Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
  4 *
  5 * Created by:  Nicolas Pitre, March 2012
  6 * Copyright:   (C) 2012-2013  Linaro Limited
 
 
 
 
  7 */
  8
  9#include <linux/export.h>
 10#include <linux/kernel.h>
 11#include <linux/init.h>
 12#include <linux/irqflags.h>
 13#include <linux/cpu_pm.h>
 14
 15#include <asm/mcpm.h>
 16#include <asm/cacheflush.h>
 17#include <asm/idmap.h>
 18#include <asm/cputype.h>
 19#include <asm/suspend.h>
 20
 21/*
 22 * The public API for this code is documented in arch/arm/include/asm/mcpm.h.
 23 * For a comprehensive description of the main algorithm used here, please
 24 * see Documentation/arch/arm/cluster-pm-race-avoidance.rst.
 25 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26
 27struct sync_struct mcpm_sync;
 28
 29/*
 30 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
 31 *    This must be called at the point of committing to teardown of a CPU.
 32 *    The CPU cache (SCTRL.C bit) is expected to still be active.
 33 */
 34static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
 35{
 36	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
 37	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
 38}
 39
 40/*
 41 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
 42 *    cluster can be torn down without disrupting this CPU.
 43 *    To avoid deadlocks, this must be called before a CPU is powered down.
 44 *    The CPU cache (SCTRL.C bit) is expected to be off.
 45 *    However L2 cache might or might not be active.
 46 */
 47static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
 48{
 49	dmb();
 50	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
 51	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
 52	sev();
 53}
 54
 55/*
 56 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
 57 * @state: the final state of the cluster:
 58 *     CLUSTER_UP: no destructive teardown was done and the cluster has been
 59 *         restored to the previous state (CPU cache still active); or
 60 *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
 61 *         (CPU cache disabled, L2 cache either enabled or disabled).
 62 */
 63static void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
 64{
 65	dmb();
 66	mcpm_sync.clusters[cluster].cluster = state;
 67	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
 68	sev();
 69}
 70
 71/*
 72 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
 73 * This function should be called by the last man, after local CPU teardown
 74 * is complete.  CPU cache expected to be active.
 75 *
 76 * Returns:
 77 *     false: the critical section was not entered because an inbound CPU was
 78 *         observed, or the cluster is already being set up;
 79 *     true: the critical section was entered: it is now safe to tear down the
 80 *         cluster.
 81 */
 82static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
 83{
 84	unsigned int i;
 85	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
 86
 87	/* Warn inbound CPUs that the cluster is being torn down: */
 88	c->cluster = CLUSTER_GOING_DOWN;
 89	sync_cache_w(&c->cluster);
 90
 91	/* Back out if the inbound cluster is already in the critical region: */
 92	sync_cache_r(&c->inbound);
 93	if (c->inbound == INBOUND_COMING_UP)
 94		goto abort;
 95
 96	/*
 97	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
 98	 * teardown is complete on each CPU before tearing down the cluster.
 99	 *
100	 * If any CPU has been woken up again from the DOWN state, then we
101	 * shouldn't be taking the cluster down at all: abort in that case.
102	 */
103	sync_cache_r(&c->cpus);
104	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
105		int cpustate;
106
107		if (i == cpu)
108			continue;
109
110		while (1) {
111			cpustate = c->cpus[i].cpu;
112			if (cpustate != CPU_GOING_DOWN)
113				break;
114
115			wfe();
116			sync_cache_r(&c->cpus[i].cpu);
117		}
118
119		switch (cpustate) {
120		case CPU_DOWN:
121			continue;
122
123		default:
124			goto abort;
125		}
126	}
127
128	return true;
129
130abort:
131	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
132	return false;
133}
134
135static int __mcpm_cluster_state(unsigned int cluster)
136{
137	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
138	return mcpm_sync.clusters[cluster].cluster;
139}
140
141extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
142
143void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
144{
145	unsigned long val = ptr ? __pa_symbol(ptr) : 0;
146	mcpm_entry_vectors[cluster][cpu] = val;
147	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
148}
149
150extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
151
152void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
153			 unsigned long poke_phys_addr, unsigned long poke_val)
154{
155	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
156	poke[0] = poke_phys_addr;
157	poke[1] = poke_val;
158	__sync_cache_range_w(poke, 2 * sizeof(*poke));
159}
160
161static const struct mcpm_platform_ops *platform_ops;
162
163int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
164{
165	if (platform_ops)
166		return -EBUSY;
167	platform_ops = ops;
168	return 0;
169}
170
171bool mcpm_is_available(void)
172{
173	return (platform_ops) ? true : false;
174}
175EXPORT_SYMBOL_GPL(mcpm_is_available);
176
177/*
178 * We can't use regular spinlocks. In the switcher case, it is possible
179 * for an outbound CPU to call power_down() after its inbound counterpart
180 * is already live using the same logical CPU number which trips lockdep
181 * debugging.
182 */
183static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED;
184
185static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
186
187static inline bool mcpm_cluster_unused(unsigned int cluster)
188{
189	int i, cnt;
190	for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++)
191		cnt |= mcpm_cpu_use_count[cluster][i];
192	return !cnt;
193}
194
195int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
196{
197	bool cpu_is_down, cluster_is_down;
198	int ret = 0;
199
200	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
201	if (!platform_ops)
202		return -EUNATCH; /* try not to shadow power_up errors */
203	might_sleep();
204
205	/*
206	 * Since this is called with IRQs enabled, and no arch_spin_lock_irq
207	 * variant exists, we need to disable IRQs manually here.
208	 */
209	local_irq_disable();
210	arch_spin_lock(&mcpm_lock);
211
212	cpu_is_down = !mcpm_cpu_use_count[cluster][cpu];
213	cluster_is_down = mcpm_cluster_unused(cluster);
214
215	mcpm_cpu_use_count[cluster][cpu]++;
216	/*
217	 * The only possible values are:
218	 * 0 = CPU down
219	 * 1 = CPU (still) up
220	 * 2 = CPU requested to be up before it had a chance
221	 *     to actually make itself down.
222	 * Any other value is a bug.
223	 */
224	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 &&
225	       mcpm_cpu_use_count[cluster][cpu] != 2);
226
227	if (cluster_is_down)
228		ret = platform_ops->cluster_powerup(cluster);
229	if (cpu_is_down && !ret)
230		ret = platform_ops->cpu_powerup(cpu, cluster);
231
232	arch_spin_unlock(&mcpm_lock);
233	local_irq_enable();
234	return ret;
235}
236
237typedef typeof(cpu_reset) phys_reset_t;
238
239void mcpm_cpu_power_down(void)
240{
241	unsigned int mpidr, cpu, cluster;
242	bool cpu_going_down, last_man;
243	phys_reset_t phys_reset;
244
245	mpidr = read_cpuid_mpidr();
246	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
247	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
248	pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
249	if (WARN_ON_ONCE(!platform_ops))
250	       return;
251	BUG_ON(!irqs_disabled());
252
253	setup_mm_for_reboot();
254
255	__mcpm_cpu_going_down(cpu, cluster);
256	arch_spin_lock(&mcpm_lock);
257	BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
258
259	mcpm_cpu_use_count[cluster][cpu]--;
260	BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 &&
261	       mcpm_cpu_use_count[cluster][cpu] != 1);
262	cpu_going_down = !mcpm_cpu_use_count[cluster][cpu];
263	last_man = mcpm_cluster_unused(cluster);
264
265	if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
266		platform_ops->cpu_powerdown_prepare(cpu, cluster);
267		platform_ops->cluster_powerdown_prepare(cluster);
268		arch_spin_unlock(&mcpm_lock);
269		platform_ops->cluster_cache_disable();
270		__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
271	} else {
272		if (cpu_going_down)
273			platform_ops->cpu_powerdown_prepare(cpu, cluster);
274		arch_spin_unlock(&mcpm_lock);
275		/*
276		 * If cpu_going_down is false here, that means a power_up
277		 * request raced ahead of us.  Even if we do not want to
278		 * shut this CPU down, the caller still expects execution
279		 * to return through the system resume entry path, like
280		 * when the WFI is aborted due to a new IRQ or the like..
281		 * So let's continue with cache cleaning in all cases.
282		 */
283		platform_ops->cpu_cache_disable();
284	}
285
286	__mcpm_cpu_down(cpu, cluster);
287
288	/* Now we are prepared for power-down, do it: */
289	if (cpu_going_down)
290		wfi();
291
292	/*
293	 * It is possible for a power_up request to happen concurrently
294	 * with a power_down request for the same CPU. In this case the
295	 * CPU might not be able to actually enter a powered down state
296	 * with the WFI instruction if the power_up request has removed
297	 * the required reset condition.  We must perform a re-entry in
298	 * the kernel as if the power_up method just had deasserted reset
299	 * on the CPU.
300	 */
301	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
302	phys_reset(__pa_symbol(mcpm_entry_point), false);
303
304	/* should never get here */
305	BUG();
306}
307
308int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster)
309{
310	int ret;
311
312	if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown))
313		return -EUNATCH;
314
315	ret = platform_ops->wait_for_powerdown(cpu, cluster);
316	if (ret)
317		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
318			__func__, cpu, cluster, ret);
319
320	return ret;
321}
322
323void mcpm_cpu_suspend(void)
324{
325	if (WARN_ON_ONCE(!platform_ops))
326		return;
327
328	/* Some platforms might have to enable special resume modes, etc. */
329	if (platform_ops->cpu_suspend_prepare) {
330		unsigned int mpidr = read_cpuid_mpidr();
331		unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
332		unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 
333		arch_spin_lock(&mcpm_lock);
334		platform_ops->cpu_suspend_prepare(cpu, cluster);
335		arch_spin_unlock(&mcpm_lock);
336	}
337	mcpm_cpu_power_down();
338}
339
340int mcpm_cpu_powered_up(void)
341{
342	unsigned int mpidr, cpu, cluster;
343	bool cpu_was_down, first_man;
344	unsigned long flags;
345
346	if (!platform_ops)
347		return -EUNATCH;
348
349	mpidr = read_cpuid_mpidr();
350	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
351	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
352	local_irq_save(flags);
353	arch_spin_lock(&mcpm_lock);
354
355	cpu_was_down = !mcpm_cpu_use_count[cluster][cpu];
356	first_man = mcpm_cluster_unused(cluster);
357
358	if (first_man && platform_ops->cluster_is_up)
359		platform_ops->cluster_is_up(cluster);
360	if (cpu_was_down)
361		mcpm_cpu_use_count[cluster][cpu] = 1;
362	if (platform_ops->cpu_is_up)
363		platform_ops->cpu_is_up(cpu, cluster);
364
365	arch_spin_unlock(&mcpm_lock);
366	local_irq_restore(flags);
367
368	return 0;
369}
370
371#ifdef CONFIG_ARM_CPU_SUSPEND
372
373static int __init nocache_trampoline(unsigned long _arg)
374{
375	void (*cache_disable)(void) = (void *)_arg;
376	unsigned int mpidr = read_cpuid_mpidr();
377	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
378	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
379	phys_reset_t phys_reset;
380
381	mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp);
382	setup_mm_for_reboot();
383
384	__mcpm_cpu_going_down(cpu, cluster);
385	BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster));
386	cache_disable();
387	__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
388	__mcpm_cpu_down(cpu, cluster);
389
390	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
391	phys_reset(__pa_symbol(mcpm_entry_point), false);
392	BUG();
393}
394
395int __init mcpm_loopback(void (*cache_disable)(void))
396{
397	int ret;
398
399	/*
400	 * We're going to soft-restart the current CPU through the
401	 * low-level MCPM code by leveraging the suspend/resume
402	 * infrastructure. Let's play it safe by using cpu_pm_enter()
403	 * in case the CPU init code path resets the VFP or similar.
404	 */
405	local_irq_disable();
406	local_fiq_disable();
407	ret = cpu_pm_enter();
408	if (!ret) {
409		ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline);
410		cpu_pm_exit();
411	}
412	local_fiq_enable();
413	local_irq_enable();
414	if (ret)
415		pr_err("%s returned %d\n", __func__, ret);
416	return ret;
417}
418
419#endif
420
421extern unsigned long mcpm_power_up_setup_phys;
422
423int __init mcpm_sync_init(
424	void (*power_up_setup)(unsigned int affinity_level))
425{
426	unsigned int i, j, mpidr, this_cluster;
427
428	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
429	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
430
431	/*
432	 * Set initial CPU and cluster states.
433	 * Only one cluster is assumed to be active at this point.
434	 */
435	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
436		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
437		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
438		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
439			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
440	}
441	mpidr = read_cpuid_mpidr();
442	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
443	for_each_online_cpu(i) {
444		mcpm_cpu_use_count[this_cluster][i] = 1;
445		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
446	}
447	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
448	sync_cache_w(&mcpm_sync);
449
450	if (power_up_setup) {
451		mcpm_power_up_setup_phys = __pa_symbol(power_up_setup);
452		sync_cache_w(&mcpm_power_up_setup_phys);
453	}
454
455	return 0;
456}
v3.15
 
  1/*
  2 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM
  3 *
  4 * Created by:  Nicolas Pitre, March 2012
  5 * Copyright:   (C) 2012-2013  Linaro Limited
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11
 
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/irqflags.h>
 
 15
 16#include <asm/mcpm.h>
 17#include <asm/cacheflush.h>
 18#include <asm/idmap.h>
 19#include <asm/cputype.h>
 
 20
 21extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER];
 22
 23void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr)
 24{
 25	unsigned long val = ptr ? virt_to_phys(ptr) : 0;
 26	mcpm_entry_vectors[cluster][cpu] = val;
 27	sync_cache_w(&mcpm_entry_vectors[cluster][cpu]);
 28}
 29
 30extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2];
 31
 32void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
 33			 unsigned long poke_phys_addr, unsigned long poke_val)
 34{
 35	unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0];
 36	poke[0] = poke_phys_addr;
 37	poke[1] = poke_val;
 38	__sync_cache_range_w(poke, 2 * sizeof(*poke));
 39}
 40
 41static const struct mcpm_platform_ops *platform_ops;
 42
 43int __init mcpm_platform_register(const struct mcpm_platform_ops *ops)
 44{
 45	if (platform_ops)
 46		return -EBUSY;
 47	platform_ops = ops;
 48	return 0;
 49}
 50
 51bool mcpm_is_available(void)
 52{
 53	return (platform_ops) ? true : false;
 54}
 55
 56int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster)
 57{
 58	if (!platform_ops)
 59		return -EUNATCH; /* try not to shadow power_up errors */
 60	might_sleep();
 61	return platform_ops->power_up(cpu, cluster);
 62}
 63
 64typedef void (*phys_reset_t)(unsigned long);
 65
 66void mcpm_cpu_power_down(void)
 67{
 68	phys_reset_t phys_reset;
 69
 70	if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down))
 71		return;
 72	BUG_ON(!irqs_disabled());
 73
 74	/*
 75	 * Do this before calling into the power_down method,
 76	 * as it might not always be safe to do afterwards.
 77	 */
 78	setup_mm_for_reboot();
 79
 80	platform_ops->power_down();
 81
 82	/*
 83	 * It is possible for a power_up request to happen concurrently
 84	 * with a power_down request for the same CPU. In this case the
 85	 * power_down method might not be able to actually enter a
 86	 * powered down state with the WFI instruction if the power_up
 87	 * method has removed the required reset condition.  The
 88	 * power_down method is then allowed to return. We must perform
 89	 * a re-entry in the kernel as if the power_up method just had
 90	 * deasserted reset on the CPU.
 91	 *
 92	 * To simplify race issues, the platform specific implementation
 93	 * must accommodate for the possibility of unordered calls to
 94	 * power_down and power_up with a usage count. Therefore, if a
 95	 * call to power_up is issued for a CPU that is not down, then
 96	 * the next call to power_down must not attempt a full shutdown
 97	 * but only do the minimum (normally disabling L1 cache and CPU
 98	 * coherency) and return just as if a concurrent power_up request
 99	 * had happened as described above.
100	 */
101
102	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
103	phys_reset(virt_to_phys(mcpm_entry_point));
104
105	/* should never get here */
106	BUG();
107}
108
109int mcpm_cpu_power_down_finish(unsigned int cpu, unsigned int cluster)
110{
111	int ret;
112
113	if (WARN_ON_ONCE(!platform_ops || !platform_ops->power_down_finish))
114		return -EUNATCH;
115
116	ret = platform_ops->power_down_finish(cpu, cluster);
117	if (ret)
118		pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n",
119			__func__, cpu, cluster, ret);
120
121	return ret;
122}
123
124void mcpm_cpu_suspend(u64 expected_residency)
125{
126	phys_reset_t phys_reset;
127
128	if (WARN_ON_ONCE(!platform_ops || !platform_ops->suspend))
129		return;
130	BUG_ON(!irqs_disabled());
131
132	/* Very similar to mcpm_cpu_power_down() */
133	setup_mm_for_reboot();
134	platform_ops->suspend(expected_residency);
135	phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
136	phys_reset(virt_to_phys(mcpm_entry_point));
137	BUG();
138}
139
140int mcpm_cpu_powered_up(void)
141{
142	if (!platform_ops)
143		return -EUNATCH;
144	if (platform_ops->powered_up)
145		platform_ops->powered_up();
146	return 0;
147}
148
149struct sync_struct mcpm_sync;
150
151/*
152 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down.
153 *    This must be called at the point of committing to teardown of a CPU.
154 *    The CPU cache (SCTRL.C bit) is expected to still be active.
155 */
156void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster)
157{
158	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN;
159	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
160}
161
162/*
163 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the
164 *    cluster can be torn down without disrupting this CPU.
165 *    To avoid deadlocks, this must be called before a CPU is powered down.
166 *    The CPU cache (SCTRL.C bit) is expected to be off.
167 *    However L2 cache might or might not be active.
168 */
169void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster)
170{
171	dmb();
172	mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN;
173	sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu);
174	sev();
175}
176
177/*
178 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section.
179 * @state: the final state of the cluster:
180 *     CLUSTER_UP: no destructive teardown was done and the cluster has been
181 *         restored to the previous state (CPU cache still active); or
182 *     CLUSTER_DOWN: the cluster has been torn-down, ready for power-off
183 *         (CPU cache disabled, L2 cache either enabled or disabled).
184 */
185void __mcpm_outbound_leave_critical(unsigned int cluster, int state)
186{
187	dmb();
188	mcpm_sync.clusters[cluster].cluster = state;
189	sync_cache_w(&mcpm_sync.clusters[cluster].cluster);
190	sev();
191}
192
193/*
194 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section.
195 * This function should be called by the last man, after local CPU teardown
196 * is complete.  CPU cache expected to be active.
197 *
198 * Returns:
199 *     false: the critical section was not entered because an inbound CPU was
200 *         observed, or the cluster is already being set up;
201 *     true: the critical section was entered: it is now safe to tear down the
202 *         cluster.
203 */
204bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster)
205{
206	unsigned int i;
207	struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster];
208
209	/* Warn inbound CPUs that the cluster is being torn down: */
210	c->cluster = CLUSTER_GOING_DOWN;
211	sync_cache_w(&c->cluster);
212
213	/* Back out if the inbound cluster is already in the critical region: */
214	sync_cache_r(&c->inbound);
215	if (c->inbound == INBOUND_COMING_UP)
216		goto abort;
217
218	/*
219	 * Wait for all CPUs to get out of the GOING_DOWN state, so that local
220	 * teardown is complete on each CPU before tearing down the cluster.
221	 *
222	 * If any CPU has been woken up again from the DOWN state, then we
223	 * shouldn't be taking the cluster down at all: abort in that case.
224	 */
225	sync_cache_r(&c->cpus);
226	for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) {
227		int cpustate;
228
229		if (i == cpu)
230			continue;
231
232		while (1) {
233			cpustate = c->cpus[i].cpu;
234			if (cpustate != CPU_GOING_DOWN)
235				break;
236
237			wfe();
238			sync_cache_r(&c->cpus[i].cpu);
239		}
240
241		switch (cpustate) {
242		case CPU_DOWN:
243			continue;
244
245		default:
246			goto abort;
247		}
248	}
249
250	return true;
251
252abort:
253	__mcpm_outbound_leave_critical(cluster, CLUSTER_UP);
254	return false;
255}
256
257int __mcpm_cluster_state(unsigned int cluster)
258{
259	sync_cache_r(&mcpm_sync.clusters[cluster].cluster);
260	return mcpm_sync.clusters[cluster].cluster;
261}
262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263extern unsigned long mcpm_power_up_setup_phys;
264
265int __init mcpm_sync_init(
266	void (*power_up_setup)(unsigned int affinity_level))
267{
268	unsigned int i, j, mpidr, this_cluster;
269
270	BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync);
271	BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1));
272
273	/*
274	 * Set initial CPU and cluster states.
275	 * Only one cluster is assumed to be active at this point.
276	 */
277	for (i = 0; i < MAX_NR_CLUSTERS; i++) {
278		mcpm_sync.clusters[i].cluster = CLUSTER_DOWN;
279		mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP;
280		for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++)
281			mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN;
282	}
283	mpidr = read_cpuid_mpidr();
284	this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
285	for_each_online_cpu(i)
 
286		mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP;
 
287	mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP;
288	sync_cache_w(&mcpm_sync);
289
290	if (power_up_setup) {
291		mcpm_power_up_setup_phys = virt_to_phys(power_up_setup);
292		sync_cache_w(&mcpm_power_up_setup_phys);
293	}
294
295	return 0;
296}