Loading...
1/*
2 * Handle unaligned accesses by emulation.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
11 *
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
16 *
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
22 *
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
26 * right way to go.
27 *
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
32 *
33 * #include <sys/sysmips.h>
34 *
35 * ...
36 * sysmips(MIPS_FIXADE, x);
37 * ...
38 *
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
40 *
41 * Below a little program to play around with this feature.
42 *
43 * #include <stdio.h>
44 * #include <sys/sysmips.h>
45 *
46 * struct foo {
47 * unsigned char bar[8];
48 * };
49 *
50 * main(int argc, char *argv[])
51 * {
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
54 * int i;
55 *
56 * if (argc > 1)
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
58 *
59 * printf("*p = %08lx\n", *p);
60 *
61 * *p = 0xdeadface;
62 *
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
65 * printf("\n");
66 * }
67 *
68 * Coprocessor loads are not supported; I think this case is unimportant
69 * in the practice.
70 *
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
75 */
76#include <linux/context_tracking.h>
77#include <linux/mm.h>
78#include <linux/signal.h>
79#include <linux/smp.h>
80#include <linux/sched.h>
81#include <linux/debugfs.h>
82#include <linux/perf_event.h>
83
84#include <asm/asm.h>
85#include <asm/branch.h>
86#include <asm/byteorder.h>
87#include <asm/cop2.h>
88#include <asm/debug.h>
89#include <asm/fpu.h>
90#include <asm/fpu_emulator.h>
91#include <asm/inst.h>
92#include <asm/unaligned-emul.h>
93#include <asm/mmu_context.h>
94#include <asm/traps.h>
95#include <linux/uaccess.h>
96
97#include "access-helper.h"
98
99enum {
100 UNALIGNED_ACTION_QUIET,
101 UNALIGNED_ACTION_SIGNAL,
102 UNALIGNED_ACTION_SHOW,
103};
104#ifdef CONFIG_DEBUG_FS
105static u32 unaligned_instructions;
106static u32 unaligned_action;
107#else
108#define unaligned_action UNALIGNED_ACTION_QUIET
109#endif
110extern void show_registers(struct pt_regs *regs);
111
112static void emulate_load_store_insn(struct pt_regs *regs,
113 void __user *addr, unsigned int *pc)
114{
115 unsigned long origpc, orig31, value;
116 union mips_instruction insn;
117 unsigned int res;
118 bool user = user_mode(regs);
119
120 origpc = (unsigned long)pc;
121 orig31 = regs->regs[31];
122
123 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
124
125 /*
126 * This load never faults.
127 */
128 __get_inst32(&insn.word, pc, user);
129
130 switch (insn.i_format.opcode) {
131 /*
132 * These are instructions that a compiler doesn't generate. We
133 * can assume therefore that the code is MIPS-aware and
134 * really buggy. Emulating these instructions would break the
135 * semantics anyway.
136 */
137 case ll_op:
138 case lld_op:
139 case sc_op:
140 case scd_op:
141
142 /*
143 * For these instructions the only way to create an address
144 * error is an attempted access to kernel/supervisor address
145 * space.
146 */
147 case ldl_op:
148 case ldr_op:
149 case lwl_op:
150 case lwr_op:
151 case sdl_op:
152 case sdr_op:
153 case swl_op:
154 case swr_op:
155 case lb_op:
156 case lbu_op:
157 case sb_op:
158 goto sigbus;
159
160 /*
161 * The remaining opcodes are the ones that are really of
162 * interest.
163 */
164#ifdef CONFIG_MACH_INGENIC
165 case spec2_op:
166 if (insn.mxu_lx_format.func != mxu_lx_op)
167 goto sigbus; /* other MXU instructions we don't care */
168
169 switch (insn.mxu_lx_format.op) {
170 case mxu_lxw_op:
171 if (user && !access_ok(addr, 4))
172 goto sigbus;
173 LoadW(addr, value, res);
174 if (res)
175 goto fault;
176 compute_return_epc(regs);
177 regs->regs[insn.mxu_lx_format.rd] = value;
178 break;
179 case mxu_lxh_op:
180 if (user && !access_ok(addr, 2))
181 goto sigbus;
182 LoadHW(addr, value, res);
183 if (res)
184 goto fault;
185 compute_return_epc(regs);
186 regs->regs[insn.dsp_format.rd] = value;
187 break;
188 case mxu_lxhu_op:
189 if (user && !access_ok(addr, 2))
190 goto sigbus;
191 LoadHWU(addr, value, res);
192 if (res)
193 goto fault;
194 compute_return_epc(regs);
195 regs->regs[insn.dsp_format.rd] = value;
196 break;
197 case mxu_lxb_op:
198 case mxu_lxbu_op:
199 goto sigbus;
200 default:
201 goto sigill;
202 }
203 break;
204#endif
205 case spec3_op:
206 if (insn.dsp_format.func == lx_op) {
207 switch (insn.dsp_format.op) {
208 case lwx_op:
209 if (user && !access_ok(addr, 4))
210 goto sigbus;
211 LoadW(addr, value, res);
212 if (res)
213 goto fault;
214 compute_return_epc(regs);
215 regs->regs[insn.dsp_format.rd] = value;
216 break;
217 case lhx_op:
218 if (user && !access_ok(addr, 2))
219 goto sigbus;
220 LoadHW(addr, value, res);
221 if (res)
222 goto fault;
223 compute_return_epc(regs);
224 regs->regs[insn.dsp_format.rd] = value;
225 break;
226 default:
227 goto sigill;
228 }
229 }
230#ifdef CONFIG_EVA
231 else {
232 /*
233 * we can land here only from kernel accessing user
234 * memory, so we need to "switch" the address limit to
235 * user space, so that address check can work properly.
236 */
237 switch (insn.spec3_format.func) {
238 case lhe_op:
239 if (!access_ok(addr, 2))
240 goto sigbus;
241 LoadHWE(addr, value, res);
242 if (res)
243 goto fault;
244 compute_return_epc(regs);
245 regs->regs[insn.spec3_format.rt] = value;
246 break;
247 case lwe_op:
248 if (!access_ok(addr, 4))
249 goto sigbus;
250 LoadWE(addr, value, res);
251 if (res)
252 goto fault;
253 compute_return_epc(regs);
254 regs->regs[insn.spec3_format.rt] = value;
255 break;
256 case lhue_op:
257 if (!access_ok(addr, 2))
258 goto sigbus;
259 LoadHWUE(addr, value, res);
260 if (res)
261 goto fault;
262 compute_return_epc(regs);
263 regs->regs[insn.spec3_format.rt] = value;
264 break;
265 case she_op:
266 if (!access_ok(addr, 2))
267 goto sigbus;
268 compute_return_epc(regs);
269 value = regs->regs[insn.spec3_format.rt];
270 StoreHWE(addr, value, res);
271 if (res)
272 goto fault;
273 break;
274 case swe_op:
275 if (!access_ok(addr, 4))
276 goto sigbus;
277 compute_return_epc(regs);
278 value = regs->regs[insn.spec3_format.rt];
279 StoreWE(addr, value, res);
280 if (res)
281 goto fault;
282 break;
283 default:
284 goto sigill;
285 }
286 }
287#endif
288 break;
289 case lh_op:
290 if (user && !access_ok(addr, 2))
291 goto sigbus;
292
293 if (IS_ENABLED(CONFIG_EVA) && user)
294 LoadHWE(addr, value, res);
295 else
296 LoadHW(addr, value, res);
297
298 if (res)
299 goto fault;
300 compute_return_epc(regs);
301 regs->regs[insn.i_format.rt] = value;
302 break;
303
304 case lw_op:
305 if (user && !access_ok(addr, 4))
306 goto sigbus;
307
308 if (IS_ENABLED(CONFIG_EVA) && user)
309 LoadWE(addr, value, res);
310 else
311 LoadW(addr, value, res);
312
313 if (res)
314 goto fault;
315 compute_return_epc(regs);
316 regs->regs[insn.i_format.rt] = value;
317 break;
318
319 case lhu_op:
320 if (user && !access_ok(addr, 2))
321 goto sigbus;
322
323 if (IS_ENABLED(CONFIG_EVA) && user)
324 LoadHWUE(addr, value, res);
325 else
326 LoadHWU(addr, value, res);
327
328 if (res)
329 goto fault;
330 compute_return_epc(regs);
331 regs->regs[insn.i_format.rt] = value;
332 break;
333
334 case lwu_op:
335#ifdef CONFIG_64BIT
336 /*
337 * A 32-bit kernel might be running on a 64-bit processor. But
338 * if we're on a 32-bit processor and an i-cache incoherency
339 * or race makes us see a 64-bit instruction here the sdl/sdr
340 * would blow up, so for now we don't handle unaligned 64-bit
341 * instructions on 32-bit kernels.
342 */
343 if (user && !access_ok(addr, 4))
344 goto sigbus;
345
346 LoadWU(addr, value, res);
347 if (res)
348 goto fault;
349 compute_return_epc(regs);
350 regs->regs[insn.i_format.rt] = value;
351 break;
352#endif /* CONFIG_64BIT */
353
354 /* Cannot handle 64-bit instructions in 32-bit kernel */
355 goto sigill;
356
357 case ld_op:
358#ifdef CONFIG_64BIT
359 /*
360 * A 32-bit kernel might be running on a 64-bit processor. But
361 * if we're on a 32-bit processor and an i-cache incoherency
362 * or race makes us see a 64-bit instruction here the sdl/sdr
363 * would blow up, so for now we don't handle unaligned 64-bit
364 * instructions on 32-bit kernels.
365 */
366 if (user && !access_ok(addr, 8))
367 goto sigbus;
368
369 LoadDW(addr, value, res);
370 if (res)
371 goto fault;
372 compute_return_epc(regs);
373 regs->regs[insn.i_format.rt] = value;
374 break;
375#endif /* CONFIG_64BIT */
376
377 /* Cannot handle 64-bit instructions in 32-bit kernel */
378 goto sigill;
379
380 case sh_op:
381 if (user && !access_ok(addr, 2))
382 goto sigbus;
383
384 compute_return_epc(regs);
385 value = regs->regs[insn.i_format.rt];
386
387 if (IS_ENABLED(CONFIG_EVA) && user)
388 StoreHWE(addr, value, res);
389 else
390 StoreHW(addr, value, res);
391
392 if (res)
393 goto fault;
394 break;
395
396 case sw_op:
397 if (user && !access_ok(addr, 4))
398 goto sigbus;
399
400 compute_return_epc(regs);
401 value = regs->regs[insn.i_format.rt];
402
403 if (IS_ENABLED(CONFIG_EVA) && user)
404 StoreWE(addr, value, res);
405 else
406 StoreW(addr, value, res);
407
408 if (res)
409 goto fault;
410 break;
411
412 case sd_op:
413#ifdef CONFIG_64BIT
414 /*
415 * A 32-bit kernel might be running on a 64-bit processor. But
416 * if we're on a 32-bit processor and an i-cache incoherency
417 * or race makes us see a 64-bit instruction here the sdl/sdr
418 * would blow up, so for now we don't handle unaligned 64-bit
419 * instructions on 32-bit kernels.
420 */
421 if (user && !access_ok(addr, 8))
422 goto sigbus;
423
424 compute_return_epc(regs);
425 value = regs->regs[insn.i_format.rt];
426 StoreDW(addr, value, res);
427 if (res)
428 goto fault;
429 break;
430#endif /* CONFIG_64BIT */
431
432 /* Cannot handle 64-bit instructions in 32-bit kernel */
433 goto sigill;
434
435#ifdef CONFIG_MIPS_FP_SUPPORT
436
437 case lwc1_op:
438 case ldc1_op:
439 case swc1_op:
440 case sdc1_op:
441 case cop1x_op: {
442 void __user *fault_addr = NULL;
443
444 die_if_kernel("Unaligned FP access in kernel code", regs);
445 BUG_ON(!used_math());
446
447 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
448 &fault_addr);
449 own_fpu(1); /* Restore FPU state. */
450
451 /* Signal if something went wrong. */
452 process_fpemu_return(res, fault_addr, 0);
453
454 if (res == 0)
455 break;
456 return;
457 }
458#endif /* CONFIG_MIPS_FP_SUPPORT */
459
460#ifdef CONFIG_CPU_HAS_MSA
461
462 case msa_op: {
463 unsigned int wd, preempted;
464 enum msa_2b_fmt df;
465 union fpureg *fpr;
466
467 if (!cpu_has_msa)
468 goto sigill;
469
470 /*
471 * If we've reached this point then userland should have taken
472 * the MSA disabled exception & initialised vector context at
473 * some point in the past.
474 */
475 BUG_ON(!thread_msa_context_live());
476
477 df = insn.msa_mi10_format.df;
478 wd = insn.msa_mi10_format.wd;
479 fpr = ¤t->thread.fpu.fpr[wd];
480
481 switch (insn.msa_mi10_format.func) {
482 case msa_ld_op:
483 if (!access_ok(addr, sizeof(*fpr)))
484 goto sigbus;
485
486 do {
487 /*
488 * If we have live MSA context keep track of
489 * whether we get preempted in order to avoid
490 * the register context we load being clobbered
491 * by the live context as it's saved during
492 * preemption. If we don't have live context
493 * then it can't be saved to clobber the value
494 * we load.
495 */
496 preempted = test_thread_flag(TIF_USEDMSA);
497
498 res = __copy_from_user_inatomic(fpr, addr,
499 sizeof(*fpr));
500 if (res)
501 goto fault;
502
503 /*
504 * Update the hardware register if it is in use
505 * by the task in this quantum, in order to
506 * avoid having to save & restore the whole
507 * vector context.
508 */
509 preempt_disable();
510 if (test_thread_flag(TIF_USEDMSA)) {
511 write_msa_wr(wd, fpr, df);
512 preempted = 0;
513 }
514 preempt_enable();
515 } while (preempted);
516 break;
517
518 case msa_st_op:
519 if (!access_ok(addr, sizeof(*fpr)))
520 goto sigbus;
521
522 /*
523 * Update from the hardware register if it is in use by
524 * the task in this quantum, in order to avoid having to
525 * save & restore the whole vector context.
526 */
527 preempt_disable();
528 if (test_thread_flag(TIF_USEDMSA))
529 read_msa_wr(wd, fpr, df);
530 preempt_enable();
531
532 res = __copy_to_user_inatomic(addr, fpr, sizeof(*fpr));
533 if (res)
534 goto fault;
535 break;
536
537 default:
538 goto sigbus;
539 }
540
541 compute_return_epc(regs);
542 break;
543 }
544#endif /* CONFIG_CPU_HAS_MSA */
545
546#ifndef CONFIG_CPU_MIPSR6
547 /*
548 * COP2 is available to implementor for application specific use.
549 * It's up to applications to register a notifier chain and do
550 * whatever they have to do, including possible sending of signals.
551 *
552 * This instruction has been reallocated in Release 6
553 */
554 case lwc2_op:
555 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
556 break;
557
558 case ldc2_op:
559 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
560 break;
561
562 case swc2_op:
563 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
564 break;
565
566 case sdc2_op:
567 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
568 break;
569#endif
570 default:
571 /*
572 * Pheeee... We encountered an yet unknown instruction or
573 * cache coherence problem. Die sucker, die ...
574 */
575 goto sigill;
576 }
577
578#ifdef CONFIG_DEBUG_FS
579 unaligned_instructions++;
580#endif
581
582 return;
583
584fault:
585 /* roll back jump/branch */
586 regs->cp0_epc = origpc;
587 regs->regs[31] = orig31;
588 /* Did we have an exception handler installed? */
589 if (fixup_exception(regs))
590 return;
591
592 die_if_kernel("Unhandled kernel unaligned access", regs);
593 force_sig(SIGSEGV);
594
595 return;
596
597sigbus:
598 die_if_kernel("Unhandled kernel unaligned access", regs);
599 force_sig(SIGBUS);
600
601 return;
602
603sigill:
604 die_if_kernel
605 ("Unhandled kernel unaligned access or invalid instruction", regs);
606 force_sig(SIGILL);
607}
608
609/* Recode table from 16-bit register notation to 32-bit GPR. */
610const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
611
612/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
613static const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
614
615static void emulate_load_store_microMIPS(struct pt_regs *regs,
616 void __user *addr)
617{
618 unsigned long value;
619 unsigned int res;
620 int i;
621 unsigned int reg = 0, rvar;
622 unsigned long orig31;
623 u16 __user *pc16;
624 u16 halfword;
625 unsigned int word;
626 unsigned long origpc, contpc;
627 union mips_instruction insn;
628 struct mm_decoded_insn mminsn;
629 bool user = user_mode(regs);
630
631 origpc = regs->cp0_epc;
632 orig31 = regs->regs[31];
633
634 mminsn.micro_mips_mode = 1;
635
636 /*
637 * This load never faults.
638 */
639 pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
640 __get_user(halfword, pc16);
641 pc16++;
642 contpc = regs->cp0_epc + 2;
643 word = ((unsigned int)halfword << 16);
644 mminsn.pc_inc = 2;
645
646 if (!mm_insn_16bit(halfword)) {
647 __get_user(halfword, pc16);
648 pc16++;
649 contpc = regs->cp0_epc + 4;
650 mminsn.pc_inc = 4;
651 word |= halfword;
652 }
653 mminsn.insn = word;
654
655 if (get_user(halfword, pc16))
656 goto fault;
657 mminsn.next_pc_inc = 2;
658 word = ((unsigned int)halfword << 16);
659
660 if (!mm_insn_16bit(halfword)) {
661 pc16++;
662 if (get_user(halfword, pc16))
663 goto fault;
664 mminsn.next_pc_inc = 4;
665 word |= halfword;
666 }
667 mminsn.next_insn = word;
668
669 insn = (union mips_instruction)(mminsn.insn);
670 if (mm_isBranchInstr(regs, mminsn, &contpc))
671 insn = (union mips_instruction)(mminsn.next_insn);
672
673 /* Parse instruction to find what to do */
674
675 switch (insn.mm_i_format.opcode) {
676
677 case mm_pool32a_op:
678 switch (insn.mm_x_format.func) {
679 case mm_lwxs_op:
680 reg = insn.mm_x_format.rd;
681 goto loadW;
682 }
683
684 goto sigbus;
685
686 case mm_pool32b_op:
687 switch (insn.mm_m_format.func) {
688 case mm_lwp_func:
689 reg = insn.mm_m_format.rd;
690 if (reg == 31)
691 goto sigbus;
692
693 if (user && !access_ok(addr, 8))
694 goto sigbus;
695
696 LoadW(addr, value, res);
697 if (res)
698 goto fault;
699 regs->regs[reg] = value;
700 addr += 4;
701 LoadW(addr, value, res);
702 if (res)
703 goto fault;
704 regs->regs[reg + 1] = value;
705 goto success;
706
707 case mm_swp_func:
708 reg = insn.mm_m_format.rd;
709 if (reg == 31)
710 goto sigbus;
711
712 if (user && !access_ok(addr, 8))
713 goto sigbus;
714
715 value = regs->regs[reg];
716 StoreW(addr, value, res);
717 if (res)
718 goto fault;
719 addr += 4;
720 value = regs->regs[reg + 1];
721 StoreW(addr, value, res);
722 if (res)
723 goto fault;
724 goto success;
725
726 case mm_ldp_func:
727#ifdef CONFIG_64BIT
728 reg = insn.mm_m_format.rd;
729 if (reg == 31)
730 goto sigbus;
731
732 if (user && !access_ok(addr, 16))
733 goto sigbus;
734
735 LoadDW(addr, value, res);
736 if (res)
737 goto fault;
738 regs->regs[reg] = value;
739 addr += 8;
740 LoadDW(addr, value, res);
741 if (res)
742 goto fault;
743 regs->regs[reg + 1] = value;
744 goto success;
745#endif /* CONFIG_64BIT */
746
747 goto sigill;
748
749 case mm_sdp_func:
750#ifdef CONFIG_64BIT
751 reg = insn.mm_m_format.rd;
752 if (reg == 31)
753 goto sigbus;
754
755 if (user && !access_ok(addr, 16))
756 goto sigbus;
757
758 value = regs->regs[reg];
759 StoreDW(addr, value, res);
760 if (res)
761 goto fault;
762 addr += 8;
763 value = regs->regs[reg + 1];
764 StoreDW(addr, value, res);
765 if (res)
766 goto fault;
767 goto success;
768#endif /* CONFIG_64BIT */
769
770 goto sigill;
771
772 case mm_lwm32_func:
773 reg = insn.mm_m_format.rd;
774 rvar = reg & 0xf;
775 if ((rvar > 9) || !reg)
776 goto sigill;
777 if (reg & 0x10) {
778 if (user && !access_ok(addr, 4 * (rvar + 1)))
779 goto sigbus;
780 } else {
781 if (user && !access_ok(addr, 4 * rvar))
782 goto sigbus;
783 }
784 if (rvar == 9)
785 rvar = 8;
786 for (i = 16; rvar; rvar--, i++) {
787 LoadW(addr, value, res);
788 if (res)
789 goto fault;
790 addr += 4;
791 regs->regs[i] = value;
792 }
793 if ((reg & 0xf) == 9) {
794 LoadW(addr, value, res);
795 if (res)
796 goto fault;
797 addr += 4;
798 regs->regs[30] = value;
799 }
800 if (reg & 0x10) {
801 LoadW(addr, value, res);
802 if (res)
803 goto fault;
804 regs->regs[31] = value;
805 }
806 goto success;
807
808 case mm_swm32_func:
809 reg = insn.mm_m_format.rd;
810 rvar = reg & 0xf;
811 if ((rvar > 9) || !reg)
812 goto sigill;
813 if (reg & 0x10) {
814 if (user && !access_ok(addr, 4 * (rvar + 1)))
815 goto sigbus;
816 } else {
817 if (user && !access_ok(addr, 4 * rvar))
818 goto sigbus;
819 }
820 if (rvar == 9)
821 rvar = 8;
822 for (i = 16; rvar; rvar--, i++) {
823 value = regs->regs[i];
824 StoreW(addr, value, res);
825 if (res)
826 goto fault;
827 addr += 4;
828 }
829 if ((reg & 0xf) == 9) {
830 value = regs->regs[30];
831 StoreW(addr, value, res);
832 if (res)
833 goto fault;
834 addr += 4;
835 }
836 if (reg & 0x10) {
837 value = regs->regs[31];
838 StoreW(addr, value, res);
839 if (res)
840 goto fault;
841 }
842 goto success;
843
844 case mm_ldm_func:
845#ifdef CONFIG_64BIT
846 reg = insn.mm_m_format.rd;
847 rvar = reg & 0xf;
848 if ((rvar > 9) || !reg)
849 goto sigill;
850 if (reg & 0x10) {
851 if (user && !access_ok(addr, 8 * (rvar + 1)))
852 goto sigbus;
853 } else {
854 if (user && !access_ok(addr, 8 * rvar))
855 goto sigbus;
856 }
857 if (rvar == 9)
858 rvar = 8;
859
860 for (i = 16; rvar; rvar--, i++) {
861 LoadDW(addr, value, res);
862 if (res)
863 goto fault;
864 addr += 4;
865 regs->regs[i] = value;
866 }
867 if ((reg & 0xf) == 9) {
868 LoadDW(addr, value, res);
869 if (res)
870 goto fault;
871 addr += 8;
872 regs->regs[30] = value;
873 }
874 if (reg & 0x10) {
875 LoadDW(addr, value, res);
876 if (res)
877 goto fault;
878 regs->regs[31] = value;
879 }
880 goto success;
881#endif /* CONFIG_64BIT */
882
883 goto sigill;
884
885 case mm_sdm_func:
886#ifdef CONFIG_64BIT
887 reg = insn.mm_m_format.rd;
888 rvar = reg & 0xf;
889 if ((rvar > 9) || !reg)
890 goto sigill;
891 if (reg & 0x10) {
892 if (user && !access_ok(addr, 8 * (rvar + 1)))
893 goto sigbus;
894 } else {
895 if (user && !access_ok(addr, 8 * rvar))
896 goto sigbus;
897 }
898 if (rvar == 9)
899 rvar = 8;
900
901 for (i = 16; rvar; rvar--, i++) {
902 value = regs->regs[i];
903 StoreDW(addr, value, res);
904 if (res)
905 goto fault;
906 addr += 8;
907 }
908 if ((reg & 0xf) == 9) {
909 value = regs->regs[30];
910 StoreDW(addr, value, res);
911 if (res)
912 goto fault;
913 addr += 8;
914 }
915 if (reg & 0x10) {
916 value = regs->regs[31];
917 StoreDW(addr, value, res);
918 if (res)
919 goto fault;
920 }
921 goto success;
922#endif /* CONFIG_64BIT */
923
924 goto sigill;
925
926 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
927 }
928
929 goto sigbus;
930
931 case mm_pool32c_op:
932 switch (insn.mm_m_format.func) {
933 case mm_lwu_func:
934 reg = insn.mm_m_format.rd;
935 goto loadWU;
936 }
937
938 /* LL,SC,LLD,SCD are not serviced */
939 goto sigbus;
940
941#ifdef CONFIG_MIPS_FP_SUPPORT
942 case mm_pool32f_op:
943 switch (insn.mm_x_format.func) {
944 case mm_lwxc1_func:
945 case mm_swxc1_func:
946 case mm_ldxc1_func:
947 case mm_sdxc1_func:
948 goto fpu_emul;
949 }
950
951 goto sigbus;
952
953 case mm_ldc132_op:
954 case mm_sdc132_op:
955 case mm_lwc132_op:
956 case mm_swc132_op: {
957 void __user *fault_addr = NULL;
958
959fpu_emul:
960 /* roll back jump/branch */
961 regs->cp0_epc = origpc;
962 regs->regs[31] = orig31;
963
964 die_if_kernel("Unaligned FP access in kernel code", regs);
965 BUG_ON(!used_math());
966 BUG_ON(!is_fpu_owner());
967
968 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
969 &fault_addr);
970 own_fpu(1); /* restore FPU state */
971
972 /* If something went wrong, signal */
973 process_fpemu_return(res, fault_addr, 0);
974
975 if (res == 0)
976 goto success;
977 return;
978 }
979#endif /* CONFIG_MIPS_FP_SUPPORT */
980
981 case mm_lh32_op:
982 reg = insn.mm_i_format.rt;
983 goto loadHW;
984
985 case mm_lhu32_op:
986 reg = insn.mm_i_format.rt;
987 goto loadHWU;
988
989 case mm_lw32_op:
990 reg = insn.mm_i_format.rt;
991 goto loadW;
992
993 case mm_sh32_op:
994 reg = insn.mm_i_format.rt;
995 goto storeHW;
996
997 case mm_sw32_op:
998 reg = insn.mm_i_format.rt;
999 goto storeW;
1000
1001 case mm_ld32_op:
1002 reg = insn.mm_i_format.rt;
1003 goto loadDW;
1004
1005 case mm_sd32_op:
1006 reg = insn.mm_i_format.rt;
1007 goto storeDW;
1008
1009 case mm_pool16c_op:
1010 switch (insn.mm16_m_format.func) {
1011 case mm_lwm16_op:
1012 reg = insn.mm16_m_format.rlist;
1013 rvar = reg + 1;
1014 if (user && !access_ok(addr, 4 * rvar))
1015 goto sigbus;
1016
1017 for (i = 16; rvar; rvar--, i++) {
1018 LoadW(addr, value, res);
1019 if (res)
1020 goto fault;
1021 addr += 4;
1022 regs->regs[i] = value;
1023 }
1024 LoadW(addr, value, res);
1025 if (res)
1026 goto fault;
1027 regs->regs[31] = value;
1028
1029 goto success;
1030
1031 case mm_swm16_op:
1032 reg = insn.mm16_m_format.rlist;
1033 rvar = reg + 1;
1034 if (user && !access_ok(addr, 4 * rvar))
1035 goto sigbus;
1036
1037 for (i = 16; rvar; rvar--, i++) {
1038 value = regs->regs[i];
1039 StoreW(addr, value, res);
1040 if (res)
1041 goto fault;
1042 addr += 4;
1043 }
1044 value = regs->regs[31];
1045 StoreW(addr, value, res);
1046 if (res)
1047 goto fault;
1048
1049 goto success;
1050
1051 }
1052
1053 goto sigbus;
1054
1055 case mm_lhu16_op:
1056 reg = reg16to32[insn.mm16_rb_format.rt];
1057 goto loadHWU;
1058
1059 case mm_lw16_op:
1060 reg = reg16to32[insn.mm16_rb_format.rt];
1061 goto loadW;
1062
1063 case mm_sh16_op:
1064 reg = reg16to32st[insn.mm16_rb_format.rt];
1065 goto storeHW;
1066
1067 case mm_sw16_op:
1068 reg = reg16to32st[insn.mm16_rb_format.rt];
1069 goto storeW;
1070
1071 case mm_lwsp16_op:
1072 reg = insn.mm16_r5_format.rt;
1073 goto loadW;
1074
1075 case mm_swsp16_op:
1076 reg = insn.mm16_r5_format.rt;
1077 goto storeW;
1078
1079 case mm_lwgp16_op:
1080 reg = reg16to32[insn.mm16_r3_format.rt];
1081 goto loadW;
1082
1083 default:
1084 goto sigill;
1085 }
1086
1087loadHW:
1088 if (user && !access_ok(addr, 2))
1089 goto sigbus;
1090
1091 LoadHW(addr, value, res);
1092 if (res)
1093 goto fault;
1094 regs->regs[reg] = value;
1095 goto success;
1096
1097loadHWU:
1098 if (user && !access_ok(addr, 2))
1099 goto sigbus;
1100
1101 LoadHWU(addr, value, res);
1102 if (res)
1103 goto fault;
1104 regs->regs[reg] = value;
1105 goto success;
1106
1107loadW:
1108 if (user && !access_ok(addr, 4))
1109 goto sigbus;
1110
1111 LoadW(addr, value, res);
1112 if (res)
1113 goto fault;
1114 regs->regs[reg] = value;
1115 goto success;
1116
1117loadWU:
1118#ifdef CONFIG_64BIT
1119 /*
1120 * A 32-bit kernel might be running on a 64-bit processor. But
1121 * if we're on a 32-bit processor and an i-cache incoherency
1122 * or race makes us see a 64-bit instruction here the sdl/sdr
1123 * would blow up, so for now we don't handle unaligned 64-bit
1124 * instructions on 32-bit kernels.
1125 */
1126 if (user && !access_ok(addr, 4))
1127 goto sigbus;
1128
1129 LoadWU(addr, value, res);
1130 if (res)
1131 goto fault;
1132 regs->regs[reg] = value;
1133 goto success;
1134#endif /* CONFIG_64BIT */
1135
1136 /* Cannot handle 64-bit instructions in 32-bit kernel */
1137 goto sigill;
1138
1139loadDW:
1140#ifdef CONFIG_64BIT
1141 /*
1142 * A 32-bit kernel might be running on a 64-bit processor. But
1143 * if we're on a 32-bit processor and an i-cache incoherency
1144 * or race makes us see a 64-bit instruction here the sdl/sdr
1145 * would blow up, so for now we don't handle unaligned 64-bit
1146 * instructions on 32-bit kernels.
1147 */
1148 if (user && !access_ok(addr, 8))
1149 goto sigbus;
1150
1151 LoadDW(addr, value, res);
1152 if (res)
1153 goto fault;
1154 regs->regs[reg] = value;
1155 goto success;
1156#endif /* CONFIG_64BIT */
1157
1158 /* Cannot handle 64-bit instructions in 32-bit kernel */
1159 goto sigill;
1160
1161storeHW:
1162 if (user && !access_ok(addr, 2))
1163 goto sigbus;
1164
1165 value = regs->regs[reg];
1166 StoreHW(addr, value, res);
1167 if (res)
1168 goto fault;
1169 goto success;
1170
1171storeW:
1172 if (user && !access_ok(addr, 4))
1173 goto sigbus;
1174
1175 value = regs->regs[reg];
1176 StoreW(addr, value, res);
1177 if (res)
1178 goto fault;
1179 goto success;
1180
1181storeDW:
1182#ifdef CONFIG_64BIT
1183 /*
1184 * A 32-bit kernel might be running on a 64-bit processor. But
1185 * if we're on a 32-bit processor and an i-cache incoherency
1186 * or race makes us see a 64-bit instruction here the sdl/sdr
1187 * would blow up, so for now we don't handle unaligned 64-bit
1188 * instructions on 32-bit kernels.
1189 */
1190 if (user && !access_ok(addr, 8))
1191 goto sigbus;
1192
1193 value = regs->regs[reg];
1194 StoreDW(addr, value, res);
1195 if (res)
1196 goto fault;
1197 goto success;
1198#endif /* CONFIG_64BIT */
1199
1200 /* Cannot handle 64-bit instructions in 32-bit kernel */
1201 goto sigill;
1202
1203success:
1204 regs->cp0_epc = contpc; /* advance or branch */
1205
1206#ifdef CONFIG_DEBUG_FS
1207 unaligned_instructions++;
1208#endif
1209 return;
1210
1211fault:
1212 /* roll back jump/branch */
1213 regs->cp0_epc = origpc;
1214 regs->regs[31] = orig31;
1215 /* Did we have an exception handler installed? */
1216 if (fixup_exception(regs))
1217 return;
1218
1219 die_if_kernel("Unhandled kernel unaligned access", regs);
1220 force_sig(SIGSEGV);
1221
1222 return;
1223
1224sigbus:
1225 die_if_kernel("Unhandled kernel unaligned access", regs);
1226 force_sig(SIGBUS);
1227
1228 return;
1229
1230sigill:
1231 die_if_kernel
1232 ("Unhandled kernel unaligned access or invalid instruction", regs);
1233 force_sig(SIGILL);
1234}
1235
1236static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1237{
1238 unsigned long value;
1239 unsigned int res;
1240 int reg;
1241 unsigned long orig31;
1242 u16 __user *pc16;
1243 unsigned long origpc;
1244 union mips16e_instruction mips16inst, oldinst;
1245 unsigned int opcode;
1246 int extended = 0;
1247 bool user = user_mode(regs);
1248
1249 origpc = regs->cp0_epc;
1250 orig31 = regs->regs[31];
1251 pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1252 /*
1253 * This load never faults.
1254 */
1255 __get_user(mips16inst.full, pc16);
1256 oldinst = mips16inst;
1257
1258 /* skip EXTEND instruction */
1259 if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1260 extended = 1;
1261 pc16++;
1262 __get_user(mips16inst.full, pc16);
1263 } else if (delay_slot(regs)) {
1264 /* skip jump instructions */
1265 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1266 if (mips16inst.ri.opcode == MIPS16e_jal_op)
1267 pc16++;
1268 pc16++;
1269 if (get_user(mips16inst.full, pc16))
1270 goto sigbus;
1271 }
1272
1273 opcode = mips16inst.ri.opcode;
1274 switch (opcode) {
1275 case MIPS16e_i64_op: /* I64 or RI64 instruction */
1276 switch (mips16inst.i64.func) { /* I64/RI64 func field check */
1277 case MIPS16e_ldpc_func:
1278 case MIPS16e_ldsp_func:
1279 reg = reg16to32[mips16inst.ri64.ry];
1280 goto loadDW;
1281
1282 case MIPS16e_sdsp_func:
1283 reg = reg16to32[mips16inst.ri64.ry];
1284 goto writeDW;
1285
1286 case MIPS16e_sdrasp_func:
1287 reg = 29; /* GPRSP */
1288 goto writeDW;
1289 }
1290
1291 goto sigbus;
1292
1293 case MIPS16e_swsp_op:
1294 reg = reg16to32[mips16inst.ri.rx];
1295 if (extended && cpu_has_mips16e2)
1296 switch (mips16inst.ri.imm >> 5) {
1297 case 0: /* SWSP */
1298 case 1: /* SWGP */
1299 break;
1300 case 2: /* SHGP */
1301 opcode = MIPS16e_sh_op;
1302 break;
1303 default:
1304 goto sigbus;
1305 }
1306 break;
1307
1308 case MIPS16e_lwpc_op:
1309 reg = reg16to32[mips16inst.ri.rx];
1310 break;
1311
1312 case MIPS16e_lwsp_op:
1313 reg = reg16to32[mips16inst.ri.rx];
1314 if (extended && cpu_has_mips16e2)
1315 switch (mips16inst.ri.imm >> 5) {
1316 case 0: /* LWSP */
1317 case 1: /* LWGP */
1318 break;
1319 case 2: /* LHGP */
1320 opcode = MIPS16e_lh_op;
1321 break;
1322 case 4: /* LHUGP */
1323 opcode = MIPS16e_lhu_op;
1324 break;
1325 default:
1326 goto sigbus;
1327 }
1328 break;
1329
1330 case MIPS16e_i8_op:
1331 if (mips16inst.i8.func != MIPS16e_swrasp_func)
1332 goto sigbus;
1333 reg = 29; /* GPRSP */
1334 break;
1335
1336 default:
1337 reg = reg16to32[mips16inst.rri.ry];
1338 break;
1339 }
1340
1341 switch (opcode) {
1342
1343 case MIPS16e_lb_op:
1344 case MIPS16e_lbu_op:
1345 case MIPS16e_sb_op:
1346 goto sigbus;
1347
1348 case MIPS16e_lh_op:
1349 if (user && !access_ok(addr, 2))
1350 goto sigbus;
1351
1352 LoadHW(addr, value, res);
1353 if (res)
1354 goto fault;
1355 MIPS16e_compute_return_epc(regs, &oldinst);
1356 regs->regs[reg] = value;
1357 break;
1358
1359 case MIPS16e_lhu_op:
1360 if (user && !access_ok(addr, 2))
1361 goto sigbus;
1362
1363 LoadHWU(addr, value, res);
1364 if (res)
1365 goto fault;
1366 MIPS16e_compute_return_epc(regs, &oldinst);
1367 regs->regs[reg] = value;
1368 break;
1369
1370 case MIPS16e_lw_op:
1371 case MIPS16e_lwpc_op:
1372 case MIPS16e_lwsp_op:
1373 if (user && !access_ok(addr, 4))
1374 goto sigbus;
1375
1376 LoadW(addr, value, res);
1377 if (res)
1378 goto fault;
1379 MIPS16e_compute_return_epc(regs, &oldinst);
1380 regs->regs[reg] = value;
1381 break;
1382
1383 case MIPS16e_lwu_op:
1384#ifdef CONFIG_64BIT
1385 /*
1386 * A 32-bit kernel might be running on a 64-bit processor. But
1387 * if we're on a 32-bit processor and an i-cache incoherency
1388 * or race makes us see a 64-bit instruction here the sdl/sdr
1389 * would blow up, so for now we don't handle unaligned 64-bit
1390 * instructions on 32-bit kernels.
1391 */
1392 if (user && !access_ok(addr, 4))
1393 goto sigbus;
1394
1395 LoadWU(addr, value, res);
1396 if (res)
1397 goto fault;
1398 MIPS16e_compute_return_epc(regs, &oldinst);
1399 regs->regs[reg] = value;
1400 break;
1401#endif /* CONFIG_64BIT */
1402
1403 /* Cannot handle 64-bit instructions in 32-bit kernel */
1404 goto sigill;
1405
1406 case MIPS16e_ld_op:
1407loadDW:
1408#ifdef CONFIG_64BIT
1409 /*
1410 * A 32-bit kernel might be running on a 64-bit processor. But
1411 * if we're on a 32-bit processor and an i-cache incoherency
1412 * or race makes us see a 64-bit instruction here the sdl/sdr
1413 * would blow up, so for now we don't handle unaligned 64-bit
1414 * instructions on 32-bit kernels.
1415 */
1416 if (user && !access_ok(addr, 8))
1417 goto sigbus;
1418
1419 LoadDW(addr, value, res);
1420 if (res)
1421 goto fault;
1422 MIPS16e_compute_return_epc(regs, &oldinst);
1423 regs->regs[reg] = value;
1424 break;
1425#endif /* CONFIG_64BIT */
1426
1427 /* Cannot handle 64-bit instructions in 32-bit kernel */
1428 goto sigill;
1429
1430 case MIPS16e_sh_op:
1431 if (user && !access_ok(addr, 2))
1432 goto sigbus;
1433
1434 MIPS16e_compute_return_epc(regs, &oldinst);
1435 value = regs->regs[reg];
1436 StoreHW(addr, value, res);
1437 if (res)
1438 goto fault;
1439 break;
1440
1441 case MIPS16e_sw_op:
1442 case MIPS16e_swsp_op:
1443 case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
1444 if (user && !access_ok(addr, 4))
1445 goto sigbus;
1446
1447 MIPS16e_compute_return_epc(regs, &oldinst);
1448 value = regs->regs[reg];
1449 StoreW(addr, value, res);
1450 if (res)
1451 goto fault;
1452 break;
1453
1454 case MIPS16e_sd_op:
1455writeDW:
1456#ifdef CONFIG_64BIT
1457 /*
1458 * A 32-bit kernel might be running on a 64-bit processor. But
1459 * if we're on a 32-bit processor and an i-cache incoherency
1460 * or race makes us see a 64-bit instruction here the sdl/sdr
1461 * would blow up, so for now we don't handle unaligned 64-bit
1462 * instructions on 32-bit kernels.
1463 */
1464 if (user && !access_ok(addr, 8))
1465 goto sigbus;
1466
1467 MIPS16e_compute_return_epc(regs, &oldinst);
1468 value = regs->regs[reg];
1469 StoreDW(addr, value, res);
1470 if (res)
1471 goto fault;
1472 break;
1473#endif /* CONFIG_64BIT */
1474
1475 /* Cannot handle 64-bit instructions in 32-bit kernel */
1476 goto sigill;
1477
1478 default:
1479 /*
1480 * Pheeee... We encountered an yet unknown instruction or
1481 * cache coherence problem. Die sucker, die ...
1482 */
1483 goto sigill;
1484 }
1485
1486#ifdef CONFIG_DEBUG_FS
1487 unaligned_instructions++;
1488#endif
1489
1490 return;
1491
1492fault:
1493 /* roll back jump/branch */
1494 regs->cp0_epc = origpc;
1495 regs->regs[31] = orig31;
1496 /* Did we have an exception handler installed? */
1497 if (fixup_exception(regs))
1498 return;
1499
1500 die_if_kernel("Unhandled kernel unaligned access", regs);
1501 force_sig(SIGSEGV);
1502
1503 return;
1504
1505sigbus:
1506 die_if_kernel("Unhandled kernel unaligned access", regs);
1507 force_sig(SIGBUS);
1508
1509 return;
1510
1511sigill:
1512 die_if_kernel
1513 ("Unhandled kernel unaligned access or invalid instruction", regs);
1514 force_sig(SIGILL);
1515}
1516
1517asmlinkage void do_ade(struct pt_regs *regs)
1518{
1519 enum ctx_state prev_state;
1520 unsigned int *pc;
1521
1522 prev_state = exception_enter();
1523 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1524 1, regs, regs->cp0_badvaddr);
1525
1526#ifdef CONFIG_64BIT
1527 /*
1528 * check, if we are hitting space between CPU implemented maximum
1529 * virtual user address and 64bit maximum virtual user address
1530 * and do exception handling to get EFAULTs for get_user/put_user
1531 */
1532 if ((regs->cp0_badvaddr >= (1UL << cpu_vmbits)) &&
1533 (regs->cp0_badvaddr < XKSSEG)) {
1534 if (fixup_exception(regs)) {
1535 current->thread.cp0_baduaddr = regs->cp0_badvaddr;
1536 return;
1537 }
1538 goto sigbus;
1539 }
1540#endif
1541
1542 /*
1543 * Did we catch a fault trying to load an instruction?
1544 */
1545 if (regs->cp0_badvaddr == regs->cp0_epc)
1546 goto sigbus;
1547
1548 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1549 goto sigbus;
1550 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1551 goto sigbus;
1552
1553 /*
1554 * Do branch emulation only if we didn't forward the exception.
1555 * This is all so but ugly ...
1556 */
1557
1558 /*
1559 * Are we running in microMIPS mode?
1560 */
1561 if (get_isa16_mode(regs->cp0_epc)) {
1562 /*
1563 * Did we catch a fault trying to load an instruction in
1564 * 16-bit mode?
1565 */
1566 if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1567 goto sigbus;
1568 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1569 show_registers(regs);
1570
1571 if (cpu_has_mmips) {
1572 emulate_load_store_microMIPS(regs,
1573 (void __user *)regs->cp0_badvaddr);
1574 return;
1575 }
1576
1577 if (cpu_has_mips16) {
1578 emulate_load_store_MIPS16e(regs,
1579 (void __user *)regs->cp0_badvaddr);
1580 return;
1581 }
1582
1583 goto sigbus;
1584 }
1585
1586 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1587 show_registers(regs);
1588 pc = (unsigned int *)exception_epc(regs);
1589
1590 emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1591
1592 return;
1593
1594sigbus:
1595 die_if_kernel("Kernel unaligned instruction access", regs);
1596 force_sig(SIGBUS);
1597
1598 /*
1599 * XXX On return from the signal handler we should advance the epc
1600 */
1601 exception_exit(prev_state);
1602}
1603
1604#ifdef CONFIG_DEBUG_FS
1605static int __init debugfs_unaligned(void)
1606{
1607 debugfs_create_u32("unaligned_instructions", S_IRUGO, mips_debugfs_dir,
1608 &unaligned_instructions);
1609 debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1610 mips_debugfs_dir, &unaligned_action);
1611 return 0;
1612}
1613arch_initcall(debugfs_unaligned);
1614#endif
1/*
2 * Handle unaligned accesses by emulation.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Copyright (C) 2014 Imagination Technologies Ltd.
11 *
12 * This file contains exception handler for address error exception with the
13 * special capability to execute faulting instructions in software. The
14 * handler does not try to handle the case when the program counter points
15 * to an address not aligned to a word boundary.
16 *
17 * Putting data to unaligned addresses is a bad practice even on Intel where
18 * only the performance is affected. Much worse is that such code is non-
19 * portable. Due to several programs that die on MIPS due to alignment
20 * problems I decided to implement this handler anyway though I originally
21 * didn't intend to do this at all for user code.
22 *
23 * For now I enable fixing of address errors by default to make life easier.
24 * I however intend to disable this somewhen in the future when the alignment
25 * problems with user programs have been fixed. For programmers this is the
26 * right way to go.
27 *
28 * Fixing address errors is a per process option. The option is inherited
29 * across fork(2) and execve(2) calls. If you really want to use the
30 * option in your user programs - I discourage the use of the software
31 * emulation strongly - use the following code in your userland stuff:
32 *
33 * #include <sys/sysmips.h>
34 *
35 * ...
36 * sysmips(MIPS_FIXADE, x);
37 * ...
38 *
39 * The argument x is 0 for disabling software emulation, enabled otherwise.
40 *
41 * Below a little program to play around with this feature.
42 *
43 * #include <stdio.h>
44 * #include <sys/sysmips.h>
45 *
46 * struct foo {
47 * unsigned char bar[8];
48 * };
49 *
50 * main(int argc, char *argv[])
51 * {
52 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
53 * unsigned int *p = (unsigned int *) (x.bar + 3);
54 * int i;
55 *
56 * if (argc > 1)
57 * sysmips(MIPS_FIXADE, atoi(argv[1]));
58 *
59 * printf("*p = %08lx\n", *p);
60 *
61 * *p = 0xdeadface;
62 *
63 * for(i = 0; i <= 7; i++)
64 * printf("%02x ", x.bar[i]);
65 * printf("\n");
66 * }
67 *
68 * Coprocessor loads are not supported; I think this case is unimportant
69 * in the practice.
70 *
71 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
72 * exception for the R6000.
73 * A store crossing a page boundary might be executed only partially.
74 * Undo the partial store in this case.
75 */
76#include <linux/context_tracking.h>
77#include <linux/mm.h>
78#include <linux/signal.h>
79#include <linux/smp.h>
80#include <linux/sched.h>
81#include <linux/debugfs.h>
82#include <linux/perf_event.h>
83
84#include <asm/asm.h>
85#include <asm/branch.h>
86#include <asm/byteorder.h>
87#include <asm/cop2.h>
88#include <asm/fpu.h>
89#include <asm/fpu_emulator.h>
90#include <asm/inst.h>
91#include <asm/uaccess.h>
92#include <asm/fpu.h>
93#include <asm/fpu_emulator.h>
94
95#define STR(x) __STR(x)
96#define __STR(x) #x
97
98enum {
99 UNALIGNED_ACTION_QUIET,
100 UNALIGNED_ACTION_SIGNAL,
101 UNALIGNED_ACTION_SHOW,
102};
103#ifdef CONFIG_DEBUG_FS
104static u32 unaligned_instructions;
105static u32 unaligned_action;
106#else
107#define unaligned_action UNALIGNED_ACTION_QUIET
108#endif
109extern void show_registers(struct pt_regs *regs);
110
111#ifdef __BIG_ENDIAN
112#define LoadHW(addr, value, res) \
113 __asm__ __volatile__ (".set\tnoat\n" \
114 "1:\t"user_lb("%0", "0(%2)")"\n" \
115 "2:\t"user_lbu("$1", "1(%2)")"\n\t" \
116 "sll\t%0, 0x8\n\t" \
117 "or\t%0, $1\n\t" \
118 "li\t%1, 0\n" \
119 "3:\t.set\tat\n\t" \
120 ".insn\n\t" \
121 ".section\t.fixup,\"ax\"\n\t" \
122 "4:\tli\t%1, %3\n\t" \
123 "j\t3b\n\t" \
124 ".previous\n\t" \
125 ".section\t__ex_table,\"a\"\n\t" \
126 STR(PTR)"\t1b, 4b\n\t" \
127 STR(PTR)"\t2b, 4b\n\t" \
128 ".previous" \
129 : "=&r" (value), "=r" (res) \
130 : "r" (addr), "i" (-EFAULT));
131
132#define LoadW(addr, value, res) \
133 __asm__ __volatile__ ( \
134 "1:\t"user_lwl("%0", "(%2)")"\n" \
135 "2:\t"user_lwr("%0", "3(%2)")"\n\t" \
136 "li\t%1, 0\n" \
137 "3:\n\t" \
138 ".insn\n\t" \
139 ".section\t.fixup,\"ax\"\n\t" \
140 "4:\tli\t%1, %3\n\t" \
141 "j\t3b\n\t" \
142 ".previous\n\t" \
143 ".section\t__ex_table,\"a\"\n\t" \
144 STR(PTR)"\t1b, 4b\n\t" \
145 STR(PTR)"\t2b, 4b\n\t" \
146 ".previous" \
147 : "=&r" (value), "=r" (res) \
148 : "r" (addr), "i" (-EFAULT));
149
150#define LoadHWU(addr, value, res) \
151 __asm__ __volatile__ ( \
152 ".set\tnoat\n" \
153 "1:\t"user_lbu("%0", "0(%2)")"\n" \
154 "2:\t"user_lbu("$1", "1(%2)")"\n\t" \
155 "sll\t%0, 0x8\n\t" \
156 "or\t%0, $1\n\t" \
157 "li\t%1, 0\n" \
158 "3:\n\t" \
159 ".insn\n\t" \
160 ".set\tat\n\t" \
161 ".section\t.fixup,\"ax\"\n\t" \
162 "4:\tli\t%1, %3\n\t" \
163 "j\t3b\n\t" \
164 ".previous\n\t" \
165 ".section\t__ex_table,\"a\"\n\t" \
166 STR(PTR)"\t1b, 4b\n\t" \
167 STR(PTR)"\t2b, 4b\n\t" \
168 ".previous" \
169 : "=&r" (value), "=r" (res) \
170 : "r" (addr), "i" (-EFAULT));
171
172#define LoadWU(addr, value, res) \
173 __asm__ __volatile__ ( \
174 "1:\t"user_lwl("%0", "(%2)")"\n" \
175 "2:\t"user_lwr("%0", "3(%2)")"\n\t" \
176 "dsll\t%0, %0, 32\n\t" \
177 "dsrl\t%0, %0, 32\n\t" \
178 "li\t%1, 0\n" \
179 "3:\n\t" \
180 ".insn\n\t" \
181 "\t.section\t.fixup,\"ax\"\n\t" \
182 "4:\tli\t%1, %3\n\t" \
183 "j\t3b\n\t" \
184 ".previous\n\t" \
185 ".section\t__ex_table,\"a\"\n\t" \
186 STR(PTR)"\t1b, 4b\n\t" \
187 STR(PTR)"\t2b, 4b\n\t" \
188 ".previous" \
189 : "=&r" (value), "=r" (res) \
190 : "r" (addr), "i" (-EFAULT));
191
192#define LoadDW(addr, value, res) \
193 __asm__ __volatile__ ( \
194 "1:\tldl\t%0, (%2)\n" \
195 "2:\tldr\t%0, 7(%2)\n\t" \
196 "li\t%1, 0\n" \
197 "3:\n\t" \
198 ".insn\n\t" \
199 "\t.section\t.fixup,\"ax\"\n\t" \
200 "4:\tli\t%1, %3\n\t" \
201 "j\t3b\n\t" \
202 ".previous\n\t" \
203 ".section\t__ex_table,\"a\"\n\t" \
204 STR(PTR)"\t1b, 4b\n\t" \
205 STR(PTR)"\t2b, 4b\n\t" \
206 ".previous" \
207 : "=&r" (value), "=r" (res) \
208 : "r" (addr), "i" (-EFAULT));
209
210#define StoreHW(addr, value, res) \
211 __asm__ __volatile__ ( \
212 ".set\tnoat\n" \
213 "1:\t"user_sb("%1", "1(%2)")"\n" \
214 "srl\t$1, %1, 0x8\n" \
215 "2:\t"user_sb("$1", "0(%2)")"\n" \
216 ".set\tat\n\t" \
217 "li\t%0, 0\n" \
218 "3:\n\t" \
219 ".insn\n\t" \
220 ".section\t.fixup,\"ax\"\n\t" \
221 "4:\tli\t%0, %3\n\t" \
222 "j\t3b\n\t" \
223 ".previous\n\t" \
224 ".section\t__ex_table,\"a\"\n\t" \
225 STR(PTR)"\t1b, 4b\n\t" \
226 STR(PTR)"\t2b, 4b\n\t" \
227 ".previous" \
228 : "=r" (res) \
229 : "r" (value), "r" (addr), "i" (-EFAULT));
230
231#define StoreW(addr, value, res) \
232 __asm__ __volatile__ ( \
233 "1:\t"user_swl("%1", "(%2)")"\n" \
234 "2:\t"user_swr("%1", "3(%2)")"\n\t" \
235 "li\t%0, 0\n" \
236 "3:\n\t" \
237 ".insn\n\t" \
238 ".section\t.fixup,\"ax\"\n\t" \
239 "4:\tli\t%0, %3\n\t" \
240 "j\t3b\n\t" \
241 ".previous\n\t" \
242 ".section\t__ex_table,\"a\"\n\t" \
243 STR(PTR)"\t1b, 4b\n\t" \
244 STR(PTR)"\t2b, 4b\n\t" \
245 ".previous" \
246 : "=r" (res) \
247 : "r" (value), "r" (addr), "i" (-EFAULT));
248
249#define StoreDW(addr, value, res) \
250 __asm__ __volatile__ ( \
251 "1:\tsdl\t%1,(%2)\n" \
252 "2:\tsdr\t%1, 7(%2)\n\t" \
253 "li\t%0, 0\n" \
254 "3:\n\t" \
255 ".insn\n\t" \
256 ".section\t.fixup,\"ax\"\n\t" \
257 "4:\tli\t%0, %3\n\t" \
258 "j\t3b\n\t" \
259 ".previous\n\t" \
260 ".section\t__ex_table,\"a\"\n\t" \
261 STR(PTR)"\t1b, 4b\n\t" \
262 STR(PTR)"\t2b, 4b\n\t" \
263 ".previous" \
264 : "=r" (res) \
265 : "r" (value), "r" (addr), "i" (-EFAULT));
266#endif
267
268#ifdef __LITTLE_ENDIAN
269#define LoadHW(addr, value, res) \
270 __asm__ __volatile__ (".set\tnoat\n" \
271 "1:\t"user_lb("%0", "1(%2)")"\n" \
272 "2:\t"user_lbu("$1", "0(%2)")"\n\t" \
273 "sll\t%0, 0x8\n\t" \
274 "or\t%0, $1\n\t" \
275 "li\t%1, 0\n" \
276 "3:\t.set\tat\n\t" \
277 ".insn\n\t" \
278 ".section\t.fixup,\"ax\"\n\t" \
279 "4:\tli\t%1, %3\n\t" \
280 "j\t3b\n\t" \
281 ".previous\n\t" \
282 ".section\t__ex_table,\"a\"\n\t" \
283 STR(PTR)"\t1b, 4b\n\t" \
284 STR(PTR)"\t2b, 4b\n\t" \
285 ".previous" \
286 : "=&r" (value), "=r" (res) \
287 : "r" (addr), "i" (-EFAULT));
288
289#define LoadW(addr, value, res) \
290 __asm__ __volatile__ ( \
291 "1:\t"user_lwl("%0", "3(%2)")"\n" \
292 "2:\t"user_lwr("%0", "(%2)")"\n\t" \
293 "li\t%1, 0\n" \
294 "3:\n\t" \
295 ".insn\n\t" \
296 ".section\t.fixup,\"ax\"\n\t" \
297 "4:\tli\t%1, %3\n\t" \
298 "j\t3b\n\t" \
299 ".previous\n\t" \
300 ".section\t__ex_table,\"a\"\n\t" \
301 STR(PTR)"\t1b, 4b\n\t" \
302 STR(PTR)"\t2b, 4b\n\t" \
303 ".previous" \
304 : "=&r" (value), "=r" (res) \
305 : "r" (addr), "i" (-EFAULT));
306
307#define LoadHWU(addr, value, res) \
308 __asm__ __volatile__ ( \
309 ".set\tnoat\n" \
310 "1:\t"user_lbu("%0", "1(%2)")"\n" \
311 "2:\t"user_lbu("$1", "0(%2)")"\n\t" \
312 "sll\t%0, 0x8\n\t" \
313 "or\t%0, $1\n\t" \
314 "li\t%1, 0\n" \
315 "3:\n\t" \
316 ".insn\n\t" \
317 ".set\tat\n\t" \
318 ".section\t.fixup,\"ax\"\n\t" \
319 "4:\tli\t%1, %3\n\t" \
320 "j\t3b\n\t" \
321 ".previous\n\t" \
322 ".section\t__ex_table,\"a\"\n\t" \
323 STR(PTR)"\t1b, 4b\n\t" \
324 STR(PTR)"\t2b, 4b\n\t" \
325 ".previous" \
326 : "=&r" (value), "=r" (res) \
327 : "r" (addr), "i" (-EFAULT));
328
329#define LoadWU(addr, value, res) \
330 __asm__ __volatile__ ( \
331 "1:\t"user_lwl("%0", "3(%2)")"\n" \
332 "2:\t"user_lwr("%0", "(%2)")"\n\t" \
333 "dsll\t%0, %0, 32\n\t" \
334 "dsrl\t%0, %0, 32\n\t" \
335 "li\t%1, 0\n" \
336 "3:\n\t" \
337 ".insn\n\t" \
338 "\t.section\t.fixup,\"ax\"\n\t" \
339 "4:\tli\t%1, %3\n\t" \
340 "j\t3b\n\t" \
341 ".previous\n\t" \
342 ".section\t__ex_table,\"a\"\n\t" \
343 STR(PTR)"\t1b, 4b\n\t" \
344 STR(PTR)"\t2b, 4b\n\t" \
345 ".previous" \
346 : "=&r" (value), "=r" (res) \
347 : "r" (addr), "i" (-EFAULT));
348
349#define LoadDW(addr, value, res) \
350 __asm__ __volatile__ ( \
351 "1:\tldl\t%0, 7(%2)\n" \
352 "2:\tldr\t%0, (%2)\n\t" \
353 "li\t%1, 0\n" \
354 "3:\n\t" \
355 ".insn\n\t" \
356 "\t.section\t.fixup,\"ax\"\n\t" \
357 "4:\tli\t%1, %3\n\t" \
358 "j\t3b\n\t" \
359 ".previous\n\t" \
360 ".section\t__ex_table,\"a\"\n\t" \
361 STR(PTR)"\t1b, 4b\n\t" \
362 STR(PTR)"\t2b, 4b\n\t" \
363 ".previous" \
364 : "=&r" (value), "=r" (res) \
365 : "r" (addr), "i" (-EFAULT));
366
367#define StoreHW(addr, value, res) \
368 __asm__ __volatile__ ( \
369 ".set\tnoat\n" \
370 "1:\t"user_sb("%1", "0(%2)")"\n" \
371 "srl\t$1,%1, 0x8\n" \
372 "2:\t"user_sb("$1", "1(%2)")"\n" \
373 ".set\tat\n\t" \
374 "li\t%0, 0\n" \
375 "3:\n\t" \
376 ".insn\n\t" \
377 ".section\t.fixup,\"ax\"\n\t" \
378 "4:\tli\t%0, %3\n\t" \
379 "j\t3b\n\t" \
380 ".previous\n\t" \
381 ".section\t__ex_table,\"a\"\n\t" \
382 STR(PTR)"\t1b, 4b\n\t" \
383 STR(PTR)"\t2b, 4b\n\t" \
384 ".previous" \
385 : "=r" (res) \
386 : "r" (value), "r" (addr), "i" (-EFAULT));
387
388#define StoreW(addr, value, res) \
389 __asm__ __volatile__ ( \
390 "1:\t"user_swl("%1", "3(%2)")"\n" \
391 "2:\t"user_swr("%1", "(%2)")"\n\t" \
392 "li\t%0, 0\n" \
393 "3:\n\t" \
394 ".insn\n\t" \
395 ".section\t.fixup,\"ax\"\n\t" \
396 "4:\tli\t%0, %3\n\t" \
397 "j\t3b\n\t" \
398 ".previous\n\t" \
399 ".section\t__ex_table,\"a\"\n\t" \
400 STR(PTR)"\t1b, 4b\n\t" \
401 STR(PTR)"\t2b, 4b\n\t" \
402 ".previous" \
403 : "=r" (res) \
404 : "r" (value), "r" (addr), "i" (-EFAULT));
405
406#define StoreDW(addr, value, res) \
407 __asm__ __volatile__ ( \
408 "1:\tsdl\t%1, 7(%2)\n" \
409 "2:\tsdr\t%1, (%2)\n\t" \
410 "li\t%0, 0\n" \
411 "3:\n\t" \
412 ".insn\n\t" \
413 ".section\t.fixup,\"ax\"\n\t" \
414 "4:\tli\t%0, %3\n\t" \
415 "j\t3b\n\t" \
416 ".previous\n\t" \
417 ".section\t__ex_table,\"a\"\n\t" \
418 STR(PTR)"\t1b, 4b\n\t" \
419 STR(PTR)"\t2b, 4b\n\t" \
420 ".previous" \
421 : "=r" (res) \
422 : "r" (value), "r" (addr), "i" (-EFAULT));
423#endif
424
425static void emulate_load_store_insn(struct pt_regs *regs,
426 void __user *addr, unsigned int __user *pc)
427{
428 union mips_instruction insn;
429 unsigned long value;
430 unsigned int res;
431 unsigned long origpc;
432 unsigned long orig31;
433 void __user *fault_addr = NULL;
434#ifdef CONFIG_EVA
435 mm_segment_t seg;
436#endif
437 origpc = (unsigned long)pc;
438 orig31 = regs->regs[31];
439
440 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
441
442 /*
443 * This load never faults.
444 */
445 __get_user(insn.word, pc);
446
447 switch (insn.i_format.opcode) {
448 /*
449 * These are instructions that a compiler doesn't generate. We
450 * can assume therefore that the code is MIPS-aware and
451 * really buggy. Emulating these instructions would break the
452 * semantics anyway.
453 */
454 case ll_op:
455 case lld_op:
456 case sc_op:
457 case scd_op:
458
459 /*
460 * For these instructions the only way to create an address
461 * error is an attempted access to kernel/supervisor address
462 * space.
463 */
464 case ldl_op:
465 case ldr_op:
466 case lwl_op:
467 case lwr_op:
468 case sdl_op:
469 case sdr_op:
470 case swl_op:
471 case swr_op:
472 case lb_op:
473 case lbu_op:
474 case sb_op:
475 goto sigbus;
476
477 /*
478 * The remaining opcodes are the ones that are really of
479 * interest.
480 */
481#ifdef CONFIG_EVA
482 case spec3_op:
483 /*
484 * we can land here only from kernel accessing user memory,
485 * so we need to "switch" the address limit to user space, so
486 * address check can work properly.
487 */
488 seg = get_fs();
489 set_fs(USER_DS);
490 switch (insn.spec3_format.func) {
491 case lhe_op:
492 if (!access_ok(VERIFY_READ, addr, 2)) {
493 set_fs(seg);
494 goto sigbus;
495 }
496 LoadHW(addr, value, res);
497 if (res) {
498 set_fs(seg);
499 goto fault;
500 }
501 compute_return_epc(regs);
502 regs->regs[insn.spec3_format.rt] = value;
503 break;
504 case lwe_op:
505 if (!access_ok(VERIFY_READ, addr, 4)) {
506 set_fs(seg);
507 goto sigbus;
508 }
509 LoadW(addr, value, res);
510 if (res) {
511 set_fs(seg);
512 goto fault;
513 }
514 compute_return_epc(regs);
515 regs->regs[insn.spec3_format.rt] = value;
516 break;
517 case lhue_op:
518 if (!access_ok(VERIFY_READ, addr, 2)) {
519 set_fs(seg);
520 goto sigbus;
521 }
522 LoadHWU(addr, value, res);
523 if (res) {
524 set_fs(seg);
525 goto fault;
526 }
527 compute_return_epc(regs);
528 regs->regs[insn.spec3_format.rt] = value;
529 break;
530 case she_op:
531 if (!access_ok(VERIFY_WRITE, addr, 2)) {
532 set_fs(seg);
533 goto sigbus;
534 }
535 compute_return_epc(regs);
536 value = regs->regs[insn.spec3_format.rt];
537 StoreHW(addr, value, res);
538 if (res) {
539 set_fs(seg);
540 goto fault;
541 }
542 break;
543 case swe_op:
544 if (!access_ok(VERIFY_WRITE, addr, 4)) {
545 set_fs(seg);
546 goto sigbus;
547 }
548 compute_return_epc(regs);
549 value = regs->regs[insn.spec3_format.rt];
550 StoreW(addr, value, res);
551 if (res) {
552 set_fs(seg);
553 goto fault;
554 }
555 break;
556 default:
557 set_fs(seg);
558 goto sigill;
559 }
560 set_fs(seg);
561 break;
562#endif
563 case lh_op:
564 if (!access_ok(VERIFY_READ, addr, 2))
565 goto sigbus;
566
567 LoadHW(addr, value, res);
568 if (res)
569 goto fault;
570 compute_return_epc(regs);
571 regs->regs[insn.i_format.rt] = value;
572 break;
573
574 case lw_op:
575 if (!access_ok(VERIFY_READ, addr, 4))
576 goto sigbus;
577
578 LoadW(addr, value, res);
579 if (res)
580 goto fault;
581 compute_return_epc(regs);
582 regs->regs[insn.i_format.rt] = value;
583 break;
584
585 case lhu_op:
586 if (!access_ok(VERIFY_READ, addr, 2))
587 goto sigbus;
588
589 LoadHWU(addr, value, res);
590 if (res)
591 goto fault;
592 compute_return_epc(regs);
593 regs->regs[insn.i_format.rt] = value;
594 break;
595
596 case lwu_op:
597#ifdef CONFIG_64BIT
598 /*
599 * A 32-bit kernel might be running on a 64-bit processor. But
600 * if we're on a 32-bit processor and an i-cache incoherency
601 * or race makes us see a 64-bit instruction here the sdl/sdr
602 * would blow up, so for now we don't handle unaligned 64-bit
603 * instructions on 32-bit kernels.
604 */
605 if (!access_ok(VERIFY_READ, addr, 4))
606 goto sigbus;
607
608 LoadWU(addr, value, res);
609 if (res)
610 goto fault;
611 compute_return_epc(regs);
612 regs->regs[insn.i_format.rt] = value;
613 break;
614#endif /* CONFIG_64BIT */
615
616 /* Cannot handle 64-bit instructions in 32-bit kernel */
617 goto sigill;
618
619 case ld_op:
620#ifdef CONFIG_64BIT
621 /*
622 * A 32-bit kernel might be running on a 64-bit processor. But
623 * if we're on a 32-bit processor and an i-cache incoherency
624 * or race makes us see a 64-bit instruction here the sdl/sdr
625 * would blow up, so for now we don't handle unaligned 64-bit
626 * instructions on 32-bit kernels.
627 */
628 if (!access_ok(VERIFY_READ, addr, 8))
629 goto sigbus;
630
631 LoadDW(addr, value, res);
632 if (res)
633 goto fault;
634 compute_return_epc(regs);
635 regs->regs[insn.i_format.rt] = value;
636 break;
637#endif /* CONFIG_64BIT */
638
639 /* Cannot handle 64-bit instructions in 32-bit kernel */
640 goto sigill;
641
642 case sh_op:
643 if (!access_ok(VERIFY_WRITE, addr, 2))
644 goto sigbus;
645
646 compute_return_epc(regs);
647 value = regs->regs[insn.i_format.rt];
648 StoreHW(addr, value, res);
649 if (res)
650 goto fault;
651 break;
652
653 case sw_op:
654 if (!access_ok(VERIFY_WRITE, addr, 4))
655 goto sigbus;
656
657 compute_return_epc(regs);
658 value = regs->regs[insn.i_format.rt];
659 StoreW(addr, value, res);
660 if (res)
661 goto fault;
662 break;
663
664 case sd_op:
665#ifdef CONFIG_64BIT
666 /*
667 * A 32-bit kernel might be running on a 64-bit processor. But
668 * if we're on a 32-bit processor and an i-cache incoherency
669 * or race makes us see a 64-bit instruction here the sdl/sdr
670 * would blow up, so for now we don't handle unaligned 64-bit
671 * instructions on 32-bit kernels.
672 */
673 if (!access_ok(VERIFY_WRITE, addr, 8))
674 goto sigbus;
675
676 compute_return_epc(regs);
677 value = regs->regs[insn.i_format.rt];
678 StoreDW(addr, value, res);
679 if (res)
680 goto fault;
681 break;
682#endif /* CONFIG_64BIT */
683
684 /* Cannot handle 64-bit instructions in 32-bit kernel */
685 goto sigill;
686
687 case lwc1_op:
688 case ldc1_op:
689 case swc1_op:
690 case sdc1_op:
691 die_if_kernel("Unaligned FP access in kernel code", regs);
692 BUG_ON(!used_math());
693 BUG_ON(!is_fpu_owner());
694
695 lose_fpu(1); /* Save FPU state for the emulator. */
696 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
697 &fault_addr);
698 own_fpu(1); /* Restore FPU state. */
699
700 /* Signal if something went wrong. */
701 process_fpemu_return(res, fault_addr);
702
703 if (res == 0)
704 break;
705 return;
706
707 /*
708 * COP2 is available to implementor for application specific use.
709 * It's up to applications to register a notifier chain and do
710 * whatever they have to do, including possible sending of signals.
711 */
712 case lwc2_op:
713 cu2_notifier_call_chain(CU2_LWC2_OP, regs);
714 break;
715
716 case ldc2_op:
717 cu2_notifier_call_chain(CU2_LDC2_OP, regs);
718 break;
719
720 case swc2_op:
721 cu2_notifier_call_chain(CU2_SWC2_OP, regs);
722 break;
723
724 case sdc2_op:
725 cu2_notifier_call_chain(CU2_SDC2_OP, regs);
726 break;
727
728 default:
729 /*
730 * Pheeee... We encountered an yet unknown instruction or
731 * cache coherence problem. Die sucker, die ...
732 */
733 goto sigill;
734 }
735
736#ifdef CONFIG_DEBUG_FS
737 unaligned_instructions++;
738#endif
739
740 return;
741
742fault:
743 /* roll back jump/branch */
744 regs->cp0_epc = origpc;
745 regs->regs[31] = orig31;
746 /* Did we have an exception handler installed? */
747 if (fixup_exception(regs))
748 return;
749
750 die_if_kernel("Unhandled kernel unaligned access", regs);
751 force_sig(SIGSEGV, current);
752
753 return;
754
755sigbus:
756 die_if_kernel("Unhandled kernel unaligned access", regs);
757 force_sig(SIGBUS, current);
758
759 return;
760
761sigill:
762 die_if_kernel
763 ("Unhandled kernel unaligned access or invalid instruction", regs);
764 force_sig(SIGILL, current);
765}
766
767/* Recode table from 16-bit register notation to 32-bit GPR. */
768const int reg16to32[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
769
770/* Recode table from 16-bit STORE register notation to 32-bit GPR. */
771const int reg16to32st[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
772
773static void emulate_load_store_microMIPS(struct pt_regs *regs,
774 void __user *addr)
775{
776 unsigned long value;
777 unsigned int res;
778 int i;
779 unsigned int reg = 0, rvar;
780 unsigned long orig31;
781 u16 __user *pc16;
782 u16 halfword;
783 unsigned int word;
784 unsigned long origpc, contpc;
785 union mips_instruction insn;
786 struct mm_decoded_insn mminsn;
787 void __user *fault_addr = NULL;
788
789 origpc = regs->cp0_epc;
790 orig31 = regs->regs[31];
791
792 mminsn.micro_mips_mode = 1;
793
794 /*
795 * This load never faults.
796 */
797 pc16 = (unsigned short __user *)msk_isa16_mode(regs->cp0_epc);
798 __get_user(halfword, pc16);
799 pc16++;
800 contpc = regs->cp0_epc + 2;
801 word = ((unsigned int)halfword << 16);
802 mminsn.pc_inc = 2;
803
804 if (!mm_insn_16bit(halfword)) {
805 __get_user(halfword, pc16);
806 pc16++;
807 contpc = regs->cp0_epc + 4;
808 mminsn.pc_inc = 4;
809 word |= halfword;
810 }
811 mminsn.insn = word;
812
813 if (get_user(halfword, pc16))
814 goto fault;
815 mminsn.next_pc_inc = 2;
816 word = ((unsigned int)halfword << 16);
817
818 if (!mm_insn_16bit(halfword)) {
819 pc16++;
820 if (get_user(halfword, pc16))
821 goto fault;
822 mminsn.next_pc_inc = 4;
823 word |= halfword;
824 }
825 mminsn.next_insn = word;
826
827 insn = (union mips_instruction)(mminsn.insn);
828 if (mm_isBranchInstr(regs, mminsn, &contpc))
829 insn = (union mips_instruction)(mminsn.next_insn);
830
831 /* Parse instruction to find what to do */
832
833 switch (insn.mm_i_format.opcode) {
834
835 case mm_pool32a_op:
836 switch (insn.mm_x_format.func) {
837 case mm_lwxs_op:
838 reg = insn.mm_x_format.rd;
839 goto loadW;
840 }
841
842 goto sigbus;
843
844 case mm_pool32b_op:
845 switch (insn.mm_m_format.func) {
846 case mm_lwp_func:
847 reg = insn.mm_m_format.rd;
848 if (reg == 31)
849 goto sigbus;
850
851 if (!access_ok(VERIFY_READ, addr, 8))
852 goto sigbus;
853
854 LoadW(addr, value, res);
855 if (res)
856 goto fault;
857 regs->regs[reg] = value;
858 addr += 4;
859 LoadW(addr, value, res);
860 if (res)
861 goto fault;
862 regs->regs[reg + 1] = value;
863 goto success;
864
865 case mm_swp_func:
866 reg = insn.mm_m_format.rd;
867 if (reg == 31)
868 goto sigbus;
869
870 if (!access_ok(VERIFY_WRITE, addr, 8))
871 goto sigbus;
872
873 value = regs->regs[reg];
874 StoreW(addr, value, res);
875 if (res)
876 goto fault;
877 addr += 4;
878 value = regs->regs[reg + 1];
879 StoreW(addr, value, res);
880 if (res)
881 goto fault;
882 goto success;
883
884 case mm_ldp_func:
885#ifdef CONFIG_64BIT
886 reg = insn.mm_m_format.rd;
887 if (reg == 31)
888 goto sigbus;
889
890 if (!access_ok(VERIFY_READ, addr, 16))
891 goto sigbus;
892
893 LoadDW(addr, value, res);
894 if (res)
895 goto fault;
896 regs->regs[reg] = value;
897 addr += 8;
898 LoadDW(addr, value, res);
899 if (res)
900 goto fault;
901 regs->regs[reg + 1] = value;
902 goto success;
903#endif /* CONFIG_64BIT */
904
905 goto sigill;
906
907 case mm_sdp_func:
908#ifdef CONFIG_64BIT
909 reg = insn.mm_m_format.rd;
910 if (reg == 31)
911 goto sigbus;
912
913 if (!access_ok(VERIFY_WRITE, addr, 16))
914 goto sigbus;
915
916 value = regs->regs[reg];
917 StoreDW(addr, value, res);
918 if (res)
919 goto fault;
920 addr += 8;
921 value = regs->regs[reg + 1];
922 StoreDW(addr, value, res);
923 if (res)
924 goto fault;
925 goto success;
926#endif /* CONFIG_64BIT */
927
928 goto sigill;
929
930 case mm_lwm32_func:
931 reg = insn.mm_m_format.rd;
932 rvar = reg & 0xf;
933 if ((rvar > 9) || !reg)
934 goto sigill;
935 if (reg & 0x10) {
936 if (!access_ok
937 (VERIFY_READ, addr, 4 * (rvar + 1)))
938 goto sigbus;
939 } else {
940 if (!access_ok(VERIFY_READ, addr, 4 * rvar))
941 goto sigbus;
942 }
943 if (rvar == 9)
944 rvar = 8;
945 for (i = 16; rvar; rvar--, i++) {
946 LoadW(addr, value, res);
947 if (res)
948 goto fault;
949 addr += 4;
950 regs->regs[i] = value;
951 }
952 if ((reg & 0xf) == 9) {
953 LoadW(addr, value, res);
954 if (res)
955 goto fault;
956 addr += 4;
957 regs->regs[30] = value;
958 }
959 if (reg & 0x10) {
960 LoadW(addr, value, res);
961 if (res)
962 goto fault;
963 regs->regs[31] = value;
964 }
965 goto success;
966
967 case mm_swm32_func:
968 reg = insn.mm_m_format.rd;
969 rvar = reg & 0xf;
970 if ((rvar > 9) || !reg)
971 goto sigill;
972 if (reg & 0x10) {
973 if (!access_ok
974 (VERIFY_WRITE, addr, 4 * (rvar + 1)))
975 goto sigbus;
976 } else {
977 if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
978 goto sigbus;
979 }
980 if (rvar == 9)
981 rvar = 8;
982 for (i = 16; rvar; rvar--, i++) {
983 value = regs->regs[i];
984 StoreW(addr, value, res);
985 if (res)
986 goto fault;
987 addr += 4;
988 }
989 if ((reg & 0xf) == 9) {
990 value = regs->regs[30];
991 StoreW(addr, value, res);
992 if (res)
993 goto fault;
994 addr += 4;
995 }
996 if (reg & 0x10) {
997 value = regs->regs[31];
998 StoreW(addr, value, res);
999 if (res)
1000 goto fault;
1001 }
1002 goto success;
1003
1004 case mm_ldm_func:
1005#ifdef CONFIG_64BIT
1006 reg = insn.mm_m_format.rd;
1007 rvar = reg & 0xf;
1008 if ((rvar > 9) || !reg)
1009 goto sigill;
1010 if (reg & 0x10) {
1011 if (!access_ok
1012 (VERIFY_READ, addr, 8 * (rvar + 1)))
1013 goto sigbus;
1014 } else {
1015 if (!access_ok(VERIFY_READ, addr, 8 * rvar))
1016 goto sigbus;
1017 }
1018 if (rvar == 9)
1019 rvar = 8;
1020
1021 for (i = 16; rvar; rvar--, i++) {
1022 LoadDW(addr, value, res);
1023 if (res)
1024 goto fault;
1025 addr += 4;
1026 regs->regs[i] = value;
1027 }
1028 if ((reg & 0xf) == 9) {
1029 LoadDW(addr, value, res);
1030 if (res)
1031 goto fault;
1032 addr += 8;
1033 regs->regs[30] = value;
1034 }
1035 if (reg & 0x10) {
1036 LoadDW(addr, value, res);
1037 if (res)
1038 goto fault;
1039 regs->regs[31] = value;
1040 }
1041 goto success;
1042#endif /* CONFIG_64BIT */
1043
1044 goto sigill;
1045
1046 case mm_sdm_func:
1047#ifdef CONFIG_64BIT
1048 reg = insn.mm_m_format.rd;
1049 rvar = reg & 0xf;
1050 if ((rvar > 9) || !reg)
1051 goto sigill;
1052 if (reg & 0x10) {
1053 if (!access_ok
1054 (VERIFY_WRITE, addr, 8 * (rvar + 1)))
1055 goto sigbus;
1056 } else {
1057 if (!access_ok(VERIFY_WRITE, addr, 8 * rvar))
1058 goto sigbus;
1059 }
1060 if (rvar == 9)
1061 rvar = 8;
1062
1063 for (i = 16; rvar; rvar--, i++) {
1064 value = regs->regs[i];
1065 StoreDW(addr, value, res);
1066 if (res)
1067 goto fault;
1068 addr += 8;
1069 }
1070 if ((reg & 0xf) == 9) {
1071 value = regs->regs[30];
1072 StoreDW(addr, value, res);
1073 if (res)
1074 goto fault;
1075 addr += 8;
1076 }
1077 if (reg & 0x10) {
1078 value = regs->regs[31];
1079 StoreDW(addr, value, res);
1080 if (res)
1081 goto fault;
1082 }
1083 goto success;
1084#endif /* CONFIG_64BIT */
1085
1086 goto sigill;
1087
1088 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
1089 }
1090
1091 goto sigbus;
1092
1093 case mm_pool32c_op:
1094 switch (insn.mm_m_format.func) {
1095 case mm_lwu_func:
1096 reg = insn.mm_m_format.rd;
1097 goto loadWU;
1098 }
1099
1100 /* LL,SC,LLD,SCD are not serviced */
1101 goto sigbus;
1102
1103 case mm_pool32f_op:
1104 switch (insn.mm_x_format.func) {
1105 case mm_lwxc1_func:
1106 case mm_swxc1_func:
1107 case mm_ldxc1_func:
1108 case mm_sdxc1_func:
1109 goto fpu_emul;
1110 }
1111
1112 goto sigbus;
1113
1114 case mm_ldc132_op:
1115 case mm_sdc132_op:
1116 case mm_lwc132_op:
1117 case mm_swc132_op:
1118fpu_emul:
1119 /* roll back jump/branch */
1120 regs->cp0_epc = origpc;
1121 regs->regs[31] = orig31;
1122
1123 die_if_kernel("Unaligned FP access in kernel code", regs);
1124 BUG_ON(!used_math());
1125 BUG_ON(!is_fpu_owner());
1126
1127 lose_fpu(1); /* save the FPU state for the emulator */
1128 res = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
1129 &fault_addr);
1130 own_fpu(1); /* restore FPU state */
1131
1132 /* If something went wrong, signal */
1133 process_fpemu_return(res, fault_addr);
1134
1135 if (res == 0)
1136 goto success;
1137 return;
1138
1139 case mm_lh32_op:
1140 reg = insn.mm_i_format.rt;
1141 goto loadHW;
1142
1143 case mm_lhu32_op:
1144 reg = insn.mm_i_format.rt;
1145 goto loadHWU;
1146
1147 case mm_lw32_op:
1148 reg = insn.mm_i_format.rt;
1149 goto loadW;
1150
1151 case mm_sh32_op:
1152 reg = insn.mm_i_format.rt;
1153 goto storeHW;
1154
1155 case mm_sw32_op:
1156 reg = insn.mm_i_format.rt;
1157 goto storeW;
1158
1159 case mm_ld32_op:
1160 reg = insn.mm_i_format.rt;
1161 goto loadDW;
1162
1163 case mm_sd32_op:
1164 reg = insn.mm_i_format.rt;
1165 goto storeDW;
1166
1167 case mm_pool16c_op:
1168 switch (insn.mm16_m_format.func) {
1169 case mm_lwm16_op:
1170 reg = insn.mm16_m_format.rlist;
1171 rvar = reg + 1;
1172 if (!access_ok(VERIFY_READ, addr, 4 * rvar))
1173 goto sigbus;
1174
1175 for (i = 16; rvar; rvar--, i++) {
1176 LoadW(addr, value, res);
1177 if (res)
1178 goto fault;
1179 addr += 4;
1180 regs->regs[i] = value;
1181 }
1182 LoadW(addr, value, res);
1183 if (res)
1184 goto fault;
1185 regs->regs[31] = value;
1186
1187 goto success;
1188
1189 case mm_swm16_op:
1190 reg = insn.mm16_m_format.rlist;
1191 rvar = reg + 1;
1192 if (!access_ok(VERIFY_WRITE, addr, 4 * rvar))
1193 goto sigbus;
1194
1195 for (i = 16; rvar; rvar--, i++) {
1196 value = regs->regs[i];
1197 StoreW(addr, value, res);
1198 if (res)
1199 goto fault;
1200 addr += 4;
1201 }
1202 value = regs->regs[31];
1203 StoreW(addr, value, res);
1204 if (res)
1205 goto fault;
1206
1207 goto success;
1208
1209 }
1210
1211 goto sigbus;
1212
1213 case mm_lhu16_op:
1214 reg = reg16to32[insn.mm16_rb_format.rt];
1215 goto loadHWU;
1216
1217 case mm_lw16_op:
1218 reg = reg16to32[insn.mm16_rb_format.rt];
1219 goto loadW;
1220
1221 case mm_sh16_op:
1222 reg = reg16to32st[insn.mm16_rb_format.rt];
1223 goto storeHW;
1224
1225 case mm_sw16_op:
1226 reg = reg16to32st[insn.mm16_rb_format.rt];
1227 goto storeW;
1228
1229 case mm_lwsp16_op:
1230 reg = insn.mm16_r5_format.rt;
1231 goto loadW;
1232
1233 case mm_swsp16_op:
1234 reg = insn.mm16_r5_format.rt;
1235 goto storeW;
1236
1237 case mm_lwgp16_op:
1238 reg = reg16to32[insn.mm16_r3_format.rt];
1239 goto loadW;
1240
1241 default:
1242 goto sigill;
1243 }
1244
1245loadHW:
1246 if (!access_ok(VERIFY_READ, addr, 2))
1247 goto sigbus;
1248
1249 LoadHW(addr, value, res);
1250 if (res)
1251 goto fault;
1252 regs->regs[reg] = value;
1253 goto success;
1254
1255loadHWU:
1256 if (!access_ok(VERIFY_READ, addr, 2))
1257 goto sigbus;
1258
1259 LoadHWU(addr, value, res);
1260 if (res)
1261 goto fault;
1262 regs->regs[reg] = value;
1263 goto success;
1264
1265loadW:
1266 if (!access_ok(VERIFY_READ, addr, 4))
1267 goto sigbus;
1268
1269 LoadW(addr, value, res);
1270 if (res)
1271 goto fault;
1272 regs->regs[reg] = value;
1273 goto success;
1274
1275loadWU:
1276#ifdef CONFIG_64BIT
1277 /*
1278 * A 32-bit kernel might be running on a 64-bit processor. But
1279 * if we're on a 32-bit processor and an i-cache incoherency
1280 * or race makes us see a 64-bit instruction here the sdl/sdr
1281 * would blow up, so for now we don't handle unaligned 64-bit
1282 * instructions on 32-bit kernels.
1283 */
1284 if (!access_ok(VERIFY_READ, addr, 4))
1285 goto sigbus;
1286
1287 LoadWU(addr, value, res);
1288 if (res)
1289 goto fault;
1290 regs->regs[reg] = value;
1291 goto success;
1292#endif /* CONFIG_64BIT */
1293
1294 /* Cannot handle 64-bit instructions in 32-bit kernel */
1295 goto sigill;
1296
1297loadDW:
1298#ifdef CONFIG_64BIT
1299 /*
1300 * A 32-bit kernel might be running on a 64-bit processor. But
1301 * if we're on a 32-bit processor and an i-cache incoherency
1302 * or race makes us see a 64-bit instruction here the sdl/sdr
1303 * would blow up, so for now we don't handle unaligned 64-bit
1304 * instructions on 32-bit kernels.
1305 */
1306 if (!access_ok(VERIFY_READ, addr, 8))
1307 goto sigbus;
1308
1309 LoadDW(addr, value, res);
1310 if (res)
1311 goto fault;
1312 regs->regs[reg] = value;
1313 goto success;
1314#endif /* CONFIG_64BIT */
1315
1316 /* Cannot handle 64-bit instructions in 32-bit kernel */
1317 goto sigill;
1318
1319storeHW:
1320 if (!access_ok(VERIFY_WRITE, addr, 2))
1321 goto sigbus;
1322
1323 value = regs->regs[reg];
1324 StoreHW(addr, value, res);
1325 if (res)
1326 goto fault;
1327 goto success;
1328
1329storeW:
1330 if (!access_ok(VERIFY_WRITE, addr, 4))
1331 goto sigbus;
1332
1333 value = regs->regs[reg];
1334 StoreW(addr, value, res);
1335 if (res)
1336 goto fault;
1337 goto success;
1338
1339storeDW:
1340#ifdef CONFIG_64BIT
1341 /*
1342 * A 32-bit kernel might be running on a 64-bit processor. But
1343 * if we're on a 32-bit processor and an i-cache incoherency
1344 * or race makes us see a 64-bit instruction here the sdl/sdr
1345 * would blow up, so for now we don't handle unaligned 64-bit
1346 * instructions on 32-bit kernels.
1347 */
1348 if (!access_ok(VERIFY_WRITE, addr, 8))
1349 goto sigbus;
1350
1351 value = regs->regs[reg];
1352 StoreDW(addr, value, res);
1353 if (res)
1354 goto fault;
1355 goto success;
1356#endif /* CONFIG_64BIT */
1357
1358 /* Cannot handle 64-bit instructions in 32-bit kernel */
1359 goto sigill;
1360
1361success:
1362 regs->cp0_epc = contpc; /* advance or branch */
1363
1364#ifdef CONFIG_DEBUG_FS
1365 unaligned_instructions++;
1366#endif
1367 return;
1368
1369fault:
1370 /* roll back jump/branch */
1371 regs->cp0_epc = origpc;
1372 regs->regs[31] = orig31;
1373 /* Did we have an exception handler installed? */
1374 if (fixup_exception(regs))
1375 return;
1376
1377 die_if_kernel("Unhandled kernel unaligned access", regs);
1378 force_sig(SIGSEGV, current);
1379
1380 return;
1381
1382sigbus:
1383 die_if_kernel("Unhandled kernel unaligned access", regs);
1384 force_sig(SIGBUS, current);
1385
1386 return;
1387
1388sigill:
1389 die_if_kernel
1390 ("Unhandled kernel unaligned access or invalid instruction", regs);
1391 force_sig(SIGILL, current);
1392}
1393
1394static void emulate_load_store_MIPS16e(struct pt_regs *regs, void __user * addr)
1395{
1396 unsigned long value;
1397 unsigned int res;
1398 int reg;
1399 unsigned long orig31;
1400 u16 __user *pc16;
1401 unsigned long origpc;
1402 union mips16e_instruction mips16inst, oldinst;
1403
1404 origpc = regs->cp0_epc;
1405 orig31 = regs->regs[31];
1406 pc16 = (unsigned short __user *)msk_isa16_mode(origpc);
1407 /*
1408 * This load never faults.
1409 */
1410 __get_user(mips16inst.full, pc16);
1411 oldinst = mips16inst;
1412
1413 /* skip EXTEND instruction */
1414 if (mips16inst.ri.opcode == MIPS16e_extend_op) {
1415 pc16++;
1416 __get_user(mips16inst.full, pc16);
1417 } else if (delay_slot(regs)) {
1418 /* skip jump instructions */
1419 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1420 if (mips16inst.ri.opcode == MIPS16e_jal_op)
1421 pc16++;
1422 pc16++;
1423 if (get_user(mips16inst.full, pc16))
1424 goto sigbus;
1425 }
1426
1427 switch (mips16inst.ri.opcode) {
1428 case MIPS16e_i64_op: /* I64 or RI64 instruction */
1429 switch (mips16inst.i64.func) { /* I64/RI64 func field check */
1430 case MIPS16e_ldpc_func:
1431 case MIPS16e_ldsp_func:
1432 reg = reg16to32[mips16inst.ri64.ry];
1433 goto loadDW;
1434
1435 case MIPS16e_sdsp_func:
1436 reg = reg16to32[mips16inst.ri64.ry];
1437 goto writeDW;
1438
1439 case MIPS16e_sdrasp_func:
1440 reg = 29; /* GPRSP */
1441 goto writeDW;
1442 }
1443
1444 goto sigbus;
1445
1446 case MIPS16e_swsp_op:
1447 case MIPS16e_lwpc_op:
1448 case MIPS16e_lwsp_op:
1449 reg = reg16to32[mips16inst.ri.rx];
1450 break;
1451
1452 case MIPS16e_i8_op:
1453 if (mips16inst.i8.func != MIPS16e_swrasp_func)
1454 goto sigbus;
1455 reg = 29; /* GPRSP */
1456 break;
1457
1458 default:
1459 reg = reg16to32[mips16inst.rri.ry];
1460 break;
1461 }
1462
1463 switch (mips16inst.ri.opcode) {
1464
1465 case MIPS16e_lb_op:
1466 case MIPS16e_lbu_op:
1467 case MIPS16e_sb_op:
1468 goto sigbus;
1469
1470 case MIPS16e_lh_op:
1471 if (!access_ok(VERIFY_READ, addr, 2))
1472 goto sigbus;
1473
1474 LoadHW(addr, value, res);
1475 if (res)
1476 goto fault;
1477 MIPS16e_compute_return_epc(regs, &oldinst);
1478 regs->regs[reg] = value;
1479 break;
1480
1481 case MIPS16e_lhu_op:
1482 if (!access_ok(VERIFY_READ, addr, 2))
1483 goto sigbus;
1484
1485 LoadHWU(addr, value, res);
1486 if (res)
1487 goto fault;
1488 MIPS16e_compute_return_epc(regs, &oldinst);
1489 regs->regs[reg] = value;
1490 break;
1491
1492 case MIPS16e_lw_op:
1493 case MIPS16e_lwpc_op:
1494 case MIPS16e_lwsp_op:
1495 if (!access_ok(VERIFY_READ, addr, 4))
1496 goto sigbus;
1497
1498 LoadW(addr, value, res);
1499 if (res)
1500 goto fault;
1501 MIPS16e_compute_return_epc(regs, &oldinst);
1502 regs->regs[reg] = value;
1503 break;
1504
1505 case MIPS16e_lwu_op:
1506#ifdef CONFIG_64BIT
1507 /*
1508 * A 32-bit kernel might be running on a 64-bit processor. But
1509 * if we're on a 32-bit processor and an i-cache incoherency
1510 * or race makes us see a 64-bit instruction here the sdl/sdr
1511 * would blow up, so for now we don't handle unaligned 64-bit
1512 * instructions on 32-bit kernels.
1513 */
1514 if (!access_ok(VERIFY_READ, addr, 4))
1515 goto sigbus;
1516
1517 LoadWU(addr, value, res);
1518 if (res)
1519 goto fault;
1520 MIPS16e_compute_return_epc(regs, &oldinst);
1521 regs->regs[reg] = value;
1522 break;
1523#endif /* CONFIG_64BIT */
1524
1525 /* Cannot handle 64-bit instructions in 32-bit kernel */
1526 goto sigill;
1527
1528 case MIPS16e_ld_op:
1529loadDW:
1530#ifdef CONFIG_64BIT
1531 /*
1532 * A 32-bit kernel might be running on a 64-bit processor. But
1533 * if we're on a 32-bit processor and an i-cache incoherency
1534 * or race makes us see a 64-bit instruction here the sdl/sdr
1535 * would blow up, so for now we don't handle unaligned 64-bit
1536 * instructions on 32-bit kernels.
1537 */
1538 if (!access_ok(VERIFY_READ, addr, 8))
1539 goto sigbus;
1540
1541 LoadDW(addr, value, res);
1542 if (res)
1543 goto fault;
1544 MIPS16e_compute_return_epc(regs, &oldinst);
1545 regs->regs[reg] = value;
1546 break;
1547#endif /* CONFIG_64BIT */
1548
1549 /* Cannot handle 64-bit instructions in 32-bit kernel */
1550 goto sigill;
1551
1552 case MIPS16e_sh_op:
1553 if (!access_ok(VERIFY_WRITE, addr, 2))
1554 goto sigbus;
1555
1556 MIPS16e_compute_return_epc(regs, &oldinst);
1557 value = regs->regs[reg];
1558 StoreHW(addr, value, res);
1559 if (res)
1560 goto fault;
1561 break;
1562
1563 case MIPS16e_sw_op:
1564 case MIPS16e_swsp_op:
1565 case MIPS16e_i8_op: /* actually - MIPS16e_swrasp_func */
1566 if (!access_ok(VERIFY_WRITE, addr, 4))
1567 goto sigbus;
1568
1569 MIPS16e_compute_return_epc(regs, &oldinst);
1570 value = regs->regs[reg];
1571 StoreW(addr, value, res);
1572 if (res)
1573 goto fault;
1574 break;
1575
1576 case MIPS16e_sd_op:
1577writeDW:
1578#ifdef CONFIG_64BIT
1579 /*
1580 * A 32-bit kernel might be running on a 64-bit processor. But
1581 * if we're on a 32-bit processor and an i-cache incoherency
1582 * or race makes us see a 64-bit instruction here the sdl/sdr
1583 * would blow up, so for now we don't handle unaligned 64-bit
1584 * instructions on 32-bit kernels.
1585 */
1586 if (!access_ok(VERIFY_WRITE, addr, 8))
1587 goto sigbus;
1588
1589 MIPS16e_compute_return_epc(regs, &oldinst);
1590 value = regs->regs[reg];
1591 StoreDW(addr, value, res);
1592 if (res)
1593 goto fault;
1594 break;
1595#endif /* CONFIG_64BIT */
1596
1597 /* Cannot handle 64-bit instructions in 32-bit kernel */
1598 goto sigill;
1599
1600 default:
1601 /*
1602 * Pheeee... We encountered an yet unknown instruction or
1603 * cache coherence problem. Die sucker, die ...
1604 */
1605 goto sigill;
1606 }
1607
1608#ifdef CONFIG_DEBUG_FS
1609 unaligned_instructions++;
1610#endif
1611
1612 return;
1613
1614fault:
1615 /* roll back jump/branch */
1616 regs->cp0_epc = origpc;
1617 regs->regs[31] = orig31;
1618 /* Did we have an exception handler installed? */
1619 if (fixup_exception(regs))
1620 return;
1621
1622 die_if_kernel("Unhandled kernel unaligned access", regs);
1623 force_sig(SIGSEGV, current);
1624
1625 return;
1626
1627sigbus:
1628 die_if_kernel("Unhandled kernel unaligned access", regs);
1629 force_sig(SIGBUS, current);
1630
1631 return;
1632
1633sigill:
1634 die_if_kernel
1635 ("Unhandled kernel unaligned access or invalid instruction", regs);
1636 force_sig(SIGILL, current);
1637}
1638
1639asmlinkage void do_ade(struct pt_regs *regs)
1640{
1641 enum ctx_state prev_state;
1642 unsigned int __user *pc;
1643 mm_segment_t seg;
1644
1645 prev_state = exception_enter();
1646 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS,
1647 1, regs, regs->cp0_badvaddr);
1648 /*
1649 * Did we catch a fault trying to load an instruction?
1650 */
1651 if (regs->cp0_badvaddr == regs->cp0_epc)
1652 goto sigbus;
1653
1654 if (user_mode(regs) && !test_thread_flag(TIF_FIXADE))
1655 goto sigbus;
1656 if (unaligned_action == UNALIGNED_ACTION_SIGNAL)
1657 goto sigbus;
1658
1659 /*
1660 * Do branch emulation only if we didn't forward the exception.
1661 * This is all so but ugly ...
1662 */
1663
1664 /*
1665 * Are we running in microMIPS mode?
1666 */
1667 if (get_isa16_mode(regs->cp0_epc)) {
1668 /*
1669 * Did we catch a fault trying to load an instruction in
1670 * 16-bit mode?
1671 */
1672 if (regs->cp0_badvaddr == msk_isa16_mode(regs->cp0_epc))
1673 goto sigbus;
1674 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1675 show_registers(regs);
1676
1677 if (cpu_has_mmips) {
1678 seg = get_fs();
1679 if (!user_mode(regs))
1680 set_fs(KERNEL_DS);
1681 emulate_load_store_microMIPS(regs,
1682 (void __user *)regs->cp0_badvaddr);
1683 set_fs(seg);
1684
1685 return;
1686 }
1687
1688 if (cpu_has_mips16) {
1689 seg = get_fs();
1690 if (!user_mode(regs))
1691 set_fs(KERNEL_DS);
1692 emulate_load_store_MIPS16e(regs,
1693 (void __user *)regs->cp0_badvaddr);
1694 set_fs(seg);
1695
1696 return;
1697 }
1698
1699 goto sigbus;
1700 }
1701
1702 if (unaligned_action == UNALIGNED_ACTION_SHOW)
1703 show_registers(regs);
1704 pc = (unsigned int __user *)exception_epc(regs);
1705
1706 seg = get_fs();
1707 if (!user_mode(regs))
1708 set_fs(KERNEL_DS);
1709 emulate_load_store_insn(regs, (void __user *)regs->cp0_badvaddr, pc);
1710 set_fs(seg);
1711
1712 return;
1713
1714sigbus:
1715 die_if_kernel("Kernel unaligned instruction access", regs);
1716 force_sig(SIGBUS, current);
1717
1718 /*
1719 * XXX On return from the signal handler we should advance the epc
1720 */
1721 exception_exit(prev_state);
1722}
1723
1724#ifdef CONFIG_DEBUG_FS
1725extern struct dentry *mips_debugfs_dir;
1726static int __init debugfs_unaligned(void)
1727{
1728 struct dentry *d;
1729
1730 if (!mips_debugfs_dir)
1731 return -ENODEV;
1732 d = debugfs_create_u32("unaligned_instructions", S_IRUGO,
1733 mips_debugfs_dir, &unaligned_instructions);
1734 if (!d)
1735 return -ENOMEM;
1736 d = debugfs_create_u32("unaligned_action", S_IRUGO | S_IWUSR,
1737 mips_debugfs_dir, &unaligned_action);
1738 if (!d)
1739 return -ENOMEM;
1740 return 0;
1741}
1742__initcall(debugfs_unaligned);
1743#endif