, const void *m1)
2224{
2225	const struct nfit_set_info *map0 = m0;
2226	const struct nfit_set_info *map1 = m1;
2227
2228	if (map0->region_offset < map1->region_offset)
2229		return -1;
2230	else if (map0->region_offset > map1->region_offset)
2231		return 1;
2232	return 0;
2233}
2234
2235static int cmp_map2(const void *m0, const void *m1)
2236{
2237	const struct nfit_set_info2 *map0 = m0;
2238	const struct nfit_set_info2 *map1 = m1;
2239
2240	if (map0->region_offset < map1->region_offset)
2241		return -1;
2242	else if (map0->region_offset > map1->region_offset)
2243		return 1;
2244	return 0;
2245}
2246
2247/* Retrieve the nth entry referencing this spa */
2248static struct acpi_nfit_memory_map *memdev_from_spa(
2249		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2250{
2251	struct nfit_memdev *nfit_memdev;
2252
2253	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2254		if (nfit_memdev->memdev->range_index == range_index)
2255			if (n-- == 0)
2256				return nfit_memdev->memdev;
2257	return NULL;
2258}
2259
2260static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2261		struct nd_region_desc *ndr_desc,
2262		struct acpi_nfit_system_address *spa)
2263{
2264	u16 nr = ndr_desc->num_mappings;
2265	struct nfit_set_info2 *info2 __free(kfree) =
2266		kcalloc(nr, sizeof(*info2), GFP_KERNEL);
2267	struct nfit_set_info *info __free(kfree) =
2268		kcalloc(nr, sizeof(*info), GFP_KERNEL);
2269	struct device *dev = acpi_desc->dev;
2270	struct nd_interleave_set *nd_set;
2271	int i;
2272
2273	if (!info || !info2)
2274		return -ENOMEM;
2275
2276	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2277	if (!nd_set)
2278		return -ENOMEM;
2279	import_guid(&nd_set->type_guid, spa->range_guid);
2280
2281	for (i = 0; i < nr; i++) {
2282		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2283		struct nvdimm *nvdimm = mapping->nvdimm;
2284		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2285		struct nfit_set_info *map = &info[i];
2286		struct nfit_set_info2 *map2 = &info2[i];
2287		struct acpi_nfit_memory_map *memdev =
2288			memdev_from_spa(acpi_desc, spa->range_index, i);
2289		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2290
2291		if (!memdev || !nfit_mem->dcr) {
2292			dev_err(dev, "%s: failed to find DCR\n", __func__);
2293			return -ENODEV;
2294		}
2295
2296		map->region_offset = memdev->region_offset;
2297		map->serial_number = dcr->serial_number;
2298
2299		map2->region_offset = memdev->region_offset;
2300		map2->serial_number = dcr->serial_number;
2301		map2->vendor_id = dcr->vendor_id;
2302		map2->manufacturing_date = dcr->manufacturing_date;
2303		map2->manufacturing_location = dcr->manufacturing_location;
2304	}
2305
2306	/* v1.1 namespaces */
2307	sort(info, nr, sizeof(*info), cmp_map, NULL);
2308	nd_set->cookie1 = nd_fletcher64(info, sizeof(*info) * nr, 0);
2309
2310	/* v1.2 namespaces */
2311	sort(info2, nr, sizeof(*info2), cmp_map2, NULL);
2312	nd_set->cookie2 = nd_fletcher64(info2, sizeof(*info2) * nr, 0);
2313
2314	/* support v1.1 namespaces created with the wrong sort order */
2315	sort(info, nr, sizeof(*info), cmp_map_compat, NULL);
2316	nd_set->altcookie = nd_fletcher64(info, sizeof(*info) * nr, 0);
2317
2318	/* record the result of the sort for the mapping position */
2319	for (i = 0; i < nr; i++) {
2320		struct nfit_set_info2 *map2 = &info2[i];
2321		int j;
2322
2323		for (j = 0; j < nr; j++) {
2324			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2325			struct nvdimm *nvdimm = mapping->nvdimm;
2326			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2327			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2328
2329			if (map2->serial_number == dcr->serial_number &&
2330			    map2->vendor_id == dcr->vendor_id &&
2331			    map2->manufacturing_date == dcr->manufacturing_date &&
2332			    map2->manufacturing_location
2333				    == dcr->manufacturing_location) {
2334				mapping->position = i;
2335				break;
2336			}
2337		}
2338	}
2339
2340	ndr_desc->nd_set = nd_set;
2341
2342	return 0;
2343}
2344
2345static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2346		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2347{
2348	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2349	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2350	int cmd_rc, rc;
2351
2352	cmd->address = spa->address;
2353	cmd->length = spa->length;
2354	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2355			sizeof(*cmd), &cmd_rc);
2356	if (rc < 0)
2357		return rc;
2358	return cmd_rc;
2359}
2360
2361static int ars_start(struct acpi_nfit_desc *acpi_desc,
2362		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2363{
2364	int rc;
2365	int cmd_rc;
2366	struct nd_cmd_ars_start ars_start;
2367	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2368	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2369
2370	memset(&ars_start, 0, sizeof(ars_start));
2371	ars_start.address = spa->address;
2372	ars_start.length = spa->length;
2373	if (req_type == ARS_REQ_SHORT)
2374		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2375	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2376		ars_start.type = ND_ARS_PERSISTENT;
2377	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2378		ars_start.type = ND_ARS_VOLATILE;
2379	else
2380		return -ENOTTY;
2381
2382	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2383			sizeof(ars_start), &cmd_rc);
2384
2385	if (rc < 0)
2386		return rc;
2387	if (cmd_rc < 0)
2388		return cmd_rc;
2389	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2390	return 0;
2391}
2392
2393static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2394{
2395	int rc, cmd_rc;
2396	struct nd_cmd_ars_start ars_start;
2397	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2398	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2399
2400	ars_start = (struct nd_cmd_ars_start) {
2401		.address = ars_status->restart_address,
2402		.length = ars_status->restart_length,
2403		.type = ars_status->type,
2404	};
2405	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2406			sizeof(ars_start), &cmd_rc);
2407	if (rc < 0)
2408		return rc;
2409	return cmd_rc;
2410}
2411
2412static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2413{
2414	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2415	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2416	int rc, cmd_rc;
2417
2418	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2419			acpi_desc->max_ars, &cmd_rc);
2420	if (rc < 0)
2421		return rc;
2422	return cmd_rc;
2423}
2424
2425static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2426		struct nfit_spa *nfit_spa)
2427{
2428	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2429	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2430	struct nd_region *nd_region = nfit_spa->nd_region;
2431	struct device *dev;
2432
2433	lockdep_assert_held(&acpi_desc->init_mutex);
2434	/*
2435	 * Only advance the ARS state for ARS runs initiated by the
2436	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2437	 * completion tracking.
2438	 */
2439	if (acpi_desc->scrub_spa != nfit_spa)
2440		return;
2441
2442	if ((ars_status->address >= spa->address && ars_status->address
2443				< spa->address + spa->length)
2444			|| (ars_status->address < spa->address)) {
2445		/*
2446		 * Assume that if a scrub starts at an offset from the
2447		 * start of nfit_spa that we are in the continuation
2448		 * case.
2449		 *
2450		 * Otherwise, if the scrub covers the spa range, mark
2451		 * any pending request complete.
2452		 */
2453		if (ars_status->address + ars_status->length
2454				>= spa->address + spa->length)
2455				/* complete */;
2456		else
2457			return;
2458	} else
2459		return;
2460
2461	acpi_desc->scrub_spa = NULL;
2462	if (nd_region) {
2463		dev = nd_region_dev(nd_region);
2464		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2465	} else
2466		dev = acpi_desc->dev;
2467	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2468}
2469
2470static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2471{
2472	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2473	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2474	int rc;
2475	u32 i;
2476
2477	/*
2478	 * First record starts at 44 byte offset from the start of the
2479	 * payload.
2480	 */
2481	if (ars_status->out_length < 44)
2482		return 0;
2483
2484	/*
2485	 * Ignore potentially stale results that are only refreshed
2486	 * after a start-ARS event.
2487	 */
2488	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2489		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2490				ars_status->num_records);
2491		return 0;
2492	}
2493
2494	for (i = 0; i < ars_status->num_records; i++) {
2495		/* only process full records */
2496		if (ars_status->out_length
2497				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2498			break;
2499		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2500				ars_status->records[i].err_address,
2501				ars_status->records[i].length);
2502		if (rc)
2503			return rc;
2504	}
2505	if (i < ars_status->num_records)
2506		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2507
2508	return 0;
2509}
2510
2511static void acpi_nfit_remove_resource(void *data)
2512{
2513	struct resource *res = data;
2514
2515	remove_resource(res);
2516}
2517
2518static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2519		struct nd_region_desc *ndr_desc)
2520{
2521	struct resource *res, *nd_res = ndr_desc->res;
2522	int is_pmem, ret;
2523
2524	/* No operation if the region is already registered as PMEM */
2525	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2526				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2527	if (is_pmem == REGION_INTERSECTS)
2528		return 0;
2529
2530	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2531	if (!res)
2532		return -ENOMEM;
2533
2534	res->name = "Persistent Memory";
2535	res->start = nd_res->start;
2536	res->end = nd_res->end;
2537	res->flags = IORESOURCE_MEM;
2538	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2539
2540	ret = insert_resource(&iomem_resource, res);
2541	if (ret)
2542		return ret;
2543
2544	ret = devm_add_action_or_reset(acpi_desc->dev,
2545					acpi_nfit_remove_resource,
2546					res);
2547	if (ret)
2548		return ret;
2549
2550	return 0;
2551}
2552
2553static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2554		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2555		struct acpi_nfit_memory_map *memdev,
2556		struct nfit_spa *nfit_spa)
2557{
2558	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2559			memdev->device_handle);
2560	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2561
2562	if (!nvdimm) {
2563		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2564				spa->range_index, memdev->device_handle);
2565		return -ENODEV;
2566	}
2567
2568	mapping->nvdimm = nvdimm;
2569	switch (nfit_spa_type(spa)) {
2570	case NFIT_SPA_PM:
2571	case NFIT_SPA_VOLATILE:
2572		mapping->start = memdev->address;
2573		mapping->size = memdev->region_size;
2574		break;
2575	}
2576
2577	return 0;
2578}
2579
2580static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2581{
2582	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2583		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2584		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2585		nfit_spa_type(spa) == NFIT_SPA_PCD);
2586}
2587
2588static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2589{
2590	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2591		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2592		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2593}
2594
2595static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2596		struct nfit_spa *nfit_spa)
2597{
2598	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2599	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2600	struct nd_region_desc *ndr_desc, _ndr_desc;
2601	struct nfit_memdev *nfit_memdev;
2602	struct nvdimm_bus *nvdimm_bus;
2603	struct resource res;
2604	int count = 0, rc;
2605
2606	if (nfit_spa->nd_region)
2607		return 0;
2608
2609	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2610		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2611		return 0;
2612	}
2613
2614	memset(&res, 0, sizeof(res));
2615	memset(&mappings, 0, sizeof(mappings));
2616	memset(&_ndr_desc, 0, sizeof(_ndr_desc));
2617	res.start = spa->address;
2618	res.end = res.start + spa->length - 1;
2619	ndr_desc = &_ndr_desc;
2620	ndr_desc->res = &res;
2621	ndr_desc->provider_data = nfit_spa;
2622	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2623	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) {
2624		ndr_desc->numa_node = pxm_to_online_node(spa->proximity_domain);
2625		ndr_desc->target_node = pxm_to_node(spa->proximity_domain);
2626	} else {
2627		ndr_desc->numa_node = NUMA_NO_NODE;
2628		ndr_desc->target_node = NUMA_NO_NODE;
2629	}
2630
2631	/* Fallback to address based numa information if node lookup failed */
2632	if (ndr_desc->numa_node == NUMA_NO_NODE) {
2633		ndr_desc->numa_node = memory_add_physaddr_to_nid(spa->address);
2634		dev_info(acpi_desc->dev, "changing numa node from %d to %d for nfit region [%pa-%pa]",
2635			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2636	}
2637	if (ndr_desc->target_node == NUMA_NO_NODE) {
2638		ndr_desc->target_node = phys_to_target_node(spa->address);
2639		dev_info(acpi_desc->dev, "changing target node from %d to %d for nfit region [%pa-%pa]",
2640			NUMA_NO_NODE, ndr_desc->numa_node, &res.start, &res.end);
2641	}
2642
2643	/*
2644	 * Persistence domain bits are hierarchical, if
2645	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2646	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2647	 */
2648	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2649		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2650	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2651		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2652
2653	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2654		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2655		struct nd_mapping_desc *mapping;
2656
2657		/* range index 0 == unmapped in SPA or invalid-SPA */
2658		if (memdev->range_index == 0 || spa->range_index == 0)
2659			continue;
2660		if (memdev->range_index != spa->range_index)
2661			continue;
2662		if (count >= ND_MAX_MAPPINGS) {
2663			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2664					spa->range_index, ND_MAX_MAPPINGS);
2665			return -ENXIO;
2666		}
2667		mapping = &mappings[count++];
2668		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2669				memdev, nfit_spa);
2670		if (rc)
2671			goto out;
2672	}
2673
2674	ndr_desc->mapping = mappings;
2675	ndr_desc->num_mappings = count;
2676	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2677	if (rc)
2678		goto out;
2679
2680	nvdimm_bus = acpi_desc->nvdimm_bus;
2681	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2682		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2683		if (rc) {
2684			dev_warn(acpi_desc->dev,
2685				"failed to insert pmem resource to iomem: %d\n",
2686				rc);
2687			goto out;
2688		}
2689
2690		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2691				ndr_desc);
2692		if (!nfit_spa->nd_region)
2693			rc = -ENOMEM;
2694	} else if (nfit_spa_is_volatile(spa)) {
2695		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2696				ndr_desc);
2697		if (!nfit_spa->nd_region)
2698			rc = -ENOMEM;
2699	} else if (nfit_spa_is_virtual(spa)) {
2700		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2701				ndr_desc);
2702		if (!nfit_spa->nd_region)
2703			rc = -ENOMEM;
2704	}
2705
2706 out:
2707	if (rc)
2708		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2709				nfit_spa->spa->range_index);
2710	return rc;
2711}
2712
2713static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2714{
2715	struct device *dev = acpi_desc->dev;
2716	struct nd_cmd_ars_status *ars_status;
2717
2718	if (acpi_desc->ars_status) {
2719		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2720		return 0;
2721	}
2722
2723	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2724	if (!ars_status)
2725		return -ENOMEM;
2726	acpi_desc->ars_status = ars_status;
2727	return 0;
2728}
2729
2730static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2731{
2732	int rc;
2733
2734	if (ars_status_alloc(acpi_desc))
2735		return -ENOMEM;
2736
2737	rc = ars_get_status(acpi_desc);
2738
2739	if (rc < 0 && rc != -ENOSPC)
2740		return rc;
2741
2742	if (ars_status_process_records(acpi_desc))
2743		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2744
2745	return rc;
2746}
2747
2748static int ars_register(struct acpi_nfit_desc *acpi_desc,
2749		struct nfit_spa *nfit_spa)
2750{
2751	int rc;
2752
2753	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2754		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2755
2756	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2757	if (!no_init_ars)
2758		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2759
2760	switch (acpi_nfit_query_poison(acpi_desc)) {
2761	case 0:
2762	case -ENOSPC:
2763	case -EAGAIN:
2764		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2765		/* shouldn't happen, try again later */
2766		if (rc == -EBUSY)
2767			break;
2768		if (rc) {
2769			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2770			break;
2771		}
2772		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2773		rc = acpi_nfit_query_poison(acpi_desc);
2774		if (rc)
2775			break;
2776		acpi_desc->scrub_spa = nfit_spa;
2777		ars_complete(acpi_desc, nfit_spa);
2778		/*
2779		 * If ars_complete() says we didn't complete the
2780		 * short scrub, we'll try again with a long
2781		 * request.
2782		 */
2783		acpi_desc->scrub_spa = NULL;
2784		break;
2785	case -EBUSY:
2786	case -ENOMEM:
2787		/*
2788		 * BIOS was using ARS, wait for it to complete (or
2789		 * resources to become available) and then perform our
2790		 * own scrubs.
2791		 */
2792		break;
2793	default:
2794		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2795		break;
2796	}
2797
2798	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2799}
2800
2801static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2802{
2803	struct nfit_spa *nfit_spa;
2804
2805	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2806		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2807			continue;
2808		ars_complete(acpi_desc, nfit_spa);
2809	}
2810}
2811
2812static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2813		int query_rc)
2814{
2815	unsigned int tmo = acpi_desc->scrub_tmo;
2816	struct device *dev = acpi_desc->dev;
2817	struct nfit_spa *nfit_spa;
2818
2819	lockdep_assert_held(&acpi_desc->init_mutex);
2820
2821	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
2822		return 0;
2823
2824	if (query_rc == -EBUSY) {
2825		dev_dbg(dev, "ARS: ARS busy\n");
2826		return min(30U * 60U, tmo * 2);
2827	}
2828	if (query_rc == -ENOSPC) {
2829		dev_dbg(dev, "ARS: ARS continue\n");
2830		ars_continue(acpi_desc);
2831		return 1;
2832	}
2833	if (query_rc && query_rc != -EAGAIN) {
2834		unsigned long long addr, end;
2835
2836		addr = acpi_desc->ars_status->address;
2837		end = addr + acpi_desc->ars_status->length;
2838		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
2839				query_rc);
2840	}
2841
2842	ars_complete_all(acpi_desc);
2843	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2844		enum nfit_ars_state req_type;
2845		int rc;
2846
2847		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2848			continue;
2849
2850		/* prefer short ARS requests first */
2851		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
2852			req_type = ARS_REQ_SHORT;
2853		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
2854			req_type = ARS_REQ_LONG;
2855		else
2856			continue;
2857		rc = ars_start(acpi_desc, nfit_spa, req_type);
2858
2859		dev = nd_region_dev(nfit_spa->nd_region);
2860		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
2861				nfit_spa->spa->range_index,
2862				req_type == ARS_REQ_SHORT ? "short" : "long",
2863				rc);
2864		/*
2865		 * Hmm, we raced someone else starting ARS? Try again in
2866		 * a bit.
2867		 */
2868		if (rc == -EBUSY)
2869			return 1;
2870		if (rc == 0) {
2871			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
2872					"scrub start while range %d active\n",
2873					acpi_desc->scrub_spa->spa->range_index);
2874			clear_bit(req_type, &nfit_spa->ars_state);
2875			acpi_desc->scrub_spa = nfit_spa;
2876			/*
2877			 * Consider this spa last for future scrub
2878			 * requests
2879			 */
2880			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
2881			return 1;
2882		}
2883
2884		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
2885				nfit_spa->spa->range_index, rc);
2886		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2887	}
2888	return 0;
2889}
2890
2891static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
2892{
2893	lockdep_assert_held(&acpi_desc->init_mutex);
2894
2895	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2896	/* note this should only be set from within the workqueue */
2897	if (tmo)
2898		acpi_desc->scrub_tmo = tmo;
2899	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
2900}
2901
2902static void sched_ars(struct acpi_nfit_desc *acpi_desc)
2903{
2904	__sched_ars(acpi_desc, 0);
2905}
2906
2907static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
2908{
2909	lockdep_assert_held(&acpi_desc->init_mutex);
2910
2911	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
2912	acpi_desc->scrub_count++;
2913	if (acpi_desc->scrub_count_state)
2914		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2915}
2916
2917static void acpi_nfit_scrub(struct work_struct *work)
2918{
2919	struct acpi_nfit_desc *acpi_desc;
2920	unsigned int tmo;
2921	int query_rc;
2922
2923	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
2924	mutex_lock(&acpi_desc->init_mutex);
2925	query_rc = acpi_nfit_query_poison(acpi_desc);
2926	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
2927	if (tmo)
2928		__sched_ars(acpi_desc, tmo);
2929	else
2930		notify_ars_done(acpi_desc);
2931	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2932	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
2933	mutex_unlock(&acpi_desc->init_mutex);
2934}
2935
2936static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
2937		struct nfit_spa *nfit_spa)
2938{
2939	int type = nfit_spa_type(nfit_spa->spa);
2940	struct nd_cmd_ars_cap ars_cap;
2941	int rc;
2942
2943	set_bit(ARS_FAILED, &nfit_spa->ars_state);
2944	memset(&ars_cap, 0, sizeof(ars_cap));
2945	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2946	if (rc < 0)
2947		return;
2948	/* check that the supported scrub types match the spa type */
2949	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
2950				& ND_ARS_VOLATILE) == 0)
2951		return;
2952	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
2953				& ND_ARS_PERSISTENT) == 0)
2954		return;
2955
2956	nfit_spa->max_ars = ars_cap.max_ars_out;
2957	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2958	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
2959	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
2960}
2961
2962static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2963{
2964	struct nfit_spa *nfit_spa;
2965	int rc, do_sched_ars = 0;
2966
2967	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2968	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2969		switch (nfit_spa_type(nfit_spa->spa)) {
2970		case NFIT_SPA_VOLATILE:
2971		case NFIT_SPA_PM:
2972			acpi_nfit_init_ars(acpi_desc, nfit_spa);
2973			break;
2974		}
2975	}
2976
2977	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2978		switch (nfit_spa_type(nfit_spa->spa)) {
2979		case NFIT_SPA_VOLATILE:
2980		case NFIT_SPA_PM:
2981			/* register regions and kick off initial ARS run */
2982			rc = ars_register(acpi_desc, nfit_spa);
2983			if (rc)
2984				return rc;
2985
2986			/*
2987			 * Kick off background ARS if at least one
2988			 * region successfully registered ARS
2989			 */
2990			if (!test_bit(ARS_FAILED, &nfit_spa->ars_state))
2991				do_sched_ars++;
2992			break;
2993		case NFIT_SPA_BDW:
2994			/* nothing to register */
2995			break;
2996		case NFIT_SPA_DCR:
2997		case NFIT_SPA_VDISK:
2998		case NFIT_SPA_VCD:
2999		case NFIT_SPA_PDISK:
3000		case NFIT_SPA_PCD:
3001			/* register known regions that don't support ARS */
3002			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3003			if (rc)
3004				return rc;
3005			break;
3006		default:
3007			/* don't register unknown regions */
3008			break;
3009		}
3010	}
3011
3012	if (do_sched_ars)
3013		sched_ars(acpi_desc);
3014	return 0;
3015}
3016
3017static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3018		struct nfit_table_prev *prev)
3019{
3020	struct device *dev = acpi_desc->dev;
3021
3022	if (!list_empty(&prev->spas) ||
3023			!list_empty(&prev->memdevs) ||
3024			!list_empty(&prev->dcrs) ||
3025			!list_empty(&prev->bdws) ||
3026			!list_empty(&prev->idts) ||
3027			!list_empty(&prev->flushes)) {
3028		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3029		return -ENXIO;
3030	}
3031	return 0;
3032}
3033
3034static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3035{
3036	struct device *dev = acpi_desc->dev;
3037	struct kernfs_node *nfit;
3038	struct device *bus_dev;
3039
3040	if (!ars_supported(acpi_desc->nvdimm_bus))
3041		return 0;
3042
3043	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3044	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3045	if (!nfit) {
3046		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3047		return -ENODEV;
3048	}
3049	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3050	sysfs_put(nfit);
3051	if (!acpi_desc->scrub_count_state) {
3052		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3053		return -ENODEV;
3054	}
3055
3056	return 0;
3057}
3058
3059static void acpi_nfit_unregister(void *data)
3060{
3061	struct acpi_nfit_desc *acpi_desc = data;
3062
3063	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3064}
3065
3066int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3067{
3068	struct device *dev = acpi_desc->dev;
3069	struct nfit_table_prev prev;
3070	const void *end;
3071	int rc;
3072
3073	if (!acpi_desc->nvdimm_bus) {
3074		acpi_nfit_init_dsms(acpi_desc);
3075
3076		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3077				&acpi_desc->nd_desc);
3078		if (!acpi_desc->nvdimm_bus)
3079			return -ENOMEM;
3080
3081		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3082				acpi_desc);
3083		if (rc)
3084			return rc;
3085
3086		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3087		if (rc)
3088			return rc;
3089
3090		/* register this acpi_desc for mce notifications */
3091		mutex_lock(&acpi_desc_lock);
3092		list_add_tail(&acpi_desc->list, &acpi_descs);
3093		mutex_unlock(&acpi_desc_lock);
3094	}
3095
3096	mutex_lock(&acpi_desc->init_mutex);
3097
3098	INIT_LIST_HEAD(&prev.spas);
3099	INIT_LIST_HEAD(&prev.memdevs);
3100	INIT_LIST_HEAD(&prev.dcrs);
3101	INIT_LIST_HEAD(&prev.bdws);
3102	INIT_LIST_HEAD(&prev.idts);
3103	INIT_LIST_HEAD(&prev.flushes);
3104
3105	list_cut_position(&prev.spas, &acpi_desc->spas,
3106				acpi_desc->spas.prev);
3107	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3108				acpi_desc->memdevs.prev);
3109	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3110				acpi_desc->dcrs.prev);
3111	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3112				acpi_desc->bdws.prev);
3113	list_cut_position(&prev.idts, &acpi_desc->idts,
3114				acpi_desc->idts.prev);
3115	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3116				acpi_desc->flushes.prev);
3117
3118	end = data + sz;
3119	while (!IS_ERR_OR_NULL(data))
3120		data = add_table(acpi_desc, &prev, data, end);
3121
3122	if (IS_ERR(data)) {
3123		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3124		rc = PTR_ERR(data);
3125		goto out_unlock;
3126	}
3127
3128	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3129	if (rc)
3130		goto out_unlock;
3131
3132	rc = nfit_mem_init(acpi_desc);
3133	if (rc)
3134		goto out_unlock;
3135
3136	rc = acpi_nfit_register_dimms(acpi_desc);
3137	if (rc)
3138		goto out_unlock;
3139
3140	rc = acpi_nfit_register_regions(acpi_desc);
3141
3142 out_unlock:
3143	mutex_unlock(&acpi_desc->init_mutex);
3144	return rc;
3145}
3146EXPORT_SYMBOL_GPL(acpi_nfit_init);
3147
3148static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3149{
3150	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3151	struct device *dev = acpi_desc->dev;
3152
3153	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3154	device_lock(dev);
3155	device_unlock(dev);
3156
3157	/* Bounce the init_mutex to complete initial registration */
3158	mutex_lock(&acpi_desc->init_mutex);
3159	mutex_unlock(&acpi_desc->init_mutex);
3160
3161	return 0;
3162}
3163
3164static int __acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3165		struct nvdimm *nvdimm, unsigned int cmd)
3166{
3167	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
3168
3169	if (nvdimm)
3170		return 0;
3171	if (cmd != ND_CMD_ARS_START)
3172		return 0;
3173
3174	/*
3175	 * The kernel and userspace may race to initiate a scrub, but
3176	 * the scrub thread is prepared to lose that initial race.  It
3177	 * just needs guarantees that any ARS it initiates are not
3178	 * interrupted by any intervening start requests from userspace.
3179	 */
3180	if (work_busy(&acpi_desc->dwork.work))
3181		return -EBUSY;
3182
3183	return 0;
3184}
3185
3186/*
3187 * Prevent security and firmware activate commands from being issued via
3188 * ioctl.
3189 */
3190static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3191		struct nvdimm *nvdimm, unsigned int cmd, void *buf)
3192{
3193	struct nd_cmd_pkg *call_pkg = buf;
3194	unsigned int func;
3195
3196	if (nvdimm && cmd == ND_CMD_CALL &&
3197			call_pkg->nd_family == NVDIMM_FAMILY_INTEL) {
3198		func = call_pkg->nd_command;
3199		if (func > NVDIMM_CMD_MAX ||
3200		    (1 << func) & NVDIMM_INTEL_DENY_CMDMASK)
3201			return -EOPNOTSUPP;
3202	}
3203
3204	/* block all non-nfit bus commands */
3205	if (!nvdimm && cmd == ND_CMD_CALL &&
3206			call_pkg->nd_family != NVDIMM_BUS_FAMILY_NFIT)
3207		return -EOPNOTSUPP;
3208
3209	return __acpi_nfit_clear_to_send(nd_desc, nvdimm, cmd);
3210}
3211
3212int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3213		enum nfit_ars_state req_type)
3214{
3215	struct device *dev = acpi_desc->dev;
3216	int scheduled = 0, busy = 0;
3217	struct nfit_spa *nfit_spa;
3218
3219	mutex_lock(&acpi_desc->init_mutex);
3220	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3221		mutex_unlock(&acpi_desc->init_mutex);
3222		return 0;
3223	}
3224
3225	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3226		int type = nfit_spa_type(nfit_spa->spa);
3227
3228		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3229			continue;
3230		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3231			continue;
3232
3233		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3234			busy++;
3235		else
3236			scheduled++;
3237	}
3238	if (scheduled) {
3239		sched_ars(acpi_desc);
3240		dev_dbg(dev, "ars_scan triggered\n");
3241	}
3242	mutex_unlock(&acpi_desc->init_mutex);
3243
3244	if (scheduled)
3245		return 0;
3246	if (busy)
3247		return -EBUSY;
3248	return -ENOTTY;
3249}
3250
3251void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3252{
3253	struct nvdimm_bus_descriptor *nd_desc;
3254
3255	dev_set_drvdata(dev, acpi_desc);
3256	acpi_desc->dev = dev;
3257	nd_desc = &acpi_desc->nd_desc;
3258	nd_desc->provider_name = "ACPI.NFIT";
3259	nd_desc->module = THIS_MODULE;
3260	nd_desc->ndctl = acpi_nfit_ctl;
3261	nd_desc->flush_probe = acpi_nfit_flush_probe;
3262	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3263	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3264
3265	INIT_LIST_HEAD(&acpi_desc->spas);
3266	INIT_LIST_HEAD(&acpi_desc->dcrs);
3267	INIT_LIST_HEAD(&acpi_desc->bdws);
3268	INIT_LIST_HEAD(&acpi_desc->idts);
3269	INIT_LIST_HEAD(&acpi_desc->flushes);
3270	INIT_LIST_HEAD(&acpi_desc->memdevs);
3271	INIT_LIST_HEAD(&acpi_desc->dimms);
3272	INIT_LIST_HEAD(&acpi_desc->list);
3273	mutex_init(&acpi_desc->init_mutex);
3274	acpi_desc->scrub_tmo = 1;
3275	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3276}
3277EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3278
3279static void acpi_nfit_put_table(void *table)
3280{
3281	acpi_put_table(table);
3282}
3283
3284static void acpi_nfit_notify(acpi_handle handle, u32 event, void *data)
3285{
3286	struct acpi_device *adev = data;
3287
3288	device_lock(&adev->dev);
3289	__acpi_nfit_notify(&adev->dev, handle, event);
3290	device_unlock(&adev->dev);
3291}
3292
3293static void acpi_nfit_remove_notify_handler(void *data)
3294{
3295	struct acpi_device *adev = data;
3296
3297	acpi_dev_remove_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3298				       acpi_nfit_notify);
3299}
3300
3301void acpi_nfit_shutdown(void *data)
3302{
3303	struct acpi_nfit_desc *acpi_desc = data;
3304	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3305
3306	/*
3307	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3308	 * race teardown
3309	 */
3310	mutex_lock(&acpi_desc_lock);
3311	list_del(&acpi_desc->list);
3312	mutex_unlock(&acpi_desc_lock);
3313
3314	mutex_lock(&acpi_desc->init_mutex);
3315	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3316	mutex_unlock(&acpi_desc->init_mutex);
3317	cancel_delayed_work_sync(&acpi_desc->dwork);
3318
3319	/*
3320	 * Bounce the nvdimm bus lock to make sure any in-flight
3321	 * acpi_nfit_ars_rescan() submissions have had a chance to
3322	 * either submit or see ->cancel set.
3323	 */
3324	device_lock(bus_dev);
3325	device_unlock(bus_dev);
3326
3327	flush_workqueue(nfit_wq);
3328}
3329EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3330
3331static int acpi_nfit_add(struct acpi_device *adev)
3332{
3333	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3334	struct acpi_nfit_desc *acpi_desc;
3335	struct device *dev = &adev->dev;
3336	struct acpi_table_header *tbl;
3337	acpi_status status = AE_OK;
3338	acpi_size sz;
3339	int rc = 0;
3340
3341	rc = acpi_dev_install_notify_handler(adev, ACPI_DEVICE_NOTIFY,
3342					     acpi_nfit_notify, adev);
3343	if (rc)
3344		return rc;
3345
3346	rc = devm_add_action_or_reset(dev, acpi_nfit_remove_notify_handler,
3347					adev);
3348	if (rc)
3349		return rc;
3350
3351	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3352	if (ACPI_FAILURE(status)) {
3353		/* The NVDIMM root device allows OS to trigger enumeration of
3354		 * NVDIMMs through NFIT at boot time and re-enumeration at
3355		 * root level via the _FIT method during runtime.
3356		 * This is ok to return 0 here, we could have an nvdimm
3357		 * hotplugged later and evaluate _FIT method which returns
3358		 * data in the format of a series of NFIT Structures.
3359		 */
3360		dev_dbg(dev, "failed to find NFIT at startup\n");
3361		return 0;
3362	}
3363
3364	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3365	if (rc)
3366		return rc;
3367	sz = tbl->length;
3368
3369	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3370	if (!acpi_desc)
3371		return -ENOMEM;
3372	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3373
3374	/* Save the acpi header for exporting the revision via sysfs */
3375	acpi_desc->acpi_header = *tbl;
3376
3377	/* Evaluate _FIT and override with that if present */
3378	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3379	if (ACPI_SUCCESS(status) && buf.length > 0) {
3380		union acpi_object *obj = buf.pointer;
3381
3382		if (obj->type == ACPI_TYPE_BUFFER)
3383			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3384					obj->buffer.length);
3385		else
3386			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3387				(int) obj->type);
3388		kfree(buf.pointer);
3389	} else
3390		/* skip over the lead-in header table */
3391		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3392				+ sizeof(struct acpi_table_nfit),
3393				sz - sizeof(struct acpi_table_nfit));
3394
3395	if (rc)
3396		return rc;
3397
3398	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3399}
3400
3401static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3402{
3403	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3404	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3405	union acpi_object *obj;
3406	acpi_status status;
3407	int ret;
3408
3409	if (!dev->driver) {
3410		/* dev->driver may be null if we're being removed */
3411		dev_dbg(dev, "no driver found for dev\n");
3412		return;
3413	}
3414
3415	if (!acpi_desc) {
3416		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3417		if (!acpi_desc)
3418			return;
3419		acpi_nfit_desc_init(acpi_desc, dev);
3420	} else {
3421		/*
3422		 * Finish previous registration before considering new
3423		 * regions.
3424		 */
3425		flush_workqueue(nfit_wq);
3426	}
3427
3428	/* Evaluate _FIT */
3429	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3430	if (ACPI_FAILURE(status)) {
3431		dev_err(dev, "failed to evaluate _FIT\n");
3432		return;
3433	}
3434
3435	obj = buf.pointer;
3436	if (obj->type == ACPI_TYPE_BUFFER) {
3437		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3438				obj->buffer.length);
3439		if (ret)
3440			dev_err(dev, "failed to merge updated NFIT\n");
3441	} else
3442		dev_err(dev, "Invalid _FIT\n");
3443	kfree(buf.pointer);
3444}
3445
3446static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3447{
3448	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3449
3450	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3451		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3452	else
3453		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3454}
3455
3456void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3457{
3458	dev_dbg(dev, "event: 0x%x\n", event);
3459
3460	switch (event) {
3461	case NFIT_NOTIFY_UPDATE:
3462		return acpi_nfit_update_notify(dev, handle);
3463	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3464		return acpi_nfit_uc_error_notify(dev, handle);
3465	default:
3466		return;
3467	}
3468}
3469EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3470
3471static const struct acpi_device_id acpi_nfit_ids[] = {
3472	{ "ACPI0012", 0 },
3473	{ "", 0 },
3474};
3475MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3476
3477static struct acpi_driver acpi_nfit_driver = {
3478	.name = KBUILD_MODNAME,
3479	.ids = acpi_nfit_ids,
3480	.ops = {
3481		.add = acpi_nfit_add,
3482	},
3483};
3484
3485static __init int nfit_init(void)
3486{
3487	int ret;
3488
3489	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3490	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 64);
3491	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3492	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 16);
3493	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 8);
3494	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3495	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3496	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3497
3498	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3499	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3500	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3501	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3502	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3503	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3504	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3505	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3506	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3507	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3508	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3509	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3510	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3511	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3512	guid_parse(UUID_INTEL_BUS, &nfit_uuid[NFIT_BUS_INTEL]);
3513
3514	nfit_wq = create_singlethread_workqueue("nfit");
3515	if (!nfit_wq)
3516		return -ENOMEM;
3517
3518	nfit_mce_register();
3519	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3520	if (ret) {
3521		nfit_mce_unregister();
3522		destroy_workqueue(nfit_wq);
3523	}
3524
3525	return ret;
3526
3527}
3528
3529static __exit void nfit_exit(void)
3530{
3531	nfit_mce_unregister();
3532	acpi_bus_unregister_driver(&acpi_nfit_driver);
3533	destroy_workqueue(nfit_wq);
3534	WARN_ON(!list_empty(&acpi_descs));
3535}
3536
3537module_init(nfit_init);
3538module_exit(nfit_exit);
3539MODULE_DESCRIPTION("ACPI NVDIMM Firmware Interface Table (NFIT) driver");
3540MODULE_LICENSE("GPL v2");
3541MODULE_AUTHOR("Intel Corporation");