Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/alpha/kernel/process.c
  4 *
  5 *  Copyright (C) 1995  Linus Torvalds
  6 */
  7
  8/*
  9 * This file handles the architecture-dependent parts of process handling.
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/errno.h>
 14#include <linux/module.h>
 15#include <linux/sched.h>
 16#include <linux/sched/debug.h>
 17#include <linux/sched/task.h>
 18#include <linux/sched/task_stack.h>
 19#include <linux/kernel.h>
 20#include <linux/mm.h>
 21#include <linux/smp.h>
 22#include <linux/stddef.h>
 23#include <linux/unistd.h>
 24#include <linux/ptrace.h>
 25#include <linux/user.h>
 26#include <linux/time.h>
 27#include <linux/major.h>
 28#include <linux/stat.h>
 29#include <linux/vt.h>
 30#include <linux/mman.h>
 31#include <linux/elfcore.h>
 32#include <linux/reboot.h>
 33#include <linux/tty.h>
 34#include <linux/console.h>
 35#include <linux/slab.h>
 36#include <linux/rcupdate.h>
 37
 38#include <asm/reg.h>
 39#include <linux/uaccess.h>
 40#include <asm/io.h>
 
 41#include <asm/hwrpb.h>
 42#include <asm/fpu.h>
 43
 44#include "proto.h"
 45#include "pci_impl.h"
 46
 47/*
 48 * Power off function, if any
 49 */
 50void (*pm_power_off)(void) = machine_power_off;
 51EXPORT_SYMBOL(pm_power_off);
 52
 53#ifdef CONFIG_ALPHA_WTINT
 54/*
 55 * Sleep the CPU.
 56 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
 57 */
 58void arch_cpu_idle(void)
 59{
 60	wtint(0);
 
 61}
 62
 63void __noreturn arch_cpu_idle_dead(void)
 64{
 65	wtint(INT_MAX);
 66	BUG();
 67}
 68#endif /* ALPHA_WTINT */
 69
 70struct halt_info {
 71	int mode;
 72	char *restart_cmd;
 73};
 74
 75static void
 76common_shutdown_1(void *generic_ptr)
 77{
 78	struct halt_info *how = generic_ptr;
 79	struct percpu_struct *cpup;
 80	unsigned long *pflags, flags;
 81	int cpuid = smp_processor_id();
 82
 83	/* No point in taking interrupts anymore. */
 84	local_irq_disable();
 85
 86	cpup = (struct percpu_struct *)
 87			((unsigned long)hwrpb + hwrpb->processor_offset
 88			 + hwrpb->processor_size * cpuid);
 89	pflags = &cpup->flags;
 90	flags = *pflags;
 91
 92	/* Clear reason to "default"; clear "bootstrap in progress". */
 93	flags &= ~0x00ff0001UL;
 94
 95#ifdef CONFIG_SMP
 96	/* Secondaries halt here. */
 97	if (cpuid != boot_cpuid) {
 98		flags |= 0x00040000UL; /* "remain halted" */
 99		*pflags = flags;
100		set_cpu_present(cpuid, false);
101		set_cpu_possible(cpuid, false);
102		halt();
103	}
104#endif
105
106	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
107		if (!how->restart_cmd) {
108			flags |= 0x00020000UL; /* "cold bootstrap" */
109		} else {
110			/* For SRM, we could probably set environment
111			   variables to get this to work.  We'd have to
112			   delay this until after srm_paging_stop unless
113			   we ever got srm_fixup working.
114
115			   At the moment, SRM will use the last boot device,
116			   but the file and flags will be the defaults, when
117			   doing a "warm" bootstrap.  */
118			flags |= 0x00030000UL; /* "warm bootstrap" */
119		}
120	} else {
121		flags |= 0x00040000UL; /* "remain halted" */
122	}
123	*pflags = flags;
124
125#ifdef CONFIG_SMP
126	/* Wait for the secondaries to halt. */
127	set_cpu_present(boot_cpuid, false);
128	set_cpu_possible(boot_cpuid, false);
129	while (!cpumask_empty(cpu_present_mask))
130		barrier();
131#endif
132
133	/* If booted from SRM, reset some of the original environment. */
134	if (alpha_using_srm) {
135#ifdef CONFIG_DUMMY_CONSOLE
136		/* If we've gotten here after SysRq-b, leave interrupt
137		   context before taking over the console. */
138		if (in_hardirq())
139			irq_exit();
140		/* This has the effect of resetting the VGA video origin.  */
141		console_lock();
142		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
143		console_unlock();
144#endif
145		pci_restore_srm_config();
146		set_hae(srm_hae);
147	}
148
149	if (alpha_mv.kill_arch)
150		alpha_mv.kill_arch(how->mode);
151
152	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
153		/* Unfortunately, since MILO doesn't currently understand
154		   the hwrpb bits above, we can't reliably halt the 
155		   processor and keep it halted.  So just loop.  */
156		return;
157	}
158
159	if (alpha_using_srm)
160		srm_paging_stop();
161
162	halt();
163}
164
165static void
166common_shutdown(int mode, char *restart_cmd)
167{
168	struct halt_info args;
169	args.mode = mode;
170	args.restart_cmd = restart_cmd;
171	on_each_cpu(common_shutdown_1, &args, 0);
172}
173
174void
175machine_restart(char *restart_cmd)
176{
177	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
178}
179
180
181void
182machine_halt(void)
183{
184	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
185}
186
187
188void
189machine_power_off(void)
190{
191	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
192}
193
194
195/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
196   saved in the context it's used.  */
197
198void
199show_regs(struct pt_regs *regs)
200{
201	show_regs_print_info(KERN_DEFAULT);
202	dik_show_regs(regs, NULL);
203}
204
205/*
206 * Re-start a thread when doing execve()
207 */
208void
209start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
210{
211	regs->pc = pc;
212	regs->ps = 8;
213	wrusp(sp);
214}
215EXPORT_SYMBOL(start_thread);
216
 
 
 
 
 
 
 
 
217void
218flush_thread(void)
219{
220	/* Arrange for each exec'ed process to start off with a clean slate
221	   with respect to the FPU.  This is all exceptions disabled.  */
222	current_thread_info()->ieee_state = 0;
223	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
224
225	/* Clean slate for TLS.  */
226	current_thread_info()->pcb.unique = 0;
227}
228
 
 
 
 
 
229/*
230 * Copy architecture-specific thread state
231 */
232int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
 
 
 
233{
234	unsigned long clone_flags = args->flags;
235	unsigned long usp = args->stack;
236	unsigned long tls = args->tls;
237	extern void ret_from_fork(void);
238	extern void ret_from_kernel_thread(void);
239
240	struct thread_info *childti = task_thread_info(p);
241	struct pt_regs *childregs = task_pt_regs(p);
242	struct pt_regs *regs = current_pt_regs();
243	struct switch_stack *childstack, *stack;
244
245	childstack = ((struct switch_stack *) childregs) - 1;
246	childti->pcb.ksp = (unsigned long) childstack;
247	childti->pcb.flags = 1;	/* set FEN, clear everything else */
248	childti->status |= TS_SAVED_FP | TS_RESTORE_FP;
249
250	if (unlikely(args->fn)) {
251		/* kernel thread */
252		memset(childstack, 0,
253			sizeof(struct switch_stack) + sizeof(struct pt_regs));
254		childstack->r26 = (unsigned long) ret_from_kernel_thread;
255		childstack->r9 = (unsigned long) args->fn;
256		childstack->r10 = (unsigned long) args->fn_arg;
257		childregs->hae = alpha_mv.hae_cache;
258		memset(childti->fp, '\0', sizeof(childti->fp));
259		childti->pcb.usp = 0;
260		return 0;
261	}
262	/* Note: if CLONE_SETTLS is not set, then we must inherit the
263	   value from the parent, which will have been set by the block
264	   copy in dup_task_struct.  This is non-intuitive, but is
265	   required for proper operation in the case of a threaded
266	   application calling fork.  */
267	if (clone_flags & CLONE_SETTLS)
268		childti->pcb.unique = tls;
269	else
270		regs->r20 = 0;	/* OSF/1 has some strange fork() semantics.  */
271	childti->pcb.usp = usp ?: rdusp();
272	*childregs = *regs;
273	childregs->r0 = 0;
274	childregs->r19 = 0;
275	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
 
276	stack = ((struct switch_stack *) regs) - 1;
277	*childstack = *stack;
278	childstack->r26 = (unsigned long) ret_from_fork;
279	return 0;
280}
281
282/*
283 * Fill in the user structure for a ELF core dump.
284 */
285void
286dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
287{
288	/* switch stack follows right below pt_regs: */
289	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
290
291	dest[ 0] = pt->r0;
292	dest[ 1] = pt->r1;
293	dest[ 2] = pt->r2;
294	dest[ 3] = pt->r3;
295	dest[ 4] = pt->r4;
296	dest[ 5] = pt->r5;
297	dest[ 6] = pt->r6;
298	dest[ 7] = pt->r7;
299	dest[ 8] = pt->r8;
300	dest[ 9] = sw->r9;
301	dest[10] = sw->r10;
302	dest[11] = sw->r11;
303	dest[12] = sw->r12;
304	dest[13] = sw->r13;
305	dest[14] = sw->r14;
306	dest[15] = sw->r15;
307	dest[16] = pt->r16;
308	dest[17] = pt->r17;
309	dest[18] = pt->r18;
310	dest[19] = pt->r19;
311	dest[20] = pt->r20;
312	dest[21] = pt->r21;
313	dest[22] = pt->r22;
314	dest[23] = pt->r23;
315	dest[24] = pt->r24;
316	dest[25] = pt->r25;
317	dest[26] = pt->r26;
318	dest[27] = pt->r27;
319	dest[28] = pt->r28;
320	dest[29] = pt->gp;
321	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
322	dest[31] = pt->pc;
323
324	/* Once upon a time this was the PS value.  Which is stupid
325	   since that is always 8 for usermode.  Usurped for the more
326	   useful value of the thread's UNIQUE field.  */
327	dest[32] = ti->pcb.unique;
328}
329EXPORT_SYMBOL(dump_elf_thread);
330
331int
332dump_elf_task(elf_greg_t *dest, struct task_struct *task)
333{
334	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
335	return 1;
336}
337EXPORT_SYMBOL(dump_elf_task);
338
339int elf_core_copy_task_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
 
340{
341	memcpy(fpu, task_thread_info(t)->fp, 32 * 8);
 
342	return 1;
343}
 
344
345/*
346 * Return saved PC of a blocked thread.  This assumes the frame
347 * pointer is the 6th saved long on the kernel stack and that the
348 * saved return address is the first long in the frame.  This all
349 * holds provided the thread blocked through a call to schedule() ($15
350 * is the frame pointer in schedule() and $15 is saved at offset 48 by
351 * entry.S:do_switch_stack).
352 *
353 * Under heavy swap load I've seen this lose in an ugly way.  So do
354 * some extra sanity checking on the ranges we expect these pointers
355 * to be in so that we can fail gracefully.  This is just for ps after
356 * all.  -- r~
357 */
358
359static unsigned long
360thread_saved_pc(struct task_struct *t)
361{
362	unsigned long base = (unsigned long)task_stack_page(t);
363	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
364
365	if (sp > base && sp+6*8 < base + 16*1024) {
366		fp = ((unsigned long*)sp)[6];
367		if (fp > sp && fp < base + 16*1024)
368			return *(unsigned long *)fp;
369	}
370
371	return 0;
372}
373
374unsigned long
375__get_wchan(struct task_struct *p)
376{
377	unsigned long schedule_frame;
378	unsigned long pc;
379
 
380	/*
381	 * This one depends on the frame size of schedule().  Do a
382	 * "disass schedule" in gdb to find the frame size.  Also, the
383	 * code assumes that sleep_on() follows immediately after
384	 * interruptible_sleep_on() and that add_timer() follows
385	 * immediately after interruptible_sleep().  Ugly, isn't it?
386	 * Maybe adding a wchan field to task_struct would be better,
387	 * after all...
388	 */
389
390	pc = thread_saved_pc(p);
391	if (in_sched_functions(pc)) {
392		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
393		return ((unsigned long *)schedule_frame)[12];
394	}
395	return pc;
396}
v3.15
 
  1/*
  2 *  linux/arch/alpha/kernel/process.c
  3 *
  4 *  Copyright (C) 1995  Linus Torvalds
  5 */
  6
  7/*
  8 * This file handles the architecture-dependent parts of process handling.
  9 */
 10
 
 11#include <linux/errno.h>
 12#include <linux/module.h>
 13#include <linux/sched.h>
 
 
 
 14#include <linux/kernel.h>
 15#include <linux/mm.h>
 16#include <linux/smp.h>
 17#include <linux/stddef.h>
 18#include <linux/unistd.h>
 19#include <linux/ptrace.h>
 20#include <linux/user.h>
 21#include <linux/time.h>
 22#include <linux/major.h>
 23#include <linux/stat.h>
 24#include <linux/vt.h>
 25#include <linux/mman.h>
 26#include <linux/elfcore.h>
 27#include <linux/reboot.h>
 28#include <linux/tty.h>
 29#include <linux/console.h>
 30#include <linux/slab.h>
 31#include <linux/rcupdate.h>
 32
 33#include <asm/reg.h>
 34#include <asm/uaccess.h>
 35#include <asm/io.h>
 36#include <asm/pgtable.h>
 37#include <asm/hwrpb.h>
 38#include <asm/fpu.h>
 39
 40#include "proto.h"
 41#include "pci_impl.h"
 42
 43/*
 44 * Power off function, if any
 45 */
 46void (*pm_power_off)(void) = machine_power_off;
 47EXPORT_SYMBOL(pm_power_off);
 48
 49#ifdef CONFIG_ALPHA_WTINT
 50/*
 51 * Sleep the CPU.
 52 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
 53 */
 54void arch_cpu_idle(void)
 55{
 56	wtint(0);
 57	local_irq_enable();
 58}
 59
 60void arch_cpu_idle_dead(void)
 61{
 62	wtint(INT_MAX);
 
 63}
 64#endif /* ALPHA_WTINT */
 65
 66struct halt_info {
 67	int mode;
 68	char *restart_cmd;
 69};
 70
 71static void
 72common_shutdown_1(void *generic_ptr)
 73{
 74	struct halt_info *how = (struct halt_info *)generic_ptr;
 75	struct percpu_struct *cpup;
 76	unsigned long *pflags, flags;
 77	int cpuid = smp_processor_id();
 78
 79	/* No point in taking interrupts anymore. */
 80	local_irq_disable();
 81
 82	cpup = (struct percpu_struct *)
 83			((unsigned long)hwrpb + hwrpb->processor_offset
 84			 + hwrpb->processor_size * cpuid);
 85	pflags = &cpup->flags;
 86	flags = *pflags;
 87
 88	/* Clear reason to "default"; clear "bootstrap in progress". */
 89	flags &= ~0x00ff0001UL;
 90
 91#ifdef CONFIG_SMP
 92	/* Secondaries halt here. */
 93	if (cpuid != boot_cpuid) {
 94		flags |= 0x00040000UL; /* "remain halted" */
 95		*pflags = flags;
 96		set_cpu_present(cpuid, false);
 97		set_cpu_possible(cpuid, false);
 98		halt();
 99	}
100#endif
101
102	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
103		if (!how->restart_cmd) {
104			flags |= 0x00020000UL; /* "cold bootstrap" */
105		} else {
106			/* For SRM, we could probably set environment
107			   variables to get this to work.  We'd have to
108			   delay this until after srm_paging_stop unless
109			   we ever got srm_fixup working.
110
111			   At the moment, SRM will use the last boot device,
112			   but the file and flags will be the defaults, when
113			   doing a "warm" bootstrap.  */
114			flags |= 0x00030000UL; /* "warm bootstrap" */
115		}
116	} else {
117		flags |= 0x00040000UL; /* "remain halted" */
118	}
119	*pflags = flags;
120
121#ifdef CONFIG_SMP
122	/* Wait for the secondaries to halt. */
123	set_cpu_present(boot_cpuid, false);
124	set_cpu_possible(boot_cpuid, false);
125	while (cpumask_weight(cpu_present_mask))
126		barrier();
127#endif
128
129	/* If booted from SRM, reset some of the original environment. */
130	if (alpha_using_srm) {
131#ifdef CONFIG_DUMMY_CONSOLE
132		/* If we've gotten here after SysRq-b, leave interrupt
133		   context before taking over the console. */
134		if (in_interrupt())
135			irq_exit();
136		/* This has the effect of resetting the VGA video origin.  */
137		console_lock();
138		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
139		console_unlock();
140#endif
141		pci_restore_srm_config();
142		set_hae(srm_hae);
143	}
144
145	if (alpha_mv.kill_arch)
146		alpha_mv.kill_arch(how->mode);
147
148	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
149		/* Unfortunately, since MILO doesn't currently understand
150		   the hwrpb bits above, we can't reliably halt the 
151		   processor and keep it halted.  So just loop.  */
152		return;
153	}
154
155	if (alpha_using_srm)
156		srm_paging_stop();
157
158	halt();
159}
160
161static void
162common_shutdown(int mode, char *restart_cmd)
163{
164	struct halt_info args;
165	args.mode = mode;
166	args.restart_cmd = restart_cmd;
167	on_each_cpu(common_shutdown_1, &args, 0);
168}
169
170void
171machine_restart(char *restart_cmd)
172{
173	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
174}
175
176
177void
178machine_halt(void)
179{
180	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
181}
182
183
184void
185machine_power_off(void)
186{
187	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
188}
189
190
191/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
192   saved in the context it's used.  */
193
194void
195show_regs(struct pt_regs *regs)
196{
197	show_regs_print_info(KERN_DEFAULT);
198	dik_show_regs(regs, NULL);
199}
200
201/*
202 * Re-start a thread when doing execve()
203 */
204void
205start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
206{
207	regs->pc = pc;
208	regs->ps = 8;
209	wrusp(sp);
210}
211EXPORT_SYMBOL(start_thread);
212
213/*
214 * Free current thread data structures etc..
215 */
216void
217exit_thread(void)
218{
219}
220
221void
222flush_thread(void)
223{
224	/* Arrange for each exec'ed process to start off with a clean slate
225	   with respect to the FPU.  This is all exceptions disabled.  */
226	current_thread_info()->ieee_state = 0;
227	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
228
229	/* Clean slate for TLS.  */
230	current_thread_info()->pcb.unique = 0;
231}
232
233void
234release_thread(struct task_struct *dead_task)
235{
236}
237
238/*
239 * Copy an alpha thread..
240 */
241
242int
243copy_thread(unsigned long clone_flags, unsigned long usp,
244	    unsigned long arg,
245	    struct task_struct *p)
246{
 
 
 
247	extern void ret_from_fork(void);
248	extern void ret_from_kernel_thread(void);
249
250	struct thread_info *childti = task_thread_info(p);
251	struct pt_regs *childregs = task_pt_regs(p);
252	struct pt_regs *regs = current_pt_regs();
253	struct switch_stack *childstack, *stack;
254
255	childstack = ((struct switch_stack *) childregs) - 1;
256	childti->pcb.ksp = (unsigned long) childstack;
257	childti->pcb.flags = 1;	/* set FEN, clear everything else */
 
258
259	if (unlikely(p->flags & PF_KTHREAD)) {
260		/* kernel thread */
261		memset(childstack, 0,
262			sizeof(struct switch_stack) + sizeof(struct pt_regs));
263		childstack->r26 = (unsigned long) ret_from_kernel_thread;
264		childstack->r9 = usp;	/* function */
265		childstack->r10 = arg;
266		childregs->hae = alpha_mv.hae_cache,
 
267		childti->pcb.usp = 0;
268		return 0;
269	}
270	/* Note: if CLONE_SETTLS is not set, then we must inherit the
271	   value from the parent, which will have been set by the block
272	   copy in dup_task_struct.  This is non-intuitive, but is
273	   required for proper operation in the case of a threaded
274	   application calling fork.  */
275	if (clone_flags & CLONE_SETTLS)
276		childti->pcb.unique = regs->r20;
 
 
277	childti->pcb.usp = usp ?: rdusp();
278	*childregs = *regs;
279	childregs->r0 = 0;
280	childregs->r19 = 0;
281	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
282	regs->r20 = 0;
283	stack = ((struct switch_stack *) regs) - 1;
284	*childstack = *stack;
285	childstack->r26 = (unsigned long) ret_from_fork;
286	return 0;
287}
288
289/*
290 * Fill in the user structure for a ELF core dump.
291 */
292void
293dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
294{
295	/* switch stack follows right below pt_regs: */
296	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
297
298	dest[ 0] = pt->r0;
299	dest[ 1] = pt->r1;
300	dest[ 2] = pt->r2;
301	dest[ 3] = pt->r3;
302	dest[ 4] = pt->r4;
303	dest[ 5] = pt->r5;
304	dest[ 6] = pt->r6;
305	dest[ 7] = pt->r7;
306	dest[ 8] = pt->r8;
307	dest[ 9] = sw->r9;
308	dest[10] = sw->r10;
309	dest[11] = sw->r11;
310	dest[12] = sw->r12;
311	dest[13] = sw->r13;
312	dest[14] = sw->r14;
313	dest[15] = sw->r15;
314	dest[16] = pt->r16;
315	dest[17] = pt->r17;
316	dest[18] = pt->r18;
317	dest[19] = pt->r19;
318	dest[20] = pt->r20;
319	dest[21] = pt->r21;
320	dest[22] = pt->r22;
321	dest[23] = pt->r23;
322	dest[24] = pt->r24;
323	dest[25] = pt->r25;
324	dest[26] = pt->r26;
325	dest[27] = pt->r27;
326	dest[28] = pt->r28;
327	dest[29] = pt->gp;
328	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
329	dest[31] = pt->pc;
330
331	/* Once upon a time this was the PS value.  Which is stupid
332	   since that is always 8 for usermode.  Usurped for the more
333	   useful value of the thread's UNIQUE field.  */
334	dest[32] = ti->pcb.unique;
335}
336EXPORT_SYMBOL(dump_elf_thread);
337
338int
339dump_elf_task(elf_greg_t *dest, struct task_struct *task)
340{
341	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
342	return 1;
343}
344EXPORT_SYMBOL(dump_elf_task);
345
346int
347dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
348{
349	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
350	memcpy(dest, sw->fp, 32 * 8);
351	return 1;
352}
353EXPORT_SYMBOL(dump_elf_task_fp);
354
355/*
356 * Return saved PC of a blocked thread.  This assumes the frame
357 * pointer is the 6th saved long on the kernel stack and that the
358 * saved return address is the first long in the frame.  This all
359 * holds provided the thread blocked through a call to schedule() ($15
360 * is the frame pointer in schedule() and $15 is saved at offset 48 by
361 * entry.S:do_switch_stack).
362 *
363 * Under heavy swap load I've seen this lose in an ugly way.  So do
364 * some extra sanity checking on the ranges we expect these pointers
365 * to be in so that we can fail gracefully.  This is just for ps after
366 * all.  -- r~
367 */
368
369unsigned long
370thread_saved_pc(struct task_struct *t)
371{
372	unsigned long base = (unsigned long)task_stack_page(t);
373	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
374
375	if (sp > base && sp+6*8 < base + 16*1024) {
376		fp = ((unsigned long*)sp)[6];
377		if (fp > sp && fp < base + 16*1024)
378			return *(unsigned long *)fp;
379	}
380
381	return 0;
382}
383
384unsigned long
385get_wchan(struct task_struct *p)
386{
387	unsigned long schedule_frame;
388	unsigned long pc;
389	if (!p || p == current || p->state == TASK_RUNNING)
390		return 0;
391	/*
392	 * This one depends on the frame size of schedule().  Do a
393	 * "disass schedule" in gdb to find the frame size.  Also, the
394	 * code assumes that sleep_on() follows immediately after
395	 * interruptible_sleep_on() and that add_timer() follows
396	 * immediately after interruptible_sleep().  Ugly, isn't it?
397	 * Maybe adding a wchan field to task_struct would be better,
398	 * after all...
399	 */
400
401	pc = thread_saved_pc(p);
402	if (in_sched_functions(pc)) {
403		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
404		return ((unsigned long *)schedule_frame)[12];
405	}
406	return pc;
407}